= (B
Z e
L) . T
o Z
M, | . =
. »
= | =
= 4
(a8 , T
= 5 -2
QD ‘ | o =
_ Y , LL.
= _ o 2
E . : N
> o - - 2
=3 | ,

s

INTRODUCTION

ALISF is 8 timesharing and batch LISF 1.5 sustem orerating
on the CIOC Cuber-74 installastion at UMASS. It is similiar to the
ALISF sustem rFreviously orerating on UMASS timesharing with the
CoC 34600/3800. Some of the features of ALISF include! asutomatic
dunamic addustment of 311 storage aress ur to the user’s field
length limits uniform definition of furnctions using the value
cell of literal atomsi exrlicit turing of 311 data forms for
faster execution and redundancwy testssy overlaw comelier and
assemblers filindgy editing and rrettu-rrint rackades for
time-sharindg. Arrlications rackadges include a8 full-scale
relational diE embedded directlw inm ALISF» and GRASFER» 3 drarh
languade (see serarate marmusls for these rachkades). :

A few words asbout the marual. It was written with care and
an attemrt at rrecisiorn arnd clarityy and should be read in the
same sririt. There are gsome wunavoidable omissions and

ambiguitiessy but most of the information vou need 1is findable
inside? exercise ratience. Since LISF is found by manmw to be a
difficult langusde concertusllyy I heartily recommend that wou do
not +truy to learn it simerly from this marualy since I bhave
rre~-surrosed 38 modicum of LISF asbility. Using one of the
learnind manuals available (such as Weissman’s LISE L.S_Ercimer or
Ihe_lLittle_Liseer)s along with this as 3 reference manualy is 3
very fime and rainless waw to learn LISF.

This is more than 3 dense reference manualr however. Inside
youu will find lots of goodies and tirs on LISF rrodrammingy as
well as discussions of some exotic rarts of LISP barelwy touched
on by the learning manuals (such as READ mscros). While it does
not read like a8 novels it would be most helerful if wou could skim
through it and familiarize vwourself with its contents hefare
sitting down for 2 heavy session at the terminal. Much temrer
and riffling through rades will be saved

ON CONVENIIONS

Conventions hels make this marnual more readable and less
wordy., Certain rre—defined words are used externsively
throughouts consult the Glossary when in doubt as to their
meaning. '

Numbers are alwaws written using base 10 (decimal)

rerresentations unless the letter *R* arrears at the end of the
diditsi indicating an octal number. An ortionzl exronent can

arrear after the "R"$} this exrorent is a8 base 10 inteder
srecifuing a left-shift count for the octal digits erreceeding it.

Examrles:

13R = 11
1021 = 8 % 2%x%21

in an obvious fortran—ture motation for the exronent.

The boxed notation for rerresenting S—exerression is used
several timesy esrecially in section I.3. A dHood referenrnce for
this convention is Weissmarn’s Primer. Usuazl notation for
S—-exrressions is the rarenthesized linear structure used on insut
to READ. Note that a3 comma ®»" is used rather than 3 dot ".* for
a8 deneral S—-exrressionr as it usually does rot make ary

difference which is useds when it is imrortant to distinduish the
twoy it will be done. '

Suntactic wvarisbles are used to avoid difficulty with
evaluation of ardguments when describing functions. Suntactic
variahles are indicated bw use of the lower—-caser a5 orrosed to
urrer-casey which is reserved for sctual ALISF code. If the
arduments of the function are evaluated (SUEBR: SUEBR%y» and LAMERDA
furnctions)y then & suntactic variable in the ardument rosition
stands for whatever the ardgument evalustes to. If the arduments
of the function are not evaluated (FSUBRy FSURRXy LSUBRy and
FLAMEDA functions)y thenm the suntactic variable stands for the

actual argument. The differences can be seen by looking at QUOTE
(FSUBR) and CONS (SURR) examrles?

(QUOTE) -- x stands for?

(FOO) in (QUOTE (F0O))
BAR in (QUOTE ERAR)

(CONS ¢ v) -—- u stands for!

(FOO)> in (CONS ‘(F00) BAR)
(BAR) in (CONS (LIST ‘BAR) 1)

Suntactic variables allow easy descrirtion of functions without
redard to their ardument evaluation conventions. Note that the
variasble is wunderlined when used in descrirtive text.

SUFFORT ANDIN DISTRIRUTION

The Comsuter Center at UMass at Amherst will be susrorting
ALISF staring in Fall 1977. All incuiries on suystem rroblems
: : : . should be addressed to!

Richard Hudson

University Comruting Centery
Graduate Research Centery .
University of Massachusetts

)

O

Amhersty MA 01003
Tel! (413) 545- 2690

ALISP runs under KRONOS or NOS orerstindg sustems on conc
64600 series comeuters. It wili bhe distributed to reaquestors uron

receirt of 3 tare. Distributed materials include the ALISF
segstem in source formsy ALISF» Relstionsl IRy and GRASFER manuslss
and an instsllation and interrmal srecifications manual. The
ALISFy Relatiornal DBy and GRASFER marnuals may be coried for
non-srofit pPurroses with rermission from their resrective
authors.

Urdates and news should be sent reriodically from UMass.
Angy fixes to budgs should be sent to UMsss so thew can be
distributed to other users.

Table of Contents/ALISP User’s Manual
Table of Contents

Fart 1! The ALISF Languade

O

Sectian Fade
1 Signing On and Keering Ur ' _ 1
1.1 Sidning On and Getting OFf .. 1
1.1.1 ALISPF Control Card 1
1.2 NEWS 2
2 ALISF Diata Tures - 4
2.1 ALISF Fointers 4
2,2 Iata Tures 4
2:.2.1 Literal Atoms S
2.2.2 Number~Tokers S
2:2.3 . Strinds 7
2:.2.4 lLists 7
3 InrFut Stream 9
3.1 InFut Lines . 9
. 3.1.1 INUNIT ' . Q?
(:) I.1.2 End-of-Lirne Frocessing 9
Fele3 Fromst a ' 10
3.1.4 InFut Line Editing ' 10
3.1.5 TTYCHAR and Character Sets 10
3s146 ECHO Control _ , 11
3:1.7 Prqblems with TELEX _ 11
3.2 READ Structure . 12
3.2.1 STATUS ' 12
3.2.2 READ Suntas _ : 13
3+¢2.3 'READ Macros Exrlazined 20
3:2.4 TEREAD and READENT 22
3.3 Input Buffer Fointers 22
3¢341 Singlg*character Read Functions 23
4. Outrut Stream T 24
4,1 Outrut Lines 24
4,1.1 OQUTUNIT : _ 24
4:1.2 Character Sets ' 24
4,1.3 End-of-Lirne Frocessimng and TERFRI) 24
4

.2 FRINT Structure | S 25

4.,2.1

40202

FRINT Suntax
FRINT Suntasy Furmctions

Unified OQutrut Buffer
Character FPrinting Furctions

Literal Atom Structure

ORLIST
Truly Worthless Atoms
WIFE

Literal Atom Tures
NIL ‘
GENSYM Atoms
Neglitats

Literal Atom Prorerties
Frname
Value

The Suservisor and EVAL.

Tor Level
- 8YS ‘
SYSIN and SYSOQUT
SYSPRIN and X

EVAL :
Atomic Evaluation
List Evaluation
The Function EVAL
AFPLY

Function Tures
Lambda-exrressions
Machine Languadge Subroutine

efining Functions

Checking for Function Defimition

‘Erasing Function Definitions

Switqhesﬁ
Functionals

FPassing Functiohal Arguments
Pré*defined Funétionals

MAFC and MAFCAR

MAFL and MAPLIST

MAFCON. and MAPCONC

Frogram Flow

29

30

30
32

33 .

66
68
468
70

71
71

71

()

o

8.1 ’
8.1.1

8.2
8.2.1
8.2,2
8.3

9

?.1

?.2
9.2.1

10
10,1

10.2.1

10.2.2

10.3
10.3.1
10.3.2

11

11.1
11.1.1
11.1.2

1.2
11.2.1

11.2.2
11,3
11.3.1
11.3.2
11.4
11.4.1
11.4.2
11.5

12

Conditiorals
COND and IF

Frodgram Feasture
FROG
FROGN
Iterafion
Equslity

Fointer Ecuality

Numeric Equalitwy
Numeric Inecuality

List Structure Ecuality
Address Ecuality

List Manirulation
Frorerty List Functions

Nor—destructive List Manirulation
0f CAR‘’s and CIR’s
List Comnstruction

Destructive List Manirulation
RFLACAYRFPLACDy CONC
Element Functions

Arithmetic

Mixved Modes
Number Ture Fredicates
Number Ture Conversion

lwadic Furnctions
Flusy Timesy Diff
Division

Monasdic Furnctions
Trivial Morsdic Functions
Non—-trivial Mornadic Fumctions and
Lodical Functions
Roolean Functions
Shifting
Bit Functions

Arravs and Strindgs

RANIIY

75 .
75

77
77
79

.79

100
100
102

106

106
106
106

107
107
107

108
108
109
110
110
110
111

113

SRR RIS
£ - * *
e
* > L d

G-

1
1
1
1
13

13.1
13.1.1
13.1.2
13,13
13.1.4
13415
13,2
13,21
13,2.2
13,3
13,341
13.3.2
14
14.1

14.2

oy
S
L4

O

ey
h

5
&

P P WP
R R)
* & @ & ¢ °
OLTD Ly

A EGaan
¢ ¢ ° & o e o

-
n
-

t3

15.2.1
2.2
15.2.3
15.2.4
1%5.3
15.3.1
15.3,2

15.4

1é

Strings :
Strinmdg Manirulating Orerations
Strimg Matcning Functions
Comraring and Converting Strindgs

External Frodgram Control

Error Control

Error Recovery Frocedure and Bachktracing

ERRSET Control

User~defined Errors »
Time Limit arnd Timing Functions
ALLISF Sustem Errors

Interrurts and Breaks
Terminal Interrust,
Conditional Tracind

Tracing
Simrle Tracing
Conditional Traeing

Allocations and Garbade Collectors
ALISF Storade Areas
Field Length Limit
Garbade Collection

FILES

Fermanent and Local Files
Orenindg a Fermanent File
lLLocal Files
Closing a local File
Altermsting Catalodgs and Fasswords
lNirect Access Files
Fermission Modes

Seauential File Orerations
Secuential File Format
Secuential File Pointer
Reading Secquential Files
Writing Secquential Files

End—-of-File Frocessing
EQOFSTAT and REWIND
Multi-record Files

Checkroint Files

EBATCH

113
114
114

114
119
119
119
121
124
125

126
127
128
131
134
134
138
140
140
141

142

)

16,1 Runming a Eatch Job | | 158
16.2 File Assidnments and. Initial Values ' : 158

16.3 - BATCH» Inmterrurtsy and Overlaw _ 160

Fart 11! Editindgy Filingy and Frettu~-Frinting

1 ALISF Filing Sustem . 161
1.1 General Descrirtion , 161
1.2 File Format . 163
1.3 Filing Functions . ‘ 164
14361 Initislization 164
1.3.2 ‘ Inrputy Outrut and Urdating 1464
1.3.3 : Printing and Listing : 1468
1.3.4 Documentation and Formatting 170
1.4 Declarations ‘ 174
2 ALISP PRETTY-FRINT | 17
2.1 " Descrirtion of the Prettu-Frint Aldorithm 175
2.2 Fretty-FPrint Functions _ 177
3 ALISF EDITING _ 178
3.1 Calling the Editor ‘ 178
3.2 . Editing Concerts - 180
Fe241 Editing Values : . 180
3+2.2 Command Format 181
3.3 Editor Commands ' 182
34341 Frinting and Listing 182 .
3.3,2 Traversing List Structures _ 182
3.3.3 Element Manirulation , 184
3¢3.4 Level Manirulation . - - 186
F+3.5 Undoing . 189
Ie346 Settinmg and Extraction) 189
3¢3.7 Conditional Editing : 191
3.4 - Search Commands 191
Jed4.1 - FPattern Matching : 192
304(2 . . Find v) _ 195
3.4.3 . Rerlace ‘ . 196

3.5 Editor Errors ‘ ' - 197

Com#iler
' Uvérlau Comriler—-Assembler
Function Linkade -
Variasble Bindings
Declarations |
Restrictiomns on Compiled_Functioﬁs
‘Definins Overlaus

The Assembler (LAF)

()

I Charter 1
Sidgniod Oo aond Keesing Us

This section describes the srocedure for
calling the ALISF swustem and exiting from it.
(Note!? Installations other than UMass may
have a different frocedure for starindg
ALISF.) The ALISF control card is described.

1.1 Sidoing Oo and Getitiong OfF

Get a terminal and sidgn on rrorerly (see the UMASS
Timesharing Manual). At UMassr» ALISF is a8 TELEX command which
can be invoked from anw subsustem (for BATCH orerations see
Charter I1.19). To runy ture "ALISP"., The ALISF sustem will
resrond by printing "ALISF VERSION n" and thern recuesting inrut.
You are now at the tor level of ALISFs under the EVAL surervisor.
The tor-level ALISF sromet is a8 "79,

The interrreter will keer on evalusting stuff thrown at it
until it evasluates the EXIT functiony 3 SUEBR of no arduments.
The EXIT function dets wou out of ALISFy back to the batch
subsgstem, It also rrints out the CP time (in thousandths of a
second) srent in ALISP» the rumber of darbade collectsy and the
maximum field lensgth wusedy 3ll in base 10 resrresentation. A
samrle session hw 8 bedinning LISPer is diven in Dislosgue 1.1
below.,

1.1.1 ALISF Control Card

ALISF sllows control card rarameters to be srecified on
execution. Ledgal rarameter values and their effects are diven in
Arrendix H. Unless the overlay ortion is used (LD rarameter)y
ALISF will asttemrt to srocess all control card rarameters when it
is called. The rarameters are rrocessed from left to rights this
order is imrortant ify for instancey a file is to be read into
the sustem (IF rarameter) and the executing field lendgth is
lendgthened (FL rarameter). If the file read earameter occurs
before the field length rarameterr the ALISF sustem maw not have
enoudgh room to rerform the readr arnd will abort. If there are
any illedgal control card rarametersy or 1if any errors occur
during control card rrocessingr an error messadge will be rrintedy
and execution aborted,

The control card rarameters are availsble to anvwone who
wishes to do his own control card rrocessing. To byrass sustem
rrocessing of the control cardy either the LI or OWN raramter.

DialoSue 1.1
Samrle Terminal Session

Terminal.Dialodue Camments
TERMINAL: 110TELEX Sigr—on messade from TELEX
RECOVER/SYSTEM! BATCH In bateh subsustem of TELEX
$RFL»0
/ALISK Execute
ALISF VERSION 1.1 Now in ALISF
T(CONS ‘A "R) Tor-level surervisor in effect
(A'R)
T(CAR ‘(FOO RAR))
FOO
TCEXIT) Exit from ALISF
END ALISF RUN
LCPY 26 FLY 12400 GCt O Statistics of the rum back in
/EYE bateh subsystem of TELEXy sign
off
o LOG OFF nmnn
st CF nrn

The user maw then examime +the rarameters via the FARAMCF
funetiony 38 SUBR of no arguments. This function returns a list
of the control card rarameters., COMMASs SLASHES and eaqual sidns
irn the comtrol card sre returrned as serarate satoms in the list.
Table 1.1 dives some examrles.

Tahle 1.1
The FARAMCF Function
| Cantral Card PARAMCE Ualue
” ALISF s IF=MYFNS (IF=MYFNS)
ALISFsFLsFR (FLyFR)
ALISF s IF=MYFNS/LISF000 (IF=MYFNS/LISF000)
ALISF s IF=MYFNS=YFNSyFL (IF=MYFNS=YFNSyFL)

1.2 NEUWS

The most recent ALISF news can be srinted omn entry to ALISF
by using the NEWS rarameter. To det the most recent newsy use!

ALISFyNEWS.

To get 3ll the newsy use!

N

ALISFyNEWS=T,

- The news can also be rFrinted by evaluating the function
NEWSy 38 SURR of orne ardument. (NEWS NIL) srints the m_ost recent
Q news on SYSOUTy while (NEWS T) mrints all rews.

O

-

I Charter 2

ALISE Data_luses

This section describes all tuyres of
ALISF datar and dives imformation on their
internal rerresentation. This information is
not crucial or even necessary for running
CALISFy excert rerhars for the section on
number tokensy the incurious user may shkir
this section entirely without renalty.

2.1 ALISE Bointers

An ALISF rointer (or simrly rointer) is the basic data

format. It consists of 30 bits (half of 3 CIC Cuber-74 60-bit
‘word) divided into two rartsy the address and the indicastor. : The

agddress is in the lower (right-hal®) 18 hitsy the indicstor in
the urrer 12 bhits?

29 18 17 0
| IND. | ADDRESS |

The indicator tells what ture of data the rointer isr e.d.r an
indicator of 1400R srecifies arm SNUM. The address rortion holds
either the data (SNUM)» or an address in core that hss more date.
Only the lower 17 bits of the address are used at rresents diving
an addressing cargbilitwy of 2818 - 1y about 121K decimzl words.

Two rointers can be stuffed todgether into an ALISF word (60

bits). The left half of the word is the CARy the right half the
CIR of the word.

The indicator bits allow fast testindg of the data ture.

Indicator bit asssidrments are dgiverm in Table 2.1, Future dastsa
turesy such a3s a3 binars/tree data ture may use the currently
unused bits, Note that individual dats tures can set more than

one indicator bity e.dsry SNUM’s have an indicstor of 1400F,
srecifwing 2 rnumber (bit 27) and an SNUM (bit 26).

2.2 Data Iuses

Here are descrirtions of the rointers for the various data
tyres. For more information on atomic datar see the sections on
numeric orerations (I1.12) and literal atoms (I.5).

VS

Table 2.1
Indicator Bit Assidrments

thit if set if mat set
29 list atom

28 garbade—~collect info

27 number rnot numher
24 SNUM not SNUM
25 ENUM not BNUM
24 LNUM rot LNUM
23 FNUM ’ rot FNUM
22 rnot used

21 ANUM ot ANUM
20 STRING rnot STRING
19 not used

18 rnot used

2+.2:,1 Literal Atoms

arn atom which is not a2 number token or 2 strind is a3 litersal
atom. Literal atoms are distinguished as having unigue
erint-namesy and (excert for NIL) rrorertu—-list (rlist) and value
attributes which are user—~definable, Literal atoms will oftern bhe
called litats. A literal stom which is rnot NIL will be called an
nlitat. A literal stom which 1is meither NIL mor 3 GENSYM atom
will be called an pglitat,

Indicator: OOOQOOR
Address?! roints to the first atom data word

NIL has no rlist or value attributesy and consecuentluy does not
use any atom data words. It has an address of ORé it thus haes a
rointer of 30 zero bits.

2:2:2 Number-Tokens

Any atom which is not a litat or string is a number tokeny

often referred to simerly 385 8 number. Not 811 rumbers are
amenable to standard arithmetic oreratiorns (FNUM’s arnd ANUM/s) .
Number tolens have hit 27 set in the indicator., There are four
tures? ' ’

i« SNUM (Small NUMber)

Indicator: 1400FK
Addresst inteder value of the SNUM

Note that the SNUM address uses all 18 bits as a sidgned

inteder with maximum madnitude 2B17 - 1. This is the
chearest ALISF rnumber storadgey recuiring onlw 30 bits of
storade.

ii. HNUM <(Bidg NUMber)

Indicator? _12OOB
Address? roints to floating-et. number

The BNUM address roints to a3 core location which holds a
99-bit floasting-rt. nrumber. This rumber is obtasined from
the CIOC 60~bit flosting-st. format bw clearing the
low-order bit (bit zerod)y and shifting left circular by
98. This ruts the cleared hit 3t bit rosition 58y where
it is needed by the darbasde-collect routine. ENUM’s thus

have one bit less erecision tham CIOC flosatindg-et. rumbers.
iii+ LNUM (Logical NUMber)

Indicator: 1100FR
Address! roints to 48-bit octal digit. -

The LNUM address roints to a8 core location which has the
48-bit octal inteder right-Jdustified, The wurrer 12 bits
are not used excert for bit 58+ which is wused by the
darbadge-collect routine. Like ENUM’sy LNUM’s reeuire 60
bits of storade.

ive FNUM (FProdgram NUMber)

Indicator!t 1040R
Address! roints to function definition word

A FNUM datum defines a3 machine~landguade subroutine. The '

address roints to core location which has a8 function
definition word., This word is divided as follows?

59 42 41 36 35 i8 17 0
| 0 | ture | # of ards | address |

Ture assidgnment is as follows!?

tuee function
1R : LLSUER

2R FSURRX
4R FSUERR
10E SUEBRX
20k SUBR

Only SUBR and FSUBR functions tures use the #_af_ards
field to srecifwy the number of arguments a8 rarticular

machine function takes’) the other tures canm take an
indefinite number of ardumentsy and this field is zero

)

)

()

(for more inmformastion orn machire function turesy see
section I.46).

The address rortiorn of the FNUM definition word holds
the absolute address of the wmachine subroutine which
actually rerforms the function.

ve ANUM’S -— (Arrayds)

Arrads are also considered to be number tokensi thew are
called ANUM’s when rassed around a3s a data tupre.

Indicastort 1010FR
Address?! roints to array list word

The arrauwlist word holds a rointer to the array in array
srace. Since the array itself is relocatabley 3l1l array
references via the ANUM do indirectlu through the
arraglist word, ‘

2:2.3 Strindgs

String data rerresents 3 comrromise hetween comract storade
of strinds and ease of manirulation. Characters sre stored st
most 5 rer word in free sracey with 3 rointer to the next word in

the string,

Indicator: O0004R
Address! roints to the first string dataes word

Esch string dats word has from orne to five 7-bit 8scii
charactersy left—-ldustified!?

59 23 22 18 17 0

c1 c2 C3 Ca CS CT {ADDR

CT is the count of charactersy and ANDR is the free-srace address
of the next string word. :

20204 LiStS
A non-atomic rointer is a8 list rointer.

Indicator! 4000R
Address! roints to the list word

The address roints to a2 core locastion® which holds a full
ALISF wordr that isy two ALISF rointersy one in the urrer or CAR
halfy the other in the lower or CIR half of the word. These
rointers may themselves be list rointers. A true linked list is
formed by having the CIOR rointer be a2 list rointer to another

ALISF words and its CIOR be 3 list rointer to snother ALISP words
and so ons the 1last CDR rointer must be the NIL rointer., There
is 3 simrle corresrondence between boxed list diadrams and list

rointers? every arrow in 8 boxed diasdram is 8 list rointer.
Tabhle 2.2 below gives an examrle of inmtermnal ALISF rerresentation
of 3 list structure.

Two rredicate funct@ons are rrovided to distinduish between
lists and atoms. ATOM, 8 SUBR of one ardumenty returns T if its

ardument 1is atomicy NIL if not. LISTFPy also a SUEBR of one

arduments returns T if its ardument is 8 rion-atomic S—exrressiorns
NIL if mot. :

Table 2.2
Internal List Rerresentation

Pérenthesized eMrression:
(MAREL (LIKES) RIGy FIGS)

boxed diadram?

MAKEL > .1 1> |sis | Fies
N

[LIKES

core rerresentation (assume the following addresses for the
atomst MABEL=1ly LIKES=2y RBIG=3y FIGS=4)y in base 8¢

core location cantents
10 0000000001 4000000013
13 4000000017 4000000022
17 0000000002 0000000000
22 0000000003 0000000004

The list sainter for the whole exrression would he!

4000000010k

I Charter 3

Ilozul Stream

ALISF does its own inrut stream
handlingy resurrecting the wuser from some of
the deerer ritfalls i the KRONOS/NOS
time-sharing sustem. This section describes
the ALISF inmrut stream and read functiorms in
dgeneraly and the rarticular converntions for
terminal insut., For srecial batch and file
characteristics of the inrut streamy see
sectiomns I.14 and I.19 in this marnual. Ore
change from normal LISP read suntax should be
naoted?! the comma is used in slace of the dot
in dotted S—exrressions. The dot is wsed
solely in reading flosting—-et. numbers.,

3.1 Ipeult Lioes

The inrut stream is line-orientedy that isy it looks a3t only
orne line at a2 time., Lirnes are delimited from +the termirnal by 3
carriade return (CR)y which ends the lime asnd sends it to the
inrut buffers in ALISP. Maximum line lendgthy includindg control
charactersy is 150, If wou tyre more thamn thisy and thern hit CRy
the messade XOVLX will be srintedy snd the line idnored.

J3.1.1 INUNIT

The value of INUNIT is used by the resad furnctions whenever a3
line must be inrut from somewhere. If INUNIT is set to the SNUM
Zeroy a8 line is reacuested from the termirmsl. See gections I.13
arnd I.16 on hateh and files for other values of INUNIT. Imitial
value of INUNIT is 0.

3.1.2 Enrnd-of-Line Frocessing

The CR character is mormally arrended to the end of the lirne
on ireul. ALISF sees this character as a3 srace (see section on
STATUS below)y but it can also be used to check for end-of-line
or srecial inrut haendling. A CR character is woat tacked on the
end of a4 line if the atom EOLR (End-0f-lLine on Read) is set to
NIL. This is useful for files or srecial inrut rrocedures where
a character string runs rast the end-of-line onto the next limey
and 8 CR imnsertion would be wundesirable. The only effect EOLR
has on normal READ suntax is that literal atomy and rumbers and

-

string tokens cannot be conmtinued rast the end-of-line. Imitial
value of EOQLR is T.

3.1.3 FROMFT

The ALISF sustem normally sidmpals that it wamnts inrut from
the terminal by turing "H7?" on the terminsl and then waiting for
the user to ture 8 line (srecial rsromet handling is taken for
bpatch and file inerut-—-gee section I.15 armd I.16). The rFromst
character can be chanded by resetting the value of the atom
FROMFTy imitiallw NIL. FROMFT shouwld bhe set to the inteder value
of the character desiredy i.e.r (SETQ FROMFT 63) causes "A" to be
used as the rromet character. For irnteder values to 2ll
charactersy see Arrendix A, Setting FPROMFT to anuthing but an
SNUM inteder or NIL will dgive a SYN-ERR on the next terminal
insut recuesty and recet FROMPT to NIL.

There are two srecial cases for values of FROMFT. As noted
abhover NIL causes the characters "H?* to be userd for the rromet.
A zero value for FROMPT will have the same effect. If vwou wish
to wuse 3 null character as a rromrty then set FROMFT to 32R
rather tham OR. :

3+144 Inewt Line Editing

After 8 CR is tured at the termimaly the line Just tured is
transferred to the ALISF ineut buffers. - Before any ALISF
function sees this limey control characters within the line are
used to edit it. The control characters are the same as those
used in normal mode inrut to NOS 1.2 orerating system!
backsracer line feedr anmd escare.

Racksrace deletes the most recent non-backsrace character.
LLine~feeds are deleted from the irnrut stream.

Escare (control-shift-K onm TT33y ATTN-ATTN orn corresrondence
terminals) causes the entire lime to bhe deleteds and 8 new line
recuested, The messade *"XDELX" is erinted onm the terminaly and
the rromrt is re-issued. (Because ALISF uses transrarent mode
inruty deleting 38 line takes londer than wunder normal ineuts
since ALISP has to be rolled ird. A control-C at the ernd of &z
noo—emety line will 8lso cause an escarey control-C on 3n emrty
line will cause an interrust.

Ineut lines are edited before they are moved to the inmrut

buffery so that ALISF sees only the edited inrut line. Lines
inFutted from files or ALISF batch are never edited.

3,15 TTYCHAR and Character Sets

10

)

-

SN

ALISF can susrort 8 full ASCII character sety becsuse it
used a3 7-bit intermal character code There are
timesy howevery when using the full set is cumbersome because of
the shift regquired for usrrer-case alrhabetic characters., This
acecurs on ASCII and corresrondence terminals which have bhoth
urrer and lower case aslrhabetics. For these terminalsy tuyrindg
"seta'y for examrley will ot be the same as turind "SETQ"y since
the intermnal rerresentation of urrer and lower case is different.
Most likelwyr *SETQR" was desiredy since it corresronds to the
internal srint-mame of the commonluy-used atom SETQy the user
must resort to many urrer~case shifts to insrut this atom, The
remedy is to translaste lower—-case alrhabetic charascters directlu
to urrer case before thew reach the ALISF imrut buffer. This is
done automatically if the astom TTYCHAR has 8 non-NIL valuey a3s it
does initially.

3.1.6 ECHO Control

The inrut line canm be echoed on the current outrut device

(DUTUNIT)Y by setting the value of the atom ECHO to the current
inFut device (INUNIT). The echo is immedistey that isy mno
control character functions are rerformedy and the CR character
is not tacked onto the end-of-line. ECHO has inmital value of NIL
in interactive mode? o echoing takes wrlace. It is mainly
useful under batch and in dealind with files (see the asrrrorriate
gsections in this marmnual).

3.1.7 Frobhlems with TELEX

Several musterious behaviorial sroblems of TELEX deserve
mentior. ALISF orerates wsing 38 TELEX dinsul mode called
transerarent mode. What this means is that ALISF is resronsible
for handling all drneut line editindg charactersy and for
outrutting a3 sromet when it requests anm inFut line. The kewword
here is ratience. Since ALISF does all of this inrut line
Frrocessingy the user must wait at least the TELEX Job resronse
time in order to have things like escare (delete line) rrocessed.
Simce this resronse time is turicaslly on the order of S5 secondss
and can drow at times to above 20 seconds orn 3 very busy sustems
a frustrated user might well wonder 1if his inrut line is being
srocessed at all. To find out if the swustem is doindg anwthindy
the user has two commands at his disrosal. Turing a3 simrle CR
will cause TELEX to srint "JORB ACTIVE® if ALISF is running.
Turing "STATUS®* will rrinmt the current TELEX status of the ALISPF
Job. Any other commands tured a3t this roint will cause TELEX to
resrand with the messadey "ILLEGAL COMMAND®.

Another sroblem occurs freeuently on 8 busy sustem. In this
caser ALISP will srimt out the imrut rromet. When the user
resronds by turing in 8 line and rressing CRy TELEX rrints the
rerlyy "ILLEGAL COMMAND®. What has harrened is that there is a

1

slight time lad between the srinting of the rromrt and issuing of
an inrut lime commarnd from TELEXS consecuentls the user is
talking to TELEX rather than ALISF for that short ladg. On verwy
busy systems this lag can be several seconds londg. TELEX will
eventually det around to issuing the ALISF inrut recuesty wait
for 3 aquestion mark rromet (distinguishable from ALISF‘s eromet
becsuse it has no rreceeding blank). A line can now be entered
to ALISF. This line is not entered in transearent moder howevery
tbut normal TELEX moder so that only 3 restricted character set
can be received by ALISFy rno matter what the value of TTYCHAR.
Note finalls that this rroblem will rnot occur with corresrondence
terminalsy since the kevhoard will mot umlock umtil the ALISF
irnrut recuest is actuslly issued.

A fimal rroblem occurs with the trarring of interrusts,
There is a3 short time sran immediatelw after 8 CR is tured to end
an ineut liney when the interrurt (control-C or ATTN-S-ATTN) will
not be trarred by ALISF. If an interrurt is diven durindg this
timey TELEX will abhort the ALISF rum with the XTERMINATEDX
messade., Adainy the sroblem is worse om very busy sustems.:

«

3.2 EEAD Structure

READIy 2 SUBR of mno ardumentsy is the rrimary functiorn used

in formindg the ALISP inrut symtar. This function reads
characters from the inrut bufferr forming them into internal
ALISF S—-euxrressions. Associated with the inrut buffer are

character rositions rointers (see section 3.3 below). READ takes
characters from the inrut buffer urntil it forms &8 comrlete
S-exrressions if end-of-line is reached before the S-exrression
is comrleteds another line is recuested from the current INUNIT.

"It slso advances the buffer rointers rast this S-exerressiony so
-that subsecuent REAII's will return successive S-exrressions from
" the ineut buffer. Thusy more thanm orne S—edrression can be READ

from 38 singdle inrut line. Notey howevery that the tor-level loor
of the surervisor uses READENT rather than READIy and READENT

- returns at most one S-exrresgsion rer inrut line (see section

C34244).

- 12

. »
An S—exrression may s3lso extend over several inmrut lines.
READ automatically recuests rnew limes until the S—exrression is

comrleted, This has caused some users heartache becsuse they
think thew are in an infinite irrut recuest loor. They keer
detting inFut recuests on the terminal» and ture - in

S-expressionsy and det more inrut recuestsy without anuthing else
harrenindg., What has harrened is that the user fordgot to close a
left-rarenthesis in his first S-eurressiony and READ keers asking
for lines umtil he closes it. The remedw is to ture many
right-rarentheses if wou think wou are in this ture of loor.

3.2.1 sTATUS ®

N

N

T

~—r’

o

A\

Associated with esch character is & 3-bit inteder called its
STATUSy used by the REAI fumction to decide suwntax., The initiasl
STATUS of all characters is divern below in Table 3.1.

Table 3.1
STATUS of Characters
Luee STarus Characters

alrhabetic o A to Z and 811 chars. excert
those below.

numeric 1 0 to 2 and ~.¥
serarator 2 # and CR

lrear 3 (

rear 4)

dot] y

slash é /

macro 7 "IE5R

The status of characters camn be fetched or chanded using the
function STATUSy s SUBRX of orne or two arguments. The first
argument should be an nglitat (mon—-NIL» rnon—-GENSYM literal atom)y
the first character of this atom’s rsrame is used bwy STATUS. If
there is only ome ardumenty STATUS returns by character’s status
as an ONUM from O to 7. If the second ardument is rresenty it
must be an SNUMs the lowest three bits of this SNUM inteder are
used to set the new status of the character and STATUS returns an
SNUM dgiving the rrevious status of the character. Seversal
examrles of the STATUS function are diven in Dialodsue 3.1 below.
The STATUS function should be wused with carey as it can
drastically redefirne the actiom of the READ sunta.

3.2.2 READ Suntax ¢

This is the standard ALISF suntayx for dnrutting strings of
characters and assembling them as LISF data tures. To some
extent this standard suntsy can be manirulated with user—-defined
READ macros (section 3.2.3) and the STATUS furnctior. The
alternative to READ suntax is sindgle-character manirulation (see
section 3.3).

If an incorrectly formatted character string is diven to
READ (e.d.y an alrhabetic character imnm 8 numeric strindgl)y then
REAT will comslain bw issuing 3 SYN-ERRy which is a fatal error.
If wou are at the tor level of ALISPy this simrlwy means wou will
have to reture the entire S—exeression wou were inrutting, The
SYN-ERR slso rrints a3 messade telling what caused the errory and
the character rosition in the imrut buffer at which the error

13

%

1 Nislosue I.1

| ~ The Fumction STATUS
|

|

j

1! -

i TLSTATUS 720 Fetch the current STATUS of
’ A A
| ~ 0

TOHRTATUS 72 2
~ O Chandge the STATUS of "Z" to 2
a8 sergrator (blark). Zero is
the rrevious STATUS of *Z".

? TIFORZBAR . =
FOQ : Simece "ZY has the S5TATUS of =

| ~ serarator charactery only the
| first three characters of the
! ‘ line were assembled into an
; =~ atomy FOO.

i PCETATUS /v 0O) This defimes the character "s°
: ~ as an alrhabetic.

i PCODR C(FO0 » BARD)

f e (v RARD Now "»" no longer acts as the
| dot of dotted S-exrressionssy
: it as 8 rname character.
1 - , , Note thats so long ‘as no
; character has 8 dot STATUS
‘ (35)y no dotted S-exrressions
{ - can be inrutted.

i = noeurrad. Suntax errors for rarticular dates tures are noted
‘ nelow.

-~ Almost all ALISF data twres can be resd in using READ., READ
seans the inrult lime Tor the first non-serarstor (STATUS not 2)
charactery and uses this character to determine the suntax of the

~ rest, of the string. If the first non-serarator character ig!

1 @, Alrhesheltic — asssemble literal atom.

! b 4

‘ Characters are fetched from the inrut stresm to
i Torm & erint-mame (spame) until @ character which is

~ nedlther alrhabetic or rmumeric (STATUS dgreater than 2)

is encountered. The sname 1is thern internalized on the
; ' OBLIST and the rointer is returmned. Prames of more
? = : than 322 characters cannot be sssembledy bult cause a
SYN~ERR .
‘ - Atoms having rFrhiames teginning with numeric
charactersy or containing characters with STATUS other
-
14

——

C

tharn alrhabetic or numericry are called exotic stoms.
Exotic atoms can be read in with the hels of a slash
convention. Ang character with 3 slash status (6) is
skirred in forming the rriamey but the character
immerdistely followindgr» rno matter what its statusy is
interrreted as alrhabetic. A slash canm be rut in the
Fhame by using two consecutive slashes. All terminal
characters excert LF (lime-feed) and backssrace can he
inrFutted into rrames in this waw.

Note that atom print-names carmot rnormallw he
continued rast the end of a8 line whern EOLR is non~NILy
since the CR character tacked ornto the end of the line
is intersrreted as a3 srace (STATUS = 2), Howevery if a
slash is the last charascter tured before the CRy the CR
character will be assembled into the rnamer and the
rrame string will continue onto the next line.
Examerles of ename formation are divern in [ialodue 3.2
below. ‘

Dislodue 3.2
FPriame Formation

inszult stream assenbhles fLa

BUBFOOKE . « » atom with =name °"FOO"

BHBF 00268, « » atom with FRame "FOO2"

VUHU2F00BE . « SYN—-ERRy first character
rot alrhabetic

v/ 2FQ08BE .+ o atom with sname "2F00°"

BUBFQ/ /778088, + o atom with rname "FO/H0"

Numeric - assemble numeric atom

There are three tures of humbebs which can be
sesembled by READS

i+ LNUM - Lodgical NUMber. .

16~digit octal inteders

iis. SNUM - Small NUMber.
intedgers in the range -2817 + 1
to 2R17 - 1

iii. BNUM - Rig NUMber. .
floating-roint numbers in the rande.
+10E-298 to +10E312

SNUM’s and EBNUM’s (but maot LNUM’/sy which 3lwsys use an
octal hase) are assembled with referernce to the base
contained as the value of the atom INRASE. The value
of INBASE must be anm LNUM (thus making it inderendent

16

of INBASE or OUTEASE)$ it is imitisllw set to 12R (base
10 but can be reset by the user to arw value from 2R

to 20B (bhase 2 to hase 16). A SYN-ERR is issued on the S
mext number assembly if INBASE is set to an illedal o
valuey and INBASE is reset to 12K.
i. LNUM’sg
They are sidnalled by an initial number—~sign
("$"), Format is?
#deddoooo
where
.8 is an ortional mimus sidgn (*=") which
comrlements the assembled octal inteder
d are octasl digitsy ur to 16 of them.
The assembled rumber is?
dddd. s R
SYN-ERR caused b
1. 892y or A-Z azrrearing in the string
2, More than 16 digits in the strins
Examnrles? o
k\./
ioeut stream number assembled
BUE22206H . 4 o i 0000000000000222K
BE-2228H .. " 7777777777777555KR
ik a1 N 0000000000000000k
HBE-OUY .. . 77777777777777778
HEP238B . o s SYN-ERRy 9 is niot
an octal digit.
ii. SNUM’s

ImnFut format isd
sadddds s o
where

s is an ortional mirnus sidn (*-")
d are digits from 0 to INBASE-1

The digits are assemhled into an inteder using
the INRASE base rerresentation.

®

SYN-ERR caused by Alrhabetic character in the
string

Examrles (assume INBASE set to 12R)

ioeut sbream & nupber assembhled

wigud,. .. 18

M“iBMHooo “18

'M“Oﬂﬂooo O

BoOOKE . 4«)

B1886363022228K, « » converted to flostindg-et

Note that nedative zero is read in as rositive
zeroy and that inteders out of SNUM rande are
automatically converted by READ to BNUM’‘s.
Lardgest madnitude for an SNUM is 2R17 -1.

ENUM‘s

ENUM‘s are sidnalled bw the rresense of the
decimal roint *."* or the exrorent marker "E'y or
if an SNUM formatted number is too larde in
magnitude to be an SNUM. ENUM’s are assembled
using the INBASE inrut base. Format is?

sdd.dd. s Eceee. ..
where

is an ortional minus sign ("—*)

igs a digity from 0 to INBASE-1

is an ortional exronent marker

are ortional exronent didgitsy from 0 to
INRBASE~1

v+ is an ortionsl *decimal" roint

T Mmooy

The assembled rumber is fTormed by assembling
the coefficient didits d into a flosting-st.
number using the hase INRBASE then
multirluing this coefficient by INBASE raised
to the assembled exronent rower. The
exronent didits e are also assembled into an
inteder usimg INBASE rerresentation.

SYN-ERR caused bu!

1. Alrhabetic character (excert "E*) in the
string

2. More than one decimal roint or "E°

3¢ A decimal roint in the exrornent

4, Exronent too larde or small

Examrles (assume INRASE set to 12R)¢

17

18

insut strean numher assembhled

v18.8M. .. i8
B.18E2MH ... 18
- . 18EOBHK. .. -.18
BO.OUK .« o 0

Note that the rreserce of an "E" or "."
distinguishes BNUM’s from SNUM‘s? evern in the

case of 0.0y 3 BNUM is assemhled. Internsl
accuracy for ENUM’s is 47 bits in the
coefficienty or about 14 decimal didgits.

lear ~ assemble non-atomic S—exrression

When the READ fumction encounters aﬂ imitial
left-rarenthesis (STATUS of 4)y it asssembles & comrlex
LISF structure., Format ist :

(strimd]l string2.ssestringnsstringm)

Each stringi is any character string which assembles

into a3 wvalid ALISF exrressionr even another list

string, The comma is an ortional dotted-rair
indicators if it is reresentr stringm rather than NIL
will be stuffed into the COR of the last word being
assemhledy so that a demeral non-atomic S-exrressiony
rather than a3 1listy will he assembled. The comma
charscter must alwaws arrear Just before the last
strind, simce its stuffs the last assembled string into
the COR of the last assembled S-exrression word. If
the lrar is immediately followed by an rrary NIL (3n
emrty list) is asssembled.

swamrles of READ list assembly are diven in 3.3,

Niszlodue 3.3
lList Assembly

imeut stream assembles ta
BCFOOBRARBMOO) s o o Foo| — |ear | —M00
HFOOBEAR y MOO)Y B+ o ~{Foo] —>{eAR [HOOD

HO(FOOy BARY BMOO (MARBLOO) DB, .

L\‘;l_L_:}--> OO

Foo | ear| [Mar|[—P[Loo |

e.

Macro - evaluste macro exdrression

The wuse of READ macros is exrlained more fully in

section 3.2.3.
characters are five?l Yy %R

The imitiallw

defirned ALISP macro
(sindgle auoter double

auotey semrcolony dollar—-signy and at-sidgn. o ot use

them as single-character atom

rhiamesy as 0 it will

conflict with their macro usasde (for instarncey do not

use the atom with ernsme 7 35

variable). Their effects are!

i+ Quoting —-- 7

a lambda—~exrression

The ‘ character is used when a3 auoted exrression

must bhe assembled from

the imrut stream. The

effect of the «euote characters when encountered
by READy is to cause the next string in the
ineut stream to bhe assembled (hy 8 recursive

call to REAIDy and then

used as rart of a QUOTE

exrression. The followindg examrles should make

this clear?
inzul stream

HWFOOEE., ..

B/ (FOOBRARIHE ..
B(FOOE BARMMQO) i, . o
H(FO0BARBMOO)IM ib. s,

s

ii+ Commentinsg -— ¥

assemhles inta

(QUOTE FOO)

(QUOTE (FOD RAR))
(FOOCQUOTE ERAR)IM00)
(FOO(QUOTE RAR)MOO0)

The 3 character is used to add comments to the

inFut stream. When

the 7 character is

encountered by READy it causes the rest of the

line to be ignored.

Note that srname or numeric

strindgs cannot be comtimued bewond the comment
character onto the next line. Exameles?

inzul stiream

(FOO 5 THIS IS A COMMENT

RAR)
(FOO % 2ND COMMENT

§ 3RD COMMENT

EAR)
FOOs
RAR)
idie Immediste evaluation ~—- %

The $ character is used to

assembhles ioto
(FOO EAR)
(FOO RAR)

(FOO EAR)

evaluate exrression

assembled from the inrut stream before adding

them to the READ result.
is encountered by READy

Whern the $ character

causes the string

19

immediately followindg to be assembled and
evaluated (using EVAL) before inserting it into
the result. Examrles! :

ioeul siream assemhles inta

(FOOSCLIST ’MOO ‘MAR)BAR) (FOO (MOO MAR) ERAR)
$/F00 FOO
$//FOO ' (QUOTE FOO)

The % macro can be used verw handily to add
londer S-exrression to the inrut stresm without
having to re-ture them each time. For examrles
surrose the atom FOO is set to a8 long list. To
insert that list into the inerut stream at any
gdgiven rointy $F00 is a1l that’s needed.

ive Read string ~- *

The " character is used to sssemble string datsa
from the inrut stream. Characters are read from
the inrut buffer and sssembled into a3 string
until snother * character is encountered, A
double cuote may he included in the strimg by
using two successive double quotes.

Exameles?

ingut stream assembles inta siriod
"ARCcoD* ARCI
AR"CD* AR*CID
*ARC)IDECR] ABCO)N(LCRIEFG
EFG"

vs Resad array -- @

Arraus are assembled when the @ character is
encountered in the irfrut stream. See the
charter on arravs for the exact format.

3.2.3 READ Macros Exrlained

The macro facility om inrut is 8 most valuable method for
custom~tailoring inerut swurtax within the READ suntax structure.
This section exrlains the action of READ macrosy and how to
imelemert, them.

Two Frorerties defime a valid macro character —— a character
STATUS of 7y and 3 valid fumction definition stored in the value
cell of an atom with that sirndgle macro character 3s its rname.
The five rre-defined macro charactersy - " 3 ¢ @y are 23ll defined

20

()

o~

as FSURR’s.
variables (either
character is encountered hy

function definmition is fetched
#laced in the
READN, Since

clever thindgs can

FLAMEDA or

e done.

(DE /' NIL

Now the ztom
Take a8 samrle ineut stream:

oo JHB(FO0K RAREMO0) Ml . o

User defined macros must
LAMEROA will do).
READ

and evaluateds

arrrorriate rart of the result
the macro function itself cam call
For examrley trg
macro using 3 lambdas-exsression. One

(LIST (QUOTE QUOTE)

with rrame 7 has the

e lambda exrressions of no
When the macro
inrFut streamr its
and the result
heing assembled by
REALYy some very
to re-define the 7
wayw would bed

in the

(REAL))

above function defimition.

READ starts to asssemble a8 list when it hits the left rarenthesis.

It sssembles the atom FOO as the first element of the list.

is mow at this roint?
insut stream

+ +HMH(FOO0K “ RARBMOO Y BH . o
)

ineut buffer rointer

The macro character 7
function
arguments.

definition and
It evaluates:

(LIST (QUOTE QUOTE) (REAIN)

The READ call returns Lhe
namelwy the atom RAR.
as ilts resulty and this is
returns. READ takes this

insutl stream
..%%(FOOM'BARMMOO)MKfi
/-
inrut buffer rointer

Finallyy MOO is read as the
com=leted. The final result is?

lroo | 4> [.]
=

ig nmext encourntered and READ
evaluates

the result which the
result and
element or the list it is assembling.

REAIL

assembhled result

FOO D

looks ur its

it a8s a function of no

next S—exrression in the ineut streasms
Ther the LIST function

dgives (QUOTE RAR)

macro function
inserts it as the nex

READl is now at this roint?

assembhled resull

frool >]
| lauoTe] —1P[rar

last element and the 1list is

—4—> [M00 [~

| auote |

F>[Ear]

This is same as if the inrut stream

had been?

S

21

22

+ +BE(FOOU(QUOTEBRAR)Y BMO0) ih e o »

READ macros are a very rowerful tool for manirulasting the inrut
streams the inventive ALISPer will find many uses for them in
front-end translators for his srodrams. Urifortunately making
read macros work as internded is trickw and most LISF’ers reeuire
some time before thew hecome wroficient.

3.2.4 TEREADI and READENT

The inFut line can be flushed using the functionm TEREAlY a
SUBR of no ardumenits. Evaluating (TEREAI) causes the inrut
buffer (see 3.3) to bhe blankedy arnd 3 new line reeuested from the
current inrut device. The value of TEREAD is NIL.

The functiom REAUENT is a SURR of no arduments. It does s
TEREAD and thern 8 READY returning the result of the READ as its
value., READENT is used whemn it is desirable to READI at most one
S—-exrression rer inrut line.

3.3 Ipgul Buffer Fointers

The ineut buffer is directlw 3ccessible from ALISF at the
single—~character level. The buffer rointers are the values of
the atoms READEBEGs REAILENy and READEND, The values of these
atoms are OSNUM inteders desidnating character rositions in the
imneut buffers (The first character rosition in the inrut buffer
ig at rosition zero.) Whenever a2 mnew inrut line is read inme the
bhuffer rointers are reset a3s follows?

REANREG is the first charscter rosition in the
irrut buffer that will be read. Initial value for
READREG is =eroy so that a3l1ll characters in the inrut
buffer are used. If READEREG is set larder than zeror
initial characters in the inrut buffer will be skirred.
Setting READREG rnedative or dreater than READEND causes
a NUM-ERRy and resets READBEG to zero.

REALEND is set to the rmumber of characters. in the
lirme when it is read in. including the CR charactery if
there is one. If EQOLR is nmom—NILy this will be 1 + the
number of characters tured in. Ineputting 3 rall line
by hitting Just a3 CR will thus set REAIDEND to 1 (if
EOLR is NILy READEND is set to =zero)d. .

REALLEN is set to the wvalue of READREG when 3 new
lirme is read into the inmeut buffer. READLEN is the
current coharacter rosition used by 311 +the read
functions., If REAIDREG is =meror READLEN is imitially
set to the bedirming of the irnrut line. Reading a
character causes READLEN to be incremented to the next
character., Whern READLEN=READIENIly the last character

R

(

has been read from the limer and subsecuent read
requests will cause an automatic TEREAD to be
roarformedy resetting the inesut line.

The dnrut line rointers allow single-character control over the
insut stream, The length of . the current irrut line as well as
the current character rosition within the limne can be extracted
from thems and thewy carn be reset with SETQ@ to skir or back ur
over characters inm the insut line. Irn condunction with the
functions described i the followindg sectiony exrlicit
single-character control over the irmrut stream is rossible.

3:3+1 Sindgle-character Read Functiorns

The functions described below read and return sindle
characters from the inrut line. Thew are 3l1 functions of no
srauments. The character is read from the current rosition of

READLENy and READLEN is incremented to roint to the character
after the one read (excert for REAIFK). If READLEN=READIEND when
the function is calledy an asutomsatic TEREAD is first executed.
and the furnction reads from the rnext imrput line.

REAICH reads the next character from the inrut

streamy and returns an atom whose rname consists of
that sindgle character.

REAINM read the next character from the inrut
astreamy and returns its imternal irteder rerresentation
as an SNUM. "A" would be 101K, "B" would he 102Rs etc.
See Arrendix A for internal character codes.

REATIINR keers reading sindgle characters from the
incut lime until a3 rnon-blamk (STATUS # 2) character is
fournd or until the end-of-line is encountered. It
returns an atom whose rname is that sindgle non-blank
character or NIL if the end-of-line was found first.

~ READFK reads the next character from the inrut
streamr but does not advance the REAILEN rointer. It
returms an atom whose rname is the sindle character
read., If READLEN=REALIEND no TEREAD is caslledy and
REAIFK returns NIL.

23

I Charter 4

Outeul Stiream

This sectiorn describhes the deneral
characteristics of the ALISF outrut streams
as well a5 srecific time-sharing
characteristics (for srecial batch and file
considerationsy see sections I.14 and I.15).

4.1 QOutrut Lines

The outrut streamr like the inrut streams is line oriented,
that isy it looks 8t only 8 sindgle lime at 3 time. Limes
avtomatically have an end-of-line bute tacked onmto the end when
thew are written to an outeut device., Maximum lire lendgth is 150
characterss the actusl rrinted line length (before an end of line
i automatically tramsmitted) is diven by the current value of
the atom FPRINEND (imitialluyy FPRINEND is set to the SNUM 72).

4.1.1 OUTUNIT

The current value of OQUTUNIT is wsed by the rrint functions
whenever & line must be outrut somewhere, If OQUTUNIT is set to
the SNUM zeros lines are rrinted on the terminal. See the
sections on hatch and files for other values of OUTUNIT.

4,1.2 Character Sets

If gou have sidgred on to the terminal correctlur then all
characters which are available on the terminal ture element will
srint correctly (evern the AFL tureball is comeatible). See

Arrendix A for characters available from different terminals,

ALISF uses full ASCII wmode when communicating with the
terminaly so that rroblems caused by the 64 character set in
KRONOS or NOS are minimized.

4,1.3 End-0f-Line Frocessing and TERFRI

‘ The atom FRINEND comtains the lime length for the outrut
Tine (maximum is 130 characters) When the outrut buffer is fullys
it is dumred to the current outrut device. aAn end-of-line bute
is tacked omto the end of each lime as a8 lirne delimiter. There
are sctuszlly two tures of end-of-line bytesi which one is used is

24

)

—~
{

controlled bwy the atom EOLW (End OFf Lime om Write). If EOLW is
rnon-NILy the end-of-line buyte causes a carriade-returmn line-feed
(CR-L.F) when the line is outeuty resetting the terminal carriade

to the bedinming of the mext line. If EOLW is NIL» the
end-of-line bute has no effect on the terminal srintings and
Lhe carriadge is left where it stosred after printing the last
character, Normallwy +the CR-LF end-of-line bute is the one

that’s wantedy and thus the initial value of EOLW is T. For some
sracial arrlicationsy such a3s outrut formatting or control of
drarhic devicesy it is necessary that an end-of-lime not srint
the CR-LFy and for this rurrose EOLW should be set to NIL.

The function TERFRI» a SUBR of mno ardumentsy is rrovided to
ernd an outrut lime and dume 1t before the FRINEND limit is
reached,. Evaluating (TERFRI) terminates -the outrut line and
dumes the outsut buffer. If there was nothing in the buffers an
em=ty line 1is outrutted. For further considerations on outrut
line formattingy see section 4.3 bhelow.

+2 ERINTI Structure
The function FRINTy a3 SUEBR of orne ardgumenty rrovides

communication bhetweern internal ALISF structures and the outrut
lire. In dgerneraly any ALISF expression that cam be resd with

READ (and a few that can’ty also) can be rrinted by FRINTy in 3

formst comratible with +the oridinal READ suntax. When FRINT
finishes outrutting its arduments it issues 3 TERFRI to dumr the
final outrut line.

4.2.1 PRINT Suyntasx

Intimate krnowleddge of FRINT suntax is really not very
imrortanty unless ome is concerned with outrut formatting or
files, Stilly &2 bknowledde of the FPRINT suntax enables the
informed user to kriow exactly what intermal ALISP structures are
rerresented bw the ocutrut.,

aes List Structures

A list (or non-atomic S-exrression in deneral) is
rrinted 8s a series of elements hetween rarentheses.
This format is recursivey that isy if an element of a
list is itself a listy it too is srinted a3s a set of
elements between rarentheses. HRetween every element of
a list a srace is inserted, If the final CIR of the
S-exrression is non-NILy 38 comma is rrinted, and then
the fimal CIOR element. Note that the only rlace 3
comma will arrear is Just before the last element of an
S~exrression.X Examrles of list structure print format

X The comma is used instead of a8 dot in dotted S—exrressions.

25

26

are diven below in Dialogue 4.1.

Nialogue 4.1
List Structure FRINT Format

S—-eueression : Erint as
FOO RAR (FOO RAR)
MO0 E0OO MAR

FOO EAR

the Literal

i

iie

iide

((FOOsRAR) MOO ROOyMAR)

atoms
The atom NIL srints as "NIL".

Gensuym atoms Frint as "Xdddd...."y where X is the
densum character (see GENCHAR) and the d are
gensum diditsy unicue to each densuym atom.
Gernsuym atoms canool be read back into the sustem?
their esrint characters are omly to enable the
user to identify them on outrut.

All other literal atoms wuse their rerint-names
(rriames) to form 3 srintable character strindg,
This string is normally exactly that used to
inrut the atom with READy e.dsy "FOO" resad in
will =rint as “F0OO". A rroblem arises with
exotic atomsy however (exotic atoms contain rname
characters with STATUS 2 2)., Since exotic atoms
are inrutted using slash converntionr thew will
rot look the same on outruts when ro slashes are
rresent. This dis ususlly what is desiredy
thoudhy since terminal outrut cannot he
re—inrutted directly anvhows. For files which can
be read back iny howevery it would be nice if
exvotic atoms could hv outrut and read back in
rrorerly. To this endr the switch SLASHES is
rrovided, If it is set to NILs nro slashes will
be inserted in exotic atom Fnames when thew are

Recause

floating-

there is no confusion with the dot as used

in

roint mnumbersy there is mo need to rut seraces around
the comma.

@

.

I

wrinteds if
the correct
read bach

with exotic
Initial wva

literal atom

will be inserted at
atom to be

non—NILy slashes
rositionsy to enable the

irn (this does not solve all problems
atoms —-— see the section on files).
lue of SLASHES is NIL. Examrles of

srinting are diven in Dialodue 4.2

?PGENSYM)

GO

P(BETR GENCHAR ‘A)
A

P(GENSYM)

Al

7O
NIL

PSLASHES
NIL

P(SETQ FOO’/2BAR)
2BAR

PTHIS/BMESS
THISUMESS

?(SETQ SLAGHES T)
T

?F00

S2BAR

P/ THISHMESS
THISHMMESS

Dialodue 4.2
Literal Atom Printindg

GENSYM atoms have the default
character of ‘G’ inm their
eramesy unless GENCHAR is set
rion-NIIL.

NIL srints as °"NIL®.

SLASHES is

initizlly set to
NIL.. .

No slashes on outrut.

SLASHES set to T

Slashes now arrear in the
outrutterd Fnamesr as thew were
when inrutted. ‘

-
cs Numeric atoms

Numeric mutput‘ format is comrletely comratible

with ineut format for LNUM sy ENUM’sy and SNUM’s.

Thuss if thew are written to
correctly. The

back in

a tiley thew will be read
ture of rumeric atom

resresented is arrarent from the format.

27

Both SNUM‘s and ENUM’s use & variable bhase
rerresentation o outeut. The value of ‘the atom
OUTEASE must be an LNUM? this LNUM is the base
rerresentation on outrut. Initisllyy OQOUTRASE is set to
%12 (bhase 10)., Ledgsl values for OUTBASE are from #2
(hase 2) to #20 (base 16). '

i+ LNUM’s
Outrut formast isi

Fodidde o oo

where

5 is an ortional minus sisn‘('—') which is
used if the left-most bit of the LNUM is
set.

d are the the octal digits rerresenting the
48~bit LNUM (ur to 16 didits). If the
minus sidmn is rresenty these digits
rerresent the ore’s comrlement of the LNUM
hits. l.eft zeros are surrresseds if all
bhits are =zero or oner "$0" and "“#-0" are
outrut resrectivelwu. '

ii. SNUM’s

Outeut format is?
ﬁdddooo
where
s . is an ortiornal minus sidgm ("=").,
d are digits rerresenting the SNUM inteder.
The inteder srinted uses QUTRASE for its
hase rerresentation. l.eading left =zeros
are surrresseds =zero always rrints as 0",
iii+ EBENUM’s
Outesut format ist
Secdddds e o JEGRBR 0
where

s is ortional minus sigm (*="),

d are didits of the coefficient. Thew are
outrut using QUTRASE rerresentation.

28

)

{

e

E is an exronent indicator (3lwaus rresent).

e are exronent digits. They are also outrut
using the OQUTRASE base rerrvesentatior.

The rnumber of didgitse d im the coefficient of a
#rimted BNUM cam be controlled by the atom
DIGITS. The value of DIGITS should bhe " an SNUM
Fositive inteder irndicating the number of didits
desired., All didits asked for are rrintedy so
that right trailing =zeros are rnot surrressed.
Rounding is domne on the DIGITS + 1 didgit to maske
the result more readable. If DIGITS is set to O
all significant didits will be rrinted (14 or 15
for base 10)y and rno rounding will take rlace.
DIGITS is initially set to 13. Note that didits
does not control the total lendth of the EBNUM
outruty Just the rumber of sidnificant didits in
the coefficient, Neat formatters must resort to
other tricks.

FNUM’s

This number ture is used internally by the
irtersretery and carrnot be read into the suystem.
Neverthelessy there are times whern a3 PNUM will
smealk into arn S—exrression being outruty so the
user mayw as well kriow what he’s dgot. A FNUM is
the value of an atom which has 8 machine-landuade
function definition (SUBRy LLSUBRy etc.s) such as

SETQ or CONS (for more srecific informationr see

the section on ALISF dats tures). Format is?
FE¥ddd. ..

where
F¥ is the FNUM indicator.

d are octal didits rerresenting the furnction
ture and its machine address,

ANUM’ s

This is a8 nrumber ture which canrmot be read back

in by READ. Arn ANUM is an internal array

rointery and can only be created by the fumction
ARRAY (or the @ real macro). Format on outrut
is?

A¥nnnn

29

where oonon is the octal sddress of the arravlist

word for the array. The file rachade will rrint
arraus srecially so that thewy canm be read back
imy rather tharn esrinting ANUM’ s, The functions

FRINARRAY and READARRAY are available to the user
for storing his own file 1I/0 with arrays (see
section I-12 on arrays).

4,2,2 PRINT Suntax Furnctions

FRINT is the most commonlws used printing function. It is a
SURR of one ardguments it rrints its ardument according to the
FRINT suntax Jdust describeds thern issues 3 TERFRI to flush the
outrut buffer., The value of FRINT is its ardument.

FRIN1L is Just like srint excert it issues no TERFRI. The
difference between FRINT amd FRINI can be seen in Dialosue 4.3
belows, The value of the functiorn PRIN1l is its ardument.

The functiorn HALFFRIs is used to erint out rart of a8 londg
lists It is & SURBR of one ardument which acts Just like FRIN1y
excert it will only outrut 8 limited rnumber of stoms in 3 lond
list, The limit is fixed by the atom HFRNUMr which should be set
to an SNUM. If HFRNUM is mot 3n SNUMy the default value 4 is
used (this is the imitizl value of HPRNUM). If a list with more
tham HFRNUM astoms in it is divenn to HALFFRIy it will correctly
srint the list wre to the first HPRNUM astomss them erint an
elirsis "+e4"y and close a8ll rarentheses in the list. Examples
of HALFFRI calls are divemn in Dialogue 4.3,

TERFRI is & SUBR of no arduments, which terminates and dumrs
the outrut buffer. Value of TERFRI is NIL.

4,3 Upified Ouizut Buffer

Like the idneut buffery the owutrut buffer is directluy
aecessible from ALISF on the single-character level. Three
huffer rointers control the buffer flow! FRINBEGy PRINLENy and
FRINENDF they must 2l1 have SNUM values.

FRINREG is the fTirst rosition to begin stuffing
characters into the outrut buffer, Initisllwy FRINEBEG
is set to Oy ise.y the leftmost character rosition in
the buffer, If FRINRBEG is set nedative or dreater than
FRINENIly 32 SYN-ERR will he issued a3t the next outrut
buffer flushy amd FRINBEG will be reset to 0.

FRINLEN is +the current rosition to stuff a
character into the outrut buffer, When the buffer is

30

. ‘/")

Dialogue 4.3
Frint Functions

TCFROGN (FRINT “FO0) (FRINT 'BAR) NIL)

FOO
RAR
NIL

FRINT terminates the outrut

line on each call,

P(PROGN (FRIN1 ‘FOO0)(FRIN1 ‘RAR)Y NIL)

FOORARNIL FRIN1 does not terminate the
outrut liney s0 successive
¢alls are strung todether.
Note +that the result FROGNy
NILy was tacked onto the end
of PRIN1‘s outrut. If +the

number of characters in

outrut buffer exceeds FRINENIy
~the outrut buffer is dumpedy

evernn if FRIN1L is doindg
rrinting.

PHFRNUM

NIL

T(HALFFRI ‘(A B C I' E F))

(ABCD . (ARCDETF)

call to HALFFRI.

Note that HALFFRIy like FRIN1y
does not dumr the outrut

buffer after it rrintse

that the value of HALFPRI

immediately follows
outrut,

PT(SETQA HFRNUM 10)

10

P(FROGN (HALFFRI ‘(A B C D E F))
? (TERFRI))

(AR

NIL
?

ConEPR

Simce HFRNUM was 10y 311

the atoms in the ardument of

HALFFRI was rrinted.

emrtiedy FPRINLEN is set to FRINREGs the first available
rosition, Stuffing &2 character into the buffer causes
38 FRINLEN to advance by orney until it reaches FRINEND.
If 8 character is to be stuffed whernm FRINLEN=FRINENI,
the outrut buffer is first flushed to the current
outrut devicey FRINLEN reset to FRINRBEGr and then the

HPFRNUM is set +to NILy so only
4 aztoms are outrutted on

31

character is inserted into the buffer. Exrlicitly
gsetting FRINLEN dgreater than PRINEND dives a SYN-ERR
on the next buffer orerationy and resets FPRINLEN to
FRINREG.

FRINEND is the last rosition of the outrut bufferi
it should rnot the set larder than 190y or 3 SYN-ERR will
be issuedy and FRINEND reset to 72. Initisal value for
FRINEND is 72.

The outrut buffer rointers are all used and urdated by the
rrimtimg Functionss the user can chandge their values exrlicitly
by usindg SETQ (or SET or QSETQ).

Three hinmts on the use of these rointers. If FRINREG is
grester than 0y then the character rositions before FRINRBEG are
filled with blanks. Thus 1f FRINBEG is set to 2y 311 outrutted
will start with 2 blarnks.

Wher the outsut buffer is flushedy 811 character rositions
are filled with blanks, Thus advancing FRINLEN &8s & character
rosition (using SETQR) without stuffing anuthing into that
rocitiony will cause it to rrint as a blarmk, Alsoy if FRINLEN is
set back to 8 buffer rosition that slreadwy has a character
stuffed into ity 8 new stuff will rerlace the old character with
the new. '

Firnallyy rnote that a8 buffer flush (usinmg TERFRI) takes the
value of FRINLEN as the end of line rositiony so that onlw the
firet FRINLEN characters in the whole buffer are outrutted. This
is cool unless wou reset FRINLEN to a rrevious character rosition
(i order to rerlace @ charactery saw)r and then do a TERPRI.
Only the characters ur to the FPRINLEN rosition will be outruts
everwthing rast that is lost.

4,3,1 Character FPrinting Furnctions
These fumctions wsrovide the abilite to send individual
charscters to the outrut buffer. All of them use and urdate the

buffer rointers.

FRINE is a8 SURR of orne argument. (FRINE)y where 2 1is an

SNUMy racks x blanks into the outeut buffer, If 2 is =zero or
negaetive » no blanks are outrutted. Returns NIL for its result.

FACK]1 is 2 SUBR of orne argument. (FACK1)y where 2 is an
SNUM» sends the single ASCII charascter rerresented by the inteder

¥ ko the outrut buffer, See Arrendix A for inteder’
rerresentations of characters., If ¥ is larder tharm 1778y it is
truncated to erovide a3 7-bit irnteder. Some caution should be
used for odd values of uj for imstancey certain inteders do not

rerresent any charactersy and will rnot erint.

32

&

I Charter 5

Literal Atom Stiructure

This section describes the sttributes

ard intermnal reerresentations of literal
astomsy as well as the methods wused to
internalize and uwrdste the literal atom

obJect list (ORLIST).

5,1 QOBLIST

The ORLIST is an inmternal hash arraw of 128 buckets holdins
311 non-NILy nom~densuym literal atoms in the sustem (excert for
literal atoms which have been WIFE‘dr see section 5.1.2 thelow).
Each bucket 1is a list of atoms corresronding to its rarticular

hash. Whenever @ literal atom is read in (using 2 READ suntax
function)s idits ename 1s hashed and the arrrosriate buchket
searched to find @ match. If rone is foundy 3 new entry is

created on the bucket.

The ORLIST can be exrlicitly retrieved using the function
ORLISTy & SUBR of no ardguments. It returns s list of 2811 128
atom buchkets. ODBLIST actually returns 8 corgw of the internal
hash bucketssy so that its result can be manirulated with imrPpunity

by RPLACAY RPLACDYy NCONC or any other rermanent list—altering

functions without feasr that the OBLIST will be wrecked and bomb
out st the next dgarbade-collect. ' :

An atom’s rosition on the ORLIST can be obtained with the
function ATMHASHy &2 SUBR of one argument. ATMHASH returns the
bucket number of its asrdument as an SNUM from 1 to 128F% the first
mucket on the OBLIST is bucket 1y the last is 128, If ATMHASH is
given anwthing but an nglitast argumenty it will comrlain with an
ARG-ERR . If it carnot find its ardument on the OBLISTy it

returns NIL. an examsle of the ATMHASH function is dgivern in

Oialodue 5.1 helow.

5.1.1° Truly Worthless Atoms

Also called TWA’s for shorty these are mon-NIL literal atoms
which have no other attribute than 2 =ramey and are not
raferenced by anw other dat structure in the ALISF sustem. TWA‘s
are rurdged from the ORLIST at the next darbadge collecty unless
thew have heern set with the Ffurmctign SFECIAL (see below).
Clearinsg out TWA‘s has the effect of freeind ur free storade and

33

34

unclogging the 0ORLISTy esrecially when larde numbhers of new
literal stoms are created arnd thern abandorned during the course of
srogram execution.

It for some sbrange reason (such as freeind ur more storade)
wou desire to turm 8 worthy atom into a8 TWAy then wou must remove
its value atliribute with REMOE and set its rlist to NIL with the
Tunction FLIST. If there are mno references to this atom in list
structures or other atom valuesy then gou have created a TUWA,

There are Limes when it is desirsble to keer a literal atom
around evern whern it is not being activelwy referencedy or has no
value or elisgt attributes. The function SPECIAL is used to marhk
an mlitst so that it will not he darbade-collected even if it is
a TWA. This function is a8 SUBRRX of one or two arduments. The
first ardument is the nlitat to be set or cueried for SFECIAL
status, The second srdument is ortionals if absenty the SFECIAL

status of the altom is returmed as T or NIL. If srresenty the

SFECIAL status of the atom is set if it is non-NILy cleared if
NIL . Value is the atom. Exvamrles of the SPECIAL funmction are
givern in Dialodgue .1 below. :

All sustem atoms such as SETRy CONSs etc. have their SFECIAL

status set s0 thew won’t det clobhered ever if wou turn them into
TWA’s, You cany if wou wishy intemntiornally destrow the sustem bu
an overt act of un—-SFECIAL ing and cloberring 38 vital stom such
as PRINLEN. The stom NIL cannot he SFECIAL‘ed.

9.1.2 WIFPE

In some cases it i1s desirable to make 3 literal stom
invisible to the READ furmctions. This is truer for examrley if
ol have a larde srogram which uses local variablesy and does
some READ callss if nothing in the READ should conflict with
the local variasbhlesy the locals cam first be WIFE’d. WIPE’ing 3
litersl atom removes it Ffrom the ORLIST and slaces it on the
WIFELISTy where it will bpe dgarbage-collected correctly but not
looked us by READ whern arm atom with a8 similar rrame is inrutted.
All other attributes of the atom remain 3s they were. In this
waw it is rossible to create two different nglitats with the same
Priame

Literal atoms on the WIFELIST asre mot wunicue. If the atom
FOOy Tor exameley is WIFE’d omto the WIFELISTy then armother atom
with the same rrname FOO is sut onto the ORLISTy WIFE‘ing the
ORLIST atom FOO will rut this mew atom om the WIPELIST. There
will then be two atoms with the same rrame on the WIFELIST., BRuy
successive arrlications of WIFPEy an indefinite number of atoms
with the same rsnsme can be rut onto the WIFELISTY thew will 311
be different interrmal atomsy and mot EQ Lo each other.

Onece am atom is WIFE‘d it cannot bhe put back on the ORLIST.

If an atom on the WIFELIST is a8 TWA (section 5.1,1 above)s then

()

N

®

Dizlogue 5.1

— The Function SFECIAL
v£~> TLLIST ‘FO0 “rAR)
(FOO RAR) The atoms FO0OO and BRAR are
TWA’sy since thew have no
- value or slist attributesy and

their only referencey in (LIST
‘FOO ‘BAR)Yy ig lost as soon as
-~ it is evalusted,

PLCATMHASH “FOO)

&2
TCATMHASH “RBAR)
120
TCARGN (OBLIST)Y &2)
(" FOH
TCARGN (OBLIST)Y 1200
- (SURBRX RETURN RAR) ATMHASH returns the hash
bucket on the ORLIST which
holds its arguments. RBoth FOO
— arnd BAR are on the ORLISTy
since rno GC’s have been
rerformed wget. ARGEN is a
- Tunction which returns the

other element of a3 list.

- T(SFECIAL FOO) :
. NIL) |

o P(SFECTAL *BAR)
- NIL The SFECIAL status of FOO and

RAR is NIL.

PTIGFECTIAL CFOQ T A
FOO This sets the SFECIAL status
' of FOO to T.

(E4t10D)

NIL .
- TCARGN (OBLIST)Y 62)

(* Foo
- TC(ARGN (ORLIST) 120) _ :
-u (SURRK RETURN) The GC function calls an

immediate darbade~collect.

» The atom F0OO is still on the
- ORLISTy but BAR has

disarreared.,

it is removed from the WIFELIST at the next dgarbade collection.

- The function WIPE is a SUBR of one ardument. This ardument
should be an nglitat to be removed from the ORLIST. If the atom

35

3%

ieg mot on the ORLISTy or is & GENSYM atom or NILy rmo action is
e WIFE returns its srdgument if it was successful in

/

Wi
are dgiven below i aslodgue 5.2,

)

Nialogue H5,2
The Fumctiorns WIFE and WIFELIST

TOSETR FOO 2 CRAR RBROO MO0 The value of the atom FOO is
(RAR BOO MOD) the list (RAR ROO MOD).

TOER (AR FOOY CRARD

T The first element of the listy
Lhe atom BARy is on the ORLIST
and ER to the stom BAR Just
reacd ir.

TOWIFE (AR FODY) This WIFE’s the atom BAR from
BAR the ORLIST and mlsces it on
FCWIFELIST) the WIPELIST.
(AR

TOERQ (CAR FOO0)Y “RrRaR)

NTL The atom BAR slaced on the
WIFELIST is mow no longer the
same as the atom BAR resd in
and mlaced on the OQRLIST.

The fumction WIPELIST 8 SURR of no ardumentsy returns the
corw of bthe WIFELIST. This corw can be manirulated bu
list-altering functiorns such as NCONCy RFLACAY etc.y without fear
of wreckimg the internal WIFELIST and screwing the sustem.

Ao Literal Atom Tuses

There sre three tueres of litersl stoms! NILe Genswum astomse
end non-Gernswmy non-NIL literal atoms (nglitat’s). Thew are
mostly interchengeabhle whern used in ALISE srodramsy but the user
should he aware of their srecific recularities. :

There is o single sredicate to determirme if an S-—exrression
i & literal atom or not. LITF will return T for norn-NIL literal
atoms: The Tollowing exgrression will return T if anm S-eMrression
¥ odw oanw literal atom?

(OR (NULL) (LITE)

img dty or NIL if it was not. Exemeles of the WIFPE function

YBe2+1 NIL

NIL is «cdear to the heart of every LISF user. It is
upicuitous amd fills 8 multitude of rneeds in its dual role as
emety list and literal astom.

The test for NIL is the function NULLy &8 SUBRR of one
ardgument, which returns T if its argument is NILy and NIL if it
is nor-NIL. The NULL functiorn is eequivalent to the lodical NOT
function found on some LISF sustemsr since inm ALISF lodgicasl truth
is signalled by any non-NIL valuer losicasl falsity by NIL.

NIL is rerresented in core bw arn ALISF wointer of all =zeros.
Sirnce this roints to the Ffirst word in free sracey which 'is a3
word of all zerosy the CAR and CIR of NIL sre also both NIL., NIL
i the only atom which CAR and CDR will accert as an ardgument.

The sname of NIL isy of course *NIL®"y althoudgh NIL can also
be ineut 85 "7, NIL is not orn the QRLISTy and cannot be
WIFE‘d or SFECIAL ‘ed or dgarhade-~collected.

The value of NIL is alwauws NILy and cannot be chanded with
ary of the functiomns SETRy SETy or QSETR. Nor can its value be
REMOR‘ed (see $5.3.2 bhelow), The rlist of NIL does rnot existi any
of the wligt functions will comrlain on being diven NIL 8s an
atom which is surrosed to have 38 rlist.

S¢2+2 Gensum Atoms

- Gensuym stoms are verw much like other nor-NIL literal atomss
excert that they are not on the ORLIST and have funny (hut

unieue) rrames. Recause thew are not on the OBLISTy Gensum’s can
never bhe recodnized by READ. :

Gensam atoms are useful in LISP srograms which must generate
sumholsy wusually as tads to list structures. Tree-buildins
rrogdrams will oftern wuse Gernsum atoms as node names. The MILISY

(MIni~-LInguistics SYstem) erodram uses Gensuem atoms a8s internal

names for obhdects in its dsta-base. Gensuym atoms can be created
on the flw bw ALISF rrodgramsy and each new Gensum is duaranteed
LML QLUIE

Gernswym atoms are created using the function Gensum (GENerate
SYMbol)y @ SURR of no arguments. It returms 8s its valuey each

time it is calledy a Pmewlu-minted Gensym with rrname Xnnnesso The
moare digits for an inteder (in QUTHASE rerresentation) unicue to
that Gernsumsy the X is the Gensum erefix character. Each time
Gernsum is calledy the Gensum digit is advanced by orey so that
subseauent Gersum calls will return erames with an incremented
intedger.

The. atom GENCHAR controls the Gensym =name character srefix.
It GENCHAR has value NILy the default character *6" is used.

37

N——r

SEMCHAR can also be set Lo ang non-NILy non-Genswm literal atom.
The Ttirst cheracter of the smeme of this stom is used ass the
Gernsum srame srefix. Gernsum will comsrlain whern called if GENCHAR
ia mot NIL or am nmglitet. Imitial wvalue for GENCHAR is MNIL.
Fuamesles of the Genswum function are sgiver in Dialogue 3.3 below.

MNialogue 5,3
The Function Genswsy

Imitisl value Ffor GENCHAR is

NIy so *G" is used as the
TOOerswm) Gensym character.

GO

TOSETA GENCHAR “ANOTHER)
ANOTHER

This sets the Gernsum character
to "AY.

TlEersym)
Al Note that the Gensum counter
fhas heen incremented for each
rmew Genswum call.,

TCGSETR FOO (Genswm?)) The altom with FRame "A2" is
A different from the Gensum atom

POEQ A2 FOD) ‘ A2
NIL

The sPame mandrsulating functions FACK and UNFACK do not work
orn Benswumsy and will comelain if dgiven such.

Ta find out whether sn S-exsrression is a Gensum atomr the
funetion Gernswmres @ SGUEBR of one arguments can be wused. Genswumr
returns T 4if its argument is @ Genswem atomy NIL if it is not.

o223 Nglitats

are nore-NILy mon-Gensem lileral atoms. All of the
¥ described in section 5.3 arrly to nglitats. The
wrorerty which distins » nglitats from the other two tures of
literal altoms ave de @ srintensgme consisting of 0 e arbitrary
sbring of characters (hul le than 322) used by the ALISF sustem
uher dnesgthling andg oultsobting the astomd armd intermalization of
the stom on edither the DRLIST or the WIFELIST (see section 5.1
ahove) . The rname functions FACK and UNFACK will omly work on
meglitats and NIL.

These
srorerlies

s

®

-

93 Likeral Akow BEromenties

These rrorteries arrly to nlitatsy ie@ey norn—NIL literal
atomsy with the excertions noted.

5:3¢1 Priagme

The =name or srint-name is a8 character string associated
with anrn nlitaty and used for communication between the ALISF
sustem and the user. Whenever the atom must be rerintedy the
erame character string is outruttedy if the atom camn be inruty it
is he means of the rrsme character string.

Gensym atoms will srint 85 8 single character followed by an
inteder unicue to- that stom (see section S.2.2). The slash
convention foyr erinting exotic atom characters is not usedy even
if the switch SLASHES is set. Gensum atoms cannot be inrut.,

Nglitats can have esnames of wur to 322 characters. Ar
nglitat is outrul by rrinting its character strindy wusindg the
exotic atom slash convention if the switch SLASHES is set.
Ndlitats can be imrut by turing in their character strindy using
the slash convention on inrut to READ for exotic stoms (see
section 3.2.2).

The funchtions PACK snd UNPACK ernable the user to exrlicitly
manirulate literal astom rhames. These functioms will rnot work
with Genswm atoms?y howevery thew do work with NIL.

UNFACKy & SUBR of one arduments returrns a3 list of stoms
whose snames consist of the individusal characters in the ename of
its ardgument. The atom NIL UNFACK’s as the list (N I L).

FACKy a3 SUBR of one arduments racks the first characters of
the rrsme of easch element in its ardument into 8 mew snames which
it then internalizes and returmns as a8 literal atom. Its ardument
miust therefore be a nom—emrty list of ndglitats.

Frameles of the PFACK arnd UNFACK furmctions are siven' in
Hialozgue .4 helow.

It is sometimes valuasble to know Just how many characters
are in & rFname, The functiorn ATLENGTHy 3 SUBR of ore argument»
does Just that. If its argument is s literal atomy it counts the
number of characters in its rrame and returns that count a3s an
SNUM. ATLENGTH will actuallw taske anw atomic S-exrression as its
ardgument, It returrns the following values!?

NIL ¢ 3
Gensym 3 &
Number ¢ print lendth of mumbery including decimal
roint and minus sidgn. '
nglitat ¢ length of sname

40

Dialodgue 5.4
The Functioms FACK and UNFACK

TCUNFACK NILD

(NI L)

TCUNFACK “FQOO)

(F 0O

T(UNFACK "HI/WTHERE)

(HI BTHERE The atom "HIUVTHERE®" has a
blank character in its Fnrame.
UNFACK handles this character
Just as it would any othery bu
forming an atom with the blank
character a3s its Prame.

T(PACK “(F 0)
FOO
TCEQ (FPACK 7(F 0 Q))/FOO)
T) Note that the atom formed by
FACK is the same a5 that
irnrutted by the READ function.

T(FACK 7 (FO0 EBAR))
FE Note that only the first
character in the stoms FOO and
EAR is used bw FACK.

T(FPACK (UNFACK ‘F0O0))
FOO FACK and UNFACK are inverse
furctions,

5.3.2 Value

All nmlitats have a vaiue cell which holds the current value
of the atom. The value can be any valid ALISF S-exrression.

Whern anm mlitat is initislly created or read in for the first
timer it is diven the atom ILLEGAL as a3 value. This srecial atom
is checked for by the interrretery which considers an nlitat to
have mo value if it finmds ILLEGAL in the value cell.

The value of am nlitat can be chanded at any time by one of -

the fumctioms SETQy SETy or QSETQ. SET is a SUEBR of two
argumentssy it sets the value cell of the first ardument to the
second argument. SETQ and QSETQ are both FSUBRX’s of an
indefinite number of arguments. The first of each rair of
arduments is an nlitat whose value cell is to be sety the second
is the value to set it to. SETQ differs from QSETR in that it
evaluates the second of each rair of arguments. All of these
functions return the value of the last set made as their result.

)

()

Evamrles of the SET functiorns are diven below in Dialosue 5.5,

Nialodue 5.9
The Functions SETy SETQs and QSETQ

T(RET FOO “RBAR)D
RAR
TEOO
EAR This sets the wvalue of F0O to
the atom BAR. Note that SET
evaluates its first ardument.

P(SETQ FOO MO0 RAR “MAR)

MAR

TFO0

MOO

TRAR

MAR SETQ tskes any number of rairs
of argumentsy and only
evaluates the second of each
Frair. It returmns the value of
the last set.

TASETA FOO MOM BAR DIAD MOO COW)

CouW
PLIST FOO RAR M0O0O)

(MOM Ian COW» QASETA has the same format as
: ‘ SETRy but evaslustes nome of
its arsuments.

It is dimrossible to set the value cell of an atom to the
atom TLLEGAL using the ahove functionsy since ILLEGAL can neither
he read in nor rassed from one exrression to snother with anu
ALISF fumction (EVAL alwaus intercerts it and comrlains with a

VAL-ERRY The function REMOBy & SUERR of orne ardumentr is

srovided to stuff ILLEGAL inmto the value cell of its ardument.
The reason wou might want this to be dore is to remove the atom
from the ALISF swstems If an nmlitat has value ILLEGALy 8 rlist
of NILy is mot SPECIAL’edy and is not rointed to by any reachable
ALISE data structures them it is 38 TWA arnd will be collected on
the next dgarbasge collect (see sectionm S.1.1). The furmction REMOE
thus does not immediately remove its nlitat ardument from the
ALISF suystemy but sets ome of the conditions that will allow it
to be removed on & darhade-collect. NIL cannot be REMOR‘ed.
REMOR returns NIL as its result.

The value cell of a literal atom is sutomatically asccessed
by EVAL whermever the interrreter evaluates that atom during
rrogram execution., The furnction EVALy a3 SUEBR of one srduments
will thus return the value of a8 litat if it is diven one as an

4

42

section 6.2). The value of NIL dis NIL. EVAL will
if the litet hes an ILLEGAL value.

€

ValL.UER is & 3URR sredicate of omne ardgument. If its ardument
ie & litat which hes & ledal valuey it returms Ts if nots it
returms NIL .

GETVAL dis & SUBR of one ardument which returns the value of
it dsw oa litet with 8 ledgsl valued if noty it

reumart QT
returns the atom NOUVAL .

of these two FPurctions asre dgiven inm Dizlodgue 5.6,

.3.3 Flist

A1l nlitats heve & elist (srorertw-list) cell which holds
the slist Tor that atom. NIL bhes npo slist. The wlist is & true
List of indicator and value sairs of the form?

Cirmdl vall ind2 val2 .. dindn valr)

Whern an nlitat dis creasted or read im for the first times it is
givers NILy the emestye listy for its rlist.

The slist of am atom cann bhe felched anmd set using - the
Function PLISTy & SUBR of orme or two ardguments. The first
sument shouwld e s onlitet. The second ardument is ortionzls
PR

Examrles of the PLIST funcltion are dgivern below in Dislodgue 5.7

FLIST is mot the usual access function for rlistss howevery
slists are verw handy because of the fumction rrimitives which
are erovided Lo work . with thems see section 10.1. The
interrreter does not use the rlists of any user-created atomsy

and =z Lhe user has full comtrol over their contents.

sivbr bhe plist of the nlitat is set to its if not rresenty’
the slist of nlitst is Just returned a8s the value of FLIST.

Nialogue 5.6

The Functions

TOBETA FOOQ CRARD
B

TOEVAL TFO0)

RIS

TOEETYAL CFO0)
BAl

TOUALUER 7FO0
T

TOVALUEFR “RARD
NI

TOOETUAL " RARD
NOVAL

TOEVAL TRAR)

ik VAL-ERR FROM EVAL

VALUEF and GETVAL

Note thatry since EVAL is 3
SURR and evaluates its
argumenty FOO is auoted if the
value of FQO is desired.

GETVAL returns the same result
as EVAL 4f FOO has a8 value.

VALLUEF returns T 4if FOO has a
value,

BAR has no value.

GETVAL returns NOVAL. EvaL

o the other handy issues a3

VAL ~ERR « Note that there is
no waw to distinguish between
arn atom having the value NDUVAL
and having the value ILLEGAL>»
if wou are Jdust using GETVAL.
The function VALUEF can sluaus
e used to check this casses
howeversy since it returns NIL
only if its srdument has the
value ILLEGALy or is not @
literal stom.

43

-

44

TORLTSET
RN

FIFLIST

(FQO RBRAR

FTOPLLET

(FOO BaR

TFO0)

TFOOCFOD BAR
MOM DALD

FO0D
MOM DAL

Nialogue H.7
The Fumction PLIST

MOM DAL)

Imdtialluy the =list of an
nlitat is NIL.

This sets the list of FOO to
the four-element list (FOO RBAR
MOM TIATN

VRS

I Charter &
Ihe Susepvisor aodg EVAL

This charter describes the actiom of the

tor-lavel surervisor and the modified EVAL
function used hy ALISF. The sections on EVAL
arc Lambda~exrressions are esrecially

imeortant.

4.1 Top Level

Wher the ALISF swustem is calledy it enters the tor-level
loor of the surervisor. Initiallyy this is a8 READENT-EVAL-FRINT
loos that eats wur S-exeressions tured at 1t (at most one
S-exrression ser linel)y evalustes them with EVALy and outruts the
resullts to the terminals The basic structure of this loor can be
modified in several wausy as the following sections show.

Hdalel 8YS

The value of the atom 8YS controls the ture of evaluation
done by the surervisor. If 8Y8 is NILy EVAL is used, If 8YS is
Ty an EVALQUOTE function is uwsed. In EVALQUOTE modey two reads
are rerformed., The EVALQUOTE surervisor takes this rair of
S-—exrressionsy uses the first of the rair as a3 functiony the
second as a list of arguments which will be rassed to the
functionys alwaws without evaluastion. EVALQUOTE srints the result
andg asks fTor more inrFut. In Dialodue 6.1 8 simrle examrle of the
use of EVAL and EVALQUOTE surervisors is giver.

' Eoth EVAL and EVALQUOTE modes can be discarded in favor of a
user—defined evaluation furction. To use this modes SYS should
be defined a3s & function of no arguments (either FLAMERIA or
LAMBLOAY . This function is then used in mlace of the READENT-EVAL
rarlt of Lhe READENT-EVAL-FRINT loor. The user defined function
must do all of its own reasdings it is called until 8YS is set to
T or NIL. As an examrley Dialodgue 6.2 defines a3 tor-level
surervisar which allows more than one S8-expression wer line to bhe
evaluated.

It ie imrortant that SYS be defirmed correctly when it is s
user—defined surervisory since errors will Just be trarred and

start the evalustion of the faultw surervisor all over. Art
infinitey wunbreaskable error - loor is thus established. There

seems Lo be no neast waew out of this sroblem if user control over

46

Dislogue &.1
The Switch SYS

NiL ' Initial value of 8YS dis NIL»
calling the EVAL surervisor.

PCCONS 7FOO “BaAR)
(FOQyBARD
TCRUOTE FOOD

00 Under EVAL. moder one
S-auPression is reads an

evaluated with EVAL.

PLGETQ 78 T)
T This sets the surervisor Lo
EVALQUOTE mode.

TCONS (FOO BAR)

(FOO0 s BARD I EVALQUOTE modey the first
S—-exurression read is used as
the functiomy the second as a

list of ardguments. Note that
the arduments to furnctiomns
which mormally evaluate their
arsumentsy such 8% CONS
remain urnevaluated at tor

level.

THET (5YS NIL) .
NITIL ' This sets the surervisor hack
to EVAL mode.

the surervisor is desired.

Note also that user-defined surervisors do not have to call
the EVAL functiornys but can do snw ture of intersrretation that it

is rossible to do with ALISF functions, It is a dood ides to be
able to get back to the normal surervisory howevers by setting

SYS to NIL or T from the user-defined surervisor,

Omce the value of 8YS is reset from a8 user-defined
surFervisory the surervisor is lost (unless it is stored somewhere
besides the value cell of 8YS)y simce ity like s8ll rmamed furnction
definitionsy is contained in the value cell of a3 literal atom.

The switches SYSINy SYSOUTy SYSPRIN and X are 311 active
under a8 user~defined surervisor (see belowy &.1.2 and 6.1.32,

One dgood festure of the S8YS=NIL surervisorr as orrosed to
the user—defined surervisor given in the examrle of Dialogue 6.2y
is Lhat it will read only one S-exrression from an ineut line.

N

Dialosue 6.2
User-Tlefined Surervisor

POOE SYS () (EVAL (REAIN))
5YS Defimire 5YS as a LAMELIA

function of no arduments

causes it to be used as the
new surervisor. Note that now
READ rather tham READENT 1is
usedy S50 that miltirle
S-evrressions can be read from
the same line at tor level.

PCCONS “FOO ‘RAR)Y (LIST “FOO)

{FQUr»BAR)

(FOD) Both the CONS and LIST
exFressions are evaluated,
Their results are rrinted in
succession.

PA YR L ‘D (SETR SYS NILD

A

R

C

u

NI Five S-exrressions are read
and evaluated from this lines
the last ane sets the
surervisor back to EVAL mode.

T 'A 'R ‘G

A

T Now onls one S-exrression rer

line is evaluated.

S-—exeressions can be closed with excess right rarentheses if
READENT is wused. This enables the usery a3t the end of a3 londg
S-exrression that rerhars extends over several linesy to fordet
about matehindg rarentheses exactlyy and Just ture 10 or soy
certain that the S-exrression will be closed and rno SYN-ERR will
he diver. REAIENT starts a3 new line amgd flushes 311 the excess
sarentheses when it asks for the next S—exrression.

6+1,2 SYSIN and SYSOUT

These atoms control where the surervisor reads S~exrressions
from angd where it srints them out. Imitiallyy both SYSIN and
SYSOUT are set to zeroyr so reading andg erinting take rlace on the
terminal (for srecisl bateh considerationsy see the section
I.16). These switches work inm the followind wawl before an

47

48

S-adrression is read at the tor-level loor of the surervisor
INUNIT is set to SYSINF before the result of evalustion is
rrintedy QUTUNIT is set to SYSOUT. Chandging values of INUNIT and
QUTUNIT during an evaluation will rmot therefore affect the
tor~level surervisor read and rrint device assigrments. Chanding
either SYSIN or SYSOUT willy however., Surroser for examrler that
gou have a rermanent file cormtasining S-exerressions wou would like
to have evaluated by the surervisor. Simrly oren the file as a
local file with umit o (see sectiorn I.15)y and set SYSIN to o.
The surervisor will then read throudgh the file and evaluate each
S—exrressiony erinting them on the SYSOUT device. If the last
statement in the file is (SETQ SYSIN 0)y reading will continue
from the terminal when the file 1is exhausted. For more
irnformationy see the section on file srimitives.

SYSIN and SYSOUT work for 8 user~defired surervisor as well
as the SYS=T or NIL surervisors,.

641.3 SYSFRIN andg X

At times it is desirable to turn off rrinting by the
tor-level surervisor. The switch SYSFRIN is rrovided for this
FLTHOGE » Setting SYSFRIN to NIL shuts off the srinting of
results by the surervisors if SYSFRIN is mon=NIL results will bhe
rrinted on the SYSOUT device. SYSPRIN is initialle set to T.

At other times it is mice to be able to reference the value
Frinted by the surervisor as the result of an evaluationy during
the next evalustiorn. The atom %X is rrovided +to alwaws hold the
result of the last surervisor oreration in its value celly and
can be used to sccess this value, Examrles of the use of the
atom X are diven below inm Dislodue 6.3,

Nialodue 6.3
The Atom X at Tor Level

PCAFFEND “(A-B C) / (D EF G ,
(AR CIDEF G Now X is set to the result of
" the AFFEND orerationr namelwur
the list (A BC DEF G).

P(SETR FOD (CONS ‘RAR X))
(BAR A R C D EF G)

PFOQ

(BAR A R C I E F G) Now X is set to the value of
' FDO.

T(CAR X)

BAR

——

)

6.1.4 EXIT
/\} At any roint in an evaluations the tor-level surervisor and
~ohe ALTSE sastem can he abandoned by evaluating the furnction
EXITy a SUBR of rmo ardguments, A sigrn-off messade diving

execution statislics will be erinted (see section 1.1)s and
control returns to KRONOS.,

6.2 EMAL

The workhorse of the interrreter, I have used a2 modified
version of the McCarths EVAL, which lends itself well to a sreedy
imrlementationy less ambidious suntaxd for functionm evalusationy
and better conventions for comrilation of furmctional arduments.
For most common cases of evalusationr howevers the McCarthy EVAL
works Jdust the same as & standard EVAL. The only dreat
difference arrears with functioral arguments (see below and
section 1.7).

A comrressed definition of the EVAL and AFFLY functions can
be found in ArFrendix E. The following sections are more
descrirtive of the action of these two functiomssy and much more
readable than the Arrendix, All ALISF data tures can currently
be EVAL‘ed? these sectiorms describhe the results.

6:2+1 Atomic Evaluation
i+ Number Tokens

EVAL simrly returns the numbers without doing
anwthing., This arrlies to all number tokens! SNUM»
ENUMy LNUMy ANUMy and FNUM tures.

ii+ Literal Atoms

If the atom is NIL» NIL is returned., If nots EVAL
gots the value cell of the atom and returns that.
Note that arn atom may have mo valuey in. which case
EVAL comwrlasins with a VAL-ERR. The atom ILLEGAL is
userd to indicate ‘that a litat has no valuey that is»y
the value cell of the litat contains the atom ILLEGAL
(see sectiornm I1.5.3.2)., Examrles of atomic evalustions
sre givern in Dialodgue 6.4 below. :

The values of litats are alwaws contained in the value
cells there is no associstion~list which EVAL sesarches
to find litat bindinds. As a8 conseauencer a8 litast can
have only one binding st a8 time. This binding is
alwaws in the value cellsy and cam always be chanded
“wusing SETy SETQy or QSETQ, If 8 litet is wused as a
variable im @ FPROG or LAMBIA exrressiony then its
oridinal value is rreserved on 8 stack (the SFILs or

49

Nialodgue b&.4
Atomic Evaluation

7?1233

123

P55, 6E4

o HHES

TRV

¥77 : Number tokerns evaluate
themselves.,

PNIL.
NTIL. NIL evaluastes to NIL.

P(SETR FOO “RAR)
BAR
TFO0
BAR Literal atoms evaluate
' their values,

PRAR

*k%k VAL-ERR FROM RAR

to

to

7 : If 3 literal atom has no value
' (i.e,y 15 set to the atom
ILLEGAL)y therm EVAL comrlains

with a VAL-ERR.

Srecial Fush-Down List) wuntil the function has
fimished executiony at which roint the oridginal value
of the litat is rorred from the SFDL and rlaced back
in the wvalue cell. Such & binding scheme is called
shallow-bindins, It gacrifices the asbility to save
binding environments for better exectuion sreed,

be2.2 List Evalusation

When EVAL dis diven a8 norn—atomic S—exrressiony it evaluates

it 85 & function form (the S-exrression should be a true lists
it is rnoty the last rnon—NIL CDR is trested as if it were NIL).
turical function form is? ' '

CFrv ardgl ardl o0 arsn)
As the mpemonic sugsestsy the first elemernt of the list
treated 3s a functions the rest of the elements of the list

arguments to the functior.

The first thing EVAL does is +ry to decide what ture
function £fno is. It eventually wants to find either

50

if
A

®

lambda-exrression or a FNUMy which are the only valid function
tures (see section 4.3 below).

If fo is & listy them it must he a8 lambda-exrressiony if it
s & list and rnot a lamhda-exrressiony EVAL comelsins with a

“FUN-ERR. A lambda-exrression is 8 list bedirmming with the atom

LAMEDAYy FLAMEDAYy or LABELS see 6.3 below. Examrles of fuo as a
list are diven in Dislogue 6.5,

Nialodgue 6.5
Lambda-Exrression Evaluation

TCUAMEDA (XD X)) ‘FOO)
FOO fm is the lambda-expression?
(LAMEDA (X) X).

TCFLAMEDA (X)) X)) ‘FOO)

(QUOTE FOO) fon is the lambda-exrression?
(FLLAMEBDA (X)) X). Note that
FLLAMEDA‘s do rnot evaluate
their argumentsy so that ‘F0O0
is returned ss (QUOTE FOO).

TOCLIST “LAMBRA (X)) X) ‘FOO) fu is mot a lambda-exrressions

ever thoudgh it would evaluate
to one.

%% FUN-ERR
OFFENDING VAL = (LIST (QUOTE LAMERDA)
(QUOTE (X)) (RUOTE X))

P

If fin dis am astomy it must be a3 mon—=NIL literal atom. A
rnumber or NIL for fo causes EVAL to issue a8 FUN-ERR.X

If fo is 8 nmon—-NIL literal atomy thernm EVAL looks a3t its
value cell. The value cell must cqntain a wvalid function turer
either a8 lambda-exrression or a FPNUMy or EVAL will comrlaine. All
sustem functionsy such as SETA and CONSy are defirned in this wau!
they have a FNUM in their value cellsy indicating 8 machine
subroutine. Examrles of atomic £o are diven below in Illialodue
bbby

The search order for f£o is summarized in Table 6.1, This
search order works extremely well with furnctiornal arduments (see
section T.7).

was ssae s0ue 0os sess seve epe ssne tees skes bese Soan seat send aree

X The excertion to this is if £f£o is a FNUM? howevery since PNUM’‘s
cannot be ineFut by READy it is unlikelw that one will end ur as
the firet elemernt of 38 list., If it doesy then it is treated as
a machine subroutine function. :

51

52

as to whether or
furmction is & LAMBDAy SUBRy or SUEBRX,

Nialodgue 6.6
Atomic Furnction Evaluation

PINIL ‘FOO) NIL is rot a ledal value for
£ .
¥¥% FUN-ERR FROM EVAL
OFFENDIING VAL = NIL

PCL23 CFOO) Any number ture excert PNUM is

also an illedsl wvalue for fo.
*%% FUN-ERR
OFFENIIING VAL = 123

PCAR CAR has a FNUM value.
P$20000001006023

P(BETR A (LIST CaR ¢ 7(FO0 RBAR))
(FE20000001006023 (QUOTE (FOO RAR)))

A rmow has 3 FPNUM in the fn
rosition. ,

TCEVAL A) .
Foo The value of A was evaluasted
correctly bw EVAL because fo
has a FPNUM value.

T(CONS ‘RAR “ROM)
(BARYEOO) CONS has a FNUM definition.

P(SETQ FOO CONS)
wE#20000002006166

P(FOO0 “RAR “ROO) Since FOD was set to the FNUM

. velue of CONSy it too had s

valid function definition as
its value.

TASETQ FOO (LIST ‘LAMEDA (X Y) (CONS X, ?)))
(LAMEDA (X Y) (CONS X Y))

P(FO0 “EAR ‘ROD)

(RARyROO) FOO now has 3 valid function

: o . tures namely a
lambtida~exrressionsy 38 its
value.

PT(RAR TFODD BAR has mo value.

%% FUN-ERR FROM RAR .
OFFENDING VAL = ILLEGAL

Once a valid function bas been foundy EVAL makes 38 decision

rot the ardguments sre to be evaluated, If the
thern the arduments are

~ TN,

evalusted before they are rassed to the functiorns if the furmction
is a FLAMRDAy FSURBRy FSUERXy or LSUERy then the srdguments are not
evaluated. Arguments are evaluated from left to ridht., Seversl
exameles of lambda~exerression ardument evaluation are given below
im Dialodue 4.7, For machine subroutinesy one carn lool ur theirv

Nialodue 6.7
Lambhda-Exrression Ardument Evaluation

T(LAMEBDA (X)) X) “FOO)

FOO The sindgle ardument to the
lambda-exrression (QUOTE FO0O)»
was evaluated before the
lambda—exrression worked on
it '

TCFLAMBOA (X)) X)) ‘FOO)
(QUOTE FOO)» FLAMRIDIA functions do not
evaluate their arduments,

TCLAMEDA (X Y) (LIST X Y)) (FRINT ‘F0D0O) (FRINT ‘RAR)Y)))
FOoOo . ’

RAR

(FOO EAR)
7 This lambda-exrression has two
ardguments which are evasluated.,
Thew are evalusted from left
to righty so that FOO esrints
firsty thernm BAR. .

ture in Arrendix C to see if they evasluaste their ardumernts or not.

(see gection 6.3 s8lso).

After deciding whether or not to evaluate the ardumentsy
EVAL rasses them to the functionm and evaluates the function
saecording to its tuyre,., For machine fumctions such as CAR and
CONS» this simelw involves branchimg +to the routine address in
core., L.ambda-exrressions must bind their wvariables and have
their forms evaluastedy see section 6.3 below: for more
informatior.

6:2:3 The Function EVAL

EVAL is avasilable as 8 SURR of one ardumenty as well as
through the tor-level surervisor. The fumnction EVAL evaluates
its ardgument according to the rules diven above and returns the
result, Note thatr becasuse EVAL is a8 SUBRy its ardument is first
evaluated before it is rassed to the function EVALY and the
function EVAL does anoilber evaluation.

53

54

Table 6.1
Search Order for fuo

FNUM or

lambda~exs - (wes)--done
i)

ror-NTL

litersl atom == (o) --FUN-ERR

(ues)
/

value cell is

FNUM or == (o) —--FUN-ERR
lambda—exs

(wyes)

¢

dore

The Tumction EVLIST: a8 SUEBR of one ardumenty arrlies EVAL to
each element of itses arguments and returmns the result of the last
evaluastior. Examrles of EVAL and EVLLIST furnctions are diven
nelow in Dialodgue 6.8, IFf EVLIST is dgivern in atomic ardgumernty it
does no evaluationsy and returns NIL.

4.2.4 AFPLY

It is sometimes desirable to arrlwy a function without having
its asrdguments evaluated, The functiorn AFPLY is used for this.
AFFLY is 3 SUBR of two ardgumentssy the first argument must be a
validg function tyrer the second is an argument list., ‘APFLY
arrlies the function directly to the arduments wihout evaluating
them, The first ardument must be 2 valid function turer either &
FNUM or a lambhda-exrression. Ususlly the wuneuoted rname of 3
furction is used as the first argument to AFFLYy as in the
examrles in Dislogue 6.9 below.

AFFLYX s like AFFLY excert that 1t is 3 SUBRX and takes an
indefinite number of arduments. The first asrdument must adain be
a valid function turei the remaimning arduments to APFLYX are used
as ardguments of this functiorn.

AFFLY and AFFLYX work with all function tyres. Examrles of
these Tunctions are diven inm Dialodue 6.9 helow.

The AFFLY funchtions initislly evolved as rartrners to EVAL in
the evaluation rrocess of LISF. Modern suystems have streamlined

-,

S~

)

[,_.. \
N

Nialodguue 6.8
The Functions EVAL and EVLIST

TCEVAL 1) .
i 1 evaluates to itself.

TCEVAL 4 FOO)

FOO Here two cuotind orerations on
FOO are needed. EVAL. first
has its ardument evalusted

from (QUOTE (QUOTE FOO0)Y) +to
(QUOTE FOOY» then evaluates
that to F0O.

T(BETQ FOO ‘RARD

. RAR

P(EVAL (LLIST ‘CAR 7/ (FO0O RAR)Y))

FOO

TCEVAL (LIST “LIST ‘FO0)Y)

(BRAR)

? ' These two examrles show the
effects of the double
evaluation inherent in the

EValL fumnction. In the firsty
the argument of EVAL is
evaluated to (CAR (QUOTE (FOOD
BAR))) hefore beindg rassed to
EVAL. . Thern EVAL evaluates
that to FOO. In the secondy
the ardument is . evalusated to
(LIST FOO)» which EVAL.
evaluates to (RAR).

PCEVLIST “((FRINT 1) 2))

2 EVLIST evaluates the first
) element of its ardument.y
rrinting 8 1y and returns the
result of evalusting the last

elemerty 2.

EVAL to work inderendentles AFFLY becomes a subsidiary entry

roint to EVALy where rno ardument evaluation is dore.
Nevertheless AFFLY still hass dreat usefulmness in LISFy 35 an
aglternative method of rassind. arduments to a function. Two

rarticularly neat uses of AFPLY are described,

The first makes use of the fact that AFFLY takes an ardument
list (unlike AFFPLYX) to be used with a8 function. Surrosesy for
examrles that wou have a3 list of SNUM’s whose maximum wou wish to
firnd, The functiorn MAX (see section I.92.2.1) is the omne that wou
wants but MAX takes an indefinite rumber of single elements ass

55

Dialogue 6.9
The Functiorns AFPLY and AFPLYX

PCAPPLY CONS (P00 BAR)Y) AFFLY evaluates i1te ardumentsy

(FOOy BARD s that it received a3 FPNUM
' (value of CONS) as its first
ardumenty the list (FOO BAR)
as its second. Note that the
arguments to the furnction
CONSy FOO 3rnd BARy were not

evaluated. o

PCAFFLY “CONS 7 (FOO BAR))

XK FUN-ERR FROM AFPFLY

OFFENDING Val. = CONS Here the first argument of
AFFLY evaluastes to the atom
CONSy which is not & wvalid
function ture (a3lthough its
value is).

TCAPPLY (LAMEIA (X)) X) 7 (FO0Y)

FOOo The lambda~-exrression
evaluares .o itself (see
section 6+.3,1 below)y and is &
valid function ture.

TCAFFLYX CONS 'FOO “RARD
(FO0y RARD ‘ With AFFLYXy arduments are
strung out instead of beindg in
1 115'[',0

argumentsy rather tharn a single list of numbers. Thus!
(MAX 1 2 3 4
is 8 valid waw to call MAXy>but2
(MAX 7 (1 2 % 4))
is nmot. Howevery wusing the function AFPPLYy it is rossible to
?2tiai }i?t of numbers and arrly the fumction MAX to them. The

CAFFLY MAX (1 2 3 4))

Sinmce Lhe secona arsument Lo APPLY is an argument listy this is
the same ss if3

(Max 1 2 3 4)

had been evaluated.

Secorndlay AFPL.Y nmormalizes the ardument evaluation
convertions of LAMEDA and FLAMEDA functions by Pever evaluating
] the argdguments to either. This is most uwseful when FLAMEDA
(ﬁ\ functions are considered. Supposer for exameler that wou have
N’ defined 3 FLAMRIA functiorn FOO of one ardument’ surpose also that
wou wish to use the value of the atom BAR as an argument to FOO.
Obwiouslyy evaluasting?
(FOO RAR)
Wwill rot works since FOO does not evaluate its ardument.
Howevery evaluating?
CAFFLYX FOO RAR)D
will do the Jobsy since AFFLYX evaluates RAR and arrlies FOO to it
directly.
i’
1 6.3 EunclLion Iuses
|
% Function tures are comrletelw characterized bw three
j criteriat lambda-exrression or machine subroutiney evalusted or
i unevaluated ardumentss and definite or indefinite rmumber of
% ardguments. These criteria are summarized in Table 6.2 helow.
i .
| -
| Table 6.2
|)
P Function Tares
- C g
| .
Eunclion Tuee Ardguments * of ards
LAMRIIA lambda— evaled definite and indef.
FLAMRDA exrressions unevaled . , :
. SUERR machine- evaled definite
§ SURBRX landuadge evaled indefinite
| FSURR subroutines unevaled definite
FSURR% . (FPNUM‘) unevaled indefinite
l.SUER unevaled indefinite
e 6.3.,1 Lambda-exrressions
The format for 2 lambda-exrression is?
ILAMRDIA
(or varlist YAl exsr2 +¢+ exen)
; FL.AMEDA '
|
|
N
L

57

58

varlist cam be one of three thindgs?
i+ NIL. The lambda-exrression takes no ardguments.

di. Single literal atom. The lambda-exrression talkes

‘ a8 variable rnumber of arduments. The literal atom

is bhound to a8 list of the arduments (or to NIL if
there are no arvguments).

iiis List of literal atoms. The lambda—-exrression
takaes a fided number of argumerts. Each of the
arguments is bound to the corresronding variable
in warlist.

These variable binding conventions arrly to both LAMRDA‘s
arnd FLAMRIOA s, Thew are summarized in Table 6.3% examrles of

Table 6.3
L.amivda Binding Conventions

Uarlist % of ardgs Variabhles Baund
NIL none no bindindgs
rmlitat indefinite X to the list

X A B CID oo) (A BCTD o)
list of ridmber of vars X to A
nlitats A B C 44 Y to B
(X Y Z 4o Z to €y etc.

bindings are givern in Dialogue 6.10 below.

Evaluastion of the lambda-exrression rroceeds as follows. If
it dis @ LAMBDA listy them the arduments are evaluated in order
from left to righty arnd bournd to the corresronding variables in
varlist according to the conventions Just described. A FLAMEBDA

list ie the same excert no evaluation of the arguments takes

=lace, Then each of the eus is evaluated im order from left to
righty and the value of exsmn is returnerd. The exg’'s are any
valid ALISF date tuyres which can be evalusteds there must be st
least one of them or s8n ARG-ERR will be issued.

After all of exsi have beern evaluatedy 311 lambda variables
are restored in their oridinsl wvaslues. The variable bindinds in
a lambda~exrrassion ornly hold for the extent of the
lambda-errression execution. Thusy in the examerle in Dizlodgue
6.11 belows the wvariable VAR had value TWADDLE within the
lambda-exerressiony but thern had its originsal value of FOO
restored when the lambda-~exrression was exited, Only one value
of VAR }5 available a3t a8 timer however. Everuthing evalusted

I's “\‘\
S

o

Nialogue 6.10
Varisble Rindinds

TCCLAMEDA () T))

T varliskt is NILy so there are

o - ardumewl to the
lambda-exrression. ‘

TCLAMROA N N)Y “FOQ ‘RAR /MOO)

(FOO RBAR MOO) Indefinite number of
arguments. Note that N is
tound to = list of these
arguments. .

POLAMBDACX Y)Y (LIST X Y))

TFO0 ‘RAR)

(FOO RAR) X is bound to FOQy Y is hournd
to BAR.

TOLAMEDA (X YI(LIST X Y)) ‘FOO)

XXX ARG-ERR
WRONG NO. OF ARGS

OFFENDIING VAL = (X Y)> . If the wronsg number of
ardguments is dgivern to a
lambda-exrression with a
rnon—-atomic warlisty an ARG-ERR
results. The varlist in

auestion is rrinted as rart of
the error messade.

within the lambda-exrression will see VAR as having value FO0O0.
One saws that the effects of binding wvariables zare local to a
given lambda-exrression.

The Tunction ARGN is very useful whern dealing with
lambda-exrressions of an indefinite rumber of arduments. Sincey
in this cases the lambda variasble is bound to a 1list of

ardumentsy it is often necessary to retrieve 3 rarticular element

from that list. ARGNy 2 SUBR of two ardgumentsy will do Just
thaty see sectiom 10.2.1 below.

The state at army divern moment of 311 literal astoms sand their
values is called the enrnvironment. Another waw to state the fact
that only one litat value is availahle at anw diven moment is to
saw that there is only one envirormment available at any dgiven
time. When an exe is evaluated within a lambda-exrressions it is
evaluated with resrect to the environment rroduced by the binding
of the lambda~exrression’s variables. There is thus mo waw to
aluays evaluate a function in the envirorment in which it was
defineds the classic FUNARG sroblem. Most users are not affected

59

60

Nislodgue .11
Lamhda-Exrression Evaluation

POLAMEDA (X)) (FRINT X) (CAR X)) 7(FOO EAR))

(FOO BAR)
FOO

X was bound to the evalusted
argumenty (FOO BAR). Then the
FRINT furnction was evaluatedy
erinting the value of X
finallyy the CAR function was
evaluatedsy arnd its result
returmed as the value of the
lambda~exrression.

TOFLAMBIA (XD (FRINT X) (CAR X)) “(FOOD RAR))

(RUOTE (FOO BAR))
QUOTE

T(SETQ VAR ‘FOO)
F O

TCCLAMBIA (VAR)
TWADILE

BAR

TUAR
F00

TTWADDLE
RAR

ty this rroblem.

This is the same as the
Frevious lambda-exrFrressions
excert that FLAMBDA is wused.
Thusy - the arguments are not
evaluatedy and X is bound to
(QUOTE (FOO RAR)) .

This sets the value of VAR to
FOO

(FRINT VAR) (SET VAR ‘EAR)) ‘TWADDLE)

Within the lambda-exrressions
VAR is bound to the atom
TWANDLE . The set function
sets the value of the value of
VAR (that iss the value of
TWADDLE) to RAR.

VAR is restored to its old
value outside the
lambda-exrression.

TWADIDILE s set within the

lambda—-evurression to EAR y
retains this value even after
the lambda-exrression is

exiteds because it was not
used as a3 lambhdas varisble.

For further information om the FUNARG rroblemy

see Weissmarn’s EBErimer, An examrle of this ture of sroblem is
givern in lislodgue 46,12 bhelow.

The function LAREL is ar alternate form of
lapbda-exerressiony used when it is desired to name and call the

o’

Dialodue 4.12
The FUNARG Froblem

T(SETQA VAR FOO)
FOO

TCEETQ VALSET

? (LAMRDA (VALUE) (SET VAR VALUE)))

(LAMEBDA (VALUE) (SET VAR VALUE)) The atom VALSET is now defined

39 a8 lambda-exrressiony a
valid furnction. VAR is set to
FOOo.,

The envivonment in which the
function VALSET was defined
thus had VAR set to F00s and
evaluating VALSET in this
envirornment should set FOO to
the wvalue of VALUE wher the
exrression (SET VAR VALUE) is
evaluasted.

POCLAMEBDA (VAR) (VALSET 20)) ‘BAR)
20
TFO0

*¥%¥X ValL-ERR FROM FOO

THAR

20 The function VALSET: evaluated
within- the lambda-exprressiony
saw the value of VAR as RAR
and not FOOr and so set RAR
rather than FOO to 20.

e

lambda~exrression from within its own form. Format is!

(LAEBEL lrname lexs)

where loame is an nlitasty and lexs is a3 valid lambdas—-expression.
LAREL is wsed Just like an ordinmary lambda-exrression. When it
is evaluatedy the 1litat loame is bound to lexes so that it
hecomes a8 valid function riame within lexss. LAEBEL can be used to
define recursive Tunctiorns! @ the followind examrle defirnes the
recursive factorisl function and suprrlies it to an inteder.

T((LAREL. FACT (LAMEBDA (X) (COND ((ZEROF X) 1)
(TCTIMES X(FACT (SUB1 X3)))))) 6)

24

Within the LAMERDA formy FACT " is wused to refer to the
lambda-exrression. LABEL is actuasally of little eractical use
excert a8s a8 teaching tool. When it is necessary to Hive 3
lambda~-exrression 3 namey the function defimition -srocedures

6/ 2

o

e b e - e e S a1

62

givern in sectiorm 6.4 below are much handiery and 3lso more
rermanent,

Aall of the lambda-exrression forms described in this section
C(LAMRDAYy FILLAMERDAY arncd LAREL) are defirmed as LSUBR’s. Thew are
identity furmctions under EVALy returning themselves, This

erorerty is useful mainly in conmection with rassing

lambda~exrressions as functiomal arduments (see section I.7).
Evameles of the identity furctions are diven inm Dialodgue 6.13.

ad

Dislodue 4.13
Lambda-Exrressions as Identitw Functions

PCLAMBLA (X)) (CONS X ‘F0Q0)) All LAMEDAy FLAMBIAy and LAREL
(LAMBDA (X (CONS X “FOOY» exrressions are identity ‘
P(LAREL NN (LAMEDA (X) X)) ' functions.

(LAREL NN (LLAMEDA (X) X))

G.3.2 Machine Landusde Subroutines

These functions do not bind variables like
lambda-exrressions. You should be aswarer howevery that some of
them use the values of 1litasts durimg the course of their
execution (the read amnd erint functiorns use the buffer rointerss
GENSYM uses GENCHARy etce).

i+ SUBR ~-- evaluastes a definite number of arduments,

Turical emxamrles of SUEBR‘s are CONSy CARy CIRy
ATOMy etcs=-most of the familisr LISP fumctions. A
SUBR function will comelain if it is diven too many or
two few ardguments by issuing an ARG-ERR.

iis. SUBRX -~ evaluates an indefinite number of
arduments.

Turical emxamrles of SUBRX‘’s are the numeric
functions TIMES and FLUS. These two functions will
take as many srduments s8s wou care to dive themy but
vou must dive them at least two. Altheough it is true
that SURRX furctioms in dgerneral have the ability to
take sny number of argumentsr most have restrictions
like TIMES amd FLUS so that they will sccert 8 varisble
number of arduments withinm a8 certain rande. The
function FLIST» feor examrler takes only one or two
ardumentsy and dgives an ARG-ERR for srv other number.
Individual restrictions for SUBR%X‘’s are diven in

®

e —— -

descrirtions of the functions in the text.

iii+ FSUBRR -~ unevaluatedy definite number of
arduments. :

Turical examrles of FSUBR’s are QUOTE and DEFPROFy
which take orne and three ardumentsy resrectiveld., AR
FSUBR function will comrlain if diven the wrondg rnumber
of arduments by issuing an ARG-ERR.

ive FSUBRX and LSUBR —-- unevalustedy indefinite
rumber of ardguments.

The differernce betuween these two is an internal
one in the waw arduments are rassed on the stacky and
invisible to the user. Most of the rerodram flow
controlling functions (CONIDy IFy FROG» ANDy ORs etcs)
are of this ture. FSUEBRX and LSUBR furnctions act .Just
like SUBRX’sy excert that their arduments are rassed
without evaluation. '

664 Nefipmiodg Eunctions

Since valid functiorns sre alwaus rut into the value cell of
an nlitaty there are several wads to define user functions. Any
of the functions SETy SETQy or QSETQ used +to rut 2
lambda—-exrressiorn list into the value cell of a3 litat will works
the standard DIE and DF are also rsrovided. IE and DF are LSUBR’s
which use the followind standard format?

nE _
(or fn varlist exrl exrEr2 oo @MFM)
nF

The result of evalusting the above form is to rlace in the value
cell of fo the followind lambda-exrression?

LAMERIIA
(ar varlist exrl exrl +.. exen) .

FLAMEDA

IE defines & LAMRIAy DIF 3 FLABMDA furmction. f£o must be an nlitat
or IE (or IF) will comelain with an ARG-ERR. DE and DF return
fo. Exameles of DE and IF functions are diven below in Dialodue
d.14.

X% NOTE kkk NOTE k%% NOTE X%k NOTE Xk NOTE XkX

Because functions asre contsined in the value cell of an
nlitaty that nlitat carnnot have both a3 function definition and s
value at the same times its function definition is a
lambda-exrression which i also its value. Unlike most other

63

L

IDialodue 6.14
The Fumctiorns [DE and DF

TONE PLUS2 (X)) (FLUS X 2)) FLUS2 is defined as a lambda-—

PSR EHPTreSS10MN.
PRLUSR Note that a lambda—-erxrression
(LAMEDA (X)) (FLUS X 2)) is actually stuffed as the

value of FLUS2.

PTUSETQ FLUS2 2 LAMBDA (XY (FLUS X 2)))
(.AMEBDA (X)) (FLUS X 2)) This SETQ has the same effect
as the IE.

LIGF swastemsye ALISF does not have 8 serarate value and function
definition slot for each nlitat. If vou want to use anm nlitat to
name a Tunctiony then wou canmot use it as s variable at the same

time. The omly circumstance where this is bothersome 1is where
wou’d like to use an atom which is a8lresdy 3 suwustem function
(such 8% ILISTy ATOM» eted) as a8 variable withinm a

lambda~exrression. This is ok as long as the sustem function is
rnot rmeeded during the evalusation of the lambda-exeressions
hecause thernm the atom will have (in dermersal) a3 non—-FNUM value.
Arr examele of what oot to do is the followinsg?

TODE NEXT2 (LIST) (LIST (CAR LIST)>(CADR LIST)))
MNEXT2

TLIST ‘FOO0 ‘RAR)

(FOO ERAR)

T(NEXTZ2 “<(FOO RAR MO0))

%% FUN-ERR FROM LIST
OFFENDING VAL = (FOO BAR MOO)
PTSETQ LIST 1)

1

TOLIST FOO "RAR)

¥kk FUN-ERR FROM LIST
OFFENDING VAL = 1
?

The first mistshke made sbove was to try to wuse LIST as both s
function and varisble within NEXT2. Since the atom LIST was set
to (FOO BAR M0O0Q) when NEXTZ2 was calledy it lost its furnction
definition (FNUM) within the score of NEXT2y and EVAL could not
find & wvalid function defimition for LIST., After the FUN-ERRy
LIST gets reset to its value before NEXT2 was calledy and is orce
aéain a valid function (FPNUM). Setting LIST to 1 at tor levels
howeverr erases its FPNUM value and thus wires out irretrievablw
the function definition asssociated with LIST,

Because of the dual nature of wvalue cells and the ease with

()

which function definitions can be erasedy it is recommended that
wou not tre to wuse an nlitat as both 3 variable and-a functions
ever if wou can set ur these uses so thew do not conflict, In
any casey never use sustem function litats a8s varisbless and
never change them with SETQ (S8ET» QSETQ) or REMOE.

6.4.,1 Checking for Fumction Defimition

An nlitat can be checked for a valid function definition by
the furnction GETFUNy a SUEBR of one ardumentsy or FNTYFE» also &
SURR of one ardument., FNTYFE will return the function ture of
its ardumenty as the atom LAMEDA» FLAMEDAy SUBRy etc. GETFUN

- returns the function itselfy either 3 lambda-exrression or 3

FNUM. Both return NIL if their arduments do not have wvalid
furnction definmitions. Note that GETFUN and FNTYPE can take
either a valid furnction tyre or an mlitat with a valid function
ture in its value cells as an ardument, Exsmrles of these two
furnictions can be found below in Dizlodue 6.15.

gy

Niszlodgue 64,15
The Functions FNTYFPE and GETFUN

T(FNTYFE ‘SETQ)
.SURR
PT(FNTYFE ‘SET)
SURR SETQ is an LSURR functions.
Note that FNTYFE evaluates its
ardgument.,

T(OE PLUS2 (X)) (FPLUS X 2))

FLUS2

PCENTYPE ‘PLUS2)
L.AMEIIA
P(FNTYFPE PLUSZ2)

LAMEDA FLUS2 is defined as a
lambda—~exrression. ~ FNTYFE
returns LAMEDA as the ture of
furiction of FLUS2. Note thaty
even when FLUS2 is not cuoted
as an ardument to FNTYFE,
FNTYFE still dets the correct
fumction defimition. This is
because FPLUS2 evaluastes +to s
lambda—~exrressiony and FNTYFE
will recodgnize
lambda—~exrressions.

T(GETFUN ‘SET) ‘
F£20000002006123) The functiorn defirmitionm of SET
is 3 FNUMr» which GETFUN

(S &

-

returns.

PCGETFUN 7FLUS2)

(LAMEDA (X)) (FLUS X 2)) GETFUN returns t.he
lambhda~-exrression function
defimition of FLUSZ2.

He4,2 Erasing Function Definitions

Furnction defimitions can be overwritten bw using DE or IF on
the alreadu-defimed function meme. The new definition rerlaces
the old,

Function definitions can he erased using REMOR (see section
5,3,2) which sets the value of the mlitat to ILLEGAL. To chande
the name associated with & functionr Just dol

(SETQ rmewrname oldname)
(REMOER ‘oldname)

4.5 Switches

Switches are ALISF ndglitats whose value cells are imrortant
to certain Ffunctions. The value is used by the function as a3
switech to determine 3 rarticular course of evaluastion. Ari
examele of this switching action is fournd in the atom HFRNUMy
which is used by the furctiorn HALFFRI. The value of HFRNUM is an
SNUM rositive inteder sidnalling the function HALFPRI as to how
many atoms it should outrut before it stors printing (see section
4,2,2y, The user can chande the value of HFRNUM a8t any time by
using one of the SET functions.

Switches are a3 way of communicating with an ALISP function
without rassing its arduments. HALFFRI could Just as easilwe have

bheer defined as 8 SURR of two ardumentsy the second of which

srecified a limit on the rumber of atoms rrinted, The advantade
oft using switches lies in their external nature., Once HFRNUM is
setr all HALFPRI c3llsy ro matter what their oridins will rrint
wsing the HFRNUM @ limit. A furmctiom which uses HALFFRI can then
be defined without reference to the current value of HFRNUM: and
wield different results when evalusted with HFRNUM set to
different wvalues. The control resides not with the defined
furnctions but with the envirornment it is evalusated within.

The chief atdvantade of enviromnmental as orrosed to
definitional control for certain sroceeses is the ease with which
the envirornment can be changed, Surroser for examrler that wou
have defined 3 furctiorn called MYFRINT which uses HALFFRI st
several roints in its execution. In order to chande the number
of atoms =rinted bw HALFFRI at each of these rointsy it is onlw
rnecessary to chandge HFPRNUM once. If wou do not wish to destrou
the original value of HFRENUMy the function MYPRINT can he

66

embedded in a2 lambda-exrression which has HPRNUM a3s one of its
variasbhles. When the lambda—exrression is enteredy HFRNUM is set
to the desired value’d when it is exitedy the old value of HFRNUM
is restoredy and the environment has been preserved in a3 very
nandy way.

Switches are indexed along with rre-defined functions in
Arrendix C.

67

68

I Charter 7

Eunctiomals

Functionals are fumctioms which take
other fumctions as asrdumerits. A function
used as an ardgument will be called s
functional ardument (meaning either that it
is an ardgument to 8 furnctiornal or that it is
a3 fumction which is 3lso an arduments take
wour sick). Eecause of the nature of the
modified ALISF EVALy functiomal srguments are
not =assed in ceuite the same way as with most
other EVAL’s. The following sections exrlain
differences and describhe the rre-~defined
functionals available in the ALISP sustem.

7.1 PRassindg Eupcltional Arsumenlts

The easiest waw to understand the workings of functional
arduments is to g0 thru an examrle., Start with the form!

CFN X Y)

In order for this form to evaluate correctluys the atom FN must
have a3 valid function definitiony either F-1 PNUM or

lambda-exrressiony in its wvalue cell (see section I.6.2).
Keering this inm mindy we embed the form in 8 furnctiony thus?

(LAMBIIA (FN) (FN X Y))

Now FN is also a8 wvariasble in a LAMEDA form. Sirmnce it is a3
variabler it gets bound to an ardument whern the LAMEDNA form is
uysed 85 & functions and since binding stuffs the ardument into
the value cell of FNy the arsgument must be @ valid function turey
a FNUM or lambda-exrression. This seems easw enoughy so a3 few
examrles of functiomal arguments are diven in Dislodue 7.1y and 3
commentary follows here.

In lislodgue 7«1y FOO is imitislly defined as a
lTLambda-enrression. The first time FOO is calledy its ardument is
CONS., Sirmce CONS evaluates to a8 FNUM (and FOO evasluates its
arguments) the varisble FN dgets bourd to s PNUM. When the form
(FN X Y) dets evalusted within F0OOs FN has a8 FNUMy 38 valid
function turey in its value celly and so the form evalustes
correctly.

In the second call to FOOy the asrdgument is (QUOTE CONS) .

e

Dialogue 7.1
Functional Arguments

P(SETA X 1 Y 2)
)
*(DE FOOD (FN) (FN X Y))
FOOD
?F00
(LAMEDA (FN) (FN X Y)) Initializations. X is set to
1y Y to 2y and FOO igs defined
as a function of one arstent.

P(FO0 CONS)
(ls2) Correct rassind of functional
argumentsy CONS.

P(FO0 ‘CONS) Incorrect rassing of
functional argument.

*xx FUN-ERR FROM FN
OFFENDNING VAL = CONS

?(FO0 ‘ (LAMBDA (X Y) (LIST X Y)))

(1 23
P(FO0 (LAMBDA (X Y) (LIST X Y2))

(1 20 Correct rassing of
1ambda-expressions as
furictional arguments. Either
auoted or unauoted forms will
do.

P(DE LIST2 (X Y) (LIST X Y

LISTR2

?(FO0 LIST2)

(i1 2) Lambda-exrression is passed as
the value of LIST2.

P(FO0 ‘LIST2) Incorrect since LIST2 is not
: ‘ itself s valid function tdre.

xkXx FUN-ERR FROM FN
OFFENDING VAL = LIST2
? ‘

This evaluates to the atom CONSy and FN is bound to it. Now when
the form (FN X Y) dots evaluated, it does not have 8 valid
function twre in its value celly but rather the atom CONS. A
FUN-ERR results.

The rest of the calls to FOO0 show examrles of
lambda-exrressions used as functional ardumentss In the first
ones (LAMEBDA...) evaluates to 8 lambda—exrressionsy which then

&7

S

70

dgets bound to FNy amd (FN X Y) evaluates correctly. In the
secondy the LAMEDA form itself dHets evaluated. This is no
rroblemy howevery since LAMEBDA snd FlL.AMEDA forms Just evalusate to
themselves (see section I.6.3,1)¢ The result is the same a3s the
Frevious exrression,

Finallwy consider amn atomr LISTZy which has 8 function
definition (lambda~exrressiorn) in its value cell., This case is
entirely snalogous to the first case consideredr i.e.y (FOO
CONS)» where CONS also have a8 valid function definition (a3 FNUM)
in its wvalue cell. The value of LIST2 is bound to FNsy and FN
then has a lambda-exrressior valuer so the form (FN X Y)
evaluates rrorerly. Once adgains howeversy the euoted atom LIST2
will riot worky since FN gets bound to the atom LIST2 rather than
its lambhda-exrression value,

There is & dolden rule for rassing functionsal arduments in
ALTSP

Never cuote & fuoctioo pawe used as a fuoctiooal ardument.

The sbove ryle will never lead wou astray. when functional
arduments are called for,

The LISF hacker maw have noticed 8 rroblem with the rassing

of functional arduments inm the above examrle. The functiorm FOO
was defirned as a LAMBDOA (using TE)y so that it evalusted its
arguments., It was this evaluation which enabled it to det the

values of functional arduments such a8s CONS and LIST2y and
correctly arrly them., If FOO were defined as 3 FLAMBDA (usindg
FYy then no such evaluation of argumenrts would take rlacer and
all of the examrles in Dislogue 7.1 would faily excert for the
one where an uneuoted LAMEDA-list was used as an ardgument. UWells
it is obvious that FLAMRDA functions which use functional
arduments need some method for detting the function definition of
arn atom rassed as 3 functional argument. The simrlest solution
is to use the furnction GETFUN (section I.6.4.1). In Dislodue
7.2y for examrley FOO is defined as an FLAMBDA ecuivalent of its
definition inm Dialosgue 7.1+ 0On the first csll to the fumction
FOOs» FN is bound to its umevalusated ardumenty CONS., The SETQ
call sets FN to the function definition of CONS» a FNUM. Then
the form (FN X Y) evalusates correctlw. Thusyr rassing functional
ardguments to FLAMBDA functioms is no rroblems as lond as the
FI.LAMBDA wvariable is reset to the function definition of the
ardgumenty with GETFUN. :

7.2 EBEre-defimed Eunctiomals

‘ These functions are identified by the letters "MAF*
arpearing in their enames. Thew take 3 function and arply it to
suceessive COR’s or elements of 8 list., All are SUBR‘s of two
ardumentsy the first srdument beimg a3 lists the second 8 furnction

TN

C

Niglogue 7.2
Functiomal Ardguments to FLAMBIA Functions

TOSETA X 1LY 29

i

TLOE FOO (FN)Y (FN X Y)))

FQao

0 .

(FLAMBDA (FN)Y (SETQ FN (GETFUN FNY)Y (FN X Y))
Imitializstion. FOO is set to
the FLAMRDA equivalent of its
definition in Dialodgue 7.1.

TOFOO CONS)

(ls2) This succeeds because GETFUN
resets FN from CONS to the
FNUM value of CONS.

to arrly to rarts of the list. Note that this order of arduments
for the MAP fumctions is reversed from that of some LISF
imelementations. The result returned by a8 rarticular MAF
function derends uron the nasture of the function.

7.2.1 MAFC and MAFCAR

These Lwo furctions arrly their second ardument to
successive elements of the first. MAFPC returns the result of the
last arrlicationy while MAFCAR returns a2 list of the results of
all srelications. The eauivalent LISP definitions of MAFC and
MAFCAR are given at the end of +this charter in Table 7.1.
Examrles of the MAFC and MAPCAR functions 8re diven below in
Dislogue 7.3,

7.2.2 MAFL and MAFLIST

These functioms are Just like MAFC and MAFCARy excert theu
arrly their second arduments to successive CIDR’s of the first
argument, MAFL returns the result of the last arrlicationy while
MAFLIST returns @ list of the results of 3ll asrrlications. The
Marl and MAPLIST functions are defined as LISP lambdas-expressions
in Table 7.1. Examrles of these two functions are diven below in
Dizlostue 7.4

7.2:3 MAFCON and MAPCONC
Note that MAFCAR and MAPLIST aslwaus returm 8 list with the

same number of elemernts as their first ardument. It is often
desirable to delele certain of the elements returned in the final

list. MAFCON and MAFCONCy by wusing NONC rather than CONS to -

/

Dislogue 7.3
The Functions MAFC and MAFCAR

T(MAFCAR 2 (F0O0O BAR) FRINT)

FOO0

RAR

(FOD RAR) MAFCAR srrlies the furmction
FRINT to successive elements
of the 1list (FOO BAR). Note
that the unauoted atom FRINT
is used as an ardgument. The
alue of MAFCAR is a 1list of
the values of the PRINT
functior.

TIMAFC 7 (FOO RAR) FRINT) HAPCiiS like unto MAPCARy but

Foo returns as its result omnly the
BAR last result of the arrlication
BAR of PRINT. MAFPC is used when

the effect of a8 functiony
rather thamn its resulty is

desired.
TIMAFCAR 7 (FOO BRAR MOO) An examrle of 3 lambda-erxrres-—
P (LLAMBDA (X)) (EQ X ‘“EAR))))))) sion as amn ardument to MAFCAR.
I(NTL T NILD The lambda—exrression was used

without auotingr since it
evaluates to itself.

- Pa—

string together the results of arprlication of the second
argumenty a8llow a variable rnumber of elements to be returned.

The difference betweern MAFCON and MAFCONC is the same as the
difference between MAFLIST and MAPCAR} MAFCON arrlies the second

- ardument to successive CIR‘’s of the first arduments MAFCONC to

72

successive eolements.

I this exameley MAFCONGC is used to delete 2311 rorn—-atomic.

elements from a list?

TIMAFCONC 7 (FOO (NIL T) BAR (M0OO))
(LAMEBDA (X)) (IF (ATOM X)(LIST X))))
(FOO RAR)D

?

This can be understood as follows? arrly the lambda-exrression
to each element of the first ardument. The four results asre!

RO gives (F0O0)
(NIL T) gives NIL
RAR gives (RAR)

. (MO0) dives NIL

TN

/A

(‘\

(N

Nialodue 7.4
The Funmctions MAPL and MAFLIST

TIMAFLIST “(FO0O RAR) FRINT) MAFL.IST arrlies PRINT first to
(FO0O BAR) the 1list (FOO BAR)y then to
CRAR) its CDORy (BAR). The result of
((FOO BAR) (RAR)) the MAPLIST function is 3 list
of the results of the FPRINT
furction.
T(MAFPLIST ‘(FO0 RAR MOO0) CAR) Heres MAFLIST reconstructs its
(FOO RAR MOO)» first ardument by srrluing CAR
to successive CIR’s of (F0O
EAR MOO) .
T(MAFL ‘(FO0 EBAR) FRINT) MAFL onlyg returns the value of
(FoO RAR) the last arplication of PRINT.
(RAR)
(RAR)
These four results are row strundg todgether usirmg NONC. It is

easw Lo see that the result of these NONC’s is the list (FOO
BAR)y which is exactly the result returrmed by the MAPCONC call.

73

S

-

74

CIE

(D

(DE

1]

(IE

(DE

Table 7.1
LISF Definitions of the MAF Functions

MAFT (X FN)
(COND CCATOM X)) NIL)
(CATOM (COR X)) (FN (CAR X2))
(T (FN (CAR X)) (MAFC (CDOR X) FNJ)))

MAFCAR (X FN)
(CONIN CCATOM X)) NILD

(T (CONS (FN (CAR X)) (MAFCAR (CDR X) FN)))))

MAFL (X FN)
(COND CCATOM X)) NILD
(CATOM (COR X)) (FN X))
(T (FN X) (MAFL (CDR X} FN))))

MAFLIST (X FN) -
(COND CCATOM X)) NIL)
(T (NCONC (FN X) (MAFLIST (COR X) FN)JI))

MAFCON (X FN)
(CONDT CCATOM X)) NIL) _
(T (CONS (FN X) (MAPLIST (COR X) FN)JX))

MAFCONC (X FN)
(CONDY (CATOM X) NIL)D

(T (NCONC (FN (CAR X)) (MAFCONC (CIIR X) FN)))Y)

;-

I Charter 8

Erodgdran Elow

The functions described in this section
are Lhose used to control srodgram flow -
CONDry IFy FROGy etes In most resrects they
act like the standerd functions described in
Weissman’s Erimen. '

@,1 Conditiomals
Four functions are described i this section? CONDy IFy
ANDy and OR. Thew are all LSURR’ss COND and IF must have at

least ome ardumenty AND arndg OR carm take nrone.

In dgemneraly when a8 conditiomnasl tests a3 values it looks for

either & NIL or @ mnon-NIL vaslues i.e.» everuthing which is rot
NIl 1¢ considered to be true in 3 conditional test. Logical

truth i ALISF is rerresented by arny non-NIL S-exderressions
logical falsity by NIL.

.11 COND and IF
Format for COND is?

(COND (rredl exrll exrll ... e
(rred? exr2l eMr22 Jo. e
\ :
*
*

(rredd exrdl exrd2 o exed))

The evelustion order for the ardguments of COND is as follows:?
each sred is evaluated in ordery starting with ereds until one is
fournd which returns 8 non-NIL value. -store Examrles of ledal
CONIY forms:

CCOND CATOM X)) (SETQ X NIL)Y (CONS Y X))
(CEQ (CAR X) "FOO) (CONS (CDR XD Y))
(T (SETQ Y X) (NCONC Y *"(FOO RAR)Y) (CDR X)))

(COND - (X NILD
(CFOO YN

Note that im the second examerley the second COND ardument had a
grad but no exs. UWhen this occurss and ered evaluates to a
riorn-NIL exrressiony that expression is returned as the value of
the COOND.

75

A

The function IF is a shortened COND with 2 single rsredicate.
iFormat is?l

(IF wred exrl exer .. @XFM)

zred 1 evaluateds and if the result is NILy the value of the IF
funetion is NIL. If non-NILy exe thru exen are evaluated in
order v and the value of the last is returned. If there are no
exey then the value of the sred exerression becomes the value of
the IF (but in this caser the IF function is surerfluous anuhow).

The SELECTA function is 2 srecialized COND, Format is?

(SELECTR sexs
' (a3l exrll exrl? o exeln)

-y

32 exr2l exr22 s exFE2n)

+
+

.

(8d expdl exrdl ++¢ @MFIQ)
‘ dexr)
Sexe is evaluated (its result should be atomic) and chechked
adainst each atom 8’s for 3 match. If one is founds the
corresronding exss are evaluatedy and the value of the last is
returned as the value of the SELECTQ. If no a’s matchesy dexe is
evaluated and its result returrned.

Note that SELECTR wses EQ im checking for 3 match to the

a'sy s0 that SNUM’sy 1literal atomsy and densum atoms are okay
(see section I.9.1).

8.1.2 AND and OR

These functions act ss continuous conditionalsy testing the
values of each of their arduments. Format is?

AN
(or exrl exr2 .. exeEn)

OR
Each of eus is evaluated seaquentialle from left to right.

_ AND stors at the first NIL valuwe and returns NIL? if no NIL
result is encounteredy the value of exsnry the last exrression to

he evaluastedy is returrned as the value of the AND furnction.

OR st&ps at the first non-NIL value and returns thats if no
nor—~-NIL result islencounteredv OR returrns NIL.

76

If there are no exey ANID returns Ty OR returns NIL 3s s
result. Examrles of AND and OR functiomns are diven below in

8.2 PErodram Eeature !

The functions FROGy GOy and RETURN form the srodram feature.
The exrerienced LISP‘er will resort to PROG suyntay only when
abeolutly recessargy simce it introduces the FORTRAN-like
elements of looring and iteration so foreidgn to LISF.

8.2.1 FROG

The PROG fumction acts somethindg like a lambda-exrression in
that it binds variahles and evaluates a3 secuence of exrressionsy
but it s8lso has the ability to Jumr rrodram control between
exrressions within its bodw. Format is? '

(FROG varlist exrl exr2 o0 @xpPn)

where uvarlist is a list (rervhars empty) of variasbles to he used
within the FROGy and exsg thru exsn are arbitrary S—-expressions
comrosing the body of the FROG. If any of exe are atomicy they
are treated rot as exrressions to be evaluated but 3s lahels for
control of srodram flow., SNUM’s and 1litats (including Gensum’s
and NIL) are all valid labels which will work with GO.

v When the FROG is enteredy a3ll variables on wvarlist are bound
to NIL. Each exr is them evaluated seauentiaslly from left to
righty with labels (atomic eur) beindg skirred. Unless a8 GO or a3
RETURN statement is encountered somewhere within amn exesy PROG
exits with value NIL after eusn has been evaluated, Frogram flow
is diverted from this order with the GO and RETURN functions.

The function GO is anm FSUBR of ore ardument. If its
ardument is non~-atomicy it keers evaluatind it until it is
atomic. It then uses this stom to match a3 label in a PROG body.
If rmo mateh is fourdy the FROG is exited with value NIL. If a
mateh is foundy execution of exs within the FROG bodug starts

adain from the matched label. Looring and branching in deneral

within a8 FROG are accomrlished with the GO statement.

RETURN is & SURR of orme argument. It causes an immediate
exit. from the FROGy and the FROG returns as its value the
ardument of RETURN. Note that the only wauy to exit a FPROG with a
value other thanm NIL is with the RETURN function.

Eoth RETURN armd GO camn be used at army level within a3 FROG.
Thew need not evern be exrlicitly rresent in the bhody of the
FROGy for examrley an exg could call a8 function which has a8 GO or
RETURN callsy and thew will work correctlw. Ifsy howevers a3 RETURN
or GO is executed outside the score of a PROGy amn error will be

77

Dialosue 8.1
The Functions AND and OR

TCAND (SETQ FOO “"RAR)D

? (CAR 2 (NIL)Y)

0 (SETR FOO ‘MO0

NI

TFOQ _

BAR The AND furmctions first evaluasted

the SETQy setting the value of FOO
to BAR. Nexty the CAR function was
evaluasted wielding NILF¥ the AND
function storred at this roint and
returned NIL. The last SETQ never
dgot evalustedy so the value of FOO

is BAF\'.
T(ANDII (FRINT ‘FO0) (FRINT ’RAR)
Fao
BAR
BAR Here AND evaluates the first FRINT

functiony which #rints FOO and returns the non-NIL value F0OO.
Then the secornd PRINT functiorm is evaluatedy srinting BRAR and
returning a non—-NIL resulty RAR, The result of the whole AND
exrression is the result of the last FRINT evaluationy namelws
RAR .

POOR (SETR FOOQ “MAR)D

? (PRINT ‘BRAR)

? (SETQ FOO ‘RAR)Y)

MAR

TFO0

MAR The OR function stors at the first
ron-NIL result it encountersy and
returns that. In this caser the

first SETQ exrression returned the
atom MARy Px so OR storred there
and returned the astom MAR as its
-value. Now FOO is set to MAR.

(OR (FROGN (FRINT ‘FOO0) NIL)

T (FROGN (FRINT ‘BAR) NIL))

FOop

BAR

NIL Here OR evaluastes the first
FROGN exrression. FRINT
rints the atom FOQy but the
result of the whole FROGN

evaluationr NIL., Thus OR does
on - to the second FROGN

78

exrression is its last

.

o

exrressions which likewise
rrint the atom BAR»y but
returns NIL 3s its value. The
result of the entire OR
exrression is NIL.

- Srp— .

issupd with the messader "NO FROG EXECUTING®.

The action of RETURN and GO is immediste. Ify for examrley
a FROG has the following form for one of exs!

(SETQ A (RETURN NIL)> B "FOO)

thern not only would B rnever be set to FOOr but A would never bhe
set to the value of the RETURN statementr since uron executions
RETURN immediately returns conmtrol to the PROG function and
causes it to exit. This is true no matter what the calling level
at which the RETURN or GO occurs withinm a PROG.

When the PROG exitsy 8ll FROG variables are reset to their
values Just srior to the FROG c3llé see sectiorn I.6.3.1 for more

information about varisble findindgds. An examrle of the FROG
function is given in Dialodgue 8.2 below.

8.2.,2 FROGN

This function is & castrated FROG? no variasbles and no
labels. Its sole rurrose is to allow execution of a8 number of
exrressions. It is am LSUBRy with callindg format?

(FPROGN exrl exrl ++o exrn)

Each exr is evalusted in secuence from left to righty and the
value of the last is returned as the value of FPROGN.
8.3 Ilteratioo
* It is unfortunately bften convenient in LISF to iterate a
~rogram sequence 3 number of times. The function DOy an LSURR»
surrlies a simple iteration facilitw. Format is?

(D0 N exrl exr2 oo XPM)

The first ardument o is evaluateds it must evaluate to =
rositive SNUM. This is the number of times the iteration will

- rroceed, If o is =zero or nedativer no iterations of the loor

will be rerformedy bt 0 Will simely exit., On each iteration:
exg thru exen are evaluated secuentialle from left to right. The
value of IO is NIL. Examerles of the D0 function will be found in

80

Nizlogue 8.2
The Furnctiorn FROG

T(BETQ FOO ‘(A R C D EF G))
(A B CIDEF G

P(PROG (X FRED RESULT)
? (SETQ X FDO)
7 TAG

? (T (SETQ FRED' (CAR X))))

P (SETQR RESULT (CONS PRED RESULT)

7 X (CDR X))

? (IF (NULL (EQ FRED ‘IN)Y (GO TAG))

? (RETURN RESULT))
KA

sTHIS IS5 A LAREL FOR THE PROG LOOF
(COND CC(NULL. X) (RETURN RESULT))

FEXIT WITH RESULT

sIF X I8 EMPTY

JELSE GET FIRST ELEMENT
y0F X

sADD ELEMENT TO RESULT
sPOF ELEMENT OFF OF X
$LOOF TO TAG IF ELEMENT
I8 NOT D

fELSE RETURN THE RESULT

The FROG functiorn first bound
its wvarisblesy Xy PREDy and
RESULTs to NIL. Then X was set
to the value of F0O0Oy or the
list <A BC DE F G). The
FROG loor was then entered.
The first element of X was
CONS’ed onto RESULTy unless X
was emrty or the element was
the atom *D". In this caser
the stom "D" arreared firsty
and the result of the PROG was
the reversed list (C B A).

lialodgue 8.3
The Function IO

(D0 3(PRINT ‘F00O))
FOO

FOO

Foo

NTI. The
. three times.

FRINT exrression is evaluated
The value of the IO

furnction is NIL.

T(SETQ N 1 COUNT 4)
PORO COUNT (PRINT N)
? (SETR N (ADDL nr)))

)

Here Lo evaluates its first
arduments COUNT vielding an
iteration count of 4. First the
FRINT exrression is evaluatedr then
the SETQ function. The value of
the whole 0 exrression is adain
NIL. Note that the effects of the
SETQ on N are retasined outside of
the D0 exrressions D0 does not bind
ang variables.,

en

A non-NIL result from iteration is returned bu the.function
DOCONS . DOCONS is like IOy excert that the values of exsn are
concatened into a result list. For examrle!?

(DOCONS 8 NIL)
returns 3 list of 8 NIL’'s.

More structured iditerstion is available with the REPEAT
functiorn. The form of REFEAT is like that of PROGy with the
addition of an automatic loor andg exit flads. Format is?

(REFEAT varlist
lexrl
lexr2

81

82

warlist i1¢ a list of variables hound initially to NILy as in
s ALl Seaxrressions before the BEGIN atom a2re evaluated
arces i order Lo set ur dnitisal values of variahles or rerform
Soer aeliaons before the main rereat loor (If there is mo setur
pe o GIN maw be omitltedy anmd the rereat loor starts with
3 sion sfter vanrlist). exe throudgh exsn | are
TOPaery and thern control loors bhack to exsy ang the
raseasted. The loor exits whern an S-exrression after
¢ by NIL (exsw)y or an S-exerression sfler UNTIL
MTL (eupu . Yalue of the REFEAT furnction is that
e reasion which ceused the exit. More than one WHILE
or UNTIL masv be rresent.

The REFEAT can 2iso bhe exiteda a3t ang time wusing the RETURN
oy A the same manner FROG. There are no lashels in

T howeverr s0 G0 will not work. o

of the &§-

Pt
B

HY

(l

I Charter ¢

Eeualitu

The concert of eauality is 3 key one for
many ALISF furctiomns. 1t is easw to define
epauality for litstsy since thew asre all
stored uniquelw. In gerneraly howevery
different ALISF dals tyres have different
meanings for ecqualityy and different ALISP
furnctions test for different tures of
eauality among data tures. The rurrose of
thie section is to defime carefullw the
various tyres of equality rresent in the
ALISPF sustemy and the functions which call on
Lhem.

o

Yol Eoiopter Eeualitbu

This is the simrlest ture of equalitu. Two ALISP sointers
(see section 1.2) are ecual if thew have exactly the same bit
rattern. The function which indicates rointer ecualitw is EQy a
SUBR of two ardguments. EQ returns T if both its arduments are
exacltly the same ALISF rointere NIL if not.

This ture of eauality is most useful for litats and SNUM’s.
SNUM’s and litats which rrint the csame are alwaws EQ to each
other (excerty of coursey if a2 litat has been WIFE‘di see section
Te9.142), Note that LNUM‘s and BNUM‘sy even if thew have the
gsame numeric valuesy wWill in deneral not be EQRF and that list
structuresy even if they look the same at read or eprint times are
rot EQ wunless thew are exactly the same list in core. A few
exameles of the EQ function are divenm in Dizlogue 9.1 below.

Fointer eauality is used by almost every ALISP rre-defined
furnction which must check for eaualite of two exepressions. The
GO function uses it when searching for a8 label in a3 PROG boduy so
that both litats and SNUM’‘’s are valid PROG labels. The =list
functions wse. it when searching for labels on rFrrorerty listsy so
that SNUM’s arnd litats sre valid rrorertuy labels. Two functions
which check for inclusion of astoms in 8 list structure use
rointer eaualitue! MEMRER and MEMRE. ' :

MEMRER dis & SUBR of two srguments. The first is an
S-eneression to be searched fory the second is a8 list to search.
MEMBER chechks the first ardgument adainst successive tor-level
elements of the second. If one is found which is EQs the list
starting from that element is returned’ else NIL is returned.

83

84

TOEQ
1

TEQ
T

TER
T

TIER
T

TCEQ
T

TCEQ
NIL.
CPCER
NIL.

?POEQ
NIl

MITL NTL:

T T
TFOD CFOm
O 0)

=123 -123)

0 Nil?

1.0 1)

(FO0Y CAF00Y)

TLRETR X 7 (FO0)Y)

(FOO)

TEQR X X)
oy

level

srdumentd if successfuly
that both MEME
returmn NIL.,
in Diazlodue 9.2,

Note

ardgument.y

helow

.2 Numeric Eeuslity

Dislostue 9.1

The

Fumnection EQ

Both NIL armd T evaluzste +to
themselves.,

SNUM’s can be compared with
EQ.

Zero and NIL are not EQy even
thoudgh they have the same
address rointer of zero (see
section I.2).

ENUM’s and SNUM‘s are never EQ
to each other.,

These are two different list
structures internallyy even
though thew rrint the same.

The value of X is EQ to

itselfy since it is the exact
same internal list structure.

MEME is also a SURR

This eauality
various ALISF

ar

of two arduments. It searches every
of its second argument for an S-exrression EQ to its first
MEME returmns Ty else it returns NIL.

useful
number tures.

"MEMEERy if diven am atomic second
Examrles of these two functions are found

whern comearing the values of the

The functiom EQFy a8 SUBR of two

N

S’

Dislodgue 9.2
The Fumctions MEMR and MEMRER

TOMEMEBER CFQO (FOQ BAR MOO))
(FOO BAR MOO) A MEMBER found FOO as the first
. element of its second
ardumenty amd so returned the
list starting from FOO.

T(MEMRER 3 7 (FO0 3 BAR))

(3 RaR) 8NUM‘’s are wvalid 1labels to
MEMRER .

TISETR X (FO0 (RAR)Y MOO)

P Y (CADR X))

(RAR)

TIMEMRBER Y X)
CORARDY MOD)

TIMEMBER 7 (RAR) ‘(F0O0 (RAR) MOO))INIL

Since MEMEER uses EQ in
searching a listy it found the
tad (BAR) which Y was set to.
Note +that the next emsamrle
does not succeedr because the
list (EAR) is a different
internal structure in the
serarate arduments to MEMEER.

TIMEMRER ‘FOO. “ (RAR (FOO MAR) MOO))INIL

MEMBER searches only the tor
level of a list., '

T(MEMR ‘FOO0

P S (BAR (MOOCFOO) INIL MAR)Y)Y))

T o MEME searches all levels of a
listy» and returmns only T or
NIL.

TIMEMER CFOO ‘FO0)
NIL The second argument to MEME
and MEMBER must be non-atomic
to succeed.

ardgumentss does numeric equality testindg, It works with anw
mixture of LNUMy ENUMs and SNUM arguments. The salgorithm used
isd

let d = abs (argiXfuzz)

then argl-dlard?l ardgldd

85

where abs is the az2bsolute wvalue functiomr and fuzz is 3
comrarison tolerance. The value used for fuzz is 23 ENUM
contained in the value cell of the atom FUZZ$ initiallys it is
2E-5, The wuser can reset FUZZ +to any comrarison tolerance
desiredy bt it must be 3 EBNUMy or am ARG~ERR will be issued at
the mnext EQF ecall. This aldgorithm works rretty welly and assures
that zero is never equal to anwthing but zero.

EQF will comelain if given anuthins but LNUMs SNUMs or BNUM
arguments, Some examrles of the EQF functions are diven below in
Hialodue 9.3,

Dialogue 9.3
The Functior EQF

TCEQF 0 0.0)

T Zero is only EQP to =zero.
PCEQRF O L 0000000000000001)
NTI.
CPCEQR #12 10.0)
T
CPCEQR 77 ~43)
T
TOEQR 24E3 24E4) i
NTL. Nifferent rnumber tures can be
comrared., LNUM’s are
considered as lé6-didgit octal
intedersy with sidgn.
TFUZZ
e -5
TOEQR L 1.0000000001)
T The comearison tolerance of

FUZZ is used by EQF.

PCSETR FUZZ 2.0)
« 2E1

PCEARF 2 3D

T
PTEQ 2 3
MNIL If FUZZ is reset to 23 large
' enough ENUM » ridiculous
comearisons can be mades. Note
that EQ does wmol use FUZZ in
y _ comearing SNUM’s.

Three funclions cameare numbers to zero. Thew are 3ll
SUBR’s of one ardguments and take ang of SNUMy BNUMs or LNUM
tures. E

()

{

N

(

ZERQF veturns T if its asrdument is zeroy NIL if
not. Note that (ZEROP) is different from (EQ »x Q)
sime ZEROF will work with LNUM‘s and BNUM‘s as well as
GNUM‘ s, Nedgative zero can exist for LNUM’sy and ZEROF
returns T in this case.

FLUSF returns T if its argument is rositive (zero
included) . LNUM’s are considered negative if their
high-order bit is sets thus arn LNUM nedative =zero
wields NIL from FLUSF.

MINUSE returns T 4T its ardument is nedative.

ALl three of these functions will comrlsain with 38 NUM~ERR if
given angthing but an SNUMs ENUMy or LNUM ardgument.

Finallwy the functiorn OLODFy a8 SUBR of one ardumenty camn be
used Lo determine if a2 number is odd or even. O0ONODOF takes either
GNUMse BNUMy or LNUM argumentsy but it trurncastes BNUM’‘s to their
inteder mart (if the ENUM is larder than 2847 - 1y it is alwaus
considered to bhe even). LNUM’s are treated as 48~bit sisgned
intedgers, OQDIF returns T if its ardument is odds NIL if not.

P2l Numberic Inequalitu

While EQF can tell 4if two numbers are ecual to within 3
certein tolerancer it is often wuseful to know which of two
numbers is lardger or smaller thaem the other, The functions
GREATERF anmd LESSFy hoth SURR‘’s of two ardumentss provide this
facilitu,

GREATERF returns T if its first asrdument is numerically
greater than its second’? returns NIL if mot. LESSF returns T if
ite first srgument is rumerically less tham its secondéd returns
NIL 4T mnot. Both functions asccert any combimation of SNUM» RNUM-»
or LNUM arsuments. Because of the comrarison tolerance FUZZ used

i EQFy two numbers maw he both EQF to each other and LESSP or.

GREATERF than the other. Examrles of these two functionss mayg he
fournd below in Nislodgue 2.4,

Also useful Tor numeric comrarison are the functions MAX and
MINe both SUBRX’sy which take an srbitrarw number of numeric
arguments and return the numeric maximum and mirnimumsy
resrectivelu. At least two arduments must be dgiven to these
furmctionsy and 311 srduments should be SNUM‘sy BNUM’sy or LNUM’s.
PAgairmy LNUM’‘s are comnsidered to be 47-hit inteders with sidn.
The furmctions MAX and MIN alwaws return their results ss the same
dats ture s divensi see the examrles in Diaslogue 2.5 below.

.3 List Slruclture Epuslilw

87

Dialogue 9.4
The Functions GREATERF and LLESSF

TLHRETR FOO 1.0000000001)
L1O000000001EL
TCEQR FOO 1)
'[
CPCLESSE L FOO)
g
POEREATERF FOO 1)
T With FUZZ set to .2E-5y these
two numbers are equal. 8Stilly
LESSF finds that 1.0 is less
than 1.0000000001.

TOLESSP 1 1)
NEL

PLAREATERF £12 10D
MNTL LESSF snd GREATERF tend to be
: hetter behaved with fixed

' rnumbers., Note the mixed
modes.
Dialodgue 9.5
The Functltiorns MAXarnd MIN
POMIN L 1001 -3 #12) Note the use of mixed modes in
-3 these examrles.

POMIN 1 1,001 #12)

1

POMIN #12 61E3X 124)
1y - _
POMAY, 3 45 6 7 #-66)

oy
K

TMAX 3 4 26E2)
L 24E4

Tne Ffunction EQUAL is wused +to test ecuality of list
ashructures. Two list structures are FQUAL if thew have the same
form amnd the same (EQ or EQF) stoms at the same roints in their
structure. Numeric astoms are testedwith EQFy litats with EQ.
Beceuse EQUAL checks each node of two list structuresy it is much
slower tnaern EQy but it dis also the only waw to check for
sauivalent list structures in a3 sustem where thew are not
undauels stored,

EQUAL ds slso wseful in testing for atomic equslityr where
ptodis unkrniown heforehand whether the asarduments are numeric or

88

~—

while CEQF 0 w)
CEAUAL 0 w)y on

PO i me © L e .

orouodE

W)y for exaemeles will

ambery BEQ AT bhew sre

not worl if =2 and @ are LNUM’s

will comelain if 2 or W are

other handy will use EQF if

Litate. Esameles of the EQUAL

(_) Furncticorn will e found in Dialogue 9.8 below.

N

C

islosue
The Funet:

FOEQ O OCOFDD RARY O CFOD RARD)
ML

TOEMUAL 2 OF0D BARY 2 (FOD RARD)
T

TlEAUAL L D00
T

TOERLSL A 100
MIL

TLOONEL L0 FOQY 0L FQOY Y
T

POEQUAL CFDO (BRAR EL2) MOO)
¥ CCFDO (BRAR 10) MOO))

MIL

POEQUAL CFOD (RARDY)Y 7 (FO0 RBARD)

Qe
QLA

This examrle roints wur the
ditTference hetween EQ arc
EQUAL « EQ o returned NIL
bhecause its two argumernts were
rot the same list internslluy

while EQUAL returned T hecause

thew were the same list
atructurally, '

EQUAL acts like EQF o
numbersy excert it will not
comelain if given o
mon-numeric arsgument.

EQuak.y Lilke EQFy will
correctly comeare mixed number

A examrle of non~EQUAL lists.
The two arduments +to EQUAL do
not have the same structures
simce in tthe first BAR is on
the second levels while on the

second it is on the tor level

of the list.

$.a fondress BEoualily

Mo «ome FUreosesy @.sey dn

forming ordered hinasry treess it

89

1

is convenient to establish an orderimg of ALISP data. The three
funetions EQ. ADDLT (ADlress Less Than)s and ADDGT (ADDress

fireaster Than) srovide this fecilitw. Every ALISP dats structure
carn be comeared with these three functionsi everw ALISP data
astracture is either EQy ARDLT» or ADDGT everwy other, The
ordering relationshis is transitiver and exclusive. The
comparison uses the internal addresses of the data to establish
the ordering. Since different date are stored st different

address
oordering automasticslly has the two rrorerties mentioned, 6SNUM‘s
are givern addresses higher tham any free-srace addressy so that
they are alwaws ADDGT than anwy other ALISP datzs ture.

EQ returns T if dts two srguments asre the same ALISP
Fointer. ALDLT and ADDGT are both SUBR‘’s of two arguments.
ALDLT returns T if dits first ardument is less than its second in
the ordering described asbove’ else it returns NIL., ADDGT returns
T if dts First argument is dreater than its second in the
ordering described sboved else it returns NIL. The exclusivity
srorerty of the ordering means that onlwy one of EQr ADNDLTy and
ANDGT will return T for the same two ardguments.

Fimnallwy if wou wish to use the internal address of an ALISF
deta structure for wour own devious rurrosess the fumction INTADD
(INTernal Alllress)y a SUBR of one arguments is available. INTADD
returns the internal address rortion of its argument as an SNUM.
Mote that if INTAID is dgivern an SNUM for an ardguments it is an
idertify furctions thus INTAND does not euite corresrond to the
ordering used by the function ADDLT and ADDGT. In rarticulars an
SNUM and some other dats ture could have the same INTADD.

Examrles of these address functions are given below in
Dialogue 9.7, AN g .

es in Tree serace (excert for SNUMs’ see section I.2)y the.

'

Y
\

TCHEETR OFOO 2 (A B’
(A I

TOHETR Bak 00 1))
Ccom

TOLMTADRD FOM

1TO&?

TOINTADD BAR)

yey | e
29013

TOEQ FOQ Q0D

T

TOANDLT FOO BAR)
T

TEADDGT FOO RAR)
NTL.

POEQ 1087 FOM
NITL.

POALINGT 1067 FOO)
T

PTCINTADRD CFQ0)
1392

TCADDGT 7FO0 FOO)
T

These asre the asddresses of the
two lists (A BY and (C D) in
COre.

The value of FOOQ is of course
EQ to itself. Note that the
value of FO0O0O is AIIDLT the
value of BaRky since its
internal asddress is lower.,

SNUM’s asre givern a2 hidgher
ordering value than any other
ALISE data ture.

The address furmctions will
comrare all dats tures., Here
an atomy FOOy with dinternsl

address of 1392y is comrared

with the wvalue of FO00Or the
list(A E)» with internal
address of 1067.

91

Vaw

92

I Charter 10

List Mamizulationo

This section documents thos functions
which orerate on the rlisty and acconrlish
destructive and non-destructive chandes on
non-atomic s—ewrressions in deneral.

10,1 FErogertw List Eupctions

Frorerty lists are rot used bu the ALISF sustem for holding
atom values or function defimitionsy as thewy are in some sustems.
Insteady the interrreter relies om the value cells of litatsy the
rrorerty lists are the comelete comcerrn of the user.

There are two main reasons why srorerty lists are useful to
the LISF erodgrammer. In the first rlacer Frorerty list values
are much less volatile tharm litat value cells. The rrorerty list
is not affected bw lambda-exrression or PROG bindindsd it can be
reached solelw throudgh the fumctions described below. Thus it is
useful for holding things which remain relativelw constant
throudgh the life of arm ALISF run -~ for examrler the dgrammer
rules used by MILISY (MImi-LInduistic SYstem) are stored on
wlists. '

Im the second rlacer rlists offer a8 dreater variety of
indexing than value cellsy and am easy means of storing and
retrieving values through this index. Every value stored on 3
#list has actually two indices? the litat om whose rlist the
value residesy and the indicator label under which it is called.
This double indexing scheme rroves handgy where the rrodrammer
must keer track of any similar items under differenmt kews, For
examrler surrose that w90 wish to mark 2ll litats that have been
rrocessed in a certain wag. . A simrley efficient solution would
be Lo rut the value T under the indicator FROCESSED on each
litat’s erorerty list. Therns to check whether a3 rarticulasr litst
X had bheen rrocesseds it is only necessarwy to evaluate (GET ‘X
PROCESSED) &

ALTSE surrorts the standard functions for addings removins,
arnd Fetching values from erorerty lists. The format for rrorerty
lists is?

(labl rrorl lab? eros2 .6 labn rrosm)

whare the lab are labels (either litats or SNUM‘s) and the mrams

are ang S-exrressions. Every nlitat can have & rrorerty list.

N

C

associated with it.

Entries are added to the #list with the functioms FUT and
DEFFROM ., FUT is a SUBKR of three arduments. The first ardument
i arm nlitat whose prorertw list will be usedr the second is 3
labele 3nd the third is its associated value!

(PUT 1lit lab sror)

If labh is alresdws on the elislt of lik, then mrae destructively
rerlaces the rrorerty associated with it on the rlist. If Lab is
rnot on the rlisty thenm a8 new entry of lab followed by erae is
added Lo the fromt of the rlist. Note that FUT and DEFFROF use
EQ im sesrching for lab orn the rlisty and test only everw other
element of the wlist, Thus atomic srae will not cause false
matches on #list label searches.

DEFFROF» ann FSUBR of three ardumentsy acts exactly the same
as PUTy excert it does not evaluate its arduments. EBoth
functions return lab.

Frorerlies are fetched from mlists wusinmg GET and FROP. They
are hoth SUBR‘s of two ardumentsy with formast? :

GET
(or 1lit lab)
FROF

Thew search the rlist of lil (usimg EQ) for 38 match to labé if
fournds GET returns the =ras associasted with ity while FROF
returns the rest of the rlist following lab. “If 1lab is not
founcdy both Ffunctions return NIL. IT is imrpossible to
distinduish between GET returninmg a8 esrag of NILy and not finding
lab at a8lly an ambiduity which is ofter useful. If it is nf it
is necessary to distinduish the two casesy PROFP can be used.

Frorerties are removed from the slist with the furnction
REMFROFy a SURR of two arduments. Format is the same as that for
GET or PROP shove. REMPROF searches the rlist of 1litk (using EQ)
for 8 matceh to labsy if one is foundy it srd its associsted sram
sre destructively deleted from the wlist. If rno match is found,
no action is taken. The value of REMFROF is NIL. '

Fimally the whole rlist can be accessed with the function
FLISTy &8 SURRX of orne or two srguments. With orne ardumenty it
returns the comslete rlist of thaet ardument. With two ardumentss
it sets the rlist of its first ardgument to the second ardumernt.

Exameles of all‘these Frlist functions will be found below in
Dialoguwe 10.1. ‘

10,2 Noaop-destrucltive List Mamisulation

93

TFLIST ‘FOOD
NTL.

POFUT FOO CBAR 26)
RAR

PPLIST FOO)

(BAR 26)

PCGET ‘FOO ‘RAR)
26

PCPROF ‘FOOD “BAR)
(26)

?(DEFFROP FOO MOD NIL)
MO0
PGET ‘FOO “MOO)
NTI.
?(RPROF “FOO *MOO)
(NIL RAR 26)
PRLIST ‘FO0)
(MO0 NIL EAR 26)

?(REMFROF “FOO *M0OD)
NIL.

P(FROF /FOO “MOO)
NTL

TCOEFFPROF FOO 26 BAR)
26

TCRPLIST “FOQ)

(26 BAR BAR 26)

P(GET FOO 26)
BAR

Dialogue 10.1
The Flist Furnctiors

The rlist of FOO is initisllw
NIL .

The rlist of FO0O now contains
the indicator BAR and the
value 26. Note that GET
returns the valuey while PROF
returns the rest of the rlisty
starting Just after the
indicator.,

Now the rlist of FOO has the
indicator MOO and associated
value NIL on its rlist. Note
that GET returns NILy Just as
if the indicator MO0 were not
on the rlisty but PROF will
distinguish this case.

REMFROF removes ~ the indicator
MO0 amd its value NIL.

SNUM’s are valid indicators on
rrorerty listsy since the
search functions use EQ.

TN

S

P

PIRPLIST FO0 (MO0 MAR BOO BAR))

F00
POPLIST CFOM
(MO0 MAR ROO RAR) FLIST can chandge the whole

#list at once.

These functiomns form results from their arduments without
charmging the oridinal arguments.”

10.2.1 0f CAR’s and CIR’s

These standard Tunctions are SUBR’s of one ardgument.
Heither will work on atomic arvdgumentsy excert for NIL. The CAR
aipd CIR of NIL bhoth returs NIL.

Combinatiorns of CAR’s and CIR‘’s can be rerformed with the
functions CAAAR throush COODR.

Multirle CIR‘’s can be rerformed with the function CIRSy 3
SUBR of two a2rduments. The first ardument is 2 list (or NIL) on
which to aerrlw the CIOR‘’sy the second is am SNUM srecifuing the
number of CIR‘s to he taken. If zevro or nedativer no CIOR‘’s are
talkeriy amnd the oridinal first ardument is returned. Excessive
CIIR’s rast the end of the first ardument Just return NIL.

The first several elements of @ list can be fetched with the
functio CARSy a SUBRR of two arsguments. The first argument is a
list whose elements are to bhe extractedr, then second is an SNUM
srecifwing the number of elements to be takent if zero or
nedgativey NIL is returned., If the second ardgument srecifies more
alemernts tham the first hasy 28 tor-level corw of the first
ardgument is returned, Note that CARS creates a8 new list
structurey calling CONS imrlcitlu.

The LAST functiormy a SUBR of mo ardumentsy returns the last
elemernt of a list. If given an a3tomic ardument, LAST returns it.

The functiorn ARGN can be used to return a3 srecific element
of a8 list, It is 3 SUER of two asrdgumentss the first ig a8 listy
the second anm SNUM srecifuing the element of the list to be
raturned, If the second ardument is less tham or eaual to zeror
or larder thamn the length of the first arduments NIL is returned.

ARGN dis chiefly useful in lambda-exrressions of an indefinite

numher of arguments (see section 1.6.3.1).

" The fumction LENGTHy 3 SUEBR of one arduments returrns the
pumber of elements in that ardgument., If its ardument is atomicy
it returns zero.

EHBmPleS‘Of these functions will bhe found in Dislogue 10.2

95

——

N

96

helow.

10,2.2 List Comstruction

These functioms construct new lists from their ardumentsy
using the sindle erimitive CONS imelicitle (CARS asbove is aslso
one of this drous). No worries about destrowing the oridinal
list structures with these functiormss howevery thew have the
disadvantage of using ur free storasge,

CONS is the standasrd functiorny 3 SUBR of two arduments. Its
result is the dotted rair?

(ardly ard)X

CONCONS takes a3 variable rumber of ardumentsy beind a SUBRXy
and strings them todether usinmg CONS. Its result is the
S-exrression?

Cargl ardd .0 ardnrardm)d

CONCONS must have at least two arduments,. Il is eaquivalent to
LIST if its last argument is NIL.

LIST is a SUBR% of at least one ardgument. It forms a true
list of its arduments?

(ardgl ard2 ... arsn)

AFFENDI is a SURR of +two asrdumentsy usuwusally listsy which
forms &8 result bw merging its first ardument with its scornd.
Consider the form?

(AFFEND ardgl ardgd)

where arg and ard are both non-stomic S-exrressions. AFFEND
first makes a8 tor-level corwy of ardy thern stuffs ard into the
last COR of this corw., Surroser for examrley that acd = (FOQO RAR
MOOY Yy and ard = ((NIL) MAR)» then the result would b

(FOO BAR MDO (NIL) MAR)

You can think of AFFEND as forming a single list whose elements
are the elements of arg and ang.

AFFEND 3lso works nicelw for the sreciasl cases where acd andg
ard are atomic, If ard is stomicy APFEND simelw returms ard, If
arg is atomicy it gets sstuffed into the last CIR of & corw of

I ALISFy 8 dotted rair is rerresented a3s (AyR) rather than
(A\B)y in order to srevent confusion with flostindg-roint rumber
suntai.

()

o~

CARy CDR»
<(M) TOSETQ FOO (A R (C) I
oy T Dy I
TLOOR OO0
(B (Y W
TOCADUR FOO)
()
PCOAR NTLD)
NTL.
TCOOOR NIL)
- NTL
- TLODRSG FOO o)
(A R CCHY I
TCOCORS FOO 29
- ey m
TICORSy FOO 10
NTI.
TCOARES FOO O)
- NTI.
T(CARS FOO 2)
(A I
TCCAR FOO 10D
— (A B (CY I
(¢, PTCER FOO (CARS FOO 10))
- NTL
PTCARGN FOO 0)
- NTL
TCARGN FOO2)
» &
TOARGN FOO 10)
NTIL

PLENGTH FOO)
4 .

Nialogue
arnd Devivative Functions

10.2

CAR and CIR of NIL returm NIL.

CORS does multirle COR‘s on
its first argument.

CARS extracts elements from
the bedinming of 8 listy and
uses CONS to creste a3 new list
with these elements. Note
that this new list is not EQ
to the first ardument to CARS.,

ARGN takes the oth element of
8 list, Note that if ashked
for an element rnot in the
lists it returms NIL.

¥
Ha

97

L

O
TOLENGTH 7F00)
0

TFO0
a B (C) I

LENGTH returns the nrumber of
tor-level elements in a8 list
as arn SNUM. Atomic ardguments
to FOO have =zero lensth.

Norme of the above functions
chanded the origimal list.

ars s0 thats
reburns 3
(NCONC (COPY) w),
Dialogus 10,3 bhelows

if ard dis a list
cosy of apd.

and arg is NILy APFEND Just
(AFPFEND x wiig entirely eacuivalent to
Examerles of the AFPFPEND fumction are diven in

lislodgue 10.3
The Function AFFEND

PT(SETQ A 7 (FDO RAR))

(FOO BAR)

PCAFFEND A 2 (MO0 (MARD)))

(FOO BAR MOD (MAR))
A
(FOO BAR)

PCARFEND CFOO 2 (MO0
(MO0 (MAR))

PCAFFEND 7 (FOO RAR)
(FOO0 BAR)

PCAFFEND “ (FOO RBAR)
(FOO BARyMOO)

AFPFEND strindgs its arguments
together at the tor level.
Note that the oridimal list
remains unchanded,

(MAR)) :
If the first ardgument to
AFFEND is atomicy the second
ardument is returmned.,

NIL)

‘MO0
If the second ardument Lo
AFFEND is atomicy the first

ardument has it stuffed into

its COR.

TCAFFEND 2 (FOO RBARyMOO) (A RB))

(00 BAR A R)

Note that the fimal CIOR of the
‘firﬁt argument is alwauws lost.

Two furnctionsy

98

a COrPY and DCOFYsy are rrovided for corwing

TN

C

list structure. Both are SUEBR‘’s of one ardument. COFY forms a
- tar-level corw of its ardguments by areluying CONS to each element
ireodts arstumerct. NCOFRY forms an in-derth cory of its ardument.

- entirely re-creating its list structure down to atomic level.
<) Their LISF ecuivalents ares

(DE CORPY (X)
(CONDY (CATOM X)) XD
(T (CONS (CAR XD (COFY (CIR X)))))
- (DE DCOFY X))
(COND CCATOM X) X))

(T (CONS (DCOFY (CAR X)) (DCOFY (COR X))))
- »)

Tf they are given atomic argumertss COFY and DCOFY simely return
- , them.

The function REVERSEy a SUBR of orme ardumentsr reverses fhe

S order of the tor-level elements in that asrgument. If its
ardument is atomicy it is simely returned, A non-atomic ardument

Lo REVERSE should be a3 true lists if it is noty the last CIDR in

- the argument is lost when the reversal is rerformed. Exsmrles of

the REVERSE funmction will be found below in Dislogue 10.4.

Nialosue 10.4
The Function REVERSE

Q‘, P(REVERSE “FOQ) _
-~ FOo REVERSE Just returns ite
ardgument if atomic.

- » PISETA A 7 (FOO RAR))
: (FOO BAR)D

; T(REVERSE @A)

o~ (RAR FOO)

i T

(FO0. BARD The tor—~level elements of the

ardgument, to REVERSE where
{ reversed., © Note that the
i oridinal list was not chanded.
\ PTIREVERSE “(FOO (BAR (MAR M0OO)Y) NU))
| (NU - (BAR (MAR MOO)Y > FOO) Onlwy the tor-level elements of
| a list are reversed.

‘ TIREVERSE “(FO0O RARyM0O0)))
b (BAR FOO) The fimal CIR of a reversed’
1 ' list is slwaws lost.

77 =

100

10:3 flestouctive Lishk Mapimulabioo

Unlite the non-destructive list functiomsy the furnctions
deceribed dimn this section actuelly ohandge slreade existing
atructuresy rather tharn oreating new ones. Among other
advantages, these fTunctions are faster and use less free srace

o bthedr non-destructive counterrarts, Howeversy they can also
serew ur existing list structures if used incautiouslyy creating
such usually undesirebhle structures as circular lists.

10.3:.1 RFLACAy RFLACIHy NONC

) RFLACH arnd RFLACD arve the standard functionsy both SUBR7s of
two arsumernts. RFLACA rerlaces the CAR of its first ardument
Wi kh Lhe second srsuments REFLACD rerlaces the COR of its first
i ument with the secornd. Roth return the altered first argument

as 2 resull.

Both these Tuncltiorns will given am error if called with an
atomic Tirst ardgumernt. Note that their effects are rermanents as
the examrles in Dislosue 10.5 below indicate.

Dialodgue 10.5
The Fumctiomns RFLACA arnd RFLACD

TCEETR FOO (A B C))

h B)

PORPLACA FOD “RBAR)D

Ak B)

TEOD

(BAR B) RFLACA rerlasced the CAR of the
list (A R) with BAR. Note
that its effects are reflected
in a2ll rointers to the list it
changedy ie@sy it alters
gytant list structure.

TORPLACH CCOR FOQ)Y 7MOO)

(R MO0

TFOO

ChRAR By MOO)

PTORFLACT CCOR FOO)Y 7 (MO0 MAR))

(R MOO MaR)

OO

CEAR B MOD MARD RELACT rerlaces the COR of its
firat ardument. It thus has
the rower to chande the length
of & list.,

NONC» a2 SUBR of two arduments, acts Just like AFPENID excert
that it does rnot cory its first srdgument. It rermanently chandes
list structure by making the last COR of its first ardument roint
to its second ardument, If its first ardument is astomicy the
second ardgument is returned., Examrles of this furction maw be
found in Dialodue 10.6 below’ comerare to the examrles of AFFEND
in Dialogue 10.3 above.

“arreure ~——

ialogue 10.6
The Functior NONC

PISETR FOO ‘(A R COO

(AR C)

“PANONC FOO (D EY)

(A RCTDE)

TF00

(ARBRCDE) - NONC chandes intermal 1list
structures’ therefore the
value of FOO was implicitlw
chandgded bw the NONC call.

T(NONC FOO ‘RAR)
(A B C I EyRAR)
PFO0
(A B C D EsyRAR) An atomic second ardument is
: stuffed into the last CIOR of
the first argument.

TI(NONC ‘FOO ‘(MO0 MAR))

(MO0 MAR) _ Atomic first arduments are

ignoredy NONC returns the
second ardument. '

PASETQ MOO “(F G H I))
(F GHID
TINONC FOO MOO)

(ABCDEFGHID :

MO0 : , ; ‘

(F G H I Only the first ardgument to
NONC = has its list structure
altered, Note that the first
ardument to NONC aslwaus loses
its last CDR. '

CONC is like NCONC excert that it is a SURRX and can thus

take 8 variable number of ardguments (but alwaws at least two).
The following two exrressions are euivalent!?

(CONC argl ard? ... argm ardn)

101

102

(NONC argl (NONC arg2 ... (NONC argm arsm)))

10.3.2 Element Functions

A common oreratior in LISP is the additiorn or deletiorn of an
elemernt from a3 listy using the element rosition as an ardument.
I this form lists are treated as wvarisblesize vectors of
elementsy the first (leftmost) element being numbered by 1y the
second bw 2y ete., The total number of elements in the list is
givern bw the LENGTH fumction.

The functions ADDEL and DELETEL allow elements to be addecd
and deleted from a8 list by srecifuind amn element rosition. The
format for ADDEL Yy @& SUBR of three ardgumentsy ist

(ADDEL new lis ros)

where oew is the element to be addedy lis is the list to add it
Loy and =zos is an SNUM srecifying the element after which mew
will be inserted, If wos is =eroy new is added as the first
element of lis., If sos is nedgative or drester thamn the number of
tod-level elements in lisy an ARG-ERR is issued.

Note that ADDEL actuaslly chandes the dintermal structure of
lisr» so that 211 rointers to it will roint to the altered
structure, If lis is atomicy there is rmo structure to altery and
ADDEL simrlg returns a3 list of ore elementy new.

NELETELy & ‘SUBR of two ardgumentsy deletes elements from 3
ligt, Its format is?

(DELETEL lis ros)

where lis is a non-atomic list and =as is an SNUM srecifuing

elemernt in lis to be deleted. zas must be Hreater tham zero and .

less than or eacual to the rmumber of the elemernts in lisy or an
ARG~ERR is issued. DELETEL returns the sltered list as its
value.

Note that DELETEL asctually chandgdes the intermsl structure of
lisr» so that 3ll rointers to it will roint to the altered
structure, It isy howevery imrossible to delete the last element
from 2 oneelement list by alterimg its structure. In this casers
DELETEL returns the exrected value NIL (2n emsrtw list)y but does
not chandge the structure of lis. Exameles of the AIDEL and
DELETEL functions are dgiven below in Dialosue 10.7.

The function EFFACE is usedto remove an element of 3 list by
name EFFACEs a8 SUBR of two ardumentsy searches its first
ardument for a tor-level element EQ to its first ardument. If
none is foundsy EFFACE returns its second ardument unchanded. If
an occurrence is Toundy EFFACE deletes the first such occurrent

N~

“)

Dialoguye

10.7

The Functions ADNDEL ard DELETEL

(;j TOSETQ FOO ‘(A R)
: (A K)
PCANDEL ‘D FOO 2)
(A B Iy
~ PEOQ
(A R I)
- TISETQ BAR (CIR FOO)Y)
(kD)
TCALDEL “F FOO 2) CA R F I)
~ TRAR
(B F I)
-~
(;' TCSETA FOO NIL)
- NIL.
P(SETR FOO (ADDEL ‘A FOO Q))
(A)
- FEOO
(A
‘o

AIDEL added the atom I after
the second element of the
list. - The list was
rermanently altered.

This illustrates the effect of
the list-altering functions on
all rointers +to a list. BAR
has as its wvalue the CIR of
the value of FOOy i.e.y the
list (B I). Whem ADNDEL
changed the structure of the
list which was the value of

FOO» it also charded the value .

of BARy since the value of BAR

was rart of +the same list
structure. .

Here is the correct way to use
ADDEL with emrty lists. Since
the value of FOO was NIL,

ANDEL could not resllw alter

ang list structure. It simelwy
returrned 8 list of the sindgle
element A, Now using SETQ
causes the value of FOO to be
set to the list returned bu
ADDELs namelwus (A). Note that
the SETQ exrression will work
even whern the value of FOO. is
non-NILy since AODDEL returns
the altered list as its
result,

103

PCOELETEL BAR 4)
(R I

FRAR

(ROF M.

FEO0 . NELETEL removes an element of
a lislty rermanently alterindg
that list’s internal
structure. Note that the
value of FO0O0 is affected.

PLRETR FOO 7 (AY)

()

TOOELETEL FOO 1)
NI

P :

() UHern the value of FQOO i &
one-element listy DELETEL
cannot remove that Firmal
elementy eVer thousgh it
returns NIL as its result.

TOSETR FOO (DELETEL FOO 1))
NIL.
PEOQ
NITL. This is the correct waw to use
NELETEL orn one-element lists.
Note that it will also work
correctly when the value of
FOO is a8 long list.

from the listy and rturns the altered list as its result, If the
second ardument to EFFACE is astomics EFFACE returns NIL., If the
seconc argument e & one-element listy EFFACE does not alter its
1 structure but still returns NIL. Examrles of the EFFACE
function are given below in Dislogue 10.8.

RN

)

TOSETQ FQO (A B (FOO BAR)Y 4))

(A B (FOO RAR)Y 4)

PCEFFACE ‘A FOO)
(B (FOO RBRAR) 4)
?FO0

(B (FOO ®BAR) 4)

TCEFFACE 4 FO0O0)

(B (FOO BAR))
TCEFFACE ‘“(FO0Q RAR)
(B (FOO BAR))

POSETA FOO 7 (A)Y)
(A)
PEFFACE ‘A FOO)

NIL.
PFO0
(Al

PTISETQ FOO (EFFACE
NIL.

TEON

NIL

Nialosue

10.8

The Function EFFACGE

Fao)

‘A FOO)Y)

EFFACE rubbed out the first
occurrence of the 3atom A.
Note that the value of FOO was

-ehanded EFFACE alters
‘internal list structure.

Since EFFACE uses EQ in

searchingd SNUM‘s and litats
are founds but not list

structures in deneral.

EFFACE cannot delete the last
element of a2 list.

This is the correct waw to use
EFFACE with orne-element lists.

105

106

I Charter 11
Arithmetltic

This section discusses the wvarious
Ffunctions availlshle in ALISE to rerform
arithmeltic orerations. The three nPumeric
tures (LNUM sy EBNUM sy ard SNUM‘s) have
already been discussed in sections 1.2 and
I1.3% sredicates for rumeric COMmF3risons were
discussed in section T.9. FNUM’s are not
allowed s ardguments to arithmetic functions.

111l Mised Modes

Most of the ALISP arithwetic functionsy bobth duadic and
monsdicy carn he wused with all three rmumber tures (SNUM sy BNUM s
ahd LNUM 53 FNUM = and ANUM’s sre not valid srdguments to the
arithmetic Tunctions). The ture of rnfumber thew return a3s &2
result derends wuson bhe tures of their srduments and the functiorn
involwed. I general (excert Tor the lodgical and it functions)y
thew returr arnn SNUM iFf a1l their arduments were SNUM‘s and the
resullt ds i SNUM ranges otherwise thew return BENUM/ s,

Lle1.1 Number Ture Fredicastes
Seversl eredicates are srovided to differentizte hetween the
various number tures, Thew asre 211 SURR‘s of one srduments thew
return T 4f their asrdument is & sarticular number turey NIL if
rmot. Note thet their ardguments do mot have to be number turesd
if thew are noty these funcltions simrely returmn NIL.
FIXF returns T 4f its ardument is an SNUMs NIL if not.
FLOATF returms T if its ardgument is a8 BNUMs NIL if mot.
LOGE returns T if dite ardument is am LNUMy NIL if not.
NUMBERF returns T 1f ditls argument is & number ture
Cirmeluding PNUM and ANUMy NIL if mnot.

Lhel s Number Ture Conversion

: To convert beltueen modesy three functions are availableyr 211
GURR s of one arsument .

. FIX converts Lo SNUM &, If its argument is out of SNUM

S

P

rengey & NUM~ERR is issued. It its ardgument is am SNUMy FIX
simely returms dit.

FLOAT converts to BNUM‘s. If its ardgument is a3 ENUMy FLOAT
crestes and returns a8 new BNUM having the same value. .

LOGICAL converts to LNUM‘s. If its sardument is out of LNUM
rangey 3 NUM~ERR is issued. If its ardument is a LNUM»
LOGICAL creates and returns 38 rnew LNUM having the same alue.

The three functions above can alwags be used if a result from an

arithmetic oreration must be a3 definite ALISP number ture,

11.2 Nuadic Eunclions

The duadic arithmetic furnctions are all SUBRX’sy excest for
REMAINDERy which is a8 SUBR of two arguments. The format is?

(f'rr argal ard 00 ardgm ardn)

where at least two arg’s are eresent. The duadicfunction is

arrlied to the ardguments from right to lefty so that the result

e ¥
LS.

(fri argl (Fr ard? oo (PR ardgm ar€En)))

11.2.1 PLUSy TIMES, DIFF

These functions return SNUM‘s if a8ll their arduments are
SNUM sy and the result is ir SNUM randes If these two conditions
are not mety thew return ENUM‘s. Duadic DIFF subtracts arg from
arg, Examrles of thse functions maw bhe found below in Dialodgue
I AP A ‘

L1:2.2 Division

Division offers srecial rroblems when dealing with different
number tyres, Two functions are rrovidedy DIVIDE and QUOTIENT,
which slwaws return BNMUM‘s - and SNUM’ sy resrectivelyy no matter

what the tures of their arduments. QUOTIENT slways truncates the

resullt of easch duadic divisiony and retasins only the intestral
rarti UIVIDE returns the full floatingwpoint result.

Iuadic QUOTIENT &nd DIVIDE divide arcd by ard. If ard is
zeroy @ NUM-ERR @ is issued., A NUM-ERR is also issued if the
result of & divide oreration is out of SNUM range for QUOTIENT
fournd below in Dislogue 11.2. ’ '

The function REMAINDER takes onmlu two ar#uments. It does a
Floatingroint divide of arg by ardy and returns the nom~integral

107

R

108

Dialodgue 11.1
Iuwadic Arithmetic Functions

VOOLUE R)
(

g ’ Fauwivalent to 14+(3-2)., Note

that the resullt ds an SNUMy
since all three arduments were
GNUM s and the result was
withirnn SNUM randge.

1 3.0 -

10 #12)

PETIMES 3000 14AQ000)

AR Mived modes. Note that the
result is slwaws @ BNUM if the
arduments were not 311 SNUM’s»
or the result was out of SNUM
ransge.,

TIDIFF & X 4 1)
& Eauivalent to 6-(3=(4-1)).

ot tne orerstior. If both arduments were SNUM sy the result will
e arn GNUMS else it i & RBNUM. Note that the concert of
rematnder ds ot well-defimed for a8 flostind-roint division
resnlt whose asbsolute velue exceeds 2R47% in this casey the
remainder will be close to zero. ardg cannot be zero.

14:3%3 Mooadic Eunctions

Monmadic arithmetic funcltions sre 3ll SUBRR’s of orne ardument.

CThew can teke all three numeric data tures (FNUM‘s and ANUM’s not

inceluded) .

Tle3c1l Trivial Monsdic Funcltiorns

These four functions return SNUM’s if their arguments are
LMUM s or GNUM s and the results are mot owt of SNUM TEITHE .
I ey return BNUM .

AL and SURL add andg subtrasct ome from their resrective
arduments.

MINUS chandges Lhe sidgm of its ardgument.

ARSVYAL returms the absolute velue of ites ardument.

Niaslogue 11.2
The Divide Functions

POIVINE & 4 2) :

« BEL Eauivalent to &/ CA/2) . Note
that DIVIDE Alwaus returns a8
floasting-roint result.

PCAUOTIENT 3.2 6)

]

PCAUOTIENT 12 b+ 343D

12 QUOTIENT rerforms -8
floating-roint divide of its
last two argumentsry then uses
ornly the inteder rortion of
the result in gucessive
rerations. Thus it divides
6.2 hy 3.3 and truncates the
result to 1 then divides 12
bw 1 to return 12,

PREMATNDER 3 29
1

PCREMAINDER 3.2 +6)

cR2EQ

P(REMAINDER #10 &)

CAEL REMAINIER rerforms 8 floatind
point divide of its ardumentsy
but returns the ron—intesral
portion of the result. If all
of its arguments were SNUM s>
the esult is an SNUMi else it
is a BNUM.

11.3.2 Non-trivial Monadic Functions and RANDY

These functions all return EBENUM’sy no matter what the
pumeric ture of their arduments. All excert RANDY are SUERR‘s of
arne argument.

TN and 08 return the sine and cosine functions of their
arduments. Arguments are in radians.

SART returns the sauare root of the sbsolute value of its
ardgumernt .

EXE returns the euronentisl function of its ardgument.

LOG - returns the natrual logarithm of its ardumenty which
must bhe grater than TET0.

109

110

RANDYy & SURR of ome or no ardumentsy will . return s
raaudo~randon BNUM in the oren interval (Os1) if called with
no arduments. It called with ome ardumenty 3 ENUMy the
saoudo-random denerator seed is reset using that number.

ile4 lLogicsl Funclbtions

‘ These fumnctions rrovide lodgical snd shifting orerations on
LMUM date. Thew take only LNUM s s ardgumentsys and slwaws return
LNUM reaults.

Lls4c1 Boolean Functions
(]

There zare Tour boolearn Ffunctions which rerform bit-bw-bit
poolean osarations on LNUM data. These functiomns are al1ll SUBR’s
of twoe ardguments (excest for LOGNOTy 3 SUBR of one ardgument).
The arguments must be LNUM‘s or a8 NUM-ERR will bhe issued. The
hoolearn functions coreste @ new LNUM 8s 8 result of their
oFerationy and return it s8s 8 result. The oridinal ardguments
remain uneltered,

LOGAND rerforms & logical apogd fumction.

LOGOR rerforms s lodical inclusive or function.

LOGXOR revforms & lodgicael exclusive ar function.

LOGNOT rerforms & logicsl comslement furnction. It is & SURR

of ormly one ardguments it rerforms the comrlement furmction on

that one asrdgument and returns 8 new LNUM result.
L1142 Shifting

Shifting of LNUM s is dome bw the Tunctions CSHIFT (Circular
SHIFTimg) and ESHIFT (Erdd=-off SHIFTing)y both SUBRR’s of two
arsuments. The Ffirst ardument is arn LNUM to bhe shiftedsy the

second de arn SNUM diving the shift count. The second argsument
must be in bLhe randge from 48 Lo 48.

Both these functions creste mew LNUM‘s for their resultsy so
calling them wuses one word of free storadge. The origimnal LNUM
argument remsine unaltered,

CHSHIFT does cirvcocular shiflbing, It the second ardument is
rasitiver ahiflting idis dorme right circular. If the second
ardument is rnedgetiver the shifting ie dorme left circulary
arnd the abhsolute value of the second ardument is used as a
ahift count.

ESHIFT does end-off shifting It the second ardument is

)

sitives the
¢

Lo s

andThing ds done right end-offs and the sisgn
Lericfed . P the secornd argument is nedetiver

dorns Left end-of{. ich the absolute value of
Lhe second aegumenl e used as & shift count.

43

Pl Bib Fupeliops

The it functions all orerate ore LMUM . Thew srovide Lhe
acldty Por obhengins aod testinsg dindividual bits within sn LNUM,

ALL are SURR s of two srdumentsy which the Tollowing format!

i tfre loum ros)

witgre Lonam ds bhe LNUM to bhe oreraled ormy and. zos is 0 an SNUM

givirng the bit sosibtiorn within the LMUM. BRits are rumbered From
riuint to lefty the lowest order (rightmost) bit bedindg it L. the
Mighest order (leftmost) Dilt heing it 48.

bit Ffunctions do not oreste new LNUM’s 88 resultsy but
rarmanently ohange the Lownm thew are sgiven as an arsument
~t for TSTRITy which does mot slter its srdumert). Thew
iz do mot wuse free storadge at all. " ' L

Witn the Ditfrnsy LNUM dets can o he sccessed snd set
it level. Uaiding LMUM‘e and Lhe
EN B0 SCoess

tLhat i)

it functionsy the wuser can
large numbers of binsre values verw chearlw (for

TETRIT tes
of Loam i

te dndividual LNUm bits. o It returns T if

it mos
aets NIL i mot.

.HLRﬁiT clears the sos it of loum.
SETRIT sets the mos bit of lonow.

TOERIT togsles (i.2.r comrlements) the sos bhit of lbum.‘
CLERYT Y FRIT and TOGERIT return Lthe asltered loum

1t Eramreles of the bit
Mialogue 113,

ae Lheir
funetions sre dgiven below " in

at the .

m

12

Tislosue 11,3

Tives Bt Furnoctions.

Ta Lthe bt furnctionsy the LNLIM
12 looks lile?

it d:

Value?

TOTETEIT P00 2y
i

FETETREIT OFOD &)
(NN

T
A1 TSTEIT vreturme T if the smos

-

3

it nof its Firat arsument i
et Note that ite firat
ardgument iz not charged,

ETRYT FOO 10

SETEIT sets the BEOs bit of
first srsument., Note that :
chansges thne value of dts Fiprat
argument :

T(CLHBIT Fo
1z

OGERLT FOO &)

CLRRIT clearsy are TOGGRIT
comslementsy Lhe B0 bit of
the Tirast avdgument.. The veluye
of the First ardument o
Fermanently altered,

)

I Charter 12 ,

Arraus and Striods

This charter deals with two non-standard
LISE data tyresy arraws and strings. Recause
thew are non-standardy the user should read
carefully the descrirtions in this charter

before using them. Thew can of fer
sidnificant advantades ir storade ard

execution times for the right arrlications.

i2.1 Striods

Strinsts are a comexyyy of storing text information.
7-tit ASCII charascters are stored at most five rer wordy with 2
sointer to the next string word (see I.2.2). This rerresents a
comeromise betweern fully comeact storadge and the asbhility to roint
to different rlaces in the same text.

12:1.1 String Manirulating Orerations

There are two string functionsy STRCARS asnd STRCIRSy which
Will return substrings from a diven string. '

STRCIRS is a8 SUEBR of two ardguments?
(STRCORS str)

where sty is a8 strindy and o is a rositive SNUM. STRCIORS returns
a string formed from str by deleting the first o characters. IFf
o is zeroy the oridimnal string is returned. If i is dreater than
the rmumber of characters in the stringy a8 rtll strind is
returned. Note that STRCORS returns g rointer into strs rather
than creating rnew string structures. Orerations on the substring
will affect the oridginal strinsgy since thew asre rart of the ssme
string data structure. STRCORS can cause the oridginal string to
he srread out in free storadgey to a8 minimum of ome character to s
strind word,

STRCARDS is a SUBR of two ardumentsy like STRCIDRS

(STRCARDS str)

113

where str is a stringy and n is a8 rositive SNUM. STRCARS returns
3 rnew string comrosed of the first n characters of stir, If o is
zeror or dgreater than the lendth of stry 38 comrlete cory of sikno
is returmned., Note that STRCARDS creates rnew strindg structures
ardgd so uses free storadge. STRCARDS can be used to cory and
comract (to five characters rer word) 8 string that has been
srread out by the sction of STRCIORS. ‘

STRCONC is a SUBRX of two or more arduments?
(STRCONC strl str2 ++4 strn)

where sitr through strn are strinds. STRCONC concatenates these
strinds todethery in ordery to form 3 new string. No free
storasde is useds the old strimg structures are altered in wlace.

1291.2 String Matching Functions
5.

String matching involves checking whether one strin is 3
substring of amnother. There are two functions:? STRTEST and
STRFIND. The format for these ist ’

i

' STRTEST
{ar strl str2)
STRFIND

These functions search str for 8 substring which matches stro.
STRTEST searches only the bedimming of atry is.e.r st must bhe an
initial substring of str. STRTEST returns T or NILy derending on
the success of the match., :

. STRFIND will search str to find a substring which matches
str a3t a8ny rosition. If it firnds 8 matchy the first character

osition of the match inm strx will be returnedy a3s arn SNUM.

If stir is emrtwy both Ffunctiomns find 8 matchy STRFIND
returning 0. Neither function will find 3 mateh if the lngth of
str is dgreater than sir’ matches are onlw found if 811 of str is
contained in str.

12%1;3 Comraring and Converting Strings

Strings cesn be comrared with the functioms EQRSy LTSy and GTS
(Section T.9). Strings are eaual (EQS) if thew match inm all
character rositions and ar the same lenth., One string is less
than another if it would arresar before it in the dictionary (for
characters which are mnot in the dictionaryr order is defirmed bu
the ASCII codes in Arrendix A).

The rnumber of characters in 38 string can be found with
ATLENGTHy 8 SUER of one argument. It returms O for the rull

/‘\~

N\

string. Strinds are much like rnamesr but asre stored interrnasllu
in different ways. To convert from ore to anothers the furnction
INTERN is rrovided. A SUBR of ome argumenty INTERN will return a
litersl atom if divern a8 strindy and a string if diven a3 literal
atom. INTERN will dssue an error if divem a3 string ardument
whose lendgth is greater tham 322 charactersy the rname lendth
limit.,

Reading and erinting furnctions for strindgs are described in
Charters 1.3 and 1.4. :

Arnads

ALISF arraws can have any number of dimensionsy and each
dimensiorn can have length from 1 to 2 -1 (subdect to core srace
limitationsy of course). Arrasws are kert in 8 srecial storade
area called arraw srace. Since arravys can be moved within this
srace in order to comract ity access to arraus is alwaws throudgh
the array listr which is skin to am atom table bucket list (see
ALISF internal srecificatiorns marnual). Array rointersy 3also
called ANUM’sy are an ALISF 30-bhit data ture (see section)» and
#oint to the arraw list. Thew camn be rassed like any other ALISF
data turer idi.e.y bound to variabless inserted into listsy etce.
Arraw rointers alwaus erint 3s A%knnnny where nooo is the octal
address of amn array list word. Arraw rointers csan nat be reasd
back im with READ or any other read function.

Arrays are useful for two reasons. Firsty the arraw index
allows random sccess of any array element in constant time.
Secondy arrads are more comract tham list structures (twice as
comracty if the array header is mnot counted): Thew camn thus save
time and srace if used correctly. '

Arrasy Tures

There are currently three tyres of arraus! half-word (HW)»
floating-roint rumreric (BENUM)y» and lodical numeric (LNUM).

1. HW arrays have elements which are ALISF S-exrressions.
The S—-eurression rointers are 30 bitsy and thus racked two rer
word in the arrav. HW arraus are useful when a2 lardge number of
S—-exwrressions meed to bhe stored using 8 rnumeric index.

2. ERNUM arraus store floasting-roint numbers omne rer word.
Array elements must be BNUM’‘s;’ the arraw insertion functions
will comslain if diven anw other ture. When an element is
feteched from a BNUM arrayy 8 mew floating-roint rumber is created
irn free storadey and receives the arravy element. Thus successive
accesses of 3 BNUM array will use wur free storade. Alsoy if the
same arraw element is accessed at two differemt timesy the
resilts of these accesses will ool be EQ.

3+ LNUM arraus store 16-didit signed octal numbers one rer

115

116

word, The same remarks arrluy as for BNUM arrasus.

Defining Arraus

Arravs are defined with either the fumction ARRAY or ARRAYQ.
The function ARRAY has the format?

(ARRAY name ture diml 0 cdimn)

All arduments are evalusted., wmame is a literal stom whose value
céll will held the arraw rointers Lume is the ture of the arrauy
a5 HWy LNUMy or ENUM? 2nd dim through dimn are the SNUM arrau
dimensions. ARRAY defires a8 mew arraw of ture Lueey a3nd rlaces
an array rointer to the array in the value cell of name. If opame
is NILy then ARRAY does not rut the array rointer into a2 value
celly but simely returns its, The user must thenm save the array
rointer so that he can reference it in the future.

) ARRAYQ is the same as ARRAYry excert a3ll its arduments are
ungvaluatad.

A newlu-defined arravy is imitislly emrty. For HW arraws all
elements are NIL{ for BNUM arravs all elements are 0.0% and for
LNUM arraus 211 elements are #0.

Accessing Arrauds

In the ALISF sustemr array rointersy or ANUM’sy can be used
as Yfunctions to retrieve or set elements of an arrag,. In this
resrect thes are similar to FNUM‘sy the machine lansguasgde
subrputine rointers which define sustem functions like CONSy CAR»
and CIR,

Elements of an arraw are retrieved by using the arrsy ANUM
as a fTunction of o ardumentsy where o is the number of array
dimensions, For examrley defirne arraw FOO bul

(ARRAYQR FOO HW S 8)

so that FOO is 2 & » 8 arraw of ALISF S—exsrressions (actualluy
the value of FOO holds an ANUM rointer to the arrau). To det the
Kyﬂ element of this arrawr evaluate!

(FOO 3 4)

EVAL checks sreciallw for ANUM‘sy and interrrets their arsuments
as indices to the arrayy returning the correct array element.
Note that 2311 arguments to ar ANUM are evaluastedy i.e.r an ANUM
acts like 3 SURR.

Array elements cam be set by using the srray ANUM as &
fuqction of o+ 1 arduments. The first ardgument to the ANUM is
the new value for the array elementsy while the rest srecify an

)

element index. For examrler to set the 34 element of FOO to the
list (LIKES FIGS)y use? .

(FOO ‘(LIKES FIGS) 3 4)

Adainy all arguments are evaluated,

If ANUM’s are dgiven too few or too manw ardumentsy thew will
comrlain with an ARG-ERR. Alsoy imdices other tham rositive

SNUM’sy or indices out of the arraw boundsy will also dernerate an
error.

Auxiliary Array Functions

There are several helrful functions for findind out asbout
Brrays.

NIMS is a SUEBR of orne ardument. If its ardument is an ANUM»
it returns a list of the dimension lendgthsy in the correct order.
If moty returns NIL.

ARRTYFEy like DIMSy is 3 SURR whose single ardument should.
be arm ANUM., It returms the array ture as HWy LNUMy or BNUM.

ARRAYF can be used to tell if an S—exrression is an ANUM or
not. Returns T or NIL.

Reading and Printing Arrays

Srecial functions have heen written to srint out a comrlete

array definition J(including its comtents)y and to read it back
if'h

FRINARRAY is a SUBR of one ardumenty an ANUM. It'Prinﬂs the
array defined by the ANUM on the current outrut unit. The format
for the rrinted array is?

(NIL tyre (diml .. dimr) el €2 3 +44)

where tupe is the array turer diml through dimn are dimension
lengthsy and the e’s are the array elementsy inm row-mador order.

If the arraw is 8 larde oney this could cause cuite a larsge
srint-out.

READARRAYy a8 SUER of no ardgumentsy will read the next
S—~axrression from the irnrut buffery and try to form it into an
arrag. The S-exrression should be in PRINARRAY formats excert
that the CAR of the S-exrression maw bhe 8 literal atom instead of
NIL. READARRAY will create 3 rmew array having the dimermsionsy
turey arnd elements indicatedy and returm an ANUM rointer to it.
If the CAR of the S-exrression is a8 litersl atoms it will also
#lace the ANUM im its value cell.,

The @ character has been defined as 8 macro read character

118

for arrays. It does arm immediate call to READARRAY to form an
arraw from the next S-exrression in the inmrut buffer. For
examrley 8 3 ¢ 4 array called FOO which looks liked

6.0 1.0 P52 +06
4,2 1.0 100.6 + 05
Teb 1.0 300,35 +04

could be defirned by tywimdg?

@CFO0 BNUM (3 4) 6.0 1.0 95.2 406 4.2 1.0 100.,6 .05
.6 1.0 300.5 ,04)

The @ macro returns an ANUM rointer to the array,

The filing functions krnow about arravys and how to correctlus
read and write them to files, Howevery there are restrictions on
this asbilitysy so it would be best to read Charter II.1 if wou
intend to inrut and outrut arraus to files.

N

(

A

i
AN .

(—

(

I Charter 13

External Erodram Control

This section details three rarts of the
ALISF suystem which monitor ALISF rFrodrams?
error controly interrurtsy and tracindg.

13.1 Error Cootirol

References have alreadwy heen made throughout this manual to
certain conditions which cause the ALISF sustem to issue a
FTOESTr3am error. The deneral rrocedure followed onn error
detectiony and methods for user control over error calls and
trarsy is the subdect of this section. '

13.1+1 Error Recovery Frocedure amnd Backtracing

All ALISP errors sre non-recoverabley that isy the srodram
carnnot be started adaim at the roint a3t which the error occurred,
An error causes comrlete abortion of the currently executing
ALISF erodram (but see ERRSET for traesring)y and eventuslly
returns control to the tor-level surervisor. '

Most of the timey an error messade is not sufficient to
determine where an error occurredy esrecially if 3 comrlicated
set of rrodrams is beindg executed. A backtracing of function
calls and variable bindingds rendant at the time the error

occurred will be rrinted if the atom BACKTRK is set to T (it is
imitially NIL), Varisble bindings are printeds deerest bindindgs

firsty then the rendant functionsy adain deerest function calls
first.

BACKTRK can tske values other thanm T. In dernerzly the walue
of BACKTRK is evaluated when an error occursy before any other
error grocessing tskes place. At this roint the user can do any
rrocessing he . choosesy by calling an arbitrare ALISF function.
The most useful srobably BREAK (section I.13.2.2)y which calls

the breask surervisor and allows °~ the user to examine the.

ernvirornment at the roint of the error. Use?

(SETQ BACKTRK ‘(BREAK ‘ERROR T))

The BREAK is exited with (RETURN T) +to rrint a3 backtracer and

(RETURN NIL) to det bhack immediastelwy to tor level. Examprles of

the BACKTRK switch will be found in Dislosue 13.1.

119

Dizlosgue 13.1
The Switch BACKTRK

P(RSETQ BACKTRK

? (FROGN (FRINT ‘YOU/ LOSE) T))))

(FROGN (FPRINT ‘YOU LOSE)Y T) This sets the BACKTRK switch
to 3 non—-NIL value.

P(DE FLAMER (X Y) (CONS (CDIR X Y)))))»)
FLAMER

P(FLAMER (A B C D E F) ‘RAR)

¥%k%X ARG-ERR FROM CDR
WRONG NO. OF ARGS The function FLAMER bombs
‘ hecause the call to CDR was
incorrect.
YOU LOSE Now the BACKTRK exrression is
N evelusted, rrinting "YOU LOSE®*
% and returning the value T,

EACKTRK
Y' BAR
X (AEBCD oo)

BACKTRK
CIOR
CONS
FlL.AMER
? Because the BACKTRK switch
evaluated non—-NILs a backtrace
is srinted., First the
variable bindings in effect
whern the error occurred are
erintedy then the functions
/ , whose execution was
interrurted. Note the HALFFRI
format used to rrint the
variable bindinds.

A backtracing of variables is normally eFrinted with the
furmction HALFFRIsy so that a3 less wordwy outerut is produced. The
user can effect this in two waws! by setting HPRNUM so that
HALFFRI srints more structurey or by using the switch BACKFPRN.

If this atom is set +to NILy @s it is inmitiallwy then the
normal backtracimg erimtout will occur. Ify howevery the atom
RACKFRN is rmon-NILy then srecial backtracing occurs. BACKFRN
should be defirmned as a lambda-exrressiorn of ome argument. When a
backtrace is calleds BACKFRN has its variable bound to the
function mame or bournd variable currently being rorred from the
stack. BACKFRN camn then srint this wvariabler or rerform anu
ALISF orerationm in general. Whern BACKFRN exitsy then the next

4
i
(B

120

value is rorred from the stacky and BACKFRN is called adain with
this new value bound to its variable. This rrocess continues
until the stack is emrtied, For examrler surrose that wou only
want to know if the functiorms CONS and COND are on the stack of
function calls, Then simrlwy do!

(DE RACKFRN (FN)
(CONII (C(EQ EN ‘CONS) (FRINT FN))
((EQ FN ‘CONI) (FRINT FN))))

Examrles of the use of the BRACKFRN switceh will be found in
Dizlodue 13.2 below.

The error recovery mechanism sutomatically cleans ur. the
environment by rorring and variable bindinds of rendant
lambda~-exrressionsy FROG’sy and REFPEAT’s. Note that anwy rlist
chandgesy or chandes to list structuress or changes to values of
literal atoms which are nmot variables? ang of these chandes are
not undone after am errory and the user must rrovide his own
functions for resetting these chandes (see [izlodue 13:3).

For some arrlicationsy it is desirable to surrress any error
rrinting that does occury even the error messade. This becomes
especially imrortant for a3 eproduction system where the prodrammer
does his own error control (with ERRSET)y and wishes to shield
the end wuser from even knowing he is in ALISF. If the switch

ERRFRIN is NILy mo error messade will be rrinted (althoudh

backtracing will occur if BRACKTRK evaluates non-NIL). Initial
value for ERRFRIN is T.

Because it is difficult to interrret what harrens when

ERRFRIN is NIL» this should onlw be done in a8 stabley
well-debudded set of srodrams.

" 0Ff coursey it could harren that an error is issued during
error rrocessings for exameley during the evalustion of the
BEACKFRN switch. If this harrensr» an unbresksble error loor could
be established? evaluation of BACKFRN causes an errors which
causes RBACKFRN to be evaluatedy which causes an errory etc. To
rrevent srecisely this occurrence of eventsy the error rrocessor
will sbort user control if an error is encountered during error
rrocessing. This means» esseptiallysy that ster (d) in the error
recovery grocedure is skisred’ no backtracing control is done.

13+1.2 ERRSET Control

The function ERRSETy an FSUBR of two ardumentsy is used to
rrovide error recovery or trasrring withinm an ALISF rrodram.

Errorsy no matter what kindy will riot eroradate bewvond an ERRSET
call. :

(P

Dizlogue 13.2
The Switch BACKPRN

PT(SETQ BACKTRK T)

T BACKTRK must evaluate mon—-NIL
for BACKFPRN to be called on an
error.

P(DE BACKFRN (X) (COND

? ((EQ X ‘CONS) (FRINT X))

? ((EQ X “COND)Y (FRINT X))))))»)

BACKFRN EACKFRN will now erint the
function mnames CONS and COND
when they arFrear on the

furnction all stack.

F(COND ((CONS (SETQ FOO (CONS NIL)) NIL) T)
? (T T)))»

XXX ARG-ERR FROM CONS
WRONG NO. of ARGS

BACKTRK

BACKTRK
CONS
CONS

COND No wvarisble bindings are on
. the stacky but the furnction
COND called CONS which called

SETQ which called CONS adainy

50 these function calls were

erinted by BACKFRN, Note that

the fumction SETQy which was

also rendanty was not rrinted.

T(OE BACKFRN (X)) (IF (EQ X ‘“VAR)
7 (FRINT (GETVAL VAR))))))) , :
BACKFRN : This will =rint the value of
' the varisble VAR if it arrears

on the stack.

?P((LLAMERDA (VAR)D
? (U-AMBDA (VAR)> (CONS)Y) 1) 2))))

X%k ARG-ERR FROM CONS
WRONG NO. OF ARGS

BACKTRK
1,

1
2

A

122

BRACKTRK

P At the time of the errors VAR
was bound by two
lambda-exrressionsy in the
firsty to the value 13 in the
secondy to the wvalue 2
EACKFRN rsrinted these values
when they were rorred from the
stachk.

Nialogue 13.3
Variahle Bindings Reset After An Error

?(SETQ FOO ‘MO0 EOO ‘“EAR)

EAR : o
POCLAMBRDACFOO0)Y (FLIST ‘FOO ‘(A R)) ‘
7 (SETQ FOO NIL EROOD NIL)Y(CONS ‘A)) “MAR) :

¥kkx ARG-ERR FROM CONS
WRONG NO. OF ARGSHS

PFOO0
MO0
TROO
NIL
PCPLLIST "FOOD
(A R) The atom FOOy which was used
by the lambda-exrression as a
variabley had its value

correctly restored from the

stack. The atom BARy howevery

retained its value of NIL from

within the lambda-exrressions

since it was not a

lambda-variable. The rlist of

FOO also staved at its setting

within the lambda-exrression?

rlists are rmeve saved on the
stack. :

The ERRSET format is:
. (ERRSET evalform errform)

where evalform snd errform are anw valid ALISP edrressions. When
ERRSET is calledy it evaluates evalform wusimg the EVAL furnction.
If rmo error occurs during this evaluationy ERRSET returms 8 list
of the result and exits. If an error does occurs the error
recovery rrocedure (section 13.1.1) tskes effect. Instead of

123

.

124

rorring all varisble bindings to tor—-levely the error recovery
rrocedure only backs bindinds ue to the level of the ERRSETy so
that onlw variables fourmd in evalform are restored., The error is
gffectively trarred within the ERRSET form. After bindinds are
restoredy eccform is evalusted (with EVAL) to rerform any error
rrocessing the user may desires and ERRSET exits with the value
NIL. It is thus slwauws rossible to tell if am error occurred
during an ERRSET evaluation! if ERRSET returns NIL» there was an
errars if ERRSET returms 8 listy there was no error.

Since ERRSET +trars 3l1 errorsy it is rossible to errodgram
loors that carnot be exited even with the interrurt facilitwu.
The' following is the simrlest examsle!

(FROG ¢) 3 (errset (PRINT ‘EXECUTING) NIL)
(GO AY)

Unless the interrust catches the evsluastion outside of the ERRSET
fomy this exrression will Just keer printiigd the atom EXECUTING
urntil the terminal shorme is hun ur o the CP time limit is
reagched. Interrurts will be trarred by the ERRSET.

12.1.3 User~defirned Errors

The krnowleddeable user maw initiate his owrn errors with the
function ERRy & SUEBR of three arduments. ERR causes an immediate
USER-ER ture of errory and calls the error recovery rrocedure
(13.1.1), Everuthing is the same as for a3 normal ALISF errory
excert the ardguments of ERR srecifw the error messsdge to bhe
srinted, The format for the ERR call is!

(ERR % messade (4))
The error messade format is?
USER-ER FROM

. messade
OFFENDING VAL = u

The first ardument of ERR is srinted as u if non-NIL. If NILy

rnejither the characters *FROM® nmor 2 is rrinted.

The second ardument of ERR is srinted a3s messadery 1if it is
an nlitst or strindg. If it is mot an nlitat or stringsy no

messade is rrinted.

. If the third ardument of ERR is norn-atomicy then its CAR is
rrinted as w. If it is atomicy no "OFFENDING VAL®" messade is
rrinted.

ERR uses the normzal error recovery srocedureyr so the ERRFRIN
switeh is in effect (sectiorm 13.1.1). If set to NILy nmo messade
will be srinted no matter what the asrduments to ERR. Examrles of

-’

the ERR function in action will be found below in Dialodgue 13.4,

ialogue 13.4
The Functiorn ERR

T(ERR NIL NIL NIL) No wvalues are printedy only
A the user error messade,

XX%x USER-ER

P(ERR NIL ‘FAILURE NIL) A messade (nlitat) was used as

the second ardument to ERR.

*x¥ USER-ER

FAILURE

PT(ERR ‘FO0 NIL ‘(EBAR)) Roth 2 a8rnd ¥4 were srecified.
Note that the CAR of the last
argument was used. :

X%X USER-ER FROM FOO
OFFENDING VAL = RAR

13.1.,4 Time Limit and Timing Functions

- The KRONOS amd NOS orerating sustems maintain CFU and
resource accumulators for a termimal sessior. If these
accumulators reach a certain rointy the messade!

XTIME LIMITX
or :
XSRU LIMITX

will be srinted on the terminal. The user should resrond either
*Trrnn® or "Syrninn®y resrectiveluyy where nom is the number of
units (seconds or SRU‘’s) which will elarse before the next
accumulator messade. There is an sbsolute resource limit which
the user canmot exceedy howevers when this limit is exceededy the
user is undgdraciously excluded from any further eprocessing.

- The function FARAMTL is available from ALISF to forestall
the time limit error snd to return the amount of CP time already
srent in a8 termirnal session. FARAMTL is a SUBRX of one or no
arduments. With no ardumentsy it returns 3 two-element list
srecifuing the current timing status of the ALISF Job., The first

element of the list is arn SNUM divindg the number of seconds of CP

time used so far bw the wuser in a terminal sessionié the second
element is an SNUM diving the rumber of seconds inm the time
limit, The differernce betweern the first arnd second elements is
the rumber of CF seconds to do before a8 time limit will be
issued. '

125

With one argumentr am SNUMs FARAMTL resets the value of the
time limit to the SNUM. The SNUM should be less thamn or eaqual to
the user’s wvalidation time limits if it is nots the ALISF .ob
will be summarily sborted bg KRONOS.,

There is no function for accessing or chanding the SRU
limity 8 mew addition to NOS. If it is necessary that ALISF not
be interrurted by an SRU LIMIT messager arrrorriate NOS control
cards can be issued from the batch subsustem before entering
ALISF.,

A millisecond timindg clock locsl to the ALISP Job is
rrovided via the functiorn RUNTIME. The RUNTIME clock can be set
and fetched during the course of anm ALISF Jobr or can be used to
time the evaluation of an S—exeressior.

The fumctiorn RUNTIME is anm FSUBRX of one or nro arguments.
With mo ardgumentsy it simely returns the current value of the
RUNTIME clock a3s 3 ENUM, The RUNTIME c¢lock is tied to the
executing ALISF .oby i.e.y every time the ALISF sustem wuses CF
timer the RUNTIME clock is urdated. O entering the ALISF
sustemy the runtime clock is initially set to =zero.

If RUNTIME is divern a3 BNUM srgumenty it resets the value of
the RUNTIME clock to that ardument. The value of the RUNTIME
function is its ardgument. Thusy calling RUNTIME with the
argument 0,0 will comrletely reset the RUNTIME clock.

. If RUNTIME is dgiven anwgthing but 3 ENUM for an ardguments it
evaluates that ardument and returns the evalustion time (in
milliseconds) onm the current outrut devicer and erints the result
of the evaluatiorn. The RUNTIME clock is rot reset.

Some examrles of the RUNTIME function are diven in Dizlosgue
13.5 below.

13.1.5 ALISP Sustem Errors

"There is a3 chance that at some roint vou will receive the
following error messasHe!
‘ xX% HALT FROM nmrnn
. OFFENDING VAL = m

where the .o and mw are digits. If sor this indicates an ALISF
system errory a8 bug in ALISFyY ard it’s mw fsulty riot wours.
Flease save as much of wour outrut a3s rossibler including the
error messade’ or write down the rFrocedure which led to the
ernory and dgive it to me at one of the rlaces listed at the end
of the inmtroduction., Fromrt redress will be attemrted.

The HALT or sustem error in itself did not harm the
executing srodramss and the normal error recoverwy erocedure

126

N

Dialogue 13.95
The Functiorn RUNTIME

?(RUNTIME?

+45E2 The RUNTIME clock dives the
amount of CP time srent in the
ALISF sustemy until it is
reset. The value of the
RUNTIME clock ig in
millisecondsy herey the ALISF
Job has aded 45 milliseconds
of CF time.

P(RUNTIME 0.0)

+0

T(RUNTIME)

+2E1 Calling RUNTIME with a EBNUM
argument resets the RUNTIME
clock to that argument. This
is a3 handy feature if it is
necessary to time some
seauence of ALISP commands.

P(RUNTIME (CONS ‘FOO ‘RAR))
XRUNTIME=.1E1

(FOOyEBAR) RUNTIME with a riori—BNUM
ardument evaluates that
ardgumenty then rrints the CF
evaluatiom time in

millisecondsy and returns the
result of theevaluation.

? (RUNTIME)

JAEL ‘The RUNTIME clock accumulates
CF time since the last reset.

should have unbound 311 bound variablesr so that executiorn could
rroceed adain from the tor level. Howevery it is wise to save

cevergthing adainy rather tham continuing with a3 sustem which went

down in a HALT., The reason for this is the sustem error may
indicate that something is wrong intermally with that rarticular
ALISF runy and continuing to swecute in it may handg the ALISF
sustem.

13.2 Ipterrusis aod Breaks

There are two basic tures of interrurts in the ALISF sustens
toth wuseful only wunder time-sharingy and so absent from 2
batch—-run ALISF Job. Thew are terminal interrust and BREAK,

127

128

13:2.1 Termirmal Interrust

There is a single srodgram interrust available from the
terminal . It is control-C on ASCII-tyre terminals and
ATTN-S-ATTN on corresrondernce termirnals. The results of the

interrurt derend on the state of the ALISF sustem when the
interrurt occurs,

If ALISP is executing a3 rsrodgramy the interrurt causes &
recoverable bresk in executiorn. The outrut and inrut buffers are
emrtiedy and the messade "RREAK FROM INTRFLG® is rerinmted on the
terminal. ALISF is row in & EBREAK surervisor loor. Within this
loory the user can execute any ALISF functiony examine and chandge
the environmenty etc.; see section 12.2.2 below.

When the wuser