N A
[R 4 Y

B ot e,

TR=546 (supersedes TK=470)
MCS=76-23763 June, 1977

VLISP for PDP-11s with Memcry Management

Robert L. Kirby

Computer Science (enter
University of Maryland
College Park, Maryland 20742

COMPUTER SCIENCE
TECHNICAL REPORT SERIES

UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND
20742

TR=546 (supersedes TR=400)
MCS=76-23763 June,y 1977

veise for PDP-11s with Memcry Management

Robert Ls Kirby

Computer Science Center
University of Maryland
College Park, Maryland 20742

A5STRACT

A new Large scale implementation of LISP, VLISP, for PDP-
11s with memcry management 1is described as implemented at the
University of maryland. The implementation is modelled after the
University of wisconsin®s UNIVAC 1100 L ISP, Four wversions are
available: an interpreter for wuse with the Virtual Operating
System (V0S) being developed at the University of Maryland; a
version compatible with DEC”s Disk Operating System (DOS) using a
VOS emulator; a stand-alone version which also emulates V0OS; and
a version for use with Bell Labcratories” UNIX operating system.
This documentation 1) explains how to use the implementation; 2)
discusses the problems, limitations, anc¢ internal configuration;
3) briefly describes the available system software including a
Pretty Printer, an S-expression editor, a LISP function compiler,
and micro-PLANNER; and 4) provices a synopsis of the pre-defined
LISP functions.

The support of the Mathematical and Computer Sciences
pivision, National Science Founcation under Grant MCS-76-23763 is
gratefully acknowl edged, as 1is theée help of Prot, Azriel
Rosenfeld, Prof. Chuck Riegery M™Mse. Joan Weszka, Mr. Mache
Creegery, and Mr. Ken Hayes in tke preparation of this document.

COPYRIGHT, 1977, Robert L. Kirby

This document may be copied for non-profit purposes or tor
any purpose of the United States government, provided that any
copy includes the copyright notice and this statement.

Table o1 Contents

1« The LISP interpretere. 1
’ 1.1. General Capabitities. 1
12+ Avdilable Functions. 2
1«3. Adaitional Features. 3
1e3e1e Arrays. 3
1¢3.1.1. Creating Arrays 3
1e3.1+2. Types of Arrays. S
1e3e1e3« Array Utility Functions. 6
1¢3e2+¢ Full ASCII Character Set. 6
1e3.3. Empty Atom and Stringe. 7
1e3e4e VOS ang DOS operating system callse 7
1¢3.4¢1. The VOS and DOS TRAP Functione. 7
1e344+.2. The VOS and DOS OPEN function. 7
1e3.4¢3. The VOS and D0S CLOSE function. 9
1e3e5e¢ UNIX VLISP Operating System Calls, 9
1.3.501- The SYS Functior. 10
1-3.5020 The UNIX OPEN Functione 11
1e3e5e3e The UNIX CLOSE Functione. 12
Te3eS5ebe The PIPE Functicne. 12
Te3:5e5. The FORK Predicate. 13
1e3e5e60 The UNIX VLISP EXEC Functione. 13
1e3e5e70 The WAIT Functich. 14
1¢3.5.8. The Shell Command Interpreter Function, SH. 14
1e4e Differences in Implementatione. 15
Tebdole Arithmetica. 15
1eb4e2e CLEARBUFF and TERFRI Parameterse 17
143+, System Commands. 17
1e6.4. Utility Functions Not Implemented. 17
1e4e5+. C(Compiler Functionse. 17
1e5¢« LISP Systems Software, 18
1¢5.1% Pretty Printer. 18
1¢5+2+ The LISP Expressicn Editor. 20
153« The Debug Package. 20
1¢5¢4e Micro-PLANNER. 21
1¢5e5. LISP Function Comrilere. 21
2« Internal Configuratione. ' 23
21. VOS Operating System calls. 23
Z2elele TRPTRP (0) = Simulate TRAP. 23
2e1e2e READ (1) - Start Input of Linee. 24
2e1e¢3s RDASC (2) - Read ASCII Character. 24
2e1ebe WRITE (5) - Send Wwith No Carriage Controtls. 24
2eleS5e CRLF (6) - Send Line With Carriage Controls. 24
Z2elebe PRASC (7) - Send ASCII Character. 24
2e1e7e SYSPRT (020) - Change System Ports. 24
2eleBe SETRAP (024) - Prepare to Process Contingencies. 25
2¢1.9¢« ERINFO (032) - Get Status After Contingencies., 25
2¢2e¢ Function Call Convertionse. 25
2e2¢1e 0On Entry. . 25
Ze2+2e 'How to Call Exterral Functions. ' 26
2.2.3. Internal Subroutires. - 27
2¢2¢3e1e pPrinting Subroutinese. 27
2ele3 el Obtaining Data Nodese 27

3. Obtaining Node Types. : 27

2e2e3
2e2e¢3e4s Catching Error and Non-standard Returns. 27
2e2¢3e5s Internal List Manxputat1on. .28
2e3s Register Usage. _ 28
lebse Storage Allocation. 28
2ebele SYSTEM and Stacks (-6). 29
Ceb ol s Not A\lailable (NA) (-4), : 30
204030 FREE ("2)- . 30
Cebob o CONSED Nodes (D)o S 30
2ebe5e« LINKER Nodes (2). ' . 30
Coelrob e SYMBOL Nodes (14)0 31
2ebe7e CCTAL (B). : 32
2¢4.8¢. Integer (INTGER)Y (010). 32
2ebePe SINGLE precision (012). 32
2e4.10+ DOUBLE precision (012 or 014). 23
2ebel11se STRING and Array (012, 014, or Q016). 33
2e5. Garbage Collectione. 34
2e541¢ The Deutch=~Schorr-waite Algorithm. 34
2e5¢2+ Free Storage Listse ' 35
2e543+. Packing Storage. 36
266 HindSighto . 37
206.15 32Ke. . 37
2e6ele Two Stackse. ’ 37
debe3e The Deutch-Schorr-wWwaite Algorithm, 37
3« Machine Code Generation. 38
3¢1« Manipulating the USER Instruction (I) Space. 39
30171« *BEGIN New User Ccde Area. L &0
"3¢1e2¢ *EXAMine a Word ir I-space. 41
3eTe3e *EMIT a Word to I-spacee. 41
34144« *ORiGinate a Secordary Entry Point. 42
34145« *DEPOSIT User Code and LOAD S-expressions. - 42
376+ DUMP User Code anc Referenced S—expressionse. 43
3.2+. Assembling Code. 44
3¢3. Compiling LISP S-expressions into Machine Code. 49
3e3¢1e Compiler Invocaticne. 50
36342¢ Fluid variablese. ') 51
34343+ Compiling the Execution Sequence. ' 53
3e3¢4e Compile-time Expressionse. 53
4. References. 55
5« Appendices. ' : 57
5«1« Available Operating Systems. 57
5611« Stand—-Alone Systens. a : .57
5¢1e¢1ele CIMSES - Canberra Magnetic Tape System. 57
501.1 ele PDP"11/105 Uith piske . 57
Selel1e3s PDP-11/40 with Liske. : 57
S5¢1e1e4. Paper Tape Softuare System. _ 58
5¢1+2+ Virtual Operating System (V0S). 58
5¢1¢3+ Disk Operating System (DOS). . 58
~ 5ele4. Bell Laboratories” UNIX Operating System. 58
'S5¢2. Using the Operating Systems. 59
521« Bootstrappinge. 59
50242+ Stand—Alone Systews. ' 59
5¢2+.2+1. Loading and Runring the Loader. 60
5.2.2.2.

Cartridge Disk Systems. 60

« CIMSES - 24K Core.

.203 .

s2ebe Paper Tape Softuare Systems.,

e2e5¢ Starting the VLISP interpreter.

«2ebe Changing 1/0 Paths,

«2e7s Typographical Error Correction.

e2¢8s Stopping VLISP Under Stand-Alone Systems.
3. VOSe.

«bs Disk Operating System (DOS).

b ot Getting DOS VLISP Startede.

ebde2¢ Interrupting, Restartingy Killing DOS VLISP.
+be3s Input and Output Datasetse.

Se The UNIX Operating System,

S«1e 6Getting UNIX Started.

5e2¢ Invoking UNIX VLISP.

Coaing and Assembly.
Assembler Syntax pDifferences.
Conditional Assemtly.
Assembly procedures.

(LR RV RV R RV R RV R R RV N AV RV, NV R RV RV RV, RV RV RV R RV R RV R RV, RV, RV Y R RV VLY)|
® & & © & @& ¢ & o & o6 & o & O o o © 2 o o O & & o 0* o ® o ® © ©& ¢ & o o
[]
W WWLWHWHWN=

NoumumumuUuuUVUUVMTUVMUVMAVMEWUWWWHUWWWWNNAONNNNNNNDNNNNN NN
[

Stand—-Alone Systems.

1.
e3e2¢ Virtual Operatirg Systen (VOS).
«3.3. Disk Operating System (DOS).
e3e4e UNIX Operating Systeme.

Distribution.

Knocwn Problems.
READing Floating-point Nurbers.
Froblems with the DOS Versione.

Attention Interrupt and Free Storage Lists.,
Too Many Open Files.

uUnsuccessful Stcrage Al location Loopinge.

Random Disk I/0.

Problems with the UNIX Version.

Number of Output Columnse.
Floating Point Simulatione.

Problems using PDF-11/40s,
Modifying the UNIX Cperating System.
Alphabetical Functicn Synopsis

60
60
61
62

63
63
64
65
65
66
67
67
67
69
69
70
71
71
71
72
74
75
77
77
77
7?7
77
78
78
78
78
78
78
79
91

1« The LISP interpreter.

VLISP for PDP-11s with memory management is modelled on
the University of Wisconsin®s LISP for the UNIVAC 1100 series
computers. Familiarity with LISP is assumed., The manuals de-
scribing Wisconsin®“s UNIVAC 1100 LISP give a more detailed de-
scription of the language. The differences and peculiarities of
this PDP-11 LISP dialect are cescribea here. The first chapter
gives a brief cverview of VLISF, comparing it to Wisconsin”s
UNIVAC 1100 LISP. The second chapter describes the internal con-
tfiguration of the interpreter. A knouwledge of the internal con-
figuration may then be used to write extensions to the interpret-
er as describea in the third chapter. The appendices give imple-
mentation instructions and a synopsis of pre-defined LISP
functions.

1«1 General Capabilitiese.

VLISP is a moderate-scale, in-core implementation wusing
two stacksy deep or global bindings, multiple data types, and
‘type determination through address location. The initial code
ana data for the LISP interpreter occupy approximately 9K words
ot core. The Virtual Operating System / Distributed Computer
Network (VOS/DCN) ceveloped at the University of Maryland, a VOS
emulator tor use with DEC”s Disk Operating System (DOS), and a
stand-alone system which emulates some VOS functions are operat-
ing systems which support the LISP interpreter. Conditional as-
sembly 1instructions select the host operating systeme. With a
small operating systemy, the LISF interpreter needs nearly 16K
words of core just to sign on. Expanding just the potential data
areas 42K words of core could be supportecdes 28K words of core
woula probably be needed for much useful computing. Compited and
assembled code could use yet ancther 24K uwords. With the maximum
supportable configuration, about 14K CONSed nodes could be wused
for data, assuming that almost all programs are compilea. The
amount of core which can be suprorted is reduced on POP~11s which
do not support seperate instruction (I) and data (D) spaces (e.ge.
the PDP-11/40). The host computer must also support the Extended
Instruction Set (E1S) consisting of the MUL, DIV, ASH, and ASHC
instructions. PDP-11/45s ang PDP-11/70s support EIS with stan-
dard hardware. '

Bell Laboratories” UNIX operating system also supports
VLISP. However, be fore the L1SP compiler can be used under UNIX
on PDP-11/45s or PDP-117/70s, the UNIX ogperating system must be
extended. The extensions corsist ot two pages of straight-
forwaro additicns to the “c¢*" coce of the UNIX operating system.
The extended UNIX can support for each process an additional,
writable I-space following the write-protected code in
seperated-]l-ana~D-space mode. The VLISP compiler can then urite
instructions into the I-space area to increase efficiency. A

second, smaller improvement to the UNIX operating system provides
one-line~-at-a—-time input from files other than teletypes, After
the improvement, which creates a new *“sys* call by adding 20
Lines of "c* code, callers car read input from file systems and
pipes up to anc including the first new-line, line-feed character
encountered. Wwithout the seconc UNIX mcdification, LISP requests
ASCII character input one character at a time so that input may
alternate between filess VLISP only reads characters on the . cur-
rent Lline that is to be immediately processede Unfortunately
this slows down VLISP input processings LISP software may access
the powerful features of UNIX such as FCRKs, EXECs, PIPEs and the
other "sys"™ and “shell"™ calls described in the UNIX Programmer’s

;1‘2' Available Functions.

Except as noted 1in subsequent sectionss the iollowin§
functiogns have been implemented consistently with the definitions
in the UNIVAC 1108 LISP Reference Mapyal [Norman 1969] and the-

additions produced at the University of Marylande. An appendix
provides a syncpsis of these pre-definec functions. '

ADD1 ALIST AMB AND APPEND ARRAY ARRAYL ARRAYP ASSOC
ATOM ATSYMP ATTEMPT
BACKSP BRtAK

CLEARBUFF . CLOSE COMPLEMENT COMPRESS COND CONS CSET
CSETQ CURRCOL

DEFINE DEFMAC DEFSPEC DELIM DIFFERENCE DO DOUBLE DUMP
ENTIER EQ EQUAL ERASE ERROR EVAL EXEC EXPLODE EXPLODE2
FIXP FLOAT FLOATP FLAG FORK FUNCTION

GENSYM GET GO GREATERP

1FFLAG IFTYPE INDEX INTO

LAMBDA LAMDA LEFTSHIFT - LENGTH LESSP LISP LIST LOAD
LOGAND LOGOR LOGXOR -

MANIFEST MAP MAPC MAPCAR MAPLIST MEMBER MINUS. MINUSP
NCONC NOT NTH NULL NUMBERP
OBLIST ONDEX ONTO OPEN OR

PIPE PLENGTH.PLENGTH2 PLIMIT. PLUS PRINT PRINT1 PRINZ
PROG -PROP PUT

QUOTE QUOTIENT

READ READCH READMAC REMAINDER REMNDB REMOBP REMPROP
REQUEST RETURN REVERSE RPLACA RPLACD

SET SETCOL SETQ SH SINGLE SPACE STACK STRING SUBST suB1
SYS

TERPRI TIME TIMES TOKEN TRAP
UNBREAK UNFLAG

WAIT

LEROP

*BEGIN *CAR *CDK *CHAIN *DEF *DEPOSIT *EMIT *EPT *EXAM
*MmMACRO *ORG *REVERSE *SPEC

1.3. Additional Features,

VLISP on PDP-11s has some new features that are not pro-
vided on wisconsin”s UNIVAC 1100 LI1SP. VLISP provides array and
array utitity functions, upper-lower case characters, an empty
atom and string, file opening ard closing functions, and specific
tunctions for interacting with the host operating system.

1.3.1. Arrays.

Array ftunctions manipulate a8 numerically-indexed c¢onti-
guous area of S-expressions, locical datay or numerical agata.

1e3¢141. Creating Arrays
Evaluating the LISP expression
(CSETQ ARR (ARRAY SIZE TYPE))

creates a one aimensional array of logical length SIZE and glob-
ally binds it to the SYMBOLic atom ARRe. The actual physical size
in bpytes of tne array depends cn the array type given by the se-
cond parameter, TYPE, a fixed-pcint numtker. Permissible values
of the TYPE parameter are descripbped belowe If TYPE is omitted,
ARRAY produces an array of pointers, The value of the ARRAY
function is a function whcse values may be obtained by
evaluating:

(ARR X)

where ARR evaluates to the created function and X to a positive,
fixed-goint numoer. An elemert of this array may be set to the
value of VAL by evaluating:

(ARR X VAL)

The created array tunction, ARR, returns the value of VAL regard-
less of what AKR stores in the array.

Both the logical length (specified by the parameter SIZE)
and the physical stze 1in bytes must be positivey, non-zero,
fixed-point numbers (octal or irteger) that a 15-bit numper (j.e.
less than 32,768 and greater than zero) can express., If ARKRAY
attempts to create an array with an improper S12E parameter, the
LISP interpreter will produce ar internal error -9 as if it were
evaluating

(ERRCR =-9) .

If a current ATTEMPT invocation catches error -9, processing con-
tinues at the restart point. Otherwise, the 1interpreter prints
the messSage

WARNING, X BAD INDEX

where a» is the offending SI7E parameter . The interpreter then
restarts at the latest level ot LISP supervision by requesting a
new expression to evaluate. The ARRAY function rounds the
creation size of the bit array types (logical and binary) up to
the next multiple of 8 to simplify array index checkinge.

The function created by ARRAY checks that the array index,
the first parameter of the created array function, is a fixed-
point number which Lies between 1 and the Llogical Length
inclusive. The created array function makes no conversion of the
array index from a floating-pcint number into. a fixed-point
number. Array indices out of range also produce error -9 and, if
undetected by ATTEMPT, the sare message as above where X is the
oftending array index. However, ATTEMPT may be wused while se-
quentially referencing array elements tc catch the error -9 of an

out-of-range reterencee. Thusy the programs need not explicitly
check for the Llast element of arrays during sequential
references. For example, evaluating the following S~-expression

defines a function CARRAY that creates an array ot any desired

size and fixed-point type whose elements are their integer
ingices.

Figure 1 - Define CARRAY to create arrays.

{CSET@ CARRAY ? Establish a glcbal binding

(LAMBDA A ? Make a list ot the function”s parameters
(SETQ@ A (ARRAY (STACK 2))) ? Use Llist of SIZE and TYPE
(ATTEMPT [PROG <(X 1)> ? Start indexing at one
LOOP <A X X> ? Initialize array value
<SETQ@ X (ADDT1 X)> ? Increment index
<G0 LOOF>]
(-9 Al ? Return array when done
)))

]

The function CARRAY handles Llogical and floating-point arrays
differently than fixed-point arrays. The elements of logical
type arrays created by CARRAY will all ke T (true). Floating-
point arrays use the fixed—-point indices without conversione.

1e3+41e2¢ Types of Arrayse

The secaond parameter of ARRAY (or its absence) specifies
the type of array:

TYPE ME MBER INITIAL RANGE
ARGUMENT DESCRIPTION VALUE
Omitted Pointer Undetined Any S-expression
n Pointer Undefined Any S-expression
1 Logical NIL T (true) or NIL (false)
2 3inary 0 0 or 1
X Signed byte 0 -128 to 127
4 Unsigned byte 0 0 to 255
5 16-bit integer 0 -32768 to 32767
6 2-word floating O0.0&0 Single precision tloating point
7 4-word fltoating 0.0D0 Doubl e precision floating point

ALl elements o1 type 0, pointer arrays, are initially undefined.
Values should be assigned to gointer array elements before they
are referenced. 1f not, an errcr occurs after retferencing an
undefinedy pointer—array value. The VLISP interpreter uses an
error -8 as if the S-expression

(ERROR =8)
were evaluatede 1f a current ATTEMPT call catches error ~8, pro-
cessing continues at the restart point. Otherwisey the inter-
preter prints the message

WARNING, X IS UNBOUND ,

where X is the inoex of the unbcund array element, followed by
the solicitation .

Help:

that requests an expression whose value may be wused instead of
the undefined array element.

137430 Array Utll‘ity Functionse.

Two utility functions for retrieving an array”s specifica-
tions are availapole.

If the parameter of ARRAYP, the array precdicate, s an
array, then ARKAYP returns a number indicating the array type.
1f the parameter of ARRAYP is nct an arrayy then ARRAYP returns
NIL (talse) as its wvalue. For example, suppose the SYMBOLic
atom, ARR, has been given an array value by evaluating

(CSETQ ARR (ARRAY 17 1)) .
Then the expression
(ARRAYP ARR)

will return a value of 1, which specifies a {ogical array, an ar-
ray that stores either NIL (the initial value) or T for non-NIL
values.

ARRAYL, the array lenygth function, returns the Llogical
tenoth of an array given as a parameter. 1t the parameter of
ARRAYL is not an array, ARRAYL returns NIL. The logical Llength
specified by SIZE curing the creation of logical and binary ar-
rays is roundea up to the next nultiple of 8 to align logical and
binary arravys (represented by bDits) on a byte boundary. In the
example apbove, when 17 is given for the tength of a logical or
binary array, ARRAY produces ar array of Llogical length 24.
Hence,

(ARRAYL ARR)

evaluates to 24+ Other types of arrays just use the length spe-
citied by the first parameter of ARRAY as the logical lLength.

1e3.2. Full ASC1I Character Set,

The full ASCII character set is available for use in atom
names and stringse. However, to avoid a proliferation of atom
names that differ only in character case, upper case letters are
automatically converted to lower case before being used in symbol
names.e. This feature can be overridden by wusing an escape
character (') before each upper case letter which is not to be
converted to lower case.

While using the DOS or stand-alone versions of the LISP
interpreter, Llower case ASCII1 may not be desired or supported.,
In this casey, the assembly line

«ENABLE LC ; Use lower case

should be commented out of the code module TRAPS.MAC ot the DOS
versions of the interpreter scurce codees In an interpreter as-
sembled without the above line commented, READ and TOKEN <convert
lower case characters encountered to upper case unless the escape
character, which 1is initially exclamation point ('), precedes
them.

1.3.3. Empty Atom and String.

An empty string and an atom whose print name is empty have
been provideds Both have a prirt length of zero. When READ or
TOKEN encounter & single pair ot double quotation marks ("*),
they reference the empty string. However, READ and TOKEN cannot
directly scan the empty atomic symbol. The expression

(ATSYMB **)
will evaluate to the empty atom, if it is needed.
13e¢4s VOS éno DOS aperating system callse

Only VvOS ana the VOS emulator under DOS versions of VLISP
provide the VOS and DOS operatirg system call functions.

1341, The v0S ana DOS TRAP Function.

The TRAP tunction provices an interface to the VOS operat-
ing system via the TRAP instruction with offset zero). The
VOS emulator may then use gppropriate DOS system calls, The
first parameter of TRAP is a fixed-point number that is placed in
CPU register RS5 ftor use as the TRAP 1instruction oftfset by the

operating systems The othery optional parameters are used to
place values in registers from FO to R4 to be passed to the
operating systeme A NIL parameter or omitted parameter passes

zero. Both strings and arrays frass pointers to the first words
of their data. Atoms pass their print names which are strings.
Fixed-point numbers pass their values. Floating-point numbers
pass a pointer to their values. CONSed nodes pass pointers to
their CARs. The value of the TRAP function is a CONSed pair of
octal numbers giving the values returned in registers RC and R1
by the operating system.

1¢3¢4¢2¢ The VOS ana DOS OPEN functione.

The VOS and DOS OPEN function provides the subset of ¢the
services provided by the TRAP function with offset 37Q (octal).
The OPEN function may be used with from one to three parameterse.
For example, when evaluating

(OPEN FILE-STRING MODE FILE-NUMBER)

the first parameter, FILE-STRINC, evaluates to a string or atomic
symbol, the external name of the file to assigned an internal
logical tile number. Under LOS each permissible internal file
number is associated with a detault external file name on the
system device, "SY:%., The default external name is the internal
number followeo oy the suffix ".LSP". The OPEN command replaces
the external association with a new one given by the first
parameter, FILE-STRING. The first time the file is accessed for
either input or output, the V0SS emulator searches for a file with
the given external name using any User Indentification Code (UIC)
given as part of the file name in the standard DOS syntax. If no
UIC was specifiedy the VOS emulator first searches the current
UIC directorye 1f the V0OS emulator does not find the file wunger
the current UIC dgirectory, the VOS emulator then searches the su-
pervisor UIC ("C1,13") directorye. Most L1SP system software
should be available wunder the supervisor uIc directory.
Inability to lLocate a file proawces a system error and a restart.
1tf MODE, the second parameter otf OPEN, is NIL or zero, or is
omitteay, then the first write tc the logical file~number attempts
to first JINIT and +OPEN in contiguous mode (013) 1in case the
file 1is contiguous. It the file is not contigquous, the first
Wwrite attempts to OPEN the file in extension mode (3) which is
synonymous with output mode if. the file did not previously exist,
on the other hanay the first read directead to the file attempts
to «INIT and .OPEN the file in input mode (4). If MODE is non-
NIL and non-:eroy, the first 1/0 attenmpt uses the given mode if
possible. This provides a way to INIT and +OPEN contiguous
files in update mode (1), sc that the emulator may use ranocom
access. When FILE-number, the cptional third parameter of OPEgN,
specifies a tixeoc-point number, the VOS emulator uses that number
as the idinternal logical file-rumber instead of searching for an
availabple, unused, logical file-number. OPEN returns the logical
file-number which may be used by CLFARBUFF, TERPRI, and LOAD to
access the new external file association. The external file=-name
string may also contain both switches ana a second file name fol-~-
lowing the standarc input—-anc-output-file~-seperator character
("<"), The five possible modes available through the second
parametery, MODEy can also be specitied kty switches:

Switch vValue Description

/1 4 Input from existing file,

/E 3 Extension of on existing file,

/6 P4 Output to a new file,

/U 1 Update an existing contiguous file, anag
/C J13u Contiguous file started empty.

The Llogical number associaticn avaitable through a thirag
parameter, FILE-NUMBER, coulag also be given by a numeric switch
(eege "/5%), An allocation size for creating contiguous files
given as a3 ¢4-byte-block count is specified by the switch
“/AL:#". For exampley, in evaluating '

(OPEN “NEWFIL.LSP/AL :32/¢C")

32 is a switch parameter allocating 32 contiguous blocks of file
spacees OPEN may also rename ang append files through the
switches "/RE™ ana "/AP", respectively. In order to append the
linked file "“FILEZ2.LSP"™ tc the end of the Llinked file
“FILET..SP", evaluate

(OPEN "SY:FILE1.LSP<SY:FILEZ2.LSP/AP")

DOS pads FILET1.LSP with nulls pbefore appending the other Llinked
fite. In DOS BATCH mode, the opening facility with switches is
available to command strings in the run stream with the standard
syntax, i.e. preceded by a number sign (#). For example, when
the BATCH commandg '

BNEWFILSLSP/4<OLDFIL LSP/RE

is encountered, the file originally named "OLDFIL.LSP" is renamed
“NEWFIL+LSP" and associated with Llogical file-number 4.

Tedeboels The V0S and DOS CLOSE function.

The VOS and 0D0S CLOSE furction calls the operating system
to close and release any external file and device associated with
the parameter, a fixed=-point number. The OPEN function would
usually have associated external file names to the parameter, a
logical file number. The Llogical file-number given may be reas-
signed by a subsequent OPEN call to a different external
association. CLOSE makes the ©buffer space ana device control
blocks in the DOS monitor avajlable provided more recently opened
files are also closed, since the DOS monitor allocates buffer and
control block space trom a stack. The CLOSE function returns
NIL

Te3e5¢ UNIX VLISP Operating System Calls,

UNIX VLISP provides complete access to operating system
catlse Either specific system calls using the

sys O ; buft /s irdirect system call

machine instruction Llike *“¢"™ Llanguage and as"” assembler
programsy or general calls to tte shell, "sh*, may be mace., UNIX
VLISP facilitates passing strirgs endec by a zero byte that many
system-call syntaxes require., lhe LISP interpreter converts in-
ternal types STRIMNG, SYMBOL, and CONSED into STRING and insures
that the ogata is fol lowed by a zero byte, even 1if this forces
creating a slightly Llonger copy of the criginal.- The interpreter
passes the print name of SYMBOLic atoms, the LISP variables, as a
string except for NIL for which the interpreter passes zero. 1If
a system call receives a CONSea node parameter, VLISP assumes the
node heads a List of single-character atoms, single-character
stringsy or fixea~-point, ASClI-character values. The interpreter

10

concatenates the implied characters into a string. The system
call eventually passes a pointer to the first word of the string
fol lowed by a guaranteed zero byte. Programs themselves need not
supply the zero byte after strings. In system callsy VLISP
passes the value of fixed-point-number parameters and a pointer
to the first word of floating-point-number parameters, The in-
terpreter handles function LINKERS in two wayse System calls
pass the I-space address (*CDR) of non-array LINKER parameters so
that signals may be caught by user~-written, machine-code
routines. When VLISP receives an array function LINKER, a
pointer to the first word of the array data is passed. If the
array data, that has internal type STRING, were used directly as
a parameter, the interpreter might create a copy of the array in
orger to satisty the zero byte requirement. Hence, in order to
pass an array of data via a system call, e.g. "gtty"™ or “fstat",
the invocation should use the array LINKER, not the array data.
The 1invocation must provide arrays long enough to receive all
data returned by system callses The operating system overwriting
the area following an array coes grave damage to VLISP storage
allocation.

When the UNIX operating system detects a venial error dur-
ing a system call, the operating system returns from the <call
with the carry (C) bit on in the processor status (PS) register
to signal an error condition. when VLI SP detects this error con-
dition after any system call except CLOSE or EXEC, VLISP gener-
ates an internal errar 0 as it the S-expression

(ERROR 0)

hao been evaluateds If a current ATTEMPT 1invocation catches
error 0, processing continues at the restart pointe Otherwise,
the interpreter prints the message

WARNING,y, X SYSTEM ERROR

where X is the integer error number returned in C(PU register RO

by the UNIX system cally and restarts at the latest level of LISP
supervision,

Te3e5e10 The SYS Function.

The SYS function allows access to most of the UNIX operat-
ing system callse UNIX VLISP provides cother functions for the
cases in which SYS <cannot efficiertly handle the syntaxe.
Proarams shoula invoke the SY¥S function with at Lleast one
parameter, the SYS otfset number. 1In :

(SYS ARGO s o« o ARGN)
the interpreter converts the first parameter, ARGOy the offset

number, to iJinteger type, and c¢ses it to construct a machine in-
struction in D-space

11

ibuft: sys arg0 / start of indirect buffer
for use in an indirect system call in I-space
sys 0 ; ibutf / indirect.

The interpreter converts any resaining parameters according to
the above rules and places thew after the system call in the in-
direct call buffer. SYS also places the last two parameters in
CPU registers R1 and ROy respectively, just before the indirect
system call. If the system call returns with an error condition,
iee. the C (Carry or error) bit is on, the interpreter wuses the
LISP~system—error procedure. Otherwise, SYS returns the vatue
that the UNIX gperating system returned in CPU reqgister RO in in-
teger representation. The system call section (Part II) of the
UNLX Programmer’s Manual <contains the particulars of each UNIX
system call. Following these irstructicns for assembly Llanguage
format calls, the program suppl ies, in order, the SYS offset, any
in-line parameters, and any values to pass in registers. The
LISP interpreter converts most parameters to the natural, UNIX-
system-call format to minimize programming effort. The avaitable
support software includes a file, "/lisp/sy"y that gives examples
of system calls.,

1e3.5.2s The UNIX OPEN Functiore.

The OPEN tunction calls the UNIX aoperating system to ob-
tain an internal, logical file-number used to access a pre-
existing file., The OPEN functicn gets one or two parameters,
€eg e

(OPEN EXTERNAL-NAME 1/C-MODE) .

The first parameter, EXTERNAL-NAME, specifies an external file
name that OPEN will convert to internal type STRING, ended with a
zero-byte, if needed. The secord optijoral parameters 1/0-MODE, a
fixed-point numper, sets one cf the permissible 1/0 modes: zero
(0) for reading only, one (1) fcr writing only, or two (2) for
both reading ana writing allowed. 1f the second parameter, 1/0-
MODE, is omitted, OPEN uses zerc (0) to set read-only mode., 1f
UNIX opens a file for writing, UNIX starts placing output at the
beginning of the file, overwriting any existing data without
first truncating the files To extend an existing file, before
sending any output, evaluate the S-expression

(SYS 19 0 2 FILE-NUMBER)

to perform a seek (sys 19.) to the end cf the file (offtset=0 and
ptrname=2) where FILE~-NUMBER 1is bound to the value returned by
the OPEN calle In order to crecte or truncate a UNIX file, a
function CREAT could be defired by evaluating the following S-
expression.

12

Figure 2 - Defire CREAT function.

{CSFTO CREAT ? petfine constant binding
(LAMBDA (NAME ., MODE) ? Optional mode parameter
(SYS & NAME ? Call system to create external name

(COND [MODE <CAR MODE>] ? Use any given mode
[666G])))) ? Else gefault to read/write for allt

CREAT could then return a logical, internal file-number of 2 new
or previously existingy, truncated file. If UNIX detects an error
while processing an OPEN, CREAT, or SEEK call, the interpreter
generates an internal-type~0 system error that an ATTEMPT call
may 1intercept. ~

1¢345.3. The UNIX CLOSE Functicn.

The CLOSE tunction removes the external file connection to
the internal, logical file-number given by the CLOSE parameter, a
fixea-point number, for example:

(CLOSE FILE-NUNMBER) .

If CLOSE removes such a connection, CLOSE returns NIL. However,
it the internal to external file connection does not exist or the
parameter is out of rangey CLOSEt returns the integer error number
returned by the UNIX operating system., If CLOSE gets the para-
meter NIL, CLOSE disconnects the standard input, logical file-
number 2zero (N). As CLOSE removes the last internal connection
to a fitle, the operating system may perform other actions such as
rewinding magnetic tape, returning end cf file to the receiving
end ot a pipe, or reclaiming file space that is no longer refer-
encea by any directory.

1e3ce5ebe The PIPE Function.

The PIPE tunction, a3 function of no arguments,

(FIPE)
calls the UNIX operating system to obtain a pair of PIPE . file
descrigptors. PIPE returns the pair as a CONSed node of two
integers: the vread and write internal, logical, PIPE-file~-
numbers., The current invocation of VLISP and any subsequent

offspring createa by the FORK request may share the PIPE-fijle-
numbers for inter-process communication. A process receives out-
put in the oraer sent by any other process on any one PIPE.
-Processes not intending to use cne side of the PIPE or pass
further copies of that PIPE descriptor to offspring should CLOSE
the unused side of the PIPE descriptor so that 1) receiving pro-
cesses may detect an end of file when all other processes have
finished sending data, and so that 2) sending processes may be
stoppea when no other process intends to read the data sent via
the PIPE. It a PIPE call ¥s unsuccessful, the LISP interpreter

13

generates an internal, type-0 error.
143+.5¢5¢ The FORK Predicate.
The FORK predicatey, a furction of no arguments,
C(FORK)

creates a second process that is a copy of the original process.
Each process maintains a distinct copy of the data area and any
user code in the writable I-space. The two processes determine
their identity by examining the result of the FORK predicate.
FORK returns NIL (false) to the chilo process but returns the
Process IDentification (PID) (true) of the child process to the
parent process. It UNIX cannot create a second process, FORK
generates a LISP internal system error 0, that a current AYTEMPT
invocation could catchs Any files that uwere open before the FORK
cally including any PIPE files that inter-process communication
could use, are available to toth processes. The child process
suppresses the prompting messagey the value return prefix used by
the LISP supervisory and the restart sign-on message. Thus the
parent process may continue sending prompting messages to the
user while the child process suppresses prompting messages 1in
order to converse cleanly with the parent through redirected
standard input /output files. Fcr example, in oraer to redirect
the stangara output to a previously created PIPE on which the
parent may receive data, the child process would 1) <close the
stancard output fite, 1, by evaluating

(CLOSE 1) ;

2) duplicate thne write descriptcr of the dotteog-pair descriptor,
PIPE-PAIR, by evaluating

(SYS 41 (CDR PIPE-PAIR)) ? System DUP call

which allocates the Llowest available number to the file
descriptor; and 3) close the child”s unused copies of the file
descriptor by evaluating

(D0 LCLOUSE (CODR PIPE-PAIR)] CCLOSE (CAR PIPE-PAIR)])

so that logically unused pipes may return end-of-file status.
Similarly, the parent would <close the PIPE write descriptor.
Thereatter, the parent would read the standard output of the
childy, without any "Eval: * prospt or "value: ™ prefix, using the
PIPE read-ftile descriptor. Either process, but usually the child
processy may overlay itself usirg the EXEC function, to perform a
different activity as a satellite of the other process. Finally,
using the WAIT function, the parent process may suspend its owhn
activity until the completition of the child processe.

1.305.0. The UNIX VLISP EXEC F\.nctiono

14

UNIX allows a process to overlay itself with a replacement
activity, whose initial data anc code any executable, UNIX file
may detiney, €e¢ge

(EXEC ARGO ARG1 « « o ARGNR) .

The initial parameter, ARGO, of the UNIX VLISP EXEC function
gives a complete external file rame that UNIX passes as the para-
meter of the *exec"™ call tc replace the LISP 1interpreter
activitye EXEC calls the function STRING to convert all of the
parameters into strings terminated by a zero (null) byte, con-
structs an array ot pointers to the heaa of each null-terminated
stringy and passes the array as the ~second parameter in a
constructed, indirect "exec” call to the UNIX operating system.
By convention, UNIX expects the initial element of a string-
pointer array to specify the overlay file. The other parameters
often specify option strings, usually starting with minus (-),
ana external file names manipul ated by the replacement activity.
The standard 1/0 files used ty the replacement activity may be
redirected before calling the EXEC function. If the EXEC func-
tion returns to LISP instead ot overlaying LISPy, EXEC returns the
inteyer error number that the UNIX operating system returned in
CPU register R(C, rather than gererating a LISP internal error.

Te3e5e 76 The wWAIT Functione.
The WAIT function
(LAIT)

suspends activity in the current process until any one of its
previously <createa children terminatese. WAIT removes the rem-
nants of a terminated child and returns a dotted pair of two
integers. The CAR is the Process Ibentification (PID) of the
terminated childe The CDR is the status value returned by UNIX
in (CPU register R1y, and is composed of the child”s exit-value
byte and the child”s terminatior status in the high and Low order
bytes respectively. 1t a termirated child has not been waited
for previously, the call to WAIT will continue immediately with-
out suspending activity. 1If the calling process has no remaining
children, WAIT generates an internal LISP error 0O condition,.
Since SHy the shell command interpreter, waits for a specific
terminatea childy SH sitently removes the remnants of any other
terminated chilaren, who disappear without further announcement
ot their demise.

14358 The Shell Command Interpreter Function, SH.
The SH function provides convenient access to the UNIX
commano languaye interpreter, the shell. SH may get one optional

parameter, €.g.

(SH ARG) .

15

SH converts the optional parameter, ARGy to a string followed by
a null (zero) byte that the shell command interpreter uses with
an implicit "-c" option as a sirgle command Line. If the option-
al parameter is omitted, SH calls the command interpreter to re-
ceive commands from the currert standard input up to an end-of-
files« SH expects to find the shell command interpeter named
“/bin/sh®. while the shetl command 1interpreter processes
commanas,y SH suspends activity, ignoring the standard, delete-key
(DEL) interrupt and the QUIT, tile-seperator (FS) interrupt
(Control-SHIFT-L or Control-Backslash), waiting until the shell
command interpreter terminates. While uaiting, SH removes any
other children who terminate without returning any status about
the terminated children. wher the shell-command interpreter
terminates, SH restores the previous LISP interrupt handling and
returns the octal number returned by UNIX in CPU register RY1 as
the termination status word. ‘

14 Differences in Implementation.

Due to machine architecture differences, some features are
implemented ditferently in VLISF than in Wisconsin”s UNIVAC 1100
LISP. VLISP calculates slightly different arithmetic values,
uses different TERPRI and CLEARBUFF parameters, redefines the
compiled code handling functions, and omits some features.

Tebole Arithmetice.

Unlike the UNIVAC 1100 series machines that wuse 36-bit-
word, one“s-complement arithmeticy, DEC PDP-11s use 16-bit-word,
two “s~complement, fixed-point arithmetic and signed-magnitude,
32-bit-single-precis ion and ¢4-bit-dcuble-precision floating-
point arithmetic. VLISP provides one-word, 16-bit, octal-and-
integer—representation, fixed-foint numbers and stores negative,
fixed-point integers in two”s ccmplement. Integers from =32767
to 32767 may ©be created by the READ and TOKEN routines. The
function MINUS prouuces the integer two“s complement negation of
a fixedg-point parameter. VLISP defines a new function COMPLEMENT
to provide an octal representation of the one“s~complement nega-
tion of its parameter, i.eo. COMFLEMENT reverses each of the 16
bitse. ’

Signed-magnitude, floating-point-arithmetic hardware is
optional with PDP-11s. It the host PDP-11 provides floating~
point arithmeticy, VLISP can supgrort floating-point data types de-
pending on the setting of flags for concitional assembly state-
ments in the interpreter scurce ccdeo VLISP may support
floating-point, signed-magnitude data types that are either 2-
words single-precision; 4&-worc, double-precision; or both., It
VLISP supports any floating-pcint _tyre, VLISP also supports
mixed-mode arithmetic between any floating-point-type or fixed-
point-type number. The stancard mwnulti-parameter, arithmetic
functions

16

PLUSy DIFFERENCE, TIMES, QUOTIENT, and REMAINDER
and the standard comparison functions
EQUALy LESSF, and GREATERP

convert an operand with lesser precisicn to the type of the
operand with greater precision tefore computing each intermediate
result. If VLISP supports floating-poinrt numbers, then the final
result of arithmetic functiors, 1including the single-argument
functions

ADD1, SUB1, and MINUS

have the same type as the parameter whose precision is greatest.
It VLISP does not support floating-point numbers, then the arith-
metic functions wuse all parameters as fixed-point integers and
return an integer result. The TIMES function converts any
fixea-point-multiplication, intermediate result which overflows
into a numeric type with the Fighest floating-point precision
availaole 1in order to avoid losing irformation. 1f VLISP sup-
ports any floating-point tyce, VL 1SP defines’ agditional
floating-point conversion funct ions and predicates:

ENTIER, FIXP, FLOAT, and FLOATP.

The function FLOAT, which Wiscorsin®s UNIVAC 1100 LISP odoes not
pre-define, converts any fixed-point parameter into a lowest-
availauvle-precision, floating-pcint result and returns floating
parameters unchanged. If VLISP supgports both the single andg
double floating-point type, VLISP cgdeftines two additional conver-
sion functions

SINGLE &nd DOUBLE

that <convert poarameters to the appropriate “floating-point
precision.

The bitwise logical functions
COMPLEMENT, LEFTSHIFT, LOGAND, LOGOR, and LOGXOR

treat any parameter as a fixed-goint number and return octal-
representation, 16-bit results. The bitwise Logical functions ot
VLISP, Like their Wisconsin UNIVAC 110C LISP counterparts, treat.
floating-point parameters as 16-bit quartities without conversion
using the high-order, most significant worao.

17

1ebe2e CLEARBUFF and TERPR! Parameters .

The LISP 1/0 functions CLEARBUFF and TERPRI can take an
optional parameter which can be a fixed-point number or NIL. The
parameter specifies a new temporary input or output device,
respectively. NIL may be used to return to the standard file.
If CLEARBUFF or TERPRI get no parameter, the appropriate buffer
is hanaoled without changing the current 1/0 file, unlike what s
done in Wisconsin®s UNIVAC 1100 LISP. System messages are always
sent to a standard files Also, after a system message, input is
expected from the standard file. TERPRI and CLEARBUFF save their
most recent parameter as the cornstant binding on the variables,
*TERPR]1 and *CLEARBUFF, respectivelye.

Teb .3, System Commandse.

VLISP dces not implement the wisconsin®s UNIVAC 110C LISP
system commanas that begin with a colton (2) in column 1. These
include

:BACK :EXEC :LISP :00PS :PEEK :STOP and :TIME .

leboebs Utility Functions Not luplemented.

Other utility functions includec 1in Wisconsin”s UNIVAC
1100 LISP are as yet unimplemented. These are:

BACKTR CONCAT DATE DTIME GCTIME GROW MEMORY ana *PACK.

Tebode Compiler Functions,

Functionrs used with the LISP compgiler to manipulate gener~
ated code, namely

*BEGIN, *DEPOSIT, *EMIT, *EFT, *EXAM, *ORG, DUMP, ana LOAD

are not gefinea in the same way as 1in disconsin”s UNIVAC 1100
LIsP., Since most of the compiler ftunctions are machine
dependent, and would have little utility for programs other than
the caompiler, the ditferences have Llittle eftfect on the tran-
sportaoility ot coage, except that DUMP and LOAD have different
purposes. Instead of wusing CUMP to output compiled code as is
done in Wisconsin”®s UNIVAC 1100 LISP, the Pretty Printer should
be usea as described belowe. The LOAD function could then restore
the <code intc VLISP by reacing S-expressions intermixed with
binary code modules instead of restoring an absolute Lloader
format file as is done in Wisconsin®s UNIVAC 1100 LISP. If VLISP
does not support compiled coce, as is the case with VLISP on a
PDP-11/40, VLISP does not pre—-define the functions

*BEG IN, *DEPOSIT, *EMIT, and *ORG

18

but instead defines the functiors
*EXAM and DUMF
so that they return NIL when called, anc defines the functions

*EPT and LOAD

with a reduced capability. The setting of an assembly-time flag,
CPLCPL,y in the module "TRAPS.MA(" determines if VLISP will sup-
port compiled code.

1e5« LISP Systems Software.

Systems programs, writter in LISF, are available to help
the programmer. They are kept on tile in a form that can be
brought into core by evaluating the LISF S—-expression

(LOAL FILE)

where the SYMB(GLic atom, FILE, evaluates to the Llogical file-~-

number of the program. Under UNIX, the FILE parameter may also
specify the name of a file that UNIX VLISP opens, repetitively
reads and evaluates, and closess The system software includes a

"Pretty Printer, an S-expression editor, a debug packagey micro-
PLANNERy and a compiler. :

1.5.17. Pretty Printer.

The Pretty Printer, PRETTIYP, displays non-circular LISP
objects in an orderly, indentec format that can be read as input
to recreate the objects. The function, PRETTYP, takes trom one
to three parameters, €.g.

(PRETIYP DUMP-LIST ASCII-FILE BINARY-FILE) .

The tirst parameter, DUMP-LIST, evaluates to a list of 1) atomic
symbols with constant bindings to be displayed; or 2) sublists,
the CAk of which is a property or tlag ct the subsequent atoms in
the sublist to be displayede If the second parameter, ASCII-
FILE, 1is given, it specifies that outgut will be sent to a log-
jcal file-number instead of to the keybcard. If PRETTYP gets the
second parameter, ASCII-FILE, ar internal, tfixed-point, logical
tile-number, FPRETTYP sends the S-expression output to the speci-
fied tile instead of the current file. PRETTYP sends binary out-
put of compilea code to the internal, fixed-point, logical file~
number given by the last parameter, BINARY~FILE, provided that
the parameter is non-NIL, If the tast parameter is NIL, or if
PRETTYP gets only one parameter, PKETTYP produces no binary
output. The second parameter way alsc be the last so that
ASCllI-character output of S-expression representations and binary
output of compiled code will bLe appropriately interleaved in the
same file. The ASCII and binary logical file-numbers should have

19

previously been given an external association by a call to OPEN
or a similar function such as PIPE under UNIX. PRETTYP returns a
List of the atoms in the first parameter, DUMP-LIST, which had no
constant binding, and sublists with tuo elements giving a name
and atom whose property list did not contain either the property
or a flag with the name mentioned in a sublist of the first
parametery, DUMP-LIST. When Pretty Printing compilea <code, the
expression bouna to the master LINKER, the function entry to the
start of the caompiled code area, should be output first so that
the expression may later be restored. Usually the satest way to
output expressions which have been compiled is to output them all
with a single call to PRETTYP, rassing as the first parameter a
list of atoms bound to the coepiled functions in the same oraer
as the functions were compiled. After Fretty-Printing, the files
could be re-read to re-establish the indicated bindings by eva-
luating the S—expression

(LOAD ASCII-FILE BINARY=-FILE)
where ASCl1I-FILE and BINARY-FILE are internal, fixed-point, log~

ical tile-numbers, previously associated with an external file-
name of files containing the S-expression representations and

compiled code images, respectively. It LOAD gets only one
parameter,y, it may input a file of interleaved ASCII and binary
information. LOAD repetitively reads S-expressions until reach-

ing an end of tite. Under UNIX VLISP, the first parameter (but
not the second) of LOAD may specify an external file which the
interpreter will open, ready, anc close.

20

1¢5¢2¢ The LISP Expression Editore
The LISP editor special formy EDIT, and function, EDIT1,
allow the prcocgrammer to easily alter in-core expressions and
function definitions. Once the editor is invoked, for example,
by evaluating
(EDIT FUNC)

the following simple commands can:

M & - move the focus horizontally without descending;
+H - move the focus horizontally in List and descend;
-# - ascend # times in a list structure;

P - print the currert focus;

PP - Pretty Print the focus (if PRETTYP is loaded);

E EXP - evaluate the expression EXP;

I EXP - insert the value of EXP before the focus;

D - gelete the current focus and ascend one level;

R EXP - replace the current focus with the value of EXP;
S ATM ~ save current focus as fluid binding of ATM;

C OLD NEw - replace all occurrences of OLD with NEW;
RESTORE - start over from the top; or
STORE - install the edited object and return.

Note that # represents any integer, its sign giving the direction
of travel. EXP represents any LISP S-expression. ATM represents
an atomic symbol, a variable.

1¢5.3« The Deouy Package.

The debug package provides four routines utilizing the
system functionsy, BREAK and UNBREAK, whose first parameter is a

list ot variables or atoms with <constantly bound functions,
macros, or special forms.

STRACE traces the <call and exit of constantly bound

functions, macrosy, and special forms and gives parameter and exit
values,

$BREAK is similar to STRACE but stops, querying the user
for expressions to evaluate until reading the expression T,

$TRACEV prints the new values of variables as CSET, CSETQ,
SET, and SETQ alter thems. Tracing is ineffective for wvariables
altered by compiled code.

$UNBUG removes tracing from the atoms in its parameter

list ory, if no parameter lList is prcvided, $UNBUG removes altl
tracing. »

If possibley use a compiled version of the debug package
to avoid internal conflicts between traced variables and
functions. 1f compiled code is not available, evaluate

21

(IMANIFEST DB~-LIST)

4

after Loading the debug package and befcre initiating tracing to
remove some ot the conflicts irvolved in tracing tunctions using
functions which might be traced.

Te5ebe Micro-PLANNER.

A version of Micro-PLANNER can be used on PDPP=-11/45s on a
small data Dbase. A 32K word LSER cata area is requireac. After
loading, typing

(FLNR)

starts Micro-PLANNER. Micro-PLANNER will then prompt for PLANNER
expressions to evaluate by printing

THVAL: .

If the Pretty Printer is also lcaded, the PLANNER data base may
be dumped to a file by typing

(THDUNP FILE)

where FILE evaluates to a logical file numbere. Later the data
base may be restored while using Micro-FLANNER by typing

$2(LOALC FILE) .

1.5.5« LISP Function Compilere.

The LISP function compilery, COMPILE, transforms LAMBDA ex-
pressions into machine code placed in the user-code, writable-I-
space areas CCMPILE gets from cne to three parameters, €+g.

(COMPILE COMP-LIST DUMP-FLAG MASTER) .

The tirst parametery, COMP-LIST, is a list of 1) SYMBOLic atoms
that are constantly bound to furctions, special forms, or macros;
or ot 2) sublists whose CAR is a property name, a SYMBOLic atom,
touna on the property lLlists of the sublist”s remaining variables
whose property values are user detined functions. The indicated
functions, special forms, and macros have underlying S-expression
definitions that COMPILE transfcrms intc machine code added “to
the writable-I-space area. 1f{ COMPILE gets the optiocnal, non-
NIL, second parameter, DUMP-FLAG, COMPILE displays the intermeai-
ate tuples proauceds from the S-expressicns which are converted
into code. Any third parameter, MASTER, which is a master LINKER
for tne current area of code being generated, COMPILE uses in
place of a new master LINKER that would ordinarily begin a fresh
code area so that the code to te produced will continue the cur-
rent code area. COMPILE prints a warning message about any
constant binaings or properties which cannot be compiled,

22

COMPILE returns a list of any variables used freely without being
declared fluid or having constart bindingse Variables are free
when they are used by a functior without being declaread as an ac-
cessable dummy argument of the function or a surrounding PROG
special forme. The function FLUID, included with the compiler,
takes as a parameter a List of variables that FLUID will mark as
fluide The function UNFLUID, also included with the compiler,
takes as a parameter, a list of variables from which UNFLUID will
remove the fluid marking. EXCISE, a function of no arguments,
removes all S-expression connections with the compiler that the
garbage collector might reference, thus returning some S~
expression space to general use.

23

2. Internal Configuration.

The PDP-11 LISP idnterpreter 1is modelled after the
Wisconsin LISP UNIVAC 1110 interpreter. Each interpreter is
written in assembly language to facilitate its optimization with
respect to the architecture of its hoste. HBOth interpreters have
been modularly organized to aid in their design and improvement.
Standardized interfaces and data structures are used between most
interpreter routines. Documentation is provided within the code
listings for deviations from the standard interfaces. Both in-
terpreters assume an operating system has been provided to handle
system overhead chores., Mor eover, the physical Lltayout, the
algorithms, anad even many assembly labels used ares in general,
similare Understanding the workings of either interpreter should
aid in the understanding of the other.

2.1« VOS Operating System calls.

Unaer VOS, the VLISP interpreter uses the "TRAP" dnstruc-
tion (1044XX) to perform input/cutput, to recover from errors and
interrupts, and to do other miscellanecus system functions. CPU
registers pass the parameters. In order to be compatible with
the PDP-11/40, the operating system uses only one CPU register
set and makes no attempt to charge register sets in PDP-11/45s
from the starting register set. The operating system returns
unaltered the contents of CPU registers not used for sending or
receiving parameters. Any orerating system that supports the
following "TRAP"™ definitions and provides sufficient address
space can house the PDP-11 LISP interpreter. The stand-alone
operating system and the V0S emulator under DOS take advantage of
the uniformity of the VOS intertface. The lLabel for each “TRAP"™
instruction offset below prececes its octal representation which
is in parentheses. The value and action correspond to the
“TRAP"s of the V(0S control machine.

2elele TRPTRP (0) - Simulate TRAP.

Offtset TRPTRP (0) simulates any other TRAP. The low order
byte of CPU register RS passes the TRAP oftset. The other CPU
registers pass parameters in the normal manner according to the
simulated TRAP.

24

2e¢1¢2¢ READ (1) - Start Input cf Line.

Offset READ (1) conditiors the input routines so that the
next character will be transferred from the beginning of the next
input Line. Any unread characters from the previous tine are
tost. The end ot line flag fron the previous Lline s cleared,
.Register ROy which contains flags used by V0S, is cleared by the
LISP interpreter before the calle Register R1 is used to specify
a Logical device, processy or pcrt from which the next line will
be obtained. It zero is used in P1, the default device assign-
ment is used for inpute. ‘ :

2e123. RDASC (2) - Read ASCll C(Charactere.

Offset RDASC (2) returns the next input character from the
current input line in CPU register RGs Register k1 contains a
non-zero flag. when all characters from the current line have
already been ready zero is returned in register R1, The next
line is not started until a “TRAP READ™ is performed.

In the current system, register RZ2 contains a count of
characters already received. The stand-alone operating system
decrements the value returned ir CPU register R2 to backspace.
Returning zero in CPU register R2 deletes the input line. More
general operating systems need nrot attempt this kind of shortcute.

2elebe WRITE (5) - Send With Noc Carriage Controls.

The WRITE TRAP provides compatiblity with V0S. In the
stand-alone systemsSy it performs no action. Under VO0S, the WRITE
TRAP signals the end of the current Lline of output characters,
insuring message completion to receiving processes. CPU register
ROy in which V0SS passes flags, is cleared to zero betfore the
"TRAP" by the LISP interpreter.

2¢1e5s CRLF (6) - Send Line With Carriage Controls.

A CARRIAGE RETURN and LINE FEED are added to the current
tine of outpute Then the "TRAP" performs the actions of “TRAP
WRITE"™ .

2elebe PRASC (7) - Send ASCII Character.

The character in register RO is added to the current Lline
for output. VOS uses the seven low order bits of register RO and
computes an even parity bit.

2e1e7. SYSPRT (020) - Change System Ports.

The logical port number specitieoc by register R1 is wused
to temporarily change the standard 1/0 stpreams. If the upper
byte of R1 is nonzero, the logical port specified is .used tor
inpute Otherwise the logical pcrt specified by the lower byte is
used for outpute.

25

2e1e8e SETRAP ((24) - Prepare to Process (ontingencies.

Register RO contains the address at which the LISP inter-
preter wants to start processing contingencies. Attention
interrupts, stack overflowsy illegal instructions and I1/0 errors
would all pegin processing at the speci fied point.

2e¢1¢9s ERINFO (032) - Get Status After Contingenciese

After a contigency, "TRAP ERINFO"™ obtains information
about the continyency necessary for a restart. Thus uninterrupt-
iple operations can be resumec before an attention interrupt is
processed. The LISP interpreter must ensure that an uninterrupt-
ibte process did not cause the interrupte.

Upon returny CPU register RO contains the virtual program
counter (PC) Location, register R1 contains the virtual processor
status word (PS), and register R2 contains the error type in the
low order byte. Attention interrupts return a negative error
code in this byte while other types return positive codes.

2el e Function Call Conventions.

The LISP interpreter code section consists of a collection
of mostly indegendent subroutines. External routines, which the
interpreted data may call directly, all have a common calling and
exit convention. Thus indiviaival routines may be added or modi-
fied without fear of affecting cther sections of codee Internal
subproutines, such as the garbage collector, which have different
conventions, are documented within the LISP dinterpreter code
listing. However, almost all subroutines follow the convention
that the return address is on taop of the controt stack, which
grows cownward, pointed to by CFU register SP, Rb.

2el el On Entrye.

On entry, external routires expect CPU registers R4, RS,
and SP to be pointers. As ncted abovey, SP, the hardware stack
pointer, points to the control stack, which growns downward to
lower unsigned aadresses. On tcp of this inverted stack is a re-
turn aodress which may be accessed by the instruction

RTS PC &

CPU reyister R4 points to the tcp of the value stacky, which grows
upward. Register R4 points to the next free word on this stack.
CPU register R5 points to the first parameter”s location on the
value stack. 1f the routine was called with no parameters, then
R4. anuo RS contain the same values. Otherwise, successive para-
meters occupy successively higher words on the control stack
starting at R5°s value and endirg just telow register R4°s value,
Data items in LISP contain pointers, which may be tollowed during
garbage coltectione. The itess on the value stack are also

26

pointers and hence the garbage collector marks the items refer-
enced by the value stack to keep them from being reclaimed. ALl
parameters passed to functions aeust have such protection and thus
are placed an the value stack. Other addresses, such as return
addressesy pointers into the stacks, or raw values (as opposed to
the pointers to values) are stored on the control stack during
evaluation. The items on the ccntrol stack are not referencea
during garbage collections.

2e2¢2e How to Call External Functionse.

Two internal procedures facilitate subroutine entry and
return. Before wusing the rcutinesy, any temporary data item
pointers that may need protecticn from garbage collection are
pushed onto the value stack. Next, the current value in register
R4, the value stack top, 1is - pushed onto the control stack,
pointec to by register R6.

Externat subroutine <calls use the internal subroutine
ENTRY, externally named XNTRY. To use ENTRY a special LINKER
node pointer is pushed onto the value stacke. The LINKER node
consists of a subroutine entry address and a pointer to a data
item, such as a LAMBDA expressicn which 1is to be interpreted.
The data item will be markeag by the garbage collector to avoia
reclamation. The subroutine entry address is not marked by the
garbage collectore. LINKER noce usage permits one numerical ad-
dress to have two simultaneous wmeaningsy which the PPP-11/45 mem-
ory seygmentation hardware permitse ENTRY must also be used for
some- internal subroutine calls which expect a LINKER node to be
placed on the value stacke After the LINKER node, the parameters
are pushed onto the value stack befor ENTRY is called.

A simplified entry procedure named ENTRYO, externally
named XNTRYCZ, 1is wused for calling acceptable subroutines. The
parameters are simply pushed onto the value stack without any
LINKER node. The address of the called subroutine is then put in

CPU register RL just before calling ENTRYO,.

Both entry subroutines are then called using the jump sub-
routine instruction, JSR, using CPU register R5, i.e.

JSR XS, ENTRYO
or
JSR XS,ENTRY.

Both entry subroutines call the specified function in the conven-
tional way«. On exity, the stack pointers R4, RS, and R6 are res-
torecd to their values before tre parameters and LINKER node were
pushed onto the stacke The other registers may be wused by the
called procedure without having to save their valuese. CPU re-
gister RO returns the pointer tc the returned data item, the val-
ue of the called function. The calling routine must save any re=-

27

gister values on the appropriate stack tefore beginning function
callse

2el o3 Internal Subroutines.

The jump-subroutine instruction using CPU register R7, the
program counter (P()

JSR PCySUBRTN ; Call subroutine

calls most internal subroutines. Parameters are transmitted in a
manner peculiar to each subroutine. In general, CPU register RO
returns values.

2e2+3e1¢ Printing Subroutines.

Most of the printing subroutines expect just one parameter
on the value stack. This parameter is popped from the value
stack on return into RO. The value in R5 is unaffected.

2¢2+¢342¢ Obtaining bata Nodes.

The proceaure NODE, externally named NNODE, proviades data
nodess - CPU register R3 contains the type of data node requirede.
CPU registers RN and R1 or floating-point accumulator ACOD, if
needed, contain the value tc be wused in node construction.
Adaitional entry points load CPL register R3 before entering the
NODE routine. CPU register RO returns a pointer to the node
createds. NODE saves only CPU registers R4 and R5. Calling NODE
may cause a garbage collection.

2.2+¢3¢3. O0Obtaininyg Node Types.

Small, externally availatle subrcutines return the type of
a given node in CPU register R3. Routines GETYPE, GETYP2,
GETYP1, and GCGETYPO, externally named c¢TYPE, GTYPE2, GYYPE1, and
GTYPED, are used to obtain the types of nodes in R3, R2, R1, and
ROy respectively. Only register R3 may be altered. Other sub-
routines that use node types assume the node type is in register
R3,

2¢le¢3eb4e Catching Error and Nor-standard Returns.

Several proceaures such as LISP, PROG, and ATTEMPT place
restart points on the value and control stacks. These restart
points provide stack reset positions after a non-standara return,
the ERKOR ano GO procedures, anc internal errorse. The function
UNWIND, externally named UNWND, finds the appropriate restarting
point on the stacks. When UNWIAND is called, CPU register R1 con-
tains the return index and CPU register RO contains an appropri-
ate value, such as a GO label or RETURN value. After finding a
match to the return index, the c¢riginal procedure restarts im-
mediately after the point where it estatlished the restart point.
The association list existing when the restart point was created

28

is also reestablished.
2e2¢345s Internal List Maniputation.
Internal subroutines for manipulating the current associa-

tion list, property List flags, and attribute-value pairs pass
parameters and return values through registers RO to R2Z,

23. HKkegister Usaye.

Although most registers have no fixed usages, register us-
age follows some general patterns. Registers RO to R3 are wused
without being saved by subroutines, while registers R4 to R6 are

normally restored after subrcutine calls, The conventions .
tol low:

RO = XU is used to calculate and return valuese.

R1T = X1 is general purpose.

R2 = %2 is used as a loop counter.

R3 = %3 contains the type of a data iteme.

k& = %4 points just beyono the tor of the value stacke

K5 = %5 points to parameters within the value stack.,

R6 = SP = X6 defines the tardware control stack top.

R7 = PC = X7 is the instruction ccunter.

2¢4¢ Storaye Allocation.

The user mode D-space area of storage is divided into
equal size contiguous areas called pages. Data within each page
has a uniform type. A page table recorcs the current type within
each page. Given a pointer to 2 data item, the page table is
used to determine the type from the address. The pages are
alianed on page boundary addresses that are multivrles of the page
size. Thus the high order bits of any pointer can be used as an
index 1into the page table to cetermine the type. The numerical
byte code for each type is included in parentheses in the Jde-
scription that followse All of the types are even numbers to fa-
cilitate multicle branch instructions, €.g.

ADD X3 ,PC ; Branch according to type.

29

Figure 3 - Initial LISP data area layout.

Address
$ o v e e o e e e e e o e 0 -+
| |
| Fixed workspace |
| |
T S 2000 -+
| ‘ |
| Hash table and atoms |
| |
e e e 10000 -+
| |
] Linker nodes |
| |
$ommmmemce e SR 12000 -+
| Single character strings |
] and |
! Other strings and arrays 1
A b e e 16000 -+
{]
] free pages |
! |
| |
| |
$ oo e e e 154000 -+
|]]
] value stack]]
] v |
P e e - e - —————— 160000 -+
| Unallocated (stack overflow protection) |
P e e rr e e e e 160100 -+
| v A |
| Control stack |]
|) |
e e e e e st ——— — - - - 164n00 -+
| !
| 1/0 butters and pre-allocated integers |
} : I
P e e . - — - —— ——— e ——— - 166000 -+
| ' |
| More tree pages |
] ' |
D 1772777 -+

2eb ot SYSTEM and Stacks (-6),

The value and control stacks, I/C butfers, tables, error
message string, and permanent addaresses are located in SYSTEM
pagess The control and value stacks expand to the lowermost and
part of the top hardware segment. At least one block is left
una llocated so that if either stack overflows, a hardware dinter-
rupt occurse. :

30 -

Cebele kot Available (NA) (-4).

This type is reserved tc¢r pages used for non-standard
purposes. This might include workspaces for other procedures
that could be linked to the LISF interpreter code. Also pages
that are not incluaed in the hardware mapping are given type NA
during the start-up procedure.

2.4030 FREE (‘2)0

Pages that are available tor conversion to other types
when needed have type FREE. when the garbage collector reclaims
an entire page it is given type FREF. Type FREE pages remain
uninitialized until neededs A count is maintained of the numper
of FREE type pages. When an aveilable FREE page is needed, the
storage allocator searches the rage table to compute the starting
adaress of a FREE page.

2eb b CONSED Nodes (0).

CONSED nocves, the Llist ccnnectivesy, are four bytes (two
words) tong and are aligned on two worc boundaries. The tow and
high order woras are pointers tc the CAR and CDR of the node
respectively. Pointers to CONSED nodes point to the high order
(CDR) worage Taking advantage of the hardware decrement before
addressing, bcth CAR and CDR can be reached directly without us-
ing the Llonger i ndex addressing mode. buring garbage
coltections, it a CONSED node i1s marked, its CAR and CODR are also
marked.

Figure 4 - CONSED node.

Vv
P —— ——— e — e —— —— ———————————— P - e —————————————————— +
| CAR) CDR |
et e i e rrrrr e r e e ct e, ————— — - ———————— +
u 1 2 3 4

2eb oS LINKER Nodes (2).

Two-woro (four-byte) LINKER nodes are used to access func-
tions and transmit auxiliary information. The high order word
(*xCDhR) of a LINKER node is the starting address of a function
whose code is in the memory-management—hardware instruction (1)
spacee This addaress should rot be used as a pointer since the
adaress specifiead may have a ditfferent meaning in the data space.
The low order word (*CAR) of a LINKER node for a system-defined

function points to a string giving the original name of the.

function. The *CAR of a LINKEFK noae of a LAMBDA expression
points to a List of the parameters given to LAMBDA to create the
functione The *CAR of a node <created by LAMBDA and FUNCYION
points to a CONSED node whose CAR is the captured association
list and whose CDR is a list of the parameters of the creating

31

LAMBDA call. The *CDR address cf such a LINKER noage specifies an
adudress where the captured association list is established as the
current one and the dummy arguments are given values from the
value stacke. On entry to this function, the *CAR of 'the LINKER
node is placed on the value stack just telow the first parameter,
The *CAR of the LINKER node of an array points to the string con-
taining the values of the array. The address given by the =*(CDR
of sucn a LINKER node specifies whether the string contains
pointers whose values must be marked curing garbage collection.
The *CAR of the LINKER node for the function ALIST points to the
head of the association Lliste.

The *CDR, I-space addressy of a LINKER node determines 1if
the associateu routine 1involves a function of a special form.
AlLL tunctions have an unsigned l-space address greater than or
equal to the I-space address of the system interpreter function,
EVAL. Other 1-space addresses specify special form routines.
Both types ot LINKER nodes are aligned on two-word (four-byte)
boundaries. Function parameters are evaluated before being
passed to the procedure. Special foram and macro parameters are
not evaluatea ctetore being passed.

Figure 5 = Function and special form LINKERS.

v
e e —— c————————— e e - ———————— +
} Expression | l1-space Address |
P, e — e ——————— $ oo - e -———————— - +
0 1 2 3 4
(*x CAR) (*xCDR)

2.4.6. SYMPOL Nodes (4).

SYMBOL atoms, the named entities of LISP, are tour words
(eight bytes) long . The first, low crder word is a hash Llinke.
The single character atoms embocy the hash table bucket headse.
The cata initialization creates the single character atoms at the
lowest unsigned addresses of the first SYM3CL atom page. The
hash code is ccmputed by adding the ASCII character bytes in the
symbol name, truncating to the {ow order seven bits and multiply-
ing by b, 1. algebraic shift left by 3, in order to find a
bucket head in the hash table. The Last hash Link in a bucket is
marked by a zero woro. GENSYM atoms, which are not on the hash
chains, have nash links that point to an integer index. The se-
cond word points to the ASCI1 string that gives the name of the
atom,. The tnird word, the *(CAR of ar atom, gives the constant
bincding ot the atom. If the atcm is not constantly oound, the
thira word 1is zero. If the third wora is 2ero, a fluiag binding
of an atom may be placed on or vretrieved ftrom the association
tist., Each fluid binding on the association List is an atom and
attribute pair. The fourth, hich order word of a SYMBOL atom 1is
the property List. A property list consists of flags, which are

32

other SYMLOL atoms, and attribute-value pairs in which the CAR of
the pair is a SYMBOL atom and the CDR of the pair is the value or
property. Pointers to the atom address the fourth word, the
property list, which serves as the *CDR of the atom.

Figure 6 - SYMBOL atcm node.

Vv
L e ————————— b m——— —————— tmmmcccccacc e +
| hash Llink | Print name | Va lLue | property List |
S U S S S R U B &
0 1 2 3 4 5 & 7 010
) (* CAR) (*CDR) 8

2ebo7e OCTAL (6).

OCTAL nodes are 16-bit wcrds aligned on word boundariese.
Althcugh a sign may be specified o¢n inputy OCTAL nodes are
printea as unsigned octal radix numbers followed by a "a", Bits
within the bytes at the beginning of each page of octal nodes
serve as marking flags for garbage coltection.

Figure 7 - OCTAL node.

v
b e et e e —————— +
| value |
$ e ccm e ———— . e — e ————r—————— +
0 1 2

2.4 .8, Integer (INTGER) (010).

Integer nodes are sigredy 16-bit, fixed-point, two’s
comptement words aligned on word boundaries. Bits within the
bytes at the beginning of each rage of integer nodes serve as
marking flags for-ygarbage collection.

Figure 8 - Intecer (INTGER) node.

v
o mmm cmm - - - — e - - - —— -
| Value |
G men o mar w > wn W - - -
0 1 2

2.4 5. SINGLE precision (012).

Single-precision, sign-magnitude, floating-point noges
occupy 2 words (4 bytes). Bits within the bytes at the beginning

33

of each page ot single-precision nodes serve as marking flags for
garbage <collection. *C(DR anc most functions that use single-
precision values as if they were fixed-point wvalues without
conversion retference the high-order word that contains the sign
bit, 8 bits of biased exponent, and the most-significant bits of
the mantissa. *CAR retferences the other word containing the
least significant bits of the mantissae.

Figure 9 - SINGLE precision node.

v
tmtm e —— et ————— $rmmrm b m——————— +
Ist Exp | Mantissa |
Potmmm e ————— O tmm—————— +
¢ 1 : 2 3 4

(xCDR) (2CAR)

2.4.10., DOUBLE precision (012 cr 014).

Double-precision, sign-wmagnitude, tloating-point nodes
occupy 4 words (8 bytes), PRits within the bytes at the beginning
of each page ot double-precisior nodes serve as marking flags for
garbage collection. *CDR anc most tunctions that use double-
precision values as fixed-point values without conversion refer-
ence the high-order wordy, which contains the sign bit, & bits of
biased exponenty and the most significant bits ot the mantissa.
The *CAR references the second highest signiftficance word contain-
ing part of the mantissae The internal numerical type of doubte
precision nodes is 014 (octal) 1if VLISP also supports single pre-

cision nodes, otherwise 012 (octal).
A

Figure 10 - DOUELE precistion node.

v
tomtr e — e ——— gV UM U B L T T —— T TS +
Isl Exp | Mant issa |
4ot b ————— brmr e~ —————— e r e ————— e e ——— -
0 1 P 3 4 5 6 ? 8

(*CDR) (+«CAR)

2¢4+.11. STRING and Array (D12, 014, or 016).

Strings and arrays, that both have the same format, occupy
the same page type. Pointers tc¢ arrays or strings address a word
that gives the length in bytes followed by string or array data.
Strings and arrays must be Lless than 32K bytes Long since the

34

high order bit of the length word is wused by the garbage
collector to mark strings and arrays. Strings consist of 7-bit
ASCII characters in each byte. Context specifies array data,
iees a special LINKER node”s *CAR points to the array. Arrays of
pointersy whose values must be markeo during garbage collectionsy
must have exactly one LINKER rode whose *CDR address is ARRAYA,
the pointer array internal tunction, so that the "garbage
collector will mark the memters of the array exactly once and
will maintain pointer integrity. The starts of strings and ar-
rays align on word boundaries, even when the preceding string
lenath is odd. Strings and arrays may extend across page
bounocariese. The internal numeric type of strinas and arrays is
either 012, U144 or C16 (octal) if VLISP supports the J, 1y or 2
type ot floating-precision nodes, respectively.

Figure 11 - STRING or array nodese.

v

F e e e e e e e e e e e e e mm e e —— e ————————————— +
| Length (N) I Characters, bytes or pointers |
| in bytes | |
bomm e ————————————— o e o e e e e e e e e e +
-2 -1 C 1 2 e o o N=-1 N

2.5, Garbage (ollection.

Storage management and garbage ccllection ditfer greatly
from those in wisconsin UNIVAC 11700 LISF,

26541+ The Deutch-Schorr-Waite Algorithm,

Fach new data item created is stcred in a node drawn from

free storage Llists. When a free stcrage list is exhausted, a
FREE page is ccnverted into a pege of nodes of the requested
type. Finally, when no FREE pages remainy, the garbage collector

is catled to determine which noces are no Llonger wused to. hold
current values. These free nodes, which cannot be reached by any
chain of pointers accessible to the user, are placed back onto
the tree storage cnains. If an entire page consists of free
noagesy, the nodes in the page are remcved from the free storage
chain and their pagye reverts to type FREE.

The Deutch-Schorr-wWwaite aslgorithr underlies the marking
me t hcd that only marks nodes still in use. Node marking starts
from the hash table, the value stack, scme unremovable atoms used
as flags or LINKERS within the interpreter code, and any current
pointers that will - be incluced in the data item about to be
generateds, The Deutch-Schorr-wzite algcrithm maintains a stack
within the datae DY reversing the direct ion of the marked chain of
pointers. 1t requires only & small tixed amount of additional
storage for chain head pointers, which are kept 1in reqgisters,
Further, The Deutch-Schorr-waite algcrithm operates in linear

35

time with respect to the numoer of marked nodes. No other
marking method can significantly improve upon Linear time.

After the marking operation is completed, each page is
swept for unmarked nodes. For each page, the page type is found
to determine the method of marking used and current position in
the free storage chain of a given type. The free storage chain
for each type is kept in unsigned ascending order. Newly re-
claimed nodes are placed in oraoer on the appropriate chain. The
free chain, current position pointers may be advanced when marked
nodes are encountered. Also, the marking is removed from marked

nodess Atter sweeping each page, a count of the free nodes
within the page is inspected to determire if the entire page s
free. The sweeping algorithe operates in linear time with re-

spect to the amount of storage.

Complications arise it the garbage collector is
_interruptede. While being wmarked, pcinters do not necessarily
give the expectea value. Some wmarking is done by setting the lowu
order pits of word pointers. 1f these pointers were used as word
addresses, the odd-address hardware trap woutd occur. Moreover,
some tree storage chains may te temporarily disconnected during
the sweeping procedure. The unallocatec string chain, however,
must remain intact to determine whether a3 given partition (slot)
of a string page is either (1) cn the unallocated string chainy
(2) marked, cr (3) allocatec but wnmarked. The partition”s
length is founa in different positions within the slot
accordingly. Similar problems may occur during node allocation.
one solution s to disable interrupts during the critical
periods. Unfortunately, disabling interrupts involves excessive
overhead for such frequent <c¢perations as node atlocation.
Hardware interrupts could not be disabled for the duration of
garbage collection during any simultanecus real time operationse.
Usually, garbage collectior lasts beyond one second.
Alternatively, a flag is set anc cleared when entering and Lleav~-
ing c¢ritical areas. When an irterrupt is intercepted, this flag
is examinege. 1f the flag is sety, the operation procedes from the
interrupt point to the point wkere interrupts can occur,y, the
point at which the flag would be cleared. There, the normal pro-
cessing is discontinued ard the interrupt processing is
completeg.s NoOte that the uninterruptitle operations must not
generate hardware interrupts themselves, for the system could not
continue.

2e5+2¢ Free Storage Listse

Each of the free storage chains for each noae type 'is 1in
unsigned ascendiny order. The enc of each chain is indicated by
a zero where the next Link pointer is expecteds Unlike allocated
noades, the chain links ot each type always point to the unsigned
low order word of the next slot., '

36

For all node types except strings, all nodes are Llinked
onto the free storage <chain after their page is given the new
type. The chain then consists of a forward Linked List,

Within pages of strings &nd arraysy a chain of free slots
is kept. The wunsigned low order first word of each slot gives
the tink to the next slot. If the free slot consists of just two
bytes (one word) then the low order bit is set, i.e. the pointer
is odde. Follcocwing this conventiony, if the last unallocated stiLot
is just two bytes, it contains the number one. Free slots longer
than one word have zero in the low order bit of the first word.
The second word of such a sltot gives the sltot”s length. When a
slot is added to the free storage chain it is immediately merged
with any contiguous slots. The full length of the combined slot
will then be available without waste.

2¢5+3. Packing Storage.

Storage packing has not yet been implemented. Storage
should not be packed after each garbage collection, but only upon
request or garbage collection failure. There will probably be a
need to implement this comptex and time-consuming procedure.

After the LISP interpreter has been running for a long
timey all of the pages probably will ccntain more or less perma-
nently allocated nodes. At the same timey, many of the pages
probably will be mostly unatlocatede Thus, although unused space
is availabley, the garbage collector may eventually fail because
it cannot allocate a new page fcr a type that densely populates
its present pagess With fewer free pages availabte for
recycling, the time consuming garbage collector will be <called
more often.

Packing storage consists of putting nodes of each type 1in
as few pages as possible. For fixed-node~size page types, some
pages would be marked to have their nodes ptaced in other pages
of the same typee. Pointers to these nodes must also be adjusted.
For variable node sizesy, the free slots must be removed from be~
tween allocated nodes by shiftirg the allocated nodesy preferably
downwardy and grouping the free slots into one large free slot at
the end of the area. The greatest storage economy is obtained by
also ensuring that pages with variable length nodes abuty so that
allocated slots may extend across page boundariese. 0f course,
the pointers to wvariable Llergth slcts must also be adjusted.
Nodes in the hash table and LINKER nodes and symbol - flag nodes
used by the system must not Lte moved since their positions are
referenced by the LISP interpreter code. Moreover, references to
moved data nodes must be altered in any compiled code.

e

37

2+6. Hindsight.

20601 32K.

The size vf the data space, even using a virtual memory or
additional core, is limited to 22K words. This . is the Llargest
number of words that can be directly addressed by a 16-bit word
without modification. This restriction limits the absolute size
of programs that may be interpreted by PDP-11 LISP. Limited ad-
ditional program space can be c¢btained by compilting functions
into the haraware supported I-space, but absolute Limits on
program size remain. Future implementations of PDP-11 LISP,
working in a virtual environmert, could use 16-bit word pointers
that must.be modified before use, or 3 cr 4 byte pointers to in-
crease the effective address space.

2-6-2;ov Two StackSe

i s .

imusingstuo stacks, the value stack for pointers and the
contro'l" stack for addresses and binary wvalues, facilitated
_programming. However, having two stacks places restrictions on
any Larger virtual space version. Separate pointers and data
areas must be maintained. If the stacks are allowed to ‘overflow
onto aaditional pages of virtual memory, each stack would need to

be separately handlede. Morecver, if stack sections were to be
used as data, as in more advanced versicns of LISP, both stacks
woula have to be manipulated, with double the overhead.

Alternatives are to use a methoc whereby pointers may be distin-
guished from addresses and raw cata on a single stacky, or to eli-
minate the wvalue stack as a separate contiguous area. With the
Llatter alternative, the value stack would be kept among the
CONSED nodesy thereby slowing acccesses into the value stacke.

2¢643. The Deutch-Schorr-waite Algorithm.

The Deutch—Schorr-Waite algorithwy, used by the garbage
collector, has gisadvantages as noted above. The process tannot
be interrupted during garbage ccllection, an intolerable situa=-
tion for some real time applications. Using other algorithms in
virtual space, multiprocessing environments, simultaneous garbage
col lection can take place while processing continues.
Furthermore, restarting after irterrupts would be simplified.

38

3. Machine Code Generation.

User created machine code can be dynamically added to the
LISP interpreter within machines whose memory management supports
seperated 1 (instruction) anc D (data) spacesy in particular
PDP-11/45s and PDPP-11/70s. The operating system, such as VO0S,
must also provide for the dynamic expansion of the USER-mode I~ -
space in units corresponding to full Llength hardware segments
(020000 octal bytes)s. Using furctions within LISP, pre-assembled
routines of ~machine code can te added to the repertoire of LISP
functions in order to perform slowly interpreted or non~-standard
actions such as system calls mnmore efficiently. LISP LAMBDA ex-
pressions may be compiled into machine code in order to speed
their execution, avoid unnecessary overhead, and allow the nodes
originally occupied by the LAMBLA expression to return to general
use, thus increasing the FREE storage space.

The user”s machine code may reference S-expressions that
are dynamically allocated by the LISP interpreter. Possibly a
reference to an expression woulc be the only reference. To avoid
garbage coltection of references that are only known to the us-
er“s machine <caode, a table of offsets that point to the refer-
ences is kept following the user“s wmwachine code groups in 1~
spaces The garbage collector consults these tables during its
marking phases All S—-expressiors thus referenced are marked as
in-use to avoid reclamation. Storage packing routines would know
which Llocations specify addresses to alter within USER-mode I~
space when S-expressions are moved in D-space. If the user makes
copies of the machine code, the table of offsets following the
machine code specify which addresses must be reallocated by a
tater invocation of the LISP interpreter if the machine code is
ever dynamically reloadede LISP S—expressions written after the
code specify how reloaded code aust be altered to point to the
reallocated S—expressions that the code references.

Reading tocations within USER mode I-space by USER-mode
programs cannot be done directly. Atthough the USER-mode in-
struction MTPI (Move To Previous Instruction space) can write
into USER-mode I-space, the hardware design circumvents the
USER-mode instruction MFPI (Move From Previous Instruction space)
from reading USER-mode I-space by diverting the reference to the
.D-spacee This wunfortunate design was intended to support
execute~only code, which no widespread cperating system currently
supportse. Instead, the design has forced a system call to be ad~
ded to operating systems to enable reading Llocations within
USER-mode I-space. :

39

3.1 Manipulating the USER Instruction (1) Space.

Several functions definec in PDP~-11 LISP manipulate the
USER instruction (I) space that is not occupied by the LISP in-
terpreter code. Although these I-space functions have names that
match the names of Wisconsin UNIVAC 1110 LISP functions, their
machine~dependent definitions are different. The code for the
I-space functions is conditionally assembled with the LISP inter-
preter when the tlag “CPLCPL" in the assembler source module
"TRAPS"™ is set to one. When the code is not assembled the inter-
preter may occupy Lless than 4K words (020000 octal bytes), one
hardware segment. With the I-sgrace functions included, the LISP
interpreter code resides in two harduware segmentss This leaves a
maximum of & hardware segments, 24K words (140000 octal bytes),
for allocation to user code areas, depending upon the operating
‘system.

The LISP interpreter manages the USER l-space as a torward
linked chain of user code areas. Two words precede each wuser
coce area. The first word points just teyond the end of the con-
tiguous user cade area to the next area”s pointer word. The
secondy flag wora is normally zero. System programs such as the
Pretty PFPrinter and the S-exgression editor examine the word
preceding an adudress specified ty a LINKER node. 1f the preced-
ing word is zeroy, the start of a code area has probably been
founce. Hencey it 1s unwise to glace any other zero word within
user code such as a HALT instruction. Each user code area con-
sists of two parts: the instructions anc a table of offsets. The
table of offsets, described belcw, has exactly one zero word that
is usea to mark the unsigned-lowest adcress within the table.
only +the last wuser code area on the chain may be expanded or
loaded .«

System conventions shoulc be followed for LINKEP nodes
that point to addresses within the user code areas. The *CDR ad-
dress of one master LINKER noce should specify the beginning of
each user code area, the word preceded ty a zero flag worde. The
*CAR of the master LINKER shoulc point to an S-expression that is
a formula that evaluates back to the master LINKER. The =*CAR of
other LINKER nodes that specify other acdresses within the same
user code area should point to the master LINKER node of the
area. This convention facilitates dumping user code areas that
may be. loaded 4t a later invocation of LISP. During garbage col-
lection before storage packing, any marking of secondary entry
points to a coce area would also Llead to marking the master
LINKER, which in turn could leac to marking the flag word preced-
ing the code area. Thus any reference to a code area would keep
the entire area from being reclaimed. '

49

Figure 12 - Typical‘Structure of Pointers to User. Code Area.

I I
- |
/->) | . Seconaary
/ | V LINKER node
/ v e m e — o ———
! S-exp | *CAKk | =CDR |
) \ 4ommeee Vot
| \O | P 4 Bytes
) vV | D-space
| \ v
| master \| \
| LINKER \" \
1 T N L
! | =CAR | *CDR | \
! R —— \
\ O | 2 | 4 \
\ ! | ' \
\ <~/ J \
) \
. [] [] L *® L] ' . L) L] [. L] \ L[] * [] [) L] L J * [] L) L] L] L] [] L] L] L 4 e »
| Start | Secondary I-space
v of Code V ertry point
b ——— et et crm e ——— e rcr e c e e ———— +
I Next | 0| User CODE | 0) offset Table |
S g g g O LT +
-6 | =2 0 n n+2 ntm
v A
\ /
N r e e e e e e m e e e 2 >/

Descriptions ot each I-sgrace management tftunction followe.
*BEGIN <creates a new area to receive codee. *EXAM and *EMIT re-
treive and replace values in the USER-mode writable 1I-space.
*0OR G creates secondary entry points to a code area. pDimpP, LOAD,
ana *DigPOSIT output and re-reaa code anc related S-expressionse.

.11 *BEGIN New User Code Areae.

*HbEGIN creates a new area for user code and returns a

master LINKER to ite. 1f arother I-space hardware seoment is
needed it is requested and 1integrated into the USER 1-space
chaine Any previous wuser gs&ta area under construction s

finished by moving the previous table of offsets down to the pre-
vious end of instructionse. The pointers to the ends ot the areas

are ad)usted. The one parameter to *BEGIN is used as the *CAR of
the master LINKER that *BEGIN returns:

(*BECIN ARG)

41

Telelse *EXAMine a Word in I-space.

*EXAM returns an octal representation of a specified word
in USER l-space. *EXAM may have from ore to three parameters:

(*EXAM LINK OFFSET TABLE)

The tirst parameter, usually a LINKER nodey possibly the only

parameter, gives an address in the I-space. The secona
parameter, if yiven, provides a numerical offset from the address
given by the first parameter. when the third parameter is given,
it specifies an entry within the table of offsetse The thirg
parameter, usually a negative rumber, is the offset of the taole
entry in bytes from the high aacress enc of the offset table.
The first parameter should be a master LINKER and the second zero

in this <case. The entry in the table of oftsets determines an
address among the instructions whose octal representation *EXAM
returnse. If the specified acdress lLies within the LISP inter-

preter coge, *EXAM returns NIL.
341434 *EMIT & word to I-space.

*EMIT writes a value in a specified location of 1-space{
*EMIT may have from one to five parameters:

(*EMIT LINK OFFSET TABLE MODIFIER ARG)

If one parameter is given, usually a nurber, 1ts value 1is added
to the open user coage area, the last area on the I-space chain
createa by *BEGIN. I1f two or mcre parameters are given, the last
two parameters determine an offset and pointer. The value of the
penultimate parameter, usually & pointer to a numeric noge, modi-
fies the last parameter,y, the adcress of some S-expression. This
modified wvalue replaces the value at the specified location. 1+
exactly two parameters are giver, the specified lLocation 1is the
next available Llocation of the open user code area. *EMIT also
expands the tacle of offsets by adding the offset to the next
code Locatione. Thus the S—expression given by the last parameter
will hencefortn be protected frcm garbage-collection reclamation.
The table of offsets of the last user code area is kept at the
extreme, unsignea-high—address end of the allocated I-space. The
instructions and table of offsets in the last area grow toward
one another. It *tMIT can not find enough unatlocated space to
acod a new instruction word or offset table entry as requested by
one oOr twoOo parameters to *ENMIT, *EMIT trys to expand the last
USER I-space area by adding a new contiquous hardware segment to
the existing user code area, updating the chain pointers to vn-
clude the addition, and moving the table of offsets to the ex-
treme high end of the new area. If the attempt to gather more
I-space fails, the interpreter will call the operating system in
error mode after sending the message ‘ '

NO SPACE .

42

*EMIT uses any parameters given before the last two, the offset
anag pointer, like the parameters ot *EXAM to specify a location
in I-spaces With three or more parameters, *EMIT expands neither
the code area nor the offset tatle, but simply alters an existing
word in a user code area. If +*EMIT gets three or more
_paranmeters, the first parameter specifies an l-space lLocation.
with four or more parameters, the second parameter gives an
oftset from the first parameter, Lastly, with five parameters,
the third parameter gives an of fset from the high address end of
the offset table. The offset table entry in turn specifies a Lo~
cation within user code to replaces

3.1.4. *0RiGinate a Secondary Entry Point.

*0ORG creates a secondary LINKER node to a computed Lloca~
tion within a user code area: ‘

(*0RG LINK AFRGT1 ¢ « o ARGN)

*Ok6 uses its first parameter, which shculd be the master LINKER
node of the «code area, as the *CAR of the secondary LINKER
createde If no other parameters are given, the *CDR of the cre-
ated LINKER ©fgoints to the next location that might recieve code
from *EMIT. Otherwisey, *ORG uses the value of its second para-
meter as the *(DR of the created LINKER node. The value of any
other parameter woula additively modify the address specified by
the seconda parameter.

3.1+5s *DEPOSILIY User Code and LOAD S-expressions.

*DEPOSIT inputs S-expressions anc code in DEC absolute
loader format or UNIX a.out format from specified logical files.
Since each operating system has its own conventions for opening
and assigning logical names to files and devices, file and device
opening and naminyg must occur tefore «DEPOSIT operates on a spe-
cified files. If LOAD has parameters

(LOAD ASCII-FILE BINARY-FILE)

the first parameter specifies an dinput file from which S-
expressions are read in a READ-EVAL loor until the end of file is
reacheg or a top Lltevel RETURN or ERROR function is evaluated.
The last parameter specities a file to be used later for in-
putting binary code by *DEPOSIT:

(¥DEPCSIT ARG)

*DEPOSIT and (if LOAD gets no parameters) LOAD input binary code
in DEC absolute Lloader format or UNIX a.out absolute loader
format from the file specified by an invocation of LOAD with
parameters as the last parameter. Uncetr UNIX, the .data, .bss,
relocation, ana symbol table parts of the a.out load module
should be empty. *DEPOSIT performs *BEGIN betore initiating the
input. 11 not enouah space is available for the input code, the

43

LISP interpreter prints the message
NO SPACE

ana calls the aoperating system 1in errcr mode. If the input
format is inccrrect or a checksum error is found, *DEPOSIT calls
the interpreter routines for internal error handling. The input
code image shoula <contain irstructicns followed by an offset
tables *DEPOSIT creates the necessary code chain pointer and
zero flag word, When *DEPOSIT finds the end of the code image as
indicated by a transfer address record, *DEPOSIT closes the newly
created wuser code area and returns a master LINKER to the start
of the code. The *CAR of the created master LINKER is the para-
meter of *DEPOSIT, conventionally an S-eupression that the inter-
preter can evaluate back to the master LINKER. 1f LOAD gets no
parameters, subsequently evaluated S-expressions should amend the
*CAR of the returned master LINKER node to point ‘to a tformula
that evaluates back to the master LINKER.,

3¢l a6 DUMP User Code and Referencec S-expressionse

DUMP uses either two or three parameters to output a wuser
cooce area in DEC absolute Loader format or in UNIX a.out absoclute
loader tormat 4ano to further invoke routines to handle each S~
expression that is referenced by an address known to the table of
offtsets:

(DUMP MASTER FILE FUNC)

The first parameter must be a master LINKER of a user code area;
otherwise, DUMF immeagjately returns NIL. If the second parameter
is not NIL, the parameter s Lsed as the logical name of a file
to which an image of the user ccde area is sent in DEC absolute
loader format., bUMP places tte start (bottom) of code at loca-
tion zero in the code image. uUrder DOS, DUMP produces no DOS
communications airectory (COMD) but does produce records shorter
than 100 (octat) with a few NULL (zero) padding characters be-
tween recoras ano longer padding before ana after the image. S-
expression references are changed to 16(011 (octal) in the image
to protect against improper relcadinge The last recordy when us-
ing DEC absolute lLoader format, signals a transfer address ot one
(DOOCO1)Y, that normally indicates the transfer address is not to
be used as a start aodress by a DEC absclute loader. Under UNIX,
the a.out loader format produces contains only a .text part in
separately-executaole mode without relocation bits or a symbol
tables Nexty, if the third DUMP parameter is given, DUMP checks
to insure that the parameter is a function. DUMP calls the third
parameter function once for each entry in the offset table,
Three parameters are passed whose values may be used by *EMIT to
recreate the S-expressions when reloaded. First is an octal node
which gives the oftset of the S-expression address from the start
of the code areae. Second is ar integer node whose value must be
subtracted from the referenced fointer to make it conform to the
standards of other pointers of its type. For exampley, a pointer

44

to the high order byte of an OCTAL node would need one (+1) sub-
tractea from it to make the pointer word-addressable like normal
OCTAL node pointerse Third is the pointer referenced in the
standard format wused for its typey that isy with any offset
removeds Finally, DUMP returns the master LINKER node, the first
parameter of DUMP.

3.2. Assembling Codee.

Hand encoded assembly routines may be prepared for pro-
cessing by the available assenbler and Link editor, A group of
LISP S-expressions should also te prepared to command the LISP
interpreter to dynamically install the load module output of the
link editor and to redirect locations within the code to point to
dynamically al located storage areas. When the LISP system itself
is Link editedy a symbol table, preferably called LISP.STB, s
created so that later global references within user code to fixed
locations within the LISP system may be resolved by the link
editor. :

The fol lowing example, prepared for wuse with DEC”s 0OS
MACRO assembler and LINK link editor, explains how to carry out
this prodedures. A similar procedure uncer UNIX using the UNIX
"as” assembler and "td" link-editor could create a similar load
module., Suppose a LISP function UMIN is desired that returns an
unsigned minimum of an arbitrary number of integer parameterse.
If no parameters are supplied, ®minus one (-1=177777 octal), the
largest unsigned two”s complement integer, is returned. Such a
function, UMIN, would be relatively lengthy and stow if written
as a LAMBDA expression since unsigred comparisons are not
(currently) girectly supported ty the LISP interpreter. A fast,
machine-encodea UMIN would not need to create binding nodes and
could assume the validity of parameters unlike interpreted LAMgDA
expressions. A second function, ULESSF, an unsigned-lLess~-than
predicatey can also be defined beside the same code. Assume that
the code below has been placed in a DOS file tabeled "UMIN.PAL",

45

Figure 13 - Assembler Source for UMIN and ULESSP Example,

Se

«GLOBL UMIN,,ULESSP j;Externalized definitions
«GLOBL TRUGNIL sExternal references

“Find unsigned minimum among integer parametersS.

Ne %o N

UMIN: MOV (PC) +,RO ;sLcad-immediate a pointer to -1
ADDRSS: <WORD 164011 ;Placeholder for pointer to -1
BR LABEL ;dump to end of Lloop
LOOP: cmp (RU) y2-(R4&) ;Cteck arg from value stack top
BLOS LABE L ;=2 This arg is not smaller
MOV (R4) 4RO sCurrent arg is smaller
LABFL: CHMP R4 4R S ;sFirst arg reached?
BHI LOOP sNCy => more args to compare
RTS PC ;RC => minimum arg
' 4
H Unsigned-less-than predicate
’
ULESSP: MOV #TRU 4RO ;sAssume true = T
CMP a=(R4),A-(R&L);1Is 2nd arg > 1st arqg?
BHI RETURN ;=> Yes
MoV #NIL 4RO ;Ncy return NIL for false
RETURN: RTS PC ;T or NIL is returned in R0

Table of offsets to dynamically allocated addresses

Ne Ne Ny

«WORD 0 ;varker for beginning of table
«wORD ADDRSS-UMIN ;0ffset of pointer from code start
«END UMIN JAry transter address is ignored

The wuser <code must ©be position—-independente. Program

counter (PC) relative references (mode 67) to the data space and
to locations within the LISP interpreter code should not be made.
In particular, subroutine calls to the LISP interpreter must be
made in absolute ("@#"™) mode (27), rather than in the ubiquitous
relative mocde found in much assembly prcgramming. However, ref-
erences ot the -user <code to itself, such as subroutine catls,
should be relative. Storage packing routines may move the abso-
tute Llocations of groups of ccde. The changes in location will
only be reflected in the address portion (*CDR) of the LINKER
nodes that retference the user code areas., Hence references from
one user code area to another must only be make through LINKER
nodes.

A table of offsets to references must be provided at the
end ot each user code area. The first word of the table, that
must be provided even if the rest of the table is empty, is zero.
Any entries that follow are oftsets from the start of the code
area to addresses within instructions of the I~-space that refer-
ence S-expressions that must be dynamically allocated by the LISP
interpreter. [n the present exampley, the word at the Llabel

46

“"ADDRSS:"™ 1is 1didentified 1in the table by the offset, "ADDRSS-
UMIN", This MOV instruction operand 1is assembled as 160011
(octal) so that 1if the code is used before the proper dynamic
'storage allocation is complete, a hardware byte error trap will
oCCurs Furthermore, the addaress 1460011 (octal) in D-space has
type SYSTEM. Hence, the garbage collector will not attempt to
mark the lLocation specified as an in-use S-expressions. The word
will eventually contain the address of an INTGER node whose con-
tents are a two”s complement minus one (-1 = 177777 octal)e The
D-space references to NIL and TRU are nct included in the table
since they have permanent locztions that are externally defined
in the symbol table “LISP.STB". The references to NIL and TRU
can be resolveao by the link editor before loading the user code.

An available program, “TRANSLATEY, provided with UNIX
ppLISP, <can convert most of the syntax of DEC PAL assembler pro-
grams into the syntax of the UNIX "as" assembler. The above
source code tor the UMIN and LLESSP example could be translated
by "“TRANSLATE"™ or originally written with the syntax used by the
"as" assembler. Under UNIX, the following shell command inter-
preter instructions could assemtle the codey print an external
name list, and resolve external references. In this example, the
UNIX assembler source is named "umin.a"™ in the current directory,
the Lisp symbol table is named “/lib/lisp.stb®™, and the output
produced is labeled "umin.o'" in the current directory. The UNIX
link-egitor '"Uld*" uses the squash option, *-s", to omit producing
any symbol table or relocation Ltits.

Fiqure 14 - UNIX commands to assemble and resolve UMIN example.

- Assemble source code

s umin.a o

- Produce name List from object module

-~ in 3 columns on the Llire printer

m a.out | pr =-h “"UMIN symtol table" -3 > /dev/lp

- Link-edit removing symbtol table and relocation bits
d -s a.out /tLib/lispestb

- Rename Load module

mv a.ouUt umina.o

e =0t 3 s ee QU e

In the‘example. the wuser code could be assembled and
linked in DOS BLATCH mode by the following commands. '

Figure 15 - nOS Commands to LINK and Assemble UMIN Example.

$SRUN MACRO - Assemble
#SY:UMIN.,OBJyLP :<SY:UMIN.PAL .
$RUN L INK ; Link Edit w«ith start ot code at zero.

HSY sUMINSLDAJLP :<SY:UMIN.OEJ,LISP.STBL1,11/B:C/E

47

DOS incluades a 1¢ (20 octal) word communrications directory (COMD)
as the first record of load modiLles. The COMD is normally Lloaded
into core anao then overwritter. In order to avoid interference
with the dynamic code Loader (*DEPOSIT) by the COMD, the user
code loaded must be at least 16 (20 octal) words tong, under DOS,
so that the COMD may be comgpletely cverwritten. The "BOTTOM"
switch, "/B:0", must be specified to the DOS link editor so that
the virtual start (bottom) of the user code is at 2eroe. The LISP
loader (*DEPOSIT) expects the load module to be in DEC”s PDP-11
absolute loader format, that the 00S link editor provides. The
format dincludes a transfer address record at the end of the
moduleas The LISP loader (*DEPOSIT) uses the transfer address re-
cord to signal the end of user code. Exactly one address offset
table as described above must exist at the end of the combined
link edited user code areae. If several object modules are
included, the otfsets in the table must be computed from the be-
ginning of the entire user code area, not from the start of each
inaividual moaoute. If padding words are needed to make the user
code area at lLeast 16 (20 octal) words Llong, the padding must
precede the of fset table.

In the example, the printed output of the DO0S Llink editor
should be consulted to find the offset ot the secondary entry
point, ULESSP, from the start of codey UMIN. The name List pro-
duced from the above example under UNIX by the “nm" processor
tists the Location of the seconcary entry pointe In this case,
the offset found, 22Q@ (octal in LISF notation), is used while
preparing a set of LISP S-expressions tao create bindings and al-
locate the S-expressions referenced by the code through the table
of offsetse. Assume the followirg S—-expressions are placed in the
DOS file "SY:UMINCLSP"™ or the UNIX file "umin.lsp® in the current
airectorye.

Figure 16 - S-expressions to Bind and Allocate UMIN Example.
?2Comment - Create primary function binding and load code.
(CSETA UMIN (XDEPOSIT “UMIN))

?Comment - Loaa module could be placed here
?Comment - (Create secondary function binding

(CSETR ULESSP (*QRG UMIN LMIN 22Q))

?Comment =~ Install INTGER node for -1 using 1st offset, -2
(*EMIT UMIN 0G -2 0 =-1)

(PRINT "UMIN and ULESSP Lcaded®™)

438

The following commands would then: start LISP wunder DOS,

associate Logical file numbers to tites,y read the code and create
pginters to it, and close the files.

Figure 17 - DOS Commands to Load UMIN and ULESSP Example.

sRUN LISF ; Invoke the interpreter from system file area
(OPEN "UMIN.LDA®™ NIL 4) Load mogule file

(OPEN "UMINSLSPY NIL 5) S-expression file

(LOAD 5 &) S-exp file closed as end reached
(CLOSE 4) Close lLcad module file

L] . .

N e

SRR

A similar sequence of UNIX commands <can also read the
codey, create pointers to it, anc resolve dynamic referencese.

Figure 18 - UNIX commands tc Load UMIN and ULESSP example.

: = Invoke LISP with prompts
Lisp +
<{LAMBDA (FILE=-NUM) ? Internal LAMEDA
(LOAD "umin.lsp' FILE-NUM) ? Open, read—-eval, close
(CLOSE FILE-NUM)) ? Close binary input
(OPEN "umin.o*")> ? Open secondary, binary input tile

The assembleu user code would then be ready to use.

49
This retatively short user code sequence could also be
generated by the following sequence of S-expressions.

Figure 19 - S-expressions for Cirectly Generating UMIN Example.

(CSETQ UMIN (*BEGIN “UMIN))

(xgmIT 0127004Q) 72 MCV (PC)+,R0O _
(*xgMIT 0 -1) 2 Lccation(-1) <Note 2 args>
(MAPC “(? Generate the rest of UMIN
000403Q ? BR LABEL
021054a ?2 LCOP: CMP (RO),2=(R4)
1014014 ? BLOS LABEL
0114004 2 MCV (R4),RQ
020405a ? LABEL: CMP R4 4RS
101373a ? Bhl LOOP
600207a ? RIS PC
Y *EMIT) ? Ore arg calls to *EMIT
(CSETQG ULESSP (®*0ORG UMIN))
(xgmIT (LIST ? . Generate code for ULESSP
012700a 2 MCV (PC)+ 4RO
(RPLACA CQ “T) ? Octal value of ‘address of T
025454a ?2 CMP 3=-(R&4),3-(R4)
101002a ? BHI RETURN
0127004 ? MCV (PC)+ ,RN
(RPLACA (Q@ “NIL) ? Octal value of address of NIL
000207a ? RETURN: RTS PC
) *xEMIT) 2 Ore arg calls to *EMIT
(*BEGIN UMIN) ? Close code area

For Llonger sequences of code the direct generation method becomes
impracticat.

3.3 Compiling LISP S—-expressicns into Machine Code.

The LISP compilery, COMPILE, may convert LAMBDA expressions
into machine code placed in the USER-moce, writable-I~-space area
of PDF-11/45s and PDP-11/70s. Compilatte LAMBDA expressions may
be constantly (glopbally) bound to variatles, SYMBOLic¢c atoms; used
in a special form or macro defirition; cr included as a property
values The LAMBDA function detfinitions may include macros, spe-
cial forms, compile-time expressions, and LAMBDA and LAMDA
(without a "E") expressions passed as internal functions to
functionals. Sometimes, the user must provide additional infor-
mation concerning variables -- in particular, whether the vari-
ables are constants; strictly fcrmal parameters; or fluid vari-
ables accessivle from the system association list, ALIST, the
deep binding environment. The resulting code is faster and re-
quires Lless D-spacey, but omits much of the validity checking of
interpreted cocee.

50

2.3.1. Compiler Invocation.

The compiler must be lLoaced before invocation. ' Under DOS,
if the file "SY:COMPL1,1]" contains a compiled version of the
compiler, evaluating

(LOAD (OFEN "COMP"))

would gefine the compiler functions for use. Under UNIX, if the
file */lisp/comp® contains a compilec version of the compiler,
ppL ISP invoked with the shell ccmmand

tisp /lisp/comp +

loads the compiler and calls the LISF supervisor in prompt moae,
or atter invoking LISP, ppLISP could evaluate

(LOAD */lisp/comp'")

to lcad the conpiler. The LAFBDA expression to be compiled
should be loaded and tested before compilation.: Since compiled
code performs Little of the syntax and semantics checking done on
interpreted code, improperly formed functions may misbehave with-
out warning after compilation. The comgiler, COMPILE, qets from
one to three parameters:

(COMPILE COMP-LIST DUMP-FLAG MASTER)

The tirst parameter, COMP-LIST, is a list ot variables and sub-
lists of wvariaoles. Each variabley SYMBOLic atomsy in the (ist
must either constantly (globally) bind a LAMBDA expression cre-
ated vy calling the special fcrm LAMBLA, a special form created
by DEFSPEC from a LAMBDA expression, or a macro created by DEFMAC(
from a LAMBDA expressione. Each sublist, containing a least two
variables, specifies a property, the (CAR of each sublist, whose
value 1s a LAMBDPA expression of each property Llist of the
SYMFRQOLic¢ atoms in the remairdery, C(CDRy of the sublist of the
parameter, COMP-LIST. Although the first parameter, COMP-LIST,
may not refer to LAMDA (without a "3") expressions, FUNCTION
function expressions, that capture 4 Ltinding environment, and
fluidly bound qefinitions that the system association list,
ALISTy maintainsy compiled code can hancle captured binaing en-
vironments and fluid definitions. It the compiler gets a second,
non-NIL parameter, DUMP-FLAG, the compiler senags a listing of in-
termediate <coue, pseudo-machire 1instructions, created from the
S-expressions to be converted irto machine code, to the current
output file. If the compiler gets the third parameter, MASTER,
the compiler may get a NIL secord parameter as a placeholoer to
avoid Llisting intermediate <ccde. Without a third parameter,
MASTER, the coapiler begins a new area cf writable 1I-space, ot
which the I-space address, *CDR, ot a master LINKER indicates the
starty and the compiler places the machine instructions conti-
guously into the I-space area. With the third parameter, MASTER,
a master tunction LINKER for the code area just generated but not

51

finished, the compiler continues compilation into the current,
1-space area. The compiler may place seperately compilea but mu-
tually referencing tfunctions in a cont iguous area to insure cor-
rect dumping by the Pretty Printer. When the Pretty Printer out-
puts compiled cove to a file, the wvariable binding the master
LINKER for each compiled code area should precede any other vari-
ables bound to secondary entry points within each area in the
tfirst parameter, the dump list, of a single Pretty~-Printer call.

After all comgilations are complete, the function EXCLSE
with-no parameters, cgefined with the compiler

(€ XC1SE)

removes the compiler, associatec flags, properties, and functions
from garbage collection marking. EXCISE returns some space for

use 1in new S—expressions and reduces the frequency and lLenath of
garbage col lection,

Je3e2e Fluid variables.

The compiler returns a List ot variables that it found
without a constant binding, without a fluid marking flag, and
without a declaration as a formal parameter directly accessible
to the current function environment. AllL free variables that the
compiler encounters should either have a fluid marking or o
constant binaing. If a variable is not declared as a formal
parameter 1in the argument lists of the nearest surrounding PROG,
LAMRDA, or LAMDA expressiony, a variable is free. The compiler
may treat a variable declarea as a formal parameter of an outer
expression, but strictly definec as free in an inner LAMBDA
expressiony, as a tormal parameter without needing a fluid
markings In particulary the compiler uses formal parameters
freely referenced with an internal LAMBDA (or LAMDA) serving as
the first member of a List in a calling sequence

<LAMBDA (FREE) & o o ({LAMBD? () o &« o« FREE o« o +2) & & + >

ana serving as the in-ltine function parameter of the system de-
fined tunctionals (functjons getting functions as parameters)

pumMpP, INTO, LISP, MAP, MAPC, OBLIST, ONTO, and PROP

as fcrmal parameters without needing a tluid markinge. Thus the
compiler compiling the function defined by

{LAMBDA (X)) (PROG <Y> <INTO X {LAMBDA (2) (LISTix Y 2))>))

woulao treat all of the variabtes X, Y, and 7 as formal parameters
even though X ang Y are free within the innermost LAMRDA. The
compiler allocates a run-time position on the interpreter value
stack for formul-parameter variables without a tluid markinge.
The compileo code generated frcm the specialized internal LAMBDA
expression used within some system functionals can directly find

52

the location of ftree variables used as formal parameters by know-
ing the number of subsequent values pushed onto the value stack.
Compiled code referencing formal parameters without fluid marking
creates no bincing pairs on the system association Llist, ALIST.
Indeedy the formal parameter variable neea not be defined after:
compitation. The binding of flLuid variables occurs as name-value
pairs on the system association list, ALIST. All formal para-
meters of interpreted functions receive such fluid bindings.
Like interpreter functions, compiled coce calls the LISP inter-
preter to create fluid bindings. 1If the variable has a previous
constant binding, the interpreter outputs a message

WARNINGy, (NAME . VALUE) B INDING HIDDEN

where (NAME . VALUE) is the attribute-value pair, since the in-
terpreter references the previous constant binding before the
newly created fluid binding. 1f compiled code does not treat a
variable marked fluid as a formal parameter, compiled code calls
the LISP interpreter to create, accessy and alter fluid variable
bindingse. If SEY or SETQ attenpts to create a new fluio binding
but cannot find any marker estatlished ty a LISP. supervisor on
the system association Listy ALIST, such as during start-up load-~-
ing wunder UNIX, the interpreter terminates in error (10T under
UNIX)e 1If the interpreter attenpts to access a fluid wvariable
with no obinding, the interpreter first generates an internal
error -8, as it evaluating

(ERFOR -8)

that a previously invoked ATTEMFT may use to restart evaluation.
Otherwisey it no ATTEMPT catching error -8 is activey the inter-
preter outputs tne message

WARNING, X IS UNBCUND

where X is the name of the ftuio variable, solicits a replacement
by outputting the prompt

Help:

ana then reads and evaluates the replacement expression., If com-
pileo code expects a variable t¢c have a2 constant binding, the
coage will use the value in the constant binding part of the vari-
able (*CAR) regardless of ary other fluid bindings and otf any
unagefined status of the variable. If the unbound constant vari-
able was to have provided a function definition to a function
call, usually vecause functions present during compilation have
not been re—-loaded with compileoc code, the location referenced by
the spurious function call will produce the cryptic message

WARNING [?0Q] IS NOT A FUNCTION

will prompt for @ new function ty outputting

53

Help:

and will read, evaluate, and use the requested function in the
compiled function call. Variables used by compiled code should
be marked fluid if they may be unbound when compiled code s re-
loaded, 1if they are treated as free variables without constant
bindingsy or if the interpreter needs tc find their binding on
the stacke Fgor example, the first parameter of SET or any vari-
able referencea in an explicit call to EVAL, the 1interpreter,
should be marked fluid. The functicn FLUID included with the
compilery puts a fluid marking cn each variable member of the
parameter, a list:

(FLUID LST)

The function UNFLUID, also inclided with the compiler, removes
any fluid marking of each variable wember of the parameter, a
liste.

(UNFLUID LST)

3.3.3. Compiling the Execution Sequencee.

Compilea code Llimits the use of PROG tabels and the RETURN
tunction used within PROGs. Ir interpreted expressions, when
calling the 0 special form, the interpreter searches for the
unevaluated GO parameter, an atomic symtol, within the parameter
List of each surrounding PROG expression List until finding the
parameter, which is a PROG label, or reaching a level of LISP
supervision, regardtess of the depth of nesting of function call
construction. However, the comriler will correctly generate code
for the GO special form only if a compiled PROG calls the GO spe-
cial form at tne top level or within nested calls of the COND,
ANDy ORy or DO special forms and provides the G0 parameter as a
label within the PROG bodye The GO special form may also be
nested within one call of the ATTEMPT special form as part of an
ATTEMPT alternative. After compilation, a PROG no longer wuses
the atomic symbol, the PROG labely that served as a placeholder
for GO searches. Thus a GO special form external to a compiled
PROG may not access the location indicated by the former PROG
labele The cowrpiler converts RETURN function calls within PROG
expressions into 1in-lLine machine codes« A RETURN function call
per formed by a function called ty a compilea PROG special form
but external to the definiticn of the PROG body will not cause
actions within the compiled PROGe Instead, the RETURN function
produces a vreturn from the nearest surrounding interpeted PROG
special form or LISP supervisor call.,

3.3.4. Compile~time Expressions,
The comgpiler evaluates scme expressions while compiting,

using the value obtained ther, rather than generatinag compiled
code to evaluate the expression. The function MANIFEST signals

54

to the compiler that the exgression that the interpeter would
evaluate to pass to MANIFEST as a parameter is to be evaluated by\
the compiler:

(MANIFEST EXP)

In particular, many function definitions within the DEBUG package
use the MANIFEST function. Thus even though the DEBUG package
coula apply BREAK to a function usec¢ internally, the compiled
DEBUG package uses the orignal cefinition of its internal fune-
tions without BREAK applied. This avoids using functions on
which BREAK was applied for tracinge. OCtheruwise, compiled code
would reference the defining atomic symbol each time the code
needed the function definitione.

The compiler evaluates macro calls passing the unevaluated
parameters. Howevery unlike the interpreter which then evaluates
the expression returned by the racro call, the compiler compiles
code tor the value of the macro calle Thus macros which DEFMAC
creates can create a new expression from their unevaluated para-
meters that can be interpreted or conrpiled at each invocation,
For example, a macro that increwments its parameter could be cre-
ated by the following:

Figure 20 - DEFMAC ADDIMAC example.
(DEFMAC ADDIMAC ? Define macro
(LAMBDA (ARG) ? with one unevaluated parameter
(LIST ? that creates a new expression

SETQ ARG (LIST ? Replace parameter
“ADD1 ARG)))) ? as incremented

With the ADDIMAC macro defined, when the compiler encounters the
S-expression

(ADD TMAC X)
the compiler generates code for the expression

(SETQ X (ADD1 X))

as if the latter expression were usea instead of the tormer.

55

4o Re ferences .

Bell Laboratories, u
Murray Hill, New Jerse

NIX Programmer’s Manual, Sixth Edition,
Yoy 1975.

Digital Equipment Corporation,: The Dp0S/BA

JCH Handbooky DEC-11-
ODbHA-A-D, Maynard, Massachusetts, April, 1974.

- - -

Maintepance Manyaly DEC-11-HKICA-C-D, Maynard,
November, 1974,

Digital Equipment Corporationy KY11-C Memory Managemept
Massachu

pigital Equipment Corporation, PDP-11 Paper Tape Software
Programming Handbogk, Maynard, Vassachusetts, 197%.
Dpigital Equipment Corporation, PpP=-11 Peripherals Handbogk.

Maynard, Massachusetts, 1975.

Digital Equipment Corporation, ppp
Maynard, Massachusettsy 1974,

Bs We Kernighan, UNIX For Beginrers, Bell Laboratories, Murray
Hill, New Jersey, 1974, '

417-420, Addison-wWesl

De Ee Knuth, The Art
’ Addison-Wwesley Publishing

Fundamental Algorithms
Companyy, 1969.

of Computer Programmingy, Vol. 1:
PPe 0,

We ™o LaYy Do Lo Millsy Mo V. Zelkowitz, Design of a Distributed
Computer Netwcrk for Resource Sharing, AAIA Compyter Network
System Conferencey Huntsville, Alabama, April, 1973,

We Mo Layy De Lo Millsy, M., Vv, Zelkcwitz, Operating Systems
Architecture for a Distributea Computer Network, Proceedings of

IEEE/ACM Copterence on Irends and Applicatipgns of Mini-compurer
Networksy Gaithersburgy, Marylancy April, 1974,

Joe MCCarthy. Pe We Abrahams,y De Jeo EQwards, Te P Hart, M. 1.
Levin, LISP 1.5 pProgrammer’s Mznual, The M. I. T. Press, 1962,
E. Norman, L]ISPy Academic Computing Center, 1210 West Dayton
STey Madison, wisconsin 53706, Aprit, 1669,

E. Norman, Unpublished report on 1108 LISP implementation,
Academic Computing Center, 1210 West Dayton Stey, Madison,
Wisconsin 53706y 1974

D. #e Ritche, UNIX Assgmbler R
Hil yy 1

ference Manyal, Bell
Laboratories, Mburray Ly New Jersey, 75.

€
9

56

De Me Ritchey Ko Thompson, The UNIX Time-Sharing System,
Commynications of the ACMs Vol. 17, ppes 365-375, July, 1974.

He Schorry We M. Waite, An Efficent Machine-Independent Procedure
for Garbage Cotlection in Various List Structures,
Communications of the ACM; Vol. 10, pps 501-506, August 1967.

PLNR.MEM 226, Stanford, California, Aprily 19

Ge Jo Sussman, T, Winograd, Micro-Planner Reference Manual,
ia' Apfil, 1971.

57

S. Appendices.

5.1+ Available Operating Systens.

PDP-11 VLISP is available in several versions. The major
dif ferences between them are the operating systems and machines
which house VLISP. The coding cf the interpreter is nearly iden-
tical for all of the versions. The roster of operating systems
follows in historical order. - :

5¢1¢1e Stand-Alone Systems.

In the absence of a reliable, available, operating system
to develop VLISP, a rudimentary operating system has been used.
The stand-alone operating syster is a class project for a data
concentrator that was modified and rewritten. The system is
loaded into core by a bootstrapping process. Once in core it ex-
amines how much core is available (at lLleast 16K and wup to 32K
words) and which communications device is present (bC11 or DL11).
The system then continues wusing only what has been found.
Programs may be loaded or printed out using either the console
teletype, or one communjcatiors devices or a combination of the
two. A small debugging package is avai lable to examine and alter
absotute core locations with the console teletype. This permits
patches to known bugs and triat corrections to problems with the
interpreter codee Program patches should be made using the fa-
cilities of the LISP language.

The stand-alone system is availatle in several formats.
5¢1¢141¢ CIMSES - Canberra Magretic Tape System.

VLISP is available on magnetic tape cartridge wused by
CIMSES (Canberra Magnetic Tare Operating System). At present
VLISP is kept cn a separate cartridge Lty the author. Perhaps
tatery, when a more finalized version is produced, VLISP will be
included as a processor on the system tape.

5¢1¢1e20 PDP=-11/745 with Diske

VLISP is available on the disk cartridge of some machines
and the fixed disk of otherse. The system is loaded and run with
the appropriate disk loader.

S5¢1aTe3s PDP"11,40 with Diske

VLISP is available on the cartridge disk of the PDP-11/40.
An effort has been made to keep PDP-11 VLISP downward compatiole
with the POP-11740. However, the protection of separate instruc-
tion and data spaces is not provided on the POP~11/40. Moreover,

58

the audress space available for data on the PDP=-11/740 is ulti-
mately more restricted, even if virtual memory could be provided.
Thus future versions of the operating system may not support
VLISP on the PDP-11/40.

Sel1eteés Paper Tape Software System.

A - copy of the DEC progran DUMPAB (pump in Absolute Format)
can be appendec to the code. This woulc enable paper tape abso-
tute wversions of the system to be prcduced for systems without
operative mass storage. dPue to copyright restrictionsy the.
proaram DUMPAE may not be transmitted to systems outside the
University of MmMaryland.

51¢2e Virtual Operating Systewm (VO0S).

The original intent was to write VLISP tor an environment
with virtual acdress space and cooperating processes. The inter-
taces of the VLISP interpreter have been designed to be compati-
ble with the DCN/VOS (Distributed Computer = Network/Virtual
Operating System) being developed at the University of Marylana.

Selels Disk Operating System (r0S).

_ A VOGS emulator exists for use between the VLISP dinterpret-
er and DEC”s Disk Operating System (DOS). The emulator dinter-
cepts the TRAP instructions given by the VLISP interpreter tor
I1/0 a@ana other services. The emulator converts the interpreter

requests into EMT instructiors wused by DOS. Buffers, tink
blocks,y, and filename blocks are maintained in the emulator for
use by DOS. The emulator sinulates the needed features of VOS

for the VLISP interpreter while providing access to the D0S file
structuree.

Selabo Bell Laboratories” UNIX Operating System.

Bell Laboratories” UNIX operating system can support

VLISP. Conversely, UNIX VLISFvcan access the powerful features
of UNIX includiny system calls and ccmmand-interpretery shell’
cal s, The uUNIX operating system may be extended to support a

writable, per-process, I~-space cn PDP~-11s with separated I and »
spacey SO that VLISP may support compiled S—-expressionse Another
UNLIX extension supports readirg single lines of characters from
fitles up to and including the next new line character, which im-
proves the speed of VLISP character 1/0.

59
52+ Using the Operating Systens.

5¢2.1« FEOOtstrapping.

After turning on a computer the contents of core may be
unknown or unusable. A small procedure, a bootstrap, is initial-
\y wused to start up whatever operating system is to be used.
Hope fully, a hardware bootstrap will be availablte or the boot~-
strap will already be in core. If not, the bootstrap can be en-
tered using the switches on the front of the machines A Llisting
ot the CIMSES bootstrap is inclided at the end of the CIMSES sys-—
tem documentation. The 24K C(CIMSES bootstrap starts at 137720.
For 16K core machines, the disk bootstrap starts at 77740, f{for
32K at 157700. The disk should be powered up after the system,
then the run-lcad switch moved to the run position. Wait for the
run Llight to go on (in tess thar a minute). (Power down in re-
verse orders) The DEC paper tape software handbook contains the
paper tape bootstrap and procedures. The tape and disk boots-
traps are startea by the following procedure:

A. Make sure the console teletype is online and the disk
or tape reader is on.

Be Put the HALT-ENABLE key in the HALY (down) position.

C. Place the bootstrap start address in keys,

De Press the load address key on the console.

Ee Press the START key.

Fe Put the HALT-ENABLE key in the ENABLE (up) position,

Ge Press the continue (CONT) keye.

He If nothing happensy start cver after <checking the
bootstrap tor errors; otherwise, the loading operation can begin.

Alternatively an RK11 disk can be bootstrappea ty the fol-
lowing proceadure on PDP-11/45s without loading an ‘in-core boot-
strap programe.

Ae Put the HALT-ENABLE key in the HALT (down) position.

Be Put zero (0) in the keys and press the START key.

Ce Put 777406 (Word Court Register) in the keys and press
the Lload—-address key.

De Put 777000 (Negative of Word count) in the keys ana
Litt the DEPOSIT key.

Ee Put 777404 (Command FRegister) in the keys and press
the load-address key.

Foe Put 000005 (READ anda 60) in the keys and Lift the
DEPOSIT key.

Ge Press the EXAMINE key; bit 15 of the adadress display
should be off.

He Put the HALT-ENABLE key in the ENABLE (up) position,.

I. Press the CONTINUE key.

5.2+l¢ Stand-Alone Systems.

The stana-alone systems ciffer only in the medium on which

690

they are housed anut the method ised to toad theme
S¢2s2ele Loading and Running the Loader.

After the bootstrapping procedure, the following proce-
dures will loaoc and run the Lloacer,

5¢2e¢2e¢le Cartridge Disk Systemse.

: « If the system types “READY TC DIAL"™ or “WAITING FOR
CARRIER"™ some telephone connection must be made with the appro-
priate device, either DC11 or pL11. Any terminal may be <called
or even another computer. '

Be It the system types “SELECT SPEED « o« +" type "0" for
110 baud Llines, "2® for 12(0 baud lines, or "3" for 200 baud
lines. '

Ce The system must be irformed of the location of the
program on diske This is currently sector 5000 or 5100 on the
cartridge, unit (. 7Jo signal this type ALT-MODE A. The system
will respond by querying U, Fy and then De After U type *0* for
unit O. Atter F and D type the starting sector location (5000).

De To start the lLoading operation type ALT-MODE L.

E. If the system asks fcr a loacer disk address use 16
(at present).

Fe When the system asks for a l|oader addressy type
carriage return or any address higher than the highest address
loaded, currently 44210.

Ge . When the system halts at an address near 22570, the
VLISP interpreter has been loaded.

Secdoecele CIMSES - 24K Core.

A. Ensure the CIMSES 24K system tape is mounted on unit
1, the leftmost tape drive. :

Be If the system is reacy to receive commands it will
type a left bracket ("("™). If rot, try the bootstrap procedure.

Cs Mount a tape containing the VLISP interpreter --
usually on unit .

De Position the tape at the start of a copy of the VLISP
interpreter. Usually pressing the rewind button is sutficient.

Ee Type "RUN" followec by ar ALT-MODE to LlLoad the
magnetic tape loader.

Fo when the system aqueries wjum® type w2v (if
appropriate) yiving the wunit number which is positioned at the
beginning of the interpreter.

6. When the system halts near lccation 22577, the VLISP
interpreter has been loadeds Otherwise a loading error has oc-
curred and the bootstrap procedire should be restarted.

5¢2elebe Paper Tape Software Systemse’
A. Loaa the paper tape absolute loader and modify it if

0C11s and telephone lines are to be used instead of the console
teletype.

61

8 Loaa a copy of the stand-alone VLISP system into an-
other machine.

C. After lLoading, the VLISP interpreter halts, Note the
address for later use.

Ds Set (040004 in the switches ot the sending machine, set
the HALT switchy press LOAD ADDRESSy press START, set the ENABLE
switch, and press CONTINUE. A modified copy of ODUMPAB (dump in
DEC absolute tformat) can be provided following the data areae.
puMPAB will halt to wait for an address to begin dumping coae.
The code for DUMPAB is overwritten once the VLISP interpreter
beyins.

E. Connect the two machines by telephone. 1f using DC11s
at 300 baud ensure that all errcr bits in their device status re-
gisters are off and that locaticns 7740C0 and 774004 both have
octal 31 set.

Fe Start the absolute Lcader in the receiving machine.

Ge Start DUMPAB in the sending sachine. Note the stack
ano device register queries have been preset to use a DC11. Only
a dump start and stop location are needede.

He In the sending machire, put 400 in the keys for the
dump start locatione.

1. Press CONT; the machine should halt again.

Je Put 37000 in keys for Last dumpea address.

Ke Press continue (CONT); the sending machine should
start the transfer.

Le It the sending machire halts while the receiving ma-
chine does not, the VLISP interpreter has been loaded; otherwuwise
try again from the beginning ot the cootstrap.)

Ms Start tne VLISP interpreter at the address where the
sending machine halted.

Se2el2e5« Starting the VLISP interpreter.,

After VLISP is loaded, the kernel stack pointer is set and
the operating system halts. Patches can be made at this point.
If 0DC11s are to be used at 110 baud instead of the preset 1200
baud, the device status register reset values located at 404 and
406 snhouls be changea from 121 to 101 using the switches on the
machine. 1f a different device, such as a bDC11 instead of a
oL11', is to be used, the receiving and transmitting status re-
gister addresses at lLocations 4(0 ano 4(2 must be changed. After
any such patches have been made, press continue (CONT) to restart
the system and initialize the .data area. The initialization
coae, which 1is used only once, is lLater overwritten by the user
control stack. At the end ot gata injitijalization, a HALT in-
struction in user mode occurs wtich generates an interrupt.

The illegal user mode HALT interrupt is tielded by a small
debuyging procedure that is part of the stand-alone operating
systeme. When the debugger starts, it sends a message and prints
the top 16 worus of the kernel system stack. The first word of
each Lltine iJs the starting adaress ocumred. When an error inter-
rupt occurs this stack contains:

62

A A return addresse.

Bs CPU registers RO to RS from register set O,

C. Another return address. »

De The stack pointer for the previous mode.

Ee The program counter (PC) of the interrupte.

Fe The processor status word (PS) ot the interrupte.

The values on the kernel stack are used when a restart is
madee.

The'debugger accepts commands of the form:
oP1 OP2 CMD

OP1 and OP2 are octal numbers of which anly the last six digits
are signiticant. If an error is made while typing a number, sim-
ply retype all six digits of the correct number. An unknown com-
mand witl simply repeat the previous command. The second para-
meter may be omitted. The command letters are:

A - Restart using the current values on the stacke. NoO
parameters are needed.

B - Jump to location of CP1 resetting the kernel stack
pointer to OP2.

C - Change the contents of location OP1 to the contents of
oP2+ The old and new values of location OP1 are disptayed,

D - Dump OP2 Llocations starting at address OP1. Each Lline
printea consists of an address followed by 8 dumped words.

E - Restart the VLISP interpreter at 1its error recovery
pointe No parameters are needed. The old PC and PS from the
stack are saved for use by the interpreter. Thus if the VLISP
interpreter 1is garbage collecting or doing some other uninter~-
ruptable operation, it may restart to complete the operation
withcut irreparable damage to itself.

At this point any patches may be made usina the debugger
insteaa of tne switches on the machine. After any patches are
completed, the VLISP evaluation process is initiated by typing
the command “A“ to the debugger. The VLISP interpreter will then
type a sign-on message and recuest an expression to evaluate by
typing:

EVAL:
5e2e¢2ebe Changing I1/0 Paths.

The standard 1/0 paths may be altered by commands issuéd
at the console. Three entities may send and receive character by
character 1/0. These entities and their logical device names
are:

A - VLiSP interpreter prccesse.
B8 - Comgputer console teletype. ,
C -~ Auxillary serial 1/0 device (pC11 or DL11 modems).

63

The command
BELL LOGICAL-NAME -FROM LOGICAL-NAME-TO

issued at any time, including the middle of a line, at the con-
sole teletype, causes further output from the entity specified by
LOGICAL-NAME-FROM to be sent tc the entity specified by LOGICAL-
NAME-TO. Note that if the initial speed of the DC11, 1200 baud,
is to be changed, a program patch must bte made.

Sel2e2e7e Typographical Error Ccrrection.

While typing an input lire characters may be corrected us~-
ing the backspace character (BS), CONTROL/H, and then typing the
correct charcter. bo not attempt to backspace beyond the be-
ginning of a Line or once the erd has been passeds The entire
tine may be deleted by typing the character cancel (CAN),
CONTROL/ X, befaore any other control character that will end the
line. After a line has been sent to the process by typing
carriage return (CR) or some other control character, CAN and B8S
have no effect on the Lline. :

5¢2¢2.8¢ Stopping VLISP Under Stand-Alone Systems.

The prccess may be interrupted by typing the three
character sequence:

BELL CHAR ENQ

(BELL is CONTROL/G and ENQ@ is CONTROL/E)

If the second character, CHAR, is also ENQ then the process may
be stopped as is ana the debug procedure called. Control may be
return to the VLISP interpreter process to continue by giving the
command "A" to the debugger. 1f CHAR is not ENQ then the process
will complete any garbage collection anc return to the Llatest
level of supervision using CHAR as the error type code. 1n order
to send a BELL to the process type two BELLS.

5243 VOS.

VOS may be brought into core from disk by first bootstrap-
ping the disk toader. Then the disk loader is used to bring in
the VOS code. The computer may then be halted, any patches made,
and then restarted at address zero (0). Next, the following
procedure is used to load and start the VLISP interpreter.

A. The command tanguage interpreter sends a period (,) in
order to solicit the next commande Type a carriage return to end
any current command. If after loading, the period does not
appear, type the command “TT" (“TesT") to receive a test message.
Typing CONTROL/Z/E should interrupt any current processing and
produce the coszmand solicitatior, the period. 1f neither of
these works, the system may need to be restarted or rebooted.

Be Type the command

64

OpenF 030C0O LISP OLD O

in order to open the existing file “LISP" that contains the' in-
terpreter initialization procedure. The logical number, 03000,
will be associated with this file. Note that only the upper byte
of this number is significant. The fourth parameter, "0", speci-
fies the arive that hotds the file. Since zero 1is the default
value of the fourth parameter it may be omitted.

Ca Type the command

LinK 030C1 0 100CO1

to map the segment 1 of the just opened file, 03000, to the de~-
fault wvirtual address 0, with 1 and D space enabled with an exe-
cute only segment and to link to the initialtlization procedure
just mapped at virtual Llocaticn 0. This procedure assigns tem-
porary data workspaces, initializes the data areas, and maps the
VLISP interpreter code segment into the VLISP interpreter, which
should send a signh-on message.

After the VOS VLISP interpreter initialization procedure
has been started, the interpreter should send a sign—-on message
and proceed to request an expression to evaluate by typing:

EVAL:

Any patches should be made before loading, using the map segment
(MP), display storage (DS) and alter storage (AS) commandse.
Except to make permanent patches and start the VLISP initializa-
tion procedure, the file "LISPY should not be used by the
programmer. Inadvertently, the data initialization or code seg-
ments could be altered., Sinilarily, use of the togical file
number, 03000, should be avoidec since V0OS does not provide sys-
tem file protectione.

The process may be interrupted by typing the ENQ
character. The process completes any uninterruptable operation
and then Llinks to the command language interpreter that saolicits
a ccmmand by typing a period (.)e The top of the user stack is
the error code that will be useag by the process. The process may
be restarted by the command *SP%, which stops the command tan-
guage interpreter and returns tc the VLISP interpreter processe.

It the VLISP interpreter must be restarted after operator
intervention, stack overflowy cr garbage collection failure, the
old stacks and association list will be lost along with any SETGQ

bindings.
5¢.2¢4¢ Disk Operating Systeml(COS).

The DOS~LISP interface has been deQeloped and tested under
DOS/BATCH version de

65

5¢20bele Getting DOS VLISP Started.

The following procedures lLoad anc start the DOS version of
LISP, assuming that D0OS has just been bootstrapped. I+ bpOS s
already runningy only the last portion-of the procedure may be
needed. Note that DOS system ccmmands must be typed in upper
case and that only the first two letters of the command are
signitficant.

A« Atftter being bootstrarpeay, DOS should sign 'on with a
version number and prompt for a command with "$", Note that the
disk must not be write protected it the sign-on message 1is to
appear. If another program is active type CONTROL/C followed by
"KILL" in order to stop it.

B. Specify the date and time (24 hour clock) to the sys-
tem by commands such as:

DATE C4-JUL-7¢
TIME 13:01:00

Files produced will be marked with given time and date.
C. Log in to the system by typing a command such as:

LOGIN 13,13

The numbers must specify a user group number and user number, the
User loentification Code (UIC), between 10 and 376 in octal,
known to the system file structure. New UIC numbers may be en-
terec 1into the tile system wusing the system program P1P
(Peripheral Interchange Program)e. If a different UIC is desired,
other than the one currently in usey type the command “FINISH" to
tog cff the system before loggirg in under a new number.
De Type the command:

RUN LISP

The above command brings in overlay segments wused in code and
data initialization, opens the grimary input and output datasets,
and sets wvalues used by DOS. Wher the initialization is
completey, the VLISP interpreter s1gns on and requests an expres-
sion to evaluate by typing: \

EVAL:
5¢2e04ele Interrupting, Restarting, Killing DOS VLISP.

Once VLISP is running, the attention of the monitor may be
obtained by simultaneously striking the CONTROL and "C" keys.
The monitor responds by echoingy, typing a period (.), and inter-
rupting any current output. One of several one-line commands may
then be given: ’

A. RESTAKT - Restart the interpreter at the interrupt.
point estapl ished by the grogram. This controls runaway

66

programs. Do not use “BEGIN" tc:restart DOS VLISP,. .

Be PRINT - Turn console output either off or back on
againe - This command, which 1s transparent to the progran. can
eliminate excessive outpute. : '

Ce ASSIGN - Assoc1ate a logical nane, for example'

ASSIGN SY: &EHFILLSF 4 .

This command specifies a logical port or dataset number between 3
ana 10 that is to have the external name given. In the above ex-
ample the logical port number 4 is associated with the dataset
SY:NEWFIL.LSP- on ‘the system device, *SY:*; with file name,
“NEWFIL"; and with file name extention, ".LSP", to denote a VLISP

code source filee Further details and examptes .can be tfound in

the DEC DOS manualse

De KILL - This command stops the current program in a
tidy fashion, Files are closed and an orderly return is made to .

the monitor regardless of what the VLISP 1interpreter may have
been doing. Once “KILL"™ 1is 1issued the program cannot be
restarted, '

After a system error messagey €e0ge
F345 001306 or AOO3 040676
the "KILL™ or “RESTART" commands may also be given. Some system
errors, such as stack overflows, are intercepted by the DOS-LISP
interfacey, which prints some system stack values and Treturns

directly to the VLISP interpreter.

5¢2¢4e3s Input and Output Datasets.

The VLISP interpreter refers to input/output files or da-

tasets by bLogical number. The DOS-LISP interface provides Llink
and filename olocks. for (logical numkers between 1 and 10,
Logical numbers 1 and 2 are used for default input and output,
DOS logical namesy “CDI" and "CNMO",y are used in their Link blocks
respectivelyy, so that VLISP may be used in batch mode. In in-
teractive mode the device, “KE:", console keyboard, is used for

default input and outpute. The remaining Llogically numbered:

fites, 3 to 1C, wuse, as defaults, the system device, "SY:";
extension, ".LSP", to denote LISP source files; default file
‘names, - 3" to "10"; and p0OS logical names, "3 to "10". The da-
tasets may be reassigned using the ASSIEN command or by a TRAP
instruction issued by a LISP programe For example, the LISP ex-
presstion

(TRAP 37Q & “SY :OLDFIL.LSPL1,11") .
which is equivalent to

(OPEN "SV'OLDFIL LSP[1 11" NIL 4)

will cnange the tile name block to use “SY'"; the. system device;

67

“OLDFIL" as the file name, " .LSP" as the extension to denote a
LISP source program; and User lcentification Code (UIC) *“[1,13"
to exactly specify the entry. The first TRAP function parameter
gives the TRAP offset, 37@ (octal)y which specifies opening a
file. The second parameter, in this example 4, specifies which
logical file is to be altered. The third parameter of the func-
tion 1is a string in. standard 00S command string syntaxe. The
standard command string drop-out rules apply: the system device
is assumed 1if no device is specified and the current user”s UIC
is used if none is specified.

Se2¢5¢ The UNIX Operating System.

525014 Getting UNIX Started.

The UNIX bootstrap procedure will read a larger bootstrap
program that searches the file structure for a copy of the UNIX
operating system whose name it cbtains by prompting with an at-
sign (w). Before using the larger bootstrap, pltace 173N"30 in the.
conscle switches so that the UNIX file structure may be checked
in single-user mode. Usually typing "unix"™ followed by a
carriage return will Load a copy of the UNIX operating system,
The UNIX systemy if in single user mode, will print a sign-on
message and prompt for dinput with a number-sign (#). Typing
"date “ followed by an 8-digit number giving the month, day,
hour, and minute in pairs of digits such as

date (7041301

far 13:01 on July 4th corrects the system”s idea of the time and
dates. '

The file structures should each te checked for integrity
by typing "icneck" and “dcheck" followed by a raw file structure
device name for each file~structured device in use, such as

#icheck /dev/rrki

to check platter zero of an RK11 diske. If the ftile structure
checks report no anomalies, the system may then be safely used in
multi-user mode by placing any other non-zero number in the keys,
such as 1417?74, and pressing EOCT (Control=-D) on the console
keyboard. Users may then log irto the system by typing the ap~-
propriate identifier and password 1in response to the "login:*
prompt .

522542 InVOking UNIX VLISP,.
Typing
lisp

to the shell ccmmand interpreter invokes UNIX VLISP in prompt

68

mode . In prompt maode, UNIX VLISP outputs a sign-on message and
prompts for input Dy outputting

Eval:

The VLISP invocation command received by the shell may include
file names or the options plus (+) or minus (~-)e The shell com-
mand interpreter may expand special characters within file name
strings to create a Llist of files. VLISP loads the files in
ordery, using the function LOAD, before signing-on or invoking a
tevel of LISP supervision. Since the LISP supervisor handles
most LISP error conditionsy, errors occurring during start—up
loading wusually cause an abort of VLISF (I0OT). If the VLISP in-
vocation gives filtle names, VLISF does nct invoke a LISP supervi-
sor until encountering either the opticn plus (+) for normal su-
pervision with prompts and interrupt handling or minus (=) for
silent supervision without prcmpts or interrupt handlina. = When
VLISP enables interrupt handling, the delete key (DEL) asyn-
chronous interrupt causes VLISP to generate an internal error -3,
as if evaluating B

(ERROR -3)

which will restart the LISP supervisor if not caught by a pre-
viously invoked ATTEMPT. Withcut interrupt handling, VLISP does
not alter the previous asynchrorous interrupt status given during
invocation, so that VLISP .runnirg as a background process with
the minus (=) option will not be affected by asynchronous
interruptse. In either instance, VLISP does not alter the status
of the QUIT asynchronous interrupt. If UNIX VLISP gets the minus
(=) invocation option, or if VLISP is a child process of the ori-
ginal invocationy VLISP suppresses the sign-on message, the ex-
pression to evaluate prompt “Eval:", and the "Value:™ prefix so
that processes may communicate in a non-interactive mode, such as
using standard 1/0 through a pirey €4ge

>commands Llisp /lisp/pp - | Lisp yourfiles? - > outfile &

Invoking VLISP without file names or options is equivalent to us-
ing just the plus (), with=- proapts opt ion:

Lisp +

69

53, Coding and Assemblye.

5¢3.1s. Assembler Syntax bifferences.

The PDP-11 VLISP interpreter is written in a modified ver-
sion of PDP-11 Assembly Language (PAL)e Modified PAL can be used
with a cross assembler on the University of Maryltand”s UNIVAC
1100 series machines. Programs written in PAL can be transported
to other PDP-11 instatllations. Moreover, optimization involving
the use of addressesy as in the VLISP interpreter, uwould be dif-
ticult in higher level languages.

The University of Maryland“s modified PAL is quite similar
to the orginal DEC PAL. Although many of the features of the DEC
MACRO assembly language were available in modified PAL, they are
unused in orcer to maintain transportability. Unfortunately,
some different features were used. Users outside the University
of Maryland may have to program arouncg themes These differences
include:

«TITLE in Maryland PAL provides assembly listing headings
only. In other versionsy TITLE also provides information to the
LINK processor.

¢EJECT in Maryland PAL has the same meaning as JPAGE in
other assemblers. «EJECT and +PAGE ccntinue the Llisting on the
next page. ’

«ALIGN advances the current Ltocation counter to the next

Ltocation that is a multiple of the power of two given by the
parameter. J+EVEN is equivalent to

«ALIGN 1
The +ALIGN directive was useful in developing the growing VLISP
systeme Its effect can be emulated by resetting the location
countery provided proper care is takena. For exampley, suppose
that a4 previous labely, "FLOOR:"y were defined on a harduare seg-

ment boundary, a multiple of 02C0N0 (Coctalt), such as at the be-
ginning of the codes. The statesent

«ALIGN 020-3 ; Align on hardware segment boundary

would align the assembly locaticn counter (.,) on the next segment
boundary. Since (in octal)

020-3 = 015 anc N20000 = 2xx015
the Llocation ccunter altering statement

e = «=FLOOR+020000-1/02000C*02C000+FLOOR

70

could replace the +ALIGN 015 statement.

«IF begins a section of code that 1is conditionatly
assemblede. 1f the parameter to the .IF statement is false, the
code following .IF is not assemtled up to a matching statement

+ENDC ; End corditional assembly

that ends the conditional assemtly area. Each assembler accepts
a different syntax for the .IF statement. As an example, both
the Maryland PAL cross assembler and DEC“s MACRO assembter recog-
nize the statement

«IF NELPLCPL ; Assemble only if compiler used

that is frequently used within the VLISP interpreter code. The
code is assembled only if the Label "CPLCPL"™ is not equal (NE) to
zero. DEC”s macro assembler also recognizes the statement if
"NE"™ is replaced by "NZ', tor nct zeroy while Maryland PAL does
note. DEC”s: PAL-11S and PAL-11R assemtlers would only recognize
the equivalent statement o

«IFNZ CPLCPL ; Assemble onty if compiler used

that 1is also recognized by DEC”s PMACRO assemblers Bell .
Laboratories” UNIX assembler, "™as"™, recognizes yet another,
diftferenty but equivalent statement ‘

«if cplecpl /7 Assemble only i1 compiler used
to begin the conditional assembly area and the statement
eendif / End corditional assembly

to end the conaitional assembly area. 1In order to reauce the
difficulty in transforming code for different assemblers only the
above formats tfor the «IF statement are used.

5¢3+.2. Conditional Assembly.

The assembler source code module *TRAPS"™ wunder DOS or
“"LOtraps®™ wunder UNIX contains common definitions that are used
with alt of the assemblies. Several parameters defined by
“"TRAPS*™ may need to be cltanged depending upon the host
configuration. The value "OBRSTV" (Qutput Buffer Reset Value)
should 'be set to the column width (in octal) of the narrowest
device used for primary output, usually the console keyboard.
The values 110 (72), 120 (80), cr 204 (132) may be used for KB33,
LA3N, or LA36 respectively. The flag "CPLCPL"™ is set to one (1 =

on) or zero (C = off) depending on whether or not, respectively,
the compiled code functions are to be assembled as part of the
interpreter. The caompiled code functions should not be included

with an interpreter for use with a PDP-11/40 or similar PODP-11g
without memory-management-separated I and D spaces. The UNIX

71

operating system must be extenaed befcre wusing compiled code
functions. The flag "PDP40" should be set if the code is usable
on PDP-11/40s, that do not have separated I and D spaces. If
“pPppP4O" is set, compiled coce should not be supported by not
setting the flag "CPLCPL"™ and, under UNIX, the option “-i" for
separated 1 and D spaces should not be used with the UNIX link~-
editor "td".

Conditional assembly flags specify which kinds of
floating-point arithmetic VLISP may support. 1f the. host PDP-
11745 or PDP-11/70 has floating-point hardware, VLISP may support
either single-precision or double-precision +tloating-point or
both, depending on the settings of the flags FPPS anc FPPD. To
support no tloating-point, VLISF has the flag NFPP set.

5¢3¢3s Assembly procedures.
Procedures for assembling each version of VLISP follow.
5¢3+3s1« Stanc-Alone Systems.

The stand-alone version cf the VLISP interpreter and. a
small, in core, operating system are assembled together on the
University of Maryland UNIVAC 1100 series machines by the follow-
ing control cards. The source elements are assummed to reside in
a file named "C.%,

BSUSPEND « Divert the Llisting to a temporary file
aPDOP*11,ASM,ICDS X,¥ . Invoke the assembler
dADDsP C .SVECS . Operating system workspace
aADDyP C.TRAPS « Common values
aoADD,P C,SYS . Operating system cade
adADDyP C.PLISP « VLISP interpreter code

«ALIGN PAGBIT ; Align on 2000 byte boundary
WADDyP C «WORKS o LISP fixed workspace and tables
JADD,P C.ATOMS . SYMBOL, LINKER, and STRING initial data
DADDyP CoSTLISP « LISP data initialization code
AADDyP C sURANUS . Operating system initialization code

+ END DRIVER ; Start with system initialization
ARESUME,P o« Print the listing efficiently

The loac moduley, *Y", is then sent to the storage medium
using the 1108 transmittion program PUNCH:
APDP*T1.PULNCH,CXT Y .
S5¢3+3.2. Virtual Operating System (VO0S),

The VOS version of PDP-11 VLISP 1is assemoled on the
Maryland UNIVAC 1108 with the fcllowing commands:

72

dSUSPEND « Divert the listing to a print file
AdPDP* 11, ASMyICDS XyCeV o Put Load module in permanent file
« TITLE «LISP interpreter for VOS.
c = o ; Physical acdress of virtual origin of code
adADDyP C.TRAPS .+ Common velues
ADD,P C .PLISP o LISP interpreter code ,
« ALIGN 20-3 ; Start data on segment boundary
b = . 3 Physical acdress of virtual origin of data
@dADDyP CWORKS « LISP fixed workspace and tables
wADDyP C sATOMS .+ SYMBOLy LINKER, and STRING initial data
s ALIGN 20-3 ; Start LISP loader on segment boundary
dADDyP C .LSPLD o VOS LISP loader creates mappings
SADDyP € 4STLISP « LISP data preprocessing code
BRESUMELWP « Print the Listing efficiently

The VOS VLISP load module C.V can then be transmitted to
the V0SS file system. Segments 3, 2, and 1 from the VOS file
“LISP" should be mapped into hardware data segments 0, 1, and 2,
respectively.: The transmittec Lload rodule is then lLoaded into
these segments. Segment 2 of the file "LISP", containing unpre-
processed initial data, is then mapped into USER hardware segment
O The code (STLISP) is started at location 0 to preprocess the
initial data. After a backup ccpy of the segments is made, VOS
VLISP is ready for use as described above.

5¢3¢3¢3s Disk Operating System (DOS).

The fol lowing DOS system commands, without the comments,
construct the DOS VLISP interpreter, for the PDP-11/40 or PDP=-
11745, assuming that the source is on the 9-track magnetic tape
device, "MT:". The commands below are written in batch mode for
clarity; however, the sequence is more safely performed in in-
teractive DOS mode by someone cuite familiar with DOS. Over 150
pages of 132 cotumn wide output may be produced. I1f the avail=-
able printers go not support 132 column print uwidth, the state-
ment ;

+NLIST TTM
must be deleted from the file TRAPS.MAC using the system progran
EDIT. The amount of output mey be greatly reduced by including
the no-list switches (/NL/NL:SYM) on MACRO output. If the pri-
mary keyboard is used in upper-case-qnly mode, the assembly tine

.ENABLE LC ; Use lower case characters

should be commented out of the source code module ”TRAPS.MAC“.

73

$406 MAKELISPL1,1]

$SMESSAGE Mount VLISP source MAGTAPE

$MESSAGE Wwhen ready type CCNTINUE

TWAIT

$RUN PIP ; Replace LP: by kB: if no line printer configured
HILP:<MT:L*y%x1/D1 ; Multiple copies are on tape

HSY:TRAPS «MACKMT:TRAPS.MAC ; Common values
HSY:E«PAL<MT:t.PAL ; An enc card
HSYsLISPSY.MACS<MT:LISPSY.MAC Mair DOS-LISP .interface
HSY:LISPEX.MAC<KMT:LISPEX.MAC XAP labetsy storage. allocator
HSY :LISPINJMACSKMT:LISPINLMAC Interface initialization
HSY:PLISP .PALCMT:PLISP.PAL ; Interpreter code
HSY:STLISP.PAL<MT:STLISP.PAL ; Data preprocessing code
HSY:WORKS e PALSXMT:WORKS.PAL ; Fixed LISP workspace and tables
#SY:ATOMS «PAL<MT:ATOMS.PAL ,; SYMBOL LINKER STRING data
SRUN MACRO

#SY:LISPSYZLP:<SY:TRAPS,,LISPSY,E
#SY:LISPEXLP:<SY:TRAPS,LISPEX,E
HSY:LISP,LP:<SY:TRAPS,PLISF,HORKSsATOMS,,STLISP,E

HSY :LISPINJLP:<SY:TRAPS,LISPIN

$RUN LINK ; Create load mocule and symbol table

HSY sLISPLT141),LP:gSY:LISPL1,1)<SY:LISPLLISPEX,O0DT/0D
#LISP,LISPIN/T:110000/E

SRUN PIP , Remove the scracgs
#SY:E«PAL yTRAPS «MAC,LISP.0OEJ/DE

#SY:PLISP PAL,STLISP.PAL,WCRKSePAL ;ATOMSPAL/DE
HSY:LISPSY.MAC,LISPSY.OBJ/CE

#SY:LISPEX.MACyLISPEX.0BJ/DE

#SY:LISPINGMAC,LISPIN.OBJ/DE

#SY:[(1,11<MT22,LSP ; LISP system programs available to all
HMT :/RU

$MESSAGE VLISP is now ready to go

$SFINISH

We %o N

1f ODT (On-tine debugging) is not desiredy, ODT/0D may be

omittea from the commands to LINK and the top of code lowered to
octal 74000 by using the switch, "/T:74(C00". Note that the top

of

code specified to LINK shculd Llie on a VLISP page boundary,

for example octal 70000, 74000, or 1000CO.

74

Se3e3e4s UNIX Operating System.

The following UNIX shell commands when interpreted cause
UNIX VLISP to be assembled and installedy, create necessary
directories, and compile the LISP software assuming that UNIX has
been altered to support comgiled code. A Llater appendix
(Modifying the UNIX Operating System) gives instructions for in-
stalling the UNIX improvements reeded tc support compiled code
and provide reading up to the new-line character. The module
"LOtraps™ should be edited to reflect the current configuratione.
The VLISP source must have already been read into the current
directory, usually using the *t¢c*" tape handler, and the LISP sys-
tem software must have been put into a brother directory accessed
as ".e /", If compiled code is not available place the system
sottware directly into a new directory called "/lisp"” with urite
protection set. The current wuser should be either "bin" or
"l'oot"- .

- Assemble interpreter code and uorkspace.

- The assembled modules are
= LOtraps - Conditjonal assembly flags and def1n1t1ons
- L1top - Top of code locaticn

- [2stlisp -~ Start up procedure

- |3garb - Garbage collector and utilities

- l4spch =— System special forms and basic functions
- ISsyst - Operating system interface
- Léic - 1/0 routines

- L7comp - Compiler rcutines
- (8mapc = List handlers
- 9arth ~ Arithmetic functions
- labot Bottom of .text
- tbworks «data workspace
s L[0-bl)x ; mv a.out tenxt
~ Assembte initial aton definitions
s LOtraps lcatoms ; mv a.out ataoms
- Link~edit leaving only the syabol table
- No "~-i" option if PDP4D flag set
d -i -x text atoms /lib/liba.a
- Install program for users
vV a.out fusr/bin/lisp
- Extract symbol table
seo/symtab /usr/bin/lisp /lib/lLispe.stb
: - Protect the code
chmod 755 Zusr/bin/lisp
: - Make a directory for compiled LISP softuare
mkair /Llisp
: - Shell command file ccmpiles all LISP softuare
ee/ L/cmpal l
t - Protect compiled software, directory, and symbol table
chmod 644 /Llisp/* /lisp /lib/lispssthb :

ot T e 00 o0 O e O € ve v E9 e e 30 0F e se e sr se e®
t

VLISP will then be ready for use.

75

Seb e Distribution.

The preferred medium of distritution s 9-track, odd-
parity magtape recorded at either 800-NRZ frames per inch (FpPI)
or 1600-phase-encoded FPI1 by DEC”s DOS system program PIP
(Peripheral Interchange Program) or by the UNIX magnetic tape
handler "tp*®. The files ‘on the ©DO0S version include assembler
source code, object modules, and lLoad modules for the VLISP in-
terpreter designed for the Virtwal Operating System/Distributed
Computer Net work (VOS/DCN) ceveloped at the University of
Maryland, and a VOS emulator to use VLISP with DEC”s DOS. LISP
code for a Pretty Printer, a LISP S—expression editor, a debug
packagey, and PLANNER are also included. Normally, copies of the
p0S files are placed under UICs [1,13, [13,13]), and {13,312 in
order to minimize the possible effects of tape errors. The files
recorded represent a current version working under DOS.

The UNIX *“tp" version will include nultiple copies of the
"VLISP source code modutese The tape includes a source code ver-
sion for use with the DEC PAL assembler; a source code wversion
for use with the UNIX "as'" assembler; "c® source code and com-
piled version of a program, TRANS, to translate DEC PAL source
code modules 1into UNIX *"as*" source caode modules; S—eupression
versions of the LISP software ircluding a Pretty Printer, an S-
expression editor, a debug package, micro-PLANNER, a LISP func~-
tion compitery and a package of L1SP operating system calling
functions; text editor instructions to alter the UNIX operating
system modules; “nroff" format synopses for use with the *man'
processor; ana other miscellaneous Lits and pieces. The tape
should not inc lude usable compiled versions since the flags in
“tOtraps" will have to be altered to conform to the curvent
configuratione.

The University of Maryland®s UNIVAC 1108 computer may
produce other distribution media. PBRackup copies of the asseambler
source code for the VLISP interpreter, the VO0S emulator for DOS,
and the stand alone operating system which also emulates V0OS,
ready for assembily by the Maryland PAL cross assembler together
with the LISP system programss, nay be recorded on 9 or 7 track
magnetic tape in one of the UNIVAC 1108 supported formats.
Blocked card image magnetic tapes with cdd parity may be encoded
in 7-track=-8CD or 9-track-eEBCDIC. Even—-parity, 7-track tapes
should not be produced since the tape hardware truncates any phy-
sical record with a zero frame, the value produced by a BCD en-
codeo ampersand (&). BCD anc EBCDIC translation also Lose the
upper/ lower case qualities of the programs. The normally Llouer
case variable names used by PLANNER must be preceded by a double
exclamation sign (!') in code tc be read by the VLISP interpreter
to distinguish them from upper case var iables when either BCD or
EBCDIC translation is to be usede Unless otherwise reqguested,
the physical recoradas of blocked card image tapes each contain 720
characters that represent nine (9) 8(0-character~card images. The
approximately 12,000 card images are recorded several times, each
copy being fol lowed by a file mark and the last copy follouwed by

76

multiple file marksy, the logical end of tape. Tapes are normally
produced at SNC-NRZ-FPI« 1600~crhase-encoded-FP] 9-track magnetic
tapes and 200 or 556 FP1 7-track tapes are also possible. Since
the PDP-11 assembler source code kept on the UNIVAC 1108 is in-
tended for use with the cross assembler, some modificationy most-
ly syntactic, may be needed before use with other assemblers,
such as the DOS MACRO assembler.

Tape requests should specify the meagium desired including
formaty, number of tracksy, density, parity, and any encoding
methecd. Permissable variations on these tape parameters should
also be specified to allow alternate methods to be used in case
of hardware failurese. Usually a Llisting of one copy of the
tape”s contents and basic documentation are included.

The material is copyrighted and may only be copied, used,
transmittedy, or altered as allowed by a copyright licenses The
license is intended to protect the system from unauthorized com=-
mercial exploitation. Requestcrs may prepare a suitable license
for signature or a license will be created for them. Generally,
the License permits the system to be copied, used, transmitted or
alterea provided that the copyright notice is included on all co-
pies and versicns created by the licensee.

77

5¢5¢ known Probtems.
Some bugs still remaine.
55.1s READiINg Floating-point Aumbers.

The READ and TOKEN functions cannot construct floating~-
point numbers. As a temporary fix, a readmacro for the percent
(X) character is included with the Fretty Printer routines.
Before readinyg floating~point numbers, the readmacro must be
detineay such as by loading the Pretty Printer. Once the readma-
cro has been defined, floating-roint numbers must be preceded by
a percent sign. For example,

X3.3 X047 %33D %52.12345E-22 %33333%3.333d+25 or %N.0

may be used to input floating-pcint numbers. In the absence of
floating=-point read routines, PRIN2 prefixes floating-point
number output with a8 percent sign (X) sc that the output may be
re-reade Some day,y the input scanner, which was uritten in the
era of fixed-pcint-only numbers, will be re-urittene. Users may
then aefine "X1" as an ignored character so that old programs may
be usea without turther difficultiese.

Se5+.2¢ PFroblems with the DOS Versione.

When using the VOS emulator on DCS some problems may occur
involving the interface.

5¢5e26¢1s Attention Interrupt and free Storage Listse.

The system may not properly restart at the latest level of
supervision as described above if free storage Llists are being
manipulatede. Tnis may occur during garbage collection or when
allocating strings or array spacea

Se5e2e2s Too many Open Files.

Although communications packets -have been provided for ten
files, if VLISP is LINKed <close to the DOS operating system
buffer area only a feuw files nay be open at once. When the al-
towed number of open files is exceeded, the D0OS monitor wuwill
loopy probably hunting for non-existant butfer space. The system
must then be rebooted: it carnot be restartea from the console
teletype. This condition is esgecially Likely in BATCH modge,
since the system must allocate extra buffers for the BATCH 1/0
filese

78

5¢5+2e3¢ Unsuccessful Storage Allocatibn Looping.

After an unsuccessful attempt to allocate storage follou-
ing garbage collection the system will attempt to restart by re-
‘setting the stacks and the association Llist to their initial
-valueses It this recovery is unsuccessful, it will nonetheless be
~attempted again. The. onlty ways to halt this Loop are through
operator intervention, output file overflow, or exceeding a time
limite Each attempted recovery produces a register dump fol lowed
by the message ' »

NO SPACE
if again unsuccessful,
S.SQZ.“Q Randam Disk 1/0.

Although code has been included to support random address
1/0 to contiguous disk files, it has not been debugged.
Unexpected results may occur when using random 1/0. '

5¢5¢3s. Problems with the UNIX Version.
The UNIX version of VLISF is not without its faults.
Se5e3e1e Number of Output Columns.

When UNIX VLISP is used in mutti-user mode, different ter-
minals with ditferent column wicths may be used and the printer
may have a cifferent column wicth from the user terminal., Since
many terminals wrap excess characters around to the next Lline,
VLISP may send output using the largest available column width
without difficulty in many configurations. However, if terminals
are used that truncate the excess characters of a Lline, the out-
put cotumn width must be adjusted. The Pretty Printer includes a
function PP-SHCRT getting one parameter, a new column width, that
may te called to alter the maximum output column width:

(PP-SFORT COL)

5¢54342s Floating Point Simulation.

The UNIX tloating point simulator will not work with pro-
grams that wuse separated I anc D spaces. It may be possible to
fix the simulator by altering it to use the: new “mfpit" "gys®
call. Use ot the simulator for PDP-11/40 compatible code has not
been fully testeds :

54544 Problems using PDP-11/4(s.
Althougn VLISP may run or a PpP-11/40 host, VLISP will not

have enough sSpace to implement smany modest scale programs. VLISP
has not been fully tested for use with PDP-11/40 hostse

79

56« Modifying the UNIX Operating System.

Two improvements can be added to the UNIX operating system
that will extend the capabilities of LISPe The first improvement
allows LISP to support compiled code on PDP-11s with memory
management that support separated Instruction (1) and Data (D)
spacesy such as the PDP-11/45. With the improvement, each pro-
cess may maintain a writaktle I-space area following the
protected, .text section of. l-space, which processes share,
Internally, UNIX maintains a writable I-space as part of the
swappable process image following the process control section,
the data secticn, and the stack area after a call to a new system
call, "obreak'"™ (overiay break). The new "obreak" system call has
a similar syntax to the "breax" system call. The lowest address
not to be included in the requested area is passed in CPU re-
gister RO to "obreak®. If the address is within a hardware seg-
ment allocated to protected code (.text), "obreak®™ <creates an
‘empty writable, I-space, overlay area, the initial state after an
“Yexec" system calle The "fork"™ operating system call replicates
any writable I-space area, giving each gprocess its own copye. 1f
the writable I-space area requested of “obreak®™ cannot be
allocatedy, "obreak"” sets the error bit () on return. 1f the ad-
dress specified falls within a hardware segment that contains
protected code (.text) of the l-space area, "obreak'" deallocates
any writable l1-space area to the initial empty state. 1f the
specified address lies outsioce the hardware segments devoted to
protected, .text code but above or below the highest address of
any previously allocated writable I-space, *“obreak®" expands or
contracts the writable I-space (overlay) area appropriately.

The code extension implementing “obreak"™ adds very tittle
overhead. The UNIX operating system does not execute most of the
code implementing the extension until an explicit “obreak®™ catle.
An additional parameter to the internal routine "estabur®, which
checks that requested data areas may ke allocated ang allocates
allowable user .text, .data, stack, and obreak configurations to
hardware registersy is the only routinely used interface between
the extension and the rest of the operating systems. In turn, the
UNIX operating system calls "estabur®" usually about once per
switch between usersy, a relatively infrequent event compared to
total processing. Within “estatur"™, user processes not using
"obreak" perfcrm Less than twenty additional instructions per
call, a negligible number, Thus "obreak™ does not appreciably

slow the UNlIX operating system, In terms of space, in all,
implementing "cbreak"™ adds only.a few hundred instructions to the
UNIX operating system, 3 minor space reauirement. The *“obreak*

extension s compatible with UNIX used on PDP-11/40s. On a PDP~-
11740, "obreak™ returns with an error status, since PDP-11/40s do
not support separatead] and D sfaces.

80

"*Mfpit™ is a companion extension to "obreak". Altthough
PDP-11s that support separated 1 and D spaces will permit writing
into I-space with the “MTFI"™ (Move To Previous JI=-space)
instructiony provided that memory management protection is
disabledy such PDP-11s divert attempts by the “MFPI" (Move From
Previous I-space) instruction ir USER mcde from reading the USER’
mode instruction space while separated spaces are enabled. This
“protection" was devised to enatle execute~only codge.
Unfortunately, the protection cannot be directly overwritten,
Thus the "mfpit®” UNIX system call must te used to read USER-mode
I-spacee "*Mfpit® returnsy 1in CPU register ROy the contents of .
the USER-mode, l-space, word location passed to "mfpit" in CPU
register RD. If the specified location is protected from reading
or it it does not align on a word bourdary, *"Mfpit" returns -1,
177777 (octal), but does not set the "C" (carry) error bit of the
PS (Processor Status) register. The extension for "mfpit® to the
UNIX operating system entails a one-assignment-statement *c"
function that calls “fiuword"™ within the operating system.
“Mfpit® executes Lless than 100 rmachine instructions and executes
them only when caltled. ‘ ‘ :

A turther extension, "readnlt", rectifies an omission of
the UNIX "read" system catll by germitting Line-at-a-time input in
addition to the buffer—-at-a~time 1input provided by “read".
“Reaanl"” perform Like “read™ except when inputting characters
from tile systems of block structured devices and trom.pipesy
which the file system of a block structured device, the system
device, supportse. The syntax of the *“readnl'"™ call is identical
to the syntax of the "read'" UNIX operating system call. When in-
voked to input characters from a file system, “readnl"™ does not
return characters beyond the first new-liney Line-feed character
(012 octal) encountered. Like "read", "readnl® returns a count
of the characters returned. Thus "readnl" inputs characters as
if they were reaa from a terminal, one Lline at a time, without
requiring that more characters than are needed be buffered. A
more disconcerting situation occurs when using "read* with pipes,
since backward (or forward) seeks are nct allowed. I1f two pro-
cesses want to read varying-lergth character data from a pipe at
once, each process must input dsta one tyte per call using "read"
SO that each process will get the data intended for it. This in-
volves excessive system overheac that using “readnl"” can avoid by
doing line-at-a-time 1nput using the new-lLine character as an
end cf-Line marker. '

The "readnl" extension is economical. Wwhen using “reaa®,
the "readnl” extension adds less than five additional machine in-
structions per data blocke When reading from file systems, a
call of "reaanl” is only slightly slower than a corresponding
call to "reaa"™ since "readnl" compares each character to new-
Line. The "readnl" extension should require Lless than 100 ma-
chine 1instructions of core space. In return for the expense of
incorporating the "readnl" extension, "readnl"™ provides a more
uniform method of character data handling by UNIX.

81

Each of the extensions tc the UNIX operating system are
distributed as files of UNIX text editor “ed" commands produced
by the UNIX file difference processor "giff", The UNIX operating
system source code files to be changed are tfound under the UNIX
directories

fusr/sys
and
fusr/sys/ken
as distributed by Bell Laboratories in the sixth edition. The

names of the tiles distributed with ppLISP suffixea by “.e"”
correspond to names suffixed with ".c*™ in the UNIX system source
code directories. for example, if the system source file

rdwrie.c
were to be changed by the editor commancs in the file
rdurie.e

with both files in the current girectory, the shell command in-
terpreter Lline

(cat rdwurie.e ; echc “w") | ed - rduri.c

woula implement the changes. Naturatly the file protection mode
should permit changes to the system source file. After the
source code has been changed, a3 new UNIX contiguration should be
made following the instructicns distributed with UNIXe A com-
parative listing of the changes need for each file follow as pro-
duced by the UNIX file difference processor "diff". The listings
consist of line numbers in the cld and new versions followed by
the old and new lines to be charged or added.

Changing the stack size parameters 1in ‘*“param.h* allows
ppLISP to allocate the Llongest possible stack within the last
hardware segment, leaving one block at the bottom unallocated to
enable stack overflow detection.

Figure 21 - Parameter changes to "/usr/sys/param.h".

11’12611912

- #define SS1ze 20 /* initial stack size (*64 bytes) =/
- #define SINCR 20 /* increment of stack (*64 bytes) =/
L& X

+ #define SS1Z¢t 22 /* initial stack size (*64 bytes) x/

+ ##tdetine SINCR 21 /* increment of stack (=64 bytes) =/

82

Both the *obreak®™ and "readnl" extensions require changes
to “"user.h”. Each extension adcs new variables to the end of the
user per process data areae.

Figure 22 - Add to "/usr/sys/user.h" per-process variables.

54a55,59 : After uesu_intflg

+ char u_ntflag; /*x Flag for reacing only to
+ * the next new line char »/
+ int u_ocsize; /*x Overlay, writable l-space
+ * segment size.

+ */

Changes to "syslec" embody most of the “obreak®™ system
call extension., The changes aglso implement the “mfpit® extension
with a single function, ‘

Figure 23 - Add "Obreak™ system call in "/usr/sys/ken/syst.c",

123¢1234129
- if(estabur(ts, dsy, SSIZE, sep))
LR ¢
/] *
* Include a null writable I-space length. RLK
* / , .
if(estabur(ts, dsy SSI2E, sep, [))
/* _
* if(estabur(ts, dsy SSIZE, sep))
* / :

45¢151,157 ‘
estabur(0, ds, 0,y 0);

* &

/ * :
* Includes a null overlay segment argument. RLK
* / ‘)

estabur(Qy dsy Dy 0, 0);

/*
* estabur(Gy dsy 0, 0);
* /

59¢171,179 :
estabur(ueu_tsizey Uusu_csize, Uesu_ssize, u,u_sep);
* % . -
A .
* Reset size of overlay, writable I-space. RLK
*x / , ’
ueu_osize = (; .
estabur(u.u_tsize, ueu_csize, U.u_ssizey U.u_Sep,
ueu_asize);

PRI I TR U T TR Y S S S S A A L I B R

83

+ estabur(u.u_tsizey u.u_csizey us.u_ssizey, u.u_sep);

*, .
381,382c401,414

- n =+ USI2E+u.u_ssize;

- if(estabur(ue.u_tsize, ue.u_dsize+d, ueu_ssize, ue.u_sep))
¥ ok k

+ /%

+ x Include overlay segment in total size computation. RLK
+ x)

+ n =+ USIZE+u.u_ssizetu.u_osize;

+ /*

+ * n =+ USIZEtu.u_ssize;

+ %

+ Include overlay, writable I-space in size checking. RLK
+ oK/

+ itf(estabur(ue.u_tsize, u.u_dsize+d, uU.u_ssize, u.u_sep,
+ ueu_asize))

+
+
+
3

I *
* ifl(estabur(u.u_tsize, u.u_dsize+d, u.u_ssize, u.u_sep))
w /
87c419,422
- 8 = usu_procp=>p_addr + n - u.u_ssize;
* kX .
+ a = usu_procp~>p_addr + n - u.u_ssize - u.u_osize;
+ /x
+ x a = UeuL_procp->p_addr + n - u.u_ssize;
+ */
389c424,430
- n = Ueu_sSsize;
* i A
+ />
+ % Include size of overlay area when moving. RLK
+ * /
+ n = Uesu_ssize + u.u_osize;
+ /x
+ % n = ue.u_ssize;
+ %/
400c6b1,448
- N = uU.u_ssize;
* kK
+ [/
+ % Include the overlay segnent with the stack
+ when moving them upe. RLK
+ x)
+ n = uesu_ssize + u.u_osize;
+ [* :
+ % n = U.u_ssize;
+ */
407a4564498 : Put at end
+ />
+ OBREAK system calle.
+ 4 Expand the writable I-sgacey overlay area which tollous
+ » the stack segmente.
+ x RO contains some address within the highest segment to be

[0 4]
~

B e L S N T R I I S S S IR 2 I S I s

* atlocated.
*
* Added by RLK.
*/
obreak ()
{
register a, ny d;
a = ueu_ardlr0l;
n = (Ca + 63) >> 6) & 01777;
if(n==C &8 a<0) n = 020C€0;
n =- nseg(u,u_tsize) * 128;
it{n<0) n = C;
d = n - ueu_osize;
if(estabur(u.u_tsize, u.w_dsize, usu_ssize, uesu_sep, n))
return;
a = Ueu_procp->p_size;
expand(a + d);
Ueu_os ize = n;
if(d>0) (
a =+ ueu_procp-2>p_addr;
while(d==) clearsegla++);
)
¥
/*
* MFPIT System call. ,
* The contents of the locations in USER I-space given by Ro
* are returned in RO.
* Because the PDP-11/745 was designed to support execute
* only codey, USER l-space may not be read with MFPI by USER
* programs, even though MIPI may write directly.
* To overcome this annoyance, the system reads USER I-space
* while in KERNEL mode. '
* Added by RLK.
*/
mfpit()
{

)

ueu_arClRO] = fuiword(u.u_ar0OCRC(C]);

85

Changes to the core dumping routines in "sig.c" cause any
writable I-space area to be dumped following the normal dump.
Thus system debugging software is not affected by the writaple
I-space extensions.

Figure 24 - Core dumping changes in "Jusr/sys/ken/sige.c”.

190¢190,197

- register s, *ip;

* k%

+ /%

+4 % More variables needed with uritable I-space overlay areas.
+ * /

+ register s, *ip, i;

+ int a;

+ /»

+ % register sy *ip;

+ x/

213,214¢220,23¢

- S = uUsUu_procp->fg_size - USIZE;

- estapbur(0, s, 0, 0);

* k% '

+ />

+ % First write data and stack segmentse. RLK

+ x /

+ s = ue.u_dsize + uesu_ssize;

+ [/ * .

+ o § = uesu_procp->g_size - USIIE;

+ L7

+ * Include the writable I-space in the area. RLK
+ x/

+ estabur(0, s, 0, ueu_sep, Usu_osize);
+ [

+ % estabur(0, s, 0, 0);

+ * / :

216282374253 : After writei(ig);

+)+

+ Copy any writable I-space onto the data and stack area,
+ % then write it at end of file. RLK

+ ok The following if statement was addede.

+ %/ .

+ if(a = ueu_osize) (

+ i = usu_procp->p_addr + USIZE;
+ whilela=-=) {

+ copyseg {i+s, 1);

+ i++;

+) i

+ i = us.u_osize;

+ estabur (0, i, 0, N, 0);

+ Ueu_base = 0;

+ ueu_court = 1 * 64;

+ writei(ip);

86

+ : b

239c 274,281 ,

- if(estabur(ueu_tsize, u.u_dsize, ueu_ssize+si, u.u_sep))
* k% ’ .

+ /o : ;

+ % Include writable l-space in size checking. RLK

+ %/ ‘ v

+ if(estabur(ue.u_tsize, u.u_dsize, usu_ssize+si, u,u_sep,

+ ueu_osize))

+ /x . .
+ if(estabur(u.u_tsize, u.w_dsize, u.u_ssize+si, u.u_sep))
+ */

243¢c285,291

- for(i=ueu_ssize; i; i--) (

ok &k

+ /%

+ o+ Move bath stack and writable I-space up. RLK

+ * /)

+ for(i=ve.u_ssizetue.u_osize; i; i-=-) (

+ /%)

+ for(i=ueu_ssize; i; i--) {

+ %/

Changes to "main.c¢" enavble memory management hardware re-
gisters to be set up to handle the writable l-space allocated by
“"obreak",

Figure 25 -~ Change "/usr/sys/ken/main.c*" to allocate I-space.

128c128,134

- . estabur(0, 1, 0, 0);

* k&

+ /*

+ % Inctude null overlay segment size RLK
+ %/

+ estabur(O. 1y Uy Oy 0);

+ /*

+ estabur(0, 1, 0, 0);

+ *x /

182c 1884195
- estabur(nt, ndy, ns, sep)

* % k&
+ [*x . .
* The adoitional argument gives overtay segment size
* for writable I-space. FLK
* /
estaoburi{nt, ndy nsy sepy nOJ
/* ,
* estabur{nty, ndy, ns, sep)
*/
89c202,208

f = 4+ + ¢+ + + 4+

it(nseg(nt) > 8 |l nseg(nd)+nseglns) > B)

(o]
-~

N

ok

+ /*

+ x Include size of writable I-spacee. RLK

+ */

+ ifCnseg(nt) + nseg(no) > 8 || nseg(nd)+nsegins) > 8)
+ /%

+ % if(nseg(nt) > % || nseg(nd)+nseglns) > 8)
+ x/

192¢c211,217

- if(nseg(nt)+nseg(nd)+nseg(ns) > 3)
* ok &k

+ /x ‘ .

+ % Include size of writable I-space. RLK

+ * /]

+ ifCno || nseg(nt)+nseg(ndd+nseg(ns) > 8)
+ /*

+ * it{nseg(nt)+nseg(nd)+nseglns) > 3)
+ *x /

194¢c219,225

- it(nt+nd+ns+USIZE > maxwem)

% ok %

+ /%

+ % Include size of writable I-space. RLK

+ %/

+ if(nt+nd+ns+notUSIZE > maxmem)

+ /I

+ % if(nt+nd+ns+USI2ZE > maxmem)

+ x/

209a3241,260 : After if(sep)

+ /%

+ % Set up prototypes for writable I-space. FPLK
+ % The following is added code.

+ * /

+ {

+ a = nd+ns+USIZE;

+ while (no >= 128) (

+ xdp++ = (127 << 8) | RwW;

+ kap+r+ = a;

+ a =+ 128;

+ no =~ 128;

+)

+ /* Finish last partial segment of writable I-space */
+ if (no) (.

+ *dp++ = ((no - 1) << 8) | RW;

+ kapt+t = 3,

+)

+ /x

+ x end of added code.

+ x/

213a265,268 : Just before a = USIZE;

+ [.

+ * This parenthesis added ftor balance.

+ * /

+)

88

M7c117,123

Tkwok

/ *

*

*/

/ *
*
*/

++ bt

call table for the “obreak", "mtpit",

40c¢c4 0

* k k

bbcb b

Tk ok

66¢c 66

* kK

Changes to "text.c" add an additional
“estabur",

establish-user-register,

estabur(0, ts, O, 0);

parameter to the

function catle.

Figure 26 - Fix "estabur™ call in "/usr/sys/ken/text.c".

Include argument for null writatle I-space segment., RLK

estabur (0,

estabur(Q,

tsy 0o 0O, 0);

ts, 0, 0);

Changes to “sysent.c"™ adc new entry point to the system

Figure 27

0,

0,
Oy
U,y

2y

Rnosys,
Lobreak,
&nosysy
Emfpuit,
ansys.

&re adnl,

I
/*
1%
/*

™

27
a4
33
13
53

53

and "readnl" extensions.

- Extensions to “/usr/sys/ken/sysent.c" table.

x */
obreak =/
x */
mfpit */
x */

readnl =/

89 .

_ Changes to “rdwri.c" implement the ‘*“readnt" system call
extension. ; 2

Figure 28 - Extensions to "/usr/sys/ken/rduri.c” for “readnl".

11a12, 146 : Atter kincluce "ss/systmeh®

+ /* Aaded macro call to support reaanl . RLK */

+ #include ",.,/file.h"

+

34a38,41 : After ifC(ip->i_modelIFMT) == IFCHR) (
+ /* Turn oft the read-up-to new—lLine flag

+ * when using interruptable character devices.
+ : * Line of code added by RLK */

+ ueu_nlflag = 0;

170a1786,199 : After cp = bgp=>b_addr + o;

+

/* When the tlag s set by readnl, search the data about
to be transferred for a new-line, Line—-feed character,
It tfound adjust the byte ccunts requested

tuo include nothing beyond the new-line character.

"3f" statement added by RLK */

= % % ¥ *

if (ueu_ntflag) (
t = n;
while (t==) if (*xcp++ == 012) (
/* the current number of bytes yet to transfer =»/
n =- ¢,
/* Lower originatly requested number of bytes x/
ueu_argl1] =- u.u_count-n;
/* Lower total number of bytes yet to transfer =/
usu_court ='n;
break;
)
/* Recalculate the transfer start address */
cp = bp->b_addr + o;
)

95a225,243 : Put at end

/
READNL is an added system call which acts tike *reaa"
except that it does not transfer any characters beyond
the new-liney, line-feed character on a singte call
to block agevices. This prcvides Line at a time input.
Function adged by RLK.,

/

* % % * % ¥ *

readnl ()
(.
/* set flag used by iomcve RLK »/
usu_nl flag++;

rawr (FREAD);

TR R I SR AR A IR I A R R A IR T IR TR R TR T T SO e e

-+ + 4

/* Reset flag here.

. % This flag manipulaticn depends on having

* uninterruptable calls to block devices =/
ueu_nlflag = 0; .- .

91~

S«7. Alphabetical Function Syncpsis

ADD1 - increment argument.

(ADD1 X) - Aads 1 to the parameter X. 1f the parameter has
floating-point type, ADD1 returns the same type. Otherwisesy ADDI
returns an integer. oL .

ALIST - return system Association LIST.
(ALIST) - Obtains the current system association list. The sys-—
tem association List starts at the *CAR of the function Linker.

AMB - AMBiguity function.

(AMB X1 &« « « Xn) - Returns a random se lection from an arbitrari-
ly leng parameter Llist. :

AND - evaluate aryuments while true.

(AND EXP1 « o« « EXPn) - Special form; sequentially evaluates its
parameters until done or a parameter evaluates to NIL (false).
AND returns the value of the last evaluated parameter.

APPEND - create a new lList from argument Llists.

(APPEND X Y) -~ Creates a new Llist by CONSing the members of the
first Llist onto the second List. APPEND makes a copy of the
first List while using the secord list as ise 1f the first para-
meter is NIL, APPEND returns the second parameter. If the second
parameter is NILy APPEND creates a copy of the first parameter.

92

ARRAY - create an ARRAY.

(ARRAY SIZE TYPE) - Creates a function that can access or alter
the elements ot an array of lenoth SI1ZE. If the created function
receives .one parametery a fixed-point number, the created func-
tion returns the array member irdexed. If the <created function
receives a second parameter, whose type matches that of the
arrayy, the created function returns the second parameter and re-
tains 1its value in the array member referenced by the first
parameter, a fixed-point number. The parameters of ARRAY, SIZ¢t
and TYPE, should be fixed-poirt numbers. If ARRAY does not get
the optional TYPE parametery, ARRAY produces .an array of pointers
by defaulte.

TYPE MEMBERS o RANGE

) Pointer Any S—-expression

1 Logical T (true) or NIL (false)
2 Binary C or 1

3 Signed byte -128 to 127

4 Unsigned byte C to 255

5 16-bit word -32768 to 32767

5 2-word single precision floating point
7 4-word double precision floating point

VLISP supports all of the floating point array types only if
VLISP supports at least one type of floating point arithmetico,

ARRAYL - ARKAY Length predicate.

(ARRAYL ARR) - Returns the logical length of its parameter ARR,
it it is an array. Otherwise the predicate returns NIL (false).
The length of a logical or binary array (a bit array) is roundeo
up tc the least multiple of 8 greater than or equal to the length
given as the first parameter of ARRAY when creating the array ac-
cess functione.

ARRAYP - ARRAY type Predicate.

(ARRAYP ARR) - Returns the type, an 1integer, of its parameter
ARR if it is an array. Otherwise the ARRAYP predicate returns
NIL (false)- '

ASSOC - search an ASSOCiation List.

(ASSOC ITEM LST COUNT) - Returns the COUNTth occurrence in the
second parameter, LST, a Llisty, of a CONSed pair whose CAR in
EQUAL to the first parameter, ITEM. Itf the thira parameter,
COUNT, the count, is omitted, 1 is used.

93,

ATOM - AT(OM predicate.

(ATOM X) - Returns T (true) if the parameter X has an atomic
type. Otherwisey, ATOM returns NIL (false) when the parameter is
a CONSed nodee. :

ATSYMB - create ATomic SYMEol.

(ATSYMB X) - Finds or creates, if needed, an atomic symbol speci-
~fied by the parameter X. If the parameter is a SYMBOLic atonm,

ATSYMB returns 1it, regardless of whether or not the hash table,
0BLIST, contains ite Otherwise, ATSYMB converts the parameter to
internal type STRING and searches for an atom with ‘this print
name 1in the hasn listsy, OBLIST, used by the READ and TOKEN
routines. After not finding an atom with the print name, ATSYMB
creates one and enters it into the hash tables.

ATTEMPT ~ catch errors after AfTEHFTing evaluation.

(ATTEMPT EXP .

[N1 E1“1 ¢ e o E1‘n]

L] L] .

[Nm En-1 ¢« o« ¢« Em=nm]

) -
Special form; evaluates the tirst parameter, EXP, and returns its
value if no system errors have occurred. However, if an error
does occur while evaluating EXP, the interpreter examines the
other arguments for a Llist whose CAR is a number whose value

matches the error typee. It the 1interpreter finds a match,
ATTEMPT evaluates the remaining expressions in the CDR of the
list. ATTEMPT returns the value of the Llast expression

evaluated.

BACKSP - BACKSPace the REAL routine buffer pointer.

(BACKSP) - Returns T (true) anad prepares the READ, TOKEN, or
READCH function to read the previous character in the READ buffer
if the buffer pointer was not set to read the tirst charactere.
Otherwise BACKSP returns NIL (false) and leaves the buffer
pointer where it was.

94

BREAK - intercept functions before application.

(BREAK ATM NEWFN) - Functional; uses the second parameter, NEWFN,
a function, in place of the function or special form that is con-
stantly (globatly) bound to the first parameter, ATM, a SYMBOLIic
atom. When calledy the new function, NEWFN, bound to ATM re-
ceives at least two parameters. The first parameter is the atom
ATM whose binding BREAK altereds The second parameter is the
function LINKER bpbound originally to the atom ATM. ALl other
parameters follow as they woulec have been passed to the original
unbroken function. If BREAK acts on an atom bound to a special’
form, the third parameter passed tc the new, intercepting
functiony, NEWFNy, is a List of the unevaluated parameters intended
tor the original special form.

C ¢ ¢ o« R = find CARS and CDRSOI

(C « « ¢« A ¢« o o« D s ¢ ¢« R ARG) - Returns the pointer derived by
recursively taking CARs and CCRs of the parameter ARG, a CONSED
node, a dotted pair. The CAR of a dotted pair is the first part
as printed, the lefthand side« The CDR of a dotted pair is the
second part as printed, that which follcus a dot in a simple dot-
ted pair, the righthand side. For example, if ARG were the dot-
ted pair

(X « Y)

then

(CAR ARG) = (CAR “(X . Y)) = X

and

(COR ARG) = (CCR “(X « YY) =Y
The input routines READ and TOKEN bind any atom whose name con-
sists of the character, “C", followed by an arbitrary number of
“A"s and "D"sy, ended by an "R"™ to a composition function of CARs
ana CDODRs. The order of evaliation is from right to left. For
example, evaluating the S-expression

(CADADR EXP)

is equivalent to evaluating

(CAR (CDR (CAFR C(CDR EXP)))) .
If the interpreter attempts to follow the pointer into an atomic

objecty anything but a dottea pair, while evaluating a CAR-CDR~-
chain tunction call, the interpreter prints a warning message.

95.

CLEARBUFF - reset input BUFfFer for new Lline.

(CLEARBUFF FILE) - Resets the irput buffer to input a new tine on
the next call to READ, TOKEN, or READCH. If CLEARBUFF gets the
optional parameter FILE, a fixed-point number, subsequent input
will come from the logical file number specifiede The operating
system must have previously provided an external meaning to the
internaly Logical file-number created by OPEN or ‘other system
calls such as PIPE under UNIX. A NIL garameter returns input to
the standard, cgefault file. CLEARBUFF saves the parameter as the
constant (global) binding of the atom *CLEARBUFF.

CLOSE - CLOSE ltogical file numbers

(CLOSE FILE) - Closes the interral, fixed-point, Llogical file-
number specified by 1its parameter FILE. It CLOSE get a NIL
parameter, the operating systers closes the standard, default
input. If successful, CLOSE returns ANIL. Otherwise, CLOSE re-
turns the integer error number returned by the UNIX operating
system in RN, :

COMPLEMENT - Llogical one”“s COMPLEMENT negation.

(COMPLEMENT X) - Computes the octal, togical one”s complement of
the parameter Xe ' COMPLEMENT wuses the high-order, most-
significant word of a floating Foint parameter as a fixed—-point
value.

COMPRESS - COMPRESS list irto a noce.

(COMPRESS LST) - Uses the TOKEN routines (the scanner) to convert
a List of single character elements intoc an appropriate atomic
node. The List elements may be either single character atoms,
single character stringsy or fixed point numerical ASCII1 wvalues.
The TOKEN routine examines the syntax of the character to deter-
mine the type of node to <create., User defined readmacro
characters cause no special actions. Thus reaadmacros may use
COMPRESS without escaping the user readmacro characters in the
input Lliste.

96

COND - CONDitionally evaluate argumentse

(COND CEXP1 E1'1 s e . E1—n1]
c e o o ’
CEXPm Em=1 o o« o« Em=nm]

) - . .
Special form; expects parameters that are lLists of at least one
expression. At least one parameter, a list, must be given, COND
.evatuates the CAR of each list until one returns a non-NIL (true)
value or wuntil it has evaluated the CAR of every parameter. At
the first instance of a true value, CONp sequentially evaluates
the remaining expressionsy if anyy in the (DR of the current
parameter, a list. COND returns the value of the lLlast expression
evaluated.

CONS - create a CONSolidated paire.
(CONS X Y) - Creates a new CONSED node of two pointers, its CAR,
Xy 'ana its C(DRy Y, the left and right hand sides respectively,
catled a dottec pair. ' L

(x « V)

CSET - c¢reate a new Constart (global) binding.

(CSET ATM EXP) - Function; creates dr;replaces a constant binding
on the first parameter, a SYMBOLic-atom variable, ATM, using the
second parameter, EXP. Any old constant (global) binding

disappearss Any fluid bindings on the system association Llist,
ALIST, become hidden, since the interpreter checks the constant
binding cell (*CAR ATM) before searching the ALIST for fluid
bindingse.

CSETQ - Quote the first arcument tc CSET.
(CSETQ NAME EXP) - Special form; serves as an abbreviation for
"(CSET °“NAME EXP)
since CSETQ only evaluates the secona parameter to change thé
constant binding of the first parameter, NAME, as givene. Thus,
unt ke CSET, in this example the binding of NAME itself would be
changedy, 1insteaa of any variable that might have been bound to
NAME . S
CURRCOL - determine CURRent COLumn in output buffer.

(CURRCOUL) - Returns an integer that represents the next column in
the output composition buffer trat will receive a character.

97.

DEFINE - establisn a List cf constant bindings.

(DEFINE LSYT) - Applies CSETQ to each sublist of the parameter
LST; a list, constantly binding the first member ot each sublist,
a SYMBOLic-atom variabley, to the value of the second member of
the sublist. DEFINE creates a list of the wvariables that re-
ceived bindingse.

DEFMAC - DEfFine a MACro special forme.

(DEFMAC NAME FUNC) - Special form; constantly (globally) binds a
macro special form creates frcm the evaluated second parameter,
FUNC, a function LINKER, to the unevaluated variable which is the
first parametery, NAME, The created macro passes the ‘unevaluated
parameters received, 1if any, to the original function LINKER,
FUNCe« The interpreter then evaluates the results, Thus the cre-
ated MACRO can pre-process unevaluated parameters into a new S-
expression that the interpreter finally evaluates.

DEFSPEC - DEFine SPECial tcrm.

(DEFSPEC NAME FUNC) - Special fcrm; constantly (globally) binds a
special form either given as the constant binding of a wvariable,
the second parameter, FUNC, cr else creates from the evaluated
second parameter, FUNC, a function LINKER to the wunevaluated
first parametery, NAME. If the unevaluatea second parameter was
already bouna to a special form or MACRO, DEFSPEC performs a
renaming so that the first parameter variable will have the same
meaning as the second parameter. Otherwise, the created special
form returned as the value of the second argument of DEFSPEC will
pass any parameters it receives to the function, FUNC, unevalu-
ated by the interpreter.

93

DELIM - specify input scanrer DELIMiters.

(DELIM STR FLG) - Converts the first parameter, STRy, into a sin-
glte character of internal type STRING. 1I1f the optional second
parameter, FLG, is given, the character specified by STR has its
delimiter status changedes A NIL (false) second parameter removes
delimiter statuse. Any other second parameter (true) turns deli-
miter status one. Regardless <c¢f the presence of the second
parameter, DELIM returns the previous delimiter status of the
character, T (true) for on and MNIL (false) for off. .READ and
TOKEN wuse delimiter characters to terminate the input scanner”s
creation of a2 name. A SYMBOLic atom name being created does not
include a non-escaped delimiter <character unless no previous
characters have been read.. If a delimiter character is not also
a readmacro character, the scanner will return it as a single
character SYMBOLic atom when encounterec initially. The string
scanner and READCH ignore delimiter statuse.

DIFFERENCL - compute DIFFEKENCE of arguments.

(DIFFERENCE X Y) - Subtracts the second parameter, Y, from the
tirst parameter, X« The result uses the greater precision of its
two parameterse DIFFERENCE returns integer fixed-point results
if neither parameter has floatirg type. The single-character-
atom "-" 3s a synonym for DIFFERENCE.

DU - unconditional evaluation special form.

(DO EXP1 « « « EXPn) - Special form; sequentially evaluates its
argumentss. DO returns the value of the last parameter evaluatign
and discards all other results cf evaluation.

DOUBLE - convert to DOUBLE precision floatinge.

(DOUBLE ARG) - Converts the parameter ARG into a double-precision
floating-point value (four 16-pbit words)e VLISP detfines DOUBLE
only when supporting both doutle and single precision floating-
point-number types.

99

DUMP - output compiled coae and pointers.

(DUMP LINK FILE FUNC) - Returns NIL if the first parameter, LINK,
is not a master LINKER whose I-space address (*CDR LINK) points
to the beginning of a compiled code area. Otherwise, DUMP sends
a binary image of the compiled code area to the internal, logical
file-number specified by the second fixed-point-number parameter,
FILE. VOS and the DOS emulator of VOS VLISP wuse D0EC absolute
toader format. UNIX VLISP uses a.out load module format. DUMP
pertorms an implicit *BEGIN to compact the code area. If FILE is
NILy, DUMP inhibits the binary output phase. Next, if DUMP re-
ceives the ogptional third parametery, FUNCy, a function of three
arguments, DUMP applies FUNC to each pointer offset at the end of
the compiled ccde area. The first argumrent of FUNC gets the oc-
tal offset from the start of ccde of the specified pointers. The
second gets that integer which aust be added to a normal pointer
to produce the pointer giver in the code. The third gets the
normal pointer derived from the given poainter. Lastly, DUMP re-
turns the master LINKER given as the first parameter, LINK.

ENTIER - round down to next whole integer.

(ENTIER X) - Returns an integer node whose vatue is the greatest
whole, signed number less than or equal to the parameter X after
performing any conversion needec for a floating parameter., 1f
the <converted value <cannot be represented by a signed, 16-bit
inteyer, ENTIER returns integer zero. VLISP defines ENTIER only
if supporting tloating point.

EQ - test pointer EQuality.

(EQ X Y) - Returns T (true) if the two fparameters are the same,
otherwise NIL (false). EG returns NIL when comparing two differ-
ent noades even though they may Fave the same wvalue.

EGUAL - test arguments tor congruerce.

(EQUAL X Y) - Returns NIL (false) only if its two parameters, X
and Y, cannot be made congruent; otheruisey, EQUAL returns T
(true). EQUAL converts two numerical parameters to the type of
greatest commcn precision befcre testing for equality of value.
It tests two string parameters character by character. EQUAL re-
cursively descends two CONSED ncde parameters to see if both the
CARKs and CDRs are also EQUAL. The right recursive descent may
loop it presentea with two corgruent, circular Llistse. EQUAL
tests other noade types for pointer equality.

100

ERASE - remove atom constant binding and property liste.

(ERASE LST) -~ Expects a parameter which is a Llist of SYMBOLicC
atoms, ERASE sets the constart (global) binding celt (*CAR) of
each atom to its undefined state and sets each atom”®s property
list to NIL, the initial state. Any hidden bindings to these

atoms on the system association list, ALIST, will reappear -since

the constant binding cell is uncefined. Since user readmacro de-
finitions are kept on the ¢property Llist of the associated-
single-character atomy ERASE will remove such readmacros as a.
side-effect.

ERROR - generate LISP internal ERRCR condition.

(ERROR NUM) - Simulates the LISF internal ERROR condition given
by the fixed-point-number parameter #NUM, If NUM is omitted,
ERROR produces a type 0 error. Some non-positive error numbers
have special meanings to the VLISP interpreter. These reserved
error types will cause specialized acticns if not caught by
previously invoked ATTEMPT:

0 - System errors

-1 - RETURN value

-2 - GO0 tabel

-3 - Asychronous interrupts

-4 = Previous error type was not caught

-8 - Unbound variable or pointer array element
-9 - Bad array index

-13 - Floating point exceptions

-11 End of file.

buring the -initial fite Lloading of the UNIX VLISP startup
procedure, most uncaught errors cause & premature error termina-
tion (107) of the UNIX VLISP interpreter.

101

EVAL - interpret argument.

(EVAL ARG) - Calls the VLISP interpreter to evaluate the para-
meter ARG, If ARG s an atcm with internal type SYMBOL, EVAL
first checks the constant bindirg cell (*CAR). Upon finding a
non-2ero pointer to a node, a cefined reference, in the constant
binding cell, EVAL returns this pointer as the value. It the
SYMBRCLic atom has no constant binding, EVAL searches the system
association list, ALIST, for a tinding CONSED pair whose CAR s
the atom and whose CDR is the value of the ATOM, a non-zero
pointer. 1t EVAL still cannot find a value for the atom, VLISP
prints a warning message and queries the user for a value to use.
If the parameter ARG of EVAL 1is a CONSED node, EVAL assumes the
parameter heads a liste EVAL ctecks if the CAR of the Llist is a
SYMROLic atom which is constantly bound to a special form LINKER
by comparing the l-space address of any such LINKER (*«CDR) with
the I-space address of EVAL. 11 the unsigned, l-space address of
the LINKER is (ess than that of EVAL, the LINKER specifies a spe-
cial torm. Lpon tinding that the CAFR of the parameter ARG, 1in
this case a listy, is constantly bound to a special formy, EVAL
calls the special form using the remaining members of the para-
meter (CODR ARG) as parameters tc the special form without further
evaluation. However, if EVAL finds that the parameter ARG, a
listy 1is not a special form call, EVAL recursively evaluates the
first member (CAR) ot the parametery, a List, and checks that the
returned value 3Jis a functior LINKER. If not, EVAL prints a
warning message and queries the user for a new function LINKER to
use. by recursion, EVAL evaluates any remaining members of its
parameter (CDR ARG) and passes their values as parameters to a
call ot the previously obtainea function. EVAL returns all other
types of nodes, namely LINKERs, numbers, and STRINGs, used as the
parameter ARG, without further evaluation.

EXEC - EXtCute program in gplace of intepreter.

(EXEC ARGO . « « ARGRn) - Calls STRING to <convert allt of its
parameters, inctuding Lists of characters, into strings followed
by a zero byte, the format used by the UNIX sys EXEC calt, EXEC
creates an integer array of poirters to the start of data of each
stringy which it passed as the secona parameter of the system
call. The first parameter is also passed as the file name to the
sys call. If the call returns,; EXEC returns the integer error
number. No LISP system error 1is generated. Only UNIX VLISP de-
fines EXEC.

EXPLODE - create List from print name.
(EXPLODE ARG) ~ Uses the PRINT1 cutput rcutines to create a List

ot single-charactery SYMBOLic atoms that represent the characters
that PRINY' would use to print the parameter ARG.

102

EXPLODE2 =~ create lList from print name with escapes.

(EXPLODEZ2 ARG) - Uses the PRINZ output routines to create a List
of single-character atoms that represent the characters that
PRINZ would use to print the parameter ARG in a format with es-
capes so that the READ or TOKEN routines could recreate the
printed object.

FIXP - FIXxea-point Predicate.

(FIXP X) = Returns T (true) it the parameter X is a tixed point
number (octal or integer); otherwise, NIL (false)es VLISP defines
FIXP only if supporting floating pointe.

FLAG - put FLAG on atom prcperty list.

(FLAG ATM FLG) = Pyts the flag given by the second parameter,
FLGy, a SYMBOLjc atomy on the property List (*#CDR) ot the first
parametery, ATM, another SYMBOLic atom.

FLOAT - convert to @ FLOATing type.

(FLOAT X) ~ Returns a floating~point number by converting the
parameter to floating~-point type, wusing single precision if
availapley otherwise double precision. 1{f the parameter has
floating type, FLOAT returns it as is. VLISP only defines FLOAT
if supporting tloating point.

FLOATP - FLOATing-point Predicate.

(FLOATP X) - Returns T (true) if the parameter X has ftloating-
point type; otherwise, NIL (false). VLISP only defines FLOATP if
supporting floating point.

FURK = spawn a child processe.

(FORK) - Creates a child processy, a copy of the current process,
by calling the UNIX operating system, returns the integer process
identification (PID) of the child process to the parent process,
andg returns NIL (false) to the child processe. Only UNIX VLISP
defines the FORK precicate.

103,

FUNCTION - create function that captures the ALIST.
(FUNCTION FUNC) =~ Creates a new function from its parameter FUNC,
which captures the current system assoc iation tist, ALIST, that
maintains the status of ftuid binding pairs. When this new func-
tion s invokeod, the captured ALIST, which contains the binding
environment during the creation of the function, is temporarily
re—established for the duraticn of the function call. The cre-
ated function then calls the olec function parameter FUNC in this
new environment with the parameters passed to the created
function.

GENSYM -~ GENerate a temporary atomic SYMbole.

(GENSYM ATM) - (Creates a new atcmic symtol that 4s not on the
hash Ltistsy, the OBLIST. It the cal ler provides the parameter
ATM, its print name is used as the print name of the newly cre-
ated symbol. 1f the caller grovides no parameter, GENSYM uses
the SYmMBOLic atom G« The created atom will be difterent from any
previous atome when the atom is printea, its print name will be
followed by a colon (:) and a wnique integer. Since the atom is
not on the hash (ists, READ and TOKEN cannot directly access the
name, even when its name, as printed, 1is input. Instead an atom
will be created on the hash lListsy OBLIST, for the input name.
Unlike atoms on the hash Lists, when an atom created by GENSYM 1is
no lonyer explticitly referencea, its space may be reclaimed.

GET = obtain property from atom praperty Llist.

(GET ATM PRP) - 0Obtains the prcperty specified by the second
parameter, PRP, a SYMBOLic atom, from the property list of the
first parameter, ATM, another atom. If ATM is not typed SYMBOL
or CONSED, or if tne property List (#CDR) of ATM does not contain
the property given by PPP, GET returns NIL.

GO - GO to PROG label.

(GO LABEL) - Special form; continues evaluation with the next ex-
pression following the given latel, LABEL, 1in the most recent
PROG . If the most recent FROG does not use the GO parameter

tABEL as a label, the interpreter recursively searches 1in the
next most recent PROG for LAEEL until reaching a level of LISP
supervision. if a tevel of LISF supervision intercepts the Llabel
"search, the interpreter prints an error message and restarts the
LISP supervisor. : '

104

GREATERP - GREATER than Predicate.

(GREATERP X. Y¥) - Returns T (true) if the first parameter, X, is
greater than the second parameter, Y. Otherwise, GREATERP re-
turns NIL (false)e The comparison is signedy, i.e. positive wval-
ues are greater than negative ones. In interpreters supporting
floating point, if the type of the parameters differ and at least
one parameter has floating type, GREATERP converts the parameter
" of lesser precision to the type of the parameter with greater
precision before making a comparison. :

IFFLAG - FLAG existence predicate.

(IFFLAG ATM FLG) = Returns T (true) if the property List (*CDR)
of the first parameter, ATMy, a SYMBOL ic atom, contains the flag
given by the secona parameter, FLGy, another SYMBOLic atom, as a’
member. Otherwise, IFFLAG returns NIL (false).

IFTYPE - 1100 LISP internal node TYPE predicate.

(IFTYPE NODE TYPE) - Returns T (true) if the type of the first
parameter, NODE, has an internal type that corresponds to the
Wisconsin UNIVAC 1100 LISP internal type specified by the second
parametery TYPEy, a fixed-poirt number. The 1100 LISP dinternal
types used by IFTYPE differ frcm the internal types wused by
VLISP.

1100 Internat VLISP

type name type

0 CONSED 0

1 INTGER 010

2 oCcTAL &

2 SINGLE D12

4 SYSTEM -2y -4, and =¢

5 Compiled Not ir data sgace

6 LINKER 2

7 SYMeoL 4

8 STRING 012+4(2* number of floating types]
(S) DOUBLE 01240z ¥t SINGLE used, else 03]

105~

INDEX - recursively apply tunction to CARs.

(INDEX LST END FUNC) =~ Functional; appl ies the third parameter,
FUNC, a functicn of two arguments, recursively to each element of
the first parameter, LST, a list, and the value of subsequent
calls to the remaining members cf LST. When applying FUNC to the
last element of the parameter LST, INDEX passes the second
parameter, END, as the second parameter to FUNZ. Thus it

LST = (X1 XZ . . . Xn)
then the call is equivalent to

(FUNC ’X“ (FUNC ’XZ e « o C(FUNC ‘Xn END) e o o))

INTO - List of values of function application to CARs.

CINTO LST FUNC) - Functional; creates a Llist of the wvalues re-
sulting from applying the seccnd parameter, FUNC, a function of
one argument, to each member, successive CAR, of the first
parameter, LST, a liste HMAPCAK is a synonym.

106

LAMBDA ~ create functione

- (LAMBDA ARG-LIST EXP1 « « « EXPr) - Special form; creates a func-
tion that wuses the first parameter, ARG-LIST, a Llist of
arguments, as arguments of the created function. The argument
list need not te a true List sirce the rightmost CDR of the Llist
need not be NIL, which ordinarily specifies the end of a list.
The members of the argument List that will act as variables must
be atoms with internal type SYMBOL. When called, the created
function binds its arguments, the members of ARG-LIST, to the
values passed as parameters in the function call by adding CONSED
node pairs to the beginning of the system association listy
ALIST. The CAR of these binding pairs consists of the argument
name as gfven by a member of ARG-LIST, and the (DR consists of
the respective value passed as 2 parameter to the ftunction <call.
The new binding obscures any gprevious binding on the ALIST with
the same variable name for the duration of the function
eva luation. If the end of ARE~-LISY, the rightmost CDR, is NIL,
ieees the list has the form ’

ARG-LIST = (X1 XZ e « s XN)

then the number of parameters passed to the function must be the
same as the number of arguments given in ARG-LIST. 1t the argu-
ment List is NIL, the degenerate case, then calls may pass no
parameters to the created function. If the end of ARG-LIST, i.e.
~rightmost CDR, . is not NIL, then it wsxust be a SYMBOLic atom to
which the created function binds a List of any parameters passed
which remain after the created function has bound the other
variables. For example, if :

ARG-=LIST = (X Y .« 2)

during a function call, the created function would bind X and Y
to the first two parameters of the function call, create a list
of any remaining parameters, anc then bind that list to the last
"List" wvariable, Z. Calls to the created function must provide
sufticient parameters for each variable exclusive of any "list"™
variable. It ARG-LIST consists ot a single SYMBOLic-atom
variable, the cgegenerate case of "list"™ variabl s, for example,
if ARG-LIST is the SYMBOLic atom Z, then during each call, the
created function makes a List of any parameters passed and binds
that Llist to the solitary “list” variable Z. After the created
function has bound any parameters passed to 1its variablesy the
function evaluates the other parameters of LAMBDA sequentfally in
the new binding environmert. After evaluating the Llast
expression, the created function restores the system association
listy, ALIST, to its state at {function entry, thus restoring the
original binding environment with any previously obscured
bindingse The created function returns the value of the last ex-
pression evaluated. :

107

LAMDA -~ apply FUNCTION to LAMbDA expression,

(LAMDA ARG-LIST EXP1 « . « EXPn) - Specital form; serves as a
shorthand for the function FUNCTION applied to the | AMBDA expres—
sion specified by the parameters of LAMDA. When called, the
function <created by LAMDA installs the binding environment
captured when LAMDA was evaluatedy, tinds any variables to the
parameters of the created function cally evaluates the remaining
expressions of LAMDA, reinstates the original binding environment
in effect before the created function calt, and returns the value
ot the lLast expression evaluateac.

LEFTSHIFT - SHIFT LEFT for positive counts.

(LEFTSHIFT X COUNT) - Returns the two” s complement
arithmetically-shifted octal representation of the first
parameter, X, a fixed=-point numter, using the second parameter,
COUNT, a signed, fixed-point number. I1f COUNT is positive,
LEFTSHIFT perfcrms a left arithwetic shift with zero fill enter-
ing from the right into the least significant bits. If the se-
cond parameter is negative, the first parameter, X, is right cir-
cularly shiftea as a 16-bit value. Ctheruise, given a 2zero
county, LEFTSHIFT creates an octal node of the first parameter
value. LEFTSHIFT uses the most significant word of floating-
point parameters as is without converting to fixed-point-number
type.

LENGTH - count LENGTH of List.

(LENGTH LST) -~ Returns an integer count of the number of members,
CARs, of the parameter LST. LENGTH repetitively performs *(CDRs
on the parameter LST until NIL is found, which represents the end
of a List in caorrect format, or until the count overflows, which
produces a system error conditicn.

LESSP = LESS than Predicate.

(LESSP X Y) - Returns T (true) it the first parameter, X, is less
than the second parameter, Y, oOtherwise, LESSP returns: NIL
(false)s. The comparison is sigred, i.e. negative values are less
than gpositive ones. In VLISF interpreters supporting floating
point, if either one of the parameters has floating-point type,
LESSP converts the parameters to the type with greater precision
bpetore making a comparison.

108

LISP - LISP supervisore.

(LISP READ-FUNC) - Iteratively prints the results of evaluating
the expression obtained by its parameter READ-FUNC, a function of
no argumentse. The LISP supervisor prefixes the returned value
with

Value:

except under UNIX in child processes of the original LISP invoca-
tion or if LISP is invoked with "-'" as a parameter of the call
from the shell. It the (LISP) call does not supply a parameter
READ-FUNC, the interpreter supplies a default S—-expression-
READing tfunctions At each call of the default READing function
by the LISP supervisor, the default function resets the input
buf fery, resets to use the standard input, resets to use the stan-
dard output, sends a prompt fcr the user on the standard output
saying

Eval:

and calls READ to obtain the next S—expression from the standard
input as the vatue of the default-READing-function call, In
those cases in which the LISP supervisor does not use the
"Value:" prefixy, the default READINng function does not print the
“eval:" prompt either. The LISPF supervision handles any errors
that are not caught by ATTEMPI~special-form calls by printing a
warning message and restarting the READ ingy EVALing, and value-
printing sequencee The supervisor may be exited by using the
RETURN function or by providing an end of file condition on the
standard dinput with UNIX EOT (control/d)e. The LISP supervisor
call returns any value of the RETURN function or NIL if no value
is provided. At the end of the start-up procedure,y, the VLISP in-
terpreter invokes a level of the LISP supervisor with the default
expression-obtaining function which converses with the user. The
VLISP interpreter prints any ncn=NIL and non~-fixed-point-numeric
vatue RETURNed by the top level of LISP supervision and uses the
value as the UNIX exit status with NIL converted to zero.

109

LIST - create a LIST from arguments.

(LIST ARG1 « « « ARGR) — Creates a List from any parameterse. 1f
the <call provides no parametersy LIST returns the empty Llist,
NIL. For example, evaluating

(LIST “w “X °Y °27)
produces the Llist
(W XY 2)

which is a shorthand used by the dinterpreter for the CONSED,
dotted-pair expressiany

(U [] (X . (Y - (Z [] NIL)))) []

LOAD - LOAD definitions frcm file,

(LOAD ASCII-FILE BINARY-FILE) - Repetitively reads and evaluates
S-expressions from the the file specified by the first parameter,
ASCII~-FILE, a tixed-point logiceal file number, until reaching end
of file or evaluating a RETURN function call. LOAD closes the
file if under UNIX and returns the Lltogical file number used.
Under UNIX, the first parameter may alternatively specify an ex~-
ternal file name, which the interpreter will open. Under UNIX,
if the LISP interpreter invocation provides file names, the in-
terpreter LOADs them before invcking a tevel of LISP supervision.
A parameter "+" must then be explicitly used to produce a sign-on
line and invoke the LISP supervisor. . The parameter "-" could
also be used to invoke the LISF supervisor without prompts under
UNIX. 1f the call provides the second parameter, BINARY-FILE, an
internal, fixed-point, togical rame, LOAD saves the parameter as
the constant binding of the atom *LOAD for use with the next
*DEPQOSIT calte Otherwise, LOAD constantly binds *LOAD with the
logical fite number computed for ASCII-FILE. The binary file
number specifies a file containing binary machine <code 1in Lload
module format to be installed in I-space later by *DEPOSIT.

LOGAND - bitwise LOGical AND.

(LOGAND ARG1 « + « ARGn) - Returns a 16-bit octal representation
of the bitwise Llogical AND of any parameters. LOGAND uses the
high-order, most-significant word of flcating-point-number para-
meters as a fixea-point value, If the call to LOGAND provides no
parameters, LOGAND returns octal negative 1, 177777@, all bits on
(true). ‘

110

LOGOR - bitwise LOGical OR.

(LOGOR ARGY + .+ o ARGN) = Returrs a 16-tit octal representation
of the bitwise Llogical OR «¢f any parameters. LOGOR uses the
high-ordery most-significant word of flcating—point-number para-
meters as a fixed-point value. If the call to LOGOR provides no
parameters, LOGOR returns octal zero, 0G, atl bits off (falsed.

LOGXOR = bitwise LOGical eXclusive OR.

(LOGXOR ARGY « « o« ARGn) - Returns a 16-bit octal representation
of the bitwise Llogical exclusive OR c¢cf any parameters. LOGXOR
uses the high-order, most-significant word of floating-point-
number parameters as a fixed-pcint valuee. 1f the call to LOGXOR
provides no parametersy LOGXOR returns octal zero, 0Gy all bits
off (false).

MANIFEST =~ signal compile time computation.

(MANIFEST ARG) - When interpreted returns the parameter ARG as
value, VLISP defines MANIFEST for use with potentially compile-
able functions to signal to the compiler that the parameter is to
be evatuated at compile time instead of being evaluated by the
compiled codes :

MAP - apply function to each final segment.
(MAP LST FUNC) - Functional; applies the second parameter, FUNC,
a function of one argument, to each final segment of the first
parameter, LST, a list, The final segments are the successivey,
non-NIL CDRs of a List. Thus it LST is NIL, the degenerate casey,
it has no final segments to which to apply to FUNC, MAP always
returns NIL.

MAPC - apply function to all members of a Llist.
(MAPC LST FUNC) = Functional; arplies the second parameter, FUNC,
a function of cne argumenty to each member (CAR) of the first
parameter, LST, a List. MAPC always returns NIL.

MAPCAR - synonym for INTO.'

(MAPCAR LST FUNC) - Functional; performs the same as INTO.

MAPLIST - synonym for ONTO,

(MAPLIST LST FUNC) - Functional; performs the same as ONTO.

111-

MEMBER - MEMBER of list predicate.

(MEMBER ITEM LST) - Searches the second parameter, LST, a Llist,
for the first congruent occurrence of the first parameter, ITEM,
using EQUAL to test for congruerce. If found, MEMBER returns the
tirst final segment of LST whose CAR coincides with ITEM.
Otherwise, MEMBER returns NIL (false).,

MINUS - arithmetic negation.

(MINUS X) - Returns the signed magnitude negation with the same
type as a floating—=point parameter X; otherwise, the integer,
two “s~-complementy arithmetic negation of the parameter X.

MINUSP - negative number Predicate.

(MINUSP X) - Returns T (true) it the high-order, sign bit of its

numerical parameter X is on, i.e. the parameter is negative;
otherwise, NIL (falsed. ’

NCONC - CONCatenate two Llists.

(NCONC X Y) - Returns the concatenation of the tuo parameters, X
ano Y, Llistsy formed by altering the end (rightmost CDR) of the
tirst parameter, X, so that the end becomes the second parameter,
Y. 1f either parameter is NIL, NCONC returns the other,

NOT - logical NOT predicatee.

(NOT ARG) - Returns T (true) it the parameter ARG is NIL (false);
otherwise, NIL. NULL is a synoryme.

NTH - count to the NTH final segment.

(NTH LST COUNT) - Returns the final segrent, CDR, of the first
parameter, LSY, a List, specified by the second parameter, COUNT,
a fixed-point number. If COUNT is positivey NTH counts from the
teft (the head) of the Liste If COUNT is negative, NTH counts
from the right f(the tail) ot the list. Otherwise, if COUNT is
zeroy NTH returns LST as is. If the absolute value of COUNY ex-
ceeds the lLength of LSTy NTH returns NIL.

NULL = NULL argument predicate.

(NULL ARG) = Returns T (true) if 'the parameter ARG is NIL
(false); otherwisey NIL. NOT is a synonym.

112

NUMBERP - NUMBER type Predicate.

(NUMBERP X) - Returns T (true) if the parameter X has a numeric
jnternal type, octaly integer, or floating-point. Otherwise,
NUMBERP returns NIL (false).

OEL1ST - apply tunction to members of the OBject LIST,

(OBLIST FUNC) =~ Functional; applies the parameter FUNC, a func-
tion of one argument, to each SYMBOLic atom which is on the hash
tists used by the READ and TOKEN routines. OBLIST returns NIL as
its value. If the call omits the parameter, OBLIST wuses a de-
fault function that prints each SYMBOLic¢ atom on the current out-
put starting each bucket, the okject Llist divisions that the hash
values reference, on a2 new line.

ONDEX = recursively apply function to CODRs.,

(ONDEX LST END FUNC) =~ Functional; applies the ¢thira parameter,
FUNCy a function of two arguments, recursively to each final
segmenty (DR, ot the first paranetery LSTy a Liste When applying
FUNC to the lLast final segment, penultimate CDR, of LST, INDEX
uses the second parameter, END, as the second parameter of FUNC.
Thus if

LST = (X1 X2 « o+ o Xn)

the call is equivalent to

ONTO - Llist of values of function application to List CDRs.

(ONTO LST FUNC) - Functional; creates a list of the values re-
sulting from applying the seccnd parameter, FUNC, a function of
one argument, to each final segment (successive non-NIL CDR) of
the first parameter, LST, a Liste MAPLIST is a synonym.

OPEN - prepare to use external fite.

(OPEN ARG MODE NUM) - Returns ar integer that can be used inter-

natly by CLEARBUFF, YERPRI, LOADy, and CLOSE to specify the exter-
nal name given by the first parameter, ARG, 3 string or SYMBOLic
atom. The optional second paraseter, MCDE, a number, specific to
the host operating system, s zero if naot given or if NIL. The
optional thirc parametery NUM, used only with the DOS operating
system, forces DOS to return that integer as the Llogical file
number. An unknown external namse (first parameter) causes a Sys-
tem error. -

113

OR - evaluate arguments until true.

(OR EXP1 « « «» EXPn) - Special form; sequentially evaluates its
parameters until a parameter evaluates non-NIL (true) or no une-
valuated parameters remaine OR returns the value of the Ltast
evaluated parameter.

PIPE - create UNIX PIPE.,

(PIPE) - Returns a CONSED node (dotted pair) of two “integers
whose CAR ana CDR (left anc right) specify read and write
togicaty internal file-numbers used by CLEARBUFF and TERPRI,
respectively, to communicate arbitrarily among the future
offspring of the current process and itself. Only UNIX VLISP de-
fines PIPE.

PLENGTH = Print LENGTH courte.

(PLENGTH ARG) ~- Returns an integer that represents the number of
characters which would be used by PRINT to print the parameter
ARG without escapes or line feecse.

PLENGTHZ - Print LENGTH with escapese.

(PLENGTHZ2 ARG) -~ Returns an integer that represents the number of
characters which would be used ty PRINZ to print the parameter
ARG without Lline feeds but with any escapes which would be needed
by READ to re-read the output of PRIN2 as input.

PLIMIT - manipulate Print routine LIMITs.

(PLIMIT ARG) - Returns a CONSed node (dctted pair) of dintegers
that represent the maximum ¢grint depth and length Limits of
tistss when passedy the optionzl parameter ARG, a dottea pair of
integers in the same format as that returned, changes the respec-
tive print limits. Wwhile composing output, the print routines
use ampersand (&) in place of sublists which exceed the depth li-
mit and use two hyphens (=-) in place of the CDRs of sublists
which exceed the length Limite.

114

PLUS - sum parameters.

(PLUS ARGT1 « « + ARGN) - Sums the parameters from left to right,
converting either the next parameter cr the current subtotal to
the type of the one with higher precision if either has
floating-point type, PLUS does not check for addition overflow
when adding two fixed-point valiues. The value returned has the
type of the highest precisicn parameter used. If all of the
parameters have fixed-point type, PLUS returns an integer total.
I1f the PLUS call gives no parameters, PLUS returns integer zero
(0), the empty total. The single-character-atom "+" i3 a synonym
for PLUS.

PRINT - compose object for PRINTing and send.

(PRINT ARG) - Composes an external representation of the para-
meter ARG in the output buffer; sends the entire contents of the
output buffer to the current output Llogical~-file given by
*TERPR]I; and prepares the output buffer to compose a new line of
outpute. Whenever PRINT fills the output buffer, it sends the
buffer and continues composition at the beginning of a new Lline.

PRIN1 - compose object for PRINting.

(PRIN1 ARG COL) - Composes the external representation of the
first parameter, ARG, in the ocutput buffer starting at the cotumn
given by the optional seconc parameter, COL, a fixed-point
number. Skipped columns that have not previously received a
character contain blanks (ASCII spaces). PRIN1 replaces an omit-
ted second parametery COLy with the current output column. It
sends the contents of the output buffer to the current output
file when the Llength of the external representation requires
positions beyond the end of the output buffer and continues com-
position at the beginning of an empty buffers

115

PRINZ - compose re—-readable output.

(PRIN2 ARG COL) - Composes an external representation of the
first parameter, ARG, in the output buffer in a format that READ
could use to reconstruct a congruent object. PRINZ2 places the
most recently defined escape charactery, which is initially excla-
mation point ('), before characters with readmacro or delimiter
status used in SYMBOL atom print names and before SYMBOLic atom
names whose first character is a number (0-9). It surrounds
strings with the most recently de fined string delimiter
character, which is initially couble-quotes (*), and doubles any
instance of a string delimiter character within stringse. It
starts composing in the column specified by the optional second
parameter, COL,y a fixed-point number, in tieu of composing into
the next available column. Skipped columns that have not pre-
viously received a character contain blanks (ASCII space). PRINZ2
sends the contents of the output buffer to the <current output
file when the Llength of the external representation requires
positions beyond the end of the output buffer and continues com-
position at the beginning of ar empty buffer. It cannot compose
re-~readable external representations for function LINKERs, the
interpreter workspace, and stacks. The print routines compose
the "unprintable®™ object within square brackets ([J) with either
the name of system defined function LINKERs, the LAMBDA parameter
tist ot user defined function L INKERS, the bytes as characters of
short arrays (less than 128 bytes), or a question mark (?)
preceding an octal number for Lcng arrays and parts ot the inter-
preter workspace and stackse

PROG -~ PROGram special forx.

(PROG ARG-LIST
LAB EXP1
[3 [] []
EXPn) - .

Special form; places binding pairs on the system association
tisty, ALIST, for each member (CAR) of the first parameter, ARG~
LISTy, a List <¢f arguments consisting of SYMBOLic atoms and
sublistse. PROG binds each wember that is a SYMBOLic atom, a
variabley to NIL of the dummy argument list, ARG-LIST. The CAR
of each sublist of the argument list is also a SYMBOLic atom
which PROG binas to the value ottained by evaluating the second
member of the sublist, the CADR, It ARG-LIST is NIL (empty),
PROG places no new bindings on the association list, After PROG
binds any arguments, PROG sequentially evaluates any remaining,
non-atomic parameters until either evaluating the G0 special
form, evaluating the RETURN furction, or reaching the end of the
parameter List. The unevaluated atomic parameters are labels for
the GO special formes After evaluating the GO special form, PROG
restarts the sequential evaluation with any parameter follouwing
the PROG label used as the unevaluated parameter of GO. If PROG
evatuates the RETURN function, PROG uses the value of any RETURN
function parameter as the value of the PROG call and ceases se-

116

quential evaluation of further PROG parameters. If PROG evalu-
ates a RETURN function call without parameters or if it exausts
the supply of parameters to evaluate, it ceases and returns NIL
as value. In any case, as PROG returns, it restores the system
association list, ALIST, the olc binding environment existing be-
fore the PROG call. B :

PROP - obtain PROPerty list pair.

(PROP ATM PRP FUNC) - Functional; returns any property binding
pair on the prcoperty list of the first parameter, ATM, a SYMBOLic
atom. The property binding pair caonsists of a CONSED node
(dotted pair) whose left part (CAR) is the second parameter, PRP,
a SYMBOL1ic atomy the property name, and whose right part (CDR) is
the current binding (value) of the property. 1f ATM has no ap-
propriate property bindingy, PROP returns a value by calling its
third parametery, FUNCy a functicn of no arguments.

PUT = PUT property binding on property Liste

(PUT ATM PRP ARG) - Replaces the property value of the property
namey PRPy, a SYMBOLic atomy, on the property list of the first
parameter, ATM, another SYMBOLic atomy with the third parameter,
ARG, If the specified property does not exist on the property
listy, PUT creates a property birding paire. It returns the first
parameter, ATM, whose property list it modified,

QUOTE - use argument as is.

(QUOTE ARG) ~ Special form; returns its parameter ARG as 1iS..
Since special forms receive parameters without prior evaluation,
QUOTE returns its parameter ARG without evaluation, The READ
function recognizes the single quotatiocn mark (°) followed by an
S-expression as a shorthand for a list of the SYMBOLic atom
"QUOTE" and the S-expression. For example, if READ encounters
the characters

“¢(A B C)
it produces the List

(QUOTE (A B C)) .

117,

QUOTIENT - divide argumentse

(QUOTIENT X Y) - Returns the cuotient of dividing the first
parameter, X, by the second parameter, Y. 1If either parameter
has floating-point-numeric type, QUOTIENT converts the parameter
of lesser .precision to the type of the other before dividinge.
Otherwisey, QUOTIENT returns an integer whose vatue is the
number-theoretic quotiente. The single-character-atom */* is a
synonym for QUOTIENT.

READ - create S-expressions from input characters.

(READ) - Returns an S-expression createa from input <characters
starting at the current input buffer positions. Upon encountering
a List opening character (™(", ¥[", “<™, or “{"), READ recursive-
ly calls dtselt to obtain members of a list expression. After
encountering a List closing character (®)*, ®1", ">*, or "}"),
READ completes each sublist under construction until matching a
corresponding list opening character. READ creates a CONSED node
of the expressions before and atfter a period (e)o It ignores ex~-
cess list close characters and any characters after the comment
character, initjially question wmark (7Y, up to the next non-
printing ASCII character, such as a neuw—line character (012),
which delimits any token being scanned.s When READ encounters
user-defined readmacro characters, it uses the value of a call to
the associated readmacro. Otheruise, it calls the scanner,
TOKEN, to return the next item scanned in the input butfer. For
exampley, the S-expressions READ creates from the characters

L<A “B> (C o D) NILD

or
(CA o C(QUOTE o (B o NILD) o« AILD) o ((C o D) o (NIL o NILD))

or

({A “B)Y . <C . D> D)
are congruent. Whenever READ reaches the end of the input
buffer, it calls the operating system to obtain more ASCII
characters from the current input files

READCH - READ a single-CHaracter atome.

(READCH) - Returns a single-character, SYMBOLic atom which repre-
sents the next character in the input buffery regardless of any
delimiter or readmacro status cf the character. I1f READCH finds

no turther characters in the input’ buffer, READCH calls the
operating system for another Lire of ASCII characterse. :

18

READMAC - maniputate_character READMACro status.

(READMAC CHAR ARG) = Returns the existing readmacro status of the
character specified by the first parameter, CHAR, which STRING,
called by READMAC, converts irto a single character string. 1If
the character is not a readmacrc character, READMAC returns NIL
(false)e. If the character sgecifies a user defined readmacro,
READMAC returns the function LINKER that the user established to
be. called by READ whenever READ encounters the character while
looking for the start of a new token. Ctherwise, READMAC returns
a pseuago-function LINKER used by a system defined readmacro, e.g.
the question mark (?), comment character, or the single quotation
mark (“), QUOTE S-expression character. If READMAC gets the

‘'secondy optional parametery, ARGy, READMAC establishes a new read-

macro status following the same rules wused to return the old
readmacroe

REMAINDER - REMAINDER after division.

(REMAINDER X YY) = Rethrns the number-theoretic remainder of di~
viding the first parameter, X, by the second parameter, Y, when
both parameters are fixecd-point numbers.

REMOB - REMove (0Bject from hash lists,.

(REM(OB ATM) -~ Searches the apprcpriate hash List for the para-
meter ATM, a SYMBOLic atom. If REMOB finds the atom and the user
created the atom as opposed to the atom existing during sign-on,
REMOB removes the parameter from the hash List and returns the
parametere. KEMOB also accepts a wuser-caode-area, function
master-LINKER &as the parameter ARG. If REMOB had not previously
marked the user-code area specified by the I-space address of the
master-LINKER as unused, REMOE marks the code area as unused so
that any points referenced by the code area may be reclaimed and
returns the parameter, the function master-LINKER. Otherwise,
REMOBR returns wnIL (fatse)d.

REMOBP - REMoveable OBject Predicatee

(REMOBP ARG) - Returns T (true) if the garbage collector could
potentialtlly reclaim the parameter ARG, i.e. the user defined the
object after 1invoking LISP. Otherwise, REMOBP returns NIL
(false).

119

REMPROP - REMove PROPerty from property list.

(REMPROP ATM PRP) - Removes any property binding pair indicated
by the second parameter, PRP, a SYMBOLic atom, from the property
list (*CDR) of the first parameter, ATM, another SYMBOLic atom.
REMPROP returns the first parameter, ATM, whose property list
REMPROP altered.

REQUEST - output query for S-expression input to evaluate.

(REGUEST ARG) - forces output of the parameter ARG to the current
output file without 3 carriage return and then returns the eva-
luation of the next S-expressior read from the current input.

RETURN - RETURN to caller.

(RETURN ARG) = Returns the most current invocation of the PROG
special form, the LOAD functior, or the LISP supervisor to their
caller., The caller receives any optional parameter ARG as the
value of a caltl of PROG or LISP. 1f RETURN has no parameter,
RETURN returns NIL. When RETURN leaves the top tevel of LISP
supervision, the interpreter may exit tack to the operating sys-
tem using any RETURN parameter as statuse.

REVERSE - create REVERSEd Llist.

(REVERSE LST) - Creates a new lList whose elementsy, CARs, are the
elements of the parameter LST, a list, in reverse order. If the
parameter LST is NlL, the empty listy, REVERSE returns NIL.

RPLACA - RePLACe CAR.

(RPLACA ARG ITEM) - Replaces the lefthand side, *CAR, of the
first parameter, ARG, usually a list, with the second parameter,
ITEM, RPLACA returns the altered first parameter, ARG. In order
to preserve system integrity, the first parameter of RPLACA
should not be an integer or string node.

RPLACD - RePLACe CDR.

(RPLACD ARG ITEM) -~ Replaces the righthand side, =*CDR, of the
first parameter, ARG, usually a list, with the second parameter,
ITEMs RPLACD returns the altered first parameter, ARG. In order
to preserve system integrity, the +tirst parametery, of RPLACD
should not be an integer or string node.

120

SET - change fluid binding.

(SET ATM EXP) =~ Replaces any previously existing constant
(global) binding given by a non-zero pointer in the constant
binding cell (*CAR) of the first parameter, ATM, a SYMBOLic atom,
a variable, with the second parameter, EXP. I+ ATM has no
constant binding, SET searches the system association list,
ALIST, for a binding dotted-pair whose lefthand side (CAR) is the
first parameter, ATM, and whose righthand side, CDR, is the pre-
vious fluid binding value that SET will replace with EXP. If SET
can find no binding pair for ATM, it inserts a new binding pair,
consisting of a CONSED node (dotted pair) whose CAR is ATM and
whose CDR is EXP, on the current system association list just be-
low a marker, the atom LISP, added to the list by the most cur-
rent lLlevel of LISP supervision. Any such binding disappears as
the current Level of LISP supervision exits. If SET cannot find
any marker to use in the latter case, usually because a level of
LISP supervision is not in effect during LOADiIing at start-up und-
er UNIX,y the LISP interpreter exits in error mode (107).

SETCOL - SET next COLumn t¢ read inpute.

(SETCOL COL) - Sets the input rcutines, READ, READCH, or TOKEN,
to obtain the next characters from the input-buffer column indi-
catec by the parameter COL, a fixed-point number,

SETQ - Quote the first argument of SET.
(SETQ NAME EXP) - Special form; serves as an abbreviation for
(SET “NAME EXP)

since SETQ only evaluates the second parameter, EXP. SETG fluid-
ly binds the first parametery NAME, a SYMBOLic atom, a variable,
as is, without evaluation. Thusy in the example, SETQ alters the
ftuid binding of NAME rather than any variable which coutld have
been bound to NAME.

121.

SH = UNIX SHell.

(SH ARG) - Invokes the UNIX shelly the operating system command
interpreter, With an implicit "“-¢c* ogtion, using any optional,
given parameter ARG, which SH converts to a string followed by a
zero byte, as a shell command line. It SH gets no parameter, SH
invokes the UNIX shell without cptions ar parameters, so that the
shell will read commands from the current standard input file.
Wwnile SH waits for the shelt command interpreter to finish, SH
jgnores the standard (DEL) ard quit (CNTR-SHIFT-L or CNTR-
Backslash) asynchronous interrupts. While uwaiting, SH absorbs,
without notificationy, any other offspring created by forking that
terminate concurrently. SH returns an octal representation of
the status word that the operating system returns in CPU register
R1y %1« Only UNIX VLISP defines SH.

SINGLE - convert to SINGLE precisicon floating.

(SINGLE ARG) - Converts the parameter ARG 1into a single-
precision, flcating-point value (two 16-bit words)e. VLISP de-~-
fines DOUBLE only when deftining both doubte and single precision
floating=point-number types. ’

SPACE - set vertical output SPACE count.

(SPACE ARG) - Sets the number c¢f wvertical spaces, Line feeds
(012), given by the parameter ARGy 3 fixed—-point numbers, that
will precede the next output frcm the output composition buffer.
If ARG is zero, SPACE outputs a carriage return (015) and no line
feed, which will allow many ocutput devices to overprint the cur-
rent Line with the next. If AR€E is lLlarge (greater than 64) or
negative, SPACE outputs an ASCII form feed (014) instead of any
Line feeds, which causes many ouLtput devices to perform top of
form actions. Alternatively, ARG may be NIL, which causes the
next tine of output to be® sent without carriage control
characters. Thus SPACE with a NIL parameter may be used to send
a prompt without advancing to a neu line. SPACE sends any
control characters to the currert output file immediately.

122

STACK - STACK list as argumsents to function call.
(STACK LST) - Special form; evaluates the members (CARs) of. the
parameter LSY, a listy, and passes the values as parameters to the
most immediate, surroundingy furction call being constructed. 1If
LST is NIL (the empty List) STACK passes no new parameters to the
function call bpeing constructed. For example, evaluating the
function call .
(FN A “B “C D)
is equivalent to evaluating the function call
(FN A “B (STACK (LIST “C D)))

that uses a STACK invocation.

STRING -~ convert to STRING internal type.

(STRINu ARG) - Converts the parameter ARG into internal type.
STRING. If ARG already has type STRING, STRING returns it.
STRING uses the print name of SYMBOLic atoms, exclusive. of any

GENSYM number. It produces the printed representation of all
other internal types and converts the characters into a stringe.

SUBST - SUBSTitute one item for another in S—-expression.

(SUBST NEW OLD EXP) - Returns a copy of the third parameter, EXP,
an S-expression without cycles, with - all occurrences that are
congruent (EQUAL) to the seccnd parameter, OLD, altered recur-
sively to the first parametery, AEW. The returned S-expression
creates new LU(ONSED nodes only for subexpression which have been
altered.

SUB1 - decrement argument.
(SURT X) - Subtracts 1 from the parameter X. If X has floating-

point type, SUB1 returns the same type. Otherwise, SUBR1 returns
an integer.

123

SYS - call UNIX operating SYStem.

(SYS X ARG1 . « « ARGN) = calls the UNIX operating system by con-
stucting an indirect “sys" instruction call using the parawmeter
Xy, which SYS converts into a {ixed-point number, as the offset,
low orcer byte, by bituisey Llogically ORing the valuese. SYS
passes any remaining parameters as paraweters following the ™sys"
call, after appropriate conversionse. It passes the values of
fixed-point numbers, pointers to floating-point . numbers, the
texts ot arraysy and the I-space addresges of other function
LINKERSe If neededy, SYS converts strings, the print names of
SYMBOLic atoms, and lists, whcse members SYS assumes to specify
single characters, into strings which have a 2zero (null) byte,
the delimiter for strings passed to the UNIX operating system.
SYS also places the lLast two values computed from the parameters
into registers, R1 and RO. SYS returns an integer representation
of the value returned in CPU register RC by the operating system.
Only UNIX VLISP cefines SY¥S.

TERPRI -~ TERminate and send PRInt buffere.

(TERPRI FILE) - Sends any outptt in the printing composition
buffer to the Llogical, interral file-number given by the para-
meter FILE, a fixed-point number obtained from the operating sys-
tem as the value of OPEN or similar function c¢alls under UNIX.
It TERPR! gets no parameter, VTERPRI sends the composition buffer
contents to the current output files. If FILE is NIL, the current
output is sent to the standard cutput file. TYERPRI saves the
current parameter FILE, as the constant (global) binding of the
SYMBOL i¢c atom, *TERPRI, to redefine the current output for calls
to PRINT, PRINT and PRIN2. The LISP supervisor resets the cur-
rent output file to the standard output file before printing
values.

TIME - TIME in clock ticks.

(TIME) ~ Returns an octal representation of the low order uword of
the current time measured in system clock ticks by the operating
systeme The SYS or TRAP function may obtain the high-order word
of the time uncer UNIX or DOS, respectively.

124

TIMES - multiply arguments.

(TIMES ARGl « « « ARGN) -~ Multigplies the parameters from lteft to
righty converting either the rext parameter or the current sub-
product to the type of the one with higher precision if either
has floating-point type. If VLISP supports double-precision
floating-point and the product o¢f two fixed-point values, uith
signsy, cannot be represented by a 16-bit, signed, fixed-point
number, TIMFS converts the subgroduct to double precision to
avoid losing information. If VLISP supports single-precision but
not doublte-precisiony, TIMES converts a fixed-point product that
overflows into a single-precisicn value. If VLISP does not sup-
port floating-point arithmetic, TIMES uses the lLow order word of
alt products, even if multiptication overflows. I1f the TIMES
function gets no parameters, TIMES returns integer one (1), the
empty product. The single-character-atcm "“** is a synonym for
TIMES.

TOKEN - scan next input TOKEN.

(TOKEN) - Scans and creates an atom from the next position in the
input buffer. TOKEN iJgnores the readmacro status of most
characters. 1t skips ASCII blarks and commas before starting the
scan and converts any alpha characters which are not in the stan-
dard case into the corresponcing characters in the other case.
If VLISP uses Lower case characters for system defined atom
namesy, TOKEN will convert upper case characters in SYMBOLic names
into lower case characters as they are scanned. TOKEN terminates
scanning after encountering a character with delimiter status and
positions the read routine input buffer pointer so that the deli-
miter character will be reaac first by the next call to READ,
TOKENy or READCH. When TOKEN encounters an escape character,
initially exclamation point ('), while scanning any atom other
than a string, TOKEN uses the fcllowing character as is, regard-
less of any delimiter or readmacro status of the character. The
result of scanning an atom which possessed an escaped character
is a SYMBOLic a«tom, even if the format of what was read is other-~
wise that ot a number. When TCKEN encounters a string delimiter
character, initially double quotes ("), in the first wunskipped
position, TOKCtN creates a string using the characters as they
appear, regardless of readmacro or delimiter status, using each
pair of string celimiter characters as a single string delimiter
character, until TOKEN finds an wungaired string delimiter
character which ends the string scan. When TOKEN scans the list
opening or closing characters as the first unskipped character of
the input buffer scan or any other character with delimiter sta-
tus on which it does not perform exceptional actions, it returns
the corresponding single-character atom and positions the input
buftfer point to read the following character on the next call to
READ,y TOKEN,y or READCH. 1f TOKEN has not completed scanning but
has reached the end of the input buffer, it obtains a new line of
input trom the current input file.

125

TRAP - call DOS or V0S operating system.

(TRAP ARGO ARG1 « &« « ARGN) = Calls the Virtual Operating System:
(VOS) or DEC”s ©Disk Operating System (pOS) through the VOS
emulator, performing an indirect system call using the TRAP in-
struction offset given by the first parameter, ARGO, a fixed~-
point number. TRAP converts any remaining parameters into values
which it places in CPU registers RO to R4 before the indirect
call. It converts numbers to their values, obtains the starting
aduress ot array data when giver a function linker to an array,
uses the start of data of strirgs and the print name of SYMBOLic
atoms, and the CAR pointer ot CCNSED nodes. It converts NIL into
a zero value. TRAP returns a CCNSED node (dotted pair) of octal
representation ot the values the operating system returned in CPU
registersy, RO ana R1. Only DOS and VOS VLISP detine TRAP.

UNBREAK —- UNdo the BREAK tunction binding.

(UNBREAK ATM) - Recreates any ccnstant function or special form
constant (glopal) binding of the parameter ATHM, a SYMBOLic atom,
a variabley which existed before a prior BREAK cally, with ATM as
the first parameter of the EREAK call. If ATM has no binding
createo by a BREAK call, UNBREAK changes nothing. UNBREAK re-
turns ATM with any changed binding.

UNFLAG - remove FLAG from groperty Lliste.

(UNFLAG ATM FLG) - Removes the second parameter, FLG, @ SYMBOLic
atom, trom the property list of the first parameter, ATM, another
SYMBOLic atom. 11 the property list cdoes not contain the flag,
UNFLAG makes no changess UNFLAE returns the first parameter,
ATM .

"WALIT - WAIT for concurrent process terminatione.

(WwAIT) - Pauses if the current process has active children,
usually created by the FORK predicate, and no child has ter-
minated whose remnants still exists Upcn finding an existent,
terminated childy WAIT removes the remnants of the child process
and returns a CONSED node (dotted pair) of two ‘integers returned
by the UNIX coperating system in registers RO and R1, which give
the child”s process identification number (PID) and termination
status word, as the CAR, lefthand sides, and CDRy righthand side,
respectivelye. 1f the current process has no children, WAIT gen-
erates an internal-type=~zero (() error. Only UNIX VLISP defines
WAIT. - o ’ T ’

126

1EROP -~ ZERO Predicates.

(ZEROP X) - Returns T (true) it the high-order word .of its nu-
merical parameter X is zero; otherwise NIL (false)e If the
high-order wora of floating-point values is zero, floating=point
hardware treats the value as zero. Fixed—-point values consist of
the high-order word.

*BEGIN - HEGIN new area for compiled code.

(*BEGIN ARG) - Returns a master LINKER whose I-space address be-
gins a new area which may receive compiled code and whose *(CDR
(Lefthand side) is the parameter ARG. By convention, ARG should
be an S-expression which evaluates back to the master LINKER that
*BEGIN creates. VLISP defines *BEGIN only if supporting compiled
LISP codee

*CAR - unrestricted CAR.

(*CAR ARG) - Finds the unrestricted CAR (lefthand side) of the
parameter ARG. The *CAR of CONSED nodes is the same as the CAR;
of LINKERS, the associated pcinter; of SYMBOLic atoms, any
constant (global) binding or a rointer whose value is zero if the
SYMROLic atom has no constant tindings The *CAR of strings is a
word consisting of the first two Ltytes; of ftoating-point
numbers, the second word; and cf fixed-point numbers, the value,
each returned as a value insteac ot a pointer to the value. Such
values should not be retained while any other node is allocated,
since garbage collection may be misled.

*CDR ~ unrestricted CDR.

(»CDR ARG) - Finas the unrestricted CDR (righthand side) of the
parameter ARG using the value indicated as a pointer. The *(DR
of CCONSED nodes is the same as the CDR; of SYMBOLi¢c atoms, it is
the property List. The *(DR of numbers (the high-order word) ang’
of strings (the byte Llength), and of LINKERS (the I-space
adaress), each returned as values rather than pointers to values,
should not be retained while al locating any other node, since
garbage collection may be mislec.

*CHAIN - ¢btain definition of CAR-CDR chain function.

(*CHAIN ATM) - Returns the defiring string of any CAR-CDR <chain
function which 1is constantly bound to the parameter ATM, a
SYMBOLic atom; otherwise NIL (false). *CHAIN calls *CAR to ob-
tain any constant binding of ATV,

127

*DEF - obtain LAMBDA function definition.

(*DEF ATM) - Returns the LAMBDA parameters (in a list) which were
used to create the function constantly (globally) bound to the
parameter ATM, a SYMBOLic atom; otherwise NIL (false). *DEF
calls *CAR to cobtain any constart bindirg of ATM,

*DEPOSIT - create mastervLINKER for binary input.

(*DEPOSIT ARG) - Returns a master LINKER whose I-space address
specifies an area of user coce read from the file given by the
constant binding of *LOAD, a fgreviously-opened, logical file-
number given as the last parameter of the most recent LOAD func-
tion calls. The file read is in DEC absoclute or a.ocut format de-
pending 'on whether VvO0S, possibly emulated by DOS, or UNIX is the
host operating system, respectively. The lefthand side (*CAR) of
the created master LINKER is the parameter ARG, which convention-
ally is an S—-expression which evaluates back to the master
LINKER . VLISP defines «DEPOSITY only if supporting compiled LISP
code « -

*EMIT - install value into writable I-space.

(AEMIT MASTER POINTER POINTER-OFFSET ARG-OFFSEY ARG) - Places the
last parameter, ARG, a pointer to a node as modified by the
penultimate parameter, ARG-OFFSET, a tfixed-point number, into a
location determined by/adding the opticnal parameter, POINTER-
OFFSETYT, a fixeag-point number, to the pointer given by the table
of pointers Location, the parameter POINTER, a fixed point
number, from the start of the user I-space area indicated by the
*CDR ot the first, optional parameter, MASTER, a master function
LINKER . The parameters may be omitted in the order third,
secondy firsty and fourth, which are POINTER-OFFSETysy POINTER,
MASTER, and ARG-OFFSET, respectively. If *EMIT gets only the
Last two parameters, *EMIT places ARG as modified by ARG-QOFFSET
into the next available location for generated code, and places
an entry which references the mcdified parameter into "the table
of offsets at the end of the user code area. It *EMIT gets only
the last parameter, ARG, a fixec-point number in this case, it
places the value of the number into the next available I-space
generated code location. *EMIT always returns NIL. VLISP only
defines *EM1T if supporting compiled LISP code. s

124

*gPT - obtain location from Entry Foint Table.

(xEPT X) - Returns the function LINKER or pseudo~-function LINKER
counted by. the parameter Xy a fixed-point number, from the be-
ginning of the entry point table, which starts in the first page
of function LINKERS., The ertry point table begins with the
pseudo-function lLinkers used by system readmacros. If VLISP sup-
ports compiled code, the readmacro pseuco-~function LINKERs pre-
cede pseudo-functions. giving I-space addresses used by compiled
code and constants within the system workspace. The system func-
tion LINKERs follow the pseudo=-function LINKERS. :

*EXAM - obtain value from user code areae

(*EXAM MASTER FOINTER POINTER-OFFSET) - Returns an octal repre-
sentation of - the value at the user-code-area lI-space address ref-
erencea by the second parameter, POINTER, a fixed-point. number
which indicates a pointer address, modi fied by the optional third
parametery POINTER~-OFFSET, another fixed-point number, found . by
adding the offset found from the end of the table of pointers at
the end of the user code area indicated by the first parameter,
MASTER, & master LINKERy to the I-space address given by the
master LINKERe. If *EXAM gets orly the first parameter, MASTER,
it returns an octal representation ot the value at the address
referenced by MASTER. If the calculated address is not in the
user code area, *EXAM returns NIL (false).

*MACRO = obtain MACRO defirition.

(*MACRO ATM) « Returns the function LINKER which DEFMAC used to
create a macro special form anc constantly {(globally) bind it to
the parameter ATM, a SYMBOLic atome *MACRO calls *CAR to obtain
any constant binding of ATM, I1f *¥ACRO finds no appropriate
bindinyy it returns NIL (false). ‘

*0RG - return LINKER to next available code location.

(*ORG ARGO ARGT « « « ARGR) = Returns a function LINKER whose 1I-
space address is the next available location for compiled code
and whose lefthand side (*CAR) dis the first parameter, ARG0D, an
S-expression which conventionally 1is the master LINKER to the
current code area. If *0RG receives additional, optional
parameters, it sums the parameters anc¢ uses the total as the 1-
space address of the returned function LINKER. VLISP defines
*ORG only if supporting compilec LISP code.

129

*REVERSE - REVERSE list without generating new nodes.

(*REVERSE LST) - Returns a Llist by altering the righthand sides
(CbRs) of the parameter LST, a Llist, whose members (CARs)
*REVERSE returns in reversed orcer. If LST is NIL, *REVERSE re-
turns NIL, the empty Llist. *REVERSE generates no new nodes while
reversing LST.

*SPEC - obtain SPECial forw defini tion.

(*xSPEC ATM) - Returns the function LINKER which DEFSPEC wused to
create a special form and constantly (globally) bind it to the
parameter ATM, a SYMBOLic atom. *SPEC calls *CAR to obtain any
constant binding of the parameter ATM, If «SPEC finds no appro-
priate binding, it returns NIL (false).

The name "VLISP¥ should be changed throughout to ULISP.

]
g
‘.l.

A wersion of LISP kncwn as VLISP was released in Prance in

advertent name

.
H
L

1976. The author apologizes for the

duplication.

COMPUTER VISION LABORATORY

Image Analysis 301-454-4526
Picture Processing

ULISP DISTRIZUTION INFOPUATION

ULISP can be suvmvorted by PDP-lls with memory manaaement,
i.e. 11/4%, 11/45, and 11/7%, using 2ither the UNIY overating
systems or DOS. In order to sunoort LISP comniled code under the
UMIX onerating system, 2t 1least 82K words of primary memory
should be available and the UNIX operating system will need some
modification., More information is available in the manual:

ULISP for PLP-1ls with Memocry Management, TR-5456,
Rohert L. ¥irhy

Computer Sciencz Center

University of Marvland

College Park, Maryland 27742

June, 19%77.

If you want a cooy of ULISP, nlease sena:

1) A& check for £75.489 (US) rpavyable to the Computer Science
Center, Universitv of Marvland (or purchase order) for the
distribution costs (no warranty or service is ianlied);

2) A sianed covv of the ULISP copvright licenss which will be
raturned to you with my signature;

3) Choire(s) of oweratind system (DOS or UNIX) which will
surport ULISP;

4y Srvecifications of the density of the 92-track tave (822 or
159¢ FPI) and format (UNIX "tp" format or DOS-PIP format)
which will he sent containina two corieg of: .
2) 2 load module version of ULISP,
n) the ULISP source code,
c) LISF software, _
4) if the UMIX orerating svstem is to bhe used, UNIX svsten

modification instructions and short manuals;

%) A descriotion of each configuration which will supnort ULISP.

The deccrigtion will he used to create an apgnrooriate
ULISPF load module. The descrintion should include:

3) the number of words of »rimary memorv,

h) the vrocessor model (/4&, /45, etc),

c) the availability of a2 f£loatina coint nrocessor,

d) the vrint width (in columas) of terwminals. (Cive the
narrowast orint width of terminals which will not
wran—=3round when sent characters ©teyond the 1last
column,)

Computer Science Center, University of Maryland, College Park, Maryland 20742, U.S.A.

COMPUTER VISION LABORATORY

Image Analysis 301-454-4526
Picture Processing

GLISP CCPYRIGHT LICENSE

I grant the licensee, (name2 and address)

permission to us=2, covy, and modify my ULISP, LISPE intercreter,
ULISP related software, and documentation for use by the licensee
and for 4distribution to other ULISP convright licensees vrovided
that: : :

1) The convriacht notice :

COPYRIGHT 1979, Robert L. Kirby
is consvpicuouslv rlaced on 2all conies and versions 1iacluding
nhysical media used for transmission (such as magnetic taces) and
within ccrvies of source code;

2) The interactive-mode siagn=-on 12ssad2 of the ULISP intervreter
continues to include the copvright notice;

3) Copies and versions are transmitted only to the licensee or to

other ULIXP cooyriqht licensees;

4) If the ULISP version for the UNIX orperatina systen, which

contains modified UNIY¥ software, 1is resauested, the licensee
r

maintains a UWIR license agreement with Western Electric
Cormoration; and

5) A responsible agent of the licensee has acknowledasd agreement
to these conditions.

For the licensee:

robert L. Kirby
Computer Sciesnce Center
{T

Cclleae Park, tacvland 26742

O
Q
o
D
Lu

Computer Science Center, University of Maryland, College Park, Maryland 20742, U.S.A.

———e

