s ~‘.@‘,,4

C Ca .3 I

EBZBA/;447;;€2;t;Q:9

AFCRL-66-180

THE BBN-LISP SYSTEM

Daniel G. Bobrow
D. Luciille Darley -
Daniel L. Murphy
Cynthia Solomon
Warren Teltelman

Bolt Beranek and Newman Inc.
. 50 Moulton Street
Cambridge, Massachusetts 02138

®

Contract No. AF19(628)—5065
Project No. 8668
Scientific Report No. 1

February, 1966

(The work reported was supported by the Advanced ReSearch
Projects Agency, P.R. No. CRI-56176, ARPA Order No. 627,
dated 9 March 1965.)

Prepared for:

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH
UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS

Distribution of this document is unlimited.

J

(

G

—J

(y C) T

—J tJ CJ

AFCRL-66-180

THE BBN-LISP SYSTEM

Daniel G. Bobrow
D. Lucille Darley
Daniel L. Murphy
Cynthia Solomon
Warren Teitelman

Bolt Beranek and Newman Inc.
50 Moulton Street
Cambridge, Massachusetts 02138

Contract No. AF19(628)-5065
~ Project No. 8668
Scientific Report No. 1

February, 1966

(The work reported was supported by the Advanced Research
Projects Agency, P.R. No. CRI-56176, ARPA Order No. 627,
dated 9 March 1965.)

Prepared for:

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH
UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS

Distribution of this document is unlimited.

TABLE OF CONTENTS

Page
I. mTROmIcTION...‘......'.l..'.‘....l."‘...‘ I‘l

II. THE INTERNAL STRUCTURE OF THE BBN-LLISP
SYSTEM..O...--....-..-.--oon'ooooon-o.oo.o II"l

III. DESCRIPTION OF FUNCTIONS IN BBN~-LISP..... III-1

Iv. LISTINGS OF S-EXPRESSIONS OF EXPR'S3
[AND FEXPR'S..I......l.............l.‘..‘.. Iv-l

APPENDIX A ~ OPERATING THE BBN~-LISP SYSTEM
A"l LISP LOADER..'..'....‘I‘...Qw'...... A.l"l

- A-2 USING LISP FROM THE COMPUTER ROOM
TELE'IYPE‘...'"....’....I...\l.l.ll. A.2—1

A-3 USING LISP FROM A REMOTE DATHSET... A,3-1
APPENDIX B - INDEX TO FUNCTIONS:eeeseeeoenveessss B.1l=1

|

s I s I o O s BN == |

)

L

| e | g G] | g | | S |

(=)

))))

D

FOREWORD

The work reported here was performed at Bo..t Beranek and
Newman Inc in Cambridge, Massachusetts for the Advanced
Research Projects Agency under Contract No. AF 19(628) -5065.

THE BBN-LISP SYSTEM

ABSTRACT

This report describes in detail the BBN-LISP system. This
LISP system has a number of unique features; most notably,
it has a small core memory, and utilizes a drum for storage.
of 1ist structure. The paging techniques described here
allow utilization of this large, but slow, drum memory with
a surprisingly small time penalty. These techniques are
applicable to the design of efficient list processing systems
embedded in time-sharing systems using paging for memory o
allocation. i

= I =i [== I i IR == [e IO i

= I s B

iii

1D L F] L — — - T T ——

I

SECTION I.
INTRODUCTION

LISP is a highly sophisticated list-proceiising language which
is being used extensively in the artificial intelligence re-
search program at Bolt Beranek and Newman, This report
describes our LISP system, which has a nwnber of unique
features., Ideally, a LISP system would have a very large,
fast, random-access memory. However, magnetic core memory
(the only large scale random-access memor)s aVailable) is
very expensive relative to serial memory devices such as
magnetic drums or discs. Since average access time to a
word on a drum or disc is approximately 1000 times slower
than access to a word in a core memory, using a drum as a
simple extenslon of core memory would reduce the operating
speed of a system by a factor of 1000.

We have developed a special paging technigue which allows
utilization of a drum for storage with a 1much smaller time
penalty. This technique allows us to make effective use of
a LISP system on our PDP-1 which has only 8392 18-bit words
of 5 microsecond core memory and 92,312 words on a drum
with an average access time of 16.5 milliseconds. In addi-
tlon, the techniques reported here would :mprove the speed
of operation of LISP systems embedded in f:ime-sharing
systems using paging for memory allocation. In these time-
sharing systems the user is allocated only a small portion
of core memory at any time, although his program can address
a large virtual memory. The portion of his data structure
and/or program not in core is kept in a slower secondary ‘

I-1

HEIH T B e

DAY YR 0) D L e

storage medium such as a drum or disc. Thus, to the user it
is very similar to the situation on our PDP-1, except that a
hardware mechanism makes the program transparent to the
medium of storage of any page of his program.

Section II of this report describes the internal structure
of the BBN-LISP system, and the mechanisms used to facili-
tate fast use of drum storage. Section II[I describes the

LISP functions which are built into the basic system. Sec-

- tion IV contains listings of those functions which are

defined in LISP.

Although we have tried to be as clear and complete as poss-

1ble, this document is not designed to be an introduction to
LISP. Therefore some parts[may be clear only to people who

have had some experience with other LISP systems,

I-2

== I e B s B = B 5 B < IR == B - Y = O == B s SO == N == O == [== [== [== QR == S =5 |

SECTION II.

THE INTERNAL STRUCTURE OF
THE BBN-LISP SYSTEM

The BBN-LISP System uses only a small core memory, but achieves
a large memory capacity by utilizing a drun.. This drum is

used in three ways. First, the working prcgram is divided into
three overlays, the read and print (input-cutput) program, the
garbage collector, and the interpreter of S-expressions. Only
one of these overlays is in core at any time, although a number
of sub-programs common to all three remain in core at all times.

Secondly, the drum contains a large push-dcwn 1list for use 1n
running recursive programs, This push-dowr list is double-
buffered; that is, the section of the push-down list used most
recently is in core and the section used immediately preceding
this section is also there, so that traveling between buffers
does not necessitate a drum reference.

The third way of utilizing this large secondary store, the drum,
is for storage of 1ist structure. If the entire remaining drum
storage was used simply as an extension of core memory, an
access to the drum would be needed each time a new list element
was referenced; and LISP would be reduced to operating at drum
rotation speed. Instead, the drum storage of list structure is
divided into pages. Each page i1s currently 258 words (decimal);
and each page contalns 1ts own free storage list. The cons
algorithm, for constructing a new list element, works as follows.

II-1

To construct z = cons [x:y]:

1) If y is not an atom, and there is room on the page
wilth y, then place z on this page

2) Otherwise, if x 1s not an atom, ani there is room
on the page with x, put z on that page

3) Otherwise, place z on the page in core with maximum
free storage.

This algorithm tends to minimize cross linkiges between pages
and to limit any single structure to a very few pages. Thus
when working with this structure, it is unlikely that one will
make references to more than a few pages for a relatively long
period of time. Since these pages can reslde in core, no drum
references are needed. For example, in ents3ring the definition
of a function, the entire definition tends to appear on a single
page. Thus, during the interpretation of a function, multiple
drum references are usually unnecessary.

Although we have not yet run this LISP system on a large problem
where we can make a reasonable timing comparison, we can give
the following anecdotal evidence for the increase in speed due
to this paging system. The run light on the PDP-1 goes off when
a drum swap is taking place. In an older version of PDP-1 LISP
the drum was treated as an extension of core memory. When any
problem was run, the run light seemed to go off completely, in-
dicating that the machine was spending almoit all of ifs time
doing drum transfers. In this system, however, the run light
seems to burn as brightly as the rest, indicating that relatively
few drum transfer operations occur except when going between the
three overlay packages, that is, when going from input and out-
put back to the interpreter or going into a garbage collection.

II-2

On the research computer, because of the drum storage, we
currently have in use an effective free storage list of approx- ‘
imately 25,000 LISP words, i.e., double word pairs (pointers).
Each LISP word i1s, of course, two 18-bit PDP-1 words. In the
extended version of LISP that will be used on the hospital
system we will have 256,000 LISP words for free storage.

There are a number of differences between this system and 7094
LISP aside from the storage conventions. Ior example, the value
of a variable is stored in a special value cell for that variable,
that is, as car of the atom name. An atom is distinguished by
its address, which is located in a fixed region of virtual

memory space. Thus one need not reference a stfucture, but only
look at its address, in order to tell whether or not it is an
atom. If x is an atom, then cdr[x] is the property list of the
_atom, as in 7094 LISP. However, the print name of the atom is
not to be found on this property list. The user can only get

S =

at the print name with the instructions pack and unpack. Sim-
ilarly, the definition of an atom as a function is hidden away
from the user in a special cell assoclated with the atom name.
Two functions, getd[x] and putd[x;def] are used to get the def-
inition of a function, and place the definition in the function

ﬁm

cell of an atom, respectively. The value cf getd[x] on an atom
defined as a machine language subroutine is a numerical constant
which bears somé relationship to the instruction that must be
executed to obtain access to the subroutine.

= i =

When a new function is entered, the old values of its variables
are pushed down on the push-down 1list, and the current values
- are stored in the value cells. Since the current value of any

IT-3

e /&

variable is always to be found in its value cell, free variables
are no problem. However, there 1s the ususl anomalous case of
conflicting free variables in functional arguments. This can
be clrcumvented by using sufficiently unique variable names.

Because of the way variable values are stored, the main inter-
preter, eval, obviously does not use an A-list, and 1is therefore
a function of only one argument. The function evala defined

in the BBN-LISP System will simulate the effect of the usual
evallx;a], a belng an A-list.

Different LISP systems employ different methods to achieve the
following two effects in functions labelled FEXPR's in 7094 LISP.
These two effects are (1) giving a functiorn the ability to have
an indefinite number of arguments, and (2) giving a function the
ability to receive its arguments unevaluated.

On the 7094 anFEXPR is defined by putting the function definition
on the property list after the flag, FEXPR, and treating it as

a specilal case in the interpreter. In BBN-LISP we call functions
which have abilities (1) and (2) FEXPR's, but we define them

differently. The way anFEXPR is defined iri BBN-LISP is as

follows: 1instead of the usual lambda follcwed by a 1list of
variables, the defining form is preceded by nlamda followed by
a list containing a single variable. When a function with an
nlamda is entered, everything following the function name in the
form to be evaluated is placed on a single list and becomes the
value of the single argument of this FEXPR. This is passed to
the function unevaluated. In order to evaluate any portion of
this list, an explicit call to eval must be made. See "defineq"
in the listings for an example of the use ¢f this device. &

IT-4

—

third reason FEXPR's and FSUBR's are used on 7094 LISP is to
make the A-list available to a program. However, since
there is no A-list in BBN-LISP this will not concern us here.

Another major difference between BBN-LISP arnd 7094 LISP is
due to the fact that the 7094 has floating point hardware,
and the PDP-1 does not. Any floating point machinery would
have to be interpreted on the research computer. This would
be expensive in both time and space, and, therefore, in this
version of LISP there is only integer arithmetic. A compiler
1s being planned for the PDP-1 and will be dclescribed in a
later document.

II-5

nih B owms Y i B ot B el Y it Y v

SECTION III,

DESCRIPTION OF FUNCTIONS IN BBN-LISP

cons[x;y]
SUBR

car[x]
SUBR

cdrx]
SUBR

caar[x] = carl[car[x]]
SUBR

cadr[x] = car[ecdr[x]]
SUBR

cons constructs a dotted pair of
xand y. If y is a 1ist, x becomes
the first element of that list.

car gives the first element of a
list x, or the left element of a
dotted pair x. Nominally undefined
for atoms, it gives the binding
(value) of an atom x.

cdr gives the tail of a list (all
but the first element). This is
also the right member of a dotted
pair, If x is an atom, cdr(x]
gives the property list of x.

All 30 comblnations of nested cars
and cdrs up to 4 deep are included
in the system,

cddddr[x] = car[cdr{cdr[ecar[x]]1]]

SUBR

eqlx;y]
SUBR

The value of eq 18 T if x and y are
ldentical atoms, including numbers;
otherwise the value is NIL. (Will
give T for lists 1f thelr internal
representations are identical, NIL
otherwise.) '

ITI-1

3 3 T

null(x]
SUBR

atom[x]
SUBR

oblist[]
SUBR

not[x]
EXPR

quote[x]
FSUBR

cond[x]
FSUBR

eq[x;NIL]

Its value is T if' x is an atom;
NIL otherwise.

Gives a list of all atoms in the
system.

Its value 1s true if its argument
is false, and false otherwise.

This is a function that prevents
its argument from being evalu-
ated. Its value is x itself.

The argument for cond is a 1list.
Each element of +whe list is itself
a list containinz n > 1 items:

the first is an expression whose
value may be false or true (that
is, NIL, or anything which is not
NIL); the rest may be any expres-
sions. This is the conditional
expression in the LISP system.

The meaning of it is: 1if the
first element of the first list

is true (not NIL), then the fol-
lowing expressions are evaluated.
The value of the conditional is
the value of the last expression
in this sublist. If there 1is only
one expression, then the value of

ITI-2

B el e e e e N el e N e B = T == B =

prog(1]
FSUBR

go[x]
FSUBR

list[x1;...3xn]
FSUBR

the conditional is the value of
this expression. This value co-
incides with the value in 7090
LISP for pairs of items, but
allows additional flexibility.

If the first element of the first
list is false (== NIL), then the
second sublist 1s considered, etc.
Thus, the arguments are searched
until a first element of a list
is found which is not NIL. If
none are found, the value of the
conditional expression is NIL.

This feature allows the user to
write an ALGOL-like program con-
taining LISP statements to be
executed. The argument is a list,
the first elemert of which is a
list of program variables. The
rest of the list is a sequence of
statements, and atomic symbols
used as labels for transfer points.

g0 is the function used to cause a
transfer in prog. (GO A) will
cause the program to continue at
the label A.

The value of list is a list of
the values of its arguments.

ITI-3

3

O 3

e Bl e

return[x]
SUBR

print{x]
SUBR

prini[x]
SUBR

terpri[]
SUBR

punchon{x]

typeout [x]
SUBR

read[]
SUBR

punch[x]
EXPR

return is the normal end of a
prog. Its argurent is evaluated
and is the value of the prog in
which it appears.

Prints x, followed by carriage
return, on specified devices
(see punchon, typeout). Value
is x.

Prints one atom, x, with no space
or carriage retirn following.
Value is Xx.

Prints a carriage return. Value
is NIL.

Turns punch on for print if x = T;
turns punch off if x = NIL.
Value is former setting of punchon.

If x = T, turns typewriter on for
printing. If x = NIL, turns type-
writer off. Value is former
setting of typecut.

Reads on S-expression from
specified device (see typein).

This function sets punchon to t,
sets typeout to nil, punches X,
and then restores punchon

and typeout to their original
values,

III-4

=l - e =

typein[x] If x = T read-in device is set to
SUBR typewriter. If x = NIL read-in
device is set to reader., Value 1ls-
former setting of typein.

ratom[] Reads in one atom from read-in de-
SUBR vice. Separation of atoms 1ls as
defined by the functions setsepr
and setbrk.

setsepr{x] These are both FSUBRS and may have
FSUER up to 18 arguments each. Arguments
seggggéx] should be octal numbers, e.g., 774

for carriage return. Characters
defined by setbrk will delimit atoms
and be returned as separate atoms
themselves. Characters defined by
setsepr will not be returned and
wlll serve only to separate atoms.
For example, to make ratom read in
ordinary format, space (0Oq), comma
(33q), and carriage return (77q)

are separation characters, and left

paren (57q), right paren (55q), and~"

period (73q) are break charaeﬁéré;
Thus setsepr[Oq 33a 774l

setbrk[57q 550 73q]
would set up these characteristics.

The value of getsepr and of getbrk
is NIL. '

III-5

=

o I st SR et SRR e |

— O O T 4O &8

=2 3

o=t S e Y i I st I i

clearbufl]
SUBR

readin[x]
SUBR

feed[n]
SUBR

This SUBR clears the input and output
buffers of the sequence break pack-
age, including the sequence break
reader, ratom, read, and typeln line
buffers, and sets the case to lower
cage. This mearis that if you have
Just done a read and the S-expression
did not complete a line, whatever
else 1s on that line will be lost.
However, it is very useful if you
want to initiallize the system, or an
error has been nade, and you want to
clear out what ras been read in on

a line.

If x = T, readir. sets the teletype
input to the parer tape reader.
Specifically, it eliminates the line-
feed echo after a carriage return,
and the delete characters, rubout
and colon, are rot recognized. Set-
ting x to NIL restores the status to
normal. This function returns its
previous value,

The value of n nmust be a number,

This function'outputs on the teletype
n carriage return-line feeds or n
carriage returns depending on the
setting of readin.

ITI-6

] 1 =2

o OO O

e A

O = 3y =0 &

character[n]
SUBR

progilx;yl
SUBR

prog2[x;y]
" SUBR

progn[x;y;...;z]
FSUBR
setix;y]
SUBR

setqlx;y]
FSU'BR

This function outputs on the tele-
type a single character with octal
representation (code) n. n must
be a number.

This function evaluates both 1its
arguments in order, that 1s, x
first and then y, and then returns
the value of x.

The purpose of this function is to
allow the evaluation of x, before
returning y. '

progn is an FSUBR which evaluates
each of its arzuments in sequence,
and returns the value of its last
argument as 1ts value. It is an
extension of prog?2.

This function sets the atom which .
is the value of x, to the value of
Y, and returns the value of y,.

This FSUBR 1s identical to set,
except that the first argument 1s

- quoted.

Example: If the value of x is ¢,
and the value of y is b, then set
[x;y] would result in ¢ having
value b, and b returned. setqlx;y]
would result in x having value b,
and b returned. The value of y is
unaffected.

III-7

=y R =ssrt [DU B SIS B, S

=

= o &8

= O3 &2 & &E3 &

- ?‘ B
=y

setn{x;y]
SUBR

setn requires and checks for an atom
as the value of the first argument,
and a number as the second. If the
first argument 1ls not already de-
fined as a number, the value of the
second will be moved to a new cell
in FWS (Full Wo:d Space), the loca-
tion of which will be stored 1n the
value cell of the first argument.
Otherwlse, setn replaces the FWS cell
contalning the previous numeric
value of the first argument by the
numeric value oi' the second. If the
second argument was the most recent
number added to FWS, the cell con-
taining its value 1is returned to the
free list.

Example:
(SETN (QUOTE P) (PLUS P 1))
creates a new ce¢ll in FWS containing
the 0ld value of P plus 4. This
value gets moved to fthe FWS cell con-
talning the old value,

The following will lose:

(PROG .. (SET (QUOTE A) B)

(SETN (QUOTE A) (PLUS A 1)) ...)
because the cell containing the value
of A 1s the same as that for B. To
avoid the problem, the first SET
should have been a SETN so that a
unique numeric value cell would have
been assigned for A.

II11-8

r

I

& 3

) OO =2 =23 3

/|, /M &=

setaqlx;]
setna[x;y]

FEXPR

putd[x;y]
SUBR

putdalx;y]
FEXPR

getd[x]
SUBR

fntyplx]
SUBR

evallx]
SUBR

Tdentical to setq except that nelther
‘argument 1s evaluated.

This FEXPR 1s identical to setn
except that the first argument is
quoted.

putd places the value of y into the
function cell c¢f the atom which 1s
the value of x. This is the basic
way of defining functions. putd is
mnemonic for put definition on x.
Value of putd is the definition
(value of y).

This function 1s similar to putd,
but both arguments are consildered
quoted, and 1ts value is x.

This function gets the definition
of the functior whose name is the
value of x. If x 1s not a defined
function, the value of getd[x] is
NIL; 1f x 1s a SUBR or FSUBR, the
value 1s a number,

This function gives EXPR, FEXPR,
SUBR, FSUBR or NIL depending on
whether x 1s an EXPR, FEXPR, SUBR,
FSUBR or not defined, respectively.

eval evaluates the expression x and -
returns this value,

III-9

errorset|form;arg] This function calls eval with the
SUBR value of form, and returns with a

1list of this value if no error is
encountered, I[f an error is
encountered on the call to eval,
errorset returns with the value
NIL. If arg i3 T, the message from
error is printed; the message is not
printed if arg = NIL.

/

i |

ersetq[x] This FEXPR is defined as
FEXPR (ERRORSET (CAR X) T);
that 1s, it 1s the same as errorset
with the argument quoted and the
error flag set to T.

nlsetq[x] This FEXPR 1s ldentical to ersetq
FEXPR except that the error flag is set
to NIL and the error comment from

error wlll not be printed out.

error{x] error induces an error with mes-
— SUBR
sage X.
~ quit(] quit induces a "strong" error, i.e.,
SUBR

will unwind a program through
errorsets to the top level.

= eq§a1[x;y] The value of this function is T if
- UBR x and y are equal, that is, identi-
cal S-expressions, and NIL otherwise,

It is as fast as eqg for atoms.

o

ITI-10

bl L T ———

[z

O O & 63

and[x]
FSUBR

or[x]
FSUBR

rdflx[x]
EXPR

append[x;y]
EXPR

This function is an FSUBR and can
take an indefinite number of argu-
ments. Its valiae is T if none of its
arguments has value NIL, and 1s NIL
otherwise,

or 1is also an FSUBR and may have an
indefinite number of arguments (in-
cluding O). or has value NIL if all
of its arguments have value NIL,
otherwise, it has value T.

If x is NIL this function will try

to read one S-expression from the
typewriter with read[]; if no error
occurred in reading, 1t will return
with 1list of the S-expression that ,
was read, If aa error occurs in
reading, 1t returns with NIL. If x
is not NIL, it will attempt to read
an S-expression and keep attempting
to read 1t until it gets one without
an error; each time it tries to read
an S-expression and gets an error,

it will print out x. In this case

it returns with the S-expression ,
itself (not 1list of the S-expression).

This function copies list x and
appends list y o this copy. The
value 1s the combined list.

IIT-11

s B S B s I e I st I s I e

nconc[x;y]
SUBR

nnconc[x;y]
SUBR

attach[x;
MR[3Y]

tcone[x;p]
EXPR

This function i similar to
append, in effect, but it actual-
ly causes this effect by modify-
ing the list stiructure x, and
making the last element in the
list x point to the 1list y. The
value of nconc s a pointer to
the first list i, but since this
first 1list has now been modified
it is a pointepr to the concate-
nated list.

This function is the same as
nconc. nnconc s used by the
trace programs so that nconc it-
self can be traced.

This function alitaches x to the
front of the 1list y by doing an
rplaca and an rplacd.

This function provides an effi-
cient way for placing an item x
at the end of a list p. This
list is the first item on p, that
is, car[p]; cdr|p] is a pointer
to the last element in this list;
X 1s placed on the end of the
list by modifying this structure,
and X is placed on the list as an
item. The effect of this function
is equivalent to nconc[car[p];
list[x]], with cdr[p] updated to
point to the last element of the
modified list.

ITI-12

g |

L

O O O oo o 0O 0o oo

lconelx;pl
EXPR

last[x]
EXPR

length[x]
EXPR

prettyprint([x]
EXPR

prettydef[x]
EXPR

‘This function is similar to teconec,

except that in this case x 1s a list.
An entire 1isf{? will be tacked on thé
end of car[pl,and edr[p] willl be
adjusted to be a pointer to the last
element of this new combined list.
Both teconc and lcone work correctly
given null arguments,

This function has as its value a
pointer to the last cell in the 1list

X, and returns NIL if x 1s an atom.

This function has as a value the
length of the 1list x. If x 1s an
atom, it returns O.

The argument of prettyprint is a
list of names of functions; it
prints and/or punches (depending on
the settings) the definitions of
the named functions in a pretty
format. It ufiilizes the functions
printdef, endline, and superprint.

This latter function does all the
work.

This function of one argument (a
1list of function names) prints and/
or punches "(DEFINEQ", followed by
the prettyprint llsting of each of

III-13

ooz B e

e O oo O e ;o &

define[x]
EXPR

these functions, followed by a right
paren. A tape punched by prettydef
can be loaded by the function load
if a STOP is punched on the end of
the tape. The value of prettydef
is x.

The argument of define is a 1list.
Each element of the list is itself
a list containing either two or
three items, 1In a two-item list
the first item of each element of"
the 1ist is the name of a function
to be defined, and the second ltem
is the defining lambda or nlamda
expression. [n a three-item list
the first item is again the name of
the function <o be defined. The
second is the lambda. list of vari-
ables and the third is the form for
the expression. As an example
consider the f[following two equiva-
lent expressions for defining the
function null,

1) (NULL (rnAMBDA (X) (EQ X NIL)))
2) (NULL (X) (EQ X NIL))
111-14

%

e ——

i

=

ﬂ

ﬁ'

e B 8 e ;e &

defineqlx;...;z]
FEXPR

load[x]
EXPR

This FEXPR 1is cl.osely related to
define, However, it can take an
indefinite number of arguments, and
it will treat them literally, as if
they were quoted. Each of the argu-
ments must be a list of the form
described as an element of the list
which is the argument for define.
Using defineq instead of define
allows one to e.iminate two pairs
of parentheses In wrifting functions
to be defined for loading with the
function load.

load is a function which reads suc-
cessive S-expressions from the paper
tape reader, and evaluates each as
it is read. If x = T, then load
prints the value; otherwise it does
not, load cont.inues reading S-ex-
pressions and evaluating them, until:
1t reads the single atom STOP fol-
lowed by a carriage return, at which
point it returns the value NIL.,
Using load 1s the standard way of
getting functions in from the paper
tape reader; it saves having to
write sequences of

E(EVAL (READ)).

ITT-15

S i

L Ee| g F ol

Rt S

O R S R

M RN R AT A

R o M M L 1

ﬁz

)

)

unpack[x]
SUBR

pack[x]
3.UBR

remob[x]
SUBR

member{x;y]
SUBR

The argument of unpack should be an

atom. The valus of unpack is a list
which contains, in order, the char-

acters which mace up the print name

of that atom,

The argument x of pack must be a
list of atoms, The value of pack is
a single atom whose print name 1s a
packed version of the print names of
all the atoms glven in the 1ist.
Thus . ‘ _

pack[(a be def g)] = abedefs.

The argument of remob must be an
atom, The effect of applying remob
to this atom is to remove allffraee/
of this atom from the system. THis
1s a good way of reclaiming spuce
from atoms which are no longer;neeeed;
but it 1is very dangerouss and remob
should be used with cpfe. A future
mention of the same-atom name will
have no connectloh with the old one
that was formefly there. In addi-
tion, any lists which point to this
0ld atom will now be incorrect.

ThiS’SUBR checks to see 1if

X is a member of the list y. If so,
/1t returns the value T; if not, it
returns the value NIL,

ITI-16

L P) Mt R

T B S N AR P 4 AR 1 4

rplacd[x;y]
SUBR

rplacal x;vy]
SUBR

gensym[]
SUBR

displx;y]
SUBR

This very dangerous SUBR places in
the decrement of the cell pointed

to by x the pointer y. Thus it
changes the internal 1list structure
physically, as opposed to cons which
creates a new list element. This
is the only way to get a circular
list inside of LISP; that is by
placing a pointer to the beginnlng
of a list in a spot at the end of
the list. Usiling thils function care-
lessly 1s one of the few ways to
really clobber the system.

This SUBR 1s similar. to rplacd, but
it replaces the address pointer of
X with y. The same caveats which
épplied to using rplacd apply

to rplaca. ‘

This function of no argument gener-
ates a unique symbol of the form
Annnn, in which each of the n's ;s
replaced by a digit, Thus the first
one generated i3 A 0001, etc. This
1s a way of gencrating new atoms for
various uses witshin the system,

This function dilsplays one point on
the cathode ray tube at the point
whose coordinates are (x;y) and re-
turns T if the light pen saw the
displayed point, and NIL otherwise,.

ITI-17

S oo aaoco oo e e e e & BB oo =

displis[1]
SUBR

logand[x;...;z]
FSUBR

logor(x;...,z]
FSUBR

elx]
FEXPR

The argument of this function 1s a
1ist of successlve x and y coordi~
nates to be displayed.

For example: ;
displis{(1 2 13 1 4)]

will successively display the
points at coordinates

(1s2), (133) anl (i{#)-

This is faster than-displeying esch”.

of these three points individually |
by using disp.

This FSUBR wlll take the logical
AND of all of 1ts argument as
octal numbers and return this value,

This function, an FSUBR, will take
the logical OR, hit-wise, of all of
its arguments, and return this
number

This FEXPR 1s defined as eval; how-
ever, it 1s shorrter and 1t removes
the necessity for the extra pair of
parentheses for the list of argu-
ments for eval. Thus, when typing
into evalquote one can simply type

e followed by whatever one would

type into eval and have it evaluated.

ITI-18

O &= & 6O

CcO & 6o 5

st BN et

getix;y]

EXPR

trace[x]

EXPR

tracplx;y]
EXPR

untracelx]

EXPR

This function gets from the 1list x
the item after ~The atom y on list x.
If y is not on ~he list x, this
function returns NIL., For example,
get{(a b ¢c d);b] = c.

This function has as an argument a
1ist of names o7 functions. It
changes the defilnition of these
functions so that when each function
is entered, the'values of the argu-
ments of this function are printed;
when the value of this function is
computed this value i1s printed. Thus,
trace[(plus ratom)] '

would cause plui and ratom to be -
redefined so that this tracing takes
place. The value of trace is the
value of its argument x. The work
of trace is done by the function

traci.

This function tells whether the
function named :xx with definition y
has been traced., Its value is T

if the function is being traced, and
NIL otherwise.

Thils function undoes what trace does,
and restores the original definition
of the function.

ITI-19

T T T1 T

o o

s 6/

)

)

mapc[x;fn]
EXPR

mapcar{x;fn]
EXPR

mapeonc[x;fn]

mapcon(x;fn]

III-20

A word of warning: do not trace
the following functions or you
will get in an infinite loop be-
cause these functions are used
within tracli itself:

print; cons; sel; fntyp; eval;
return; evalprint; car; cdr;
null; go.

This function applies the function
fn to each of the elements of the
list x. It returns the value NIL.

This function applies the function
fn to each of the elements of the
list x. It creates a new list
which is a map of the old list in
the sense that each element of

the new list is the value of
applying fn to the corresponding
element of the c¢ld list.

Identical to mapcar except that
it does an nconc instead of a
cons.

Identical to maplist except that
it does an nconc_instead of a

cons.

r—

o N v S s Y s [s Y e) s [i R e

D

s O D

Lo BN - B

map([x;fn] This function applies the function
fn to successive talls of the list x.
That is, first it computes fn[x], and
then fnl[ecdr{x]], etc. until x is
NIL, This function returns NIL.

maplist{x;fn] This function computes successively
EXPR the same values that map computes;
it forms a new list consisting of
successlve values of applications of
this function.

assoc[x;a] If a 1s a list of dotted pairs, then
EXPR assoc will produce the first pailr
whose first item is x. If such an
item 1s not found, assoc wlll return
NIL.

sassoc[x;y;ul The function sassoc searches y, which
EXPR i1s a 1ist of dotted pairs, for a
pair whose flrst element is x. If
such a pair is found, the value of
sassoc 1s this pair. Otherwise, the
function u of no arguments is taken
as the value of sassoc.

- copy[x] - This function makes a copy of the

EXPR list x. The value of copy is the
location of the cople 1ist. -

III-21

—

o O

et S o S gy Sy S sl

s S wost S s B v

o B

intersection[x;y]
EXPR

union[x;y]
EXPR

“proplx;y;ul
EXPR

reverse[1]
EXPR

substix;y;z]
EXPR

This function "eturns with a 1list
whose elements were members of both
lists x and y.

This function s entered with two
lists. It returns with a 1list con-
sisting of all elements included on
either of the two original 1lists.

If the same item 1is a member of both
original lists, it is included only
once on the new list.

The function p:rop searches the 1list
X for an item that 1s equal to y. |
If such an element is found, the
value of prop is the rest of the 1list
beginning immediately after that
element. Otheirwise, the value ls
ul], where u A8 function of no

arguments.

This 1s a funciion to reverse-the’
top level of a list., Phusy usiiig
reverse on

(AB(cD)=(cD) BA)

This functilon gives the result of
substituting the S-expression x for
all occurrences of the atomic symbol
i in the S-expression z.

IlI-22

s B

O OO & oo O &) o o |/

sublis[x;y]
EXPR

evala[x;a]
SUBR

apply[fn;args;a]
SUBR

remove([x;1]
EXPR

remprop[x;y]
EXPR

put[x;y;2z]
EXPR

Here x is a list of pairs:
((uy.vy) (uyevy) oot (uyevy))

The value of sublis[x;y] is the
results of substituting each v
for the correspoading u in y.

This is the regular eval in the
7094 LISP. Its first argument is
a form which is esvaluated by using
the values obtained from a, a list
of dotted pairs. That is, any
variables appearing in x that also
appear on & will be given the
value indicated on a.

apply applies the function fn to
the arguments args with the values
obtained from a, i.e. the argu-
ments of fn on args are not evalu-
ated but given to fn directly.

a is used to evaluate free vari-
ables in fn as described above.

The function remove removes all
occurrences of x from list 1.

This function removes all occur-
rences of the property with label
¥y from the property list of x.

This function pul;s on the property
list of x, the label y followed by
the property z. The current value
of z replaces any previous value
of z with label y on this property
list.

ITI-23

O OO o OO O O e O/, o ¢

O /Mmoo o

add[x;y;z]
EXPR

getp[x;y]
EXPR

deflist[x;ind]
EXPR

select[x;yigyg .

FSUBR

-;yn;ZJ

This function adds the value z to
the list appearingz under the prop-
erty y on the aton x. If x does
not have a property p, the effect
is the same as put[x;y;list[z]].

This function gets the property
with label y from the property
list of Xx.

NOTE: Both prop and get may also be
used on property lists. However,
since getp searchss a list two at
a time, the latter allows one to
have the same obJjesct as both a
property and a value. e.g., if
the property list of x is
(PROP1 A PROP2 B A C)

then get[x;A] = PROP2,

but getp[x;A} = C.

This function is ased to put any
indicator on a property list. The
first argument is a list of pailrs
(where the first of the pair is a
name and the second party of the
pair is the property to be stored
with the indicator on the property
list of the name) and the second
argument is the indicator that is
to be used.

An example of arguments for this
function is:

(a5 (aq e4)s5 (9p e5)s5 «+-(a, e,); e]

III-24

= 0O 4O O

= O O

o o o O O

G S st B i |

selectq[x;y;2]
FSUBR

time[x n]
EXPR

gegag(x]
SUBR

reclaim|]
SUBR

field[n]
SUBR

nth{x;n]
EXPR

The qi's are evalaated in sequence
until one is found such that qy =
q, and the value of select is the
value of the corrssponding ey If
no such qy is found the value of
select is that of e.

selectq is identical to select ex-
cept that the qi's are not evalu-
ated--only q.

This function performs computation
X n times and indlcates average time
in tenths of seconds.

If x=T garbage collector will
print message when entered. If
x=NIL, no message is printed.

This function inltiates a garbage
collection and returns with the
number of available LISP words in
free storage.

This function calls field n from
the drum. (See description of
system program linking.)

This EXPR has as inputs a 1list Xx
and a positive integer n. Its
value is a list whose first element
is the nth element of 1llst x. Thus
if n =1, it returns the list x it-
self. If n = 2, it returns cdr[x].
If n =3, it returns cddr[x], etc.

ITI-25

ot B wees N wt B vealp

editf[x]
EXPR

editv[x]
EXPR

editp[x]
EXPR

edite[x]
EXPR

This EXPR gets the expression
which is the definition of the
function named x and gives it to
edite.

This EXPR gets the value of the
atom x and gives it to edite for
editing.

This EXPR gets the property list of
the atom X, ete.

This function is the executive for
an editing facility for LISP ex-
pressions. The eargument of edite
must be a list to be edited. When
edite has been celled, it prints
out EDIT, and then waits for input
from the on-line teletype (or the
reader if typein is set to NIL).

The input that meay be typed in may
be a positive integer, a negative
integer, or zero, or one of these
as the first element of a two-
element list, or NIL, or one of
several special lists described
below. Typing in NIL terminates
editing.

This editing program allows you to
edit any subexpression within the
current level expression, that is,
you can replace or delete any sub-
expression of thils expression, or
insert anything tefore any subex-
pression of this expression. An

III-26

s I |

k

e R B o Bl

input (n exp) where n is a positive
integer will replace the nth expres-
sion in the current level expression
by exp; if n is a negative integer
it will put exp just before the nth
subexpression in the current level
expression. (n) where n is a posi-
tive integer (with no expression
following this integer) will delete
the nth expression.

Warning: Typing '{1)", where current
expresslon is a singleton, will not
have desired effect.

An input of O will take you up to
the next higher level expression.
If the input to edit is a positive
integer, the nth-subexpression of
the current expression will become
the expression that can be edited.

An important thing to note is that
all editing is final in the sense
that any changes that are requested
are put in with rplacas and rplacds.
It is the original expression which
has been modified to give the edited
version; to return to the original
expression you must re-edit. How-
ever, by using the COPY and RESTORE
feature, the user :can protect him-
self against errors in editing. The
function edite calls editif, edit?2f,
edit2af, and edit3f'to do all the work.

IIT-27

o T

= o o

Other special commands are:

COPY copies and saves entire
expression being edited
as it currently exists.

RESTORE Restores expression as
of last copy: the
current level expression
will be the current level
expression at last copy.
RESTORING without copying
will have no effect.

p Same as (p ©0).
(p n) Prints the nth subexpres-

sion of the current ex-
pression to a level of 2,
using LEVELN described be-
low. If n is zero, prints
current expression to
level 2.

(p nm) Prints nth subexpression
to a level m.
All printing may be interupted.

(N e €5 -..)

which will tack the expressions

€4 €55 ... to the end of the current
expression.

(E exp) will print the value of

eval [exp]. (L n exp) will compute
v = eval[exp] and then act as if
edit were given (n v). This allows
you to insert the value of a compu-
tation in the current, expression, at
subexpression n. (n must be a num-
ber).

III-28

et N e S ety S ey B g S gt

leveln([x n]

(LT n) will insert a left parenthesis
immediately before subexpression n

in the current expr:ession and a match-
ing right paren at the end of this
current expression. For example, if
e = (A BC)

(LI 2) yields (A (B C)).

(LO n) will remove 2 left paren from
the nth subexpression, and take a
corresponding right paren from the
end of the current expression, e.g.,
for e = (A (B C) D)

(LO 2) yields (A B C)

(RO n) will remove a right paren
from the nth subexpression of the
current expression, and insert one
in at the end of the current top
level expression, e.g.,
for e = (A (B C) DE)
(RO 2) yields (A (B C DE))

1]

(RI m n) will insert a right paren
in the nth subexpression of the mth
subexpression of the current expres-
sion, removing one from the end of
the mth subexpression, e.g.,

for e = (AB (CDE)F)

(RI 3 1) yields

(A B (C) DEF)

Abbreviates 1ist x at level n, using
the symbol ampersand, "&," to indi-
cate greater depth. For example,
leveln [(A (B C) (D (E F) G)) 2] is
(A (BC) (D&G)).

III-29

%iii =D @D OO T

The following 9 functions form a Break Packags which allows the
user to make a break conditional upon the result of some computa-
tion and thus arrest the operation of a function. He may interro-
gate the broken function as to the current values of its arguments
or other variables, or perform arbitrary LISP computations; then
he may return with a specified value for it without actually
entering it. Alternatively, the user may just "crack" a function,
i.e., print out the result of some computation before executing
the function and print out the final value of this function.

‘break[fn;when;what] break is a function of three argu-
HEXPR ments: the fuaction to be broken,
under what conilition to break, and

what to print out when a break occurs

If when = T, tae function always
breaks. If when = (NIL) a crack is
made in fn. IF what = NIL, no

information 1s printed out. break . -

redefines fn using breakl so that af-
the time the fanction would have”
been entered, Jreakl is errtered
instead with tiie definition of the
function and iaformation regarding
the conditions for breaking.

unbreak[fn] unbreak redefines fn as 1t was before
EXPR ” the break and returns the value fn.
If fn is not broken when unbreak is
called, the value of unbreak is
(FN NOT BROKEN).

III-30

™ & O & B 55 O

a2 o o oo

> o =

breaklist[1]
FEXPR

unbreaklist[1]
FEXPR

breakat[fn;where;when;what]
EXPR

unbreakat|[fn;where]
EXPR

breakproglfn;1i]
EXPR

breaklist is a function of one argu-
ment, a list of function names. It
performs (BREAK FN T NIL) for each
function name and returns the 1list

of values of bhreak. Nofe that

(BREAK FN T NIL) will cause fn always
to break, and will not print out

any special message.

This function performs (UNBREAK FN)
for each function on the 1ist 1.

This function is similar to break
except that instead of inserting a
break at the beginning of fn, it
allows the user to insert a break
at any top-level place in fn. The
argument where indicates the label
or statement at which the break is
to occur. The other arguments are
used as 1n break.

This function removes a break in-
serted by breakat.

breakprog is entered with the name
of a function and a list of places .
in that function where a break is
desired. breakprog performs
(BREAKAT FN WHERE T NIL) for each
place on the 1ist 1.

IIT-31

=

o

== 3

unbreakprog[fn]
EXPR

breaki[form;when;fn;what]
FEXPR

This function performs
(UNBREAKAT FN WHERE)

for each place where a break
exists in fn.

Although this function is not
entered direct:ly by the user, it is
the heart of all the break functilons
and 1s entered when a break occurs.
After the specified information 1is
printed out, breaki listens to the
typewriter or teletype for inputs.
If STOP is input, a normal,

exit is achieved. If RETURN FOO

is input breaki returns (EVAL FOO).
If QUIT is :nput, it performs
(ERROR FN). f EVAL is input, it
evaluates fn. If a normal exit 1s
subsequently achieved via the STQOP
command, breakl does not reevaluate
fn, but uses the value obtained Wy
the EVAL command. The EVAL
feature is useful for evaluating a
broken function without "letting go"
of the break, e.g., to examine the
effect of executing a broken furce
tion. If OK Is input, a normal
return is made without printing the
value of the function. Any other
input to breall is evaluated, and
its value printed. This function
uses bpil to do part of its work.

TII-32

Arithmetic Functions (all arguments must be numbers)

90 B v B wps |

greaterp[x;y] T if x > y3
SUBR NIL otherwise

lessplx;y] T if x < y;
LY EXFR - NIL otherwise

zeropl[x] T if x is zero;
@ EXPR NIL otherwise °
| minusp[x] T if x is negative;
B EXP R NIL otherwise
{} numberp[x] T if x is a rumber;
4 SUBR NIL otherwise

= C OO -

adda[x] %+ 1
EXPR
suba[x] x -1
EXPR
plusi{x;y] x +y (This FSUBR may have any
FSUBR number of arguments.)
minus(x] - x
SUBR
times[x;y] product of x and y (This FSUBR
FSUBR
may rave any number of
arguments.)
III-33

= O o ;&

quotient[x;y]
SUBR

difference[x;y]
EXPR

remainder[x;y]
EXPR

divide[x;y]
SUBR

greatest integer in quotient x/y

This function has for its value the
algebraic difference between its
arguments.

This function computes the number
theoretic remainder for fixed-point
numbers.

This function ylelis a dotted pair
whose first member is quotient[x;y]
and whose second mamber is remainder
[x;¥]. Remainder is defined in terms
of divide.

III-34

s R |

et O e Y e R e R e

)

s S s B

Following is a list of all atoms with APVAL's (per-
manent .values) in the basic system and ~“heir values.

blank
space
tab
comma
eqgsign
xeqs

f

nil
period
plus
lpar
rpar
slash
t

*E®
gmark
xdol
xsqu
xdqu
Xlbr
Xror
xarr
uparr
colon
xgreater
Xlesser
xnum
xper
xamp
xat.

space
space
tab

- & O N~~~ f

-
-

-y tl——ll_l

® 2 RN I3 A VY .

III-35

e ———r—

SECTION IV,

LISTINGS OF S~EXPRESSIONS OF EXPR'S AND FEXPR'S

(prog nil
(cond
§null (fntyp (quote putdq))) (putd (print (quote putdq))
(quote (nlamda yp (prog2
putd (car x %cadr x))
car x)))
(return (putdq load (lambda (x) (prog (xx yyv zz)
clearbuf%
setq zz (typein nil))
11 (cond

(equal (setq xx (read)) (quote stop)) (return (prog2
?clearbuf)

isetq xgy%géglziigg))

cond
rint xx)))

(g0 115)

1 H HIR H H A T s A |

(putdg define
(lambda (x) (cond
(null x) nil)
t (cons ((lambda (y) (prog2
(putd (car y) (cond
| L (null (eddr y)) (cadr y))
f (t (cons (quote 1ambda) (car)))))
. car
(car x)) (define (edr x)))))))

(pu%ggagggi?g? (define x)))

| U (add
(Lambda (x y z) (prog nil
loop (cond
| U ((null (cdr x)) (rplacd x (list

y
~ (L1st
| = ((equai (cadr x) y) (rplaca (¢cddr x) (append
| (caddr x) (1list
| U ((setq x (eddr x)) (go loop)))
| (return y)))
i (add1
(lambda (x) (plus
|)
[(ap%iggbda (x y) (cond
u (null x{

t (cons (car x) (append (cdr x) y))))))

(assoc
(Lambda (xsas ysas) (cond
null ysas) nil)
equal (caar ysas) xsas} (car ysas))
t (assoc xsas (cdr ysas)))))

(attach

)§lambda (x ¥) (rplaca (rplacd y (cons (car y) (cdr y)))
x

(copy o
(lambda (x) (cond
null x) nil)
atom x) x)

t (cons (copy (car x)) (copy (edr x);)))))

(deflist f
(lambda (1 ind) (prog nil
loop (cond
({null 1) (return nil))g
put (caar 1) ind (cadar 1))
(setq 1 (edr 1))
go loop))))

(difference
(lambda (x y) (plus

X
(minus y))))

(e (nlamda (xeeee) (eval xeeee)))

(ersetq
(nlamda (ersetx) (errorset (car ersetx) t)))

(get

(Lambda (x y) (cond
null xY nil)

et 3hfsses

Iv-3

(getp
(lambda (x y) (prog (z)
setq z (cdr x))
loop cond
null z) (return nil))
eq (car z) y) (return (cadr z))))
cddr z)¥

(oo tomn 555

go loop

(intersection
(Lambda (x y) (cond
null x¥ nil)
(cdr x) ge??er (car x) y) (cons (car x) (intersection
(t 21ntersection (ecar x) ¥)))))

(lLast
(lambda (x) (prog (xx)
1 cond
((atom x) (return xx)))
setq xx x)
setq x Scdr x))
go 1)))

(lcone
(lambda (x p) (prog (xx)
return (cond
null x) p)
cdr (setq xx §last x))) (error (1list
(quote leconc

X
snull) (cons x xx))

null {car p)) (rplaca (rplacd p xx) x))
t (prog2

raed o)

(length

(lambda (x) (prog gn)
setq n O

1 cond

((atom x) (return n)))

setqg x (cdr x
isetq n (add1 n))
go 1)))

(lessp
(lambda (x y) gcond
equal X y) nil)
greaterp x y) nil)
t t))))
Iv-4

| N e T e D = D e O st D = RO s O s DO =8

(map
(lambda (mapx mapf) (cond
(null mapx) nil)
t (prog2
mapf mapx)
map (cdr mapx) mapf))))))

(mape
(Lambda (mapcx mapcf; (cond
(null mapex) nil
t (prog2
mapef (car mapex))
mape (edr mapex) mapcf))))))

(mapcar
(Lambda (mpecrx mpcrf; (cond
(null mperx) nil
t (cons (mperf (car mperx)) (mapcar (cdr mpcrx) mperf

1IN

(mapcon
(lambda (mpenx mpcnf; (cond
(null mpenx) nil
t (nconc (impenf mpenx) (mapcon {(cdr mpenx) mpenf

1IN

(mapeone
(Lambda (mpcnex mpenef) (cond
(null mpenex) nil)
1Y) t (nconec (mpenef (car mpenex)) (mapeone (cdr mpencx) mpenef

(maplist
(Lambda (mplstx mplstf) (cond
ﬁ(null mplstx) nil)
1Y) t (cons (mplstf mplstx) (maplist (cdr mplstx) mplstf

(minusp
(Lambda (x) (greaterp O x)))

(ni11
(nlamda (xnil) nil))

(nlsetq
(nlamda (nlsetx) (errorset (car nlsetx) nil)))

IV-5

(not
(lambda (x) (cond
(null x) t)
t nil))))

(prop
(lambda (x u) (cond
null xY
ual car X) y) (car x))

t (prop (cdr x) ¥ u)))))

(punch

(lambda (x) (prog (v z)
setq y épunchon t))
setq 2z (typeout nil))
print x)
punchon ¥y
typeout z
return x))))

ut
(Lambda (x y 2z) (prog nil
loop (cond .
((nll (edr x)) (rplacd x (list

y

E§e§&;% (cadr x) y) (rplaca (cddr x) z))
setq x (cddr x)y (go loopl))
(return y))))

(rdflx
(lambda (x) (prog gxx yy)
setq yy (typein t))
cond

(x (go r
setq xx (ergg%q (read)))
go r2)
rl cond
1) ((setq xx (nlsetqg (read))) (setq xx (car xx

((print x) (go r1)))

re typein yy
return xx))))

Iv-6

(remainder
T (lambda (x y) (cdr (divide x y))))

(remove

- (lambda (a x) (cond
3 nUlllX) ?ii; x)) (remove a (ecdr x))
te?ggnsa(car x) zremove a (cdr x))}ﬂ}))

U (remprop
(lambda (x y) (prog nil
10op oM 11 (oar x)) (reburn 3))
null (cdr x return
2e ual (cadr x) rplgcd x (cdddr x)))
t ?set x (car xX)
E (g0 loop))?)

(reverse
(lambda (x) (prog (u)
loop (cond
((null x) (return u)
setq u (cons (car x) u

seta x 4553 =)

(sassoc
(lLambda (xsas ysas usas) (cond
inull g as? (usas))

equal (caar ysas) xsas) (car sas;)
t (sassoc xsas (cdr ysas) usas))))

(=

(setnq
)))gnlamda (xsetnq) (setn (car xsetng) (eval (cadr xsetnq)

(setaq
(nlamda (x) (set (car x) (cadr x))))

(soundexin
(nlamda (x) (mapcar x § uote (lambda (yedx) (put (soundex
ysdx) (quote name) ysdx) ?)))

=g

(soundexout
(Lambda (x) (getp x (quote name))))

(sub1
(Lambda (x) (plus

X
-1)))

O O =B &, o =2

= B st I s I s IR s IR s I i

oz Wl o= Bl o Bl

o o &=

. “‘4444‘444

(sub2
(Lambda (a z) (cond
null a) z)

%ual (caar a; z})

dar a))
sub2 (cdr a)

(
)
(sublis

(lambda (a y) (cond

(atom (sub2 a y))
t (cons (sublis a (car y)) (sublis a (ecdr y)))))))

(subst
(Lambda (x y z) (cond
equal y z) Xx)
atom z) 2z
t (cons (subst x y (car z)) (subst x y (cdr 2)))))))

(tcone
(lambda (x p) (prog (xx)
return (cond
génull p) (cons gsetq xx (cons x nil)) xx))
null (car p)) (prog2
rplaca p (cons x nil))
»placd p (car p
(t (rplacd p (ecdr lacd (cclr p)
(rplacd (cons x (cdr p)) nil))))))rg

(time
(Lambda (x n) (prog (y m ¢ c1)
setq m n
setq ¢ (clock))
t1 cond
é(zerop m) (setq c1 (clock)))
t (progn
setq y §eval x;}
setq m (subl m
go t1))))
(setq m (divide (plus
cl

(minus c¢)) n))

prinl (car m))

prini period

prinl (quotient (times
(edr m
10) n)

Iv-8

prini blank)
print (quote seconds))
return y))))

(union
(Lambda (x y) (cond
null x¥ y)
member (car x) y) (union (cdr x

t (cons gcar xg (union (ecdr x) yg)ygg)

(zerop
(Lambda (x) (equal x 0)))

V-9

cscant I v

) o

6 I i S ey N i Y st S sty S s SO i IO |

) O &

(break

(lambda (fn when what) (prog (xx yy 2z)
cond
((null (setq xx (getd fn))) (return (prog2
(putd fm (list

quote nlamda)

quote (1))

list
(quote breaki)
nil
when
(setq xx (1list

n
(quete (undefined))))
what))) |
XX
((eq (setq yy (fntyp fn)) (quote fsubr)) (return
(cons fn (quote (is an fsubr))))
((null (eq yy (quote subr))) (go b2)))
(setq yy (rdflx (print (cons fn (quote (is a subr

need args))))))
putd (setq zz (gensym)) xx)
setq xx (putd fn (list
(quote lambda)

yy
(cons zz yy))))
b2 (cond
((eq (caaddr xx) (qQuote breakl)) (setq xx (
list
car xx)
cadr xx)
cadr (caddr xx))))))
(putd fn (list
car xx)

list
équote breaki)
caddr xx)
when
(1ist
n

(returgh?g; 3)

Iv-10

i I e R s B vt [e

(unbreak
(lambda (fn) (prog (xx yy)
return (cond
((null (setq xx (getd fn))) (cons fn (quote
(not a function%))g
an

™ (eq (setq yy (fntyp fn)) (quote expr)

zeq(?gaggdﬁq:§§e(gsﬁgg)%geaki))) (prog2

putd fn (list
car xx)
cadr xx)
cadr (c%ddr xx))))

(t fgons fn (quote (not broken)))))))))

(breaklist
(nlamda (x) (maplist x (quote (lambda (x) (break (car x

) t ni1))))))

(unbreaklist
(nlamda (x) (maplist x (quote (lambda (x) (unbreak (car

X))))));

(breakprog
(1ambda (bpx bp ; (maplist bpy (Quote (lambda (z) (breakat
bpx (car z) t nil))))))

(unbreakpro
(Lambda %x) (prog (xx)
setq xx (bpl x))
ul cond
; ((eq (caadr xx) (qQuote breakl)) (rplacd xx
(cddr xx)))

(setq xx (cdr §§)) (g0 ul))

t (return nil
(go u1))))

IV-11

Y = 3

iin I o B s B et DR st

OO oo oo oo

(breakat
(lambda (fn where when what) (prog (a)
setq a (bpl fn))
bl cond
((equal (car a) where) (return (prog2
rplacd a (cons (list

(quote breaki)

nil

when

(11st

fn
(quote at)
where)
what) (cdr a)))
where))

((set% a (cdr a)) (go bv1)))

(return (cons where (Quote (not found)))))))

(unbreakat
(lambda (fn where) (prog (a)
setq a (bpl fn))
ul cond
((equal %car a) where) (return (cond
(eq (caadr a) (quote breaki)) (prog2
rplacd a (cddr a))
where))
M (t (cons fn (append (quote (not broken at
1ist
‘ where)))g))
((set? a (cdr a)) (go ui)))

(return (cons where (quote (not found)))))))

Iv-12

s B 0.0 BN 60 N oo SN s B o JON = N o SO s IR e SO -0 Y i R s SR o SR s I v [st [s Y G

 (aote o))

(breaki
(nlamda (prkiﬁ) (prog (brkixx brkiyy brklzz)
Ollaull (setq brkixx (eval (cadr briix)))) (
return (eval (car brkix))))
((null (equal brkixx (quote (nil)))) (go b0

;:; (print (append (quote (crack in'!) (caddr brkix
(cond |
1Y) ((cadddr brkix) (print (eval (cadddr brkix)

go b3)
b0 ésetq brkiyy (print (append (quote (break in))
(caddr brkix))))
(cond
((cadddr brkix) (print (eval (cadddr brkix)

bl (cond
((eq (setq brkixx (rdflx brkiyy)) (quote quit
)) (error (caddr brkix)))
eq brkixx (quote stop)) (go b3))
eq brkixx (quote return)) (go b2))
eq brkixx (quote eval)) nil.
eq brkixx (quote ok)) (go b3))
and
éersetq gsetq brkixx (eval brkixx)))
nlsetq (print brkixx;)) (go b1))
((prznt brkiyy) (go b1))
(cond
({null (setq brkizz (ersetq (eval (car brkix
))))) (print brkiyy))
((print (append (caddr brkix) (quote (evaluated
)))) (set (caaddr brkix) (car brkizz))))
go b

b2 cond

))))

Esetq brkizz Erdflx nil))
setq brkizz (ersetq (eval (car brkizz))

o bl
) (e) ((print brkiyy) (go bi)))
b3 (cond
((or
brkizz :
(setq brkizz (ersetq (eval (car brkix)))

)) nii)
‘ ((print brkiyy) (go bi)))
; bl (cond
))) , ((eq brkixx (quote ok)) (print (caddr brkix
_— ((prog2
. (print (append (quote (value of)) (caddr
briix)))

(null (nlsetq (print (car brkizz))))) (print

-~ " (return- (car brkizz)))))
Iv-13

AV .
N P P
B PO Y D (S 00 0 O 1 S M AP MR ¥ o VP | B Rt — " T T " wepepuiet s

e T eom TN =0 B e T s SN st R s SO s QO = Y s RN o=~ SO i K e N o SO -t Y et [0 sl

(op1
(lambda (x) (prog (xx)
(return (cond
((and
(or

))) (caddr xx))
NN

feq (setq xx (fntyp x;) (quote expr))
eq xx (quote fexpr))
(eq (caaddr (setq xx (getd x))) (quote prog

(t (error (cons x (quote (not a program))))

IvV-14

(prettydef
(lambda (x) (prog (a)
setq a (punchon t;)
prini (quote " (")
print (quote defineq))

rettyprint x
D y%quote 2)"))

‘ print
[punchon a
return x)
. (prettyprint
m (1ambda (1) (map 1 (quote (lambda (J) (prog (ti)
o terpri)
prini lpar)
8 print (car J))
printdef (cond
(getd (car j)))
t (quote undefined))))
prinl r ;
(erpes)33)9))
(printdef
(1ambda (e) (prog (1 iunit iunitl)
setnq 1 1
/ setq 1unit (quote " "))
setq lunitl 3)
| prini iunit)
superprint e
return nil))))
(superprint
: %lambda (e) (cond

({(atom e) (cond
((member e (quote (Mme t m(u nyw

nn " ll.ll "’B))

(quo%e

e
équote ""“3;)))
ét prini e))
(t (prog (ep m
setq ep e)
prini lpar)

SE:I;:)LM (pack (1list

ﬁ St ,

Iv-15

o o o

o SN s S s I it

o .o 3

el e Bl = Bl e

{ T?‘x

Ll

)))

Pk
pd

rl
pm

pJ
pp

by

(

PTINITINSTINSTTN PIENITNTTINSTINSITINSTINSTNS TN T NS T N T T NS NSNS TN TN TN TN

cond
((member
or
select

(car ep) (quote (and

gselectq

list
plus
times
cond
proge

progn))) (go pl))
eq (car ep) (quote prog)) (go pp))
atom (car ep)) nil)

or

eq

superprint

geq 2caar epg équote lambda
caar ep

quote nlamdagg) (go pl
(car ep))

setq ep (cdr ep))

cond
ggnull ep
atom ep
prinl blank

go a)

go pd)))

% greturn (prini rpar)))

setnq 1 (subl 1))
prinl blank)
prini period)
prini blank)

prini ep)

return (prini rpar))
setnq 1 (add1 1))

superprint

(car _ep))

setq ep (cdr ep))

cond
Einull ep
atom ep
endline)
superprint
g0 pm

(&2,

(car ep))

setnqg 1 (subl 1))
return (prini rpar))
prinl (car ep))
setq ep (cdr ep g
setnq 1 (add1 1

cond
Eﬁnull ep
atom ep
prinl blank
superprint

EE!

(car ep))

setq ep (cdr ep))

cond

Iv-16

SR
atom ep g0 pk
éendline)
cond
((atom (car ep)) (so pz)))
prinl iunit
prinl iunit
px setnq i (plus
i

2))
ésuperprint (car ep))
setnq 1 (plus
1

-2)%
g0 pYy
prinl (car ep))
setng m (plus
iunitl
iunitl
(minus (length (unpack (car ep))))))
aa setng m (subl m))
prini blank)
cond
((null (or
ézerop m)
minusp m);; (go aa)))
setq ep (cdr ep
cond

%null ep; égo pjgg

D

PZ

=

e

= o

T Kk
SRR EFL

o

(endline
(lambda nil (prog (J)
setnq 9 i
terpri
a cond
ﬁizerop J) (return nil%)
minusp g) (error 1))
prini iunit
setnq J (subl J))
go a))))

3 O 33 3

IvV-17

3

0 A I MY B 1108 BOARMAD N FANG Ot A s S e s

3 O & O o £ 3

o O O O =

(trace
(lambda (x) (prog (a b c g)
8setq a x)
loop (cond
((null x) (return a)))
setq b %getd (setq ¢ (car x))))
setq x (cdr x))
cond
((null v) %progn
print (cons ¢ (qQuote (urdefined))))
go loop)))
((tracp ¢ b) (progn
print (cons ¢ (quote (was traced))))
go loop))))
gputd setq g (gensym)) b)
putd ¢ (list
quote nlamda;
quote (q1qq)
list
équote traci)
list
(quote quote)

(list
(quote quote)

g
(g0 10&%????)

(untrace
(lambda (x) (prog (a b c g)
set (quote a) x%
loop cond
((null x) (return a)))
gset gquote g; §car xg
set (quote x cdr x
cond
((tracp g (set (quote b) (getd g))) (progn
set % uote b) (cdaddr b))
2)))) putd %cadar b) (getd (set (quote c) (cadadr
remob c)))
(t (print (cons g (quote (nct traced))))))

(go loop))))

Iv-18

o e

O =2 (0O O D C O 3 & 4O e

el GO =

(tracp
(Lambda (x y) (and
eq (fntyp x) (quote fexpr)
eq (caaddr y) (quote traci)))))

(trac1
(lambda (ctrac gtrac xtrac)
print (cons ctrac (quote (enterad with))))
set (quote xtrac) (cond
((eq (fntyp gtrac) (quote fsubr)) (print xtrac

prog (atrac)

))

) ((eq (fntyp gtrac) (quote fexpr)) (print xtrac

(t (evalprint xtrac))))
iset (quote atrac) (eval (cons gbtrac xtrac)))
print (cons ctrac (quote (has value))))
(return (print atrac))))

(evalprint
(lambda (xvalp) (prog (avalp)
loop (cond

((null xvalp) (return avalp)))
(se% (quote avalp) (nnconc avalp (list
list
équote uote)
print %eval Ecar xvalpgg)))))
%set (quote xvalp) (cdr xvalp
go loop))))

Iv-19

—

O o £33

o =2 0 c0O0 64O o o &3

(== T scn R === I s R o

(editr
(Lambda (x) (prog2
(§utd x (edite (getd x)))
x)))

(editv
(Lambda (x) (prog2
(se? x (edite (eval x)))
x

(editp
(Lambda (x) (prog2
(§§%acd x (edite (cdr x)))
)

(edite
(Lambda (x) (prog (L y c)
typein t)
setq 1 (list

x
iprint (quote edit))
cond

null (ersetq (setg c (read))); (go a))
null ¢) (return (car (lastr 1))%
numberp ¢) (editif c))

eq ¢ (quote copy)) (setq y (copy 1)))
e3 ¢ (quote restore)) (sety 1 (cond

t 1))
§{eq ¢ (quote p)) (edit3f (quote (p 0))))

atom ¢) (print gmark ,
numberp (car c)) (edit2f c))
t (edit3f c)))

(go a))))

(editar
(Lambda (c) (cond
((eq ¢ 0) (cond
2(nu11 cdr 1)) (print gmark))

t (setq 1 (cdr 1)))))

({(greaterp ¢ 0) (cond
(greaterp ¢ (length (car 1))) (print gmark
t (setq 1 (cons (car (nth (car 1) c¢)) 1)))

(¢t (print gqmark)))))

Iv-20

=

)

=

(editer
(Lambda (c) (cond
((greaterp (car c) 0; §cond
((greaterp (car c¢) (length (car 1))) (print qmark

) (t (rplaca 1 (edit2af (subl (car c)) (car 1) (edr
c) nil)g%))

geq (car c) Og
null (cdr c) |
k)) greaterp (minus (car c)) (length (car 1)))) (print
qmar, (¢ (§§laca 1 (edit2af (subl (mlnus (car ¢))) (car 1)

~ (edr c) t))))))

(edit2af
(lambda (n x r d) (prog2
(cond
((null (eq n 0)) (rplacd (nth x n) (nconc r (cond
d (cdr (nth x n
t (eddr (nth x n)))))))
d (attach (car r) x
r (rplaca x (car r
)))(rplaca x (cadr x)) (rplacd x (cddr x))))
X

(edit3f
(Lambda (x) (cond
((eq (car x) (quote 1)) (edit2r (1list
?cadr X

eval (caddr x))));
((eq (car x) (quote e)) (ersetq (print (eval (cadr x

) eq (car x) (quote n nconc (car 1) (ecdr x)))
eq (car x) (quote p bpnt (edr x
member (car x) (quote (ri ro 1i lo
x (quote ((car 1)))) ¢
(t (print gmark))

} (errorset (nconc

Iv-21

s B

| . |

=]

(bpnt
(lambda (x) (prog (y n)
cond (car x)) (setq y (car 1))
ié;ﬁgggerp (car x) (length (car l;)) (g0 b1

minus car x o bl
§§ (Bt S Toar Int” (G201) (car 1))))))
con
null (cdr x)) (setq n 2))
null (numberp (cadr x))) (go bi))
minusp (cadr x)) (go bl))
t (setq n (cadr x))
(return (cond
(nlsetq (print (leveln y n))) nil)
t (print (quote edit))?)

b1 (return (print qmark))))

(leveln
(Lambda (x n) (cond
atom x) x)
zerop n) (quote A))
(mapcar x (quote (lambda (x) (leveln x (subi n)))

t
)N

(nth
(lambda (x n) (cond
atom x) nil)
greaterp n 1) (nth (cdr x) (subl n)))
t x))))

(Lastr
(lambda (x) (cond

null x) (error (quote (null list))))
null (edr x)) x

t (lastr (cdr x))))))

Iv-22

et I s I s IR s B s B o I s R s

e T s O e T e R s N s B

(ri
(lambda

(ro
(Lambda

(11
(lambda

(1o
(Lambda

(mn x) (prog (a b
setq a (nth x m)
setq b (nth (car a) n))
cond
((or
null a
gnull bg) (return (print gmark))))
rplacd a (nconc (cdr b) (cdr a)))
rplacd b nil))))

(n x) (prog (a)
setq a (nth x n))
cond
((or
null a)
atom (car a))) (return (print qmark))))
rplacd (lastr (car a)) (cdr a)
rplacd a nil))))

(n x) (prog (a)
gsetq a (nth x n))
cond
((null a) (return (print qmark))))
rplaca a (cons (car a? (cdr a)))
rplacd a nil))))

(n x) (prog (a)
isetq a (nth x n))
cond

((or
null a)
atom (car a))) (return (print gqmark))))
rplacd a (cdar a
rplaca a (caar a)))))

Iv-23

C

]

|

)

e B G

APPENDIX A

OPERATING THE BBN~LISP SYSTEM

/|, O

—J (o

]

il | [|

APPENDIX A.1
LISP LOADER

The LISP loader allows one to load several drum fields from
either paper tape or magnetic tape. In addition, there is
provision for transferring a system from drum to mag tape.

A complete system is treated as a file on tape (each core load
is one block of the file) and all tape commands are in terms
of files rather than blocks. Teletype should be connected

to channel O of the 630 scanner. '

Instructions for Loading System Programs onto the Drum

The LISP loader can be used for setting up the drum fields of
the system programs, including itself. To do this:

1. Read into core 1 the system program to be placed
on a drum field.

2. Read into core 1 the program at location O for
that drum field.

3. Read into core O the LISP loader.
4, Type: nd
where n is the octal number of the drum field onto

which to dump core 1.

Instructions for Loading LISP with the Loader

1. Load mag tape of system on tape drive and set it
to automatic on unit 1.

A.1-1

o o

2. Read into core 0 the paper tape of the LISP loader.
The mag tape will be rewound and the LISP loader will be
walting for typein. (The LISP.loader starts at 300.)’

3. Type: nr

where n is the octal number of the file to be read in.
26 drum fields will be read off of the mag tape onto
the drum and the typewriter will type out n < m where n
is the first block number read (starting with 0) and m
is the last +1 block number read.

L, Type: 1

" This will take the user to LISP.

Instructions for Writing LISP onto Mag,Ta;efwith the Loader

1. From LISP call the drum field with the LISP loader,
FIELD (25Q), or read into core O the paper tape of the
LISP loader. -

2. Type: nw
where n is the octal number of the file that you wilsh
to write.

=

e SR s N s B s RO o N e B s R

CoO O 4D 3o &

List of Commands Available in the LISP Loader (n is an octal number)

1

e

nr
nw
nd
nc
np
ng

nu

nb

nf

ns

calls LISP

calls the editor on fleld 26

reads onto the drum from mag tape file n
writes current drum system on mag tape flle n
dumps core 1 onto relative drum field n

reads relative drum field n into core 1
preserves core O on relative drum field n

gets registers 0-177 on relative drum
field n and transfers to O

selects the mag tape unit to be used.
Starting the program at 1300 automatically
selects unit 1.

sets the base fleld on the drum to n, 1l.e.,
drum loading will begin on field n from elther
core or mag tape. The base is 1initially set
to 1. The first relative fileld n is 1, not O.
Relative field n is absolute field

"'n - 1 + base".

sets the number of fields 1n a file. This
value is initially set to 26 octal.

rewind (origin)

space tape n flles forward (or backward if n
is negative). If n is zerro the-tape will be
moved to the beginning of the current file.
Spacing backwards has been known to—cause
trouble.

A.1-3

]

L

)

-

L—&J‘ L—qJ

—

s oo /oo 5

o 6O & &

Error Printouts

nof

fle

una

pmc n

nch
ept
wef n
drf n
nem

dwe

tried to reference fille O or drum fileld O
(either absolute or relative)

file error -- while searching for a designated
file, a file longer than €4 blocks was en-
countered. '

tape unilt not available, If this is the
first thing that happens 1t is because the
program has attempted to rewind unit 4 and
cannot for some reason.

bad parity or missed charzcter on reading or
checking tape block n

saw no characters for 6 irches

saw tape end point

write check failure mag tepe block n
drum read fall, absolute f'leld n

no end mark has been entered

drum write error

A‘l"'l‘l'

J

L

J

-

o O

o O

o 6O 33 o &

APPENDIX A.2
USING LISP FROM THE COMPUTER ROOM TELETYPE

To use LISP from the computer room teletype: Connect the
teletype to channel 0 of the scanner and then load the LISP
system as described in Appendix A.l, LISP LCADER. The teletype
will carriage-return and be waiting for input into evalquote.

Manual restart should never be used as there are no known ways
to cause the system to halt or crash (if either does occur,
record all particulars and deliver to D. Murphy). The following,
however, do exist:

start 202 reinitializes all sequence break
routines and restarts

start 203 reinitializes ertire system, 1i.e.,

kills everything and redefines only
initial SUBR's and FSUBR's.

A.2-1

CoO O OO oo &3 /&

J

{

o

O OO e OO

CoO & &

APPENDIX A.3
USING LISP FROM A REMOTE DATASET

To use LISP from a remote dataset: The LISP system should be
loaded and running as described in Appendix A.l1, LISP LOADER.
Then:

Set the channel O dataset phone to "auto" (the channel 0
phone is the one on which the number 491-5120 appears).

From the remote dataset, push the "tel” button, and when
the dial tone is heard in the attached receiver, dial
491-5120. The phone in the computer room will be answered
automatically, and a tone will be transmitted. When this
tone is heard, the "ORIG" button shoull be pressed,
establishing the connection.

Specilal Codes for Control (see standard chart of teletype codes
~ for complete set)

Octal Code Character Function
rubout deletes the line belng typed in

types out and Jeletes the last
character typel in

break key causes an interrupt followed by an

untrace. A second depression of
this key halts the untrace.

A.3-1

Octal Code

204

207

211

221

223

control G

control 1

Character

control D

<

control

controi S

s
g !

f

e
#

o~

Functilon

HANGUP, when transmitted by elther
computer or user, causes immediate
hangup on both ends

Bell
Horizontal talk, on output only,

causes carriage to be moved to .
next predefined tab stop

reader on: starts paper tape
reader 1f tape isjioaded

reader off: . when appearing on

paper tap€ only, causes reader to
stop after resding next character

A.3-2

>y B ey BN oy |

et S ey N et SN ey SN oy SN s S oy SO sy K sy SN oy

o &3 00 0 a0,

name of
function
add

addl

and
append
apply
assoc
atom
attach
break
breakl
breakat
breaklist
breakprog

car,cdr, (etc)

character
clearbuf
cond

cons
copy
define
defineq
deflist
difference
disp
displis
divide

e

edite

APPENDIX B

INDEX TO FUNCTIONS

description

section ILI, page

24
33
11
11
23
21

2
12
30
32
31
31
31

(R VI« R I

21
14
15
2h
34
17
18
34
18
26

Bol"l

listin

§pction

, _page

10
13
12
11
11

ww N n w

20

—J

o D o ;0o &5/ &/

e I == [g IR it NN it S st SO et SN iy

name of description 1listin

function section IIl, page section IV, page

editf 26 20

editp 26 20

editv 26 20

eq 1

equal 10

error 10

errorset 10

ersetq 10 3

eval 9

evala 23

feed 6

field 25

fntyp 9

gecgag 25

gensym 17

get 19 3

getd 9

getp 24 4

g0 3

greaterp 33

intersection 22 4

last 13 4

lcone 13 4

length 13 4

lessp 33 4

leveln 29 22

list 3

load 15 1

logand 186

logor 16

map 21 5
B.1-2

name of

function

mapc
mapcar
mapcon
mapconc
maplist
member
minus
minusp
nconc
nnconce
nlsetq
not
nth
null
numberp
oblist
or

pack
plus

prettydef
preityprint

prini
print
prog
prog
prog2
progn
prop
punch
punchon
put

description

gsec

on

; bage

Bol"3

20
20
20
20
21
16
33
33
12
12
10

2
25

2

33
2

g

listin
section s page

(S JER G RV R RN ;|

v WU

22

15
15

(@)

—J

s S e

oY

i 4

name of
function
putd
putdq
quit
quote
quotient
ratom
rdflx
read
readin
reclaim
remalinder
remob
remove
remprop
return
reverse
rplaca
rplacd
sassoc
select
selectq
set
setbrk
setn
setnq
setq
setqq
setsepr
subl
sublis
subst

description

section III,

page

9
9
10
2
34
5
11
mn
6
25
34
16
23
23
mn
22
17
17
21
24

25

VWO N O 0owv 3

33
23
22

B.l-l"

listing
section IV, page

o0 =

e

| | (| PR

CO OO O oo 0o

= Y st I s B s BN G

i

name of description listing

function section III, page secticn IV, page

tcone 12 8

terpri 4

time 25 8

times 33

trace 19 18

tracp 19 19

typein 5

typeout 4

unbreak 30 11

unbreakat 31 12

unbreaklist 31 11

unbreakprog 32 11

union 22 9

unpack 16

untrace 19 18

zZerop 33 9
B.1-5

B Ot Ot 0 Dt I A et et ey s o T ——

Security Classification

DOCUMENT CONTROL DATA - R&D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATIN G ACTIVITY (Corporate authot) 2a. REPORT SECURITY C LASSIFICATION

Bolt Beranek and Newman Inc. Unclassified

2b. GROUP

Cambridge, Massachusetts

3. REPORT TITLE

The BBN-LISP System

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Scientific Report No, 1

5. AUTHORC(S) (Last name, first name, initial)

Daniel G. Bobrow, D. Lucille Darley, Daniel L. Murphy,
Cynthia Solomon, Warren Teltelman

6. REPORT DATE 7a’ TOTAL NO. OF PAGES 7b. NO. OF REFS
February 1966 82 0
8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBER(S)
AF 19(628)-5065 - ARPA Order
b. PROJECT NO. No. 627 o
BBN Report No. 1346
c. 8668 9b. OTHER REPORT NO(S) (Any other numbers that may be assigned
this report)
a. AFCRL-66-180

10. AVAILABILITY/LIMITATION NOTICES

Distribution of this document 1s unlimited

11. SUPPLEMENTARY NOTES) 12. SPONSORING MILITARY ACTIVITY
ARPA Order No. 627, dated Hq. AFCRL, OAR (CRB)
9 March 1965. United States Air Force
L.G, Hanscom Field, Redford, Mass

13. ABSTRACT
This report describes in detail the BBN-LISP system, This LISP
system has a number of unique features; most notably, it has a
small core memory, and utilizes a drum for storage of list

" 8tructure., The paging techniques described here allow utili-
zatlon of this large, but slow, drum memory with a surprisingly
small time penalty. These techniques are applicable to the
design of efficlent 1list processing systems embedded in time-
sharing systems using paging for memory allocation.

DD 2. 1473 o Unclassified

Security Classification

Security Classification

KEY WORDS .

LINK A LINK B LINK C

ROLE WwT ROLE wWT ROLE | ' WT

LISP

List Processing Language

Paging Systems

Drum Systems for Llst Structure
List Structures

Symbol Manipulation Language

INSTRUCTIONS

1, ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee, Department of De-
fense activity or other organization (corporate author) issuing
the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over-
all security classification of the report. Indicate whether
“Restricted Data’ is included. Marking is to be in accord-
ance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200. 10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
ized.

3., REPORT TITLE: Enter the complete report title in all
capital letters. Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesis
immediately following the title.

4, DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final,
Give the inclusive dates when a specific reporting period is
covered.

- S, AUTHOR(S): Enter the name(s) of author(s) as shown on
or in the report. Enter last name, first name, middle initial,
If military, show rank and branch of service. The name of
the principal author is an ahsolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day,
month, year; or month, year. If more than one date appears
on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination procedures, i.e., enter the
number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written.

8b, 8¢, & 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc.

9a. ORIGINATOR'’S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity. This number must
be unique to this report. .

9b. OTHER REPORT NUMBER(S): If the report has been

assigned any other report numbers (either by the originator
or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-

itations on further dissemination of the report, other than those

imposed by security classification, using standard statements
such as:

(1) *“*Qualified requesters may obtain copies of this
report from DDC.’’ :

(2) ‘“‘Foreign announcement and dissemination of this
: report by DDC is not authorized.”’

(3) *“U. S. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

”
.

(4) *‘U. S. military agencies may obtain copies of this
report directly from DDC. Other qualified users
shall request through

”n
.

(5) ‘“All distribution of this report is controlled. Qual-
ified DDC users shall request through

”
»

If the report has been furnished to the Office of Technical

Services, Department of Commerce, for sale to the public, indi-

cate this fact and enter the price, if known.

11, SUPPLEMENTARY NOTES: Use for additional explana-
tory notes.

12, SPONSORING MILITARY ACTIVITY: Ente: the name of
the departmental project office or laboratory sponsoring (pay-
ing for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though
it may also appear elsewhere in the body of the technical re-

port. If additional space is required, a continuation sheet shall

be attached.

It is highly desirable tha* the abstract of classified reports
' be unclassified. Each paragraph of the abstract shall end with

an indication of the military security classification of the in-

formation in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. How-
ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms

or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Identi-

fiers, such as equipment model designation, trade name, military

project code name, geographic location, may be used as key
words but will be followed by an indication of technical con-
text. The assignment of links, rales, and weights is optional.

Security Classification

"

	Title
	Table of Contents
	Foreword
	Abstract
	I. Introduction
	II. The Internal Structure of the BBN-LISP System
	III. Description of Functions in BBN-LISP
	IV. Listings of S-Expressions of EXPR's and FEXPR's
	Appendix A. Operating the BBN-LISP System
	A.1 LISP Loader
	A.2 Using LISP from the COmputer Room Teletype
	A.3 Using LISP from a Remote Dataset
	Appendix B. Index to Functions
	Document Control Data

