
Daniel G . Bobrow
D . LuciLle Darley
Daniel L. Murphy

Cynthia Solomon
Warren Teitelman

Bol t Beranek and Newman I n c .
50 Moulton S t r e e t

Cambridge, Massachusetts 02138

Contract No. ~ ~ 1 9 (628)-5065

P r o j e c t NO. 8668
S c i e n t i f i c Report No. 1

February, 1966

 h he work r epor t ed was supported by t h e Advanced Research
P r o j e c t s Agency, P .R. No. CRL-56176, ARPA Order No. 627,
dated 9 March 1965.)

Prepared f o r :

A I R FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH

UNITED STATES A I R FORCE
BEDFORD, MASSACHUSETTS

THE BBN-LISP SYSTEM

Daniel G . Bobrow
D . L u c i l l e Dar ley
Daniel L. Murphy

Cynthia Solomon
Warren Teitelman

Bo l t Beranek and Newman Inc .
50 Moulton S t r e e t

Cambridge, Massachuset ts 021.38

Cont rac t No. ~ ~ 1 9 (628)-5065

p r o j e c t NO. 8668
S c i e n t i f i c Report No. 1

February, 1966

 h he work r epo r t ed was suppor ted by t h e Advanced Research
P r o j e c t s Agency, P.R. No. CRI-56176, ARPA Order No. 627,
da ted 9 March 1965.)

Prepared f o r :

A I R FORCE CAMBRIDGE RESEARCH LABOIUTORIES
OFFICE OF AEROSPACE RESEARCH

UNITED STATES A I R FORCE
BEDFORD, MASSACHUSETTS

i s un l imi t ed .

TABU3 O F CONTENTS

Page

IX THE INTERNAL STRUCTUFB OF THE BBN-1;ISP
S Y S T E M m * e * * m * . * * * e . * * * * * w * * . * * * e . . , m * * * * * e 11-1

III DESCRIPTION OF F U N C T I O N S I N BBN-LIl5P 111-1

IV. LISTXNGS OF S-EXPRESSIONS OF EXPR "3
AND FEXPR'S**m.e*mm**em*m**.**m*.mtm.m*mm. I V - 1

APPENDIX A - O P W A T I N G THE BBN-LISP SYSTEP!

A - 1 LISP LOADER * * * * .. . * . m e w * * . * . I , *.em.. A.1-1

A-2 USING LISP FROM THE COMPUTER ROOM
T E L E W P E * * ~ * * ~ . e e m m . * e m e * m o m m * ~ * e A.2-1

A-3 USING LISP FROM A REMOTE DATIISET*** A.3-1

APPENDIX B - INDEX TO ~CTIONSmemm..m.m.,.m..m.. B.1-1

FOREWORD

The work reported here was performed at Bo:.t Beranek and
Newrnan Inc I n Cambridge, Massachusetts f o r the Advanced
Research P r o j e c t s Agency under Con t r ac t No, AF lg(628) -5065.

THE rnN-LISP SYSTEM

This report descr ibes in d e t a i l the BBN-LISP system. Thfs

LISP system has a number of unique f ea tu res ; most notably,
i t has a small core memory, and utilizes a d m for storage
of list stPucture. The paging techniques described here
allow utilization of this large, but slov~, drum memory with
a surprisingly small time penalty. These techniques are

applicable to the design o f efficient list processing systems
embedded in time-sharing systems using paging for memory
allocation,

SECTION I.

LISP is a highly sophist icated list-procel3sing language which
is being used extensively i n the a r t i f i c i i i l in te l l igence re-
search program a t Bolt Beranek and Newman. T h i s repor t
describes our LISP system, which has a nunber of unique
fea tures . Ideal ly , a LISP system would hiive a very large ,
f a s t , random-access memory. However, magnetic core memory
(tbe only large scale random- access memory avai lable) is
very expensive r e l a t i v e t o s e r i a l memory tlevices such a s
magnetic d m s o r d iscs . Since average access t i m e t o a
word on a drum o r d i sc i s approximately 1000 times slower
than access t o a word in a core memory, ui3ir1.g a drum a s a
simple extension of core m e m o r y would redilce the operating
speed of a system by a f ac to r of 1000.

We have developed a specia l paging techniclue which allows
u t i l i z a t i o n of a drum f o r storage with a much smaller time
penalty. Th i s technique allows us t o makis e f fec t ive use of
a LISP system on our PDP-1 which has only 8392 18-bit words
of 5 microsecond core memory and 92,312 words on a d m

w i t h an average access time of 16.5 milli13econds. I n addi-
t ion , the techniques reported here would :improve the speed
of operation of LISP systems embedded i n i;ime-sharing
systems using paging f o r memory a l loca t io~ l . I n these time-
sharing systems the user is a l located only a small por t ion
of core memory a t any t i m e , although h i s l~rogram can address
a large v i r t u a l memory. The port ion of h :~s data s t ruc tu re
and/or program not i n core is kept i n a s:lower secondary

storage medium such as a drum or disc. Tlius, to the user it
is very similar to the situation on our P3P-1, except that a
hardware mechanism makes the program t ~ a n ~ s p a r e n t t o the
medium of storage of any page of his prog.ram.

Section I1 of this report describes the internal structure
of the BBN-LISP system, and the mechanisms used to facili-
tate fast use of d m storage. Section I:CI describes the
LISP functions which are built into the bi3sic system. Sec-

tion IV contains listings of those functions which are
defined i n LISP.

Although we have tried to be as clear and complete as poss-
ible, this document is not designed to be an introduction to

LISP. Therefore some parts may be clear only to people who
have had some experience with other LISP !systems.

SECTION 11,

THE INTERNAL S T R U C m OF
THE BBN-LISP SYS'EN

The BBN-LISP System uses only a small core memory, but achieves
a l a r g e memory capacity by utilizing a drwr.. This drum is

used in t h r ee ways. F i r s t , t h e working prcgram i s divided into
th ree overlays, t he read and p r i n t (input-cutput) program, the

garbage co l lec to r , and t he i n t e r p r e t e r of 5-expressions. Only

one of these overlays is in core at any t i n e , although a number
of sub-programs common to all three remain i n core a t a l l times.

Secondly, t h e drum contains a l a rge push-down 1.ist f o r use i n
running recurs ive programs. This push-down l i s t i s double-
buffered; t h a t is, t he sec t ion of t h e push-down l i s t used most
recently i s i n core and the sec t ion used immediately preceding
t h i s sec t ion is a l s o there, so t h a t traveling between buf fe r s
does not neces s i t a t e a d m reference.

The third way of utilizing this large secondary s t o r e , the drum,

is f o r s torage of l i s t s t ruc tu re . If the entire remaining drum
s torage was used simply a s an extension of core memory, an
access t o the drum would be needed each time a new list element
was referenced; and LISP would be reduced t o operaating a t drum
r o t a t i o n speed. Instead, t he drum storage of l i s t s t r u c t u r e i s
divided i n t o pages. Each page is current ly 258 words (decimal);
and each page contains i t s own free s torage l i s t . The cons -
algorithm, f o r construct ing a new l i s t element, works as follows.

To cons t ruc t z = cons [x:y]:

1) If g i s no t an atom, and there is room on t h e page
with y, then place z on this page - -
2) Otherwise, i f x i s not an atom, an3 there i s room
on t h e page with x, p u t z on t h a t page - -
3) Otherwise, p l ace - z on t h e page i n -ore with maximum
free s to rage .

This algori thm tends t o minimize cross l i n b g e s between pages
and t o l i m f t any single s t r u c t u r e t o a very few pages. Thus
when working with this s t m c t u r e , it i s un l ike ly t h a t one w i l l
make re fe rences t o more than a few pages f o r a r e l a t i v e l y long
period of time. Since these pages can reside in core, no drum
r e fe rences a r e needed. For example, i n e n t w i n @ ; the d e f i n i t i o n
of a funct ion , the e n t i r e d e f i n i t i o n tends to appear on a s i ng l e
page. Thus, during t h e i n t e r p r e t a t i o n of a funct ion , m u l t i p l e
drum references are usua l ly unnecessary.

Although we have not y e t run this LISP system on a l a r g e problem
where we can make a reasonable t iming compa:rison, we can give
the following anecdotal evidence f o r t h e inc rease i n speed due
t o this paging system. The run l i g h t on the PDP-1 goes o f f when
a drum swap i s tak ing p lace . I n a n o l d e r ve r s ion of PDP-1 LISP
t h e drum was t r e a t e d as an extension of core memory. When any
problem was run, t h e run l i g h t seemed t o go o f f completely, in-
d ica t - t h a t t h e machine was spending almo:st a11 of its time
doing d m t r a n s f e r s . I n this system, however, the run light
seems t o burn as b r i g h t l y as t h e rest, i n d i c a t i n g t h a t r e l a t i v e l y
few drum t r a n s f e r operations occur except when going between t h e
three overlay packages, t h a t is, when going from input and out-
p u t back t o t h e interpreter o r going into a garbage c o l l e c t i o n .

On t h e research computer, because of t h e d ~ v m storage, we
c u r r e n t l y have i n use an e f f e c t i v e f ree s to rage l i s t of approx-
imately 25,000 LISP words, 1. e . , double wold p a i r s (p o i n t e r s) .
Each LISP word is, of course, two 18-b i t PIrP-1 words. I n t h e
extended vers ion of LISP t h a t w i l l be used on t h e h o s p i t a l
system we will have 256,000 LISP words for f r e e s to rage .

There a r e a number of d i f f e r e n c e s between %his system and 7094
LISP aside from t h e s to rage conventions. I'or example, t h e value

of a v a r i a b l e i s s to red i n a special value c e l l f o r that var i ab le ,
t h a t is, as c a r of' the atom name. An atom i s d i s t ingu i shed by -
its address, which i s loca ted in a fixed region of v i r t u a l
memory space. Thus one need not r e fe rence a s t r u c t u r e , bu t only
look a t i t s address, i n o rde r t o t e l l whether o r not it is an
atom. If x is an atom, then cdr[x] i s t h e property l i s t of t h e
atom, as i n LISP. However, t h e print name of t h e atom i s
no t t o be found on this property list. The: u s e r can only g e t
a t the p r l n t name with t h e i n s t r u c t i o n s pack and unpack. Sim- -
i l a r l y , t h e d e f i n i t i o n of an atom as a func t ion is hidden away
from t h e user i n a s p e c i a l c e l l a s soc ia t ed with t h e atom name.
Two funct ions , getd[x] and putd[x;def] a r e used t a g e t t h e def-
i n i t i o n of a funct ion, and place t h e d e f i n j t i o n i n t h e func t ion
c e l l of an atom, r e spec t ive ly . The value c f g e t d l x] on an atom
def ined as a machine language subrout ine ie a numerical cons tan t
which bea r s some re la t ionsh ip t o t h e i n s t r u c t i o n t h a t must be
executed t o ob ta in access t o t he subrout ine.

When a new func t ion i s entered, t h e o ld values of i t s v a r i a b l e s
a r e pushed down on t h e push-down l is t , and t h e c u r r e n t va lues
are s tored i n the value c e l l s . Since t h e c u r r e n t value of any

v a r i a b l e i s always t o be found i n i t s value1 c e l l , free v a r i a b l e s
are no problem. However, t h e r e i s the usua.1 ariomalous case of
c o n f l f c t i n g free variables i l l func t iona l ax8gurnents. This can
be circumvented by us ing s u f f i c i e n t l y un1qc.e v a r i a b l e names.

Because of t h e way v a r i a b l e values are s to red , t h e main inter-
preter, eval , obviously does no t use an A-list, and i s t h e r e f o r e
a func t ion of only one argument. The func t ion eva la deffned
i n t h e BBN-LISP System w i l l s imulate the ef ' fec t of the usual
eval[x;a] , - a being an A-list.

D i f f e r e n t LISP systems employ d i f f e r e n t methods to achieve t h e
fol lowing two e f f e c t s i n funct ions labe l led FEXPR!sin 7094 LISP.
These two e f f e c t s a r e (1) giving a func t ion t h e a b i l i t y t o have
an indefinite number of arguments, and (2) g iv ing a func t ion the

a b i l i t y t o r ece ive i t s arguments unevaluate!d.

On t h e 7094 anFEXPR i s defined by p u t t i n g tihe funct ion definition
on the proper ty l i s t a f t e r t h e f l a g , FEXPR, and t r e a t i n g it as
a s p e c i a l case i n t h e i n t e r p r e t e r . In BBN-LISP we c a l l func t ions
which have a b i l i t i e s (1) and (2) FEXPR1s, bt.t we define them

d i f f e r e n t l y . The way anFEKPR is defined irk BBN-LISP i s as
follows: in s t ead of the usual lambda fol lc~wed by a l i s t of
va r i ab les , t h e de f in ing form is preceded by nlamda followed by

a l i s t containing a single var i ab le . When a func t ion with an
nlamda i s entered, everything following the) func t ion name i n t h e
form t o be evaluated is placed on a sLngle l i s t and becomes the

value of t h e single argument of t h i s FEXPR. Thi s i s passed t o
t h e func t ion unevaluated. I n o rde r t o eva lua te any p o r t i o n o f
t h i s l is t , an e x p l i c i t c a l l t o eval must be made. See "defineq"
i n t h e l i s t i n g s f o r an example of t h e use cbf t h i s device.

t h i r d reason FEXPR1s and FSUBR1s are used or1 7094 LISP i s t o
make the A - l i s t avai lable t o a program. Hourever, s ince
there i s no A - l i s t i n BBN-LISP t h i s w i l l notl concern us here.

Another major difference between BBN-LISP arid 7094 LISP i s
due t o t he f a c t t h a t the 7094 has f loa t ing point hardware,
and the PDP-1 does not . Any f loa t ing point machinery would
have t o be in terpreted on the research computer. This would
be expensive i n both time and space, and, therefore, i n t h i s
version of LISP there i s only in teger ari thmetic. A compiler
i s being planned f o r the PDP-1 and w i l l be clescribed i n a
l a t e r docwnent.

SECTION 111.

DESCRIPTION OF FWCTXONS IN BBN-LISP

cons[x; yl
SUBR

car[%]
SUBR

caar[x] = car[carCx1 1
SUBR

cons constructs a dotted pair of
7

x and y. If p i s a l ist , x becomes
w II

the first element of thak list.

car gives the first element of a
7

list C x, or the l e f t element of a
dotted pair _x. Nominally undefined
for atoms, it gives the binding

(value) of an atom _x.

cdr gives the t a i l of a list (all . -
but the first element). This is

also the right member of a dotted
pa i r . If - x ia an atom, cdr[x] --
gives the property list of 5.

All 30 combinations of nested cars
and - cdrs up to 4 deep are included

In the system.

cddddr[x] = cdr[cdr[cdr[cdr[x]]]]
SUBR

eq[x;yl
SUBR

The value of eg is T if _x and y are
I

identical atoms, includkng numbers;
otherwise the value is NIL. (w i l l

give T f o r l i s t s if their internal
representations are identical, NIL
otherwise.)

n u l l [x]
SUBR

atom[x]
SUBR

o b l i s t [I
SUBR

not [x]
EX?R

quote [x]
FSUBR

cond [XI
FSUBR

eq[x; NIL]

I ts value i s T i l ' - x is an atom;
NIL otherwise.

Gives a l i s t of t i l l atms i n the
system.

Its value i s truct i f i t s argument
i s fa l se , and f a l s e otherwise.

This i s a function t h a t prevents
i t s argument from being evalu-
ated. Its value i s - x i t s e l f .

The argument f o r - cond i s a l i s t .
Each element of -;he l i s t is i t s e l f
a l i s t containing n 2 1 items:
the f i rs t is an expression whose
value may be f a l l ~ e or t r u e (t h a t
is, NIL, o r anything which i s not
NIL); the r e s t mity be any expres-
s ions. This i s 'the condit ional
expression i n the LISP system.
The meaning of i't i s : i f t he
f i r s t element of the f irst l i s t
i s t r u e (not NIL), then the f ol-

lowing expressio:ns a r e evaluated.
The value of the condit ional i s
the value of the l a s t expression
i n t h i s s u b l i s t . If there is only
one expression, then the value of

progl l l
FSUBR

go[xl
FSUBR

l i s t [x l ; . . . ;xn]
FSmR

the conditional i s the value of
t h i s expression. T h i s value co-
incides with the value i n 7090
LISP for p a i r s clf items, hut
allows additionaJ f l e x i b i l i t y .
If the first element of the first
l i s t i s f a l s e (=: NIL), then the
second s u b l i s t 1s considered, e t c .
Thus, the arguments are searched
u n t i l a first element of a l i s t
is found which 1s not NIL. If

none a re found, the value of the
condit ional expzlession is NIL.

This fea ture allows the user t o
wri te an ALGOL4 i ke program con-
t a in ing LISP sta.tements t o be
executed. The argument is a l i s t ,
the f i rs t e1emec.t of which i s a
l i s t of program var iables . The

rest of the list i s a sequence of

statements, and atomic symbols
used as labels f o r t r ans fe r points .

gg is the function used t o cause a
t r ans fe r i n prog . (GO A) w i l l
cause the program t o continue a t
the label A.

The value of -- l i a t i s a l i s t of
the values of i t s arguments.

r e tu rn [x]
SUBR

p r i n t [x]
SUBR

p r i n l [x]
STJBR

t e r p r i []
SUBR

punchon[x]
SUBR

typeout [x]
SUBR

read [I
SUBR

punch [x]
EXPR

re turn i s the nclrmal end of a
pro&. Its argument i s evaluated
and i s the value of the prog i n
which it appeare .
Pr in t s .L x, followed by carriage
return, on speci f i e d devices
(see punchon, Qpeout) . Value
is x. -
Pr in t s one atom, 5, with no space
or carr iage retc.rn following .

Pr in t s a carr iage re turn . Value
i s NIL.

Turns punch on f'or p r i n t i f x = T;

turns punch off i f x = NIL.

Value i s former s e t t i n g of punchon.

If x = T, turns typewriter on f o r
pr in t ing. If x = NIL, tu rns type-
wri te r o f f . Val.ue f s former
s e t t i n g of typecut. -
Reads on S-expression from
specif ied device (see typein) .

This func t ion sets punchon t o t,
s e t s typeout t o nil, punches x, -
and then r e s to re s punchon
and typeout t o their or ig ina l
values,

typein[x]
SUBR

ratom[]
SUBR

setsepr[x]
FSUBR

setbrk[x]
FSUBR

If x = T read-in device i s s e t t o
typewri ter . If x = NIL read-in
device is s e t to reader. Value is
former s e t t i n g of typein.

Reads i n one atom from read-in de-

vice. Separation of atoms i s as
defined by the functlona setsepn
and se tb rk ,

These a r e both fWBRS and may have
up t o 18 argummts each. Arguments
should be octal numbers, e . g . , 77q
f o r ca r r i age re tu rn . Characters
defined by -- s e tb rk w i l l d e l i m i t atoms
and be returned as separa te atoms
themselves. Characters defined by

setsepr will n o t be returned and
w i l l serve only separa te atoms.
Fop example, t o make ratom read in
ordinary format, space coma
(33q), and carriage r e tu rn (77q)
are separat ion characters , and l e f t

paren (579 1, r ight paren (55q 1, 4
period (739) a re break chara&&rs.
n u s setsepr[oq 33q 7 7 ~ 3

setbrkl57q 554 734j
would set up these ~~'mcteristics.
The va lue of setsepr' and of s e tb rk -
is NIL,

feed [n]
SUBR .

This SUBR cleare the input and output
b u f f e r s of t he e equence break pack-
age, including t he sequence break
reader, ratom, .I--I read, arid B p e i n l i n e
buffers , and the case lower
case. T h i s mearis that i f you have
j u s t done a @ read, and the S-expression
d id not complete1 a l i n e , whatever
e l s e i s on t h a t l i n e w i l l be l o s t .
However, it is u ery use fu l i f you
want t o i n i t i a l h e the system, o r an
error has been made, and you want t o
c l e a r out what k.as been read i n on
a l i n e .

If x - T, readir, sets t h e te- letype
input. t o t he payier t ape reader .
Speci f ica l ly , i t e l iminates t h e l ine -
feed echo a f t e r a carriage re turn ,
and the delete characters, rubout
and colon, are r .ot recognized. Set-
ting - x t o NIL r e s t b r e s the s t a t u s t o
normal. Tfiis funct ion r e tu rns i ts
previous value.

The value of n nus t be a number, -
This funct ion outputs on t h e t e l e type
n carriage re tu rn- l ine feeds o r n - -
car r i age re turns depending on the
s e t t i n g of readln. --

character[n]
SUBR

T h i s funct ion outputs on the tele-
type a single charac te r with o c t a l
representation (code) - n. - n must
be a number.

progl [x ; Y I
SUBR

prog2[x;y I
SUBR

progn[x;y; . . . ; z l
FSUBR

set[x;yl
SUBR

This funct ion evaluates both i t s
arguments i n order, t h a t is, _x
first and then y, and then re turns
the value of 2.

The purpose of'this function i s t o
allow t h e evaluation of - x, before
returning y e

progn is an FSUBR which evaluates
each of i ts artpments i n sequence,
and re turns t h e value of its last
argument as its value. It is an
extension of progg.

This function sets t h e atom which

is the value oC x, t o t h e value of -
y, and returns the value of ye

This FSUBR is Ident ica l t o set
J

except t h a t ths first argument i s

quoted.
Example: If the value of x is 2, -

and the value ~f y is 2, then s e t
[x;y] would r e s u l t i n c having -
value b, and b returned. setq[x;y]

.L -
would result in x having value 5,

I

and b returned. The value of y i e -
unaffected.

setn requires a:ad checks for an atom -
as the value of the first argument,
and a number as the second. If the
f i r s t argument Ls not already de- -
fined as a numbtar, the value of the

second will be moved t o a new cell
in FWS (Full Wo:d space), the loca-
tion of which w : l l l be stored in the
value cell of the first argument.
Otherwise, setn replaces the FWS cell -
containing the previous numeric
value of the fimt argument by the
numeric value ol' the second, If the
second argument was the most recent '

number added t o FWS, the cell con-
ta ining i t s value is returned to t he

free I . i s t .

c reates a new cell1 in EWS containing
the old value of' P plus 1. This
value gets moved to the FWS cell con-
taining the old value.

The following w i l l lose:

(PROG . . (SET (QUOTE A) B)
(SETN (QUOTE A) (PLUS A 1)) . . .)
because the cell containing the value

of A is the same as that for B. To
avoid the problea, t h e first SET
should have been a SETN so t h a t a
unique numeric value cell would have
been assigned f o r A.

putdq[x;y I
FEXPR

geed 1x1
SUBR

eval [x]
S'UBR

Iden t i c a l to se4q except that neither -
argument is eva luated .
This FEXPR is i d e n t i c a l t o s e t n -
except that the f i r s t argument is
quoted.

pu td places the value of y into the
funct ion cell c f t h e atom which is
the value of x. This is the basic
way of definirq functions. putd is
mnemonic for ~ , t C I I d e f i n i t i o n on - x.
Value of putd 1s the definition
(value of y) .
This funct ion 1s similar to putd,
but both argumenCs are considered
quoted, and itfl value i s 2.

This funct ion g e t s the d e f i n i t i o n - -
of the furnctioul, whose name is ' the
value of x. If x is not a defined -
function, the value of getd[x] is
NIL; i f x is a SUBR o r FSUBR, t h e -
value is a number.

This funct ion gives EWR, FEXPR,
SUBR, FSUBR or NIL depending on
whether x is an EXPR, FEXPR, SUBR,

m

FSUBR o r not defined, respectively.
\

eval evaluates t h e expression x and \. - -
re tu rns t h i s value.

e r r o r s e t [f om; arg]
SUBR

/

ersetq[x]
FEXPR

nlsetq[x]
FEXPR

er ror [x]
SUBR

qu i t [I
SUBR

equal [x; y I
SUBR

This function c a l l s - eval with the
value of - form, and re turns with a
l i s t of this vrxlue i f ' no e r r o r is
encountered. :Cf an error is
encountered on the c a l l t o - eval,

e r ro r se t re tur~zs with the value
NIL. If a- i~ T, the message from
e r r o r is printed; the message is not
pr in ted i f arg = NIL.

This FEXPR is defined as
(ERRORSET (CAR X) T);
t h a t is , it i s the same a s e r ro r se t
with the argument quoted and the
e r r o r flag s e t t o T.

This FEXPR i s *Ldentical t o e r se tq
except t h a t the e r r o r flag is set
t o NIL and the e r r o r comment from
e r r o r will not be pr inted out.

e r r o r induces inn e r r o r with mes-
sage - x.

qu i t induces a "strong" e m r , La.-, -
w i l l unwind program
e r ro r se t s t o the top level .

The value o f . t l 2 i s function i s T i f
x and g a re es'lal, t h a t is , ident i - -
c a l S-expressllons , and NIL otherwise.
It is as fast i3S eq f o r atoms. -

and E x]
FSUBR

rdf lxlx]
EXPR

append[x;y I
EXPR

T h i s funct ion is an FSmRand can
take an i n d e f i n i t e number of argu-
ments. Its v a h e is T i f none of i t s
arguments has vialue NIL, and is NIL
otherwise.

o r i s a l s o a n FSUBR and may have an -
i n d e f i n i t e numbl4r of arguments (in-
cluding 0). o r has value NIL i f a l l -
of i t s arguments have value NIL,

otherwise, it hiss value T.

If x is NIL t h i 3 funct ion w i l l try -
t o read one S-e:lrpression from t h e
typewri ter with read[]; i f no e r r o r
occurred in reading, 3.6 w i l l r e t u rn
wi th l i s t of the S-expression t h a t .
was read. If a:? e r r o r occurs i n
reading, it r e tu rns with NIL. I f x
is not NIL, it w i l l at tempt t o read
an S-expression and keep at tempting
t o read it un t i ' l it gets one without
an e r ro r ; each t i m e it t r i e s t o read
an S-expression and g e t s an e r ro r ,
it w i l l p r i n t out x. I n t h i s case

.I

it re tu rns with t h e S-expression
i t s e l f (not 1 i s . t of the S-expression).

This funct ion copies l i s t x and -
appends l i s t y t o t h i s copy. The
value i s t he combined l i s t .

nconc [x; y]
SUBR

nnconc [x;yJ
SUBR

attach[x;y]
EXPR

tconc [x;p]
EXPR

This function i r r s imi la r t o
append, i n e f f ec t , but it actual -
l y causes t h i s e f f e c t by modify-
ing the l i s t st1:ucture JC, and
making the l a s t element i n t h e
l i s t - x point t o the l i s t x. The
value of nconc ::s a pointer t o
the f i rs t l i s t .I- ir, but since t h i s
first l i s t has now been modified
it i s a pointer t o the concate-
nated l i s t .

This function i r i the same as
nconc. nnconc :.s used by the
t r ace programs iio t h a t nconc it-
s e l f can be tracted.

T h i s function a1;taches x t o t he -
f ron t the
rplaca and an 'rplacd.

doing

T h i s function pl'ovides an e f f i -
c ien t way f o r placing an i t e m x -
a t the end of a l i s t E. This
l i s t i s the fira~t item on 2, t h a t
is , car[p]; cdrjp] i s a pointer
t o the l a s t element i n t h i s l i s t ;
x is placed on the end of the
I

l i s t by modifying t h i s s t ruc ture ,
and x i s placed on the l i s t as an -
item. The e f f e c t of t h i s function
i s equivalent t c j nconc [car [p] ;

l i s t [x] 1, with c:dr[p] updated t o
point t o the element of the
modified l i s t .

~conc [x ;p l
EXPR

l a s t [x]
EXPR

lengthlx]
EXPR

pre t typr in t [x]
EXPR

prettydef [x]
EXPR

This function i s s imi la r t o tconc,
except t h a t 111 t h i s case x is a l i s t . -
An e n t i r e lisl; will be tacked on t he

end of car[p], and cdr[p] will be

adjusted t o be! a pointer t o t he last
element of thi-s new combined l i s t .
Both tconc anti lconc work cor rec t ly
given nu l l arguments.

This functfon has as its value a
pointer t o t hc l a s t c e l l i n the l i s t

3 and returnz! NIL f f - x is an atom.

This function has as a value the
length of the l i s t u x. I f -...I x i s an
atom, it retu19ns 0.

The argument of p r e t t y p r i n t is a
l i s t of names of functions; it
p r i n t s and/or punches (depending on
the se t t i ngs) the de f in i t i ons of
the named functions i n a p r e t t y
format. It u1;il izes the functions
pr in tdef endline and superprint .

- 9 --$

This l a t t e r fttnction does a l l t he
work.

This function of one argument (a
l i s t of functi-on names) p r i n t s and/
o r punches " (I) = ~ Q " , followed by

the pre t typr in t .. - l i s t i n g of each of

def ine[x]
EXPR

these functions, followed by a r igh t
paren. A tap(! punched by gret tydef
can be loaded by the function - load
i f a STOP is punched on the end of
the tape. Tho value of pre t tydef

The argument of define i s a l i s t .
Each element of the l i s t i s itself
a l is t containing either two o r
th ree items, I n a two-item l i s t
the first item of each element o f '

the l is t is the name of a function
t o be defined, and the second i t e m
is the def in i~ lg lambda o r nlamda
expression. :Cn a three-item list
the first ite~n i s again the name of
the function ' 5 0 be defined. The
second its the lambda. list of var i -
ables and the t h i r d is the form for
the expression. A s an example
consider the :Pollowing two equiva-
lent expressions f o r defining the
function n u l l ,

def ineq[x; . . . ; z]
FEXPR

load[x]
EXPR

This FEXPR i s c:.osely r e l a t e d t o
define. Howeve]?, it can take an
i n d e f i n i t e numbtrr of arguments, and
it w i l l t r e a t them l i t e r a l l y , a s i f

they were quoted. Each of the argu-
ments must be a l i s t of t h e form
described as an element of t h e list
which i s t he argcument f o r define.
U s in@; def ineq ins tead of de f ine
allows one t o e:.iminate two p a i r s
of parentheses :in wr i t ing funct ions
t o be defined f o r loading with the

funct ion load. -
load is a funct:ion which reads suc- -
cess ive S-exprel3sions from t h e paper
t ape reader, anti evaluates each as
it is read. If x = T, then load -
p r i n t s the valur?; otherwise it does
not . load cont:inues reading S-ex- -
pressions and evaluat ing them, u n t i l
it reads t h e single atom STOP fo l -
lowed by a carr2age re turn , a t which
po5nt it return$! the value NIL.

Using - load is the standard way of
ge t t fng functiolls i n from the paper
tape reader; it saves having to
write sequences of
E(EVAL (READ)) .

unpack[x]
SUBR

remob [x]
SUBR

member[x; y]
SUBR

The argument of unpack should be an
atom. The valu~ of unpack is a l i s t
which contains, i n order, t h e char-
a c t e r s which mace up the p r i n t name
of t h a t atom.

The argument 2 3 f pack must be a
l i s t of atoms. The value of pack is
a s ing le atom whose p r i n t name is a
packed version of t h e print names of
a l l the atoms given i n the l i s t .
Thus
pack[(a bc def g)] = abcdefg,

The argument of remob must be an
atom. The effect of applying remob -
to this atom is t o remove a1l''t-

$!His of t h i s atom from the system.
is a good way of reclaiming @ace

from atoms which a r e no l o s f g e ~ m .
but it 1s very dangerouw and remob
should be used with cj&e. A f u t u r e
mention of t h e s~t;me~"%ltom name will
have no comec-f;l& with t h e old one
t h a t was f d m d l y there. In addi-
tiorl, a n y / i ~ t s which po in t t o this
,old atprh ill now be incorrect .

pirl SUBR checks to see if
x is a member of the l i s t y. If SO,

?-

'it re tu rns the value T; i f not, it
returns the value NIL.

rplacd[x;yI
SUBR

rplaca[x; y I
SUBR

disp[x a1
SUBR

Ttlis very dangerous SUBR places i n
the decrement of the c e l l pointed
t o by x the pointer y. Thus it -
changes the in t e rna l l i s t s t ruc tu re
physically, as opposed t o cons which -
creates a new l i s t element. T h i s

is the only way t o get a c i r c u l a r
l i s t ins ide of LISP; t h a t is by

placing a pointer t o t he beginning
of a l i s t i n a spot a t the end of
the l i s t . Using t h i s function care-
l e s s l y is one of the few ways t o
r e a l l y clobber the system.

This SUBR is skni lar . t o rplacd, but
it replaces the address pointer of
x w i t h y . The same caveats which -
applied t o u swg rplacd apply
t o rplaca.

This function 0.r no argument gener-

ates a unique symbol of the form
Annnn, i n which each of t he nt s is
replaced by a d Lgit. Thus the first
one generated 113 A 0001, e t c . This
is a way of generating new atoms for
various uses wiq;hin the system.

This function d:Lsplays one point on
the cathode ray tube at the point
whose coordinatc?~ are (x;y) and re-
turns T i f the :.ight pen saw the
displayed point, and N I L otherwise.

d i s p l i a [-1]
SUBR

logand[x; ...; z]
FSUBR

4x1
FEXPR

The argument of t h i s funct ion is a
l i s t o f successive x and y cmrdi-
nates t o be displayed.
For example:
displ isE (I 2 1 3 i 4) l
w i l l successively d isplay the

points a t coordLnates

(1,219 (L 3) and (t ,4)*
This is fasbr ,th&,*dis@-ery3ng eaetr-:
of these three points individualTf

I'

by using d i s ~ .

This FSUBR w i l l t a k e t he l og i ca l
AND of all of i t s argument as
oc ta l numbers aid return t h i s value.

This function, im FSUBR, will take
the l og i ca l OR,l)it-wise, of a l l of
i t s arguments, iknd re tu rn t h i s

number

This FEXPR is &?fined as eval how- '
ever, it is s h o r t e r and it removes
the necess i ty for the extra p a i r of
parentheses f o r the l i s t of argu-
ments for eval . Thus, when typing -
i n t o evalquote one can simply type
e followed by whatever one would
.Ic

type i n t o eval crnd have it + evaluated. -

get[x;yl
EXPR

t r a c e [x]
EXPR

t r a cp [x; y I
EXPR

untrace [x]
EXPR

T h i s funct ion g e t s from t h e l i s t x
t he item a f t e r ';he a torny on l i s t x. -
If y i s not on ';he l i s t x, t h i s -
funct ion return13 NIL. For example,
g e t [(a b c d) ;b l = c.

Th i s funct ion hirs a s an argument a
l i s t of names o:f funct ions. It
changes t he def':lnftion of these
funct ions so thlit when each funct ion
is entered, the values of t he argu-
ments of t h i s f ~ l n c t i o n a r e p r in ted ;
when t he value of t h i s funct ion i s
computed this vcrlue is p r in ted . Thus,
t r a ce [(plus ratom)]
gould cause pluls and ratom t o be

redefined so thlr t t h i s t r a c ing takes
place. The value of t r a c e is the

value of i t s argument 2. The work
of t r a c e is dont? by t he funct ion
tracl.

This funct ion t c ? Z l s whether t h e
funct ion named :c wlth d e f i n i t i o n g

r r

has been t r a c e d , Its value i s T
i f the funct ion is being t raced, and
NIL otherwise.

This funct ion undoes what t r a c e does,

and res tares o r i g i n a l
of t he functfon, ,

A word of warning: do not t r a c e

mpc [x; fn]
EXPR

mapcar[x; f n]
EXPR

mapconc [x; fn]

mapcon[x; fn]

the following fimctions or you
w i l l get i n an Lnfini te loop be-

cause these func:tions a r e used
within t r a c l i telelf: -
pr in t ; cons; s e t ; fntyp; eva lo

-3

return; evalprirlt - ; 4 c a r -9 cdr
nul l ; @.

T h i s function appl ies the function
f n t o each of tkte elements of t he -
l i s t x. It re turns the value NIL. -
This function appl ies the function
fn t o each of the elements of the -
list x. It crea.tes a new l i s t -
which is a map clf t he old l is t i n
the sense t h a t each element of
the new l i s t i s the value of
applying - f n t o the corresponding
element of the clld l i s t .

Identical t o magcar except t h a t -
it does an nconc instead of a

-*

cons, -
Identical t o maplist - except t h a t
it does an nconc instead of a --
cons,

map [x; fn]
EXPR

maplist[x; fn]
EXPR

assoc[x;a]
EXPR

COPY [XI
EXPR

This function applies the function
fn to successive tails of the list x.
..I) -
That is, first it computes fn[x], and
then fn[cdr[x]], e tc . until x is -
NIL. This function returns NIL,

This function computes successively
the same values that map computes;
it forms a new list consisting of
successive values - of applications of
this function.

If a is a list ~f dotted pairs, $hen -
assoc will prodme the first pair
whose first I t a n is x. If such an

U

item is not found, assoc will return
NIL.

The function sassoc searches y, which --
is a list of dotted pairs, for a
pair whose first element is x. If -
such a pair is .Found, the value of
sassoc is this :?air. Otherwise, the
function u of no arguments is taken -
as the value of sassoc.

This function miskes a copy of the
list 2 . The value of copy is the
location of the copie 11s t .

intersect ion[x; y]
EXPR

union[x; yl
EXPR

propLx;y;ul
EXPR

subst[x;y; z]
EXPR

This function :?eturns with a l i s t
whose elements were members of both
lists - x and y.

This function :is entered with two
l ists . It re turns with a l i s t con-
s i s t i n g of a l l elements included on
e i t h e r of the ';wo or ig ina l l i s ts .
If the same itern is a member of both
or ig ina l l ists, , it is included only
once on the new l i s t ,

The function pi?oz searches the l i s t
x f o r an item :;hat is equal t o y. -
If such an ele~rlent i s found, the
value of prop :is the r e s t of the l i s t
beginning immediately after that
element. Othelwise, t h e value i s
u[] , where u - kd function of no

This is a W;bn to reverse-Jthe'

top l eve l of a list, JZ¶ms, nsTTfg

reverse on
(A B (C D)) = ((c D) B A)

This function g i v e s the r e s u l t of
substituting the S-expression x f o r -
a l l occurrenceci of the atomic symbol
y i n t he S-explaession z. -

s ~ b l i s [x; y]
EXPR

evala [x; a]
SUBR

apply[fn;args;a]
SUBR

remove [x; l]
EXPR

remprop r x; YI
EXPR

put[x;y;zI
EXPR

Here x i s a l i s t of pa i r s : -
((ul*vl) (u2*v2) a ' (un*vn))

The value of sublis[x;y] i s the
r e s u l t s of subs t i tu t ing each v -
f o r t he correspo:nding u i n x,

.I

This i s the regular eval i n t he -
7094 LISP. Its first argument i s
a form which is lwaluated by using
the values obtai:ned from 2, a l i s t
of dotted pa i r s . That is , any
variables appearing i n x t h a t a l s o -
appear on a w i l l be given the -
value indicated (on a. -

apply appl ies the function f n t o -
the arguments a r ~ p with the values
obtained from 5, i.e. the argu-
ments of f n on a:= a r e not evalu- - - -
ated but given t o f n d i r ec t ly . -
a is used t o eva:Luate f r e e var i - -
ables i n fn as described above. -
The function remove removes a l l --
occurrences of x from l i s t 1, - -
This function rernoves a l l occur- --
rences of the progerty with l abe l

from the property l i s t of x. -
This function @;s on the property
l i s t of x, the l abe l followed by

-..)

the property z . The current value -
of z replaces any previous value -
of 5 with l abe l JT on t h i s property
l i s t ,

add[x; y; z]
EXPR

s e l e c t [x;yl;y2
FSUBR

8*e;yn;z

def l i s t [x; ind]
EXPR

This funct ion addis t he value z t o
L -

the l i s t appearing under t he prop-
e r t y on the atom - x. If - x does
not have a property E, t h e e f f e c t
i s t h e same as puat [x;y; l i s t [z]] .

This funct ion @;et,s t he groper ty
with l a b e l from t h e property
l i s t of - x.

NOTE: Both prop i%nd get may also be
used on property .Lists. However,
s ince getp search13s a l i s t two a t
a time, the l a t t e r allows one t o
have t h e same 0bjl3ct as both a
property and a value. e . g., i f

t h e property l i s t of - x is
(PROP1 A PROP2 B .4 C)

then geC[x;A] = PROP2,

but getp[x;.I] = C.

This funct ion i s m e d t o put any
ind ica to r or1 a p r l~pe r ty list. The
f i rs t argument i s a l i s t of p a i r s
(where t he f irst ~f t h e p a i r i s a
name and t h e secoind pa r ty of t h e
p a i r i s t h e property t o be s tored
with t he i n d i c a t o : ~ on t he property
l i s t of t h e name) and t h e second
argument i s t he i~zd i ca to r t h a t i s
t o be used.

1 An example of arguments f o r t h i s
funct ion is:

selectq[x;y;z]
FSUBR

time[x n]
EXPR

gcgagrx1
SUBR

reclaim[]
SUBR

f i e l d [n]
SUBR

nth[x;n]
EXPR

The q i t s a r e eval'lated i n sequence
u n t i l one i s foun13 such t h a t qi =
q, and the value ~f se l ec t i s the
value of the corresponding ei. If

no such qi i s found the value of
s e l ec t i s t h a t of e .

s e l ec tq i s i d e n t i ~ a l t o s e l ec t ex-
cept t h a t the q i t s a r e not evalu-
ated-only q.

This flulc$ion per forms computation
x n times and indicates average time
-LI

of'

If x=T garbage co l lec tor w i l l
p r i n t message when entered. I f

x=NIL, no message i s pr inted.

This function i n i t i a t e s a garbage
co l lec t ion and re turns with the
nwnber of avai lable LISP words i n
f r e e st orage.

This function c a l l s f i e l d - n from
the drum. (See descr ipt ion of
system program l ink ing .)

This EXPR has a s inputs a l i s t .- x
and a posi t ive in teger - no I ts
value i s a l i s t whose f i r s t element
i s the nth element of l i s t x., Thus - -
i f - n = 1, it re turns the l i s t x it- -
s e l f . I f n = 2, it re turns cdr[x] .
If n = 3, it returns cddr[x], e t c .

e d i t f [x]
EXPR

editv[x]
EXPR

ed i tp [x]
EXPR

e d i t e [x]
EXPR

This EXPR ge t s the expression
which i s the def fn i t ion of the
function named x and gives it t o - -
ed i t e .

This EXPR ge t s the value of the
C

atom x and gives it t o e d i t e f o r -
edi t ing .
T h i s EXPR gets tk.e - property list of
the atom x, e t c .

.IcI

This function i s the executive f o r
an ed i t ing f a c i l i t y f o r LISP ex-
pressions. The z.rgument of e d i t e
must be a l i s t t c) be edited. When
e d i t e has been ca.lled, it p r i n t s
out EDIT, and thein waits f o r input
from the on-line te le type (or the
reader i f typein i s s e t t o NIL).

The input t h a t m a ~ y be typed i n may
be a posi t ive inl.eger, a negative
integer, or zero, or one of these
as the f i r s t element of a two-

element l is t , or NIL, or one of
several specia l l i s t s described
below. Typing irk NIL terminates
edi t ing.

This ed i t ing pro6;ram allows you t o
e d i t any subexpre!ssion within the
current l eve l expression, t h a t is,
you can replace or de le te any sub-
expression of t h i s expression, o r
i n se r t anything before any subex-
pression of t h i s expression. An

input (n exp) where n i s a pos i t i ve - -
in teger w i l l replace t h e n th expres-
s ion i n t h e current l e v e l expression
by exg; i f n i s a negative in teger -
it w i l l put exp j u s t before t h e n t h -
subexpression i n t he current l e v e l
expression. (n) where n i s a posi- -
t i v e in teger (with no expression
following t h i s in teger) w i l l d e l e t e
t he - nth expression.

Warning: Typing ' (1) ", where current
expression i s a kiingleton, will n o t
have desired effelct.

I

An input of 0 w i l l t ake you up t o
t h e next higher l e v e l expression.
If t he input t o e d i t i s a pos i t i ve --
in teger , t he nth-subexpression of
t h e current expression w i l l become
t h e expression t h a t can be ed i ted .

An important th ing t o note i s t h a t
a l l ed i t i ng i s f i n a l i n t h e sense
t h a t any changes t h a t a r e requested
a r e put i n with a l a c a s and rplacds.
It i s the o r ig ina l expression which
has been modified t o give t h e ed i ted
version; t o re tu rn t o t h e o r ig ina l
expression you must r e - ed i t . How-
ever, by using the COPY and RESTORE
fea tu re , t h e user can p ro tec t him-
s e l f agains t e r r o r s i n ed i t i ng . The
funct ion e d i t e c a l l s e d i t % edit2f,
edit2af; and e d i t 3 f - b do a l l t h e work.

Other spec ia l commantis are :
COPY copies and saves e n t i r e

expression being ed i ted
as it currimtly e x i s t s .

RESTORE Restores e:rpression as
of last co])y: t he
current l e v e l expression
w i l l be this current l e v e l
expression a t last copy
RESTORING tvithout copying
w i l l have 110 e f f e c t .

P same a s (d 0).
(p n) P r in t s t he - n th subexpres-

s ion of t h e current ex-
pression t o a l e v e l of 2,
using LEVEILN described be-
low. If n i s zero, p r i n t s
current exl~ress ion t o
l e v e l 2.

(p n rn) Pr in t s n t h subexpression
t o a l e v e l m.
A l l print i .ng may be l n t e r u p t e d .

(N el e2 ' . *)

which w i l l t ack t h e expressions

el e2, . . . t o t h e end of t h e current

expression,

(E exp) w i l l p r i n t t he value of
eva l [exp] . 6 n exp) w i l l compute
v = eval[expJ and then a c t as i f

e d i t were given (n vll. This allows
you t o i n s e r t t he va:.ue of a compu-
t a t i o n i n the currenl; expression, a t
subexpression n. (n must be a num- - -
ber) .

(L I n) w i l l i n s e r t 1% l e f t parenthesis
immediately before subexpression .I- n
i n the current expr~sssion and a match-
ing r igh t paren a t -the end of t h i s
current expression. For example, i f

e = (A B C)
(LI 2) yie lds (A (B C)) .
(LO n) w i l l remove .z l e f t paren from
the - nth subexpression, and take a
corresponding r igh t paren from the
end of the current expression, e.g.,
f o r e = (A (B C) D)

(LO 2) y ie lds (A B C)

(RO n) w i l l remove a r i gh t paren
from the - rAth subexpression of t he
current expression, and i n s e r t one
i n at the end of the current top
l eve l expression, e.g., ,
f o r e = (A (B C) DE)

(Ro 2) yie lds (A (B C DE))

(RI m n) w i l l i n s e r t a r igh t paren
i n the I_ n t h subexpression of the - mth
subexpression of' the current expres-
sion, removing one from the end of
the subexpression,
f o r e = (A B (C D E) F)
(RI 3 1) yie lds

Abbreviates l i s t x a t l eve l n, using
the symbol ampersand, "&," t o indi-
ca t e greater depth. For example,
leveln [(A (B C) (D (E F) G)) 21 i s

(A (B C) (D & GI).

The following 9 funct ions form a Break Packag~s which allows the

u se r t o make a break condit ional u-pon t he r e s l l l t of some computa-
tion and thus a r r e s t the operat ion of a funct ion. He may in te r ro -
g a t e the broken funct ion a s t o t he current values of i t s arguments
o r o the r var iables , or perform a r b i t r a r y LISP computations; then
he may r e tu rn with a speci f ied value f o r it without actually
entering it. Al ternat ive ly , the u se r may ju s t "crack" a funct ion,
L e o , p r i n t out t he r e s u l t of some computation before executing
the funct ion and p r i n t out the f i n a l value of this funct ion.

"-break[f n; when; what]
EXPR

unbreak[fn]
EXPR

break i s a funzt ion of three argu-
ments: the functlcrn t o be broken,
under what con5it ion to break, and
what t o pr in t 3ut when a break occurs
If - when = T, tne funct ion always
breaks. If -- when = (NIL) a crack i s
made i n - f n . I f what = N f L , no -
information is printed out . break_ -
redef ines - f n using breakl so that @-
t he time the F ~ n c t i o n would have-"
been entered, :weak% is *entered
instead with the d e f i n i t i o n of t h e
funct ion and i : 2 f onnation regarding
the conditions f o r breaking.

unbreak redefijies fn a s it was before -
the break and *returns the value f n . -
If f n i s not broken when unbreak i s -
ca l l ed , t he va:Lue of unbreak i s
(FN NOT BROKEN) .

b r e a k l i s t [I]
FEXPR

b r e a k l i s t i s a funct ion of one argu-
ment, a l i s t o f funct ion names. It
performs (BREAK Fq T NIL) for each
funct ion name and re tu rns t he l i s t
of values of -- break. Note t h a t
(BREAK FN T NIL) w i l l cause - f n always
t o break, and will not p r i n t out
any spec ia l message,

unbreakl is t [1]
FEXPR

breakat[fn;where;when;what]
EXPR

unbreakat [fn; where]
EXPR

breakprog[fn; l]
EXPR

T h i s funct ion performs (UNBREAK FN)
f o r each funct ion on t h e l i s t 1. -

This functfon i s s imi l a r t o break

except t h a t instead of i n se r t i ng a
break a t t he begfnning of - fn, it
allows t he user t o I n s e r t a break
a t any top-level place i n The
argument where ind ica tes t h e l a b e l -.
o r statement a t which t he break is
t o occur. The o the r arguments a r e
used as f n break. --
T h i s functfon removes break
se r ted by breakat . --
breakproq i s entered with t h e name
of a funct ion and a l i s t of p laces .
i n t h a t funct ion where a break i s
des i red . breakprog perf orma -
(BREAKAT FN WH:ERE T NIL) f o r each
place on t he l i s t 1.

unbreakprogl f n]
EXPR

breakl[form;when;fn;what]
FEXPR

T h i s funct ion perf o m s
(uNBREAKAT FN WHERE)
f o r each place where a break
e x i s t s i n 3.

Although t h i s funct ion i s not
entered direc1;ly by the user , it is
the heart of ; t l l t h e break funct ions
and i s entered when a break occurs.
After the spec:ified information i s
pr in ted out, !)reakl l i s t e n s t o the
typewriter o r teletype f o r inputs.
~f STOP is input', a normal,
exit f s achieved. If RETURN FOO

i s input -- break1 r e tu rns (EVAL FOO).

If .QmT i s :.nput, it performs
(ERROR FN) . :Cf EVAL is input , it
evaluates fn . If a nomnal exit I s -
subsequently trchieved via t h e STOP
command, break1 does not reejraluate
fn , but uses 1:he value obtained by -
t he coumand. The EXAL
f ea tu r e i s ust?ful for evaluating a
broken funct ion without " l e t t i n g go"

of the break, e.g., t o examine tlhe
e f f e c t of executing a broken furac-
t ion. If OK :.s input , a normal

r e tu rn is mad(: without printing the
value of t he l'unctfon. Any o t h e r
input t o -- breakl i s evaluated, and
i t s value prirlted. This funct ion
uses bp2 to dc) p a r t of i ts work.

Arithmetic Functions (a l l arguments must be? numbers)

greaterp[x;y I
SUBR

T if' x > y;

NIL otherwf sc:

lessp[x;yI
EXPR

T if x < y;

NIL otherwisc!

zerop[x]
EXPR

T if x i s zez*o,o

NIL otherwise! '

minusp[x]
EXPR

numberp[x]
SUBR

addl[x]
EXPR

plus[x;yl
FSUBR

minus [x]
SUBR

times [x;y]
FSUBR

T if x i s neg;ative;
NIL otherwf se!

T if' x is a number;
NIL otherwise!

x + y his FSUBR may have any
number of arguments.)

product of x and y (This FSUBR
may kave any number of
argun.ents .)

quotient [x; y]
s m

difference [x; y]
EXPR

remainder [x; y]
EXPR

divide [x; y]
SUBR

grea tes t in teger i : n quotient x/y

T h i s function has for i t s value the
a lgebra ic differenl?e between i t s
arguments.

This function comp'utes the number
theoret i c remainde r f o r f ixed-point
numbers.

T h i s function y i e l ~ i s a dotted pair
whose first member is quotient [x;y]
and whose second member is remainder

[x;y] . Remainder .Ls defined in terms
of divide.

Following is a l i s t of all atoms with AI?VALts (per-
manent .yalues) in the basic system and *;heir values.

blank space

space
tab

space
tab

eqs ign
xeqs

n i l
period
plus

lpar

war
slash
t

t
qmark

xdol
xsqu
xdqu

xlbr
xrbr
xarr
uparr
colon
xgreater
xlesser
xnwn
xper

%a*.

n i l
n i l

SECTION IV.

LISTINGS OF S-WPRESSXONS OF EXPR 'S AND FEXPR ' S

(prog n i l
(cond
' '[

(quote

(return

(quote putdq
pro 2

[iambda (x)

(quote

(cond

(cond

(quote (return

(assoc
(lambda (xsas sas) (cond 1 in71 ysasr nil)

e ual (cam ysas) xsas
t assoc xsas (cdr ysas

(attach
(lambda (x y) (rplaca (rplacd Y (cons (tip Y) (c& Y)))

XI))

(def lis t
(lambda (

loop
1 ind) (prog
(cond

((null 1)
put (caar 1)
setq 1 (cdr
80 loop) 1) 1

(return nil
ind (cadar
1)

(difference
(lambda (x y) (plus

X
(minus ~ 1)))

(e
(nlamda (xeeee) (eval xeeee)))

(ersetq
(nlamda (ersetx) (errorset (car ersetx) t)))

(x Y) (prog (2)
(se tq z (cdr x))

loop (cond

(intersection
(cond

nil) .
car x) y) (cons (car x)

(c@ x) Y)))))

(last
(lambda (x) (pro65 (xx)

1 (cond
((atom x) (return x x)))

se tq xx x)
1;Et14,il XI

(lconc
(lambda (6 P) (prog (=I

xx (l a s t x))) (trrror (l i s t
(quote * * a lconc)

) (cons x xx))
car p)) (rplaca (rp3.acd p xx) x))

(t prog2
trplaod (cdr
(rplacd P =I

(length
(lambda

(les
(

X) (prog fn)
(se tq n (1
(cond

((atom x) (re turn
setq x cdr x)

/5t1P,i11add' "11
SP
lambda (x y) (cond

<lambda (mapx mapf) (cond
((null mapx) nil)

I mapf mapx)
map (c* map4 =pf))))))

- -
(lambda (mapcx mapcf

((null mapcx) nil

I mapcf (car mapcx)) maPC (car mapcx) mpcf))))))

lambda (mpcnx mpcnf
(null mpcnx) nil

\ \
t (nconc (i3pcnf

(mapconc
(mpcncx mpcnc
mpcncx) nil

t (nconc (rnpcncf

(mapcar

(rnapcon

cond

I mpcncx))

mpcrx)

mpcnf

(cdr

mpcrf

mpcncx)

(mpla tx mplstf) (cond
(null mplstx) nil)
t (cons (mplstf mplstx) (maplist (car mplstx) mplstf

(minusp
(lambda (x) (greaterp 0 x)))

(nil1
(nlamba (xnil) nil))

(nlsetq
(nlamda (nlsetx) (errorset (car nlsetx) nil)))

mpcncf

(not

(punch
(lambda (prog (Y 2)

setq y punchon
setq z I typeout
print x)
punchon y
typeout z
return x) I))

(put
(lambda (x y z) (prog nil
- loop (cond- - -

((n d l (cdr x)) (rplacd x (Xist

equal (cadr x)) (rplaca (cddr x) z))
setq x (cddr x) 3 (go 1oop:l))

(rdf l x

(X (go rl) 1)
(setq xx (ersetq (read)))

cond
((setq xx (nlsetq (read))) (setq xx (cs r xx

(remainder
(lambda (x y) (cdr (divide x y))))

(remove
(lambda (a x) (cond

null x) n i l)
a (car x)) (remove a (cdr x

(car x) (remove a (cdr x))

(remprop
(lambda (x y) (prog nil

loop
x) 1

cadr x) (cdddr

(reverse
(lambda (4 (prog (4

loop (cond

(setnq

,,,f nlamda (xsetnq) (setn (car xsetnq) (eve.1 (cadr xsetnq)

(setqq
(nlamda (x) (set (car x) (cadr x))))

(soundexin
(nlamda (x) (lambda (yadx) (put (soundex

ysdx) (quote

(soundexou t
(lambda (x) (getp x (quote name))))

(sub1
(lambda (x) (plus

"-

(sub2
(lambda (a z) (cond

((null a) z)
e ual (cab a
t sub2 (cdr a 1' 4

(sublis

(subs t

(car 2)) (subst x y (cdr 2)))))))

(tconc

setq xx (coris x nil)) xx))

(time
(lambda

setq y eval x
/set, . [sub1 m] {
go tl))))

(setq m (divide (plus

(minus c)) n))
(prinl (car m))
pr in l period)
prinl (quotient (times

(c* m)

(clock)

I p r i n l blank)
print (quote seconds))
return Y)) 1)

(union

y) (union (cdr
(union (cdr x)

(zerop
(lambda (x) (equal x 0)))

(break
(lambda (fn when what) (prog (xx yy z z)

(cond
fn))) (return (prog2

(quote breakl)
n i l
when
(setq xx (list

f n
(quc te (undefined.))))

what) 1)
=)) I

((eq (setq yy (fhtyp f n)) (qt.ote fsubr)) (re turn
(cons fn (quote (is an fsubr)))))

((nu l l (eq YY (quote subr)))
(setq yy (r d f l x (p r i n t (cons fn

need =es))))))
I putd (se tq zz (gensyrn)) xx)
s e t q xx (putd fn (list

(quote lambda)
YY
(cons Y Y))))

(cond
((eq (caaddr xx) (quote breakl)) (s e a xx (

list

(putd f n (l i s t
car xx)
cadr xx)
l i s t

quote breakl)
caddr xx)

when
(list

fn)

(re turn fn I 11

(unbreak
(1- (fn) (pro (a YY)

(return !! cond
((null (setq xx (getd f'n))) (cons fn (quote

(not a function)-)))
((and . -

(
(eq (setq YY (fntyp fn)) (quote expr)

fi)
(t (cons fn (quote (not broken))) '))))))

(breaklis t
(nlamda (x) (maplist x (quote (lambda (x) (break (c a r x

t n i l))))))

(unbreaklis t
a (x) (maplist x (quote (lambda (x) (unbreak (car

(breakprog
(lambda (bpx bp bpy (quote (Lunbda (2) (breakat

bpx (ca r z) t nil

(unbreakpro
(lambda ? x) (prog xx)

(se tq xx I bpi x))
ul (cond

(cddr
(setq xx
t (re turn
~1))))

(cdr
nil)

(quote break:l))

=)I (go ul))
1)

(rplacd xx

(breakat
(lambda (fn where when what) (prog (a)

setq a (bpl fn))
bl I oond

((e ual (car a) where) (return (prog2
bpkacci a (cons (l ist

(quote brealcl)
n i l
when
(list

fn
(quote at)
where)

what) (cdr a)))
where 1 1

((se tq a8(cdr a)) (go bl)))
(return cons where (quote (not found)))))))

)) (list

u l

(not broken at

found)))))))

(bpi
(lambda (x) (pro8 (x x)

(re turn (cond

eq (setq xx (fntyp x) (quote expr))
eq xx (quote f expr))
(caaddr (setq xx (getd x))) (quote prgg

1)) (cad& =) I
(t (error (cons x (quote (not a program))))

)))))I

(prog (4
setq a (punchon t
p r i n l (quote u (N)

(p r in t (quote define

(pre t typr in t
(lambda (1) (map 1 [quote (lambda (j) (prog (t l)

(t (quote undefi

(printdef
(lambda (e) (prog (i i u n i t i u n i t l)

I setnq 1 1)
setq iunit (quote "1)
I setq i u n i t l 3)
p r i n l iun i t)

t superprint e
re turn nil))

(su erpr in t
flambda (e) (cond

((atom e) (cond
((member e (quote

I rt.n rr u 1)) (p r i n l (pack (l ist
(quote In)

I se tq ep e)
p r i n l lpar)

T , ,
I 1, I. I 1 1 , I/ 1 1 I i / 1 1 , I 1 1

(cond
((member (car ep) (quote (and

o r
se lec t
selectq
l i s t
plus
times
cond

((or . .
caar ep quote lmnbda
caar ep quote n.Lamda

I superprint (ca r ep))
s e w eP (c* ep)

(cond
n u l l ep return (p r i n l rpar)))

[latom epl Igo *dl))

setnq i (subl i))
p r i n l blank)

I prinl period) prinl blank)

I p r i n l ep)
return (p r i n l r ar))
setnq i (addl i f;)

I superprint (car- ep))
setq eP (c@ ep)

(cond

(superprint (car ep))

setnq7 i (subl i))
return (p r i n l rpar))
p r i n l (car ep))
s e t q ep [cdr ep]j
aetnq i add1 i

(cond

(cond

(cond
ep) (go pz) 1)

prinl iunlt
prlnl funit
(setnq i (plus

i
2) \

I sup&&rint (car ep))
setnq i (plus
i

prinl (car ep))
setnq m (plus igo ""'
iunitl
iuni tl
(minus (length (unpack (c ar ep))))))

(setnq m (sub1 m))
pr in l blank)
cond

((null (or -

zerop m)

(cond

(endline

(cond
(return
(error

(trace
(lambda (x) (pro$ (a b c g)

(setq a x)
L B

((n u l l x) (return a)))
(se tq b (getd (se tq c (ca r x))))
(setq x (cd r x))
(cond

w.def ined)

was traced print (cons c (quo
80 loop) 1)
setq a (gensym) 1 b

c (l is t -
quote nlamda 1

e t r a c l)

(quote quote)
c)

(l i s t
(quote quote)

(untrace
(lambda (x) (prog (a b c)

set (quote a) x
loop [cond

7

(cond
(set (quote b) (g ~ ! t d g))) (progn
uote b) (cdaddr b))
cadar b) (getd (s e t (quote c) (cadadr

g (quote (not t r a c e d))))))

(x y) (and
fntyp x) (quote fexpr)
caaddr y) (quote t r a c l

(lambda gtrac xtrac)
p r i n t (cons c t rac wi th))))
s e t (quote

((eq (fntyp f s ~ b r)) (pr in t xtrac

((eq (fntyp gtrac) (quote f e ~ p r)) (print xtrac

(t (evalprint xtrac))))

I s e t (quote a t rac) eval (cons gtrac xtrac)))
p r in t (cons ctrac I quote (has v a u e))))

(re turn (print at rac)))))

(evalpr int
(lambda (xvalp) (prog (avalp)

* .
((nul l xvalp) (re turn avalp)))

(set (quote avalp) (nnconc avalp (l i s t
(l i s t

(quote quote)
(pr in t (eval

set (quote xvalp)
go loop)) 1)

xvalp

(e d i t f
(lambda (x) (prog2

utd x (ed i te (getd x)))

(edi tv
(lambda (x) (pro@

(set x (edi te (eval x)))
X I))

(edi t p
(lambda (x) (pro@

(r lacd x (ed i te (cdr x)))
4 7 1

(ed i t e

1
(p r in t (quote edit))
(cond

n u l l (ersetq (setq c (read)))
n u l l c) (return (car (1ast:r 1
numberp c) (e d i t l f c))
eq c quote copy) 1 (setq Y (COPY 1)))
eq c I quote r e s to re)) (setla 1 (cond

3f (quote
1
t2f c '))

(edi t l f
(lambda (c) (cond

((eq c 0) (cond
(nul l (cdr 1)) (r i n t qmark))

D #
t (sets 1 lcdr 1 P)) I)

t h (car 1))) (pr:.nt qmark
(nth (car 1) c)) 1)))

(lambda (c) (cond
((greaterp (car c) o

((greaterp (car c 1 Pond length (car 1))) (p r in t qmark

(subl (car c)) (car 1) (cdr

(car c)) (length (:car 1)))) (p r i n t

(subl (minus (car c))) (car 1)

(edit2af
(lambda (n x r d) (prog2

(cond
((n u l l (eq n 0)) (r

d cdr (nth x ny
[t [oddr (nth x n

(car r) x

(cadr (car x) rl
(lambda x) (cond

((eq [car x) (quote 1))

(eval (kaddr x))))
\ \ \ \ \ ((es (ca r x) (quote e

f

member
quote ((c a r

(t (p r i n t

(nth x

1)

n) (nconc r (cond

(edit2f (l ist

(erse tq (printl

(nconc

ri r o

(car 1

(eval (cadr x

(c* XI))
(e r ro r se t (nconc

(bpnt
(hmbda (x) (prog (Y n)

(cond
zerop (car x)) (setq y (car 1))
greaterp (car x) (length (car 1

(a n u p (car x) (go bl))
t (s e t s y (car (nth (car 1) (car x) 1)) 1)

(cond

- - .
(return (cond

(nlsetq (pr in t n))) n i l)
[t (print (quote

(return (p r in t qmark))))

(leveln

(x) (leveln x (subl n)))

(nth

(nth (cdr x) (subl n)))

(lastr
(lambda (x) (cond

n u l l x) (error (nul l list))))
null (cdr x)) x
t (lastr (cdr x) I'

APPENDIX A .1

LISP LOADER

The LISP loader allows one t o load several drum fields from
e i t h e r paper tape o r magnetic tape. I n addit ion, there is
provision for t rans fe r r ing a system from drum t o mag tape.
A complete system is t rea ted as a f i l e on tape (each core load
i s one block of the f i l e) and all tape commands are i n terms
of f i les r a the r than blocks. Teletype should be connected
t o channel 0 of the 630 scanner.

Ins t ruct ions f o r Loading System Programs onto the D r u m

The LISP loader can be used f o r s e t t i n g up the d m f i e l d s of

the system programs, including i t se l f . T o do this:

1. Read i n t o core 1 the system program t o be placed
on a drum f i e l d .

2. Read i n t o core 1 the program a t locat ion 0 f o r
that d m f i e l d .

3. Read i n t o core 0 the LISP loader.

4. Type: nd
where n i s the oc t a l number of the drum field onto
which t o dump core 1.

Ins t ruc t ions f o r Loading LISP with the Loader -

1. Load mag tape of system on tape drive and set it
t o automatic on unit 1.

A . 1 - 1

2. Read i n t o core 0 t h e paper t ape o f t h e LISP loader .
The mag tape w i l l be rewound and t h e LISP loader w i l l be

waiting f o r typein. (The LISP loader starts a t 300.) :

3. Type: n r
where n is t h e o c t a l number of t h e f l l e t o be read i n .
26 drum f i e l d s w i l l be read of f of t k e mag t a p e onto
t h e drwn and t h e typewr i t e r w i l l type o u t n m where n
is t h e first block number read (s t a r t i n g with 0) and m
i s t h e las t +1 block number read ,

4. Type: 1

' T h i s w i l l t ake t h e u s e r t o LISP.

I n s t r u c t i o n s for Writing LISP onto Mag %&'with the Loader.

1. From LISP call t h e drum f'ield with t h e LISP loader,
FIELD (2 5 ~) , o r read into core 0 t h e paper t ape of the
LISP loader ,

2. Type: nw
where n i s t h e o c t a l number of t h e f i l e t h a t you wish
t o write.

List of Commands Available i n the LISP Loade:? (n is an o c t a l number)

c a l l s - LISP
c a l l s the e d i t o r on f i e l d 26 -
reads onto t h e drum from]nag tape file n -

nw - wri tes current drum sys te~n on mag tape f i l e n

nd - dumps core 1 onto r e l a t i v e drum f i e l d n

reads r e l a t i v e drum f i e l d n i n to - core 1

Ereserves core 0 on re1at:ive drum f i e l d n

g e t s r e g i s t e r s 0-177 on r e l a t i v e drum
f i e l d n and t r ans f e r s t o 11

s e l e c t s the mag tape u n i t t o be used.
'II.

Sta r t i ng t h e program a t :3OO automatical ly
s e l e c t s u n i t 1,

s e t s the base f i e l d on this drum t o n, i .e . , -
d m loading w i l l begin on field n from e i t h e r
core o r mag tape. The b a ~ e is i n i t i a l l y set
to 1. The first r e l a t i v e f i e l d n is 1, not 0.

Rel.ative f i e l d n is absolute f i e l d
11 n - I -t- base".

s e t s t h e number of f i e l d s in a f i l e . Th i s -
value is i n i t i a l l y se t t o 26 oc t a l .

rewind b r i g i n)

space tape n f i l e s forward (o r backward i f n -
is negative). If n is ze:m the-tape- w i l l be
moved t o the beginning of Ule cur ren t f i le .
Spacing backwards has bee11 known t-
t rouble.

E r r o r P r in tou t s

nOf tried t o reference file 0 o r drum f ie ld 0

(either absolute o r r e l a t h r e)

una

pmc n

nch

ept

wcf n

drf n

nem

dwe

file e r r o r -- while searching f o r a designated
f i l e , a file longer than 64 blocks was en-
countered.

tape unit not available. If t h i s is t he
first thing t h a t happens l.t is because the
program has attempted t o rewind u n i t 1 and

'

cannot f o r some reason.

bad parity o r missed charz.cter on reading o r
checking tape block n

saw no characters for 6 iriches

saw tape end point

write check f a i l u r e mag ts.pe block n

drum read fail, abso lu te f 'ield n

no end mark has been entered

drum wri te error

APPENDIX A. 2

USING LISP FROM THE COMPUTER ROOM TEL-E

To use LISP from the computer room teletype: Connect the
teletype to channel 0 of the scanner and then load the LISP
system as described i n Appendix A .1, LISP LClADADER. The teletype
will carriage-return and be wait ing f o r inpu t into evalquote.

Manual restart should never be used as there are no known ways
to cause the system to halt or crash (if either does occur,
record all pa r t i cu l a r s and del iver t o D. ~urphy). The following,
however, do exist:

s t a r t 202 r e i n i t i a l i z e s all sequence break
routines and rea tarts

start 203

APPENDIX A.3

USING LISP FROM A REMOTE DATASET

To use LISP from a remote dataset: The LISP system should be
loaded and running as described in Appendix A. 1, LISP LOADER.
Then :

Set the channel 0 dataset phone to "auto" (the channel 0
phone is t h e one on which t he number 491-5120 appears).

From the remote dataset, push the "tel" button, and when
the dial tone is heard in the attached receiver, dial
491-5120. The phone i n t he computer morn will be answered
automatically, and a tone will be transmitted. When this
tone is heard, the "ORIG" button shoul9 be pressed,
establishing t h e connection.

Special Codes for Control (see standard chs r t of teletype codes

for complete set)

Octal Cod.e Character

rubout

break key

3Func t ion - -
deletes- the line being typed in
types out and deletes the last
character type13 in

causes an interrupt followed by an
untrace. A sezond depression of
this key halts t h e untrace.

Octal Code

204

Character

control D

control G

control I

Function

HANGUP, when t ransmit ted by either

computer o r usper, causes immediate
hangup on both ends

Horizontal tab, on output only.,

./
4'

control Q'".

control S

causes carriae:e t o be moved t o . .
next predefined tab stop

reader on: s t a r t s pager tape
reader i f tape! i ~ x o a d e d

.Ic.

reader off : when appearing on
paper ta& on1 y, causes reader to
stop after reading next character

name of
f u n c t i o n

add
add 3-
and

append

app ly
assoc

atom
a t t a c h
break

break 1

breaka t
b r e a k l i s t
breakprog

c a r , c d r , (e t c)
c h a r a c t e r
clearbuf
cond
cons

COPY
d e f i n e
def ineq

d e f l i s t
d i f f e r e n c e
d i s p

d i s p l i s
d i v i d e

e
e d i t e

APPENDIX B

INDEX TO FUNCTIONS

name of
rune t i o n

descr ip t ion
s e c t f o n ILL, page

e d i t f
editp

ed i tv

error
errorse t
e r s e t q
eval

evala
f e e d
field

f n t y p

gc er;ag

gen sym
ge t
ge td

getp
go
grea t e r p
i n t e r s e c t i o n
last
lconc
length

l e s s p
l e v e l n
list

load
logand

n a m e o f
ITEiEEEn

ma pc on
mapconc
map l i s t

m e m b e r
minus
mlnusp
nconc
nnconc
n l s e t q
not
n t h
n u l l
numberp
o b l i s t
o r
pack
p lus
pre t t yde f

prei; t y p r i n t
p r i n 1

p r i n t

punch
punchon

PU .t;

d e s c r i p t f on
s e c t i o n =I, page

l i s t i n g
sc?c ti-page -

name of
runc t i o n

putd

putdq
q u i t
quote

q u o t i e n t
ra tom
r d f lx

read
readin
reclaim
remainder

remob
retnove
remprop
re tu rn
r eve r se
rplaca
rp lacd
sassoc

seleci;

selec t q
set
se tbrk

se t n
ae tnq
setq

setqq
s e t s e p r
sub.1
s u b l i s
subs t

desc r ip t ion
sect ian 111, page

l i s t i n g
SIX t i m p a g c -

name o f
funct ion

tconc
terpri

time
times
t r a c e
t r a c p
type in
typeou t
unbreak
unbreaka t
unbreakl i s t
unbreakprog
union
unpack
u n t r a c e
zerop

description l i s t i n g
sec t iqn 111, page slzcticn IV, page

.L

Securitv Classification

I DOCUMENT CONTROL DATA - R&D
(Security classification o f title, body o f abstract and indexin& annotation must be entered when the overall report i s c lassif ied) I I 1 . OQIGINATIN G ACTIV ITY (Coworate author)

B o l t Beranek and Newrnan Inc . I Cambridge, Massachuset ts

2 a . R E P O R T S E C U R I T Y C L A S S I F I C A T I O N I U n c l a s s i f i e d I

I The BBN-LISP System

4. DESCRl P T l V E NOTES (Type o f report and inclusive dates)

S c i e n t i f i c Report No. 1
5. AUTHOR(S) (Last name, first name, initial)

Daniel G . Bobrow, D. L u c i l l e Darley, Danie l L. Murphy,
Cynthia Solomon, Warren Teitelman

6. R E P 0 RT D A T E / 7r.' T O T A L NO. OF P A C E S 1 -7b . N O . O F R E F S

February 1966
8 a . C O N T R A C T OR G R A N T NO.

AF lg(628) -5065 - ARPA Order
b. P R O J E C T N o . NO. 627

8668
c .

1 1 . SUPPLEMENTARY NOTES

ARPA Order No. 627, da t ed
9 March 1965.

82
9 s . ORIGINATOR'S REPORT NUMBER(S)

BBN Report No. 1346
9 b. O T H E R R E P O R T NO(S) (A n y other numbers that may be assigned

this report)

d.

12. SPONSORING MIL ITARY A C T I V I T Y

Hq. AFCRL, OAR (CRB)
United S t a t e s A i r Force

0

AFCRG66- 180

Redfo rd -
13. ABSTRACT

T h i s r e p o r t d e s c r i b e s i n d e t a i l t h e BBN-LISP system. T h i s LISP
system h a s a number of unique f e a t u r e s ; most no tab ly , i t h a s a
small co re memory, and u t i l i z e s a drum f o r s t o r a g e of l i s t

/ s t r u c t u r e . The paging techniques descr ibed h e r e a l l ow u t i l i -

10. A V A I L ABIL ITY /L IMITATION NOTICES

D i s t r i b u t i o n of t h i s document i s un l imi ted

z a t i o n of t h i s l a r g e , b u t slow, drum memory wi th a s u r p r i s i n g l y
small time pena l ty . These techniques a r e a p p l i c a b l e t o t h e
design of e f f i c i e n t l i s t process ing systems embedded i n t ime-
s h a r i n g systems us ing paging f o r memory a l l o c a t i o n . *

Unclass i f Led
Security Classification

Security Classification

Security Classification
14.

KEY WORDS

LISP
L i s t P roces s ing Language
Paging Systems
Drum Systems f o r L i s t S t r u c t u r e
L i s t S t r u c t u r e s
Symbol Manipulat ion Language

LINK

R O L E

C

W T

LINK

R O L E

I. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee, Department of D t
fense activity or other organization (corporate author) issuing
the report.

2a. REPORT SECUIitTY CLASSIFICATION: Enter the ovelc
all security classification of the report. Indicate whether
"Restricted Data" is included Marking is to be in accord.
ance with appropriate security regulations.

26. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200.10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
ized.

3. REPORT TITLE: Enter the complete report title in all
capital letters. Ti t les in all cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesis
immediate1 y following the title.

4. DESCRIPTIVE NOTES If appropriate, enter the type of
report, e. g., interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reporting period is
covered.
5. AUTHOR(S): Enter the name(s) of authods) a s shown on
or in the report. Enter las t name, first name, middle initial.
If military, show rank and branch of service. The name of
the principal author is an ahsolute minimum requirement

6. REPORT DATE: Enter the date of the report a s day,
month, year; or month, year. If more than one date appears
on the report, use date of publication.

7a. TOTAL NUMBER O F PAGES: The total page count
should follow normal pagination procedures, i e., enter the
number of pages containing information.
7b. NUMBER O F REFERENCES Enter the total number of
references cited in the report.
8e. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written.
8b, &, & 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such a s project number,
subpmj ect nunher, system numbers, task number, etc.
9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi-
cia1 report number by which the document will be identified
and controlled by the originating activity. This number must
b e unique to this report.
96. OTHER REPORT NU=ER(S): 11 the report has been
assigned any other report numbcrs (either by the oridinator
or by the aponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES Enter any lim-
itations on further dissemination of the report, other than tho=

B

W T

LINK

R O L E

INSTRUCTIONS

imposed by security classification, using standard statements
such as:

(1) "Qualified requesters may obtain copies of this
report from DDC "

(2) "Foreign announcement and dissemination of this
report by DDC is not authorized."

(3) "U. S. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

' t .
(4) "U. S. military agencies may obtain copies of this

report directly from DDC Other qualified users
shall request through

t P .
(5) "All distribution of this report is controlled. Qual-

ified DDC users shall request through
t '

If the report has been furnished to the Office of Technical
Services, Department of Commerce, for sale to the public, indim
ca te this fact and enter the price, if known.

SUPPLEMENTARY NOTES: Use for additional explan*
tory note&

12. SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay
ing for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though
i t may also appear elsewhere in the body of the technical re-
port. If additional space is required, a continuation sheet shall
be attached.

It is highly desirable tha' the abstract of classified reports
be unclassified. Each paragraph of the abstract shall end with
an indication of the military security classification of the in-
formation in the paragraph, represented a s (TS), (s), (c), or (U).

There is no limitation on the length of the abstract. How-
ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used a s
index entries for cataloging the report. Key words must be
selected s o that no security classification is required. Identi-
fiers, such a s equipment model designation, trade name, militaq
project code name, geographic location, may be used a s key
words but will be followed by an indication of technical con-
text. The assignment of links, roles, and weights i s optional.

A

W T

	Title
	Table of Contents
	Foreword
	Abstract
	I. Introduction
	II. The Internal Structure of the BBN-LISP System
	III. Description of Functions in BBN-LISP
	IV. Listings of S-Expressions of EXPR's and FEXPR's
	Appendix A. Operating the BBN-LISP System
	A.1 LISP Loader
	A.2 Using LISP from the COmputer Room Teletype
	A.3 Using LISP from a Remote Dataset
	Appendix B. Index to Functions
	Document Control Data

