

o

•
,

o

o
(

LISP /360

A description of the University of Waterloo
LISP 1.5 Interpreter for the IBM System /360

Second Edition

March, 1968

J. F. Bolce,
Computing Centre,
University of Waterloo,
Waterloo, Ontario.

Documentation by -

J. F. BoIce,
R. H. Cooper.

----- -~

o

•

o

DISCLAIMER

Although this programme has been tested by its
author, no warranty, expressed or implied, is made by the
author, or the University of Waterloo, as to the accuracy
and functioning of the programme and related programme
material, nor shall the fact of dJ~_t~ibution __ constitute
any such warranty, and no responsibility is assumed by the
author or the University of Waterloo, in connection therewith.

o

o

o

ACKNOWLEDGMENTS

I wish to thank Mr. Jan Kent for his experience and
guidance in the initial design and implementation of the inperpreter.

This project was made possible by the support of Professor
J. W. Graham, Director of the Computing Center.

J. F. Bolce.

CONTENTS

0 Pages

PART I INTRODUCTION 1

Machine Requirements 1

PART II ORGANIZATION OF THE SYSTEM 2

2.1 The Lisp Cell 3
2.2 The Object List 3
2.3 Atoms 3

Property Lists 4
Fu11words 4
Printnames 5
Numbers 5
Binary Marke:ts 6

PART III ORGANIZATION OF THE INTERPRETER 7

3.1 Register Assignments 7
3.2 Passing Arguments 8
3.3 Program Initialization 8
3.4 Defining the Object List 81';

3.5 Recursion Techniques 10

0
The Pushdown Stack 10
SAVE 10
UN SAVE 1(1;

3.6 The Management of Freeword Storage 11
CAR 12
CDR 12
ATOM 12
CONS 12
The Garbage Collector 13

3.7 Lisp Output 14
PRINT 14
PCKOVR 15
PUTATOM 15

'1'\. PRINl 15
TERPRI 15
Print DCB 15

... 3.8 Lisp Input 16
Program Format 16
READ 16
TRYATOM 17
ALLATOM 18
Read DeB 18
Character Handling Routines 19
STARTREAD 19
ADVANCE 19
ENDREAD 19

0 UNPACK 19
CCLASS 19
PACK 20
CLEARBUFF 20
:MKATOM 20

0
Pages

3.9 Data Types 20
Alphabetic 20
Integers 21
Floating Point 21
Logic'a1 21

3.10 The PROG Feature 22
PROG 22
GO 22
RETURN 23

3.11 Arithmetic Routines 23
3.12 Other Functions 24

APPEND 1 24
TTAB 24
XTAB 24
EVENP 24
CCLASS 25
MKATOM 25
The Lisp Library 26
The Library Function 26.1
Initializing the Library 26.2

0 3.13 The Trap Supervisor 27
3.14 Tracing 27.1

Function Level Trace 27.1
Statement Level Trace 27.1
Trace 27.1
Untrace 27.1

3.15 Possible Differences 27.1
3.16 Future Improvements 27.2

PART IV ERROR DIAGNOSTICS 28

4.1 Syntax Errors 28
4.2 Runtime Errors 28

Interpreter Errors 29

PART V IMPLEMENTATION GUIDE 32

5.1 Assembly Options 32
5.2 Execute Card Options 32
5.3 Sample Procedures 33
5.4 Reporting Errors 34

APPENDIX I THE LISP INTERPRETER 35

Definition in M-expressions 36

0
Flowcharts 39

APPENDIX II SAMPLE OUTPUT 45

APPENDIX III IMPLEMENTED FUNCTIONS

References

o
- 1 -

I INTRODUCTION

Lisp /360 is an interpretative Lisp 1.5 system written at the

University of Waterloo. It has been modelled after the Lisp 1.5

program on the IBM 7090 (1) although many ideas have been borrowed

from the CDC 3600 Lisp interpreter (2).

The interpreter was written with several features in mind:

(A) More understandable error diagnostics.

(B) More effective read routines.

(C) Compatibility with the previous Lisp language for the IBM 7090.

(D) Speed in Lisp interpretation.

(E) The use of 24-bit ful1word addresses to ensure the addressability

c;;> of large memories.

o

(F) Maximum use of the Universal Instruction Set for the IBM /360.

(G) Acceptance of Lisp problem programs fDom both IBM keypunches

-the 026 and the 029.

BASIC MACHINE REQUIREMENTS

A /360 computer with the following requirements:

(a) operating system OS /360

(b) the Universal Instruction Set.

o

o

o

- 2 -

II ORGANIZATION OF THE SYSTEM

In this section is described the internal structure of the Lisp

/360 Interpreter.

It is assumed throughout these sections that the reader has a

working knowledge of the Lisp 1.5 programmer's manual (1).

Lisp /360 is a problem program operating under the System

/360 Operating System. The memory which is available to the interpreter

depends upon its allocation by the operating system on the particular

machine involved.

The coding of the interpreter itself occupies about 12 K bytes.

This is directly followed by the pushdown stack and the object list

(5 K bytes). The size of the pushdown stack is set at assembly time

(now at 4 K words). Freeword storage occupies the remainder of

available core and is obtained from theuoperating system by the GETMAIN

macro.

The structure of the atoms and their property lists is organized

in a manner similar to Lisp on the CDC3600. This particular organization

has certain disadvantages as far as the speed of the read and print

routines and the utilization of memory is concerned. However, the

added speed obtained in the interpreter routines and the garbage

collector provide reasonable justification.

- 3 -

o 2.1 THE LISP CELL

A Lisp cell occupies one double word of storage. This allows

the use of two 24-bit addresses enabling the interpreter to cover any

size of /360 memory. Each of these 24-bit addresses points to a list.

The 8 bits remaining in each of the two full-words is used to store

binary markers. These can easily be tested with the Test Under Mask

instruction.

BINARY CAR BINARY CDR
MARKER ADDRESS MARKER ADDRESS

o 7 31 63

2.2 THE OBJECT LIST

The object list is a sequential list which initially contains all

o the predefined atoms. This initial object list is generated at

assembly time. When an atom is produced by the READ function, this

list is searched to see if the atom already exists. If not, the atom

is appended to the object list. The object list is accessible as the

APVAL property of the atom OBLIST.

\

2.3 ATOMS

If the first byte of the first fullword in a Lisp cell has a I-bit

in the sign position then that particular cell is an atomhead.

In the atomhead the first address in the double-word cell points

to the atom's fullword list. The second address points to the atom's

property list.

o

o

o

- 4 -

The atom MEMBER, with an empty property list is illustrated below.

1

01

___ L/'"]

Property Lists

The EXPR-(MEMBER(LAMBDA .•. has the following structure.

!
..J

Fullwords

~,

EXPR

• ,.

LAMBDA

Fullwords in freeword storage are used to replace the "fullword

storage" in Lisp 1.5.

A fullword is a particular type of Lisp cell which has a) the

second bit of the second word turned on and b) one of the following

in the upper word.

- 5 -

o
1) Four BCD characters from a printname (padded on the right with the

null character X'OO' if necessary.

2) A 32 bit integer or floating point number.

3) The binary address of a Lisp routine.

Printnames

The address in the upper word of the atomhead of a non-numeric

atom points to the linear list of the BCD printname.

The atom LEFTSHIFT would have, for example, the following fullword

list.

o

Numbers

There are four types of numbers:

1) integer

2) Floating point

3) Logical (read as octal)

All numbers are stored internally in 32 bit binary form and must

be converted to BCD for printing.

o

o

o

o

.... 6 -

Binary Markers

Bits 0-7 of each atomhead contain several binary markers indicating

the type of fullword list pointed at by the upper address.

bit o

I

I

I

I

I

o

I

I

I

2

o

o

I

o

3

o

o

o

I

BCD PRINTNAME

INTEGER

FLOATING POINT

LOGICAL

The first bit of the lower address word is used by the garbage

collector to mark active cells.

- 7 ..

o III ORGANIZATION OF THE INTERPRETER

This section contains a description of the interpreter and some

of its main routines. Flowcharts of some of these routines are given

in Appendix 1. The words written in capital letters refer to the

interpreter coding.

3.1 REGISTER ASSIGNMENTS

Register Name Usage

0 LOCAL WORK REGISTER

1 LOCAL WORK REGISTER

2 SUBROUTINE LINKAGE

3 WORK REGISTER

0 4 K4 CONSTANT VALUE '4 '

5 NILR ADDRESS OF NIL, BASE REGISTER
OF THE OBJECT LIST

6 FREE POINTER TO FREEWORD STORAGE LIST

7 PDS POINTER TO TOP OF PUSHDOWN STACK

8 A FIRST FUNCTION ARGUMENT

9 Q SECOND FUNCTION ARGUMENT

10 M SAVE AREA FOR LIST POINTERS

11 BASE REGISTER

12 BASE REGISTER

13 POINTER TO SYSTEM SAVE AREA
AND BASE REGISTER

14 LOCAL WORK REGISTER

15 LOCAL WORK REGISTER

0 The usage of the registers will be described in greater detail in

the descriptions of the routines which follow.

o

o

o

- 8 -

3.2 PASSING THE ARGUMENTS

The A and Q registers and the 20 locations starting at ARGS are

used to pass up to 22 arguments to a LISP function. Register A contains

the return value (list pointer).

Register M is used normally to point to a list that should not bee

lost if a garbage collection occurs when doing a CONS.

3.3 PROGRAM INITIALIZATION

Program Initialization consists of:

1) Testing the PARM field of the EXEC control card.-if the

parameter 'BCD' is encountered the type of brackets and the

plus sign is set to the BCD code.

2) Opening the files.

3) Issuing an STlMER macro to set the clock.

4) Converting the object list from relocatable to fixed form.

5) Issuring a GETMAIN to obtain all remaining core for use as

freeword storage.

3.4 DEFINING THE OBJECT LIST

The macro ECHO is used to define an atom and attach it to the

object list.

The address constants generated by the macro are relative to the

NIL atom, i.e. are relocatable. This reduces the amount of text

to be processed by the system loader. During program initialization

a sequential sean is made to add the address of NIL to all address

f-

- 9 -

o constants. The examples following illustrate the absolute addresses.

The macro's parameters are arranged as follows:

PARAMETER

1 PRINT NAME (1 TO 12 CHARACTERS)

2 INDICATOR ego SUBR

3 SUBROUTINE ENTRY POINT NAME

4 NAME OF ARGUMENTS TO A SUBR

An example of the coding generated for an atom with no property

list:

M ECHO MEMBER

DC A (*+B , "k+32) Object List Link

M DC X'BO' ,AL3(*+8),A(NIL) Atomhead

DC C 'MEMB' ,X' 40' ,AL3 ("k+8) Fullword List

o DC C'ER' ,X'OOOO' ,X'40',AL3(NIL)

An atom defined withaa property list:

ECHO DEFINE, SUBR,DEFINE, 1

DC Object List Link

DC X'80' ,AL3(*+8),A(*+2l) Atomhead

DC C'DEFI',X'40',AL3(*+8) Fullword List

DC C'NE' ,X'0000',X'40' ,AL3(NIL)

DC A(SUBR,*+4) Indicator

DC A(*+8,NIL) Link to Any Other Properties

DC AL1(1),AL3(DEFINE),X'40',AL3(NIL)

t t

argument entry point
count address

o

o

o

o

~ 10

3.5 RECURSION TECHNIQUES

All interpreter routines that are FSUBR's must be re-entrant, as

they are either recursive or may be re-entered in the process of

evaluating their arguments. Of prime importance in effecting recursion

is the pushdown stack.

The pushdown Stack

One pushdown stack is used to save the linkage addresses and list

pointers for the recursive and re-entrant routines. The pushdown stack

is a linear block of core. It is preceded by a work area which may

contain pointers to lists that must be collected if a garbage collection

occurs. The pushdown stack is followed by the object list beginning

with the atom NIL.

Two macros, SAVE and UNSAVE, are used to pass data to and from

the stack.

The Macro SAVE

SAVE has one argument - a register. Its purpose is to:

(a) Store the contents of the designated register on the top

of the stack.

(b) Increment the stack pointer (PDS).

(c) Check for the occurrence of stack overflow.

For example,

SAVE A

would generate the following coding:

ST

BXH

A,O(PDS)

PDS,K4,ERG2

.. 11 -

o The register PDS points to the top of the stack. The BXH

instruction increments PDS by the constant 4 (in K4) and transfers

control to ERG2 if the result is greater than the address of NIL.

The register following K4 (see previous chart of registers) contains

the address of NIL.

The Macro UNSAVE

This macro decrements the stack pointer PDS and loads the desig-

nated register with the top of the stack.

For example:

UN SAVE A

would generate

SR PDS,K4

o L A, 0 (PDS)

3 .6 THE MANAGEMENT OF FREEWORD STORAGE

The primitive Lisp functions are those used most frequently by

the Interpreter and the Lisp programmer. With this in mind Lisp

/360 has been designed to ensure that these functions are coded with

as few instructions as possible.

For this reason (as has been mentioned previously) the Lisp

cell has the form -

L..-MA_BI_~_AR_~_I<---__ ~_D_~_~_R_S_S __ -.;.~,,-~_I_~_~_Rn-, -- ~:~SS J
Hence, fullword instructions are easily used to effect cell address

referencing ahd immediate instructions may be used to manipulate the

o binary markers.

o

•

o

o

:: 12 -

CAR

To execute the function CAR(A) -t A requires the one instruction:

L A,CAR(A)

where CAR has the value zero.

CDR

The function CDR(A) + A requires the one instruction:

L A,CDR(A)

where CDR has the value four.

ATOM

The testing of whether A is an atom illustrates the use of the

binary markers.

CONS

1M

BO

CAR (A) ,ATOM

ITSATOM

The label ATOM has the value X'80' .

- Is A an atom

- Yes, bit is on

A freeword list, pointed at by register FREE, is produced by the

garbage collector.

The routine CONS:

1) Stores the contents of registers A and Q in the top cell of

the freeword list.

2) Places the address of the cell into register A.

3) Sets FREE to point at the next cell in the freeword list.

This is accomplished by doing:

ST

LR

A,CAR(FREE)

A,FREE

Store A in the CAR

Point A to the cell

£

o

o

o

L

ST

Q 13 -

FREE,CDR(FREE)

Q,CDR(A)

Point FREE to rest of list

Store Q in the CDR

The end of the freeword list is recognized by having the CDR

address of the last cell in the list set to the value '1'. When CONS

attempts to store in the cell at location 1, a specification interrupt

occurs. When this programme interrupt occurs the contents of FREE is

checked for the value '1' and if present a garbage collection is

effected. The CONS is then completed.

The Garbage Collector

The garbage collector is entered whenever the CONS routine causes

a specification interrupt by attempting to store in storage location 1.

This is an indication that the freeword list has been exhausted.

At this point the garbage collec~or must mark all the lisp cells

that are currently needed, and then link together all of the unmarked

cells to produce a new fr.eeword list.

Between the address TEMPORAR and the bottom of the pushdown stack

is stored nhe address of:

1) The object list.

2) The association list.

3) Any function or interpreter list pointers that are needed

further.

The garbage collector saves the A,Q, and M registers on the top

of the stack and does a scan from TEMPORAR to the top of the used

part of the stack looking for all addresses pointing into freeword

storage. All such lists are marked.

o

o

o

A sequential scan is then made through all freeword storage to

unmark the marked cells and to collect all unmarked cells into a new

freeword list. If no cells are collected (FREE still equals 1) error

GC2 occurs.

Since freeword storage is obtained from the operating system by

means of the GETMAIN macro and this area is not necessarily contiguous

with the object list, the garbage collector must scan two blocks. The

garbage collector is written to collect a list of areas. Each area

is preceded by a two word cell, the first word containing the address

of the start of the next area (zero signals last), the second containing

the address of the end of this area.

The garbage collector is used to initialize freeword storage by

setting FREE to the value 1. The first CONS triggers the garbage

collection.

The marking is done by setting 'ON' the first bit (bit 0) of the

lower address of all cells that can be reached by CAR and CDR chains.

If a cell is reached that is already marked the chain is stopped (the

atom NIL rapidly becomes marked). If a fullword list is encountered

then only the CDR chain is followed.

3.7 LISP OUTPUT

The output of S-expressions is handled by the PRINT routine.

PRINT makes use of PCKOVR and PUTATOM. The primitives PRINI and

TERPRI are also used for output.

PRINT

The buffer area used by PRINT is the area labelled LINE. PRINT

loads register P from PRTAB, which contains the current buffer pointer.

A check is made on the argument in A to see whether it is an atom or a

o

o

o

~ 15 •

list. If it is a list, PUTLIST is entered. The value zero is saved

and an iteration commences resulting in the printing of the S-expression.

The end of the iteration is signalled by unsaving the zero.

PCKOVR

This routine adds '1' to register P and if the result is over

the value of LINEMAX the buffer line is printed by WRLINE.

PUTATOM

When PRINT encounters an atom it calls upon PUTATOM to do the

necessary conversion and to mave the resulting PNAME to the output

buffer. Floating-point numbers are output in the form sd.ddddddEsdd

PRINl

PRINI loads P with the PRTAB value and calls upon PUTATOM to

convert the atom and to move it to the buffer.

TERPRI/WRLINE

This routine prints the data stored in the buffer LINE, resets

it blanks and sets PRTAB to LINE+5.

If a.PRINT follows a PRINl, the list generated by PRINT follows

the data output by PRINI rather than overlaying it.

ego (PRINl(QUOTE $$'RESULTING LIST IS -'))
(PRINT LIST)

would print

RESULTING LIST IS -(---- LIST ------

PRINT DCB

The PRINT data control block has the following parameters set:

DSORG=PS,MACRF=(PM),DDNAME=SYSPRINT,RECFM=VBA,LRECL=136,BLKSIZE=500

o

o

o

... 16 ..

3.8 LISP INPUT

All T,Lisp input is handled by the READ routine which in turn uses

the routines GETCHAR, TRYATOM, and ALLATOM.

PROGRAM FORMAT

The LISP programs are punched free form in card columns I to 22.

A Lisp program consists of a series of doublets that are read and

presented as arguments to the function EVALQUOTE(FN,ARGS). No control

cards such as TEST and SET are recognized nor is STOP.

Extra right parentheses may be placed at the end of an S-expression

to prevent a bad bracket count ruining the evaluation of the next

doublet. On reading the next S-expression the extra right parentheses

are ignored.

If the last program card has been read and there are insufficient

right parentheses, the ne£essary brackets are supplied, and the

structure is printed with the error R2-BAD BRACKET COUNT.

READ

READ uses TRYATOM to attempt to form an atom from the succeeding

characters on the cards. TRYATOM returns an atom if it is successful,

otherwise it indicates that it found a left or ~ight parenthesis or

a dot. Commas are treated in the same manner as blanks.

READ initiailly calls en TRYATOM to form an atom. If an atom is

found READ returns to the calling routine with the atom. If a left

parenthesis is indicated by TRYATOM, READ links to UPPER. UPPER is

the recursive entry point for Eeading a list that is entered whenever

a left parenthesis is encountered. LOWER on the other hand is entered

fecursively whenever a '.(' is encountered.

o

o

o

• Ii -

TRYATOM

This subroutine scans one syntactical unit from the card input

area and attempts to identify the unit.

BIT

8

7

6

5

4

3

2

- commas and blanks act as delimiters and are otherwise ignored.

- left and right parentheses and dots are scanned off and followed

by a special return to the calling routine.

- to aid in the identification of character strings, a series of

bit switches in the byte ATOMIND are used. These indicators

are as follows:

NAME

ATOMIND

NUMIND

FLOATIND

EXPIND

NEGEXP

NEGINT

LOGICAL

USAGE

A character other than a delimiter has

been encountered. Construction of an atom

is in progress.

The first character was a digit. The atom

being constructed is numeric.

A dot was encountered when NUMIND was on.

The number is floating point.

The letter E was encountered when FLOATIND

was on. The number has an exponent.

A negative sign was' encountered when EXPIND

was on. The exponent is negative.

A minus sign followed by a digit was

encountered. The number is negative.

The letter Q ~as encountered while NUMIND

was on. The number must be octal. EXPIND

is set on.

o

o

o

- 18 -

The register CHAR contains the address of the character being

examined. The routine GETCHAR is used to move the pointer to the next

character, which may require the reading of another card. If the

two characters $$ are enoountered the LISP literal that follows is

recognized. The characters between the delimiters are assembled

into an alphabetic atom.

As the characters are picked off the cards they are stored in

three areas depending on the setting of indicators. These areas are

as follows:

CHARATA

DIGITA

EXPA

- to store alphabetic strings

- to store a numeric string

- to store digits defining an exponent

When a Lisp delimiter is encountered with ATOMIND 'ON' control

will pass to ALLATOM.

ALLATOM

If only ATOMIND is 'ON' then this routine scans the object list

to find an atom with the same PNAME as the character string in CHARATA.

If none is found an atom is created and addad to the object list.

Numeric strings in DIGITA and EXPA are converted into internal fixed

or floating point numbers. The proper type of atom is then created.

READ DCB

The READ data control block has the following parameters set:

DSORG=PS,MACRF=(GL) ,DDNAME=SYSIN, RECFM=FB , LRECL=80 , BLKSIZE=8 0

o

•

o

o

CHARACTER HANDLING ROUTINES

The functions STARTREAD, ADVANCE, and ENDREAD are used to acquire

data from a data card one character at a time. The atom returned is

not placed on the object list thus gaining processing speed and

preventing the object list from becoming cluttered. The function

CCLASS may be used to identify the type of character returned .

STARTREAD()

STARTREAD causes a new card to be read. The value of the function

is an atom made from the first character on the card.

ADVANCE()

ADVANCE returns as an atom the next character on the card. After

the 72'd character is read, a STARTREAD occurs. No end of card or

last card indication is given. The objects CURCHAR and CHARCOUNT

are not implemented.

ENDREAD()

This function causes the remainder of the card to be ignored.

UNPACK (A)

The characters in the PNAME of the atom A are returned as a

list of atoms. The atoms are not on the object list.

CCLASS(X,Y)

CCLASS returns T if the first character of the PNAME of the

atom X is in the set of characters of the PNAME of Y.

e.g. CCLASS(A,BDAC) ~ T
CCLASS(l,BlC) ~ NIL
CCLASS($$'1',A0123456789) ~T

o

o

o

- 20 -

The functions PACK, CLEARBUFF and MKATOM are used to assemble

a character string and to convert it to internal form. Atoms

generated are placed on the object list.

PACK (X)

The function PACK places the PNAME of the atom X at the

end of the string of characters in CBUFF. The size of CBUFF

is an assembly parameter currently set at 80.

CLEARBUFF()

This function sets CBUFF to blinks. CBUFF is initially

blank and is reset to blanks by MKATOM and CLEARBUFF.

MKATOM ()

The function MKATOM expects a valid S-expression in CBUFF.

This character string is given to the READ function which returns

an atom or a list sorresponding to the S-expression found. Any

brackets in the character string must be of the type indicated

on the EXEC control card. If CBUFF is blank or there are unmatched

parentheses, the error CH4 is given. CBUFF is reset to blanks.

3.9 DATA TYPES

Alphabetic

The READ routine will accept input pUnnhed on either an IBM 029

or 026 keypunch (BCD or EBCDIC). The characters which are recognized

as being different are the left and right parentheses and the plus

sign. The character set used is indicated in the ~ARM field of the

EXEC card (ref section V). All characters are accepted as valid.

o

o

o

~ 21 .;.

The maximum length of a BCD printname is presently set at 80

characters. This may be changed at assembly time by setting the

variable -ATMSZ to the desired value.

Integers

A fixed point number (integer) consists of an optional sign followed

by up to 16 digits.with or without a positive scale factor. The

.. . 232 1 maXLmum Lnteger LS -.

Floating Point

A floating point number consists of an optional sign followed by

up to 16 digits with a decimal point that is not the first or last

character. An exponent may be present in the form of the letter E

followed by an optional sign and one or two digits.

Floating point numbers are stored in the short precision format

giving 7 decimal places of precision and a magnitude range of 10- 78

to 10+75 .

Logical

A logical number consists of a maximum of 11 digits where each

digit is derived from the character set 0 through 7. Each logical

number is followed by the letter Q and if desired an optional scale

factor. A sign will be ignored by the interpreter.

Logical numbers are considered to be in base 8 notation and are

used to produce a 32-bit signed integer with any extra high-order bits

being lost. The scale factor itself is an exponent to the base 8

and has the effect of shifting an octal digit left the number of times

specified by this exponent.

o

o

o

- 22 -

3.10 THE PROG FEATURE

When PROG is entered, each PROG variable is paired with NIL and

added to the top of the association list. The remainder of the programme

is searched for atomic symbols understood to be labels. A GOLIST is

formed in which each label is paired with a pointer to that part of

the programme following the label.

The execution of the programme then commences. The PROGIND is

set on. The list of statements is executed, one statement at a time.

Since a statement is a list, all atoms are taken to be labels and are

recognized and ignored. Before executing a statement by calling EVAL,

the GOLIST, the association list, and the point to the rest of the

programme is saved.

Since statements within PROG are evaluated for their effect rather

than thetr value, the function COND must act somewhat differently.

That is, if COND does not find a TRUE clause it must not give an error

diagnostic, but rather it must return. To differentiate between a

normal COND and a COND with a PROG, EVCON (which is used to evaluate

the COND in both places), must test the PROGIND. Since, however,

PROGIND is turned off whenever LAMBDA is encountered and when

returning from a PROG, EVCON must save the PROGIND and restore it

whenever control is returned to EVCON.

GO

GO unsaves the pushdown stack until the return address to the

calIon EVAL from PROG is encountered. The next three unsaves produce

the ALIST,GOLIST, and the rest of the programme. The GOLIST is

searched for the argument of GO. The stack is then restored by saving

the pointer to the new statement to be executed, the GOLIST,ALIST, and

23 -

o
the above-mentioned return address. A branch is then made to EVAL

to evaluate the labelled statement.

RETURN

As in GO, RETURN unsaves from the pushdown stack all addresses

stored by the PROG, then returns control to EVAL with the argument of

RETURN in the A register.

3.11 ARITHMETIC ROUTINES

The arithmetic routines that perform similar operations are com-

bined into one routine with multiple entry points. These routines all

accept integer or floating point arguments and in the cases where there

0_--
--

is more than one argument, the modes may be mixed, in which case the

answers are returned in floating point form. All routines produce

error diagnostics if non-numeric arguments are supplied to them. The

logical variable is treated as integer.

Below is a list of functions implemented, grouped as to their

common routines:

ADDl(X)-+X+l

SUBI(X)-+X-I

f-lINUS (X)-+(-X)

PLUS(X,y,Z, ...)-+X+y+Z+•

TIMES(X,y,Z, ••)-+X*y*Z* •...•

o DIFFERENCE (X ,Y)-+X-Y

QUOTIENT (X,Y)-+X/Y

o

o

o

- 24 -

REMAINDER(X,Y)+X-INTEGER(X/Y)*Y

ZEROP(X)~ if X INTEGER and X=O,T if FLOAT and IXI GT l.E-6 otherwise NIL

MINUSP(X)~T if X LT 0 otherwise NIL

LESSP (X,Y)-MINUSP (DIFFERENCE(X,Y))

GREATERP(X,Y)~MINUSP(DIFFERENCE(Y,X))

EQUAL(X,Y)~ZEROP(DIFFERENCE(X,Y))

The arguments of EQUAL may be S-expressions and mixed alphabetic

and numeric.

EXPT(X,Y) X**Y

If Y is integer, EXPT is computed by repetitive multiplication

and X may be negative. Otherwise logarithms are used and X may not

be negative.

3.12 FUNCTIONS NOT IN THE LISP 1.5 PROGRAMMER'S MANUAL

APPENDl(X,Y)

The function APPENDl is used to add an atom Y to the end of the

list X. It has the lisp definition below -

(APPENDl (LAMBDA (X,Y) (APPEND X(CONS Y NIL))))

TTAB (N)

The function TTAB is used to move the print buffer pointer PRTAB

to buffer position N. N must be a positive integer. The S-expressions

printed by PRINl or PRINT will begin at print position N.

XTAB(N)

This function is similar to TTAB but rather moves the buffer

pointer N positions to the right of its present location. If the end

of the buffer is passed the line is printed.

o

o

o

- 25 -

EVENP(N)

EVENP accepts an integer as an argument. It returns T

if the integer is even, NIL if odd.

CCLASS(X,Y)

CCLASS returns true if the character X is in the set of

characters Y. (refer to section 3.7).

MKATOM()

Refer to section 3.7.

o

o

c

- 26 -

The Lisp Library

The library facility allows the convenient storage and

retrieval of standard lisp functions such as SELECT. The library

essentially functions as a set of possible inputs which may be

selected by the interpreter.

The library is a partitioned dataset where each member is

a sequence of cards containing valid lisp input. For example, tiis

member SELECT would contain the doublet defining the lisp function

SELECT. The member COMPILER would contain the definition statements

for the lisp compiler functions. By execution the doublet -

LIBRARY«SELECT,COMPILER))

input to the interpreter would be switched from SYSTN, first to the

member SELECT, then to the member COMPILER and then back to SYSIN.

o

•

•

o

- 26.1 -

The Library Function - LIBRARY«X))

The library function has one argument which is a list

of desired library members to be selected as input. On entering

the function, the argument list is NCONC'd to the list of presently

outstanding requests. Thus the requests are serviced on a last-in

first-out basis. If, on entry to the library function, input is

still coming from SYSIN, various pointers are initialized such

that any further requests for input will come from the first and

then subsequent members in the list. When the end of the list

is reached, input is switched back to SYSIN.

The value of the library function is the list of

outstanding members.

When using the library function, the DD control card -

//LISPLIB DD DSNAME=LISPLIB,DISP=OLD must be added to the control

cards for executing a lisp program.

o

•

..

o

o

- 26.2 -

Initializing the Library

The library is a partitioned dataset with records that

are unblocked card image. The cards must be EBCDIC.

The following control card contains the necessary information

to define the direct access space required for the library .

IILISPLIB DD DSNAME=LISPLIB,VOLUME=SER=-----,DISP=(NEW,CATLG), C

II

II

SPACE=(TRK,(30,lO,2»,UNIT5 2314,

DCB=(RECFM=F,BLKSIZE=80,LRECL=80)

Members may be added to the library asing the IEBUPDTE

utility program.

II JOB

I I EXEC PGM=IEBUPDTE

IISYSUTl DD DSNAME=LISPLIB,~ISP=OLD

/ISYSUT2 DD DSNAME=LISPLIB,DISP=OLD

IISYSPRINT DD SYSOUT=A

II SYSIN DD *
. I ADD NAME=CDDDR

DEFINE«(CDDDR(LAMBDA(Z) (CDR(CDDR X))) »)

. I ENDUP

1*

C

Interdependencies of functions defined in the libnary may

be satisfied by using the LIBRARY function. For example, a compiler

defined in the library requires the functions LENGTH and MAPLIST also

defined in the library. The library membeT defining the compiler should

then have a LIBRARY function request for the other functions.

o

•

o

o

- 26.3 -

The following example illustrates the interdependencies

and also how to eliminate the printout of the defined function .

. f ADD NAME=COMPILER

LIBRARY ((LENGTH,MAPLIST))

EVAL((DEFINE(READ))NIL)

(lambda expressions for the compiler functions))

.f ENDUP

Beware that circular interdependencies are not set up as

the library function will then not terminate.

o

•

c

- 27 -

3.13 THE TRAP SUPERVISOR

All programme interrupts are accepted by the interrupt

supervisor. On an interrupt, a check is first made for a garbage

collection signal (register FREE equals 1). If not, the information

below is printed .

PROGRAM INTERRUPT - interrupt type

TRAP-PSW - program status word

REGSO-7 - registers 0-7

REGS8-lS - registers 8-15

If the interrupt code is 7 to F, an arithmetic error has

occurred. Execution of the function causing the interrupt is resumed.

If the interrupt code is 1 to 6, a function has indiscriminatly

used CAR's and CDR's within an atom. Execution of the doublet causing

the error is terminated with the error message F4 and the next doublet

is read in for evaluation.

o - 27.1 -

3.14 TRACING

Two levels of tracing have been implemented.

Function Level Trace

Trace prints the name of the function and its argument when

the function is entered and its value on completion.

Statement Level Trace

A full trace of all entries to APPLY or EVAL is produced.

- examples in Appendix II.

TRACE (X)

If the argument of TRACE is an atom, a statement trace is

o produced of all entries ~o APPLY or EVAL.

If the argument of TRACE is a list of functions, a function

trace of the named functions if produced. Only EXPRS are traced.

UNTRACE(X)

If the argument X is an atom, the statement trace is turned

off. If a list, tracing of the named functions terminates.

3.15 POSSIBLE DIFFERENCES FROM OTHER LISP 1.5 SYSTEMS

1) The function MKATOM is a replacement and extent ion of the functions

INTERN, MKNAM and NUMOB

MKATOM=mNTERN(MKNAM)

MKATOM will accept any S-expression placed in CBUFF bv PACK and

returns an atom or a list structure.

o 2) UNPACK takes an atom as an argument.

3) GO must only be given atomic labels.

4) + andd- must not be used as characters in an atom. ,

o

o

o

5)

6)

- 27.2 -

The function CCLASS has been used to replace LITER, DIGIT, OPCHAR,

and DASH. It is also more general.

The functions ARRAY, ERRORSET, RECLAIM, COUNT, UNCOUNT and SPEAK

are not implemented. All other undefined functions should be

definable in terms of those supplied.

7) The function TRACE may be used to give either a function trace or

a statement trace.

8) Fixed point numbers may have a scale factor e.g. l7E5.

9) The functions STARTREAD and ADVANCE generate non-unique alphabetic

atoms. They do not signal EOF nor EOR.

3.16 POSSIBLE EXTENSIONS OF THE SYSTEM

1) The ERROR routine should obtain and print more information when

an error occurs.

2) The READ and TRYATOM routines should be rewritten to a more

efficient logic.

3) A checkpoint facility should be added to ~llow TEST and SET and

to allow batch processing of student jobs.

4) A compiler and LAP function should be added.

5) Floating point numbers could be stored in long precision form.

The arithmetic routines perform computations in long precision,

then truncate to single.

o

•

o

IV ERROR DIAGNOSTICS

4.1 SYNTAX ERRORS

If the READ routine finds syntactical errors in an S-expression

one of the following special atoms will be inserted at the place in

error:

ERRB - a

a '('.

, ,
was encountered as the first non-blank character after

DOTERRl - the second S-expression in a dotted pair is not followed by

a right parenthesis.

DOTERR2 - a '.' or ')' was encountered as the first non-blank character

after a dot.

The message Rl-SYNTAX ERROR precedes the printing of the

S-expression with the error. Execution is attempted .

4.2 RUNTIME ERRORS

When an execution time error occurs in a LISP 1.5 programme the

following type of error diagnostic occurs:

*** error code - error message

* S-expression 1

* S-expression 2

*** TRACE BACK FOLDOWS

* S-expression 3

* S-expression 4

S-expressions 1 and 2 are related to the type of error encountered

and are described below with the error messages. The trace-back is a

list of the functions entered recursively but not completed at the time

of the error. The most recent function is printed first. The statement

being executed precedes the calIon the function containing the statement.

o

•

o

t'29 -

Interpreter Errors

AI-CALL TO ERROR

The Function ERROR has been called

S-expression I is the argument of ERROR

A2-FUNCTION NOT DEFINED

A construction of the form (FN ...) has been

encountered. However, the atom FN is not a

defined function.

S-expression I is the FN in question.

S-expression 2 is the association list.

A3-NO ARGS OF COND TRUE

On evaluating the function COND, no true

propositons were found •

S-expression I is the list of the arguments

given CONDo

S-expression 2 is the association list.

AS-SET VARIABLE UNDEF.

The function SET or SETQ was given an

undefined programme variable.

S-expression I is the programme variable.

S-expression 2 is the association list.

A6-UNDEF LABEL IN GO

The label given as the argument of GO has not

been defined.

S-expression 1 is the label.

S-expression 2 is the list of the labelled statements.

o

c

- 30 -

A7 -MORE THAN 22 ARGS

The interpreter can handle only 22 arguments

for a function.

S-expression 1 is the list of the arguments to

the function.

A8-UNDEFINED VARIABLE

The variable is not defined as a function argument

on the association list and does not have an

assigned value.

S-expression 1 is the variable in question

S-expression 2 is the association list

CH4~INVALID S-EXPR GIVEN MKATOM

The area CBUFF is blank or contains unmatched parentheses.

F2-TOO MANY ARGUMENTS-EXPR

F3-TOO FEW ARGUMENTS-EXPR

The wrong number of arguments have been given

to a defined function.

S-expression 1 is the list of the function

variables.

S-expression 2 is the list of the supplied

arguments.

F2-TOO MANY ARGUMENTS-SUBR

F3-TOO MANY ARGUMENTS-SUBR

The wrong number of arguments have been

given to a lisp function.

S-expression 1 is the function.

S-expression 2 is the list of the arguments

o - 31 -

F4-FN ERROR INSIDE ATOM

A function has indiscriminatly used CAR's and CDR's within an atom.

G2-PUSHDOWN STACK OVERFLOW

The depth of recursion is beyond the capacity of the interpreter's

save area. Non-terminating recursion will cause this error.

GCl-NO STORAGE ALLOCATED

The operating system could not provide sufficient space for

freeword storage (fewer than 2500 cells).

GC2-STORAGE EXHAUSTED

The garbage collector is unable to find any unused storage.

I2-(-X}**Y

The function EXPT has been requested to raise a negative number

o to a floating exponent.

I3-BAD ARITHMETIC ARmUMENT

An arithmetic routine was given a non-arithmetic argument.

I5-EXPT TOO LARGE

The maximum exponent is 174.6731.

LI-NOT IN LIBRARY-XXX

The member XXX is not in the library.

Rl-SYNTAX ERROR

A syntax error has occurred while reading an S-expression.

Reference the section on syntax errors.

R2-BAD BRACKET COUNT

An end of file was reached while reading an S-expression. S-expression

1 is the list as read with needed brackets generated.

o R5-NAME OR NUMBER TOO LONG

A BCD printname or a number is longer than that accepted by the

interpreter. Truncation occurs on the right.

o

o

o

• 32 -

V IMPLEMENTATION GUIDE

The distributed tape consists of the interpreter source deck,

card image, with a blocking factor of 20.

5.1 ASSEMBLY OPTIONS

The stack size is set at assembly time. It may be changed by

replacing the appropriate card in the source by either updating

the tape or by first punching the card deck (about 4000.cards).

The pertinent cards as set in the distributed deck are as

follows:

STACKSIZE

ATMSZ

CBUFFSZ

EQU 4000 WORDS FOR PDS

EQU 80 MAX PNAME

EQU 80 SIZE OF CBUFF

The distributed program requires about 33K plus space for freeword

storage.

5.2 EXECUTE CARD OPTIONS

One option is recognized in the PARM field of the EXEC control

card: PARM=BCD indicates that the Lisp programs were produced on an

IBM026 Keypunch. The 029 keypunch is assumed as the default.

o

o

o

- 33 ..

5.3 SAMPLE PROCEDURES

Assemble and test from the distributed tape

The object module is left in the data set LISP on the desired

volume

IITSTLISP

II

IIASM.SYSIN
II

JOB MSGLEVEL=l

EXEC ASMFCLG

DD VOLUME=SER=LISP,UNIT=2400,DSNAME=SOURCE,
DCB=(RECFM=FB,BLKSIZE=1600,LRECL=80),DISP=OLD

IILKED.SYSLMOD DD
II

VOLUME=SER=-----,DSNAME=LISP(LISP)~
DISP=(NEW,KEEP),SPACE=(TRK,(tl,5,1»),UNIT=2311

IIGO~SYSPRINT DD SYSOUT=A

IIGO~SYSIN DD *
any test decks

1*

Following the above prodedure further tests may be run with the

following control cards.

IILISP

IIJOBLIB

II

IISYSPRINT

IISYSIN

JOB MSGLEVEL=l

DD DSNAME=LISP,VOLUME=SER=----,UNIT=231l,DISP=OLD

EXEC PGM=LISP,PARM=BCD

DD SYSOUT=A

DD *
Lisp tests, punched on an 026 keypunch

1*

Adding Lisp to LINKLIB

Lisp may be added to LINKLIB by modifying the corresponding card

in the first procedure to -

x

x

//LKED.SYSLMOD DD VOLUME=SER=----,DSNAME=SYS1.LINKLIB(LISP),UNIT=2311,DISP=OLD

The JOBLIB card is then not required to run Lisp.

o

o

o

NOTE: The above assumes that the user is using the system

ASMFCLG procedure or a comparable one with the same procedure name and

step names. (i.e. ASM & LKED).

5.4 REPORTING ERRORS

Any comments, suggestions or indications of interpreter

errors would be greatly appreciated by the author.

Please contact -

Mr. J. F. BoIce
Computing Centre
University of Waterloo
Waterloo, Ontario, Canada

Corrections and additions to the interpreter will be distributed

as the need arises.

The author would appreciate receiving any interesting or useful

Lisp programs and documentation. The programs could be returned on the

supplied reel of tape.

o APPENDIX I

o

The Lisp Interpreter

Definition in M-expressions

- Flowcharts

o

o

o

• 36 -

THE LISP INTERPRETER

evalguote[fn;args] = [get[fn;FEXPR] V get[fn;FSUBR]+

eval[cons[fn;args];NIL]

T~apply[fn;args;NIL]]

apply[fn;args;a] = [

null[fn] ~ NIL;

1
atom[fn]~[get[fn;EXPR]+apply[expr; args;a];

spread[args];

get[fn;SUBR] ~

link to address-subr
l

T ~ apply[cdr[sassoc[fn;a;A[[];error[A2]]]];args;a];

eq[car[fn];LABEL]+apply[caddr[fn];args;cons[coris[cadr[fn];caddr[fn]];a]];

eq[car[fn];FUNARGI~apply[cadr[fn];args;caddr[fn]];

eq[car[fn];LAMBDA]+eval[caddr[fn];nconc[pair[cadr[fn];args];a]];

T ~ apply[eval[fn;a];args;a]]

o

o

o
.. -

37 -

eval[form;a] = [

null[form] + NIL;

numberp[form] + form;

atom[form] + [get[form;APVAL] +
1 car[apval];

T + cdr[sassoc[form;a;A[[];error[A8]]]]];

eq[car[form];QUOTE] + cadr[form];

eq[car[form];COND] + evcon[cdr[form];a];

atom[car[form]]+[get[car[form];EXPR]+apply[expr;levlis[cdr[form];a];a];

get[car[form];FEXPR]+apply[fexpr;llist[cdr[form];a];a];

get[car[form];SUBR]+

get[car[form];FSUBR]+

spread[evlis[cdr[form];a]];

link to address-subr
l

A: = cdr [form] ;

ALIST: = a;

1
to address-fsubr

T+eval[cons[cdr[sassoc[car[form];a;A[[];error[A9]]]]:

cdr[form]];a]];

T+apply[car[form];evlis[cdr[form];a];a]]

lThis is the value returned by get.

o

o

o

evlis[m;a] = prog[[w];

w: = NIL;

EVLISS

evcon[c;a]

EVCONN

w: nconc[w;cons[eval[car[m];a];NIL]];

m: cdr[rn];

[null[rn] ~ return[w]];

go [EVLISS]];

prog [[] ;

[null[c] ~ [progind ~ return [cJ;

T ~ error[A3]]];

[eval[caar[c];a] ~ return[eval[cadar[c];a]]];

c = cdr[c];

go [EVCONN] ;

define [x] = deflist [x;EXPR]

deflist [x;ind] = prog[[m]

rn: = x;

A rernprop[caar[rn];ind];

replacd[caar[rn];cons[ind;cons[cadar[rn];cdaar[rn]]]] ;

replaca[m;caar[m]];

rn: = cdr[m];

[null[m] ~ return[x]];

go[A]];

o

o

o

start scan
of PDS at
TEMPORAR

current cell
of PDS ~ RI

SAVE '0'

mark CDR(Rl)
CAR(R1)~R1

CDR(R1)~R2

SAVE R2

GARBAGE COLLECTOR
Chart I

increase
PDS pointer

mark CDR(RI)
CDR(Rl)~RI

UNSAVE R1

N

o

o
N

•

o

.·40 -

initialize
pointer R3
to scan FWS

set mark off

up pointer
R3 to next

cell

UNSAVE M
UNSAVE Q
UNSAVE A

N

GFrbage Collector
~hart 2

FREE-+CDR(R3)

R3-+FREE

return

o

c

SAVE RETURN
SAVE PROGRAM

NlL-+GOLlST
A-+PROGT

CAR(A)-+A

... 41 ...

CONS(C~),NIL)-+A
">----~'ONS (A,ALIST)-*ALIST

CDR(M)-+A

PROGT -+A

CDR (A)-*M

CAR(M)-+A

M-+A

CONS(A,CDR(M) A
~----~CONS(A,GOLIST -*GOLlST

PROG Chart 1

The PROG variables
are added to the
ALlST.

The GOLlST is
constructed.

o

=-

,.

o

PROGr-+Q

CDR(Q)+Q

SAVE Q
SAVE GOLlST
SAVE ALlST
SET PROGlND

EVAL(A,ALlST

UNSAVE ALlST
UNSAVE GOLlS
UNSAVE Q

.". 42 ,.

PR6GRET

PROG Chart 2

The program is
executed.

NOTE: At the calIon
EVAL the PDS contains
the return address
(PROGRET). This is
used in GO and RETURN.

o

•

..

o

UNSAVE RET

UNSAVE ALlST
UNSAVE GOLlS
UNSAVE M

ASSOC(CAR(A),
OLlST,ERRA6)

CDR(A)~
CAR(M)-+A

SAVE M
SAVE GOLlST
SAVE ALlST
SAVE RET

Branch to

EVAL(A,ALIST)

... 43 ..;

PR(I)G Chart 3

Execution of GO

M-+A

o

•

o

).

UNSAVE RET

UNSAVE ALlST
UNSAVE GOLlST
UNSAVE PROG

RETURN

- 44 -

PROG Chart 4

Execution of RETURN

)

o

o

- 45 -

APPENDIX II

A sample Lisp run showing the initial object list and

PRETTYPRINT printing itself.

Q

1/
IILISP JJB C0010J.F.B0LCE,LISPJ~SGLEVEL=1
IIJ;-lhLl3 OD l)SNAMC=LISP,DISP=OLD
/ / f- X E C P::; ,-, = LI S j->

/JLI;~LI~ D))~NAME=LISPLJBtDISP=OLD
.'!)(-:,:..- i '~r ::.;) SY~JUT=A

~:;~3~[~lllC. FC~ LISP
l-F;-,7[JJ,-lL(I~ J"I233
[--~f ~ ~ 7 r L [S~~ L I J UN 2 3 3
[':F2->7I SYSIN ur-.J OOC

~b975 LISP CELLS ALLUCATED.
C,JLL cC TI NG

ARGU~ENTS FJR EVALQUOTE
[VAL
('JlRIST NIL)

JUB 2')4

TI~E OMS. VALUE IS •••
(~IL CA~ CO~ ~UJT[CJNS EVAL DEFINe EQ EQUAL ATOM LEFTSHIFT DIFFERE~CE REMAINDER QUQTIE~T ~ULL
AJOl SU~l ~INUS PLUS TIM~S CONJ LAMBDA T APPEND PROG GO RETUR~ SET :SET CSETJ S~T~ :A)R CJQR CAAR
1,»4~ C1\DO,/. CADAK CAA.OR. P;\I'JT ;{EAD F GET MEMBcr{ cVLIS NCONC PAIR AtJPLY APPr:NDl APVAL l:XP" SU~R FEXPR
fSd3R LABEL FU~A~G cRH) DClTEl{l<l DUT£:P.R2 - + ANO OR LUGOR LOGAND U1GXOR EVENP i'l1NuSP lc:R~lP LtSSP
\~':'E,\TERP t~ROk XTAI3 TTJ\3 ,'-lUT f-IXP FLOATP LIST LUG? PKINl TERPRI DEFLIST RE'4PRJP FUlIjCTI~)'1 ATTRIB

0_-)lJ,~2 NLI·ncKP 9.PLACA kPLA,CD ()8LIST LIBRARY GEi-..JSYM EXPT UNPACK ADVA~CE END~t:AD STAR TREAO UNfRACE
- 1\ C E P t\ C <. C l '= r. ~ I-HJ F F t·lI< 1\ T tJ 1-\ C:: L <\ S S SA S Sl C }

ARGU~E~TS FOR EVALQUOTE •••
LI HkARY
«PEVAL»

TI "'E
(PEVAl)

OMS, VALUE IS

A"v',/"lENTS F:)I{ EVALQUOTE
"':v AL
((OfF I Nt U~E AD » NIL)

TII-iE l09dMS, VALUE IS

...

(PEVAL PRETTYPRINT SUPERPRINT ENOLINEJ

ARGUMENTS FOR EVALQUOTE •••
eSET (l' PAR »

.-
TIME OMS, VALUE IS

(,\ t>v Al (»)

A~GUME~TS FQ~ EVALQUOTE •••
CS ET
(l PAR ()

T UJ,E o.-1S, VALUE IS
(APVAL «»

AR GUi'" t;NT S FOR EVALQUO TE •••

o

o
PI\~T rYP,H N r
«PRETTYP~INT SUPERPRINT ENOLINE»

(PRE T T YP t{ PH
{LA''':h0A (L) (I)R.OG (Tr I)

,\ (CO'JD
«~ULL L) (KETURN NIL»)

(TE~PR.I)

(PKVJl LIJAK'
{P-<I'JT (C~\K L»
(SE Ti,) I 3)
(XTA:3 3)
(SUPERPRINT (CONO

«ScTl~ TT (GET (CAR L) (QUOTE EXPR»' TT)
«SETQ TT (GE:T (CAR U (QUUTE FEXPR») TT)
(T (QuOTE U;~OEFINEO»»

(PRINT RPAR,
($ c T Q L (COR L»
(GO A»»

(SUPERPRINT

c

(LAMt\DA (E) (COND
«ATOM E) (PI<.I'J1 E»
(T (P RO G (EP M)

A

PK
PO

PL

PJ

(SE TQ EP E)
(PRINl LPAK)
(CUi~D

(("1 E~8.ER

LI ST
PLJS
Tl ME S
COND
IF
SELECT
MAX
MIN

(CAR EPl (QUOTE (ANJ

PRO G 2) » (GOP L))
«EfJ (CA,~ EP) (QUOTE PROG)' (GJ PP»)

(SUPE.-~PKI'JT (CAR EP»
(SETQ 1::1' (CDR EP)}
(C01\l0

«NULL EP) (RETURN (PRINl RPAR»)
«ATOt1 EP) (GO PO»)

(XTAI3 1)

(GO A)
(SETy 1 (SUBl I»
(PRINl (QUOTE •)}
(PRI~l EP)
(RETURN (PRINl RPAR»
(SETQ I (ADOl III
(SUPE~PRINT (CAR EP»
(SETU EP (CDR EP»
(COND

(P.JUL L EP' (GO PJ»
((ATu,''1 EP) (GO PK)')

(ENOL I N E)
(SUPt~PRINT (CAR EP})
(GO PM)
(SETQ I (SUBl 1))

o
PP

P'I

PX

PZ

(RETU~N (P~INl RPAR»
(PiUNl (l,AR [PH
(SET Q E t> .(COR E P))
(SET Q I (A DU 1 I»
(COND

«~ULL [?) (GO PJ»
«!\Tu:.\ EP) (~O PK»)

(XTAI3 1)
(SllPi::I~PKINT (CAR EP»
(SETW tt> (CD~ EP»
(CONO

«NULL EP) (GO PJ»
((A TOM E P) (GO P:<.»)

(ENlJLINE)
(COND

(L\TOt1 (CAR EP» (GO PZl»
(XTAB 6)
(SETQ I (PLUS

I
2))

($UP~RPRINT (CAR EP»
(SETQ 1 (PLUS

I
-2))

(GO PY)
(PRINl (CAR EP»
(TTAB (TIMES

(PLUS
{

2)
3))

(SETQ EP (CJR EP»
(CUNO

«NULL EP) (GO PJ)'
((A T Ot>.1 E P) (GO PK»
«ATO,\\ (CAR EP» (GO Pl»)

(GO P X))))))

(E~J DL INE
(LAMBDA Nil (PROG ~IL

{TE~PRI ,
(fT AS (lIMES

1
~ 3»))))

TI '-1E
NIL ..

1223"'S, V~LUE IS

"\~';'J'1E"'TS FCl~ EVAL';)lJuTE •••
ut":FINE
«(Ft\CTORIAL (LA~'H3DA (N) (COND «ZEROP N) 1) (T <T1;'1ES ~ (FACTO{IAL (SU31 N»»»»)

TI~t ()~S, VALUE IS
(F,.\CTORIAL)

ARGUr"lE>HS FuR E"AL~UOTE •••
TRACE
(T)

TI"1E 0;-\5, VALUE IS •••

Q

o
T

A~G0~E~TS FOR EV~LQJUTE
f- .\ (T l) R. I '\ L
« .:)

~~* ~\-~~I~~ \PPLY ~ITH F~-
:;= .:. ~-r _\."1 J ~!iZ:';S-

~.: -l<- ."" ::. ~ T c -{ PIG ,\PPLY ',.l ITH n~-.. l))
.. ::{:--i! ~"') ~KGS-

"'* ~ c'-lfERI'..jG EVAL .~ IT H FWU1-
........ 'P'" E'iT;:~IN..; EVA L WI TH FORM-
..,....,.. '" c\~ T E -u :~G EI/AL vi I T H ATUrvj-,
~..;.::~ ~ ~ TE-<.l NS E VAL WITH ATlJM-
~~:* :: 'Ii T::' ;,.p",; i:V4L WITrl FO~M-
~*~ -=-\r~"p~~ cVAL .nTH ATCI:-1-
~;F --.;,~ L.. \~ T E:{ I,\iG [V~L ~HTH FOfH1-

* ~ ,''lE~IN'; c VAL WI T.; FOR,-1-
~~~ t:'-ITERlr-..·; EVAL WITH ATOM-
~*~ ;: 'IT E ~ I \~ ~; APPL Y .~l I TH F~-

») ) 
;cO;<;'< A~ J ,.\f{ GS-
~~-,- c:'4TcKIN'; EVAL wiTH f-ORM­
~. ~.,.. E ~'4 T:: R I ; ~G c: V A L WIT H F 0 i<. M­
.,.. .. ~. f~TtRPjG EV~L WITH ATJ~'­
~~* ~~TE~I~G ~V\L wITrl ATOM-

0;.::; TE~F.jG E:Vt\l ~-;ITH ATuM- . 
"0-:\jTE~li'lG fVAL .... rrH FURr-1-

+,. .'lTtr<'I'\j'; tV4L ffiTH FG,~i'i--

*9* E~TE~I~G fV\L WITH fURM­
*~~ E~T(~lNG EV~L hlTrl ATUM­
.;:;<* c~ITt:KIi'lG AP!>LY WITH FN-

). ) 

~\'* A"lD Arl.GS-
;"~<* E~JTERII\jG EVAL ·.-4IfH FORi-1-
*~* ~NTE~I~G EV~L WITrl FO~M­
~** ENTERING EVAl WITH ATOM-

TInt: 23."1S, VALLIE IS 
2 

.\~(~U"4E,~TS Fu.~ EV.\LQUOTE ••• 
U\lT~ACE 
(T) 

*** t\lfERIN~ APPLY WITH FN­
*\~ * J.\h I) AKGS-

OMS, VALUE IS 

ARGU~ENTS FOR EVALQUOTE 
TQ l\CE 
« FACTOR IAU ) 

TI NE 
NIL 

OMS, VALUE IS ... 
ARGUMENTS FOR EVALQUOTE ••• 

o 

FACTORIAL 
(2. 
(LAHt30A (N) (COND ({ZEROP N) 1) (T (TIt-1ES N {F/\CTURIAL (SUBl N.» 

(2 ) 
(CO~D «ZEROP N) it (T (TIMES N (FACTURIAL (SUI31 N»») 
(ZEKOP N) 

N=2 
T=T 
(TIMES N (FACTORIAL (SUBI N.» 
N=2 
(FAC TORI AL (SUBl N» 
(SUBl N) 
N=2 
(LAM8DA (N) (COND «ZEROP N) 1) (T (TIMES N (FACTORIAL {SUBl N»)) 

( 1 ) 
(COND {(ZEROP N) 1) (T (TIMES N (FACTORIAL (SUa1 ~»») 
(ZEROP N) 

N=l 
T=T 
(T rr~ES 'J (FACTO~ IAL (SU31 N») 
N=1 
(FACTURI AL {SUal -.,.}) 
(SU51 N) 

N=l 
(LAMBDA (N) (COND «ZEROP N) 1) (T (TIMES N (FACTOkIAL (SUBl N») 

(0 ) 
( C G \! [) « Z E R) P ~) 1 ) (T (T I ME S N (F A: TO R I A L (S U [3 1 N»»). 

(ZERUP N) 

N=O 

UNTRACE 
( T ) 



o 
FACTLlI<.I,\L 
( 5) 

TKAGf t~HER. PJG-
1 t",~Cr: ::\:Tt:KP~G­

~. ACE t ~~ r E ? I ':.;­
- ; !;,{.:: ::'i r ~ ~ i '..;:;­
r , ,~C .: :. ,'a:: .-<'l \t:j-
r~l(~) FJ~CTIJ~/VALJE­

r .. \C :,) Ft),'IC TI l:"/V6.LUt­
T .. : \ C >:") F u,'~ c r 1 [} \J/ V .\ L LJ E -
r~~~~0 FU~CT[J~/V~LUE­

r':'4(....:.\..) fU01CTI:JfUV/\LUf.-

FAG TJIU AL (4) 
FACTJr{IAL(3) 
FAG fORI J\l (2) 
F;\( TJr{I AL ( 1) 
f~\CT J;{I AL (J ) 
FACTJ~IAL 1 
FACT.J~I~L 1 
FtU .. fORIAL 2 
F AI~ f:J,~ I AL & 
FJ\GTOR[ Al 24 

'r I ·I e 1 0 :4 S , V ,\ L U E I S 
. l~O 

AKGU~~NTS FOR EVALQUOTE ••• 
JtFI'JE 
«( (TeSTS (Lt\~8DA NIL (Pi{O~ (U) (SETQ U (ST AKTREAO» C (PRI'H LJ) (PACK U) (CLlN) «:CLASS U (\JUJTE 
el) (RETUK~ tf1K:ATOM»» (SETQ U (ADVA"ICE» (GJ e»»» 

TI'·1E O."lS; VALUE IS 
( TESTS) 

ARCJ~~NTS FGK EVALQUOTE ••• 
T~ S TS aiL 

's G 
H 
J 
K 
p 

.J 
p 

T 
T 
Y 
e 

"'n :'1E 24:-1$, VALUE 1$ ••• 
AOSGHJKPQR.RTTYC 

*** E~O Of DATA 

o 



o 

• 

• 

o 

Appendix III 

The following list are those functions that have been 

implemented. Those marked by an asterisk are new functions or differ 

from the function as described in McCartpy [1]. 

addl[n] 

* advance [ ] 

* 

and [xl ;x2 ; ... ;xn ] 

append [x;y] 

appendl [x;y] 

apply [fn;args;a] 

atom [x] 

attrib [x;y] 

car [x] 

caar [x] 

cadr [x] 

cddr [x] 

caddr fx] 

cadar [x] 

caadr [x] 

cdr [x] 

* cclass [x;y] 

clearbuff [ ] 

cond [Pl+el;pz+e2; .•. ;Pk+ek] 

cons [x;y] 

cset [x;y] 

csetq Ix;yJ 



o 

• 

.. 

* 

o 

define [x;y] 

deflist [x;ind] 

difference [x;y] 

endread [ 

eq [x;y] 

equal [x;y] 

error @fn] 

eval [form;a] 

evenp [n] 

evcon [x;a] 

evlis [x;a] 

expt [n; c] 

fixp [n] 

floatp [n] 

function [x] 

gensym [ ] 

get [x;ind] 

go [label] 

greaterp [x;y] 

label [name; fn] 

leftshift [m;n] 

lessp [x;y] 

library [x] 

list [xl;x2; ... ~] 

logand [nl;n2~ ••• ;~] 

logor [nl ;n2 ; ... ;nk] 



0 
logp [n] 

logxor [nl ; n2 ; · .. ; ~] 

member [x;y] 

minus [ n] 

minusp [n] 

* mkatom [ ] 

.. nconc [x;y] 

not [x] 

null [x] 

numberp [x] 

or [xI;x2; ... ;~] 

* pack [x] 

() pair [x;y] 

plus [xl ;x2;··· ;xk] 

prinl [x] 

print [x] 

prog [p;a] 

prog2 [x;y] 

quote [x] 

quotient [x;y] 
• 

read [ ] 

remainder [n;m] 

remprop [x,ind] 

rplaca [x;y] 

0 
rplacd [x;y] 

sassoc [x;a;fn] 

set [x;y] 



(,) 
setq [x;y] 

* startread [ ] 

subl [n] 

terpri [ 

times [ nl ; n2 ~ • . • ; nk ] 
.. 

* trace [n] 

* t:t:ab [n] 

* unpack [x] 

* untrace [x] 

* xtab [n] 

zerop [n] 

.. 

o 



Q 

• 

REFERENCES 

1. John McCarthy etal., Lisp 1.5 Programmer's Manual, 

Cambridge, Massachusetts, MIT Press, 1962. 

2. Jan Kent, An Interpretive System for the Programming 

of Recursive Functions on a Digital Computer, 

Thesis in Mathematics, University of Oslo (1966). 

3. OS/360 Supervisor and Data Management 

Macro-Instructions, IBM Manual C28-6647 

4. System/360 Principles of Operation 

IBM Manual A22-682l 

5. C. Weissman, Lisp 1.5 Primer 

Dickenson Publishing Co. Inc. 

6. E.C. Berkeley, D.G. Bobrow (eds.), The Programming 

Language Lisp: Its Operation and Applications. 

Cambridge, Massachusetts, MIT Press, 1966 

7. K. Korsvoll, An Online Algebraic Simplify Program, 

Memo 37, Stanford Intelligence Project, Stanford (1965) 

q 


	Acknowledgments

	Contents

	I Introduction

	II Organization of the System

	III Organization of the Interpreter

	IV Error Diagnostics

	V Implementation Guide

	Appendix I The Lisp Interpreter

	Appendix II Sample Run

	Appendix III Functions

	References




