
If.

(\ ..

()

The views, conclusions, or recommendations expressed in this document do not necel
sarily reflect the official views or policies of Igencles of the United States Government.

This document was produced by SDC and III in performance
of contract AF 19(628)-5166 with the Electronic Systems
Division, Air Force Systems Command, in performance of
ARPA Orde~ 773 for the Advanced Research Projects Agency
Information Processing Techniques Office, and Subcontract
65-107.

System Development Corporation /2500. Colorado Avenue / Santa Monica, California 90406
Infonnation International Inc./llI61 Pico Boulevard I Los Angeles, California 90064

Syntax of LISP 2 Tokens

ABSTRACT

Donna Firth
~~~~~/ 
a L. "Kameny 

TECHNICAL ~?~ 

s. L. Kamen;? 

for J. I. SChwartf 
DATE 

8/25/66 

 
  

  

 

 defines the syntax of LISP 2 at the token 
level. Tokens are parsed by a finite state machine and 
then used to construct source language or S-expressions. 



·25 August 1966 2 'l'M-2110/210/00 

FOREWORD 

LISP 2 is a joint development of SDC and III. The 
idea for LISP 2 as a language combining the properties 
of an algebraic language like ALGOL and the list
processing language LISP was conceived by M. Levin of 
MIT. Development of the concepts of LISP 2 was carried 
forth in a series of conferences held at MIT and 
Stanford University. Contributions in concepts and 
detail were made by Prof. John McCarthy of Stanford 
University, Prof. Marvin Minsky of MIT, and the LISP 2 
project team consisting of M. Levin, L. Hawkinson, 
R. Saunders and P. Abrahams of III, and S. Kameny, 

. C. Weissman, E. Book, Donna Firth, J. Barnett and 
v. Schorre of SDC. 

For the implementation of LISP 2, it was decided to 
define a standard, computer-independent, LISP-like 
intermediate language and to define the LISP 2 source 
language in terms of its translation into the inter
mediate language. 

This document describes the syntax of tokens. 

;; --.. 

.. 

I 

~ 

( 

I 

~ / 



• 

o 

o 

25 August 1966 3 

Section 

1. 

2. 
2.1 

3. 

4. 

5. 

6. 
6.1 
6.2 

7. 

Introduction • 

Characters • 
Character Classes. 

Notation .' .'. • • 
\ 

Special Characters • 

Character Mapping. 

Tokens • • • • • • 
Basic Alphabet • • 
Syntax of Tokens • 

(page 4 blank) 

CONTENTS 

S-expressions at the Token Level 

TM-27l0/2l0/00 

. . . . . 
5 

5 
5 

5 

6 

6 

7 
7 
8 

10 



• 

I 

\ ) 



o 

o 

o 

25 August 1966 5 TM-27l0/2l0/00 

1. INTRODUCTION 

Tokens are the units from which S-expressions and source language are constructed. 
A token has no internal structure as do atoms or lists; it exists momentarily 
when the finite state machine stops; further existence depends upon the use 
made of it by the S-expression reader, the syntax translator, or the token 
reader. 

2. CHARACTERS 

The LISP 2 character set is the 128 characters of the revised ASCII standard. l 

Character mapping (Section 5) is also available so that non-graphic characters 
may be entered, or the limitations of certain input devices circumvented. All 
characters shown in token syntax are assumed to be the result of character 
mapping which takes precedence when used. 

2.1 CHARACTER CLASSES 

Tokens are formed by combining character classes rather than individual 
characters. All 128 characters belong to the class named aharaater with sub
classes as in Section 6.1. A basic alphabet of 58 graphic characters, a 
space (~), and 6 non-graphic characters is used in this document. The class 
assignment of the remaining 63 characters is implementation-dependent. Class 
membership can be dynamically changed within" the LISP 2 system when a user so 
desires. The finite state machine which parses tokens is also changeable when 
languages other than source language or S-expressions are being read, although 
a change may not be required. 

If the lower case letters are assigned to the class letter, the question of the 
equivalence of such sequences as 'BEGIN' and 'begin' arises. The answer to this 
question will depend on implementation. 

3. NOTATION 

The symbols I { } * , the use of italics, and the form of syntax equations 
conform to the usage in TM-27l0/220/0l, LISP 2 Intermediate Language. The 
characters shown in the basic alphabet stand for themselves (in the ASCII 
scheme) except for t + \ which are assigned for each implementation, and the 
non-graphic characters which are written as ~ for space, CR for carriage 
return, NUL for null, etc. 

IE. Lohse t ed. t "Proposed Revised American Standard Code for Information 
Interchange," Comm. ACM, Vol. 8, No.4, April 1965, pp. 207-214. 



25 August 1966 6 TM-2710/2l0/00 

Ot~er symbols used are the superscript 0, which means that the entity so 
designated is not a part of the token which is formed, the negation sign -.. , 
and superscripts referring to footnotes which are not part of the syntax 
equations themselves. In all token syntax equations in Sections 4 through 6, 
spaae is explicitly indicated in the equations. In Section 7,spaces are 
implicit in the defin~tion of s:e~ressions as token sequences. 

4. SPECIAL CHARACTERS 

The class esaape:aharaate~ has one member which will usually be % although this 
is changeable as are all other class assignments.· The use of esaape:aharaater 
has the highest precedence in token parsing. At present it is used for creation 
of unusual identifiers, character mapping, remarks, and hyphenators. The 
hyphenator is actually a special case of character mapping. The syntax of 
hyphenator is given with the basic alphabet because it maps onto the single 
character NUL. 

NUL and hyphenator constitute the nuZZ:aZass which is a character class com
pletely invisible in token parsing except when preceded by a prime in string 
context. Outside of this special context the following is always true: 

~ 
charaater nuZZ:aZass aharaater = aharaater aharaater 

The occurrence of nuZZ:cZass is not shown in token syntax; it may occur at any 
point in a aharacter sequence with an effect as above. 

5. CHARACTER MAPPING 

The meaning of esaape:aharaater is always governed by the following character. 
When the esaape:charaater itself is intended it is followed by an I. This is 
the identity mapping and is the only way that the esaape:aharaater can mean 
itself. The characters I, ~, R, G, N, ;, CR, US, RS, and C have special meaning 
in token syntax when they follow the escape7character. The use of 
escape:charaater C is a general form of character mapping, as follows: 

cardinaZ = unsigned:integer unsigned:octaZ 

character = escape:character C cardinaZ 

The character resulting from this mapping is the one 
same as the cardinaZ. For example, %ClOlQ. means A. 
recursive, consequently %%Cl03Q.lOlQ. also means A. 
the character following the % is C and not another % 
of character mapping previously mentioned. 

(See Section 6.2) 

whose numeric code is the 
Character mapping is 

In this latter example 
because of the precedence 

( 
/ 



o 

0 

o 

25 August 1966 7 TM-2710/210/00 

The use of )S, R, G, #, ;, CR, US, and RS following the escape:characteris given 
in Sections 6.1 and 6.2; the meaning of any character other than these mentioned 
will depend on implementation. 

The use of the characters DEL (delete) and BS (backspace) may cause a form of 
character mapping, but these also are implementation dependent. 

6. TOKENS 

All tokens but one are explicitly defined below. The one exception is 
unrecognizable. This is defined by default to mean any character sequence which 
does not satisfy one of the syntax equations for the other tokens. Examples of 
unrecognizable are: 

#A)SFS 1.E10A 5E6. #( 'FS;lZEM 

6.1 BASIC ALPHABET 

ec = E 

gc = G 

qc = Q 

rc = R 

letter = AIBlclDIEIFIGIHIIIJIKILIMINIOlplQIRISITlulVIWIXIYIZ 

octal:digit = 01112131 4 151611 

digit = octal:digitl819 

mark = *1:1/1\1<1>1=1+1+ 

p:mark = (1)1[1]1 ,I$I%I+I-I·I)S 

ordinary = letterldigitlmarklp:mark 

prime = 

fence = # 

semi:colon = 



25 August 1966 

period = . 

space = is 

pZmn = +1-
u :mapk '= ,I $1 % 1 ' I ; 
ZpaP = ( 

!paP = ) 

Zbrac = [ 

rbrac = ] 

, ' 

boundary = CR I US I RS 

data:separator = FslEM 

tePmin = semi:coZonlboundary 

8 

hyphenator = escape:chamcter te~inl ~ 
escape:chamcter space {ordinary I prime I fence} termin 

nuZZ:cZass = NULlhyphenator 

6.2 SYNTAX OF TOKENS 

~ 

remark = escape:character rc {ordinary Iprime Ifence} termin 

TM-27l0/210/00 

string:speZZing = fence {ordinary I prime character1'semi:coZonlboundaryo}* fence 

alpha = Zetterldigitlperiod 
~ 0 

ZitemZ = letter aZpha {--alpha} 

, dotted:ZitemZ = period{ZetterlperiodJ alpha * {--aZphaJo 

operator = ntlrk mark * {- markJolplmn { .... {periodldigit}}o 

string:name = escape:character string:speZZing 

:gen:speZling = escape:character gc {literalI8tring:namelopemtorldotted:ZiteraZ} 
I 

n:delimiter = -{letterlperiodJ 

* decimaZ = digit digit 

lThe effect of prime character is to enter the character in the token and to 
discard the prime. This aharacter may be any character at all, including 
boundary, data:8eparator, and nuZZ:cZass. This is the only place in which 
nulZ:aZass is meaningful. 

( / 

------/ 

/ 
( 

\ 



o 

o 

25 August 1966 9 

unsigned:integer = {decimaZ ec decimaZldecimaZ}n:deZimite~O 

octaZ:speZZing = octaZ:digit octaZ:digit* qc 

TM-2710/210/00 

unsigned:octaZ = {octaZ:speZZing decimaZloctaZ:speZZing}n:deZimite~O 

exponent = ec{pZmn decimaZldecimaZ} 

mantissa = decimaZ period decimaZldecimaZ period I period decimaZ 

unsigned:reaZ = {mantissa exponentlmantissa}n:deZimiterO 

sign = pZmn{periodldigit}o 

spacer = space space*lboundary 

dot = period {-aZpha}o 

token = remark1 Istring:speZZingIZiteraZldotted:ZiteraZ2 Ioperatorlstring:namel 
gen:speZZinglunsigned:integerlunsigned:octaZlunsigned:reaZispacerl 
dotIZparlrparIZbraclrbraclsignlu:markldata:separatorlunrecognizabZe 

lA remark may occur in SL or IL wherever a spacer may be used. In IL commas 
are not optional. See Section 7. 

2The definitions of dot and dotted:ZiteraZ prevent the character period from 
being a dotted:ZiteraZ. 



25 August 1966 10 TM-2710/210/00 

7. S-EXPRESSIONS AT THE TOKEN LEVEL 

Occurrences of words such as FUNCTION. REAL. etc. denote the token that was a 
literal with the same character representation. 

oatal = sign unsigned:oatal/unsigned:oatal 

integer = sign unsigned:integer/unsigned:integer 

real = sign unsigned:reallunsigned:reaZ 

number = oataZJintegerJreal 

spaaes = spaaerlremark 

emptyl = spaaes*1 

fa lse = FALSE / NIL I lpar rpal' 

boolean = TRUElfalse 

stPing = string:spelling 

identifier =ZitemZ2 Idotted:Ziterallstring:namelopemtorlgen:spellinglu:mark 

f:name = Zpar identifier dot identifier rpar 

vaZue:type = literal 

f:type = literaZ 

a: type = f: type Ilpar fttype {LOC I VALUE} !'pen' 

i:type = lpar f:type {LOC /VALUE /empty} INDEF rpar 

funational:aonstant = lbraa .. FUNCTION f:name 
a:type

W 

{i:typelempty} 

* 

vaZue:twe 
-rab-raaa 

numeria:row = lbraa {nwnbe-ra number / numeria:row numeria:row* 

reaZ:ar~y = lbx-aa- REAL * {numbe-ra * / numeric: row . } rbraaa 

} x-braa 

1empty means either a sequence of spaces or nothing. It has no semantic effect 
on the s:expression. By the definition of sign in Section 6.2, no spacer or 

I 

~ 

( 

remark can occur between a sign and an unsigned number; in all other s:expressions (' 

./ 

/ 

which are token sequences empty may occur between tokens. ~ ____ / 

2The character representation is not TRUE, FALSE or NIL. 



t 

o 

o 

o 

25 August 1966 11 
(last page) 

TM-2710/210/00 

intege~:array = Zb~aa INTEGER * {nwnbe~ * Inwne~ia:~oUJ 

* oataZ:aP~ay = Zb~aa OCTAL {numbe~ * Inwnertia:~oUJ 

numeria:ar~ay = T'eaZ:a~raYlintegeT':ar~aYloataZ:aT'ray 
booZean:exp = s:exp~ession 

} ~braa 

* booZean:~UJ = Zb~aa {booZean:exp booZean:exp 
booZean:roUJ* } rbraa 

IbooZean:roUJ 

booZean:array = Zbrac BOOLEAN * {booZean:exp * IbooZean:roUJ } rbraa 

symboZ:eZement = booZeanlnumbe~lstringlidentifie~IZistl 
dot{ar~aylfunctionaZ:aonstant}l 

* symboZ:~oUJ = Zbraa {symboZ:eZement symboZ:eZement 
I symboZ:~oUJ symboZ:~oUJ* } rbraa 

. * * symboZ:ar~ay = Zbrac SYMBOL {symboZ:eZement IsymboZ:roUJ } rbraa 

* functionaZ:roUJ = Zbrac {functionaZ:constant !unctionaZ:constant 
funationaZ:~oUJ functionaZ:roUJ } ~braa 

functionaZ:array = Zbrac FUNCTIONAL 
functionaZ:~oUJ* } 

* {functionaZ:aonstant 
rbrac 

a~ray2 = booZean:a~raylnume~ic:a~raYlsymboZ:a~raylfunctionaZ:array 

simpZe:datum = booZeanlnumbe~18t~ingla~~aYlfunctionaZ:con8tant 

atom = simpZe:datwnlidentifie~ 

Zist = Zpar . * 8:expreS81,On s:exp~essionlempty} {dot s:exp~ession. 

s:exp~ession = atomlZist 

rpa~ 

lThis notation is used for arrays or functional constants that are elements of 
the symboZ:ar~ay and not for sub-elements. For example: 

[SYMBOL A (B C) • [REAL 1.0 2.0]] 
[SYMBOL [A (B C) . [INTEGER 1 2]] [(x) H(H (E . F)]] 

require the notation but 
[SYMBOL A (B [REAL 1.0 2.0])] 

does not. In the last example use of dot would make the element into a dotted 
pa.ir. 

2 The rows of a multi-dimensional array must have the same number of elements. 



25 August 1966 TM-2710/210/00 \ 

;1 i s:r i but ion 

,. ~arancik 2105 
· Barnett 2025 " . 
:i _ ~erman 4317 
." !~()Ok 233? 
,~ . Bosak 2013 
1 Rurl=(er CJ919 " . 
D. Drllkey 2105 
i"'a~shH Drapkin(2) ()7?3 
(', Fei n;:~ol d 952) .l, 

": J. Firth 2310 
:1. :1~"'l·""ar.j 2042 
;i. :: ~J', .. "e 1.1 9912 
};.,. .. 1:-": ine 9627 
1: Jacobs (' 2344 / ... 
B. ;Tones ?231 \ / 

S. KB.r.len:v ( 5"0) 2009 
R. Long 9913 
R. Marti~ 2228 
· , . Myer 22?7 
M. yerstPin 2341, 
li. Perry 2042 
V. Schorre. 2330 .. 

:-r.r"'nr~z ~l ~3 . 
I ' :~mons 9h 39 ", 

f!teffp.rud 9731, I · Vnrhaus ??13 ' \ . 
" 1t! f: i s sman ( 10) ?214 · ~ . Wolfson 2368 

1. Hawkinson(III) 9120 
D. Crande1 (III) 9721 
D klschultz (11I)9121 
B. Saunders (III) 9721 
P. Stygar (III) 9721 

(92) 

I 
I 

\ / 




