@ User Group: FOCUS [B

Picase complete this form according to the instructions on the 1everse side

vint [(weosn3d) .

@ Contributing Organization
Kjeller Institute

G Author Identification
LLI,. S W T TR

Installation Rame

Kieiller Norwav

Programmer/Submitier (up to 19 characters)

City and state

Revisor

AC

@ Catalog Identification

[L2 [KCGIN] LISP

eratine Svste .
Operiding System ls COPTE
and Version s

O P .
Cl. Code Org. Code Progsram Name Rev.
7N
@ Languiges and Dialects (up to 21 characters) f\’7’) Configuration ‘
Lisp | 3604 e
(Other Informition

Compuler

oy Descriptive Title (up to 56 Characiers including Blanks)

s)
LISP Internretarn

t
A

@ Pregram Materials Submitted

Write-Up | 4 1) Sowree l i
Pape Ci‘ L_..J.».._:.__;.k_:_.l Record I A

i Count
Other (up o 44

soursc D
Aedium

MT

QO

i o
v 12800

[or No. Tr/L Length

C

characters)

AN ot
Q_‘l) Date Written

@ Restricied: No E} Yes D {Requires ordering information)

e aliess] L
e X i i i I
il i '6 L - S ! Pcason: Classified [Geographic [] Cther [
Criginal Reviced -

PR
I(l?) Reguired Yibrary Routines
=

{ | I

Cl. Cede OCrg. Code Program Namo

I I R

eV

=

,_,___.
i S

=)

65) niry Point Names
e

(@ Original/Reviced Progrium Abstract

L1SP3600 reads LISP in S-e:

;pressicn format.

{15} Nature of Revision {] .

Proprietary Ordering Information]

Additional Information E]

.

L2 KCIN

LISP 3600

> 5% ©o % B I vt o [T A PE g ~ R Al o o o@w e
FORSYARETS FOUSHNINGSINSTETUTYT

Defence Research Establishment
Postboks 25 - Kjeller

Nerge

FIIw

Teknisk notat £-98
Reference: Job 147/13
Date: March 1966

LIST 5600: USERS MANUAL
by

Jan Kent

Kjeller, 3 March 1966

FCREVARETS FCORESKNINGSINGTITUTT

Norwegian Defence Mesearch Establishment

PC Box 25 - Kjeller

Norway

CONTENTC
Page

1 INTRCDUCTION TO THE PRCGRAMMING

LANGUAGE LIEP 4
1.1 G-expressions 4
1.1. 1 Ltoms 4
1.1.2 Dot-notation 4
1.1.3 List-notation 4
1.2 1L.I5P ~functions 5
1.2.1 QuUcTE 5
1.2.2 COUNG) 5
1.2.3 CLR 6
1.2.4 CDR 6
1.2.5 ECULL 6
i.2.6 LD 7
1.2.8 COND 7
1, 2.9 DEFINE 8
1,2.10 LLMBDA
2 CPERATING PROCEDURES 10
2.1 Running a program punched on cards 10
2.2 Prelisting the LIEP-program ' 11
2.3 Funning a progiam punched on paper tape 12
2.4 Stopping a LISF-program o 13
2.5 Tracing in LIZP3600 13
3 ERROR DIAGNCSTICE 14
3.1 Syntactical errors 14
3.2 - Runtime errors 15
4 DIFFERENCES BRETW/EEN LISP3600

LND LICPL. 5 ' 17
4,1 Extensions ' ' , 17
4,2 Cmissions 17

4,3 Differences i8

i e T e U i e s

el

6
6.
6

SO

.

Appendix
v

'\T

VI

EXAMPLES CF THE USE OF LISP

METEGR: A LISP-interpreter for string
transformations

PRETTYPRINT
INOTALLZ TION PROCEDURES

Contents of system tape

Funning the systemtape

Some functions in the interpreter defined in
M-expressions

Rules for translating functions written in
M.~expressions into S-expressions

A sample Lisp-run showing the complete initial
object list and Preityprint printing itself

Page

18

18
19

19

20

22

27

30

1.1.2

1.1.3

LISP3660: USERS MANUAL

INTRCDUCTICN TO THE PROGRAMMING LANGUALGE LISP

LIS? is 2 programiming language for manipulating complex data struc-~
g P
tures. The data structures are built up as S-expressions, LISE
P
pregrams are also written as S-expressions, because the LISP-inter-

preter can only read S-expressions,

S-expressions

Ltoms

The most clementary type of S-expression is the atom. £n atom is
cither o ciring of no more than 82 letterc and digits, the {irst one of

which must be a letter, or a2 number,

Examples: £B, A1, 36

Dot-notaticn

More complex S-expressions can bhe built up from atoms and the deli-
meters)", (" and ", ", The basic oper'a‘cion for forming S~evprss-
sions is to combine two of them to produce a larger one, called z dot-
ted pair. From the two S-expressions AB and A1 one can form the
dotted pair (£ B- Al). This can f i be dotted with itself to give

((£B- A1) (£ B+ 21)). S-expressions formed in this way are said to

be written in dot-notation,

Examples: ((£B-36)-£1), ((V. V).‘ X (Y- 6)))

List-notation

Large S-expressions are difficult fo read when they are written in

dot-notation. However, S-expressions can in some cases be written

S N S Py U e

o

1.2

1.2, 1

T 1.2.2

_Examples: (£ 36 C)

. -5 -

in an abbreviated form czalied list-notation. If mp, My, .., M are e
expressions the list (ml m, ... mn) is identical to (ml' (mZ' (...
(mn'NIL) .+«.))}. The atom NIL serves as terminator for lists. The
empty list () is identical to NIL, Lists may have sublists. The dot=-
notation and the list-notation 1ﬁay be used in the same S-expression,
Blank is the usual delimeter in list-notation, but comma may also be

used, Blank and comma are equivaient in LISP,

(£+ (36 (C+ NIL)))

]

(%,36,C)

1
]

(6 (2:C)) = (£,(2-C)) = (£-((2°C) NIL))

LIS®-functicns

We shall introduce some elementary LISP-functions. Every example
given from now on will, if prefixed with the atom EVAL, constitute
complete LIZP-programs which may be punched and run., The effect

i T S M. PUNp 2D

of tne preiin VAL o o Soll the intorpreter

GUCTE (one argument)

To tell the interpreter what parts of an S-expression are function calls
and what parts are arguments for the functions, we '"quote' the argu-
ments, with the function QUCTE, In other words QUCTE is used to
signify that an expression stands for itself rather 'chah for something
to be interpreted further; thus it serves to isolate a pregram from

its data.,

CONS (two arguments)
CONS combines the two arguments te make a dotted pair.
Example: (CONGS (QUCTE ANOUCTE(B)))

Upon reading this (with the prefix EVAL) the interpreter calls CONS

and calculates and prints cut the value:

(& B)

1.2.3

1.2, 4

1.2,5

-6 -

(£ T) is equivalent to (£° (B)) but the interpreter will print in list-

notation whenever possible,

We see that in LIS® the call on a function in with the arguments X,
HKop +vs e are written as
fnx, X5 ... X
(172 1)

<

In a list that is not quoted the first element is taken to be a function
name. The function is called by the interpreter and applied te the

arguments. Functions may as in the example above be nested; the

innermosct function is computed first.

CAR (one argument)

The argument of CAR should not be an atom. Its value is the first

part of its composite argument,
Examnles: (CAR(QUCTE (£ B))) value &

(CAR(CUOTE ((4-12) C) value (£°12)

CDR (one argument)

The argument of CDR should not be an atom. Its value is the second
part of its compesite argument. The second part »f a list is the rest

of the list except the first element,

Examples: (CDR(QUCTE (£ B))) value B
(CDR(QUOTE ((&-12) C). value C
(CDR(QUCTE (A))) value NIL

That NIL raust be the value in this example can be seen from the fact

that (&) = (&°NIL).

EOUAL (two arguments) predicate

£ function whose value is either true or false is called a predicate,

fn LIS® the values true and false are represented by the atoms T

1.2.6

1.2.8

-7 -

and F, respectively, A LISP-predicate is therefore a function whose
value is either T or ¥. The atoms T, F and NIL need-not be quoted,
because they have an inherent meaning for the LISP-interpreter. Num-
bers need not be quoted, because they are always taken to represent
their numeric value. |
Exaraples: (EQULL 12 13) value NIL

(F is equivalent to NIL)

(EQUAL(QUOTE (£ B){QUCTE (4°B))} value T

EQUAL (COR ((ZUCTE £)) NIL) value T

£DD1 (cne argument)

The argument of ADD! must be a number. This number is increased

with 1,

Example: (ADDI 13) value 14

ATCM (one argument) predicate

I al
1

The valuz of the predicate ATCM is T if its argument is an atorn, and

I ctherwise,

Examples: (ATCM (QUCTE 4 RC DE)) value T
(ATCM (CAR (RUCTRE (2 B)))) value T

(ATCM (QUCTE {4+ 3))) value F

CCND (indefinite number of arguments)

More interesting functions may be constructed in LISP with the aid of
the conditicnal expression, definable by the function CCND. CCND is
a special form which takes an indefinite number of argurnents. Each
argument is a list of two elements, COND proceeds irom argument
to argument, evaluating the first element of each; and the value of
COND is the second element of the first argument whose first clement

is true,

et e e s v ia e T T et o

1.2.9

1.2.10

.8 -

Examples: (COND (F (QUGTT £)(T (QUGTE B))) value B
(CCND ((£TCM (QUOSTE C)HNUOTE FIRS)
((4TCM (CLR (QUCTE (4*B)))) NIL)) value FIRST
(COND ((ATCM (2UCTE (C)))(QUOTE FIRST)

C
((pTOM (CLR (QUCTE (£ Bj)))) NIL)) value NIL

DEFINE (one argument)

The LISP-programmer may create names for new functions and
reference these nameces instead of writing the entire function each time
it is needed. Up to this point we have defined new functions by nesting
known ones. Frora now on we will allow rzcursive functions. This is
functions which calls itself. It is necessaxry to create a name for a
recursive function, otherwise it would be impossible fo1r the function
to reference itgelf, A function name is also handy when we want the
same function computed several times with varying arguments. If we
want to deline a function witheout specifying the argurnents, we must

use variables.

LAMBDA (two arguments)

Variables are introduced by the special form LAMBDA. The firse
argument of LAMBDA is a list cf the vari:ables which will be used in
the function which is the second argument of LAMBDA, When the
function is computed LAMEBIA establishes a correspondence between

the supplied argurnents and the variables,

The name of a function is created b}.r the function DEFINE. After a
function name have been created by DEFINE, the function may be
referenced any-where with its name, The argument of DEFINE is

a list of function definitions. The definitions are lists of two elements:
the first element is the atomic function-name and the second element is

the LAMEBDA -expression which defines the function.

Suppose we want to define a functicn called CADR whose value shall be

the second element of the list which is supplied as its argument,

The function must contain a variable which we will call X,

The following program will establish CADR as a function in the LISP-~

systems.

(DEFINEQUCTE ({C£DR (LAMBDA (X) (CAR (CDR X))

value {(CADR)

The value of DEFINE tells us that the definition has been accepted,
and CADR is consequently available, GSuppose we now want the second

element on the list (12 14 18 26). The following program would do this

(CADR (QUCTE (12 14 18 26))) value 14

o &

Let us look at a recursive definiticn: The function FT selects the first

atom of any given expression. FT is defined as follows

(DEFINE (QUCTE ("7 (LAMBDA (X)

L R & ARt N S A U T |
‘\J AN 2 L R A

(T (FF (CAR XN vaiue (FF)

The expression (FF (LAMBDA ... can be read: If X is ar atom; then
X itself is the answer. Ctherwise the function FF is to be applied to
CLR of X, The use of CCNZ is very important since it assures us that
the recursion will end. If ¥ is atomic,; then the first branch of the
CON.U which is ¥ will be selected: Ctherwise, the second branch

(FF (C£R X)) will be selected, since T is always true. ILet us now

use FT to find the first atom in the S-expression ((2°B) C).
(FF (QUCTE ((£¢B)C))) wvalue £

As a last example we will define the predicate MEMBER of two argu-
ments X and ¥, MEMBER is true if the S-expression X occurs among
the elements cf the list Y. The predicate NULL, which is true if its
argument is NIL, is used in MEMBER. Remembering that DEFINE
could deal with many definiticns at the same time we define both MEM-

BIER and NULL with the following program,

- 10 -

(DEFINE (QUCTIE(
(NULL (LAMBDA (J}{EQUAL J NIL)))
(MEMBER {(LAMBDA (X V)
(COND ((NULL Y) F)
((EQUAL X (CAR Y)) T)

(T(IMEMBER X(CDR Y)))
)

)]
O (MEMBER {QUCTE (£ B)YQUCTE({E-F) C (£-B))) value T

(MEMBER (QUCTE D)(QUCTE (A B C E))) value NIL

There are many other functions in LISP 3600, see Appendix IV for

details about some of them, See also the LISP-run in Appendix VI,

. 2 CPERATING PROCEDURES

The LISP-~interpreter is located on a binary tape with tape-label

BINARY L.I5% 3600, which must be requested fer a2 LISP-run.

2.1 Running a2 program punched on cards

The LISP-program can be punched on cards, free-field, in columns

l —72.

The follcwing control carde are necessaxy to run the LISP-program

con the cards.

e A st

- 11 -

;JOB, <acc.nr>, <program name>,<time limit>
Z,EO.;UIP, 6=(BINARY LISP36006}),5V

7/

7.“ .

9J_',C&UIP, 10=60

77‘OUI‘3 11=61

9 2t LU=

GJLCLD, 6

;RUN?<time limit >, <print limit >

LISP -program

Co ~3 Co .

7
8

Logical unit 10 and 11 arevinput and output units, respectively; feor
the LISP-~interpreter., These are here equated to the standard input
outpui units 60 and 61, Logical units 10 and 11 may be equated to
any other available equipment the programmer may need. The card
containing g column 1 acts as end-of-file mark to the LIEP-inter-

preter, which upon reading it, returns control to SCOPE,

Prelisting the LICP-program

At the Kjeller Computer Installation it is possible to get a listing of
the LISP-program prior to running it. This can be very useiul, be-
cause with large programs the interpreter print-out is very hard to

read. The following contrcl cards should be used.

1
-
[48]

1

7.~ ’ . < s
9JC~B, <acc nr>,<program name>, <time limit>

:;EQUIP, 6=(BINARY LISP3600),SV

Z)EQUIP, 10=MT
TEnure, 11=61
9 14 II. ’ =
T X
gLIST, L,0=16
LISP-program -
4
8
7
88
(')REWII‘ID, 10
;LO_/: D, b6
ZRUN, <time limit>, <print limit>
7
88

Running a program punched on paper tape

£t the Kjeller Computer Installation the LISP-program may also be
punched on 8-channel papertape. The papertape’s flexowriter codes
are translated to Hollerith cardimages on a magnetic tape by the

standard program PIMP. The following conventions must be obser-

ved when punching LISP-programs on papertape:

a) Use only lowercase letters.

b) Use comma as separator between atoms, never blank.

S amtie d e

AR TR e

‘2.‘4

2.5

c) The LISP-program must be preceeded by the character; down~
strolre, £ (4), and superccded by the character, downstroke, or-
sign (V). '

A papertape containing a LISP-program punched according to the above

rules, can be run with the follcwing control cards.

T~ ' : . o
oJCB, <acc nr>,<program name>,< time limit
/

"2QUIP, 6=(BINARY LISP3600), 5V

7

NORE N |

L)
) 3
- c
- l:—(
v} =
- “w
e Prod
v‘-‘-‘ il

4o

.

SR

WVl O~ O~
i r‘j ;
=
<
)

-

-

1]
pomd
[*Y
yo!
1l
—t
o
©
&

O =

RUN, <time Lmit>, <print litnit>

O
[}
‘/U

[esREN|
[eBEN]

These control cards will alsc give a prelisting of the program,

Etopping a LIC2-program

If a LISP-program should go into an endless loop, it can be stopped

in such a way as to give the programmer some information about what
went wrong. This is done by pressing jump key 3 on the console.

Jump key 3 transfers control to ERROR which prints out all lists bound

on the push-downlist,

Tracing in LISP 3600

Bit 7 in the D-register, which is sct by executing SETBIT(7), must be

set if tracing is wanted., The bit may be cleared by executing CLEAR-

BIT(7). Cleavring bit 7 stops all tracing immediately. Tracing is further

W

- 14 -

controlled by the pseudo-function TRACE, whose argurnent is a list
of functicns to be traced. After crace has been executed,; tracing will
occur whenever these functions are entered, The trac;:r prints out the
name of a function and its arguments when it is entered, and its name
and value when it is finished, When tracing of certain functions is

no lenger desired, it can be terminated by the pseudo-function
UNTRACE whose argument is a list of functions that areno longer

to be traced, - .

ER2ACR RDLACGNCITICS

Syntactical errors

If the reader finds syntactical errors in an S-expression, it inserts
specizal atoms at appropriate places in the S-expression. The special

atoms have the following meaning:
atom : mesning

ERRLA .. OF) encountered as first non-blank charac-

ter in an S-expression

ERRB . {dot) encountered as first non-blank character

after a (

DCTERR The second S-expression in a dotted pair is not

followed by a right parénthesis

BDOTERRZ ,. or) encountered as first non-blank character

after a dot

An illegal character is changed tc ? by the reader, and recognized as
a syntactical error. A doublei containing one or movre syntactical

errors is never run.

I PSP IUEN L SIS WIS AR) DU SRS

Anioe

‘ - 15 -

Runtime errors

“7hen an error occurs during a LISP-run the following general error-

heading will be printed out:

2 ERICR JICTING OF LIZTS BOUND ON
PUSHDOWNLIST FOLLOWS

.

The appropriate errord'iagnostic is inserted into the blank space be-
tween ERROR and LISTING before printing. /4 s the heading indicates
the lists bound on the pushdecwnlist are printed out after the heading.
Printing of the lists on the pushdownlist will not occur if the error
diagnostic was STACK EXCEEDED, The errordiagnostic

#xx A1 APPLIED FUNCTION CALLED ERROR will be given if a
LISP-program calls ERROR, The argument (if any) of ERRCR will
be printed.

£ complete list of error diagnostics is given below, with comments.

£2 APPLY S£S5CC This cccurs when an atom given as the
first argument of APPLY, does not
have a definition either on its proper L;
list or on the association list of AVPLY

£3 EVCCN None of the proposulonv follewing
CCND are true.

A4 CR A5 PRCG EET or SET(given on nonexigtent .
program variable.

£6 GO IN PRCG GC refers to a nonexistent label.

AT SPREAD Too many arguments in an EXPR or
FEXPR.

A8 EVAL SAE50C The atom in question is not bound on

the association list for EVAL nor doe
it have an A PVAL.

A9 EVAL 5485CC EVLL expects the first object on a
list to be an atom. A8 and A9 frequent-
ly occurs when a parenthesis miscount
causes the wrong phrase to be evaluated.

F2 PALIRL o The variable list specified by L2 MBD.
is shorter than the submitited argument-
llu

PO PRI SRR SOPP R

-~ 16 -

¥3 PLIRI The variable 1ist specified by LAMBDA
is lenger than the submitted argument
list.

DUMP CON JK3 ' Jump key 3 on the console has been
pressed, see 2.4, :

STCRE IZ FULL The garbage collector is unable to find
unused words in free word storage.

STLCKX ZXCELXDED Recursion is very deep. Nonterminat-
ing recursion will cause this error.
The list of lists bound on the pushdown~
list will nct be given on this errov.

IZ TN EXPT First argument is negative in EXPT,

BIG ARGZ2, EXPT £bs value of second argument in EXPT
is greater than 709, ‘

I3 BAD LRIT ARG /'n arithmetic routine has been given

an unusable argument.

£s indicated abeve the lists bound on the pushdownlist are printed out

if a runtime errcy occurs, the mosi recently used Lisi i L SLLCH
(the list on top) is printed last. The lust printed lists will therefore

give a good indication of what caused the error.

Let us assume that none of the functions being interpreted are using

the PROC-feature, and that the TRACEIND in the D-register is off,

Dol

Under these conditions the lists bound on the pushdownlist will be
alternately function calls or definitions and association lists. When
reading the pushdownprintout keep in mind that the innermost function
are evaluated first, even though the functions are interpreted from
the cutside in. Thus the call on the function being evaluated when the

error occurred will be near the top of the stack,

If the TRACEIND in the D-register was set, the name of an TXPR
called will be found on the pushdownlist between the EXPR's definition

and the corresponding association list.

The call on a function using the PRCG-feature will cause the foliowing

lists to appear in the pushdownprintout:

H

a) The complete function definition (ora’tting the name of the function).

b) The go-list (cee ISP TMPLEMENTATION 3,11). -

c) The association list

d) £ list c¢f the uninterpreted statements in the functions starting with
the one that was being evaluated when the error occurred.

DIFFERENCES BETWEEN LISe 3600 AND LISP 1.5

R, u i e e

T‘*"cer- Lollu

Llphameric atoms may in LISP 3600 kave up to 82 characters.

. 47
Fixed point numbers meay have zocolute values between 27 and
-47

-

Floating point significance cn input is 10 digigs, : |

e W' Yo d
s . - .) 307 . '
Floating point numbers may have absoclute values between 10 and
~307 '
: f

»

Numbers are conside

. s &
is less than 10 .

red cqual if the absolute value of their difference

A completealy new funclion called APPEND! is included as 2 SUBR,

see Lippendix IV for details.

Thc following func r
ECLAIM, CCUNT

in LISP 5

ons are not implemented: ARRAY, ERRCRSET
JHCOUNT and STEAX., A1l other undefined

Ifunctions an be defincd from those given in LISP 3600.

Differences

a)
b)

oo

)
i)

The scale factor in a logical number is an exponent to the base 2,

£ minussign preceding a legical number will cause the shifted
number to be complemented.

Blanks are used as fill-in in the fullwords. This makes it impos~
sible to print more than a single blank at a time. 2ut this means

5

that the constant $$$ B will print as a single space.

The function CLE/ARBUF I has not been implemented because it
should never be neecded,.

The functions INTERN and MXN/M are combined into a single
function; namely MKZATCTM.
MEKATOM = INTERN(MEKNZM)

Because of the reorganisation of all property lists, the printname
is CAR of the atom.

UNPALACK takes an atom as its argument.

PRINT should not be used directly after PRINTI without execut-
ing TERTFRI between, because TRINT sets tne ourpur vusier 1o
blanks befcre printing, thereby destroying what was putl in by
PRINI,

GC must enly be given atomic labels,

+ and - should never be used as characters in an atom.

See Lppendix VI for theinitial okject list defined in LISP3600.

EXAMPLES OF THE USE CF LISP

£ very short mentioning of two

interesting and useful LISP-programs

will be given here.

METECR: A LISP-interpreter for string transformations

Particulare about this program are given in (5) in an article with the

above heading as title written by Daniel G Bobrow.

- 19 -

METECR is a LISP-interpreter for a CCMIT-like language. This
language is very useful for string rmanipulation and transformation.

METEOR have been debugged and run in LISP3600. The card deck

defining METEZOR can be cbtained from the Kjeller Computer Instal-

laticn.

PRETTYPRINT

This prograr will print the functions, whose names are on its argu-
mentlist. The functions must be EXPRs or FEXPRs which have been
defined previocusly with DEFIME or DEFLIST. The functions are
printed in such a way as to make them very readable. In the LISP-

run contained in Appendix VI PRETTYPRINT prints itself.

INSTALLATION PROCEDURES

The following notes should be read by those who have obiained a

LISP3600 systemtape through CC-CP,

Contents cf system tape

The tape distributed through CO-C?P has tlie following contents.,

Label: BCD LISP3600

LISP-interpreter
in COMPASS-BCD.
METEOR-BCD

with testcase.

end~of-file

METEOR-BCD

with testcase.

end-of-file

£ copy of this tape is included in the program-library at the Kjeller

Cornputer Installation.

Running the systemtape -

The tape was made using SCCPE 6, 0 and should therefore never be
run on older versions of SCCTE (because of the label), The follow-
ing run will make 2 CCSY-tape named LISP3600 and a binary tape

named BINARY LISP3600,

AN o 4
IGP ~inter -

-

The METECR-interpreter lying irmmmediately affer the

1

preter will in this run be defined and rumn on a tesicase u luol il

systemtape.
Control cards necesgsary:
JOB, <acc nr>,<program name> , 25

EQUIP, 3=(LISP3600),5V ‘

EQUIP, 6=(BINARY LISP3600}),SV

]

TQUIP, 2=(BCD LISP3600), 5V

3

EQUIP, 11=61
EQUIP, 10=2

COMPASS, L, R, X=6, C=3, I=2

ot

B/ANK, (0), £ LL

OO O~ OV~ U1 U~ O~ V-3 O

CQAD, 6

O~}
r

e

pre}

2UN, 5, 5000

O~ O~
X ~3

The CCSY~tane should be put aside, because any corrections or

L

additions will be in the form of CCSY-correction cards,

The binary tape may be used for LISP-runs as described in 2. 1.
y tap y

However, if the computer in guestion has two banks or moxe the card

1
BANK, (0), ALL,

O~ O -

must be placed immediately before the LOAD card.

if the METECR-interpreter is wanted, skip the first file and punch

it out.

w 22 -

APPENDIN IV

SOME FUNCTIONS IN THE INTERPRETER DEFINED IN M-
EXPRIGSIONS

Defined functions:

EVALOUCTE-
LPPLY

EVAL

EVLIS
EVCON

LIGT
LAPPENDL
APPEND
DEFINE
DEFLIST

The defnitions ave chosen so as to resemble the actual implemen-
tation of these functions as closely as possible.

|
o)
o)

THIE LISP INTERFRETER

evalquote [fn; args] =[get[fny FEXPR] V get [fn; FSUBR)—~
" eval lcons! s argsls NIL)

(. T-apply [fn} avgs; NiL]]

apply [fn; args; 2=
null[fr]- NIL;

) 1
atorn [fnl— [get [in; EXPR] - apply lexpr; © arge; al;

TSX oubrl, 4

T —apply [cdr[cassoc[fn; ap ([]; error [A2)]]]: args; &3

getl fa; SUBR]~ .Lsy ALIL

eq lcar [in]; LABEL] - apply [caddr [fn); args; cons[cons| cadr| in]; caddr [{n]); &) 1;
eq [car [{n]; FUNARG] — apply [cadr [fol; argsy caddr [fn]);

. eq lear (fn); LAMBDA] -~ eval [caddr [in); nconc | pair [cadr [fa}; argal; 2)):
O T wapply [eval{fn; al: arge; al)

eval [form; a] =[
.null [form] - NILs
numberp (form]}—form;
atom [forml-[get [form; APVAL |~ car [Z‘.p‘!’&ll];
T -+ cdr [sasuoc [formy a',).[[?]; error [A§]1]]1);

2q icar [1orm); QUUL W] = cadr (form);

s eqlcar [form|; FUNCTION] - liot | FUNARG: cadr [form); a];z e
‘. eqlcar[form); COND] - aveon [cdr[form); als
eqlcar [forml; PROG] = prog [cdr {forml: zz];‘)‘
stom [car{ forral }- [get [car {form]: EXPR]-apply expr; i evlia [cdy {formiy als olc

. e - 1., - +
get [car (fovm]; PEXPR] - apply [fexpr; list [cdr]form)s u); o)
~ ™

: ‘ } spread [evlis [cdr [orm]; =]l 1
. get [car [form]; SUBR]~ <% ALIST: = 2; f .
' ' | I'rsx subz,’ 4 J

J’AC: = cdr {form]; .t
getlcar [form]); FSUBR] - « MQ: = $ALIST: = ag ;o
ITSX faubr,l 4 J
T ~eval {cons [cdr [sassoc [car [formn]; a3)[[]; error [£91111:
i ' ' cdr [form]]s all; '

T —~apply {car [forml; eviis [cdr [form]: al; 2]]

The value of get is get aside. This is the meaning of the apparent free or
undefined variable.

In the actual system this is handled by an FSUBR =ather than as the separate
special case shown here.

~ 24 -

: eviislms;al = progﬂ_ u;v;w];
‘ | w:= NILj
B LIST1I ur= car lrn);
ve= eval (mjal;
wi= appendl [wi vl
me=cde [ml
[nwll fm - return [l

PUL LIST 11]

eveon [cpa) =progl [v]:

TYCON [null [c]=l

. cstbit [=return [l
“:"Q \ 2 casr (el
i = eval [vial;
! [m}ll [v] = go (mveonall;

el

r"\

T - error

appendl [x; vl

AT PEND

append [x: ¥l

LATPL

byl

¥

[qY)

prog (lminl;

y: = cons [y;NILl;

[null {x] = retum [y1l;

mi= X%

n: = cdr [ml;

[null [n] - peturn [progZ lrplacd Lims vl; =) 1%
mi= nj

go [£PPENDZI]

prog [[u; vl

(null [- return [yll:

ur = NIL;

v: = car [

p: = appendl (usvls

v: = cdr [x]y

[nuti{v] - go [aoPll]

vy o= ug

v: = cdr [v];

[nuil [v] = veturn [prog 2 [rplacd tviyis ulll

go L&PP 21

define [x1= deflist [x; EXPR]

deflist [x;i] = prog [uyws 213

i

by

2

ur =

o
Zs

il

Wi =

NIL;
car[x]

car [z}

remprop [wiil;

Zy =

ze =

N N
-2 >
1 it

g
i

1

ble

adr 2]}

cons [z; NIL];

: cons [i3 2z}

attrib [wjzl;
appendl [u; wl;

car [xl

[nuil (] - return (u]

go (DEF2]]

- 27 -

LPPRENDIY V

RULES FCR TRANSLATING FUMCTIONS WRITTREDM IN M-EXPRIES-

SIONS INTO S-EXPRESSIONS

i
i

by
o
3

If the function is represented by its name, it is translated by
changing all of the letters to upper case, making it an atom,.

Thus car is translated into CAR.,

If the function uses lambda notation,then the expression
A [[}«'1; 123 ve. 3X]; ¢] is translated into (LAMBDA (X1 22 ...

n
arc
XN) 2] where %7 is the transiation of €.

l‘A

'..

If the function begins with a label, then the translation of

label [aze] is (L& BT“L, o™ £7).

S‘)
w

£ variable, like a functiocn name are translated using upperc
3

letters, 'Thus the translation of varl is VARI.

The obvious translation of letting a constant translate into itsclf

will not work, Since the translation of x is X, the translation

o
n

x &

¥ must be something else to avoid ambiquity, The solution is to

quote it. Thus ¥ is translated into (QUCTE X).

'I‘be fo**m fnlarpr; argss ... 3 atg 1 is translated into

&S
e
28
(in" arg; arge arg).

The conditional expression [pl > 213 4. P, e lis traaslated

into (COND (p” ei) ... (S e2)).

Labels (in prog) translate into themselves. Thus they are left

unchanged. go [A] translates into (GC £).

[}

The assignment symbol := is translated into SETQ. ur=cdr [ul;

is translated into (SET{: U (CDR U)).

Numbers and the atoms T, ¥ and NIL need not be quoted,

Examples:

M=expression S-expression
x X
car , CAR

car [x] (CAR X)

3
- 29 -

T T
if [car [=]] (FF (CAR X))
latom [x] - sz T - ff [car [5]]] (COND ((£ATOM X} X)
(T (FF(CAR X))
label [#yn [[=3

[atorm [z] = o3 T - £f {car [x]]]]]

APPENDIX VI

A SLMPLE LISP-RUN SHOW
OBJECT LIST AND PRETTY

NG THE COMPLETE INITIAL
PRINT PRINTING ITSELEF

L JBK S LB
CREOTN

-1

e
Qr':»(‘-r ¢

1.

ERA

0. 74

Page 32

Bv
“
R
o
~ (=
O I~-
el N R
D (el
4]
>
o
-
-
fend
<>
o
i
Lo
[te]
o]
3
o~
N fem]
5 9
).N - e
' P v
1Y (e) e
fang < <«
= o
Lty =
e b ..
Tz < o ~L ~7
< [S4 R 3 .
. ()
0 € O gy o
{4« 7 O
-1 103~
ti i ry O\
(4438 o PRAIENS |

s

CVARGBUMENTS FOR EVALRUSTZ s
EVAL
2o~ (t!"T A \
\Uaalb Nl
CTIME SPENT 1IN zVALRUOTE 00000002 MS, VALUE IS so

{N1L FXIRA ZRRB DOTERRL DOTERR2 APVAL T & EXPR SUBR CCND LAMBDA FEXPR FUNARG FSUBR

LABEL = = / mi#wow’ 3E0R3 $EOF: #T LPAR ¢ BLANK RPAR .) PERIOD CAR CDR CONS ATOW

APPLY 1S ’
FLOLTY CADDR CADAR RETURN MINUS LESSP GREATERP DEFLIST APPEND APPENDL MEMBER ADVANCE

UNPACK MKATOM PR1IN<: TEAPRI TRACE UNTRACE ZEFOP MINUSP TESTBIT SETBIT CLEARBIT GENSYHM

OR AND LIST PLUS PAO3 40 SETA TIMES LOGAND [230R LOGXOR FUNCTION QUOTE OBLIST DIFFERENCE

(COLENGTH (LAM3DA (L) (PROB (U V) (SET2 v oY (SETQ U L) A (COND {{NULL ¥) (RETURN

AP {LAMBDA (X F) (PROG (M) (SETQ

i -
-
e
SN

-~

w

m

—

7]

[

P

(9]

o

puo]

o

<

~

S~r

Py

73]
i
—t
-
o
el
-
s
Sz
fue]
[
<
A
p—y
.
Cx
g
o
C e
-
-—
—
pie

§OAY LOOP (£0ND. {{NULL #) (RETURN NILI)) (F M3 (SETQ M (CDR M)) (GO LOOP)I}}) (PRETTYPRIN

CLAMSDA (L) (MAF L (FUNCTION (LANBDA (J) (PROC (Ti? (TERFRI) (PRINL LPAR) {PRINL
2 43y (TERPRLY (PRINTDEF (COND ((SETQ Tir LLET (CpR J) (QUDTE EXPR))) T1) ((SETA
An J) (GUOTE FEXPRYY) T4) (7 (QUOTE SHDEFINED))Y (PRINL RPAR) (TERPRIIIIIIIN)

CTIME ERPENT IV EVALOUDTE 60000005 MS, VALUE IS oas

CCPRINTDES. {LAXBDA () (PROG §1 IUNITL) (SETY 1 4) (SETO TUNITL-3) (PRINL BLANK)
(FRINL BLANKD (PRINT BLANA) (SUPERPRINT'E) (RETURN RILIIH (SUPERPRINT (LAMBDA (E}.

(ooND ((ATON E) (PRING £)) (7 (PROG (EP 1) (SZTQ EP £} (PRINL LPAR) A (COND ((MEMBER
(CAR EP3 (UITE (A%0 0% LIST PLUS TIMES COND If SELECT MAX MIN PROGR)D) (G0 PL)) ((EQ
(CALR GP) (QUDTE Lin30s)) (6D 21)) ({ED (CAR Ef3 (OUCTE PROG)Y (GO PPID) (SUPERPRINT

(Cai EPYY (SET3 EP (CDR EPY) {COND ((nULL EP) (FETURN (PRINL RFAR))) C(ATOM EP) (GO

Page 3L

' : o o -1 {SUP 1 {CAR EPY)
Ay (PRINL EP) (RETURN (PRINL RPAR)) Pl (SETG I (ADDL 13) (supERPRAY RIN
Hleasd Vrignvd - ' ’ ; \ N E S ERPRINT
' Y (coup. (LHULL E9) (G0 Pul) G{ATOH EP) (GO pK))) (ENDLINE) (SUPERPRIN
foTvn oo 0 E;}) Can ot 'y U L, o L 4 8
{276 g° (CO 10

m

(CAR EP) (G0 Pk Py (3ET2 I (SUBL 1)) (RETURY (PRINI RPAR)) PP (PRINL [CAR &P})ﬂcf
5 (cpa £P)) (SETL T {ADDL D)3 (COND ({NULL EF) (GO ©J)) LATOM EP) {BO PK)D) (PRINI

8;‘“;: f;uziﬁpR?x?.!ﬁAQ‘EF}} by (SETO EP (CDR £P)) (COND (LRULL EF) (B0 PJD) ({ATOM
;;>‘géo‘;%>;z CE%EL;QE) (5OND ((ATOH (CAR EP)1 {BD P71)) (PRINL BLANK (PRINS BLiNKi -
o oy epRine BLANK) (PRINL ELANKY (PRINLIBLANKD PX (SETO I (PLUS I 2)) (SUPERPRINT
{0AR EPY) (s;Ta [(pLUS 1 =2)Y (G0 PY) PZ (FRINL {GAR PN (SETo M (PLUS TUNITL (HINUS

Y s (SUBL) (FRINL BLANK) (COND ((NOT (OR
! MobadoL. LIS SUR & ;

o~
-
in
o
—
x
Pt
ol
-«
B
2
[}
o~
C2
v
(%3]
s
e
~—r
e
-~
—
—r
S
b oS
-~n
(52
i
-3
=

- PRI I} [lTO:“I
jop w3r1) (B0 AAlYY (BETE EP (cnR EPYY (COND {{NULL epy {60 PJY) LA
(ZERAP M) (HINUSP M3 (R0 AATRY deETR

ENDLINE (LAMBDA NIL (PROG (J)

yoL
| ‘ 1N RF (PRINL
Y (TERPRI) @ (COND. ({ZERDP 1y (RETHEN NIy Y COMINUSP J) (ERRDOR 112 1
{SETO J 1 TERPRIY & (GUN: LERDP . :
IETH j2a J (DR D)
QLAH-;\ (hq‘-\l.:k "‘-N'"“ (ORINl BL)‘“’\‘K: (,C‘ET\‘! :s’ {EU»J,\J}) (G_O A))‘
Bl AN FRliNL D Tl RN

"N ! E IS g
e bR = [RVRIR 04 M8 VALUE O ase
TIiME SPENT IN EYALBUDTE gopn0odsg .

(PRINTDEF. SUPERPRINT ENDLINE)

23]

ARGUMENTS FOR. EVALQ

R

[a) o
IOTE oas

(PRETTYPRINT

(LAMBDA (L3

({SETG T4 (GEr1 {(CAR JJ (QUOTE EXPRIII TLD

(82T (GUOTE FEXPRIDY T1}

(CAR)

UNDEF {NED)))

bor
-~

L]

~3

-~
w
Lo
L
1
v
-0
U
—t
=
—

(LAMBDA (EY (COND
CLATOM E) (PRING EDD
(T (PROG (EP M)
(SETO EP £)
(PRINL LPAR)
A (CORD
((MEMBER: (CAR EP) (QUOTE (ANM
03
LT
PLUS

IMES

—
]

COND

-y

iR

1

T

SEL

It
m

MAX.

N

PROG2)J) (GO PLI:
((=Q (CAAR. EF) (GQDTE:LAHBQA)) (GG EBL))
((EQ (CAR EP) (QUOTE PROG)Y (GO FF)J)

(SUPERPRINT' (CAR. EP))

1

(&6

TR Ep: (COR EPW)

< (COND
((NULL EP) (RETURN (PRINi:RPARY))
CCATOM EP) (GO PDR))Y)

(PRINY: BLANK)

(PRINL® BLANK
(PRINI: EF)
(RETURN (PRINLI RPAR))

PLr(SETQ 1 (ADDLIID)
(SURPERPRINT (CAR ©P))
oy {(SETG BF LCDR EP))
(COND
((NULL- BPY (80 PJ))

CCATOM EP) (GO PKYDY -
(SUPERPRINT (CAR EPD)

(GO PM)

PJ.(SETQ § (susi 1))

(SETQ 1 (ADDL D))

(COND
((NULL. EPY (GO PN
CCATOM 2P)Y (G0 PRI

(PRINL BLANK)
(SUPERPRINT (CAR EP))
FY' (SETQ EP (CNR EPY)
(COND
CONULL EPY (GO PJIY

((ATDM EFY (GO PKI))

(ENDLINE
(COND
((ATOM CCAR EP)) (GO FZ)
(PRINL: BLANK)
(PRI BLANKY

O

1

Yape 3Y
(PRING: BLANK)

(PRINL' 2LANK).

(PRINY: BLANKY

(PRINL SlLANK

PX. (SETQ I (PLUS

(SUPERPRINT (CAR EP))

(MINUS (LENBTH (UNPACK (CAR E2F3d322!

(PRINL BLANK)
(COND
((NOT (OR
(ZERDP. M)
(4INUSP. #M)7) (GO AADD)D
. (SETQ &P (CDR. EPY)
(COND
O ((NULL EP) (G0 PJ))
CCATOM EPY (GO PKY)
(CATODH LCAR EPY) (GO PZI

(80 PX33)3))

(PRINTDEF

(LAMBDA (2) (FROG (] TUNITL3

.
Y s

!

BLIN

h
i

o
ot

{

e

L

iz
|2
!
i

~

2R

)

I

[

o -
b bar

(83

Pt

“
o

N

Addl

(GO

	Contents

	1 Introduction to Programming Language LISP

	2 Operating Procedures

	3 Error Diagnostics

	4 Differences Between LISP 3600 and LISP 1.5

	5 Examples of the Use of LISP
	6 Installation Procedures

	Appendix IV Some
 Functions
	Appendix V Translating M-Expressions to S-Expressions

	Appendix VI Sample Lisp-Run

