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Preface

INTERLISP/360-370' is an implementation of a subset of INTERLISP (ref 1)
on the I1BM/360 and similar systems. It contains the interpreter, the
set of basic functions, edit, break, advise and the compiler. Other
packages such as DWIM, the Programmer's Assistent, CLISP and QLISP can
quite easily extend the system.

This paper gives a tutorial introduction to the system. For those inte-
rested only in gaining some basic ideas about LISP there is an informal
introduction by Sandewall (ref 3). No previous knowledge about LISP is
‘required to read this text, but an elementary course in computer and
programming use can make its understanding easier. There are a lot of
differences between INTERLISP and LISP 1.5 (ref 4). The reader already
having a knowledge of LISP 1.5 will find it advantageou to find out
the differences for himself, as it is not normally pointed out where
the differences appear. Some minor differences between INTERLISP/360-
370 and INTERLISP occur, mostly machine-dependent, such as character
sets, 0OS-interface etc.

The paper describes both the interactive and batch use of the system.
Implementation-dependent features, such as control cards (commands)
for running the system and data sets needed for file handling are in-
cluded in an appendix.

There are a lot of references to the '"'LISP manual', by this is meant the
INTERLISP/360-370 Reference Manual (ref 2). The term LISP is also used
as an abbrevation of INTERLISP and what is said about LISP in this text
is not necessarily legal in other LISP dialects.

In each section the fact is clarified with examples, and at the end of
each section there are a number of exercises. Solutions can be found
following the section part. Many of the examples and exercises are given
to define system functions, showing how they work and familiarising the
reader with them. These functions are *-marked; for put the function name
*put is used. It is very important to use this *-marked version of the

! Information about INTERLISP/360-370 can be obtained from UDAC, Box
2103, $-750 02 Uppsala, Sweden, or Datalogilaboratoriet, Sturegatan 1,
S-752 23 Uppsala, Sweden.



function if it is to be tested on the computer, as otherwise there is

a great chance to erroniously redefine system-functions. The definitions
shown in this paper on the system-functions are in most cases not iden-
tical with the way they are really implemented. In many cases the de-
finitions given are not the best but they are forwarded for pedagogical
reasons and in some cases the solutions are only partial, they do not
take care of all the different cases which can occur etc.

The INTERLISP system contains hundereds of system functions and | think
it meaningless to read this text with the intention of learning each

and every function by heart. Better is to read quickly through and look
at the examples than try to understand its full definition and later
when you have found the need for a special function go back again and
study it again. If you have an interactive system available it is simple
to check how a system function works, which sometimes is faster than to
understand its definition. Many functions are not described fully in
this paper; their full definition is found in the reference manual.

In the first section we use M-notation, where functions, variables and
conditional expressions are written in small letters (lower case), and
S-expressions in capitals. Later we mostly use the S-notation (the nota-
tion used when communicating with the computer), the M-notation is only
used for describing simple forms such as

car[(A B)I, car[1], memb[car[1],foolcdr[1]]]
This paper is not in its final version, so | would appreciate comments

and suggestions about it. Although all examples and solutions are checked
out by computer there will still be errors in them.
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Primary datatypes in LISP

This first section will describe the syntax of atom, list, and
string, which are the most primary datatypes in LISP. The
different properties of these datatypes will be described later,

The other datatypes will also be defined later - a table containing
all datatypes can be found in the LISP manual.!

The characters are separated in two groups

- delimiters (space), J (end of line), % (escape),
(, )’ >’ <’ Il, !
- non-delimiters the remaining characters. The character

set can depend on the type of terminal, but normally
includes both lower and upper case.

Literal atom.? A sequence of non-delimiters, that cannot be
interpreted as a number.
eg ABCD NIL $A12/ 123++h5. VERYVERYLONGATOM

In this text we will use capital letters for literal atoms.

Number?

Integer. An optional sign (+ or -) and a sequence of decimal
digits.

eg 1234 -12 +1111 0

! When refering to the LISP manual we intend reference to the
INTERLISP/360-370 Reference Manual.

2 Literal atoms and numbers are together called atoms. Throughout
the text atom is used as an abbreviation of literal atom, when
no misunderstanding can occur.



1.

- Floating-point number. An integer, followed by a decimal point,

followed by a sequence of decimal digits - called the fraction -
followed by an exponent, represented by E and an integer. The
different parts can be omitted but there must remain sufficient
parts to enable distinction from an integer.

eg 5.210E-10 12. .123 10E2

There are possibilities of constructing atoms internally which
contain delimiters. This can be done by packing the atom as shown

in Section 22. If we wish to read an atom containing delimiters

we can do so by preceding every delimiter by the escape character Z%.

"%% will internally be represented as the atom

eg AB%(
1

%
AB(12"'%

1
2I
The LISP read-routine treats the next character after the escape
character as a non-delimiting character.

List

A list can be constructed by other LISP elements, eg atoms and
other lists, enclosed by parentheses or brackets.

eg (A BC), ((THIS 1S) A ((LIST) STRUCTURE)), (), ((())).

In LISP it often happens that we have a considerable number of
parentheses following each other, as in

eg (A (B (c (D (E)))))

In such cases we can use the right brackets ,>, for terminating
the list.

(n (s (c (e (B>

The general rule being that the right bracket matches either the
nearest left bracket, <, or the beginning of the list. These are
all equivalent lists

(A (B (c)) (p (E)) (F (6)))

(A (B (c)) (b (E)) (F (&>

(A <B (Cc> <D (E> (F (G>

(A (B (c)) (D (E)) <F (G>>

The list (A (B C) D) contains three list elements, the atom A, the
list (B C) and the atom D. (B C) is called a sublist of the original



list. The list contains two atoms A and D at the top level of
the list, but four atoms at all levels.

The empty list can be represented both by () and NIL. Usually

we use NIL. NIL can be interpreted both as a list and as an

atom. Care must be shown here; observe by the different function-
definitions how NIL is treated.

When the LISP print-routine prints a list it is not certain that
it will print the list in the same way as we gave in the read-
routine. The ordinary print-functions print the list with paren-
theses, but the pretty-print functions will also use brackets.
The empty list is always printed as NIL.

String
A string is a ' followed by a sequence of any character except
" “and % (escape character) terminated by a ' .

eg "THIS 1S A STRING" S CCO RO

"and % can be included in the string by preceding them with the
escape character %.

eg "'AB%''C%%" is internally the string AB'C%

Exercises

1. Classify each of these expressions if it is correct, as either
literal atom; integer; floating point number; list or string. We
assume that the LISP read-routine will read them.

a. ABCI123 12.+34 r. ("av vy
b. 123ABC (CCCem ) s. (((AB) CD)E)
c. 1.23E+12 VAB (M t. (A B <C D> <E>>
d. ( AB''NIL" u. <A B> )

e. ((O)) e v. <A B)>
fooo123( gy %t x. (A <B <(C>)

g. %(%) (A, B, C, D) y. (AB.¢)

h. (A B (C D)) %%% z. (A.B)

i. +123



2. Representation of atoms and lists

2.1 Atoms and lists are internally represented 3. recerds and this
section will show what information is stored in these records.
For the exact internal representation such as the order of the
fields in the records, the number of bits for each field etc,
consult the LISP manual. We will use the records as a graphical
representation of list structures.

2.2 In a language like LISP, where list structure is the most impor-
tant data structure, there must be pointers (references). A pointer
in INTERLISP/360-370 contains both the datatype number of the
referenced data element and the address to that element. All data-
types and their associated numbers are to be found tabulated in
the LISP manual.

data-—

address
type

2.3 A literal atom is a record called atom cell with four fields

- pname pointer, a pointer to an area where the atom's print-
name is stored. The print-name of an atom is the sequence
of characters which defines the atom.

- value cell, a pointer to the atom's global value if it
exists, otherwise a pointer to the atom NOBIND. See further
Section 15.

- property-list, a pointer to the atom's property-list if it
exists, otherwise a pointer to NIL. See further Section 5.
- function cell, a pointer to the atom's function definition

if it exists, otherwise a pointer to NIL. See further
Section 14.

pname value propert function
perty
pointer cell list cell




2.4

2.5

An atom is unique, which means that for a given pname string -
the sequence of characters defining an atom - there can only be
one atom cell with that pname string. When the LISP read-routine
reads an atom it first attempts to discover if there already
exists an atom cell with that pname string and if it exists, use
it, otherwise the read-routine creats a new atom cell for that
atom.

Numbers are represented in different ways. lIntegers are
separated into small integers and big integers with two different
representations. From the user's point-of-view there is no real
difference. The small integers are unique, they are represented
in the pointer, but all other numbers are not. Further informa-
tion concerning the numerical atom's representation is to be
found in the LISP manual.

A list is a chain of list cells, where a list cell is a record
of two fields, both containing pointers. The first pointer
references a list element and the second pointer references
the rest of the list.

eg (A (B C) D)

B C

The pointers to the atoms A, B, C and D are the references to
respective atom cell. It will be found convenient to write only
the atom's print-name instead of drawing its record. A list
normally ends with NIL and the slanting line in a box indicates
this pointer to NIL.

—T—> NIL

l is identical to l



2.6 A list-structure is not unique. Even if the LISP read-routine
reads the same lists, different, but isomorphous, structures will
be created.

2.7 Dotted-pair. There is a notation in LISP called the dotted-pair
notation. With this we can see an analogy with binary trees. A

binary tree is a tree structure where every non-terminal node has
two branches. We can follow the example

This binary tree corresponds to the following list structure.

e
M

In dot-notation this is written as

((A. (B.C)) . (D. (E.(F.G))))

The rule is that every node separates the tree in two parts, a
left subtree and a right subtree. The dot is used to separate the
two trees.



(A . B) corresponds to

((A . B) . C) corresponds to . , \

This dot-notation can be transformed to list-notation by following
these rules:

- When a dot precedes NIL, the dot and NIL can be removed,
(A . NIL) is identical to (A).

- When a dot precedes a left parenthesis the dot and the
parentheses pair can be removed. (A . (B . C)) is identical

to (A B . C)

This is easier to understand after looking at the following graphical
notation

= . B

> <t

| |
} 1
B c

The use of the dotted-pair concept is rare because we usually
see our structure as list-structure and not as binary trees.
One example where it is used is the association list, which is
a list of dotted-pairs.

((SWEDEN , STOCKHOLM) ~ (USA « WASHINGTON)  (FRANCE « PARIS)

| \ | \ I .

T\ N ]

SWEDEN STOCKHOLM USA  WASHINGTON FRANCE PARIS




2.8

When a dot is used in the meaning of a dotted-pair, it can only
appear in the position before the last element. When a dot appears
elsewhere, it is interpreted as an ordinary atom.

eg (A.B.) is a list with four elements

For the LISP read-routine it does not matter what notation we use
when expressing a list. However, the LISP print-routines use the
list-notation as much as possible and use the dot only when the
second field in a cons cell points to a non-list, eg an atom.

The list (A B C) can be written as

(AB C . NIL)
(AB . (C.NIL))
(A . (B . (C.NIL)))

and all will create the same structure. The LISP print-routine
will print (A B C).

(A. (B. (C.D))) will be printed as (A B C . D)

2.9 An S-expression can now be defined recursively as
a. a literal atom, number or string, eg-A, 3 or "XY"

b. a dotted-pair of S-expressions, eg ((A . 12) . B)

Exercises

1. Write the structure for

a. (A8 (c (D) E)) fooo(. L)

b. (((A) B) ¢C) g. ((A.B)(C.D) (E.F))
(A<(BCD)EPF G h. (A . (B . (C.NIL)))
(A (B . C)) i. (((A.B).C).NIL)

e. (A(CD.E)(G.NIL) . (HI>

2. Which of the above expressions will be printed by the LISP print-

routine but in a manner different from that read by the read-
routine? How will they be printed?



3.1

3.2

3.3

Primitive functions

There are a great number of standard functions in a LISP system.
These are already defined and exist in the system when entering.
Our own functions can be introduced but this will be discussed

at more length in Section 7. In the INTERLISP/360-370 there are
about 400 functions. A user of LISP does not need to know all of
these functions, but he must learn a number of them and know
where in the manual to look for the remainder. This paper will
cover the most important functions, either by giving the function
definition or by giving a reference to the LISP manual where an
index of all functions is to be found.

In this section we will introduce the functions car, cdr, (and
their extensions), cons, equal, eq, atom, null and memb.

When describing LISP functions it is convenient to use the M-
notation.? A functional-expression looks like

fnlargl, arg2, ... , argnl
More about the M-notation is introduced later in the text.
Let us start by introducing some of the more elementary LISP

functions. Notice that a function can behave differently accord-
ing to the argument's datatype.

! There are two notations used in LISP. The first, introduced here,
is M-notation (Meta-notation), which is quite similar to Algol-
notation. The other, S-notation (S-expression notation), is intro-
duced later.

In M-notation we distinguish very carefully between 'program' and
'"data''. Program, (such as functions, variables, if-then-else etc),
is written in lower-case, while data, such as atoms, lists etc is
written in capitals.

The S-notation is used, when running LISP, because both programs
and data must then be expressed as S-expressions and there is no
real syntactic difference between a program and data, and this
introduces some problems.

In this paper we will use the M-notation during the introductory
sections, and in later sections it can be used to describe forms
such as

car[x] and memb[F00,carlx]]
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car[1] !f 1 is a list, gives as value the first element of the list
(called the head of the list).

eg car[(ABCD)]=A
car[((AB) cD)] = (AB)
car[NIL] is always NiL
1 is an atom. Gives as value the atom's global value (see
Section 15).
cdrl1] 1f 1 is a list, gives as value the list without the first
element (called the tail of the list).
eg cdr[(AB CD)] = (BCD)
cdrl(A)] = NIL
cdrl(A . B)] =8
cdrINIL] is always NIL

If 1 is atom, gives as value the atom's property-list (see 5.4).

3.4 By combining these functions we can find, for example, the second
element on a list's fourth sublist, as in

(n (B) (c) (c (D E)F))

by ?ar[idr[car[cdr[cdr[cdr[(A (B) (c) (¢ (b E) F))I11111, which
is (DE

There are already functions which perform this kind of combination
of car and cdr.

caar[1] is identical to car[car[1]]

cadr[1] is identical to carledr[1]]

cdar[1] is identical to cdrlcar[l1]] etc

The system supports functions with up to four & and d in it. The above
example could have been written thus -

cadadrlcddr[ (A (B) (C) (c (D E) F))1I
3.5 cons[x,1] When 1 is a list, cons will give as value the list

where x is the head and 1 is the tail. When 1 is an atom
it returns a dotted-pair as described in 2.7.

eg conslA,(B ¢)] = (A B C)
cons[ (A B), (A B)] = ((AB) AB)
conslA, 81 = (A . B)



3.6

cons allocates a new list-cell every time it executes.

cons[A, (B C)]

t !

i [}

& | '

' '

e e -
allocated from ) /
—+—
cons A

/7

0 <
O <~

Some predicates will now be introduced. A predicate is a function
giving a truth value, such as true or false. False is represented
by NIL and true is represented by an arbitrary LISP element # NIL.
Normally one uses the atom T which has the initial value T.

equallx,y] Tests if x and y are similar, in the sense that if x
and y are of the same datatype, the LISP print-routine
will print'x and y identically. If they are similar it
returns T, otherwise it returns NIL.

eg equall[(AB), cdr[(X AB)I] =T
equallA, cadr [(X AB)I]1 =T
equal["ABC", UABC',] = T
equall[A, car[((A))11 = NIL

Equal is normally used for comparing lists. There are
more specialised functions, and therefore more efficient,
for comparing different datatypes, such as

eq for literal atoms (see below).

eqp for numbers (see Section 12).

strequal for strings (see Section 22).

eqlx,y] Tests if x and y are identical, in the sense that the pointer
are identical, If they are identical it gives the value T,
otherwise NIL.

eg eqlA, car[(AB)]] =T
eqlA, cadr[(A B)]]1 = NIL
Eq is normally used for comparing atoms. Remember that

atoms are unique. It follows that pointers to the same
atom are identical.

1 NIL and T are system variables and should not be used as variables
by the user.
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atom[x]

nul 1[x]

memb[x, 1]

Exercises

1. Combine
(A B (X

2. Combine
element

Tests if x is an atom (1iteral atom or number) and
returns T, otherwise NIL.
eg atom[car[(AB)1] =T
atom[12.34EL] = T
atom[ (A B)] = NIL

Tests if x is NIL (the empty list) and if so returns T,
otherwise NiL.
eg null[NIL] =T
nul1[T] = NIL
null[()1 =T

Tests if x, normally an atom, is an element on the top
level on the list 1 and gives then a true value (#NIL),
otherwise it gives the value NIL.

eg memb[X,(A X B C)] (X B C)
memb[Q, (A (Q) B)I = NIL
memb[Z, ((X Y Z) 2)1 = (2Z)
memb[3, (1 2 3 4)] = (3 L)
memb[1.2, (2.1 1.2)] = NIL

The actual value returned from memb is the rest of the
list 1, where x is the first element.

functions for testing if the third element of
Y) €) is an atom

functions for testing if the first sublist's second

in ((A(QQ (AA)) (AA)) is similar to (Q Q).

3. Construct a list of the elements ADAM, (BERTIL) and ((CAESAR)).

L. What value is returned from these expressions.

a. caddr[cadar[ ((A (B C D E)) F G)]]
b. eq[A, cdar[ ((A B A))]]
c. wm“wuHM(BWDH)HJan
d. consl(= =), =]
e. caar[NIL]
null[ cddddr[ (A B C)]]
g. cadr[ (A . (B . C))]



5.

h. cddar[((A . (B . (C. D)) . E)] '
i. memblcadar[((+ ? =) /)1, (: +/ 7 - x)]

Suppose 1 has the value (A ((B C) D))

Is it true that

a. equalll, cons[car[1], cdr[1]]]
b. memb[C , caadr[1]]
c. equallcons[cdrl1], cdadr[111, (((B C) D) D)]

13



4.2

Conditional expression

A conditional expression in LISP is written in M-notation as Algol's
if-then-else. Usually we have several tests and branches so it is

convenient to introduce elseif. The expression has the following form

if Py then e,
elseif Py then e,

elseif P3 then e

3

else e
== “n+1

p. and e. can be arbitrary LISP-expressions including other condi-
tional expressions. The evaluating rule for this is

- evaluate P; in order until the first Pk which has the value
true (#NIL). Then evaluate S its value will be the value of
the whole conditional expression. )

- if all p; are false then et will be evaluated and its value
will be the value of the whole conditional expression.

Suppose we want to count the number of elements in a list and return
that number if less than 3, otherwise return the value MANY. The con-

ditional expression for this is
if null[1] then 0
elseif null[cdr[1]] then 1
elseif null[cddr[1]] then 2
elseif null[cdddr[1]] then 3
else MANY

If 1 is (A B) the value will be 2.
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4.3 There is an extension of this conditional expression described by
the following example

if P then e

elseif then e e

P2
elseif p,

22 723

elseif Py then ey

The evaluation of P; is the same, but if Py is true then all forms
e to e23 will be evaluated in order and the value of the condi-

tional expression is the value of e the last form. This corres-

23

ponds to Algol's begin ... end parenthesis, and in LISP it is called

implicit progn. If P3 is true (#NIL) this value will be returned as

the conditional expression's value. This is used instead of writing
elseif p3 then p3

in which case we must evaluate p3 twice.

The general rule is that we can have arbitrary numbers of expressions
after then or that then can be omitted completely.

If there is no else statement and all pi are false then NIL will be

returned as value.

k.l Later we have examples which explain these conditional expressions
in more detail so in this section we have omitted the exercises.



Property-lists

Every literal atom has an associated property-list. This section
describes how to use them and introduces the functions put, getp,
addprop and remprop, which are used for manipulating property-
lists.

In this example we have used the property-list to store facts
about family relationships.

JOHN

mother
father

KARL

ANNE

KARL, ANNE and JOHN are objects; father and mother are relations.

A fact can then be represented as an object - relation - object
triple. LISP gives now a very convenient way to store these triples
on property-lists.

We can store '"KARL is FATHER of JOHN'" and "ANNE is MOTHER of JOHN"
and then retrieve ''who is JOHN's FATHER? and ''who is JOHN's
MOTHER?"

This is stored by
put[JOHN, FATHER, KARL]

and we say that the carrier JOHN has under the property FATHER
the property value (or shortly value) KARL.! The carrier and the

property” must be literal atom and the property value can be of
arbitrary type.

! These names can be confusing. In some LISP systems it is said that
an atom under an indicator has a property.

2 Actually the property can be of arbitrary type, but the normal
property-list functions, such as put and getp make the comparision
of the property by eq.



5.3

Vle can then store
put [JOHN,MOTHER, ANNE ]
To retrieve we do

getp[ JOHN,MOTHER] and get the vaiue ANNE and
getp[JOHN,FATHER] gives KARL

Here are some functions used for property-lists.

put[atm,prop,val] Stores on atm's property-list under the property
prop the value val. |f there already was a value
stored under that property it will be over-written
by the new value. The value return from put is val.

eg putfA,B,C] = C. On A's property-list C is
stored under the property B.

getplatm,prop] Gets the value under the property prop on the atom
atm's property-list. |f there is no value NIL is
returned.

eg getplA,B]
getplA,X]

C, if we assume the above put.
NIL

addproplatm,prop,new] Adds new to the value stored on atm's property
list under the property prop. The value returned
is the new value.

(Z). Under Y the list (Z)
is stored on X's
property-list.

(Z W). W is added to the list.

eg addprop[X,Y,Z]

addprop[X,Y,W]
getp[X,Yl = (Z W)

remproplatm,prop] Removes on atm's property-list the value under the
property prop. Also prop is removed. The value re-
turned is atm.
eg remprop[X,Y] = X
getp[X,Y]l = NIL

In the above functions atm, and prop must be literal atoms and val
and new can be of arbitrary types.
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5.4 Let us continue with the family relationships introduced at the be-
ginning of this section and see how we can store and retrieve data

5.5

5.6

on the property-lists.

Suppose the following holds

Corresponding LISP expressions

Karl is father of John.
Wilhelm is father of Karl

Karl's children are John,
Mary and Jim.

John is a male.
Karl is married to Anne

Karl has one more child Tim.

Jim is of the same sex as John.

The one Karl is married to
has the same children
as Karl and one more
child Eva.

put[JOHN, FATHER, KARL]

put[KARL, FATHER, WILHELM]

put[KARL,
(JOHN

CHILDREN,
MARY JIM) ]

put[JOHN, SEX, MALE]
put[ KARL, MARRIED, ANNE]
addprop[KARL, CHILDREN, TIM]
put[JIM, SEX, getp[JOHN, SEX]]

put[getp[KARL, MARRIED],
CHILDREN,

cons[EVA, getp[KARL, CHILDREN]]

The implementation of property-lists makes it possible to retrieve

an atom's property-list simply by doing cdr of the atom. The property-
list can contain some system properties and we are not allowed to
remove or change them in any way. Be careful about this!

The property-list is actually an ordinary list, where every second
element is a property and the other a value.

From the above examples we have the following structures

John's property-list

———> B E— ~+—
] 1 | ]
i v | !
FATHER KARL SEX MALE

Karl's property-list

—1L —t —

1 |

)

FATHER WILHELM MARRIED

ANNE

3 )

CHILDREN  (JOHN MARY JIM TIM)
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Jim's property-list

SEX MALE

Anne's property-list

—
! f
CHILDREN (EVA JOHN MARY JIM TIM)
5.7 We require answers to the Corresponding LISP
following questions expressions
Give the name of one car[getp[KARL, CHILDREN]]
of Karl's children
Do we know Mary's sex? getp[MARY, SEX]
Is Karl married to someone memb[EVA,getp[getp[KARL ,MARRIED],
who has a child named Eva? CHILDREN]]
Is Jim a male? eqlgetplJIM, SEX], MALE]
Is Anne married to Karl? if eqlgetp[ANNE, MARRIED], KARL]
else eqlgetp[KARL, MARRIED],
ANNE ]
Who is John's father's father? if getp[JOHN, FATHER-FATHER]
elseif getplgetp[JOHN, FATHER],
FATHER]

Notice in the last conditional expression that there is no then
and no else expression. This was described in Section 4.3.
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Changes to the propertyalist Corresponding LISP expressions

Anne and Karl are not married remprop[ KARL, MARRIED]
any longer

Viktor is father of Karl put[KARL, FATHER, VIKTOR]

5.8 The above examples illustrate how to process property-lists with
the functions introduced so far. Of course there are other ways
of processing, but as yet we have not gained sufficient knowledge.
An example is,

JOHN is no longer KARL's child.

With the function remove (see 11.6) this can be stated as

(PUT 'KARL 'CHILDREN (REMOVE 'JOHN (GETP 'KARL "CHILDREN)))

Exercises

1. Suppose we wish to store a directed graph, such as

Decide the properties we need for storing the graph on property-
lists. We must be able to answer questions such as

a. What nodes follow B?

b. What nodes precede C?

c. Does C follow A?

d. Can we go from A to D only through C?

e. |Is the arc between C and D directed in both directions?

f. Is there a loop (an arc which starts and ends at the
same node) at B?
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S-notation

As yet nothing has been said about how to write a correct LISP
expression suitable for use in the machine. The notation used for
for this is called S-notation. This section will give the transfor-
mation rules for converting M-notation to S-notation.

M-notation S-notation

Variables alpha ALPHA

Variables in the meaning '"its value', must be converted to
corresponding atoms.

Functional
expressions fnlarg;, ... , arg ] (FN ARGT ... ARGN)

The expression is converted to a list where the first element is
the function name and the remaining elements are the arguments.

Condi tional if p; thene; e, (conD (P1 ET)
expressions elseif P, then ey (P2 E21 E22)
elseif P3 (P3)
else E (T EB))

The conditional expression is converted to a cond-expression.
It consists of sublists, where every sublist corresponds to
one of the test cases in the conditional expression. The first
element of the sublist is the predicate and the rest are the
expressions to evaluate. In the else branch T indicates that
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6.3

6.4

6.5

the following expressions will always be evaluated. T has always
the true value.

Constants as ADAM ' ADAM
atoms, lists (LtsP) (LIS P)
and strings YUSTRING! ' USTRING!

One of the main differences between LISP and the conventional
programming languages, such as FORTRAN, COBOL, PL/1 etc, are
that these languages have different representation of ''programs'
and ''data'’, but in LISP there is no such difference. A 'prog-
ram' in LISP is simply represented as a list structure.

Quote. One difficulty is apparent, however, when using the same
representation of 'program' and ‘'data''. How can we separate them?
The '-sign called guote-sign is introduced for this reason. Let us
see some examples

M-notation S-notation

car[(A B C)] (CAR ‘(A B C))

eqlQ, car[(Q W) 1]
cons[L, (1 S P)I
nulll1]

memb[x, (A B C D E)]

(EQ 'Q (CAR '(Q W)))
(CONS 'L (1 S P))
(NULL L)

(MEMB X '(A B C D E))

(cAR (CDR L))
(CAR '(CDR L))

carlcdr[1]]
car[(CDR L)]

In M-notation, variables (with lower case letters) are easily
separated from constants (written in capital letters), but in S-
notation the ‘~sign will tell that the following expression shall
be interpreted as a constant. If a list is not '-ed {quoted) it
is taken to be a functional expression, where the first element
is the function name and the rest of the elements are arguments.
See the difference in the last two examples above and really try
to understand how necessary the '-sign is in the last example.

Cond is a special function which does not really follow the rule
of quoting the arguments. These different function types are des-
cribed in detail in Section 14.
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6.6 The '-sign will be translated by the LISP read-routines to QUOTE,
so that 'A becomes (QUOTE A) and '(A) becomes (QUOTE (A)).

Quote is a LISP-function, but works in such a way that it only
returns its argument and by this no further evaluation will be
performed.

The '-sign is only an abbreviation for QUOTE, so we can write it
in both ways.

eg '(AB 'C) - is similarly written - (QUOTE (A B (QUOTE C)))
The LISP print-routines will print QUOTE instead of '
6.7 Numbers, NIL and T do not need to be quoted. They are so defined
that they have themselves as value.

eg cons[3, cons[T, cons[A, cons[(B), cons["S'", NIL1111]
(CONS 3 (CONS T (CONS 'A (CONS '(B) (CONS ' "'S'" NIL>

Exercises

1. Translate the following expressions from M-notation to S-
notation:

a. cdrl(ABC)]

b. equallA, carl((A))1]

c. atom[12.34EL]

d. equalll, conslcar[1], cdr[1]111]
e. memb{C, caadr[1]]

f. putlgetp[KARL, MARRIED], CHILDREN
cons[EVA, getp[KARL, CHILDREN]]]

g. if nullcl] then NIL else cdr[l]

h. if eqigetplANNE, MARRIED], KARL] then T
else eqlgetp[KARL, MARRIED], ANNE]

i. if getp[JOHN, FATHER-FATHER]
elseif getp[getp[JOHN, FATHER], FATHER]



User-defined functions and assignment

User-defined functions. In LISP we can introduce our own functions.
In S-notation we can write

(DE FOO (L) (CONS (CAR L) (CADDR L)))

We have now defined a function, named foo, with one argument 1.
The function is defined to make a dotted-pair of the first and
third element on a list.

(FOo *(A B CD)) = (A.C)
(FOO "(A B (CD))) = (ACD)

The general form for function definition is
| 1
(DE fn (arg] arg, ... argn) FnbodyI fnbody2 - fnbodym)
fn is the name of the function being defined.

arg. must be a literal atom. Do not use the atoms NIL, T and
NOBIND, they are used for other purposes. NIL and T represent the
values false resp true and all atoms are initialised to the value
NOBIND.

The number of arguments is arbitrary, (including no arguments).

fnbody. must be a LISP-expression - anything which can be evaluated
in LISP's sense. At function call the bodies will be evaluated in
order, singularly, and the value of the last body will be the value
of that function call.

Functions defined in this way are called eval-spread functions.

More about the different types of functions is described in
Section 14.

Examples

The following function definition

(DE MARRIED (X Y) (PUT X 'MARRIED Y) (PUT Y ’'MARRIED X))

! In M-notation a convenient way to write this general form can be

Fn[arg], arg,, ..+ argn] == fnbody], fnbodyz, e fnbodym
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is defined by two function bodies. It will store that x has the value
y under the property MARRIED and that y has the value x under the
same property. The value of this function is the value of the last
put, and its value is x.

(MARRIED "ADAM 'EVA)

will perform the side-effects to store on ADAM's and EVA's property-
lists and return the value ADAM. This demonstrates that we are not
always interested in a function's value, but only in its side-effects.
If we will have the value OK we could define it as

(DE MARRIED (X Y) (PUT X 'MARRIED Y) (PUT Y 'MARRIED X) 'OK)

Define a function before which checks if an atom x precedes the atom
y on the list 1, and then returns the value T otherwise the value NIL.
eg (BEFORE 'C 'E '(ABCDEFGH) =T
(BEFORE 'T 'R '(Q RS TUV)) =NIL

The definition of before is'

(DE BEFORE (X Y L) (COND ((MEMB Y (MEMB X L)) T)
(T NIL)))

Note the use of the value of memb (see Section 3.6). In the first
example above, the evaluating order in before will be

a. (MEMB 'C '(AB CDEFGH)) = (CDEFGH)

b. (MEMB 'E '(C DE FGH)) = (EFGH)

c. (COND ('"(E F G H) T) (T NIL)) will of course be evaluated to T.

Assignment. As in other programming languages we can assign values
to variables. In LISP every literal atom can be a variable.

When we write

(SET 'L 'A)
we mean that the atom L is treated as a variable and gets as value
the atom A. If we then write

(SET L 'Q)

we mean the atom L is a variable and the value of that atom, the
atom A, gets the value Q. This is very important in LISP. In some
other languages an identifier is always treated as a variable and

1 . o
If we can accept other true values than T we could also define

before as

(DE BEFORE (X Y L) (MEMB Y (MEMB X L)))
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when we write the variable we mean either its value as in

A+ B+ C+ 4 is 15 if the variables A=2,B=4andC =5
or the variable itself as in

A=10

It is the position of the variable in the expression which deter-
mines its interpretation.

In LISP however, a variable can have another variable as value and
we must therefore distinguish very carefully in every situation if
we mean the atom itself or its associated value. Further examples
clarify this

(SET 'L '(A B)) L is assigned the value (A B)

(SET 'A 10) A is assigned the value 10

(SET 'B 'X) B is assigned teh value X

(SET B 'Y) X (the value of B) is assigned the value Y
(SET X A) Y (the value of X) is assigned the value

of A which is 10
Now the following values exist

- 10
- X
- (A B)
-y
- 10

< X r o >»

7.5 The first argument to set can be an arbitrary LISP-expression, which
evaluates to an atom.

eg (SET (CAR '(A B C)) 10) assigns the value 10 to A.

7.6 Normally when assignments are done the first argument in set is
quote- ed. There is a speCIal function setq, which makes this quote-
ing implicit and which is more commonly used than set.

eg (SETQ A 'VALUE) is identical to (SET 'A 'VALUE)

: . . as

7.7 Me will not discuss the scope of a variable in LISP in this
section as this is dealt with in Section 15. Until then we
normally use the assignment for giving a2 global value to an

atori.
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Exercises
1. Define a function cd5r, which gives the fifth element on a list.

2. Define the following functions, which work in the family rela-
tionship example in Section 5.

a. A function married[x,y] which checks if x and y are married.
The function must look on both x's and y's property-lists.
Return the value YES if they are married and NO otherwise.

b. A function son[x,y] - meaning x is son of y - and which
on x's property-list stores that y is father of x and on
y's property-list adds that x is son of y.

Return the value OK.

c. A function fatherofqlx,y] which checks if x is father of y.
Return YES or NO.

3. Suppose we do the following assignments

(SETQ R '"(A B C))
(SET 'L 'R)

(SETQ X L)

(SET L (CAR R))

(SET R '(Q R S))

(SET (CAR A) (CDR A))

Which of the following expressions are true (#NIL)

a. (ATOM R) f. (EQ X 'R)

b. (ATOM A) h. (CDDR A)

(ATOM X) i. (CDDR Q)

d. (EQ X L) j. (EQUAL Q (CDR A))
(EQ x 'L) k. (EQUAL L (CADR A))
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8.2

Running LISP

The LISP interpreter

A LISP system is interpretative. This means that the system reads
a LISP-expression, and then directly calls an interpreter, which

evaluates this expression, and writes as output the value of that
evaluation. lts contrast is a compiled system, similar to FORTRAN,
COBOL etc, where the expressions iprograms) will be translated to

machine code by a compiler. This machine code can then later be
executed.

There is a LISP compiler which can be used for compiling LISP func-
tions from the list structure format to machine code. The reason for
compiling a LISP function is for efficiency but is not necessary

for running LISP. The compiler will be described in Section 2%3.

The INTERLISP/360-370 can be used both as an interactive system and
as a batch system. We assume that we first use the interactive system
and see how it functions. Later we will see what changes to make and
the differences when using it as a batch system.

First we must enter the LISP system. The exact procedure for this is
machine and implementation-dependent and we must consult a local
guide for this. When the system is entered it prompts us with a
character which says that it is ready for input. The prompt character
is — (be sure that your installation has not changed it). There

are other prompt characters to be used when in other modes, such as
in break and edit mode.

The LISP system works in the following loop:

- print a prompt character
- read a LISP expression
- evaluate this expression

- print its value
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A conversation can appear thus

-(CONS 'A '"(B C))~) Prompt character; give input and
end the input by return and here

(A BC) is the value.

-(DE FOO (L) (MEMB V L>xJ Notice that all LISP expressions
have a value. In some cases this

FOO value is of no real interest, as

in these two expressions.
-(SETQ V 'LISP)~u

LISP
-Vad
LISP
-(FCO ' (ALGOL LISP FORTRAN))~D

(LISP FORTRAN)

_IA,\_)

A

- (QUOTE A)~D

A

- (EXIT)~ The function exit returns from

LISP to the time-sharing monitor.

The LISP read-routine reads one LISP expression (atom, list etc) in
S-notation. The form of writing it is free and the expression can
be written on several lines (cards). The read-routine continues to
read until it has read in a full expression, ie a full parenthesised

list. Blank is ignored and used only for separating atoms, strings
etc. However, it is important to find a good ''style' to write LISP,
so it can be read by other programmers. Normally LISP programmers
follow these rules:

- one blank between atoms and between an atom and a left
parenthesis

- no blank after a left parenthesis and no blank before a
right parenthesis

- one blank between a right parenthesis and an atom
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8.4

- one blank between right and left parenthesis

- same parenthesis following each other have no blanks between.
(A B (CD) (X (Y2))W
is preferable to
(A B(c D) (x(¥2))w)

When we have long lists we try to split them up on several lines
(cards) and make the necessary indentations to describe the struc-
ture of the list. A cond-expression can appear

(COND ((NULL L) (F0O L))
((MEMB 'X (CDR L)) (FIE (CONS (CAR L) (cobrR L)))
(FIE (CONS (CADR L) (CDR L))))

(T (Foo (COR L))))

The input must of course be something which can be evaluated. A
LISP expression given to the evaluator is called a form. If a
form is a

- literal atom, i. e. used as a variable, is evaluated to its
value. If it has no value an error occurs and the message
U.B.A (UnBound Atom) indicates this.

- number , is evaluated to itseif
€g

-(SETQ VAR 'VALUE) Input
VALUE Value
-VAR
VALUE
-WAR The variable war has no value.
U.B.4 The efror message for an unbound
VAR S;STaéie?rxnted together with the
=123
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- list, the first element is taken as a function and the re-
maining elements are arguments to that function. [f the first
element is not a function the system prints the error U.D.F

(UnDefined Function).

eg
-(CAR '(A B C>
A
-(KAR '(A B C>

U.D.F

Input

Value

This message indicates that kar
is the undefined function.

Note the importance of the quote sign.
The list (A B C) is now treated as a
form and the system looks for a function
A, which is not defined.

If the error occurs deep in the function (many function calls have
been made before the error is made) the system goes in a break. It

prompts us then with a :

It gives us the possibility to analyze

in detail the error and correct it and then go on with the evalua-
tion. This will be described later; what we can do in such situa-
tions is to write | or (RESET) and return. We return to the

LISP system's top level.

When we have parenthesis error the message can be

confusing.

eg
-(CAR 'A B C>

U.B.A
B

-(EQ (CAR X) CAR Y>
U.B.A

CAR

-(COND ((NULL L) NIL)
- (CDR L>

U.B.A

CDR

We meant (CAR '(A B C>

The arguments to car are evaluated
and its second argument B has no
value and an U.B.A error message is
printed.

We meant (EQ (CAR X) (CAR Y))

When a function is an unbound atom
it is nearly always parenthesis error
or

provided we have not forgotten the T
in the last clause in a cond-
expression. In this case CDR is the
predicate to evaluate and the error
indicates that it has no value.
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8.6

-(CADR '((A . ) (B . 2)) (C. 3> The additional left parenthesis after
the pair (B . 2) will cause (C . 3)

U.D.F to be a form for evaluation and C is
then taken as a function.

-(DE FOO (X (CAR X)) We thought the expression was correct

- but the missing parenthesis after the

- first X will make the system prompt

- us to continue the expression. This

- can be very confusing because the
system prompts for more and more
input whatever is wanted. In this case
a number of right brackets (>) can
complete the expression.

We have now arrived at the stage where we can sit down and practice
on the system. However, first a few more rules are necessary. Wﬁen
introducing a new function it is not permissable to use a fgncFlon
name already existing in the system. It is of course very difficult
to know all the names. The system will print when we redefine a func-

tion
(CAR REDPEFINED)
When this message comes, we must do

(MOVD 'CAR 'KAR)
(UNSAVEDEF 'CAR)

which re-stores the ordinary function definition, and gives the new
definition the function name kar.

If we have defined a function foo we can look at it by doing

(PP:: FOO)
The function will be prettyprinted. Do this and see what happens.
When typing to the terminal it is important to know

- how to input a line to the computer

- how to delete characters from a line.

- how to make an interrupt and to come to LISP's top level
again. This is done if our function goes in an infinite Toop
or if the print-routine prints a circular list and we want
to stop it.!

- what character set we can use. Is it permissable to have small
letters and other available characters. For this consult the
local LISP guide for that terminal.

1 An attention-D causes return to the top-level; an attention-P0
stops the printing of an expression, see further 30.5.
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8.7 Running LISP in batch. This can be done either by a remote job
terminal or by punching cards. We must find out which control
statements (JCL statements for IBM) we require.! Following them
we can give the LISP expressions we want to have evaluated.

eg // EXEC ULISP } control statements
(CAR 'A B C>
(SETQ A 10)
A LISP statements
(EXIT)

/%

The output will then appear

If an error occurs the system prints a message in the interactive way.
If the error occurs deep, the system will print a backtrace. This
backtrace contains information stored on the system's stacks. We

will not discuss that information here but will return to it later

in this paper.

8.8 There is a comment facility in INTERLISP/360-370. A form started by
¢ is treated as a comment.
eg (x THIS IS A COMMENT)
This expression is an ordinary form, but it is defined not to evaluate

the list, but it returns a value. This means that a comment can only
appear where the value does not effect the evaluation.

eg (DE FOO (X) (% FOO IS A FUNCTION ...) (FIE X))

(DE FOO (X) (COND ((EQ X 'A) (: THIS TESTS ...) (FIE X))
((EQ X 'B) (¢ THIS ...) (FUM X))

(T (= THIS ...) (GUM X))))

are all 0K, but not

(DE FOO (X) (FIE X) (: FOO IS ...))

1
In the Appendix is described the actual control statements needed to run.
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Exercises

Sit down at a terminal and enter the LISP system.
Do the following:

a.

Start by testing the standard functions introduced in Section 3.
Test them with different types of arguments and really understand
how they are working. Do not forget the put the '-sign in the right
position. If errors such as U.B.A and U.D.F arise it is probable
that you have forgotten a '-sign or that you have miss-spelled a
function name. Do not give up until it is working correctly. The
use of ' is very important and it is pointless to continue in this
text if its use is not clear.

. Make assignments. The '-sign is also here very important.

Test exercise 3 in Section 7.

Define your own functions. Use conditional expressions in the
definitions. Pretty-print the functions. |f they are not working
redefine them again and go on testing.

Find a problem where you can use the property=-lists. One problem
could be the family relationships introduced in Section 5. Intro-
duce more properties and store facts on the property-lists. Define
functions for making retrieval from the property-lists.
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Recursive functions

For writing algorithms for symbolic datatypes such as lists etc,

it is often desirable to define the algorithm in a recursive way.
The use of recursive functions is very common in LISP and the lan-
guage is designed to make recursion easy to handle. This means that
in a function definition a function call to the function itself is
allowed, either direct or indirect (a function a calls b which
calls a). - -

Writing a recursive function is not a triviality for the beginner,
especially if he is used to languages like FORTRAN, COBOL etc, and
therefore writing programs in an iterative way, ie by using loops.
Remember now that LISP is designed to be a functional language - we
break our problem down to small functions, which call each other in-
tensively - and that we for this reason cannot make programs in LISP
by thinking in FORTRAN terms. To think in LISP we must learn and

the only way to learn is to practice. This section will give many
examples of recursive functions - then try to solve the exercises
at the end of this section.

We start with the function =memb,! described in Section 3.6.

(DE *MEMB (X L) (COND ((NULL L) NIL)

(

((EQ X (CAR L)) L)

(T (MEMB X (CDR L)))))

The function #memb is defined first to test if 1 is the empty list.
It returns then the value NIL, which is obvious for no element can

occur in an empty list. Then it tests if the first element on the
list 1 is equal to x. If it is true, we have found an x, which is

! When definition of functions which already exist in the INTERLISP/
360-370 system are given they are x-marked. If a system function is
redefined in an incorrect way it can break down the system, but

of course its definition can be tested by using this *-name.
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an element of 1 and therefore returns a true value. Actually it is
the list 1 we return. If this was not the case we make a recursive
call to xmemb again. But now we know that the first element of 1 is

not equal to x and therefore we have the problem of testing if x

. is an element of the list 1, where the first element is removed.

Whatever value that function call will return, true (#NIL) or false
(NIL) that value will of course also be the value returned from the
function. This is obvious for the first element of 1, does not effect
the value for we know that this element was not equal to x.

The first two steps in ¥memb are our terminating criteria, which
stops the recursion.

Let us clarify this discussion by following an example.
*memb[Q, (0 P Q R)]

We get the following call structure

enter the conditional expression and evaluate
the last branch

enter the conditional expression and
evaluate the last branch

,
Q
(Q R)

nte

enter the conditional expression
and evaluate the second branch. The
result from this evaluation is (Q R)

return from *memb with value (Q R)

the conditional expression gives the value (Q R)

return from Zmemb with value (Q R)

the conditional expression gives the value (Q R)

Return from *memb with value (Q R), which is the final value.
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We define a function :remove[x,1], which returns as value a new
list, where all occurences of the atom x are removed from the
top level of the list 1.

eg xremove[A, (C AD A)] = (C D)

stremove can be defined

(DE %REMOVE (X L) (COND ((NULL L) NIL)
((EQ X (CAR L)) (:REMOVE X (CDR L)))
(T (CONS (CAR L) (::REMOVE X (CDR L))))))

The function starts to test if we are trying to remove anything
from an empty list, which we of course cannot. This is our termina-
ting criteria for ending the recursion.

The other two tests will go on in the recursion and remove x from
cdr of 1. The differences between the two tests are that we in the
third test case put the first element - it can not be equal to x -
on the list we get as value from the recursive call - this list
contains only elements not equal to x, for they are now removed.

The above example will give the following enter/return structure.
The entering and leaving of the conditional expression is not shown.

:remove:
{=A
L= (CADA)
Zremove:
X =A
L= (ADA)
dremove:
X=A
L= (Db A)
Xremove:
X =
L= (n)
Xremove:

X
L NIL
stremove = NIL
siremove = NIL
zremove = (D)

xremove = (D)

wremove = (C D)
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9.4

The listing of call/return structure of :tremove, corresponds nearly

to a trace-function, which exists in the LISP system. A traced func-
tion will at entry write the arguments and its associated values and
at return write the computed value. For getting this trace we do

(TRACE %REMOVE %MEMB ...other functions we want to trace...)
To remove the trace we do
(UNBREAK %REMOVE ...other functions we want to untrace...)
Define a function *union[x,y], which takes two lists, where each list
is supposed to be a list of atoms, and which makes a union of the
two lists.

(DE =UNION (X Y) (COND ((NULL X) Y)
((MEMB (CAR X) Y) (::UNION (CDR X) Y))
(T (:cUNION (CDR X) (CONS (CAR X) Y)))))

A trace of stunion[(A B C), (X B Y)]

stunion:
X = (ABC)
Y=(XBY)
*union:
X = (B C)
Y= (AXBY)
s#union:
X = (C)
Y= (AXBY)
wunion
X = NIL

%union = (C A X B Y)
2union = (C A X B Y)
xunion: = (C A X B Y)
xunion = (C A X BY)
In this function we use y for building the value and when all

e]gments of x were taken (x = NIL) Yy was returned as value, and
this value will be returned up as the final value.
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9.3 Define a function totremovel[x,!], which returns a value, where all
occurences of x regardless of the level, are removed from 1.

eg totremovelX,(A X (B (X C)))1 = (A (B (C)))

(DE TOTREMOVE (X L)
(COND ((ATOM L) L)
((EQ X (CAR L)) (TOTREMOVE X (CDR L)))
(T (CONS (TOTREMOVE X (CAR L)) (TOTREMOVE X
(cor 1))))))

In the cons we make two recursive calls and we say that we are
making recursive calls both in the car- and cdr-direction. This
is termed double recursion.

In the function we test if x is equal (with eq) to car[l], and if

so we go on as in the function Xremove. However, if they were not
equal, 1 was either an atom (we assume no strings in the lists) not
equal to x or a list. In that case we make a recursive call to
totremove with that first element as 1. The test atom [1] will find
out if 1 is an atom and return then the atom as value. This test also
takes care of the end of the list test, when 1 is NIL, because
atom[NIL] is T. If 1 was a list, go on. The value of the first
recursive call will be cons-ed on the list we get as value after

the second recursive call.
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totremove:
X = X
L=(AX (B (x¢€)))

totremove:

X =X

L=A

totremove = A

totremove:

X = X
(x (8 (x c)))

L
totremove:
X =X
L= ((B (xc)))
totremove:
X X
L= (B (xc))

totremove:

X =X

L =8
totremove = B

[}

totremove:
X=X
L= ((xc))

totremove:

X =X

L=(xc)
totremove:
X =X
L= (c)

totremove:

X =X

L==¢C
totremove = C

totremove:

X=X

L = NIL

totremove = NIL
totremove = (C)

(c)

totremove

totremove:

X =X

L = NIL

totremove = NIL
totremove = ((C))

(8 (C))

totremove

totremove:

X =X

L = NIL
totremove = NIL

totremove = ((B (C)))
totremove = ((B (C)))
totremove = (A (B (C)))
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9.7

In

In the function totremove, we made the test atom [1]. This works
correctly only in cases where the elements are atoms. |f strings
and other datatypes can be elements the test should be done by

the function nlistp, which is true when its argument is not a list.
NIL is here treated as an atom, so nlistp[NIL] =

eg

nlistp[ATOM] =

nlistp[(A T 0 M)] = NIL

nlistp["STRING"] = T

nlistp[()] =

The function nlistp is also useful when using lists ending with a
dotted-pair.

€g

The function xcopy[1], which makes a copy of a list
structure, including dotted-pairs.

2copy[ (A B (C .

(DE =COPY (L)

(COND ((NLISTP L) L)

D)

.E)I =(AB (C.D).E)

(T (CONS (xCOPY (CAR L)) (xCOPY (CDR L))))))

If we suspect that a list can end with a dotted-pair a good rule
is to use nlistp as the terminating critera, when processing lists,

instead of null.

This example shows what can happen if we have the

null test as terminating criteria for a list but the list happened
to end with a dotted-pair.

eg

take the function

xremovel[X, (A X .
The trace gives,

remove from Section 9.3 and evaluate

B)]

"remove
X =
L= (A X . B)
“remove:
X=A
L=(X.B8)
*remove
X =A
L=28

Here 1 has the value of atom B,
and we go down and make the re-
cursive call

stremove[A,cdr[B]]

What is cdr[B]? Cdr of an atom
contains the property-list. If B's
property list contains property/
value pairs the function xremove
will go on there. The test with
nlistp, would stop and prevent the
function from doing unexpected
things like this.
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Exercises

All these examples can be tested on the computer. Use trace. Many
of the functions mentioned here are functions which already exist
in the LISP system, (they are x-marked).

1. Define a function even[1], where 1 is a list, which gives as
value T if there was an even number of elements on the list,
otherwise NIL

eg even[(ABCD)] =T
even[((A) (B C) (D))] = NIL

2. Define a function append2[x,y]l, where x and y are lists, which
gives as value the concatenated list of x and y.

eg append2[(AB CD), (XY Z)]1=(ABCDXY Z)

3. Define a function xintersection[x,y], where x and y are lists
treated as sets which gives as value the list corresponding to
the intersection of x and y.

eg =xintersection[(AB CDE), (QDEWAZ)] = (ADE)

The order of the elements in the value-list can differ, depend-
ing on the algorithm used.

L. Define a function %reverse[l1], where 1 is a list, which gives as

value a list where the elements on top level are in reversed
order. Hint - use append2  from exercise 2.

eg ureverse[(A B (QW) CD)]l =(DC (QW) BA)

5. Define a function :subst[x,y,l] where x and y can be of arbitrary
type and 1 a list, which gives as value a new list in which
every occurence of y on top level is substituted by x.

eg xsubst[NEW, OLD, (A OLD (B OLD) OLD C)] =
(A NEW (B OLD) NEW C)

6. Define a function totreverse[l], where 1 is a list, which gives
as value the list where all elements are reversed on all levels

eg totreverse[(A (B C) D ((E) F))1 = ((F (E)) D (C B) A)

7. Define a function totsubst[x,y,1], which works as subst, but sub-
stitutes on all levels.

eg totsubst[NEW,0LD,(A OLD (B OLD) OLD C)] =
(A NEW (B NEW) NEW C)
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Define a function =sublis[al,1], where al is a list of dotted-
pairs and 1 a list. For every pair in al the first element shall
be substituted by the second element in the list 1. The substitu-
tions shall be done on all levels.

eg wsublis[((A . X) (B . Y)), (c (AB (DB)) A =
(c (xY (oY) X

Define a function xpairlx,y], where x and y are lists of the same
length (they contain the same number of elements on top level).
The value returned from pair, should be a list of dotted-pairs.
The first element from x and y builds the first dotted-pair, the
second element from x and y the second pair etc.

eg pair[(ONE TWO THREE FOUR FIVE), (1 2 3 4 5)] =

((ONE . 1) (TWO . 2) (THREE . 3) (FOUR . 4) (FIVE . 5))

Define a function flatten[1], where 1 is a list, which builds a

list where all parentheses - except the outer pair - are removed.
The atoms in 1 shall come in the same order in the new list.
eg flatten[((A B (C)) D (E (F (6)) H))] =
(ABCDEFGH

Define your own sort-package by using a tree-sort algorithm. A

function tree-sort[1], where 1 uld
Introduce a global variable PRECEDENCE with a value giving the

ordering relation between the atoms.
eg PRECEDENCE := (ABCDEFGH I J)

treesort[(B AEGC 1 JG)]1=(ABCDEGG I J)

The package should also contain a function merge, which
makes a merge of two sorted lists.

merge[(ACEFF 1), (BDEGHUJI)] =
(ARBCDEEFFGHIJ)

Hints - Define a function order[x,y], which is true if x precedes
y on PRECEDENCE, otherwise NIL

order[B,H] = T, or another true value
order[H,F] = NIL

is a list of atoms should be obtained.



L

Define a function buildtree[1], where 1is a list to treesort, which
builds a sort tree. An example illustrates the tree-sort.

(bBEJCA)
o D D D
/ /\ /\ /\
B 8 E B E B E
\ AV
J c J
D
/\
B E
/NN
A c

A new element enters the tree at the root, and at every node a
comparison is made, by order, and if the new element precedes the
node element, go to the left, otherwise go to the right. When coming
to a terminal node, the new element inserts either to the left or to
the right depending on the comparison.

Define a list structure corresponding to this tree.

Define a function walktree[l], where 1 is the sort tree, which

walks through it by postorder traversal.l

The algorithm used at every node can be defined recursively by
- traverse the left subtree
- visit the node

- traverse the right subtree.

1 Further information about binary trees can be found in Knuth's
Fundamental Algorithms (ref 6).
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If you follow this structure of programming that treesort is
defined as

(DE TREESORT (L) (WALKTREE (BUILDTREE L)))

There is a sort function in INTERLISP and it is shortly described
in Section 30.
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10. Introduction to break and edit

10.1 The INTERLISP/360-370 is designed to be used as a hard interactive

.2

system and much effort has been put in debugging packages. When an
error occurs - ie a variable has no value (U.B.A), the system goes
in a break. This now gives the user possibility to interact with

the system, to be able to find out where the error occured and to
correct the error, and then leave the break and continue the evalua-
tion. A structure editor may be used to correct the error.

In this section some commands to break and edit are explained.
More about break and edit and error-handling in general is to
be found in Sections 24-26. At the end of this section there is
a discussion that can be useful in a batch environment.

An example illustrates the ideas

-(DE REV (L RES) (COND ((NULL L) X) (T (REV (CDR L) (CONS (KAR L) RES>

REV

-(REV '(A B C)) Test rev by an example.

U.D.F An error has occured during evaluation.
There is an undefined function (U.D.F)

(KAR BROKEN) kar.
The break prompts us with : .

He To break we can give either commands or
forms which will be evaluated. L is no

(A BC) command and is therefore treated as a
form and is evaluated.

:RES RES will also be evaluated.

NIL

:BT A command which prints the function calls
done before the error occured.

COND

REV

EVAL

LISPX
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: (EDITF REV) Enter the editor and edit rev. The
editor prompts with .

EDIT

%P i Prints rev with printlevel = 2

(LaMBDA (L RES) (COND & &))
%3 P Look at the third sublist and print it.

(coND (& X) (T &))
®3 2 P

(REV (CDR L) (CONS & RES))

%3 2 P

(KAR L) Here is the error, car is mis-spelled.

(1 CAR) Change the first element on the list
to car.

=P

(CAR L) The error is corrected.

30K Leave the editor.

REV In the break again.

:RETURN (CAR L) Give the broken expression, the value
of (CAR L), which was calculated to A.

KAR = A

U.B.A An Error again, X has no value, an
unbound atom (U.B.A)

(X BROKEN)

: (EDITF REV)

REV

% (R X RES) Replace all X by RES.

220K Leave editor

REV

:RETURN RES Leave the break and return the value of

RES. The evaluation continues and the
(c B A) reversed list is printed.
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10.3

-(PP REV) Back to LISP's top level again.

(REV
<LAMBDA (L RES)
(conp
((NULL L)
RES)
(T (RES (CDR L)
(cons (CAR L)
RES>)

(REV)
The break gives us the possibility to search for where the error
occured. There are commands by which we can see the chain of function
calls done (BT above), the actual value of variables and we can

evaluate arbitrary forms so we are allowed to do whatever computa-
tion we will at this break point.

The editor gives us then possibility to correct errors or any changes
in the code we want to perform.

Break commands'®

STOP or [ Leaves the break to either a higher break or to LISP's
top level.
BT Prints a backtrace of all functions which were called

before the error.
BTV Prints the functions, variables and values.

RETURN form Returns from the break and the value of form is given
as value to the expression which caused the break.

form If form is not interpreted as a break command it is
evaluated and the value is printed.

? Writes a list of available break commands.

Edit commands

To invoke the editor there are three functions, editf (for functions),
editv (for global values) and editp (for property-lists).

1 e e
A break can be initiated by an attention-B or attention-H, see
further Section 30.
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At every moment the editor's attention is centered to a substruc-
ture of the expression being edited. It is called the current
expression, cexp. A faulty command is responded by ? and cexp is
then not changed.

P Prints the cexp, with print level = 2

? Prints the cexp on all levels

PP Prettyprints cexp

n An integer, if positive set cexp to the nth element

of the current cexp and if negative the nth element
from the end.
If n=0, cexp will be the last cexp before.

[ Sets cexp to the top level expression again.

eg  -(DE FOO (X) (AND X (FIE (CAR X) (CADR X))))
FOO
- (EDITF FO0O)
EDIT
=P

(LAMBDA (X) (AND X &))

%3 ?

(AND X (FIE(CAR X) (CADR X))))
=P

(AND X (FIE & &))

=0 P

(LAMBDA (X) (AND X &))

20K
FOO
(n) n>1 deletes the nth expression of cexp.
(n e .- e n>1 replaces the nth expression by e to e
m
e ... em) n>1 inserts e to ern before the nth element.

(N e ... e )  adds e; to e to the end of cexp.
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F expr

(R xy)

up

eg -(EDITF FO0O)
EDIT
#*(2 (Y)) P
(LAMBDA (Y) (AND X &))
%3 (2) P
(AND (FIE & &)
#(-2 Y (FUM (CAR Y))) P
(AND Y (FUM &) (FIE & &))
(N CAR) 0 ?
(LAMBDA (Y) (AND Y (FUM (CAR Y)) (FIE CAR X)
(CADR X)) CAR))
20K

FOO

If expr is an atom it searches for expr in cexp, such
that carlcexp] = expr. It searches first on top level of
cexp and then from the beginning of cexp on all levels.
If expr is a list it searches the first occurence in
cexp regardless of levels. cexp is then equal to
searched expression

ATl occurences of x are replaced by y.

Sets cexp, so that car of new cexp is equal to old
cexp.

eg -(EDITF F00)
EDIT
%F FIE P
(FIE (CAR X) (CADR X))
%(RXY)P
(FIE (CAR Y) (CADR Y))

%UP ?
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. (FIE (CAR Y) (CADR Y)) CAR)
XF CAR P

. CAR)
x(1 END) 0 O P
(AND Y (FUM &) (FIE & &) END)
%0K

FOO

both in. A left parenthesis is inserted before the
nth element and a right parenthesis is inserted

after the mth element.

as (Bl nn)

both out. Removes both parenthesis from the nth ele-

ment.

eg If cexp is (A (B C) D E)
(81 2 3) gives (A ((B C) D) E)
(Bl 3) gives (A (B C) (D) E)
(BO 2) gives (A B CDE)
left in. Inserts a left parenthesis before the nth

element and a corresponding right parenthesis at
the end.

left out. Removes the left parenthesis from the nth

element. All elements after the nth element are
deleted.

right in. Inserts a right parenthesis after the mth
element of the nth element. The rest of the nth element
is brought up to the level of the current expression.

right out. Removes the right parenthesis from the nth

element, moving it to the end of the current expression.
All elements following the nth element are moved inside
the nth element.
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10.5

10.6

eg cexp is (A (B C) D E)
(L1 3) gives (A (B C) (D E))
(LO 2) gives (A B C)
(R1 2 1) gives (A (B) C D E)
(RO 2) gives (A (B C D E))

UNDO Undo-es the last change done. It is used if for in-
stance a wrong element was deleted. This gives the
user the ability to experiment with the editing com-
mands. All of the commands are undoable.

| UNDO Undo-es all changes done.

0K Leaves the editor.

In batch some of these facilities can be used. At an error the break
gives a backtrace on which informations from the evaluation so far
are printed. We can find the forms currently being evaluated, the
functions which have been called, and the variables and its values
to these functions.

The editor can be used in exactly the same way as interactively. We
have of course no way of undo-ing changes. A good strategy could be
to use P for seeing on what structures we are working and to pretty-
print the edited expression afterwards.

The editor commands can be put as arguments in editf, editp or editv,
which is recommended in batch use.

eg (EDITF REV 3 P 3 2 P 3 2 (1 CAR) OK)

File handling. When a number of functions are defined and tested
there is a simple way to save their definitions on a symbolic file,
which later can be loaded. For this a partitioned dataset is needed
and is described in the appendix. A file has a name containing 1 to
5 characters. If we want to create the file SORT consisting of the
functions quicksort, order, compare and merger, we give the global
variable SORTFNS as value a list of these functions. The variable
is a concatenation of the file name and FNS. The file is created by

(SETQ SORTFNS '(QUICKSORT ORDER COMPARE MERGER))
(MAKEFILE 'SORT 'FAST)

Makefile finds SORTFNS and creates the file. The file can later be

loaded and the functions will then get defined by executing
(LOAD 'SORT)

In section 20 file handling is described more in detail. There are
also ways to specify that we want to save global values, property-
list information, S-expressions etc.
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Some more functions

In the previous sections we have introduced a small collection of
functions necessary to understand and practice LISP. There are how-
ever, more rather elementary functions which we will introduce here.

Selectg. This function is used when we depend on a value to execute
different pieces of LISP code. |t corresponds to the case statement
in Algol 68 for example.
(SELECTQ p

(pt el)

((p21 p22 p23) e2)

(p3 e31 e32 e33)

en)
p, a form, will be evaluated and its value is compared with pl,
p21, p22 ... , which should be atoms and which are not evaluated.

For the first p. equal to p, corresponding forms e, are evaluated.
If no B is equal to p the form en is evaluated.

The first element in a sublist can either be an atom or a list of
atoms. If it is a list we can have several values which execute the
same piece of code. The remaining elements of the sublist are forms.

Example. Execution of different functions is dependent on the length
of a list.
(SELECTQ (LENGTH L)

(0 (EMPTYLIST))

(1 (ONELIST L))

((2 3 4) (TWO-TO-FOURLIST L))

(5 (FIVELIST L))

(MORE-THAN-FIVELIST L))

Length is defined in Section 11.6
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11.3 Progl and progn. In some situations we are only permitted to have
one form, as eg, the predicat in a branch in a cond-expression and
the last expression in selectq. These two functions take an arbit-
rary number of forms as arguments, evaluates them all and returns
the following values

progl - the value of the first form

progn - the value of the last form
This corresponds to Algol's begin ... end parenthesis.

eg (SELECTQ CASE
(c1 (Foo L))
(c2 (FIE L))
(PROGN (FUM1 L) (FUM2 L) (FuM3 L)))
In the case, when the value of case is not equal to Cl1 or C2 the

progn-expression will evaluate all three forms and return as value
the value of fum3[1].

eg progl is useful when we have for example, two forms,
which must be evaluated in a specific order and that
we require the value from the first form. One example
of this is when we want a value from a property list
and the remove of that value.

progllgetplx,yl, remproplx,yll]

In some LISP systems we are only allowed to have one form after then
in a cond-expression. If we want more forms we must use progn. In a
system where we have not these restrictions, we say that we have

implicit progn.

11.4 Setqq. In the family of functions for assignment there is also setqq.
It assumes that its two arguments shall be treated as quoted arguments.
These are equivalent expressions

(SET 'A '(A B C))
(SETQ A '(A B C))
(SETQQ A (A B C)

11.5 More predicates
litatom[a] Returns T if a is a literal atom, otherwise NIL.
eg litatom[A]l =T

litatom[NIL] = T
litatom[3] = NIL
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listp[1] Returns 1 (=true) if 1 is a list other than NIL,

otherwise it returns NIL.
eg listp[(A)] = (A)
listp[A] = NIL
listp[()1 = NIL
nlistpl1] Returns the opposite value as listp.
eg nlistp[(A)1 = NIL
nlistpl(A)]l =T
nlistp[()] =T
neq[x,y] Returns the opposite value as eq.
eg neg[NIL, ()1 = NIL

neql(A),A]l = T
neq[""A",A] = T

member[x,1] lIdentical to memh but it uses equal instead of eq
to check if x is a member in 1
eg member[A, (X A H)] = (A H)
member[ (A B),(A B (A B) C)]
member[123.4, (4.321 123.4)1]

((A B) C)
(123.4)

Remember that atoms and small integers are eq, and that
big integers, floating-point numbers, strings and lists
are normally not eq, they are instead equal.

11.6 Functions for list manipulation

1ist[x1,x2, S X ] X is an arbitrary LISP-expression. List makes

a list with x. as elements. The value of list
is the created list.

eg list[ANIL,3,(x ¥)] = (ANIL 3 (X V)

append[x],xz, | 5i is a list. Append creats a Tew list of Fhe
Tist element of X;- The value is the new list.

eg append{ (A B),(Q),(x (¥))] = (A B QX (Y))

In actual fact append makes copies on top level
of Xy to X 4 and concatenates them to X

A s?ecial case.is when append gets one arguTent Xq-
It is then copied on top level. To copy a list-
structure on all levels use copy.

A function nconc (21.4) works as append, but does
not copy any structures.
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Compare and really try to understand the differences between cons,

list and append.

cons[(A B),(C D)]
list[(A B),(C D)]

({AB) cD)
((AB) (cD))

append[ (A B),(C D)] = (A B C D)

copyl[x]

remove[x,1]

reverse[1]

subst[new,old,1]

intersection[x,y]

unien[x,y]

x is a list. Copy makes a copy of x, which is the
value. All ievels of x are copied; x and its copy
are equal to each other.

X an arbitrary expression, 1 a list. Remove
creates a new list, where all elements equal
to x are removed. The value is the new list.

eg removel (X Y), (XY (XY) (X (xVY))] =
(XY (X (xY)))

1 is a list. Reverse reverses the elements on
top level of a list.

eg reverse[(A B (C D))l = ((CD) BA)

new and old are arbitrary expressions and 1 a
list. Subst creates a new list, where all
expressions old are changed to new on the list
1. The value is the new list.

(A A (AX)
(ABC)

1]

eg subst[A,B,(B A (B X (B X))]
subst[A, (B C),((B C) B C)]

If the list ends with a dotted-pair, cdr of
that pair is also changed if cdr of the pair
is atomic.

eg subst[A,B,(B A .B)]l=(AA.A)

x and y are lists. Returns a list of those

elements which are members of both x
and y

eg intersection[(A B (C) D), ((C) (A) B)] =
(8 (c))
x and y are lists. Returns a list of those elements

which are members on either x or y.

eg union[(A (B C) D) ,(BCD)] =
(A (BC)DBEC)
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last[1] 1 is a list. Gives as value a pointer to the last
list cell on 1.
eg last[(AB cD)] = (D)
length[x] x a list or atom. Returns the number of elements

on a list, or 0 if x is an atom.

eg length[(A (B C)] =3
length[ATOM] = 0

11.7 More property-list functions

deflistlatm-val,prop] atm-val is a list of two-element sublists.
The first element of each sublist is the atom,
on which property list under the property
prop the second element is stored as value.
The value from deflist is the list of atoms.
eg deflist[ ((ONE ETT) (TWO TVA) (THREE TRE)),

SWEDISH]
will work as

put[ONE, SWEDISH, ETTI
put[TWO, SWEDISH, TVAl
put[THREE, SWEDISH, TRE]

Extension to addprop.

addprop[atm,prop,new,flg] See Section 5.2. If flg is T new is
added first to the list, otherwise it is
added at the end.

eg addpropiA,B,C] the value is (C)
addprop[A,B,D,T] the value is (D C)
addprop[A,B,E,NIL] the value is (D C E)
addprop[A,B,F] the value is (D C E F)

11.8 Assoc and sassoc.

An association list (abbreviated a-list) is a list of pairs. It can
be used to hold, for example, variables and its values.
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eg An association list can look 1ike
((ETT . 1) (TVA . 2) (TRE . 3) (FYRA . L) (FEM . 5))
assoc[x,al] x is an atom and al an association list. The
value returned is the first pair, which first

element is eq to x. If no pair is found NIL
is returned.

eg Suppose swednumber has the above a-list
as value.

assoc[TRE,swednumberj= (TRE . 3)

assoc[SEX,swednumber]= NIL

sassoc[x,a] as assoc, but compares with equal.

Exercises

1. Assume we have represented a number of cards as an association list.
In every pair, car is one of SPADE, HEART, DIAMOND or CLUB and cdr
one of 2,3,4, ..., 10, JACK, QUEEN, KING and ACE.

eg ((SPADE . 5) (HEART . QUEEN) (CLUB . ACE) (HEART . 5))

In a special game we get the following points

ACE of SPADES - 10 QUEEN - 3
ACE of HEARTS - 9 JACK -3
ACE of DIAMONDS- 8 7 -1
ACE of CLUBS - 7 3 -1
KING - 5 remainder - 0

Write a function pointlist [hand], where hand is a list defined
as above, which gives as value a list of the points (>0) the
hand contains,

eg pointlist[((SPADE . 5) (HEART . QUEEN) (CLUB . ACE)
(HEART . 5))1 = (3 7)

2. Define prog2[x,yl, which returns y as value.

3. Define *member and *last.

L, Define xaddprop, by using put and getp.
5. Define xdeflist, by using put.



There is a system function sqcdr[1], which returns as value the
first element on 1 and sets | to cdr[l]
Suppose 1 has value (A B C)

sqcdrl1] returns value A

1 has now value (B C)
Define sqcdr.

For working with association lists it can be necessary to define
some more auxiliary functions for manipulating them.
a. Define the system function :assoc.

b. Define a function chassoc[al,a,new] which searches the first
pair (a1 . vi), such that a = ai and changes that pair in
such a way that vi will be replaced by new.

eg chassoc[((A . 1) (B . 2) (A.3)), A, -1]1=
((A.-1) (B.2) (A.3)
c. Define a function repassoclal,al, which removes all pairs
(a, . v.), if a=a,.
i i i
eég repassoc[((A . 1) (B . 2) (A. 3)), Al = ((B . 2))
A concept very similar to association list is the free property-
list. By this we mean a property-list not connected to an atom,

but only as a free list structure, but containing property/value
pairs.

There is a system function get, for retrieving a value on a free
property-list.

get[freeprop, prop] gives as value the element after prop,
if prop is not found, NIL is returned.

eg get[ (MOTHER ANNE FATHER JOHN),FATHER] = JOHN
Two warnings associated with get!
- If a value happens to be the same as prop and comes before
prop on the free property-list, the correct value is not

returned.

eg get[ (RELATION MOTHER FATHER JOHN MOTHER ANNE),
MOTHER) ] = FATHER

- In some LISP systems get is used instead of getp and works
on ordinary property-lists. Be careful about this!

a. Define the function :get.
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Define a function putf[f,p,v], which works as put.

eg putf[ (MOTHER ANNE FATHER JOHN), FATHER, JIM] =
(MOTHER ANNE FATHER JIM)

put f[ (MOTHER ANNE), FATHER, JIM] = (MOTHER ANNE FATHER JIM)
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Arithmetic functions

In the first section we defined integers and floating-point numbers;
in this section we introduce arithmetic functions. LISP is not in-
tended to be a language for making advanced arithmetic calculations.
In the functions we are allowed to use both integers and floating-
point numbers. The system will make the necessary conversions.

The integers can be of two types. A small integer x, has its range
-22%¢ X <221
and a big integer x its range
-2%%¢ X <-2°"-1 and 224¢ X g 232-1
They are represented in different ways but for the user there is no
real difference. The only apparent difference is that small integers

have a unique representation and can be tested by eq.

The print-routine prints a floating-point number x only with a decimal
point if it is in the range of

|x|<107‘

otherwise it is printed with an exponent.

eg 123.45
1.23456E8
The following predicates can have arbitrary arguments.
numberp[x] if x is a numeric atom then T else NIL
eqplx,yl if x isegtoyor if xandy are the same numeri-

cal atoms then T else NIL
eg eqplATM,ATM] =T

eqpl[3.45,0.345E1] = T
eqpl1234567,1234567] = T
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12.5

minusplx] if x is negative then T else NIL

smallp[x] if x is a small integer then T else NIL

Integer arithmetic

The following functions will give an integer as value:

iplus[x],xz, e ,xn] Xp X, * X3 oee X If x;is a floating-
point number it is converted to an integer.
This holds for all functions below.

iminus[x] -x

idifferencelx,yl X =y

add1[x] x + 1

sub1[x] x -1

itimes[xl,xz, A ,xn] Xy % Xy ®oeee B X

iquotient[x,t] x/y

iremainder[x,yl the remainder from x/y. eg 5/2 =1

igreaterplx,yl if x>y then T else NIL

ilessplx,y] if x<y then T else NIL

zerop[x] if x is zero then T else NIL.

Floating-point arithmetic

The same functions as with integers are also available for floating-
point numbers. They are usually spelled with an f instead of an i,
fplus instead of iplus.

The arguments which are not floating-point numbers will be converted
and the value returned is always a floating-point numbers. The follow-
ing functions exist.

fplus, fminus, ftimes, fquotient, and fgreaterp
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12.6 Conversion from integer to floating-point numbers

Fix[x] x arbitrary numeric atom. Gives the integer part.

float[x] x arbitrary numeric atom. Gives corresponding floating-
point number.

fixplx] if x is an integer then T else NIL.

floatplx] if x is a floating-point number then T else NIL.

12.7 General arithmetic

There is also a collection of functions which return an integer value
if all of its arguments are integers, otherwise they convert all
integer argumerts to floating-point numbers and return a floating-
point number. They are spelled without an f or an i. The following
functions exist.

plus, minus, difference, times, quotient, remainder,

greaterp and lessp.

12.8 Examples
plus[t, 2, 31 =6
fplus[1, 2.5, 4] = 7.5
iplus[1, 2.5, 4, 0.8]1 =7
plus(i, 2, 3.5] = 6.5
iquotient[43.2, 5] = 8
quotientl43.2, 5] = 8.640000
add1]3] = 4
add1[7.8] = 8
fixl3] =3
float[3] = 3.0

12.9 There are also other arithmetic functions used for logical and

shifting operations on numbers.

12.10 Hexadecimal representation

A number in hexadecimal notation is written as a@ and a number.
The number consists of 0,1,2, ... , 8,9,A,B,C,D,E and F.
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eq @3 3
@0 16
@12 18
@8 1
@ice 462

12.11 We can change the base used by the system for writing numbers by
using the function radix.

Input Output

10 10

(RADIX 5) 20, the old base in the new base
10 20

L h

5 10

(RADIX 8) 5

10 12

(suBt (RADIX)) 7, gives the current base -1

Exercises
1. Define the function xlength, see Section 10.6.

2. Define the function fak[n] which computes the facorial, nl .

3. Define the function points, which takes as argument a list of
numbers, such as the list produced by pointlist in Section 10,
Exercise 1, and add the numbers together.

k. Write a function difflexpr,x], which makes symbolic differentia-
tion. This is easily solved if the expressions are represented as

ExXF - (A+3) (QUOTIENT (DIFFERENCE (TIMES E F)
e (PLUS A 3)
E (EXPT E 2))



Differentiation rules:

du _ . _

Ix - 1, if u=x

du _ 0, if u is not a function of x
dx

d _du | dv

w Y gt

4y oty v

dx dx X

d du dv

W) =g+ i

d _ ¢,du _ dv 2

E;(u/v) = (Va; Ua;) /v

d n n-1 du . .

ak(u ) =n-u Ix if nis a constant
d - _du

T (sin u) = ax cos u

d __du .

T (cos u) = o Sinu

This process of differentiating is a recursive process. Every

expression %% will cause a call to diff.
Hints - Let every differentiation rule be a function, such as
derplus, dersin etc. The function diff can then be a big selectg-
expression which selects the right rule depending on the leading
function in the expression.

The expressions we get as value from diff in the previous
exercise must be simplified if they are to be readable.
Define a function simplify, which does this. The function
must take care of cases such as

(PLUS X 0), which simplifies to X

(TIMES X 0), which simplifies to 0

(PLUS 1 (TIMES X 1) 3), which simplifies to (PLUS 4 X)

Try to evaluate as much as possible.
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Differentiation of
(PLUS (EXPT (TIMES 3 X) 2) (TIMES 2 X)
can give the value

(PLUS (PLUS (TIMES (EXPT X 2) 0)
(TIMES 3 (TIMES (TIMES 2 X) 1)))
(PLUS (TIMES X 0) (TIMES 2 1)))

which can be simplified to

(PLUS (TIMES 6 X) 2)



57

13. Logical functions

13.1 Ve have earlier introduced the Boolean values true and false. In
LISP they are represented as # NIL and NIL respectively. There are
functions for the logical connectives and, or and not.

13.2 The arguments X; can be arbitrary LISP forms.

and[x],x s eee ,xn] The value is NIL, if some xi have been
evaluated to NIL, otherwise it returns X
as a true value. Arguments past the first
argument equal to NIL are not evaluated.

3

eg and[A, 12, cons[X,NIL]] = (X)
and[A, cdrl[(X)1, putl[A,B,C]] = NIL
Note that the last put is not done!

and[] =T
orix],xz, N | The value is the first x;, which have evalu-
n ated to a non-NIL value, otherwise NIL.
Arguments past the first non-NIL value are
not evaluated.
eg or[NIL, cdrl(X)]1, car[(X)1, putlA,B,C]] = X
Mote that the last put is not done!
orledrif (X)1, cddr[(X Y)11 = NIL
orf] = NIL
not[x] ldentical to null.

eg not[{A)] = NIL
not[(})] =T
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Exercises

1. Define even (see Section 9, Exercise 1) without using cond.

2. Suppose we want to solve a maze problem and find a suitable
way through the maze.

IN
b=
A c
B
K
G
E F
i H
J
out &

This maze may be represented as a graph.

IN
D
A dc
G
B
K F
~—E|
| H
J
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and this further represented by the following list structure
((INA) (AINBC) (BA) (CADE) (DC)
(EFKJ) (FGEH) (HF 1 J)(GF) (I H (JEHOUT)
(ouT J)))

Every sublist has as first element a node, n, and the rest of
the elements are the nodes connected to n. This representation
is actually an association list. |f we assign the list above
to MAZESTRUC

cdr[assoc[B, mazestrucl] = (A)
will give a list of nodes, which are connected to B.
Write a function maze[mazestruc, in, out], which gives as value
a list, which contains the nodes as to the way we must go from
the start IN to the exit OUT

eg mazelmazestruc,IN,0UT] = (A C E F H J OUT)
The function need only be to find one path - not necessarily
the shortest. But the way is not allowed to contain a node

more than once. The following answer is invalid

(INABACEFHUJEFHJOUT)
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14.

4.1

Function types

Among the previously defined system functions, there are some
which do not follow the rules that they must have a fixed num-
ber of arguments and that they get their arbuments evaluated
before entering the function. Notably the functions guote, de,
and, cond, plus etc. For handling these there are different
kinds of function types.

First we can separate the functions into two groups: those

which have a fixed number of arguments and those which have

an arbitrary number of arguments. On the other hand the functions
can also be separated into those with arguments evaluated

before entering the function and those which receive their
arguments unevaluated.

Gets its argu- Gets its argu-
ments evaluated ments unevaluated

Fixed number of eval-spread noeval-spread

arguments

Arbitrary number

of arguments eval-nospread noeval-nospread

Examples:

eval-spread car, cons, put, union, difference

noeval-spread setqq

eval-nospread list, append, plus

noeval-nospread quote, and, cond, selectq

A function like setq, where only the second argument will

be evaluated, has its argument unevaluated but self-evaluates
its second argument by making a call to the evaluator eval.
The function-type of setq is therefore noeval-spread.
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14.2 The user can introduce these different types by doing

4.3

(DE FOO (X Y Z) .... ) for an eval-spread function
(DE FOO L .... ) for an eval-nospread function
(DF FOO (X Y Z) .... ) for a noeval-spread function
(DOF FOO L .... ) for a noeval-nospread function

The function de is used to define an eval function and df is used
for a noeval function. If the argument Tist is an atom the function:
is a nospread and if it is a list of atoms the function is a spread.

Examples

a.

(DE FOO L (LIST (CADR L) (CAR L)))
If we call
(FOO 'A 'B 'C 'D)

the arguments will all be evaluated and the list of arguments,
(A B CD), will be bound to L and the function body will be
evaluated and return (B A) as value.

(DF FIE (X Y Z) (LIST Y Z X))
If we call
(FIE A B C)

the arguments will be bound directly without any evaluation to
the variables in the argument list.

X gets value A
Y gets value B

Z gets value C

The evaluation of the function body will return (B C A) as
value. Even if we call

(FIE 'A 'B (CAR '(A B)))
no evaluation will occur. The value in this case is
((QUOTE B) (CAR (QUOTE (A B))) (QUOTE A))

(DF FUM L (LIST (CADR L) (CAR L)))
If we call
(FUWABCDEFR®G)

the list of arguments, unevaluated, will be bound to L and the
value returned is (B A).
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14.5

14.6

When we have a spread function we can call that function with an
arbitrary number of arguments. If they are too few the remaining
variables in the argument list are bound to NIL and if they are
too many they will in the eval case be evaluated and then dropped.
In the noeval case they are only dropped.

eg cons[A] = (A)

There is also a type called half-spread. The argument list ends then

with a dotted-pair.

eg (DE FOO (X Y . Z) (LISTY Z X))
If we call

(FOO 'A 'B 'C 'D 'E)

the arguments will be evaluated and the following bindings will
appear

X gets the value A
Y gets the value

Z gets the value (C D E),
The value returned is then (B (C D E) A)
We can of course also define a noeval function as a half-spread.
When de or df defines a function the definition is put in the
function cell of the atom, corresponding to the function name.

de and df puts a lambda and nlambda respectively, in the defini-
tion, marking if the definition is of eval or noeval type.

(DE FOO (X Y) (LIST Y X))
will put the expression

(LAMBDA (X Y) (LIST Y X))
in FOO's function cell.

(DF FIE L (LIST (CAR L) (CADDR L)))
will put

(NLAMBDA L (LIST (CAR L) (CADDR L)))

in FIE's function cell.

We call then a function definition like this a lambda or nlambda-

expression.
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14.7 There are more functions which can be used on function definitions.

putdl fn,expr] Places expr in the function cell of fn. This is
the most prlmltlve way of defining a " function.

The value is fn.
eg putd[F00, (LAMBDA (X) (FIE X))I

getd[fn] Gets the function definition for fn.
eg getd[F00] = (LAMBDA (X) (FIE X))

movd[from,to,copyflg] Moves the definition of from to to. I f
copyflg = T a copy of the e definition in
from is used.

eg movd[FOO,FIE,T] A copy of getd[FO00] is
placed in FIE's func-
tion cell.

movd[CAR,KAR] A synonym to car is
defined.

movdqq[ from, to,copyfigl A noeval type of movd.

define[x] Define is the normal function in some LISP
systems to define functions. In INTERLISP/
360-370 it is more convenient to use de and
df. Define has a rather complicated defini-
tion, the interested reader can check further
with the LISP manual.

eg (DEFINE '((FOO (LAMBDA (X Y) (LIST X Y)))
(FIE (LAMBDA L (CAR L)))
(FUM (X Y) (CONS Y X))))

In the last definition define inserts a
lambda.

savedef[fn] Saves the definition of fn under the property
EXPR,CODE or SUBR depending on whether the
function is defined as a list expression, com-
piled or hand-coded in machine code. If fn is
a list every definition is saved. -

unsavedef[fn,prop] Restores the definition of fn from prop. If
prop is not given it searches for EXPR, CODE
or SUBR, in that order.
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fntyplfn] Fn is a function name or a function definition.
It returns the function type, described by the
following
machine
list compiled coded
EXPR CEXPR SUBR
FEXPR CFEXPR FSUBR
EXPRx CEXPR: SUBRx
FEXPR: CFEXPR: FSUBR:t

The prefix F indicates noeval and the suffix
* indicates nospread.
eg car is a machine-coded eval-spread
function
fntyp[CAR] = SUBR

append is a compiled eval-nospread
function

fntyp[APPEND] = CEXPR:

(DF FOO L ... ) will define foo as a
list-structured noeval-nospread function

fntyp[F00] = FEXPR%
There are some more functions working on function definitions. They

are described in detail in the manual and we will only give a short
description here.

- suberp, ccodedp and exprp, predicates for testing function
type as described by fntyp.

- argtypes, gives the argument-types of a function.
- nargs, gives the number of arguments to a function.

- arglist, gives the argument-list of a function.

When we are redefining a function a message is written
(FOO REDEFINED)

The old definition is then saved by savedef. We can restore the old
version by

(UNSAVEDEF 'F00)

If we redefine an already redefined function the oldest version will
remain on the property-list.
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14.9 If we define a function as noeval, and we want to evaluate the argu-
ments on our own, we can use the function eval. This function s
LISP's evaluator which takes as input a form, evaluates the form
and returns a value. Eval is an eval-spread function.

eg (EVAL '(CAR '(ABC))) =A
(SETQQ FORM (CONS NIL NIL))
(EVAL FORM) = (NIL)

The use of eval is shown in the examples in Section 14.10, following.

14.10 The following examples illustrate the use of the different function
types.

a. Define %setq and ¥*setqq from set
(DF *SETQ (VAR VAL) (SET VAR (EVAL VAL)))

(DF =SETQQ (VAR VAL) (SET VAR VAL))
b. Define xlist
(DE =LIST L L)

c. Define :tde. We assume de does not exist and must therefore use

putd.
(PUTD :=DE ' (NLAMBDA (FN . L)

(PUTD FN (CONS 'LAMBDA L))))
d. Define ¥or.
(DF :OR L (OR1 L))
(DE OR1 (L) (COND ((NULL L) NIL)
((EVAL (CAR L)))
(T (OR1 (CDR L)))))

e. Define x:quote.
(DF =QUOTE (L) L)
(DF :QUOTE L (CAR L))

Exercises
1. Define the function :df.
2. Define the function ::append, as described in Section 11.6.

3. Define the function /, which is used to guote a list, so that
we can write (/ A B C D) which means '(A B C D).
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Define the function iand.
Define the function #selectq, as described in Section 11.2.

You could quite easily introduce other control statements from
other programming languages to LISP such as if-then-else and

do-until. Define a function if, by which you can write state-

ments like

(1F (LESSP N 10) THEN (SETQ N (SUB1 N)) (FOO N) ELSE (FIE N))
Define also a function do, by which you can write

(DO (SETQ N (SUB1 N)) (FOO N) UNTIL (ZEROP N))

If N is 2, foo will be called with arguments 2, 1 and 0.
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15. Variable bindings

15.1 A variable in LISP can have two kinds of values.

- A global value. It is stored in the atom's value cell. The
value cell is initialized to NOBIND. (See Section 2.3). The

value can be set by the function set, (setq, setqq), and
retrieved by giving its name. —

(SETQ PI 3.14)
Pl will give the value 3.14

The implementation is done in such a way that car of an atom
is this value cell.

(CAR 'PI) will also give the value 3.14
(CAR 'FI) will give the value NOBIND
Fl gives an error, U.B.A (UnBound Atom).

There is also another function rplaca (jgglace qgr) which
can be used to set a global value. See later in this section.

- A binding value. When the variable occurs in an argument list
(then called lambda-variable) in a function or in a prog variable
list, (see Section 16), at function call, the variable and its
associated value will be put on a stack. This stack is called
parameter stack. This is, of course, done to enable recursive
calls to be made. Fixed location for this variable is not
possible. At return from a function the variable and the value
are removed from the stack.
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eg (DE FOO (N M) (COND ((ZEROP N) 1)
(T (TIMES M (FOO (SUB1 n) M)))))

Suppose we evaluate foo[2,5]. At the point when
zerop[n] is true the stack appear thus

top of stack

5 M
0 N
5 M
1 N
5 M
2 N

A variable on the stack can obtain a new value by using set (setq, setqq)

eg (DE FOO (N) (COND ((MINUSP N) (SETQ N (MINUS N)))) ... )

15.2 What happens if a variable has both a global and binding value?
When binding a value by set (setq, setqq) the system searches the
stack first for the variable, and if the variable is there it
will be rebound, otherwise the variable's global value is set. The
same procedure occurs when the system shall retrieve a value.

To be sure to change only the global value the function rplaca can
be used.

rplacalx,y] If x is an atom, the global value of this atom is set
to y. Rplaca is described in more detail in Section 21.

eg (SETQ N 0)

(SETQ M 0)

(DE FOO (N) (COND ((ZEROP N) 'GLOBAL) (T 'BINDING)))
(FoO 3) will return BINDING

(DE FIE (M) (SETQ N 10) (SETQ M 10))

(FIE 1)

N has now the value 10.

M has still the value 0.
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(DE FUM (N M) (RPLACA 'N 5) (RPLACA 'M -5) (PLUS N M))
(FUM 2 -2) returns 0

N now has the value 5

M now has the value -5

Notice here how the function rplaca can be used for setting a global
value, independent of the contents of the parameter stack.

(DE GUM (N M) (SETQ M (ADD1 (CAR 'M))) (PLUS M N))

(GUM 5 10) returns the value 1. m was rebound to
the global value of m added by one.

M still has the valve -5

(CAR 'N) still has the value 5

Note the use here of car to retrieve a global value.

A noeval version of rplaca is rpagq for setting a global value.

eg (RPLACA 'VAR 'START)
(RPAQQ VAR START)

Free variables

A variable in a function definition which is not a lambda or prog
variable is called a free variable in that function.

eg (DE FOO (X Y) (FIE X))
(DE FIE (X) (FUM X Y))

y is free in fie.
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16.

16.1

16.2

Prog

Up to this point we have not been able to use LISP in the more
conventional way of writing programs - as a sequence of state-
ments and with gotos for controlling the flow between them.

This is possible to do in LISP too, but we have tried to avoid
this so far, thus enforcing the user to be aquainted primarily
with recursion. Only too often it happens that a beginner writes
LISP with the prog feature alone. The recursion is not expensive,
and programs written recursively tend to be more readable than if
written in the iterative way.

The notation for prog is

(PROG varlist expression

expression
expression)

Varlist is a list of variables which will be local in this prog.
The list contains either atoms or sublists, where a sublist is used
to initialize a variable. As default the variable initializes to
NIL. These variables will be bound on the parameter stack - see
Section 15.1.

eg (PROG (A B (X 10) (Y (CAR '(A B))) ...)

A is initialized to NIL
B is initialized to NIL
X is initialized to 10
Y is initialized to A
The evaluation of all forms is done before the binding of the
variables on the stack.
eg Suppose X has the value 10
(PROG ((X 5) (Y X)) ...)

will initialize X to 5 and Y to 10, the prog variable X has
not- yet been bound on the stack.
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Expression can be either an atom which is then interpreted as a
label or a list and is then a form which will be evaluated.

16.3 There are two special functions for prog.

returnlexpr] Makes a return from the prog and the value of expr
will be the value from the prog.

gol1] A noeval function. Will transfer the control in the
prog to the label 1. 1 must exist in the last
entered prog, otherwise an error message will occur,
so we are not allowed to jump out from a prog to a
label in another prog.

16.4 Example

Define the function xlength.

(DE %LENGTH (L)
(PROG ((N 0))
Lop
(COND ((NULL L) (RETURN N)))
(SETQ L (CDR L))
(SETQ N (ADD1 N))
(GO LOP)))

Exercises

1-6 Define the functions from exercises 1-6 in Section 9.

Interaction should be used where possible instead of recursion.
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17. Evaluating functions

17.1 As seen in the previous section it is necessary to be able to call
the evaluator (interpreter). This was used to evaluate arguments in
a noeval function. There are two main functions, eval and apply, by
which the user can call the interpreter.

17.2 eval[form] The form will be evaluated. Notice that eval itself
is of eval-type, so its argument is first evaluated.

eg (EVAL '"(CONS T T)) = (T . T)

(SETQQ FORM (PLUS 3 5))
(EVAL FORM) = 8
(EVAL 'FORM) = (PLUS 3 5)

e[ form] Noeval-nospread version of eval.
(E (CONSTT)) =(T.T)

evalalform,alist] Simulates a-list evaluation as in LISP 1.5.

applylfn,args] The function fn will be applied to the arguments
in args. Apply is of eval type but observe that
arguments in the argument-list args are not evaluated.
eg (DE FOO (X Y) (CONS Y X))
(DF FIE (X Y) (LIST Y X))
(FOo '(B) 'A) = (A B)
(FIE (B) A) = (A (B))
(APPLY 'FOO '((B) A))
(APPLY 'FIE '((B) A))

(A B)
(A (B))

]

applyx[fn,arQI, oo s argn] is equivalent to
apply[fn,list[arg1, el argn]]
eg (APPLYx'FO0 '(B) 'A) = (A B)
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17.3 Vhen the form is a list, car of that list is the function which
will be applied to the arguments.
car of form can be

- a function-name, ie car, foo (if foo is, or will be defined

as a function)

- a lambda or nlambda expression,

((LAMBDA (X Y) (CONS Y X)) '(I SP) 'L) = (L1 SP)
((NLAMBDA L (LIST (CADR L) (CAR L))) A B CD) = (BA)
- a funarg expression, described in Section 28.

- a function indicator - see the LISP manual.

In the original version of LISP 1.5 car of form could be of
arbitrary form. If it was not a function name or a lambda or
nlambda expression it was evaluated. This will in INTERLISP
give an error, but we can use apply or apply: instead.
eg Suppose we have done
(PUT 'A 'FN 'CAR)
The form
((GETP 'A 'FN) ‘(A B C))
is not permissable, but we can instead write
(APPLY:: (GETP 'A 'FN) '(A B C))

17.4 In the differentiation exercise (Section 12, Exercise 4) we proposed
a solution where we had a main function, diff, controlling the calls

to the various sub-functions. Each sub-function corresponded to a
differentiation rule. If we now want to extend the set of rules
this can be achieved by adding code in diff and translating the
rule to a LISP function.

Another solution to this would be to let. each rule be a lambda-
expression in the same way as before, and let these expressions
be stored on property-lists.

eg The rule

QP%
X

d du
ax (u-y) = dx

is translated to

(LAMBDA (EXPR X)

(LIST 'DIFFERENCE
(DI1FF (CADR EXPR) X)
(DIFF (CADDR EXPR) X)))
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and is stored by
(PUT 'DIFFERENCE 'DIFFRULE '(LAMBDA (EXPR X) ... ))

This simplifies diff and can now be defined as

(DE DIFF (EXPR X)
(PROG (RULE)
(RETURN (COND ((EQ EXPR X) 1)
((ATOM EXPR) 0)
((SETQ RULE (GETP (CAR EXPR)- 'DIFFRULE))
(APPLYs: RULE EXPR X))

(T EXPR)))))

We can now extend the number of rules with ease, without
changing any code in the existing functions.

17.5 Getdflt. Another example where it can be useful to have
""functions' stored on property-lists is to handle default
routines, for calculating a property value when it is not
explicitly given.

Suppose we have the property height. |f the height for a person is
not given we want a default value (176 for boys or 166 for
girls) to be stored.

A general solution to this is to have a function getdflt
defined as
(LAMBDA (ATM PROP) (OR (GETP ATM PROP)
(APPLY: (GETP PROP 'DFLT) ATM)))
We also define a default routine for height
(PUT 'HEIGHT 'DFLT '(LAMBDA (ATM)
(PUT ATM
'HEIGHT
(conp ((EQ (GETP ATM 'SEX) 'BOY) 17%)
(T 166>
If we have stored the fact that EVA is a girl
(GETDFLT 'EVA 'HEIGHT)
will first make a getp[EVA,HEIGHT], which will give NIL as value
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and then apply the default routine height to EVA which will store a
default-value, calculated to 166, and return it as value. The next
time the same expression is evaluated the height is already stored.

For every property p we want default routines, we had to store a
dflt property on p's property-list and then use getdfit instead of
getp. If a dflt routine is missing NIL is returned.

(APPLY: NIL arg; ... argn) will always return NIL

Exercises
1. Define a function calclop,a,b], where op is a functional argu-
ment and which specifies the arithmetic operation done by calc
on the arguments a and b.

eg calc[PLUS, 10, 20] = 30
calc[ (LAMBDA (X Y) (CON3 ((GREATERP X Y) X) (T Y)))),
) 10, 201 = 20
Run the following examples on the computer and study the results.

2.
Can you explain them?
(APPLY 'SET '(A B))
(APPLY 'SETQ ' (E F))
(APPLY 'SETGQ ' (! J))
3. Define a function Firstll,fn]l, which gives the first element X

on the list 1, satisfying fnlx].

eq first[(A B 1 C 2 3) , NUMBERP] =1
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18.

18.1

Map functions

The map functions are a collection of useable LISP functions which

are characterised in that they work on a list of elements and that

they on each element apply a function. This function is an argument
of the map function. For guote-ing a functional expression there is
a function function which uses the funarg feature described in the

LISP manual.

function[ fn,freevars] If freevars is NIL then it is identical
to gquote, but it helps the compiler to
show that this is a functional argument.
When freevars is # NIL it is a list of
variables which presumably are free in
fn. A funarg expression will then be
created, but this is further discussed
in Section 28,

mapcar[mapx,mapfnl,mapfn2] If mapfn2 is NIL, then mapfnl - which
should be a function - is applied to
every element on the list mapx, and
then returns a list of those values

computed.
(MAPCAR '(1 2 3 4) (FUNCTION ADD1)) =
(23 45)

(MAPCAR ' (CAR APPEND MAPCAR) (FUNCTION
FNTYP)) = (SUBR CEXPRx CEXPR)

(MAPCAR '(1 15 5 25 30 10)
(FUNCTION (LAMBDA (X)
(AND (GREATERP X 12)

(LESSP X 28))))) =
(NIL T NIL T NIL NIL)

If mapfn2 is provided, then instead of
using cdr for computing the next element

of mapx, mapfn2 is used.
eg (MAPCAR '(1 2 3 4 5 6)
(FUNCTION ADD1)
(FUNCTION CDDR)) = (2 4 6)
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mapclmapx,mapfni,mapfn2] Identical to mapcar, but it returns
the value NIL and does not build a
list and use cons'es.

maplist[mapx,mapfnl,mapfn2] Instead of applying mapfnl to an
element in mapx, it is applied to
successive tails of mapx.
eg maplist[(A B C D E), LENGTH] =
(5L4321)

length[ (A B C D E)]
length[(B C D E)]
length[(C D E)], etc are computed.

maplmapx,mapfni,mapfn2] ldentical to maplist, but it returns
NIL instead.

map2carlmapx,mapy,mapfnl,mapfn2] ldentical to mapcar, but mapfnl
is a function of two arguments and
mapfnilcarlmapx],carlmapyl] is computed
at every step.

eg map2carl(A B C D E), (X BYDE),EQ] =

(NIL T NIL T)
map2c[mapx,mapy,mapfni,mapfn2] Corresponds to mapc.
every[mapx,mapfn1,mapfn2] If the result of applying mapfni to

every element of mapx is true, the
value T is returned. |f the result is
NIL, every immediately returns the
value NIL.

eg every[(A B C D), ATOM] = T
every[(10 20 5 15 25), (LAMBDA (X)
(GREATERP X 8))]1 = NIL
some[mapx,mapfnl,mapfn2) For the first result of applying mapfni
to the elements of mapx, which is true,

some will return a true value. |f all
results were false, some returns NIL.

eg somel (A NIL (X Y), Z),LISTP] =
((xv) z)
the value returned is the remainder of

the list where car of that list is the
element which gave a true value.
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every[C10 20 5 15 25)
(LAMBDA (X) (GREATERP X 8))] = NIL
Memb can be defined as

(DE =MEMB (X L)
(SOME L (FUNCTION (LAMBDA (Y)
(EQ X Y)))))

There are more map functions in the system - if interested see the
LISP manual.

Exercises

1. Define the functions xmap, ¥*mapcar, ¥map2c and Xevery.

2, Define a function square, which computes the square of each
element of a list

eg square[(1 234 56)] = (149 1625 36)

3. Suppose we have stored under the property SONS a list, sons.
Define a function storefather[al, where a is an atom with the
above property. Storedef will store the value a under the

property FATHER on the property-lists of every atom on the
list sons.

eg put[JOHN, SONS, (JIM TIM PIM)]

Storefather[JOHN] will then make

put[JIM,FATHER, JOHN]
put[TIM, FATHER, JOHN]
put[PIM,FATHER,JOHN]
L. Define pairlx,yl, which makes an association list of x and y.
We assume that x and y have the same length.
eg pair[(ABCD), (1234)1=1(A.1 (B.2)
(c.3) (0.4h)
5. Define collectpairs[al,al, where al is an association list
and a an atom which returns a list with all pairs, whose car
is eq to a.
eg collectpairs[((A . 1) (B . 2) (A.3)), Al =
((A . 1) (A.3)
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19.3

/O functions

LISP has the advantage in that we can start using it - writing
complex programs - without knowing anything about 1/0. The system's
read-eval-print loop takes care of this. There are of course,
functions that enable the user to specify his own /0 if he wishes
to make a formated output - ie, a table - or if he wants to 1/0
another media other than the terminal - ie, a file on a disc store.
Yet another very important feature of LISP is that 1/0 is defined
for list structures. In languages like PL/L, Simula etc, we can

not simply print a list structure.

1/0 in LISP is made from, or to, a file. Normally it is the terminal
when using it interactively, or the card reader (remote job terminal)
and printer, when it is used in batch. The system knows when it is
used interactively or in batch, and these files are the initial
primary files. T is used to indicate these files. All 1/0 functions
have as optional argument, the file. If it is omitted or NIL the
primary file is taken. All files must be opened before they can be
used, except T which is always open.

input[filel File is the new primary input file. Its value is
the old file. If file is NIL the current primary
file is returned.

output[file] Same as input, but works on output primary file.
infile[filel File is opened for input, and the input primary

file sets to file. The old input primary file is
returned as value.

outfile[file] Same as infile, but opens an output file.
closef[file] Closes file.

closeall[] Closes all opened files.
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openp[file,typel If type = NIL tests if file is opened
INPUT tests if file is opened for input
OUTPUT tests if file is opened for output.

Returns file if the test succeeds, and NIL other-
wise. File = NIL will return a list of all open
files.

eg To open a file only, without setting the
primary files
inputlinfilel[filell.

When the file is on disc store it must follow some rules. The file
name must be 1 to 5 characters long, and an optional generation
number can be used. We will deal in more depth with file handling
in the next section.

eg Valid file name FO0O

FIE#03
Input functions

read[file] Reads one S-expression (actually atom, string or
. list) from file, which is returned as value. The
same function is used by the LISP read-routine,
so the rules concerning delimiters given in
Section 1 are also valid here.

ratom[file] Reads in-the next atom from file. Break characters
as () < > " and ' will also be interpreted
as atoms. See further 19.7.

readc[file] Reads next character from file.
eg Suppose the following character string is
in the input buffer
ABC ''C'' (X)'A%<
successive read reads

ABC, ''C'", (X), 'A, and < ‘'A will be trans-
lated to (QUOTE A)

successive ratom reads
ABC, ", C, ", (, X, ), ', Aand <
successive readc reads

A’B’C’ ’”’C’“, )($X’)) ! !A, !o/o and <



There are some more input functions in the system, described in detail
in the LISP manual, we give a very brief description here.

- rstring reads a string
- ratoms reads a sequence of atoms by ratom

- readp looks in the input buffer to see if there is anything

there

- readline reads a line from terminal

- peekc looks at next character in input buffer, but does not read

it.

19.6 Output functions

print[x,filel

prinilx,filel

prin2[x,fitel

terprilfilel

spaces[n,file]

Prints x on the file file followed by a new line.
Value returned is x. The expression printed con-
tains the escape character (%) and the string
separator (). An expression printed by print, can
later be read properly by read.

Prints x on the file file, without % and '.

Prints x on the file file, as print but without

making a new line.

Makes a new line.

Prints n blanks on file.

eg

(PROGN (PRINT 'ADAM) (PRINT ' ''JOHN'))
outputs

ADAM

"JOHN"

(PROGN (PRINT 'ADAM) (SPACES 1)

(PRINT ' "JOHN') (TERPRI))
outputs
ADAM JOHN

(PROGN (PRIN2 'ADAM) (SPACES 1)

(PRIN2 + vjouN") (TERPRI))
outputs
ADAM "JOHN"
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19.7

eject[]

printlevel[n]?

linelengthln,file]

prettyprint[x]

pplx]

ppx[x]

printdef[1]

new page on line printer

on file T (terminal and printer) the printing can
be controlled by the depth in the structures.

n states that n single left parenthesis will be
printed, below that all lists will be printed as
&. The value is the old setting. n=NIL gives

the current setting.

eg printlevell2]
Suppose 1 is (A (B C (D (E) F) G (H)) K)

print[1] would print (A (B C & G &) K)

Sets the length of the line on file Can be used
both for input and output files. See further the
LISP manual.

x is a list of functions or a variable whose value
is a list of functions. The definitions of the
functions will be printed in pretty format on the
primary output file.

Noeval-nospread function. Prints the list x of
functions with prettyprint on the file T. Comments
are printed as xCOMMENT:.

As pp, but comments are printed. Short comments
are printed to the left and long comments are

printed within the function, but separated from
the code by blank lines.

eg (PRETTYPRINT ' (FOO FIE FUM))
or

(SETQQ PRFNS (FOO FIE FUM))
(PRETTYPRINT 'PRFNS)

or
(PPx FOO FIE FUM)

Prettyprints an arbitrary list structure.
eg (PRINTDEF (GETP 'A 'X))

There is a standard set of break characters and separators in the

system.

A break character.will delimit atoms and the character itself is

also interpreted by ratom, as an atom. They are ( ) < > and ",

L The print;level can also be set by attention-P, see further 30.5.



A separator will also delimit atoms, but they are not interpreted
by ratom, as an atom. They are (blank) and ) (line feed).

There are functions by which we can set and use own delimiting

characters

setseprlist,flg]

setbrk[Ist,flg]

getsepri ]
getbrk[1]

character([code]

chcon[chrs]

The lst, a list of character codes (EBCDIC codes),
sets new separator characters. When flg is NIL
1st replaces the old set of separator characters.
For other actions of this function see further the
LISP manual

Same as setsepr, but sets break characters.

eg In an algorithmic language there can be
formulas like

A=B+C/D; A=BETA+C/DELTA;

If we are to read this expression and immedia-
tely get the parts of the statement we can
make

setbrk[(126 78 96 97 92 94) ]

and then have a loop making ratom until
is read in. The numbers are the internal
character codes for

= + - / % and;
gives a list of current separators.
gives a list of current break characters.

gives the character with EBCDIC code code.

eg character[78] = +

character[94] H

Returns a list of the EBCDIC-codes for the
characters in chrs.

eg chconl+;] = (78 94)

Only the functions ratom, uread and prin3 are affected by the user's
set of break and separator characters. Ratom is described in Section

19.5.

uread [file]

user read. Same as read but uses the user's set of
break and separator characters. If ( ) < and >
are included in the break characters it will read

lists as read but spliting atoms containing break

or separator characters.
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eg Suppose blank and comma are separator
characters and ( ) + x are break
characters. They are set by

setsepr[ (64 107)1
setbrk[(77 93 78 92)]
If the input stream is
(FOO X+Y,Z,(FIE Y%Z))
uread gives the list
(FOO X + Y Z (FIEY % Z))

prin3[1,file] Prints 1, on file, so it can be read again by

uread. It uses the user's break and separator
characters to determine when to insert %-s.

19.8 Example

INTERLISP/360-370 works normally in eval mode, which means that we
write expressions which the top-loop gives directly to eval. There
are other top-loops in other LISP systems and the most common is the
apply mode.! This mode reads two expressions, the first a function,
and the second an argument list, and gives this to apply.

eg CAR ((ABCD)) =A
CONS (X (A B)) = (X AB)
DE (FOO (X) (CAR X)) = FOO
This can be done by defining a function applyloop.

(DE APPLYLOOP NIL
(PROG NIL
LoP
(PRINT (APPLY (READ T) (READ T)) T)
(Go LOP)))

The above function can be used interactively, but in batch we can use

(DE APPLYLOOP NIL

(PROG NIL
(PROG (CLA CLB)
LOP
(PRINT ' Memmm e ")
(TERPRI T)
(SETQ CLA (CLOCK 2))
(PRINT (APPLY (PRINT (READ T) T) (PRINT (READ T) T)) T)
(SETQ CLB (CLOCK 2))
(SPACES 23 T)
(PRINT (IDIFFERENCE CLB CLA) T)
(SPACES 1 T)
(PRINT 'MS T)
(GO LOP)))

! In some LISP 1.5 systems the top-loop works in an evalquote mode,
which nearly corresponds to the apply mode.
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This will output
CAR
((aBC))

25 MS

CONS

The call clock[2] gives a time in ms. The difference between two such
calls gives the computing time in ms between these two calls.

There are two weaknesses in the above loop. What happens if an error
occurs? We then return to the top loop. In the LISP manual there is
a function errorset, which prevents us in such cases. See Section 25.
The other weakness is that it is no normal way to enter the top loop
again. This can be done by defining that a return will be made when
it reads a function equal to NIL, or something similar.

19.9 Actually the LISP top loop works so you can enter expressions
given either in eval mode or in apply mode. The top loop is a
function lisEx1 and the function itself decides if the expres-
sion will be given to eval or apply. Simply, if it reads an atom
followed by an expression it is taken as input for apply, other-
wise to eval.

-(coNs 'A ' (B C))

(A BC)

-CONS (A (X Y))

(A XY)

-(CAR '(A B)) (SETQ VAL '(X Y))
A

(x ¥)

-VAL

(x 1)

! The function lispx can be redefined, so make sure how your version
behaves.



Exercises

1. Write a function pascalln], where n is a number between 0 and

10, which constructs Pascal's triangle and writes it out as a
triangle.

pascall6] will print

1 6 15 20 15 6 1

A number within the triangle is the sum of the two numbers
above. :

Define a function algolscan, which can

read statements written
in Algol and which converts it to some

internal list form.
eg (ALGOLSCAN)
A:=B+C;

IF X>10 THEN L:=10 ELSE BEGIN L:

=5; GOTO H END;
ENDALGOL

The internal form could be a list of the different syntactic
entities. The above example gives the list

(A:=B+C; IFX>10 THEN L := 10 ELSE BEGIN
L :=5 ; GOTO H END ;)
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20.

File handling
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The system provides a rather advanced file-handling feature. To
create a file in LISP's sense is to write out the symbolic nota-
tion of LISP expressions by the system's print-routines. This
means that an atom is written as its character string and a list,
is written by parentheses etc. System's read-routine can then read
it in again and create the internal structures.

A file has a name (1-5 characters) and a generation number. Every
time a file is created with the same name the generation number is
updated. A file can be retrieved either by giving only the name -
which then gives the latest generated file - or by giving the name
and a generation number. This makes it possible to automatically
have back-up on the files we have. A file must be opened before it
can be used.

eg

(OUTFILE 'F00)

FOO is opened and is set to be the primary
output file

PRINT '"THIS IS WRITTEN ON FILE F00")
PRINT ' (THIS 1S ALSO WRITTEN ON FO00))

(

(

(CLOSEF 'F00)
(INFILE 'F00)
(READ)

(READ)
(CLOSEF 'F00)
(OUTFILE 'F0O)

FOO is closed and F00#00! is created
FO0 #00 is opened again as input file
reads "THIS IS WRITTEN ON FILE FOO"
reads (THIS IS ALSO WRITTEN ON F00)

FOO is closed again

(PRINT '"THIS IS WRITTEN ON A NEW FILE")

(CLOSEF 'F00)

FOO is closed and FO0#01 is created

(INPUT (INFILE 'F00)) FOO#01' is opened, but T is still

(INPUT (INFILE

the primary file
"FOO #00)) Also F00#00 is opened

! A file with generation number consists of file name, # and a
two-digit number

€g

FOO #» 13
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20.3

(READ ' FOO®00 ) reads '"THIS IS WRITTEN ON FILE FOO"
(READ 'F00) reads '"THIS IS WRITTEN ON A NEW FILE'"
(CLOSEF 'F00)

(CLOSEF 'F00 #00)

The actual implementation with regards to the operating system

is described in the LISP manual. In an 0S/360 environment we need

a partioned dataset. A LISP file will be stored as a number in that
dataset. To delete and compress files we must use IBM's utility
programs. In the appendix to the current JCL is a description for
this. .

Makefile and load

There is a function makefile which makes the use of files very
simple. This function takes a number of variables, functions,
properties etc and writes out the function definitions, variable
values, property values etc. in such a wav that when they are

loaded in again the functions will be defined again and the variables

and properties obtain its old values. An example illustrates its
use

(SETQQ FOOFNS (FUM GUM HUM))
(SETQQ FOOVARS (FIE GIE HIE (PROP FOOFLG A B C D)))

These two global variables! describe that we want to create a file
foo, which contains the functions fum, gum and hum and the variables
jlg gie and hie and the values under the property fooflg for the
atoms a, b, ¢ " and d

(MAKEFILE 'FOO 'FAST)

All definitions and values are written on file foo.

When we later make

(LOAD 'F00)
the file will be read and all definitions and values re-stored again.

The global variables foofns and foovars were also stored, so they
can be used if we want to up-date the file.

1 The global variables are created by the file name, without generation
number, concatenated to FNS and VARS respectively.
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we can then do
{SETQQ FOOFNS (CONS FIENEW FOOFNS))
(SETQQ FOOVARS {REMOVE 'GIE FOOVARS))
(MAKEFILE *FOO 'FAST) '

A new generation of foo is created.

fileFNS is a list of function names.

fileVARS is a list of commands and the most common ones are

- if atomic it defines a variable

- (PROP property atom, ... atomn). Defines values on atom, under
property. If property = ALL, it defines all values on a property
list, but no system properties. |f property is a list it defines
values for each property on that list.

- (P sexpry ... sexprn) Defines S-expressions which will be
printed on the file. This expression will be evaluated at load-

time.

(e sexpr, ... sexprn) each S-expression sexpr; will be
evaluated and the value will be printed on the file.

- (FNS fn1 v fnz) Defines functions. This can be useful if we
want to make some computation, eg with the P-command, before

the functions will be defined when loaded.

eg (RPAQQ FOOFNS (FO01 F0D2))
(RPAQQ FOOVARS ((P (MOVDQQ FIE FUM)) (FNS FIE)))
(MAKEFILE 'FOO 'FAST)

(LOAD 'FO0) will first define fool and foo2, then
make the move and at last define fie.

- (VARS var, ... varn) If var, is atomic it is printed so it
will be set to the global value of var, at the time the file
was printed. If var, is a list of the form (var expr) var is
written so it will be set to expr, which evaiuates at load-
time.

eg |f we always want to initialize the variable nr to 0
and stopvar to STOP we do

(VARS (NR 0) (STOPVAR 'STOP))
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20.4

Exercises |

If the atom % follows the command, the form following the
% is evaluated and its value is used when executing the com-
mand.

eg Suppose we have three lists of functions, fnlistl, fns2
and oldfns, and want all functions on these lists to be
printed we can do

(FNS 32 (APPEND FNLIST1 FNS2 OLDFNS))

There are more commands which are described in the LISP manual.

The second argument to makefile is an option list and FAST indicates
that the file is printed by print. Without FAST the file is printed
by prettyprint. To save space on disc and time use FAST.

Save. There is also a way to store a users all areas called save
on disc store by the function save. He can then start a new LISP
run by using this save. This means that we can save the actual
status of a LISP run and then start from that point again. In an
05/360 environment we need a sequential dataset for this. In the
Appendix the current JCL for doing this is described. The function
save gives as value the number of pages saved.

Test makefile and load. When you understand them start using them and
you will find INTERLISP more easy to work with. The save is useful when
loading time of files starts being troublesome.




21.  Structure-changing functions

21.17 A list cell is created every time the function cons is executed.
These cells are allocated from a special list area. There is a
maximum number of list cells which can be allocated and for this
reason there is a garbaae collector which automatically - or by
user's call - reclaims all the list cells not longer used and
makes these cells available again. List functions - such as append,
list etc - use cons, when building lists. This means that the
system makes lots of copies of structures. There is however,
functions by which we can change an already existing list structure.
This section will deal with the functions rplaca, rplacd, nconc,
nconcl and tconc.

eg We can have following structure

1 | |
! I} !
A B c
and will change it to
-~
] ] ]
b L v
A B c
21.2 Functions which changes structure
rplacalx,y] It replaces car of x toy. If x is an atom, this

wilT set the global value of x to y (see 15.1). If
x is a list, the car-pointer of the first list cell
of x is changed toy Y. The value is the changed x.
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eg X is (A B)

m<—T~

Y is (Q W)

| |

| )

Q w

rplacalx,y] will make the change

)

o<t

and the value returned is ((Q W) B)

eqly,car[x]] = T Eq can be used to see if two
lists are identical (see
Section 3.6)

rplacdlx,y] It replaces cdr of x toy. If x is a list the
cdr-pointer of the first list cell is changed
to y. We do not use rplacd on atoms, unless
absolutely sure. We will then replace x's property-
list to y. The system uses property-lists to store
internal information which we are not permitted
to remove.
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eg If x and y had the initial values as in the

rplaca example
rplacd(x,y] will make the change

> <1
[ R e

i |
Q w
and the value returned is (A Q W)

We can not rplaca or rplacd NIL. An error will then
occur.

21.3 By these two functions we can create circular lists.
eg If x is (A B C) then
rplacdlcddrlx], x] is

e -

4 ] {

| k |

A : B

C
The print routine can not detect circular lists, so care must be
taken that they are not printed.

The following example shows when a circular list can be useful.
Suppose we want a function which on succesive calls returns

1, 2, 3,

1,2, 3,1,

(RPAQQ CIRC (1 2 3))

(PROGN (RPLACD (CDDR CIRC) CIRC) 'DONE)

(RPLACA 'CIRCPOINT CIRC)

(DE GENNR NIL (PROG1 (CAR CIRCPOINT) (SETQ CIRCPOINT
(CDR CIRCPOINT>

(GENNR) gives value 1

(GENNR) gives value 2 etc ...

Notice how progn is used to prevent a circular list from being
printed as value and how progl is used to get correct value.
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21.4 nconc[x],...,xn] X, are lists. Gives value as append (see 11.6),
but instead of copying Xy the last cdr pointer
of each X; is changed. The value is the conca-
tenated list.

eg nconclx,y] works as

prog2[rplacd[last[x],y],x]

nconcllx,y] Defined as nconclx,listly]l. This is as cons
but puts y on the end of the list x. The value
is x.

tconclptr,x] This function works as nconcl, but instead of

always searching to the last element, ptr, is

a list cell, where carl[ptr] points to the begin-
ning of the list and cdrlptr] points to the last
element. This function is useful when we frequently
require to add elements to the end of a list. The
value is ptr.

eg (SETQ POINTER (CONS))

(TCONC POINTER 'A) gives value ((A) A)
(TCONC POINTER 'B) gives value ((A B) B)
(TCONC POINTER 'C) gives value ((A B C) C)

¥
pr <+
\ |

POINTER \—/7 i i
C

B
(CAR POINTER) gives then the list (A B C)

> i

If ptr is NIL, tconc sets up the pointer cell.
eg (SETQ POINT (TCONC NIL 'A))
(TCONC POINT 'B)
(TCONC POINT 'C)

is identical as above.

21.5 Some of the list manipulation functions, such as remove, reverse
and subst appear also as destructive functions. This means that
the original structure is changed. They are then called dremove,
dreverse and dsubst.




21.6 Example.

The property-list functions also use these structure-changing
functions. Put can be defined as

(DE :PUT (ATM PROP VAL)
(COND ((NULL (CDR ATM)) (RPLACD ATM (LIST PROP VAL)) VAL)
((EQ (CADR ATM) PROP) (RPLACA (CDDR ATM) VAL) VAL)
(T (PUT (CDDR ATM) PROP VAL))))

Exercises

1-3 Define the functions :dremove, *dsubst, and :dreverse. They
work as corresponding functions without the d, but do not use
extra list cells. -

4, Dpefine the function :taddprop, described in 11.7.

5. There is a system function lconc, which is similar to tconc.
By lconc we can concatenate a list at the end instead of only
an element. (Compare also nconc and nconcl)

eg (SETQ PTR (CONS))
(LCONC PTR (LIST 1 2))
(LcoNC PTR (LIST 9 8 7))
PTR gives then the value ((1 29 8 7) 8

Cefine ticonclptr,l]

ter function is attachlx,yl, which value is the same
i, but it attaches x to the front of + by changing
and rplacd) the contents of y. The value of attach

A.  Iacther
35 zonsix
1oy rplace
is eq to y.

eg L= 1{ABC)

L r—————] y
_T____,' ] /

A B




attach[X,1]

O e
WE—

) This is the new
+ £Z st cell

i

This function can be useful if we have several pointers to the
same list cell, which can be the beginning of a queue. |f we
now extend the queue at the beginning, we will still see that
all pointers point to the beginning of the queue. If we were
doing cons we must reset all pointers ourself.

Define *attach.

Let us go back to the tree sort example in Section 9, example 11.
In the proposed solution we copy every node in the tree, which

is passed when a new node is inserted in the tree. This method
consumes a lot of extra list cells. Another solution is instead
to merely change one of the pointers in the terminal node to
point to the new node. By this method no extra list cells are
used. Make necessary changes in the solutions in Section 9,

so it uses this new method.
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22. Atom and string manipulation functions

22.1 lInternally we can create atoms by using the function pack. Pack
takes as argument a list of elements and concatenates the pnames

of these elements into a new atom.
A pname is the character which will be printed when a LISP
expression is printed by prinl.

eg The pname of ATOM is ATOM
The pname of () is NIL
The pname of (A (B)) is (A (B))
The pname of 1.2E+1 is 12.000000
The pname of ''STRING' is STRING
eg pack[ (A NEW LI SPA TOM)]
pack[(A B (X Y) C)]

ANEWL I SPATOM

The atom AB(X Y)C,
with one blank character

The integer 1234

'pack[(l 23 4)]

pack[ (1 . 2 E + 2)1 = The floating-point number
120.000000
|f the atom packed can be interpreted as a numeric atom, it
creates the numeric atom. There is no way to create a ''literal
number''.

22.2 An atom can be taken apart by unpack.
eg unpack[THISATOM] = (TH I S ATO M)
unpack[1234] = (1 2 3 4)
unpack[''STRING"] = (S T R I N G)

22.3 Some other useful functions

nchars[x] number of characters in the pname of x.



22.4

nthchar[x,n]

gensym[ ]

If n positive, it gets the nth character in the
pname of x, and if negative it gives the nth
character from the end. NIL is returned if n is
outside the length of x. -

eg nchars[ADB] = 3
nchars[( A () )1 = 7, the pname is (A NIL)
nthchar[LISP,2] = |
nthchar[LISP,-1] = P

Generates a-new atom of the form Annnn, where n
is digits. A counter is updated at every call,
SO gensym generates new atoms at every call.

String functions

stringp[x]

strequallx,y]

mkstringlx]

gnclx]

glclx]

concat[xl, X

2°

Is x if x is a string, otherwise NIL

Tests if two strings x and y are similar, returns
then x, otherwise NIL

Makes a string of x

Get next character of string x. Returns the first
character and then removes the character. When
there are no characters remaining NIL is returned.

eg (RPAQQ STR "STRING')
(GNC STR) returns S, an atom
STR YTRING"
(GNC STR) (GNC STR)
(GNC STR) (GNC STR)

STR NG
(GNC STR) G

STR nn
(GNC STR) NIL

Get last character. The same as gnc, but instead
takes the characters from the end.
,xn] Copies %; and concatenates them to one
string
eg concat["A", "NEW'", "STRING"] =
"'ANEWSTRING"
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substringlx,n,m] Gets the substring in x, from the nth character

to the mth character. Returns NIL Tf the substring
is not well-defined. n and m can be negative with

the meaning as nthchar in 22.3
eg substring["A LISP STRING",3,6] = "LISP"
substring["A LISP STRING",-6,-3] = "'STRI"

mkatom[x] Makes an atom of the string x.

rplstringlx,n,y] Replaces characters in string x, from position n

by the characters in string y.

In the LISP manual there is a section which describes the internal
representation of a string and what happens, when the string func-
tions are applied to different data types.

Exercises

1.

Define filename[filel, where file is a filename, either with
or without generation number, which returns the file name
without generation number.

eg filename[F00] = FOO
filename[F00 #10] = FOO

For training purposes use two methods. First unpack the atom
and pack relevant parts again. Secondly, make a string of the
file names and use string functions for finding the relevant
part.

Write a function strpos[substr,str], where substr and str are
strings, one which searches str from the beginning after a
sequence of characters equal to substr. |f a match is found

the position of the first character in the sequence is returned
otherwise NIL.

eg strpos["A LISP LIST', "IST"] =9
strpos['A LISP LIST","LIS"] =3
strpos["A LISP LIST',""ALI"] = NIL
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23.

23.1

23.2

Arrays

An array in INTERLISP is a one-dimensional block of storage. An
array can be allocated dynamically and is deallocated by the
garbage collector. An array is referenced by an array pointer.

The elements in an array are referenced by an index, started from 1.

The space in an array can be separated in two sections. The first
for storing non-pointer data (an unboxed number) and the second for
pointer data. The normal use of arrays are for pointer data. For
non-pointer data see the LISP manual. In the pointer section we
can store arbitrary INTERLISP pointers, such as atoms, numbers,
lists, other arrays etc.

Functions for handling arrays

arraylsize,np,initval]l An array of size elements is allocated. The
first section will contain np non-pointer data
and the second sections will contain size - np
pointer data. If np is 0 or NIL the array will
only contain pointer data. The elements in the
pointer sections are initialized to initval. The
value is the array pointer.

arraysizel[a] Returns the size of the array a.
arrayplal Returns a if a is an array pointer, otherwise NIL.
setala,n,vall Gives the nth element of the array a the value val.

eltla,nl Returns the value of the nth element of the array a.
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23.3 Examples
(SETQ ARR (ARRAY 8)) An array of size 8 is allocated for only

pointer data. The elements are initialized

to NIL. The variable arr points to the
array.

(ELT ARR 2) Gives NIL as value

(SETA ARR 4 'FOUR)

(SETA ARR 8 '(8 4))

(CAR (ELT ARR (PLUS 6 2))) Gives 8 as value

(SETA ARR 5 ARR) The fifth element points to the array
itself.
(ELT (ELT ARR 5) 4) Gives the value FOUR.

ARR\

—t FOUR

L I I N
hN

If we want multi-dimensional arrays we must give the index function
ourself. Suppose we want an 8x12 array we can do

Exercises

(DE IND (I J) (I1PLUS (ITIMES (SuB1l 1) 8) J))
(SETQ ARR2 (ARRAY (ITIMES 8 12)))

(SETA ARR2 (IND 5 11) 'VALUE)

(ELT ARRZ (IND 5 11))

If we want multi-dimensional arrays, we can generate its
index function automatically. We can also generate the access

function. We introduce two functions defarray and setarray and
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they can be described by

(DEFARRAY MAT 3 5 7)

(SETARRAY (MAT 2 L 6)

(SETARRAY (MAT (IPLUS

(MAT 2 L4 6)

following an example

Defines a 3x5x7 array, calied mat.

The function allocates the space for
mat, generates an index function for
it and generates an access function

mat.
'WAL) Gives mat[2,4,6] the value

val. The generated index function
has been used.

21) 17) 315) Gives mat[3,1,7]
the value 315.

Returns the value of mat[2,4,6], which
is val. Mat was generated by defarray.

Define the functions defarray and setarray. In the example, mat

is used as the variable,

which value is the array pointer and

will not be evaluated. This means that the two functions must
be of noeval type, but the indices and the value in setarray

shall be evaluated.
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2k .1

24,2

24.3
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Edit

The edit was introduced in Section 10 and a number of edit
commands were given. The edit contains much more powerful
commands and we will describe some of them in this Section,
mainly to give an idea as to what can be done by the edit.
For full descriptions of the commands a study of the LISP
manual is necessary.

We introduced earlier the current expression, cexp, which is
the substructure in the expression we are editing to which our
attention is centered. The edit saves the chain of cexp's so
we have the possibility to go back to an old one (by the 0
command). Changes done can also be undone by UNDO or for all
changes by |UNDO.

The F (Find) command. By this command we can search for a

specified expression. The expression is given as a pattern.
The simplest patterns are those where the expression is given
explicitly, as in

F COND or F (SETQ X 10)

Elements in an expression can be given implicitly by & and --.
& describes an arbitrary element and -- describes a segment
(zero or more elements following each other). The expression

(SETQ Z (ADDT X))
is matched by following patterns

(SETQ & &)

(SETQ --)

(& & &)

(SETQ & (ADD1 &))
SO we can write

F (SETQ & (ADD1 &))
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The search algorithm for the F command is as follows
a. search on top level on cexp.
b. if not found, search cexp in print order.

c. if not found, the search will ascend to the next higher
expression.

Step a. is useful in prog. Suppose we have

(PROG (L) (COND ((NULL X) (GO LAB))) ... LAB (SETQ X L) ...)
and want to come to the label LAB we simply do

F LAB
but if we do

0 F LAB

we go to a higher expression and find then LAB in go, because
the label LAB is not on the top level any more. |f we have the
above example again and first do

F X
cexp isvset to
. X)
and then again
F X

no more X is found on cexp, so the search continues on higher
levels and cexp is set to

.X L)

There is also a command BF (Backward Find), which works as find
but searches in reverse print order.

In many situations we want to make changes before or after
current expression or to replace it. In order to do this we
must come above cexp (by using UP) and then the command

n el vee en). There are however, some very convenient commands
for this.

NX Sets cexp to next expression after current ex-

- pression.

BK Sets cexp to expression before current expression.
(B ey een en) Inserts e to e before current expression.

(A ey .- en) Inserts e, toe after current expression.

(: ey -.- @ ) Replaces current expression by e, to e

n 1
DELETE Deletes current expression.
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24,5 LC location specification. By specifying a position in an ex-
pression a more general method can be used. A location specifi-
cation is a list of edit commands that are executed in a normal
way with two exceptions

a. commands not recognized by the editor are interpreted as
though they were preceded by F.

eg if cexp is
(PROG (X) (COND ((NULL L) NIL) ((NULL A) (SETQ L B))
e >
the location specification
(LC COND 3 L)
specifies the position
.o.LB)

b. if a command in a list will cause an error (ie no match can
be dohe by an F command) the editor starts again from the
beginning in the command list and goes on searching.

eg If cexp is
(PROG (X Y) (COND <L (COND ((CDR L) (SETQ X (CADR L))
(SETQ Y (CAR L)))
(T (SETQ X (CAR L>
(T (SETQ L (CONS NIL NIL)))) ... >
the location specification
(LC COND 2 3)

will first fird the outer cond's first clause but 3
will generate an error, because the clause only con-
tains two elements. Next cond is found and the rest
of the commands will fit and we have found

(SETQ Y (CAR L))

24,6 The A, B and : command are extended also to contain a location
specification and we can write

(INSERT ey ... e BEFORE c, ... cm)

eg (INSERT (CAR L) (GO LOP) BEFORE F00 3 2)

( INSERT e e AFTER Cpoeen cm)
(INSERT e, ... e, FOR c; .. )
(REPLACE €y v S WITH e, ... en)
(CHANGE €y e S T0 ey .- en)

(DELETE ST cm)
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g is an arbitrary LISP expression and 5 is an editor command as
for the location specification.

Occasionally we want to copy an expression in one place to
another. This can be done by the above commands if e; is specified
by the s command.

## specifies a location, but does not change the current cexp. We
write
(## F COND 2 1)
Suppose cexp is
(PROG (X Y) (COND ((NULL L) 7T) ... ) ... (RETURN 'OK>
we can do
(REPLACE T WITH (##-1))

and a copy of the last element in the prog will replace the T
in the cond, and we get

(PROG (X Y) (COND ((NULL L) (RETURN 'OK)) ... ) ... (RETURN 'OK>

The MOVE command allows us to specify an expression to move,
specify the place to move to and specify the operation to be
performed at the new place. It looks like

(MOVE c, 1 )

where ¢ are editor commands as in 24.6 and com is BEFORE, AFTER,
(delete) or list commands as N etc.

. c TO comc cee C
m

m

We have the following expression as cexp
(LAMBDA (X) (PROG (L) (GO LOP) LOP (COND ((NULL L) (RETURN)))
. )
If we do
(MOVE 3 3 TO AFTER -1)
we move
(GO LOP)
to the end of the prog. We can then do
(MOVE 2 1 TO : NULL 2)

and we replace 1 in null to the lambda-variable, and we get

(LAMBDA NIL (PROG (L) LOP (COND ((NULL X) (RETURN))) ... (GO LOP)))
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If several contigous elements will be moved, ie a segment, they
can be described by THRU or TO, as in the following examples.

If cexp is

(ABC(DE)F (GH I JK)
we can do

(MOVE (2 THRU 4) TO BEFORE 7)
and we get

(AF (GH) BC(DE) I JK)
or an identical command is

(MOVE (B TO) F) TO BEFORE 7)

TO is as THRU except last element is not included.

24.8 Extract and embed. Extraction involves replacing the current

expression with one of its subexpressions from any depth and
embedding involves replacing the current expression with a

subexpression containing it as a subexpression. We have

(XTR ¢, ... cm)
(MBD e - en)
Suppose cexp is

(COND ((NULL L) NIL) (T (PRINT L)))

and we want to replace cexp only by

(PRINT L)
we do

(XTR 3 2), (XTR (PRINT L)) or (XTR PRINT)
In MDB the current expression will replace every occurence of the
atom = in &y If cexp is

(PRINT X)

and we want to replace it with

(COND ((NULL L) (PRINT X) NIL) (T (PRINT X) (GO LOP)))
we do

(MBD (COND ((NULL L) s NIL) (T = (GO LOP))))

24.9 Commands that evaluate
E form form evaluates and its value will be printed.
(E form)

(1 c Xy ees xn) evaluates X; and performs then the editor command

(c eval[x1] - eval[xn])
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(CoMs Xy e xn) Each X is evaluated and its value is

executed as an editor command.

24,10 Editor macros

(M macro ¢, ... c_) Defines macro, which does c, to c_, when
1 n macro & <,
called.

(M (macro) (arg1 ... argk) Cp en cn) defines macro with argu-
ments.

eg (M (SS) (ELEM) F ELEM 0 P)
If cexp is
(A (B C) D)
and we do
(ss c)
the second sublist is found and printed.
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Error handing

During the development of a program different types of errors
will occur. In an interactive environment the system can interro-
gate with the user and let him decide what to do about the error.
In INTERLISP this is done by the break facility, which was intro-
duced in Section 10. In this section we will briefly describe
what kind of errors there are and how they are handled by the
system. The break facility is described in more detail in Section
26.

We can distinguish between the following error types:
- unbound atom and undefined function
- illegal arguments to system functions
- user-initiated errors

- other errors, including bugs in the INTERLISP/360-370 system.

For unbound atom (U.B.A) and undefined function (U.D.F) the
interpreter (the eval function) will call the function faulteval
and give it the form which caused the error. The form is an atom
if unbound atom, or a list if undefined function, with car of the
list as the undefined function. Faulteval prints a message U.B.A
or U.D.F and calls breakl. A decision is made here if we should
enter the break or if we should return to the top level again. If
the error occurred deep in the evaluation a break is made. This
is done not to let trivial type-in errors to cause a break.

If faulteval returns a value back to the interpreter this value is
used exactly as though it was the value from the form. From break
a value can be returned by the RETURN command.

In batch, breakl will print a backtrace of forms under evaluation,
functions entered and variables and its values.

Break commands are described in Sections 10.3, 26.9 and 27.11.
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25.4

25.5

25.6

If we call a system function with illegal arguments an error
message is printed and breakl is called, and behaves as described
in Section 25.3.

In the LISP manual there is a table with all error messages
where messages of the following types can be found,

ILLEGAL RETURN return not in prog

ATTEMPT TO RPLAC NIL not allowed to rplaca(d) NiL
NON-NUMERIC ARG illegal argument to a numeric function
FILE NOT OPEN read or print to a file not yet opened

If a pointer references an object outside the range of the virtual
address-space a message

REFERENCE OUTSIDE VIRTUAL CORE

is printed. This error can occur if we do car or cdr of numbers
for example. Normally this is a user error.

The user can call the error routines by using the following
function

error[mess1,mess1,nobreak] If messl is an atom, messl and mess2
are printed on the same line, other-
wise a carriage return is made after
messl. If nobreak is T errorb is called
otherwise errorx (which calls breakl
and we can enter the break).

Example
(DE FOO (L) (COND ((NLISTP L) (ERROR L '''IS NOT A LIST" T))

(T ... )))

If we call
(FOO 'ADAM)
the following is printed
ADAM IS NOT A LIST
and we are back to the toploop again.

With the third argument to error set to NIL the break will be
entered and we can get the possibility of correcting the illegal
argument 1.
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In Section 19.6 we introduced a problem. We defined our own top-
loop, where we read expressions and gave them to eval. What hap-
pens now if an error occurs under the evaluation? In the solution
given in that section we are coming back to the system's read-
eval-print loop again. This problem can be solved if we use the

errorset feature. Instead of calling eval we call the function
errorset, which works as eval but catches a return from the error

routines.

errorsetlu,v] performs evallu]. If no error occured under evalua-
tion the value from errorset is a list of the value
from eval. |If an error occured the value is NIL.
The printing of error messages is controlled by v.
They are printed if v=T, otherwise not. Notice
that errorset first evaluates its arguments and then
gives it to eval.

Example. Let us look at a better solution to the example in
Section 19.8, where we defined the function applyloop.

(DE APPLYLOOP NIL
(PROG (VAL)
LoP
(SETQ VAL (ERRORSET '(APPLY (READ T)
(READ T))
T)
(COND ((NULL VAL) (3* AN ERROR HAS OCCURRED)
(60 LOP))
(T (PRINT (CAR VAL) T)))
(Go LoP)))

errorb[1?} Returns directly to the last errorset or if no ,
errorset has been done directly to the toploop.

reset[] Returns directly to the system's toploop.

Is pronounced '‘errorbang"

2 An attention-E generates an immediate errorb.
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Exercises

1. Many problems, especially combinatorial problems, may often be
simply written by using non-deterministic algorithms. The
implementation of these algorithms is normally done by backtracking.
In a non-deterministic algorithm we can besides the normal statements
use a choice statement and statements to report failure and success
of the computation. The form of the choice statement can be illustrated
by the example

(CHOICE I (1 23 4567 8) form)
which will be interpreted as

"assign to the variabie | a value from the set (1 2 ... 8)

and evaluate the form"
The failure and success statements appear
(FAILURE) and (SUCCESS form)
where the failure statement works as
""backtrack to the last choice statement and make a new assign-
ment to the variable and execute the form again, if all values
have been taken execute a failure''.
and the success statement is a normal return with form as value.
Implement these three functions in LISP by using errorset and

errorb. Solve then the 8-queen problem by using these non-deter-
ministic primitives.

! Non-deterministic algorithms, backtracking and the 8-queens
problem can be found in,

Robert Floyd, Non-deterministic Algorithms, JACM vol 14, nr 4,
Oct 1967.
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Break and advise

In the previous section was described how the break was invoked
when an error occurred. This section will describe how the user
can make use of the break facility in his program development.
This is useful when we want to stop at a specified point in the
program and look around in the evaluation environment (stacks,
variable bindings etc).

When we break a function we call that function broken. We can
break compiled and machine-coded functions. Actually what hap-
pens is that the definition of the broken function is modified.
Let us follow an example and see what happens in some different
situations

-(DE FOO (X) (CONS X X))
FOO

- (BREAK FO00)

(F00)

The function foo is now broken and the next time it will be
called the break-loop is entered. We have now the possibility
of interrogating the break by using break commands (see 10.3,
26.9 and 27.11) or by giving forms, which will be evaluated.

-(FO0O (CONS 'A 'B))

(FOO BROKEN)

:BTV
X (A . B)
FOO
EVAL
LISPXX (FoO (cons (QUOTE A) (QUOTE B)))
LISPX
:GO

FOO = ((A . B) A . B)
((A.B)A.B)
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The break command BTV prints a backtrace of functions and variables
bound on the stack, and the break is released by the command GO.
The computation continues and the result is printed.

The system knows about all broken functions thus makefile and
prettyprint will work on the original function definition even
if the function is broken.

-(PP FOO)

<FJ0

(TaMBDA (X)
(cows x x>
-(PRINTDEF (GETD 'F00))
<LAMBDA (X)
(Br=EAK1T (PROGE (CONS X X)) T FOO NIL>

In the function cell a modified version of fgg is placed, but

when pp is used for a prettyprint the original version of foo
is used.

We can now unbreak foo by
- (UNBREAK F00)
We can also give a condition when the break shall occur, such as

- (BREAK (F0O (ATOM X)))

(Fou)

-(FoO '(A B C))

((ABC)ABOC)

-(FO0 'A)

(FOO BROKEN)

<X

A

1 (SETQ X (LIST X))

()

:0K

FOO

((a) &)
The break will only appear when foo is called with an atom as
argument. In the example we look at the value of x, (x is no
break command and is evaluated as a form) and then rebound it

to the list of x. The break is released by OK (the value from
the computation of foo is not printed).
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When defining the break a list of break commands can be given directly.
Instead of the break-loop the elements of that list are treated as
break commands. Trace is implemented by this feature.

- (BREAK (FOO (ATOM X) ((PRIN1 ""X IN F0OO IS ") (PRINT X) GO)))

(F00)
-(FOO 'A)

(FOO BROKEN)

X IN FOO IS A

FOO = (A . A)

(A . A)
If a function is called from many different places, but our
interest is only to break the function when it is called from
a specified function we do

- (BREAK (CONS IN FO00))

(CONS-IN-F00)

Cons will be broken only when called inside foo. The call to

cons in foo will be changed to a call to the function cons-in-
foo, which instead will be broken.
- (PRINTDEF (GETD °F00))
<LAMBDA (X)
(CONS-IN-FOO X X>
- (PRINTDEF (GETD 'CONS-IN-F00))
<LAMBDA (U V)
(BREAK1 (PROGN (CONS U U))
T CONS-IN-FOO NIL>
The information of a break is saved on the broken functions

property-list. This information can be used if we later want
to make the same break again by simply doing

- (REBREAK FO00)

In a prog interest is usually in breaking a function at a
label or at a special statement and this can be done by the
function breakin. An example illustrates its use

-(DE FOO (X)

- (PROG (L)

- LoP

- (COND ((ZEROP X) (RETURN L)))

- (SETQ L (CONS X L))

- (SETQ X (SuB1 X))

- (Go LoP>

00
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- (BREAKIN FOO (AFTER LOP))
FOO
-(F00 3)

he label lop.
((FOO_G) BROKEN) Enter the break after the label lop

HE

NIL

.0K Go on

(FOO @) Leave the break

k at the same place as before
(FOO_G) BROKEN) New break a P

L Look at 1

(3)

: (SETQ X 0) Rebound x

0

L0k Go on

(FOO G) Leave the break
(3) - Value from (F00 3)
- (UNBREAK F00)

(Fo0)

- (BREAKIN FOO (AROUND (SUBT X)) (LESSP X 7)
(RETURN (PLUS X =2)))
(FOO_G)

If the condition that x is less than 2 is satisfactory and the
break occur just before the evaluation of subl the last argu-
ment is a break-command list as described before and it will
leave the break by the value of plus[x,-2]. This means that

the sub1[x] will not be evaluated and the value from the RETURN

command is taken as the value instead.
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-(Foo 8)

((F00_G) BROKEN)

(FOO_G) = 4

((FOO_G) BROKEN)

(FOO_G) = 2

((FOO_G) BROKEN)

(FoO_G) =0
(2 467 8)
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FOO_G is an internal description that foo is broken inside some-

where.

Notice that the editor will work on the broken function.

If you

want to edit your original function you must first unbreak it
and after the editing rebreak it.

Break functions.

break0[fn,when,coms] sets up the break by redefining fn . Break

break1[brkexp,when,fn,coms]

break[x],...,xn]

»x ]

tracelx,,...
acel 1 "

unbreak[x1,..,xn]

rebreak[xl,...,x 1

and trace will call break0.

calls the break. |If when evaluates
to NIL brkexp is evaluated and returned as
the value of breakl. |f when evaluates to
true a break will occur. |f coms is NIL then
the break-loop is entered, otherwise the
break commands are taken from coms.

a nospread nlambda function. Each x. describes
a function to break. x. can either be a func-
tion or a list (fn when coms).

as break but traces the functions instead.

I f X is NIL all broken functions are un-
broken, and all information saved are thrown
away. If x, is T the latest broken function
is unbroken, otherwise each x. describes a
function, which is unbroken.

Every function x. will be broken again
exactly as i was previously broken without
having to re-specify all the break informa-
tion again. If X4 is NIL or T rebreak works
as unbreak.
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26.6

fn can either be a function name or a list (fnl IN fn2). when
is a form which determines if a break shall occur or not.

coms is a list of break commands, or forms to be evaluated. For
commands which are inputed as a number of expressions, ie

7= AB

they are written as

(veee 2 (AB) ..... )

If we want the value from a form printed we must print it our-
selves.

((PRINT X) .... )

We can introduce breakmacros by extending the variable breakmacros
by a list of the form (macro command! ... commandn). The atom macro
can then be used in coms as a break command.

Examples

If we do
(TRACE F00)
trace sets up the following command list
(TRACE ?= NIL GO)
where trace is a special flag indicating that the message
"function"
is printed.
= is a break command which prints the variable and values for
the broken function.
The break is set up by a call to break0 as
(BREAKO 'FOO T '(TRACE ?= NIL GO))
Foo is now redefined and contains a call to breakl
<F00
(LAMBDA (X)
(BREAK1 (PROGN (CONS X X)) T FOO (TRACE ?= NIL GO>

When foo is called and the printout is made the break is released
by GO, which evaluates the first argument to breakl, which is the
original definition of foo; and prints its value.

26.7 breakin[fn,where,when,coms] fn, when and coms are as in break. Where

specifies the location where the break is in-
serted. The location is specified as a list
started by either BEFORE, AFTER or AROUND
followed by editor commands specifying the
location (see 24.5)
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(BEFORE COND)

specifies the point before the first occurence
of cond.

(AFTER 3 2)

specifies a point after the second sublist in
the function body; in

(LAMBDA. (X Y) (PROG (L N) (SETQ X L) .. )
it is before the setq. '
(AROUND (SETQ X Y))

specifies that the break occurs just before the
evaluation of the expression mentioned. In this
case the user can use the EVAL command for
evaluating the expression and look at its value
afterwards. The variable /VALUE is bound to
the value. ’

Multiple break points can be inserted. Breakin
can only be used in interpreted functions.

The function virginfn[fn] gets) regardless of any amount of breaks,
breaking etc,the original version of your function fn.

We have introduced additional break commands and here is a summary

of them.

GO

0K

EVAL

RETURN form

Releases the break and allows the computa-
tion to proceed. The brkexp is evaluated and
this value is printed. See earlier how GO is
used by the trace and where brkexp is the
original function definition.

Same as GO except that the value is not printed.

Same as GO and OK but the break is maintained
after the break. The variable /VALUE contains
the value from brkexp and can be examined. If
GO or OK follows EVAL the brkexp expression
will not re-evaluate brkexp,

Releases the break and form is evaluated as
brkexp. This command is normally used when the
break occurred depending on an error and the
value from form is taken as the value from the
erroneous expression, which caused the break.




7= Will print the variables and its values for
the broken function, (or to a function pointed
to by lastpos, (see next section). For an
extended use see the LISP manual.

Break commands are described in 10.3, this section and in 27.11.
The command ? gives a list of available break commands.

26.10 Advising. By advising we can change the interface between functions.
This means that we can modify a function by placing new code before
or after the computation of the function. Examples of this use are
break and trace, which modifies the function by putting code so it
calls the break-package. By advising it is not necessary for the user
to know how the function works, he can modify them without concern
for. their contents and details of operations. Advising works as
break on machine coded, compiled and interpreted functions, and
it is possible also to advise a function only when called from
some other specified functions.

26.11 If we have the following definition
(LAMBDA args body)
the corresponding advised function is
(LAMBDA args
(PROG (/VALUE)
(SETQ /VALUE (PROG NIL

advisel

ADVISE BEFORE

advisen
(RETURN body)))

advisel

ADVISE AFTER

advisen
(RETURN /VALUE)))



26.12 Advise functions.

advise[ fn,when,where,what] Advise the function fn, when = BEFORE
or AFTER, where specifies where among
the advises this new advice is put,
can be specified as LAST (NIL) or
FIRST or by editor commands, what
specifies the code to put in.
eg (ADVISE 'FOO 'BEFORE 'LAST '(SETQ X NIL))

(ADVISE '(CAR IN FOO) 'AFTER NIL '(PRINT /VALUE))

unadvise[xl ves xn] as unbreak.

readvise[xl cee X ] as rebreak, information is saved about

n —_—
earlier advises on X

26.13 Example. Suppose we want to have statistics about how many times
particular functions are called under a computation. By advise

this is simple. First we define a function stat, which sets up
the advise.

(DF STAT L
(MAPC L (FUNCTION (LAMBDA (FN)
(PROG (STATVAR)
(SETQ STATVAR (PACK (LIST FN '=STAT)))
(SET STATVAR 0)
(ADVISE FN 'BEFORE NIL
(SUBST STATVAR
':tVAR=
' (SETQ ::VAR:z (ADD1 :2VAR:))))
(SETQ STATFNS (CONS (CONS FN STATVAR)
(STATFNS))
(RETURN>
If we now do
(STAT FOO FIE)
we create the global variables, as counters
FOO=STAT and FIE=STAT

and initialize them to 0.
For foo the advise-expression is

(SETQ FOO=STAT (ADD1 FOO=STAT))
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and we save the function and the counter on an association list
for later use when the report of statistics is printed.

Exercises

1. Continue the work in the example in 26.13. Define a function
printstat, which prints a table of functions and its frequencies.
Define also a function unstat and restat, which removes resp
initializes the statistics. .

Can we also use the functions with
(CAR IN FOO)

as argument?
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27. Stack functions

27.1 During the evaluation of an expression the interpreter uses stacks
for saving information. The control-stack contains function:returns
so that the system knows in what order functions have been called.
The parameter-stack contains variable names and values. Temporary
results etc are also saved on stacks. It is more convenient to
consider the stacks as one. This single stack will then contain
function blocks of all functions that have been entered but as yet
not exited. A function block consists of the function name,
variable names and values. We will in this section describe some
functions by which we can use to gain access to the stacks.

27.2 Let us follow an example where foo and fie are defined as
(DE FOO (A B) (PROG (X) (SETQ X (FIE A)) ... )
(DE FIE (B) (CONS B B))
If we evaluate
(FOO 'ADAM 'EVE)

the stack will contain the following information at the moment when
the cons in fie is evaluated.

top of stack
CONS
ADAM Function block of cons.
ADAM For assembly—coded functions
FIE no variable names are stored.
abaM [ B
SETQ
=
(X (FIE A)) PROG
N X
FOO
EVE B
ADAM
EVAL Internal calls in the interpreter,
e J and they can differ depending on
LISPX the toploop used in the system.
K////’//”—~_—__\\\\\\\\ [ Lispx
Iz

(FOO (QUOTE ADAM) (QUOTE
BERTIL)) bottom of stack
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27.3

27.h4

27.5

">01

The compiled functions will also put its names of variables on
the stack although they are not used. This is done for compata-
bility with interpreted functions. In a compiled function the
values are picked up from known positions in the stack instead
of doing a search. This scheme is used to let free variables be
used between compiled and interpreted code. It is also very use-
ful as symbolic debugging information and is used by the back-
trace.

A position in the stack can either be the beginning of a function
block (actually a position in the control stack) or to a variable-
value pair (a position in the parameter stack, called slot). A
stack position is a datatype in INTERLISP and is referenced by a
pointer in the same way as an atom, list, array etc.

Stack functions for accessing a function block.

stkpos[fn,n,pos] Returns the stack position for the nth func-
tion block of fn starting at position pos. If
n is positive the stack is searched from the
bottom and if n is negative the stack is
searched from the top. If n is NIL, =1 is
used. If pos is given the search starts at
that position.

stknth[n,pos] Returns the stack position for the nth func-
tion block relative to position pos. If pos
is NIL the bottom of the stack is assumed if
n>0 and the top of the stack if n<0.

stkname[pos ] Returns the name of the function in the block
of position pos.

To ge the top of the stack (current position) do stkpos[] .
In stkpos and stknth the position pos can be given as a literal
atom and is then treated as the position

(STKPOS pos -1)

To clarify how the search is done study the two figures

pos=NIL pos+# N!L

— S

top of stack

—— I
e—— n<o 1 .
n>o

— ==t pos
— 3

—
— S n<o
] —
E— 1
Ea— ——
e a—
b1 ——"1

bottom of stack
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Example. Suppose we have foo and fie defined as
(DE FOO (N M) (COND ((ZEROP N) (FIE M))
(T (FOO (SUB1 N) (PLUS N M>

(DE FIE (1)

(ADD1 (FUM (SuB1 1>

Fum is defined, so it will print the result from a number of
examples, where the stack functions are used. Suppose we evaluate

(FOO 2 5)

the stack will have the following status at the moment fum is

called

FUM

FIE The variables are not shown, only the

COND order between the function blocks

FOO

COND

FOO

COND

FOO

EVAL

LISPX

EVALLOOP
(DE FUM (N)
(PRINT (STKPOS))" #2600A164, stack position to fum
(PRINT (STKPOS 'FIE)) #2600A12C, stack position to fie
(PRINT (STKNAME (STKPOS))) FUM
(PRINT (STKNAME (STKPOS 'FO0 3))) FO00, the 4th block from the top
(PRINT (STKNAME (STKNTH 4))) FO0, the 8th block from the top
(PRINT (STKNAME (STKNTH -10)))  LISPX
(PRINT (STKNAME (STKNTH 2
(STKPOS 'EVAL)))) COND, the 7th block from top

(PRINT (STKNAME (STKNTH 2 'COND))) FUM
(PRINT (STRPOS 'COND -1 'F00)))) COND, the 5th block from top
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27.8

27.10

27.11

Stack functions for accessing information in a function block.

stknargs[pos] Value is the number of arguments bound by the
function at position pos.

stkargln,pos] Value is the slot for the nth argument of the
function at position pos.

When the stack position is a variable-value pair, as from stkarg,
we can get the variable name by making cdr of the position and

the value by car. By rplacd and rplaca the variable name and value
can be changed.

Example. We want a function mkass[pos], which returns an associa-
tion list of the variables and values bound in the function block
at position pos. With the stack as in 27.7.
(MKASS (STKPOS 'FOO 1)) returns {(N . 2) (M . 5))
(DE MKASS (POS)
(PROG (NARGS AL TEMP)
(SETQ NARGS (STKNARGS POS))
Lop
(COND ((ZEROP NARGS) (RETURN AL)))
(SETQ TEMP (STKARG NARGS PO0S))
(SETQ AL (CONS (CONS (CDR TEMP) (CAR TEMP)) AL))
(SETQ NARGS (SUBT NARGS))
(Go LOP)))

When we enter a break (in interactive mode) we can see the stack
by the commands BT, BTV, BT: and BTV/. There is also a function
baktrace, which can be used for printing the information on the
stack.

BT prints the functions.

BTV prints functions, variables and values.

BTV prints as BTV and forms under evaluation.

BTV/ prints everything on the stack.

There is a possibility to work with stack -positions in break with
the @-command. By doing

@ Fo0
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we set lastpos to the function block for the last call to foo.
(the first function block for foo from the top of the stack). Some
break commands are effected by lastpos and among them are ?=, BT,
BTV, etc. By doing

@3
we move lastpos three function blocks down the stack and by

@-3
we move lastpos three blocks up.

When the interpreter looks up a value of a variable, the parameter
stack is search from the top after the first occurrence of a slot,
containing the variable name. Following two functions can force
the search to start from an arbitrary position in the stack.

stkscanlvar,pos] Start the search at position pos, returns
a pointer to the slot, if var is stored on
the stack, otherwise it returns var.

stkeval[pos,form] Form is evaluated in such a way that all
variables are searched as stkscan.

Example. We want a function mapev[1], where 1 is a list of forms.
Mapev shall evaluate every form and return a list of the computed
values.

(SETQ L '(A B C D))

(MAPEV ' ((CONS 'Q (CDR L)) (CAR L))) = ({@ B C D) A)

Let us first see what happens if we define mapev as

(DE MAPEV (L)
(COND ((NULL L) NIL)
(T (CONS (EVAL (CAR L)) (MAPEV (CDR L))))))

If we use the above example the result will be the erroneous
((@ (cAR L)) (cAR L))

Why? When we called mapev, the variable 1 in the forms was
expected to have its global value, but mapev has 1 as lambda-
variable and has therefore been bound on the parameter stack.
What we wanted to do was to evaluate every form in the environ-
ment before mapev was called the first time. This can be done
if we instead define mapev as
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(DE MAPEV (L)
(COND ((NULL L) NIL)
(T (CONS (STKEVAL (STKNTH -1 (STKPOS 'MAPEV 1))
(CAR L))
(MAPEV (CDR L))))))

Observe that the stack position is to the function block before
the first call to mapev - mapev is called recursively - We don't
allow the forms to contain new calls to mapev or other stack
functions which can change the stack.

27.13 There are two functions by which we can clear the stack and
return directly to a function, which has been entered but not
yet exited.

retfrom[pos,val] will clear the stack down to the function
block at position pos, and return from that
function with the value val.

reteval [pos,evall works as retfrom, but will evaluate form
after the return to the function block at
pos and return that value.

Example. Suppose we have a function, which normally goes very
deep into the recursion, finds a value and returns the same
value in every step up to the top level. Instead of doing the
normal returns we can use retfrom. A simple example of such
function is to find the last element on a list.

(DE LASTLONG (L)

(COND ((NULL (CDR L)) (RETFROM (STKPOS 'LASTLONG 1) (CAR L}j)
(T (LASTLONG (CDR L)))))

Exercises

1. Write a function ppdump[pos1,pos2], which prints variables
names and values from the parameter stack starting at posi
and down to pos2. A position can be given as a stack position
to a function block or as a function name (same meaning as
with stkpos). If posl is NIL start from the top, if pos2 is
NIL end at bottom and if pos2 is a number n, end at the nth
function block below post.

2. Define the function reset, described in 25.7.
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Funarg

In the previous section (27,12) we illustrated by an exampleof what
can happen when unexpected collisions of variable names occurred.
When we discussed map-functions in Section 18 we said that a
functional expression shall be ''quoted" by function instead of
quote. This was also to prevent variable collisions. The problem
is that in LISP we are allowed to create expressions which later
will be evaluated in another environment. |f these expressions
contain free variables, we sometimes want these free variables to
have the value they had at creation time of the expression and
sometimes the value they had at evaluation time. By funarg this
is solved for functional expressions and in this section is des-
cribed by some simple examples when the funarg feature is useful.

Let us first examine function again

function[fn,freevars] If freevars is NIL then it is identical
to quote, but helps the compiler to show
that this is a functional argument. When
freevars is # NIL it is a list of variable
presumably free in fn. If freevars is an
atom it is evaluated and the result is
taken as the list of free variables. A

funarg expression will then be created.
eg Suppose foo is defined as
(DE FOO (X) (CONS X (CONS Y Z)))

in which y and z are free variables. If we perform the
following computations

(SETQ Y 10)

(SETQ Z 'A)

(SETQ FN (FUNCTION FOO (Y Z)))
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we will create a funarg-expression

(FUNARG FOO funarg-block-pointer)

101Y
A

J

To simplify the notation we can write

(FUNARG FOO [(Y . 10) (z . A1) !

The funarg-block works as a mini-stack, on which M and z are
bound to their current values. If we reset y and z

(SETQ Y 20)
(SETQ Z 'B)
and then evaluate
(APPLY:t FN T)
we get the value
(T 10 . A)
When the funarg-expression was applied its mini-stack was put
on top of the parameter stack and when the interpreter searched

for the values of y and z they were now bound on the stack and
their global values were never reached.

28.3 Funarg is not a function itself, but is recognized by the interpreter
in the same way as lambda or nlambda, but only in the context )
when the funarg-expression is applied to some arguments. In other
words, the expression

(FUNARG fn-expr funarg-block-pointer)
is used exactly like a function.
28.4 Example where variable collisions can occur. In Section 18,
example 1 we defined a function calc, so we could write
(CALC (FUNCTION PLUS) 10 20)

to get value 30, or

L In LISP 1.5 the funarg is usually implemented by an association

list.
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(CALC (FUNCTION (LAMBDA (X Y) (COND ((GREATERP X Y) X) (T Y))))

10 15)

to get the maximum value of 10 and 15.

In the solutions calc is defined as
(LAMBDA (FN A B) (APPLYX FN A B))
Let us see what happens if we define a function foo as

(LAMBDA (NR)
(PROG ((A 5) VAL)

<SETQ VAL (CALC <FUNCTION (LAMBDA (X Y) (IPLUS X Y A>
10 NR>

))

In the function expression we use the variable a as a free variable
and we also use a as a lambda-variable in calc, this will cause
some troubles. In the evaluation of the applyx® in calc we will
evaluate the function expression and look for the value of a. We
will now find the value of the lambda-variable in calc, when we
meant the prog-variable in foo. This problem can be solved by at
least three different solutions

- change the name of the prog-variable a in foo.

- change the name of the lambda-variable a in calc. A good
rule is to have funny names in functions with functional
arguments, so we could better call them calc®*op, calc®a

and calc:tb.

- let the second argument to function be a list of the free
variable a used in the expression, so we get

<SETQ VAL (CALC <FUNCTION (LAMBDA (X Y) (IPLUS X Y A)) {A)>
10 NR>

Example by a random number generator. Suppose we have a function
randoml1im], which returns a random number in the intervall1,1im].
The free variable randnr contains a number, which random uses for
making calculations on to produce the next random number. Random

can be defined as

(DE RANDOM (LIM)
(SETQ RANDNR (ABS (ITIMES RANDNR RANDNR)))
(ADD1 (IDIFFERENCE RANDNR (ITIMES (IQUOTIENT RANDNR LIM) LIM>
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randnr is initialized to an appropriate number, ie 12345. If we now
want to have two instances of this random number generator in dif-
ferent states and run them independently we can use the funarg feature.
To get two instances we can do

(SETQ RANDT (FUNCTION RANDOM (RANDNR)))
(SETQ RAND2 (FUNCTION RANDOM (RANDNR)))

A funarg-expression is now created for each of the instances,
randnr is bound to its initial value and looks like

(FUNARG RANDOM [ (RANDNR . 12345)])
To use an instance of the generator we do
(APPLY: RANDT 50) or (APPLY: RAND2 200)

Changes of the free variable randnr in one instance will not
effect the other instance neither the global variable randnr.

Actually there is a random number generator, the function rand.
It contains also a global variable, ranstate.

1
Exercises
1. An artificial example of funarg found in the literature.

(DE F (X) (COND ((ZEROP A) X)
(T (MINUS X))))
(DE G (X) (PROG (A)
(SETQ A 2)
(RETURN (FUNCTION F (A)))))

(PROG (A B H)
(SETQ A 0)
(SETQ H (G 2))
(SETQ B (APPLY:t H 3))
(RETURN B))

What value will be returned from the prog?

| f we change the call to function in g to
(FUNCTION F)

what value will then be returned?

2. By funarg we can implement simple processes. The random number
generator in 28.5 can be seen as such a process.

A process can vaguely be defined as a function, which can

1 These examples are to be found in Sandewall (ref.5).
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appear in different instances, where every instance has its own
values on some variables. The variable randnr was such a
variable. Suppose we want to define a function dp (define
process) in analogy with de and df, so that

(DP RANDOMPROCESS (RANDNR) (LIM) +4tt+++)

defines randomprocess to be process generator. Evaluating the
expression

(RANDOMPROCESS 123456)

will return as value a process, where the variable randnr is
initialized to 123456 and where 1im is a parameter given each
time the process is called and where ++++++ is the form then
to evaluate. Define the function dp.

Define then a process spit, in such a way that if
(SPIT '*(A B C D E))

is evaluated a process is generated which on its first call
returns A, then B etc. until E and then NIL on all successive
calls.

Define also a process alternate, which has two processes as
local variables and which on the first call calls the first
process, next call the second process and then the first again etc.

(ALTERNATE (SPIT '(AB C D E F))
(sPIT '(1 23456 7))

will generate a process, which on successive calls will return

A, 1, 8B,2,C, 3, etc
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29. Compiler and assembler

29.1 Although LISP is an interpretative language it needs a compiler
to produce more efficient code (machine code). As a beginner in
LISP you need not worry about the compiler until you have reached
the stage of having a large file of well-tested functions and
you want your functions in '"production'. Some of the utility
packages, such as break and advise can be used on compiled code,
but you can not of course use the editor on such functions. The
compiler can be used to compile single functions or a whole file
produced by makefile. The assembler can be used by the user if
he wants to specify a sequence of machine instructions in the LISP
code, otherwise it is used by the compiler in its last pass.

Most of the INTERLISP system is coded in LISP, including the
compiler. This code has then been compiled by a bootstrap process.
First the LISP-coded-compiler was compiled by itself and then the
compiled version of the compiler was used to compile the rest of
the system.

29.2 The compiler will (in interactive mode) ask some questions concer-
ning the compilation, and want to know the following:

I. Want to see macro- or machine-code? Usually not of interest to
the user.

Il. Want to redefine the functions you are compiling? Can be of in-
terest only to output the code to a file, and still working on
the non-compiled version of the functions.

I1l.Want to save the old function definitions on the property-list
of the function name? Can be of interest if you still want to
be able to edit the functions just being compiled.

IV. Where to save the compiled code? Important.

There are five global variables (lapflg, Istfil, strf, saveflg and
Icfil), which will be set depending on the answers.
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Question and proper answers are:
1. LISTING?
Answers:

1,2 or YES prints code (for details see LISP manual)

NO no code is printed.

There are other possible answers to this question and each of
which specifies a complete compilation.

S Same as last compilation. The global variables are not changed.

F Compiles to a file. No redefining of functions (11) and no
definitions are saved (I11).

SF Store the new definitions. Redefining of functions are done
(11) and old function definitions are saved (111).

11.  (STORE AND REDEFINE?)
Answers: YES or NO
111. (SAVE EXPRS?)
Answers: YES or NO
IV. (OUTPUT FILE)
Answer: A file name. If NIL is given no output will be done.

In a batch environment the global variables can be set as answers to
the questions.

lapflg and 1stfil used by |. They are not initialized to any list code.

strf is set to T if YES on question II, otherwise NIL.
svflg is set to T if YES on question Ill, otherwise NIL.
Jcfil is set to the file name given on question IV.
29.3 The normal use of the compiler is to answer the first question by
either F or ST.
Example.
Functions foo and fie are defined and we want them to be compiled,

and want to replace the old definitions in core by their compiled
version respectively.
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eg ~-(COMPILE '(FAK FACT))
LISTING?
ST
OUTPUT FILE:
NIL
(FAX COMPILING)

.
.
.

(FAK REDEFINED)
(FACT COMPILING)

(FACT REDEFINED)
(FAK FACT)

In batch mode we do

eg (SETQ LAPFLG 'ST)
(SETQ LCFIL NIL)
(COMPILE ' (FAK FACT))

29.4 A more convenient way to use the compiler is to let a whole file
(a file created by makefile) be compiled at the same time. This is
done by the two functions tcompl and recompile.

Compiler functions

compile[x] compiles each function on the list x.
tcompl[files] files is a list of symbolic files, tcompl

compiles the functions in every such file
and creates a compiled version of the file.
The name convention for the compiled file

is to prefix the symbolic file name by an c.

eg (TCOMPL !(FOO FIE))
creates the files CF00 and CFIE.

recompile{pfile,cfile,fns,prettyfns,prettyvars]

By recompile the user can update a compiled
file without recompiling all functions on

the file, pfile is the name of the symbolic
file to be compiled, cfile the name of the
compiled file from which definitions may be
copied, fns is a list of functions in pfile
to recompile or if fns is T all functions on
pfile, which now are defined as expr's (which
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presumably have been edited and therefore
changed). If prettyfns and prettyvars (the
variables used by makefile) are given the
pfile is not loaded and functions defined
by these variables are taken from the core
directly.

tcompl and recompile will ask the standard compiler questions, except
for the output file.

The following examples will demonstrate some different uses of these
functions.

(SETQ FOOFNS '(FOOA FOOB FOOC))

(MAKEF ILE 'F00) Symbolic file foo created.

(TCOMPL ' (F00)) Compiled file cfoo created.
w..... eventually new session ......

(LOAD 'CF00) Load compiled file cfoo.

(LOAD 'FOO 'PROP) Load éymbolic file foo, but

store function definition on
the property-list instead of
redefining the function.

(EDITF FOOB) Edit function foob, the editor
finds the symbolic version and
will unsave it after editing.

... edit commands ...
0K
(MAKEFILE 'FO00) New symbolic file foo created.

(RECOMPILE 'FOO0 'CFO0 '(FOOB)) New compiled file cfoo created,
where foob is recompiled and
fooa and fooc are copied from
old cfoo.

Instead of giving the list of functions to redefine explicitly we
can give T as in

(RECOMPILE 'FOO 'CFO0 T)
and all functions that are now defined as expr's are redefined.
If the symbolic file, pfile, is in core it is more efficient to give
foofns and foovars. pfile does not need to be loaded and the contents

of the file is given by these two variables. In the above example we
could instead do

(RECOMPILE 'FOO 'CFOO T 'FOOFNS 'FOOVARS)
or simply

(RECOMPILE 'F00)



148

29.5 The compiler must know to what type of function belongs. First

it looks in the function cell to see if it is defined. If it
was not, we must supply the information by including the func-
tion name of two different lists

nlama (for nlambda gﬁoms) noeval-nospread functions

nlaml  (for nlambda lists) noeval-spread functions
If a function is not on these lists it is assumed to be an eval
function. The global variable alams is set to the functions

assumed by the compiler to be of eval type and this list can be
examined after the compilation.

The user can also effect the compilation by introducing compiler
macros. One type of macros is open macros, where the call to a
function is replaced by the code in the macro definition. This

can save compute time because we save function calls, but the code
will normally be larger.

Example. Suppose foo is defined as
(LAMBDA (L) (FIE (CONST L)))
and consl is defined as
(LAMBDA (X) (CONS X X))

If we compile foo a call to consl will appear. An open

macro for consl can be defined by
(PUT 'CONST 'MACRO ' (LAMBDA (X) (CONS X X)))

and foo is then compiled as if it was defined as
(LAMBDA (L) (F1E ((LAMBDA (X) (CONS X X)) L))
Another type of compiler macro is substitution macros, where a

form is replaced by a macro definition in which, lambda-variables
are substituted against corresponding arguments in the form.

Example. |[|f we define a substitution macro for consl by
(PUT 'CONST 'MACRO '((X) (CONS X X)))
foo is compiled as if it was defined as
(LAMBDA (L) (FIE (CONS L L)))

The third type of macros is computed macros, where the form will
be replaced by the expression we get as value when the macro de-
finition is evaluated.

More details about these different types of macros can be found in
the LISP manual.



30.

30.2

149

Miscellaneous

datel[] Returns the date as a string on the form
""dd-mm-yy hh:mm:ss''

clock[n] When n=2 it gives the number of milli seconds of
compute (CPU) time since this INTERLISP run was
started up. To measure the CPU time for a computation,
do clock[2] before and after it and take the difference.

tsopl] Gives T as value if we are in interactive mode and
NIL in batch mode.

reclaim[] Initiates a garbage collection.

Normally the user does not need to worry about garbage collection.
It is initiated automatically when the storage assigned for a
data type has been exhausted.

mkn[p] Makes an integer of the pointer p.

unbox[n] Makes a pointer of the integer n.

eg (ADD1 (MKN 'KALLE))

takes the address to atom KALLE, makes a LISP integer of
it and adds one to it.



A more useful example is the following. Suppose we want to print
all atoms in the system. The atoms are allocated sequential and
each atom occupies 16 bytes. The first atom is NIL. We can now
define a function printatoms as
(DE PRINTATOMS NIL
(PROG (ADR ENDADR)
(2 MAKE A NUMBER OF THE ADDRESS TO THE FIRST ATOM NIL)
(SETQ ADR (MKN NIL))
(st TERMINATE THE PRINTING OF THE ATOMS WHEN THE ATOM
PRINTATOMS 1S REACHED, SO MAKE A NUMBER OF ITS
ADDRESS)
(SETQ ENDADR (MKN 'PRINTATOMS))
LoopP
(= PRINT THE ATOM, CORRESPONDING TO ADR)
(PRINT (UNBOX ADR))
(COND ((EQP ADR ENDADR) (RETURN)))
(xx GET ADDRESS (AS NUMBER) TO NEXT ATOM)
(SETQ ADR (IPLUS ADR 16))
(Go LooP)))

30.4 Sorting. There exists a sort function sort, which sort a list of
items. The order can be specified by giving a function to sort.
A default function alphorder exist. A function merge can merge
two sorted lists.

sort[data,comparefn] Sorts the elements on data. |f comparefn
is NIL alphorder is used.

mergela,b,comparefn] Merges a the sorted lists a and b. Comparefn
as sort.

alphorder[a,b] Returns T if a comes before b, otherwise NIL.



151

30.5 Control characters!

At any time the user may (temporarily) interrupt the computa-
tion by pressing the attention key whereupon the system will
type ?= to denote that it is ready to receive a so-called
attention-command. If the command then entered by the user is
for instance the letter H followed by a carriage return we
call this sequence of interactions an "attention-H'".

The following attention commands exist:

H  (interrupt (''Hold it") interrupt at next function call.
Interlisp goes into a break.

B (break) computation is stopped, stack backed to last func-
tion call, and a break occurs.

E (error) an immediate errorb is generated.

D (reset), ("Dam'n it'")) control returns immediately to top
level.

0 (output) clear output buffer and continue.

T (time) prints CPU time in ms spent and continues.

Pnumber (Print) Sets printlevel to number. If number is followed
by any non-numeric character (ie P10.) printlevel will be
changed permanently, otherwise only the printlevel for the

current printout will be changed.

carriage return without any previous command acts as a no-op. Any
other attention command will cause INTERLISP to type ??7?? and continue.

! This part is reproduced from the INTERLISP/360-370 Reference
Manual.
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Solutions

Section 1
a. literal atom

b. Tliteral atom - in other LISP systems an atom must start with a
letter, but in INTERLISP it can begin with any character.

c. floating point number.

d. not correct, to read the atom ( you must precede it with %.
e.. list, it is identical to ((NIL))

f. not correct.

g. literal atom, internally the atom ().

h. list.

i. integer.

j. literal atom, the similarly-written floating-point number is

12.E+34.
k. list.
1. string.

m. not correct.

n. not correct, see O.

o. string, consisting of the characters ', blank and '.

p. list, in other LISP systems a , (comma) was treated as an element-

separator in a list and was then ignored, but in INTERLISP the |,
is treated as an ordinary literal atom.

q. literal atom.
r. list, with two strings as elements.
s. list.

(Solutions, Section 1)



(2)

list, will be printed as (A B (C D) ()

not correct, the brackets match each other, so the right parenthesis
does not match anything.

not correct, the right parenthesis matches the left bracket, so
the right bracket does not match anything.

not correct, one right parenthesis is missing.

list, the end of the list is a dotted-pair, more about this follows
in the next section.

-

list, it has one element A.B

(Solutions, Section 1)
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Section 2

ta. (A B (C (D) E))
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(Solutions, Section 2)



(4)

1h.

ey
‘ﬁ

>t
—

o <1

. (A(cD.E)(G.NIL) .

(¢

(H 1>

—L LA

] J

|
RE;REINY

(Solutions, Section 2)
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1i. (((A . B) . ¢C) . NIL)

| s

A

2. The following expressions will be printed in a different way than
they were read:

Tc. (A ((BCD)EF)G)
le. (A (CD.E)(G)HI
th. (A BC)

1i. (((A.B) .C))

(Solutions, Section 2)



Section 3

1. atom[caddr[(A B (X Y) C)1] the third element is the list (X Y) and
the value is NIL.

2. equallcadar[((A (Q Q) (A A))1, (Q Q)] the value is T.

3. cons[ADAM, cons[ (BERTIL), cons[((CAESAR)), NILII] the list
constructed is (ADAM (BERTIL) ((CAESAR)))

4, a. D
b. NIL
c. (BQOQ
d. ((==). =), it will be a dotted-pair at the end of the list.
e. NIL, for car[NIL] is always NIL, also cdr[NIL] is NIL.
f. T, see e.
g. B
h. (Cc . D).
i.o(2 - )

5. a. yes, it is true

b. vyes, it is true
c. no, it is not true
conslcdr[1], cdadr[11] is ((((B C) D)) D)

(Solutions, Section 3)
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Section 5

1. We give every node n two properties, PRED and SUCC. Corresponding
value is a list of nodes, which are predecessors resp successors
to the node n.

The graph can then be stored with
put[A,succ, (B C)]
put[B,succ, (B D)1
put[B,PRED, (A B)]
put[c,succ, (D) ]
put[C,PRED, (A D)1
put[D,succ, (c)]
put[D,PRED, (B C)]

The questions can be answered by

a. getp[B,succ]
b. getp[C,PRED]
c. memb[C,getp[A,SUCC]]
d. if memb[C,getp[A,SUCCI] then
if memb[C,getp[D,PRED]] then T else NIL

else NIL

or alternatively
if memb[C,getp[A,SUCC]] then memb[C,getp[D,PRED]]
The first function will return T or NIL, but the other

alternative will return a true value or NIL. Section 3.6
describes the value returned by memb.

e. if memb[D,getp[C,SUCCI] then memb[C,getp[D,SUCC]]
f. if memb[B,getp[B,SUCC]] then memb[B,getp[B,PRED]]

(Solutions, Section 5)
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(cbR ' (A B C))
(EQUAL 'A (CAR '((A))))
(ATOM 12.34EH)
(EQUAL L (CONS (CAR L) (CDR L)))
(MEMB 'C (CAADR L))
f. (PUT (GETP 'KARL 'MARRIED)
'CHILDREN
(CONS 'EVA (GETP 'KARL 'CHILDREN>
g. (COND ((NULL L) NIL)
(T (COR L)))
h. (COND ((EQ (GETP 'ANNE 'MARRIED) 'KARL) T)
(EQ (GETP *KARL 'MARRIED) 'ANNE>
(GETP 'JOHN 'FATHER-FATHER))
(GETP (GETP 'JOHN 'FATHER) 'FATHER)))

[ ]

a o

o

(T
i. (conp (
(

Remember that the '-sign is identical to the gquote function, so
'A is identical to (QUOTE A).

(Solutions, Section 6)
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(DE CD5R (L) (CADDR (CDDR L)))

| f l has less than 5 elements cd5r will return NIL as value,
cdrINIL] = car[NIL] = NIL

(DE MARRIEDQ (X Y)
(COND ((EQ X (GETP Y 'MARRIED)) 'YES)
((EQ Y (GETP X 'MARRIED)) 'YES)
(T 'NO)))
(DE SON (X Y) (PUT X 'FATHER Y)

(ADDPROP Y 'SON X)
'0K)

A new property son is introduced.
(DE FATHEROF (X Y)
(COND ((EQ X (GETP Y 'FATHER)) 'YES)
((MEMB Y (GETP X 'SON)) 'YES)
(T 'NO)))

When the assignments are done the following values exist,

R has value A R obtained a new value in the assignment
(SET L (CAR R))

L has value R

X has value R

A has value (Q R'S) A got its value in (SET R '(Q R S))

Q has value (R S) Q got its value in the last assignment.

The following expressions are true.

a,c,d,f,g,i,j

Remember that an expression is true if its value # NIL.

(Solutions, Section 7)
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Section 9

(DE EVEN (L) (COND ((NULL L) T)
((NULL (CDR L)) NIL)
(T (EVEN (CDDR L)))))

(DE APPEND2 (X Y) (COND ((NULL X) Y)
(T (APPEND2 (CDR X) (CONS (CAR X) Y)))))

There is a system function append, which does the same as append2,
but which actually is more general. It takes an arbitrary number
of lists and concatenates them.

eg append[(AB C), (QWE), (X)] =(ABCQWEX)

(DE =INTERSECTION (X Y)
(COND ((NULL X) NIL)
((MEMB (CAR X) Y) (CONS (CAR X) (*INTERSECTION (CDR X) Y)))
(T (*INTERSECTION (CDR X) Y))))

(DE REVERSE (L)
(COND ((NULL L) NIL)
(T (APPEND2 (:REVERSE (CDR L)) (CONS (CAR L) NIL)))))

An alternative solution is

(DE =REVERSE (L R)
(COND ((NULL L) R)
(T (*REVERSE (CDR L) (CONS (CAR L) R)))))
We have here introduced an extra argument to xreverse. The reversed

list will be built on that list. R must be initialized to NIL. To
use ireverse we write

(:*REVERSE '(A B C) NIL)
but this is identical to
(XREVERSE '(A B C))
Arguments not given at call will be initialized to NIL automati-
cally. See further in Section 14,
(DE ®SUBST (X Y L)
(COND ((NULL L) NIL)
((EQUAL Y (CAR L)) (CONS X (xSUBST X Y (CDR L))))
(T (CONS (CAR L) (xSUBST X Y (CDR L))))))

(Solutions, Section 9)



(11)

Suppose 1 can contain dotted-pairs. The solution is not sufficient

then. The following solution will take care of this.
(DE =SUBST (X Y L)
(CoND ((EQ L Y) X)
((NLISTP L) L)
((EQUAL Y (CAR L)) (CONS X (:SUBST X Y (CDR L))))
(T (CONS (CAR L) (:SUBST X Y (CDR L))))))

%subst[NEW, OLD, (A OLD B . OLD) = (A NEW B . NEW)]

(DE TOTREVERSE (L)
(COND ((NLISTP L) L)
(T (APPEND2 (TOTREVERSE (CDR L)) (CONS (TOTREVERSE (CAR L)
NIL))))))

(DE TOTSUBST (X Y L)
(COND ((NLISTP L) NIL)
((EQUAL (CAR L) V)
(CONS X (TOTSUBST X Y (CDR L))))
(T (CONS (TOTSUBST X Y (CAR L))
(TOTSUBST X Y (CDR L>

(DE *SUBLIS (AL L)
(COND ((NULL AL) L)
(T (:tSUBLIS (CDR AL) (TOTSUBST (CDAR AL) (CAAR AL) L)))))

An alternative solution is

(DE :SUBLIS (AL L)
(COND ((NLISTP L) (COND ((SETQ TEMP (:ASSOC L AL)) (CDR TEMP))
(Tu)
(T (CONS (::SUBLIS AL (CAR L))
(#SUBLIS AL (CDR L))))))

with *assoc defined as

(DE ®ASSOC (X AL) (COND ((NULL AL) NIL)
((EQ X (CAAR AL)) (CAR AL))
(T (::ASSOC X (CDR AL)))))

(Solutions, Section 9)
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®*assoc searches an association list for the first pair, whose car
is equal to x, and returns that pair.

eg xassoc[Q, ((A . B) (Q.0Q (@.W)] =(Q. Q)

TEMP is introduced for temporary hold of the value returned from
xassoc. |f the value was true we return cdr of that pair.

The two solutions have different strategies. The first takes one
pair each time and scans through the list and substitutes. The
list will be scanned as many times as there are pairs.

The second solution takes one element at a time and scans through
the pairs for checking if that element shall be substituted and

if it substitutes. The list of pairs will be scanned as many times
as there are elements on 1. So we can choose strategy depending on
the length of the lists.

9. (DE PAIR (X Y)
(COND ((NULL X) NIL)
(T (CONS (CONS (CAR X) (CAR Y))
(PAIR (CDR X) (CDR Y))))))

We test only if x is empty, y must then be empty depending on the
assumption.

10. (DE FLATTEN (L)
(COND ((NLISTP L) L)
((ATOM (CAR L)) (CONS (CAR L) (FLATTEN (CDR L))))
(T (APPEND2 (FLATTEN (CAR L)) (FLATTEN (CDR L))))
append2 is defined in Exercise 2.

))

An alternative is
(DE FLATTEN (X V)
(COND ((NULL X) YY)
((NLISTP X) (CONS X Y))
(T (FLATTEN (CAR X) (FLATTEN (CDR X) Y)))))
This definition is harder to understand. Run it on a computer and
trace it. The '"flattened'' list will be built up in y backwards. Of

the above function INTERLISP already contains intersection, reverse,
subst, sublis and assoc.

11. Start with order.
(DE ORDER (X Y) (MEMB Y (MEMB X PRECEDENCE)))

The binary tree can be constructed of nodes where every node is a
list of three elements

(data-element pointer-to-left-subtree pointer-to-right-subtree)

(Solutions, Section 9)
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The tree in the example should then be represented as

(D (B (A NIL NIL) (C NIL NIL))

(E NIL (3 NIL NIL)))

For convenience and readability we introduce some small help
functions.

(DE DATA (NODE) (CAR NODE))

(DE LEFT (NODE) (CADR NODE))

(DE RIGHT (NODE) (CADDR NODE))

(DE MAKENODE (DATA LEFTTREE RIGHTTREE)

(CONS DATA (CONS LEFTTREE (CONS RIGHTTREE NIL))))

The next function to define is buildtree

(DE BUILDTREE ( L TREE)
(COND ((NULL L) TREE)
(T (BUILDTREE (CDR TREE)
(INSERTNODE (MAKENODE (CAR L) NIL NIL)

TREE)))))

tree is here the argument, which initialized to NIL and which
is used for the generated tree.

Insertnode takes a node and puts it in the tree.

(DE INSERTNODE (NODE TREE)
(COND ((NULL TREE) NODE)
((ORDER (DATA NODE) (DATA TREE))
(MAKENODE (DATA TREE)
(INSERTNODE NODE (LEFT TREE))
(RIGHT TREE)))
(T (MAKENODE (DATA TREE)
(LEFT TREE)
(INSERTNODE NODE (RIGHT TREE))
)
.With the new node we will follow its path through the tree,
actually we make new nodes for the nodes we are passing. When

we have come to a terminal node the new node will be inserted
there.

(Solutions, Section 9)
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These functions will now create the tree and walktree willl
traverse it and make a list of the data elements in the nodes.
We will traverse the tree in postorder traversal. This means
that we are going to the left subtree first, then collect the
node and at last to the right subtree.

(DE WALKTREE (TREE)
(COND ((NULL TREE) NIL)
(T (APPEND2 (WALKTREE (LEFT TREE))

(CONS (DATA TREE) (WALKTREE (RIGHT TREE)))
1))

(DE TREESORT (L) (WALKTREE (BUILDTREE L)))

These functions clearly illustrate the recursive approach of
describing algorithms. In a non-recursive language these functions
would be much longer and more difficult to read. This way of
splitting the functions is very common in LISP.

Instead of introducing the small help functions, by defining them
as function call to its equivalent system function, we can use

a function movd, which moves a function definition to another
function name. The functions will be absolutely identical and it
costs no more to have done it. We have inexpensively introduced

a synonym.

movd[ CAR, GETDATA]
movd[CADR,GETLEFT]
movd[CADDR,GETRIGHT]

movd[L1ST,MAKENODE] this is a function list, for making
conses like these. See next section.

Observe that it is only these functions which really know the
structure of a node. So, if we want to change a node to

ie (data-element left subtree . right subtree)

which is more compact, takes only two list cells against three
list cells with the other representation. We need only to
redefine getright and makenode.

The functions described here are rather list cell consuming. There

are other functions, which we could have used for saving list cells.
See further in Section 21.

(Solutions, Section 9)



(15)

The function merge can be defined as
(DE MERGE (X Y)
(COND ((NULL X) Y)
((NULL Y) X)
((ORDER (CAR X) (CAR Y)) (CONS (CAR X) (MERGE (CDR X) Y)))
(T (CONS (CAR Y) (MERGE X (CDR Y))))))

(Solutions, Section 9)
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Section 11

(DE POINTLIST (HAND)
(SELECTQ (CDAR HAND)

(NIL NIL)

(ACE (CONS (SELECTQ (CAAR HAND)
(SPADE 10)
(HEART 9)
(DIAMOND 8)
7)

(POINTLIST (CDR HAND))))
(KING (CONS 5 (POINTLIST (CDR HAND))))
((QUEEN JACK) (CONS 3 (POINTLIST (CDR HAND))))
((7 3) (CONS 1 (POINTLIST (CDR HAND))))
(POINTLIST (CDR HAND))))

(DE PROG2 (X Y) Y)

(DE =MEMBER (X L) (COND ((NULL L) NIL)
((EQUAL X (CAR L)) L)
(T (<MEMBER X (CDR L)))))

(DE %LAST (L) (COND ((NULL L) NIL)
((NULL (CDR L)) L)
(T (%LAST (CDR L)))))

(DE ::ADDPROP (ATM PROP NEW FLG TEMPVAL)
(SETQ TEMPVAL (GETP ATM PROP))
(PUT ATM PROP (SELECTQ FLG
(T (CONS NEW TEMPVAL))
(REVERSE (CONS NEW (REVERSE TEMPVAL)))))

There are more efficient ways of adding an element to the end of
a list than making reverse twice. The function nconcl makes this,
see further Section 2T.

(Solutions, Section 11)
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The variable tempval is introduced for holding a temporary value.
Its appearance in the variable list makes the variable to a local
variable to this function. This is more comprehensibly discussed
in Section 15.

(DE %DEFLIST (ATM-VAL PROP)
(COND ((NULL ATM-VAL) NIL)
(T (PUT (CAAR ATM-VAL) PROP (CADAR ATM-VAL))
(CONS (CAAR ATM-VAL) (DEFLIST (CDR ATM-VAL) PROP)))))

a. (DE =GET (FREEPROP PROP) (CADR (MEMB PROP FREEPROP)))

b. (DE PUTF (FREEPROP PROP VAL)
(COND ((NULL FREEPROP) (LIST PROP VAL))
((EQ (CAR FREEPROP) PROP) (CONS PROP (CONS VAL FREEPROP)))
(T (CONS (CAR FREEPROP)
(CONS (CADR FREEPROP)
(PUTF (CDDR FREEPROP) PROP VAL))))))

(DE =SQCDR (L) (PROG1 (CAR L) (SETQ L (CDR L))))

a. (DE =ASSOC (A AL)
(COND ((NULL AL) NIL)
((EQ A (CAAR AL)) (CAR AL))
(T (*ASSOC A (CDR AL)))))

b. (DE CHASSOC (AL A NEW)
(COND ((NULL AL) NIL)
((EQ A (CAAR AL)) (CONS (CONS A NEW) (CDR AL)))
(T (CONS (CAR AL) (CHASSOC (CDR AL) A NEW)))))

c. (DE REPASSOC (AL A)
(COND ((NULL AL) NIL)
((EQ A (CAAR AL)) (REPASSOC (CDR AL) A))
(T (CONS (CAR AL) (REPASSOC (CDR AL) A)))))

(Solutions, Section 11)



Section 12

1. (DE =LENGTH (L) (COND ((NULL L) 0)
(T (ADD1 (:LENGTH (CDR L))))))

2. (DE FAK (N) (COND ((IZEROP N) 1)

(T (ITIMES N (FAK (SUB1 N))))))

3. (DE POINTS (L) (COND ((NULL L) 0)
(T (1PLUS (CAR L) (POINTS (€DR L))))))

4. (DE DIFF (EXPR X)

(COND ((EQ EXPR X) 1)

((ATOM EXPR) 0)

(T (SELECTQ (CAR EXPR)
(PLUS (DERPLUS EXPR X))
(DIFFERENCE (DERDIFF EXPR X))
(TIMES (DERTIMES EXPR X))
(QUOTIENT (DERQUOTIENT EXPR X))
(MINUS (DERMINUS EXPR X))
(EXPT (DEREXPT EXPR X))
(SIN (DERSIN EXPR X))
(COS (DERCOS EXPR X))
EXPR))))

(DE DERPLUS (EXPR X) (CONS 'PLUS (MAPPLUS (CDR EXPR) X)))

(DE MAPPLUS (L X) (COND ((NULL L) NIL)
(T (CONS (DIFF (CAR L) X) (MAPPLUS (CDR L)
X))
)

(DE DERDIFF (EXPR X) (LIST 'DIFFERENCE
(DIFF (CADR EXPR) X)
(DIFF (CADDR EXPR) X)))

(DE DERTIMES (EXPR X)
(LIST *PLUS
(LIST 'TIMES (CADR EXPR) (DIFF (CADDR EXPR) X)
(LIST 'TIMES (CADDR EXPR) (DIFF (CADR EXPR) X)))

(Solutions, Section 12)
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(DE DERQUOTIENT (EXPR X)
(LIST 'QUOTIENT
(LIST 'DIFFERENCE
(LIST 'TIMES (CADDR EXPR) (DIFF (CADR EXPR) X))
(LIST 'TIMES (CADR EXPR) (DIFF (CADDR EXPR) X))
(LIST YEXPT (CADR EXPR) 2)))

)

(DE DERMINUS (EXPR X) (LIST 'MINUS (DIFF (CADR EXPR X))))

(DE DEREXPT (EXPR X)
(LIST 'TIMES
(CADDR EXPR)
(LIST '"TIMES
(DIFF (CADR EXPR) X)
(LIST "EXPT (CADR EXPR) (SUB1 (CADDR EXPR))))))

(DE DERSIN (EXPR X)
(LIST 'TIMES
(LIST 'COS (CADR EXPR))
(DIFF (CADR EXPR X)))

(DE DERCOS (EXPR X)
(LIST 'MINUS
(LIST 'TIMES
(LIST '*$IN (CADR EXPR))
(DIFF (CADR EXPR) X))))

There is no answer to this exercise! The best way to write simpli-
fication function is to make use of the computer, test them and
find the different simplification rules. There is however, a solu-
tion described in Weissman's LISP 1.5 Primer (ref 5).

(Solutions, Section 12)



Section 13

1. (DE EVEN (L) (OR (NOT L) (AND (CDR L) (EVEN (CDDR L)))))

2. (DE MAZE (L IN OUT WAY)
(MAZ L (CDR (ASSOC IN L)) OUT (CONS IN WAY)))

(DE MAZ (L INS OUT WAY)
(COND ((NULL INS) NIL)
((EQ (CAR INS) OUT) (REVERSE (CONS OUT WAY)))
((MEMB (CAR INS) WAY) (MAZ L (CDR INS) OUT WAY))
(T (OR (MAZE L (CAR INS) OUT WAY)
(MAZ L (CDR INS) OUT WAY)))))

way is an extra argument used for building the way we are trying
to find.

(Solutions, Section 13)



Section 1k

Warning - If you intend to test these functions on the computer, use
the *-name of the function. A system function defined incorrectly can
clobber the system!

1. (PUTD 'DF '(NLAMBDA (FN . L) (PUTD FN (CONS 'NLAMBDA L>

2. (DE =APPEND L (COND ((NULL L) NIL)
((NULL (CDR L)) (
(T (APPENDN L))))
(DE APPENDN (L) (COND ((NULL (CDR L)) (CAR L))
(T APPEND2 (CAR L) (APPENDN (CDR L))))))
(DE APPEND2 (X Y) (COND ((NULL X) Y)
(T (CONS (CAR X) (APPEND2 (CDR X) Y))))))

APPEND2 (CAR L) NIL))

The system function :append copies the top level of the n-1
first lists and concatenates this to the last list. But if
*append only has one list as argument that list is copied on
top level.

3. (DF /L L)

L. (DF =AND L (COND ((NULL L) T)
(T (ANDT L))
(DE AND1 (L) (COND ((NULL (CDR L)) (EVAL (CAR L)))
((EVAL (CAR L)) (AND1 (CDR L)))
(T NILY))

5. (DF =SELECTQ (A . L) (=SELECTQI A L))

(DE =SELECTQ1 (A L) (COND ((NULL CDR L)) (EVAL (CAR L)))
((OR (AND (ATOM (CAAR L)) (EQ A
(CAAR L)))
(AND (LISTP (CAAR L)) (MEMB A
(CAAR L))))
(EVPROGN (CDAR L)))
(T (:SELECTQ1 A (CDR L)))))

(DE EVPROGN (L) (COND ((CDR L) (EVAL (CAR L)) (EVPROGN (CDR L)))
(T (EVAL (CAR L)))))

Evprogn takes a list of forms and evaluates them, returns the
value of the last form.

(Solutions, Section 14)
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(DF IF L (COND ((EVAL (CAR L)) (EVAL—~TO—ELSE (CDDR L)))
(T (EVPROGN (CDR (MEMB 'ELSE (CDDR L))))))

(DE EVAL—TO—ELSE (L)
(conD ((OR (NULL (CDR L)) (EQ (CADR L) 'ELSE)) (EVAL (CAR L)))
(T (EVAL (CAR L)) (EVAL=TO—ELSE (CDR L)))))

The function works also without a then- or an else branch.
{DF DO L (DOA (FORMS—TO-UNTIL L) (CAR (LAST L))))

(DE FORMS—TO-UNTIL (L)
(COND ((EQ (CAR L) 'UNTIL) NIL)
(T (CONS (CAR L) (FORMS—TO—UNTIL (CDR L))))))

(DE DOA (FORMS TEST)
(EVLIS FORMS) (AND (NOT (EVAL TEST)) (DOA FORMS TEST)))

(DE EVLIS (L) (COND ((NULL L) NIL)
(T (EVAL (CAR L)) (EVLIS (CDR L)))))

evprogn is defined in Exercise 5.

(Solution, Section 14)



(23)

Section 16

1. (DE EVEN (L) (PROG NIL
Lop
(COND ((NULL L) (RETURN T))
((NULL (CDR L)) (RETURN NIL)))
(SETQ L (CDDR L))
(Go LoP)))

2, (DE APPEND2 (X Y) (PROG NIL
(SETQ X (REVERSE X))
LOP '
(COND ((NULL X) (RETURN Y)))
(SETQ Y (CONS (CAR X) Y)))
(SETQ X (CDR X))
(Go LOP)))

3. (DE :INTERSECTION (X Y) (PROG (VAL)
Lop ’ ’
(COND ((NULL X) (RETURN VAL)
((MEMB (CAR X)) Y) (SETQ VAL (CONS (CAR X) VAL))))
(SETQ X (CDR X)) :
(Go LoP)))

L. (DE :REVERSE (L) (PROG (VAL)
TOP
(COND ((NULL L) (RETURN VAL)))
(SETQ VAL (CONS (CAR L) VAL))
(SETQ L (CDR L))
(Go TOP)))

5. (DE =SUBST (X Y L) (PROG (P)
Lop
(COND ((NULL L) (RETURN (REVERSE P)))
((EQ (CAR L) Y) (SETQ P (CONS X P)))
(T (SETQ P (CONS (CAR L) P))))
(SETQ L (CDR L))
(GO LOP)))

(Solutions, Section 16)
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6. (DE TOTREVERSE (L) (PROG (X)

Top

(COND ((NULL L) (RETURN X)) (
((LISTP (CAR L)) (SETQ X (CONS (TOTREVERSE (CAR L)) X)))
(T (SETQ X (CONS (CAR L) X))))

(SETQ L (CDR L))

(GO TOP)))

Notice that we must make a recursive call in one direction -

in this case the car-direction. We can of course write without any
recursive call but we must then organize some kind of stack.

(Solutions, Section 16)
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Section 17

1. (DE CcALC (0P A B) (APPLYx OP A B))

2. (APPLY 'SET *(A B))

The arguments A and B, evaluated will be given to set, which
will give A the value B.

(APPLY 'SETQ '(E F))

The arguments E and F will be given to setg, but setq will
itself evaluate by eval the atom F. F has no value and the
message U.B.A F will be printed.

(APPLY 'SETQQ '(I J)J
The arguments | and J will be given to setqq, which will give
| the value J.

Set and setqq behave exactly in the same manner when given to

apply. Although set is an eval-function and setqq a noeval-
function no arguments in the argument list will be evaluated.

3. (DE FIRST (L FN)
(COND ((NULL L) NIL)
((APPLY:z FN (CAR L)) (CAR L))
(T (FIRST (CDR L) FN))))

(Solutions, Section 17)
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Section 18

1. (DE =MAP (MAPX MAPFN1 MAPFN2) (PROG NIL
(COND ((NULL MAPFN2) (SETQ MAPFN2 'CDR)))
Lop
(COND ((NULL MAPX) (RETURN NIL)))
(APPLY:x MAPFN1 MAPX)
(SETQ MAPX (APPLY: MAPFN2 MAPX))
(Go LoP)))

(DE *MAPCAR (MAPX MAPFN1 MAPFN2)
(COND ((NULL MAPX) NIL)
(T CONS (APPLY: MAPFN1 (CAR MAPX))
(*MAPCAR (COND (MAPFN2 (APPLY:x MAPFN2 MAPX))
(T. (CDR MAPX)))
MAPFN1
MAPFN2)))))

(DE =MAP2C (MAPX MAPY MAPFN1 MAPFN2) (PROG NIL

(OR MAPFN2 (SETQ MAPFN2 'CDR))

LoP

(OR (AND MAPX MAPY) (RETURN NIL))
(APPLY:x MAPFN1 (CAR MAPX) (CAR MAPY))
(SETQ MAPX (APPLY: MAPFN2 MAPX))
(SETQ MAPY (APPLY: MAPFN2 MAPY))

(G0 LOP)))

(DE =EVERY (MAPX MAPFNT MAPFN2)
(COND ((NULL MAPX) T)
((APPLY:: MAPFN1 (CAR MAPX))
(*EVERY (COND (MAPFN2 (APPLY:t MAPFN2 MAPX))
(T (CDR MAPX))) MAPFNT MAPFN2))))

There are of course many ways of writing map-functions and
these are some representative solutions.

2. (DE SQUARE (L) (MAPCAR L (FUNCTION (LAMBDA (X)
(TIMES X X)))))

(Solutions, Section 18)
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3. (DE PAIR (X Y) (MAPC2CAR X Y (FUNCTION CONS))

(DE COLLECTPAIR (AL A)
(PROG (RES)
<MAPC AL (FUNCTION (LAMBDA (X)
(COND ((EQ (CAR X) A)
(SETQ RES (CONS X RES>
(RETURN RES)))

(Solutions, Section 18)



Section 19

1. (DE PASCAL (N)
(PROG ( (INDENT 26) X OLD)
(2 TEST |F N BETWEEN 0 AND 10)
(COND ((OR (GREATERP N 10) (LESSP N 0))
(PRINT '"'N NOT IN INTERVAL')
(PRINT '"N = ') (PRINT N) (RETURN)))

(SPACES 18)
(:¢ PRINT HEADING)
(PRINT '""'PASCAL'S TRIANGLE")
(TERPRI)
(SPACES 18) (PRINT ''==-===—=mmmomomee "
(TERPRI) (TERPRI)'
(:¢ PRINT TOP OF TRIANGLE)
(SPACES INDENT) (PRINT 1)
(SETQ OLD (LIST 1))
(x OLD IS USED TO SAVE THE NUMBERS ON THE LAST LINE PRINTED)
TOP (COND ((ZEROP N) (TERPRI) (TERPRI) (RETURN)))
(SETQ INDENT (IDIFFERENCE INDENT 2))
(¢ X CONTAINS THE NUMBERS OF THE LAST LINE AND IS USED FOR
CALCULATING THE NEW NUMBERS)
(SETQ X (CONS 0 0LD))
(SETQ OLD NIL)
(SPACES INDENT)
(:: PREPARATION DONE FOR NEXT LINE)
LOP (COND ((NULL (CDR X)) (¢ PRINT THE LAST 1 AND THE LINE
IS FINISHED)
(PRINT 1)
(SETQ OLD (CONS 1 0OLD))
(SETQ N (SUB1 N))
(GO TOP)))
(:¢ CALCULATE THE NEW NUMBER FROM THE TWO FIRST NUMBER ON X,
PRINT IT AND SAVE IT ON OLD)
(SETQ OLD (CONS (PRINT (IPLUS (CAR X) (CADR X))) OLD))
(SETQ X (CDR X))
(SPACES 3)

If this statement is replaced by
(SPACES (IDIFFERENCE 4 (NCHARS (CAR OLD))))

the triangle will be printed symmetrical. The function
nchars[x] gives the number of characters that will be
printed if x is printed by prinl. The number of spaces
depends on the number of characters in the number just
printed. See further Section 22.

(GO LOP)))

(Solutions, Section 19)



We assume an algol version, where the following characters
are used as separators:

- /oy, = ()
Their internal codes are resp

783 961 92’ 97, 122) 91*’ 107y ]26y 77 and 93
Some combinations of separators should be considered as one
entity, such as := .

It is easy to extend these routines to also take care of other
symbols, such that v , A and 1. Even here there are combina-

tions eg 1 =.

(DE ALGOLSCAN NIL
(PROG ((OLDBREAK (GETBRK)) L SYM TEMP)
(SETBRK '(78 96 92 97 122 94 107 126 77 93))
Lop
(SETQ SYM (RATOM))
(SELECTQ SYM
(: (¢ CHECK FOR :=)
(SETQ TEMP SYM)
(SETQ SYM (RATOM))
(SELECTQ SYM
(= (SETQ SYM ':=))
(SETQ L (CONS TEMP L)))
NIL))
(COND ((EQ SYM 'ENDALGOL) (SETBRK OLDBREAK)
(RETURN (REVERSE L))))
(SETQ L (CONS SYM L))
(Go Lop)))

(ALGOLSCAN)

BEGIN INTEGER X;REAL Y,Z;
2:=10.5;

TOP: X:=READ;

IF X=10 THEN GOTO OUT;

Y = Zx(X-12)/Y+12.3;
GOTO TOP;

OUT: PRINT(Y);

END;

ENDALGOL
(Solutions, Section 19)
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The following list will be returned

(BEGIN INTEGER X ; REAL Y , Z ; Z := 10.5 ; TOP : X := READ ;
IF X = 10 THEN GOTO OUT ; Y :=Z = 3( X —12%) /Y + 12.3
5 GOTO TOP ; OUT : PRINT %( Y %) ; END ;)

To read in we could have done
(SETQ L (RATOMS 'ENDALGOL))

which gives a list of all symbols. We could then go through 1 and
look for pairs of symbols which should be combined.

(Solutions, Section 19)
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Section 21

1. (DE =DREMOVE (X L)
(COND ((NLISTP L) L)

((EQ (CAR L) X) (:*DREMOVE X (CDR L))))
(T (RPLACD (RPLACA L (:DREMOVE X (CAR L)))

(*DREMOVE X (CDR L))))))

Observe how the recursion in car and cdr direction uses
rplaca and rplacd.

2. (DE =DSUBST (X Y L)
(COND ((EQ Y L) X)
((NLISTP L) L)
(T (RPLACA L (RPLACA L (:DSUBST X Y (CAR L)))
(::DSUBST X Y (CDR L))))))
3. (DE =DREVERSE (L)
(COND ((NULL L) NIL)
(T (NCONC (:DREVERSE (CDR L))

(RPLACD L NIL)))))

4. (DE :*ADDPROP (ATM PROP NEW FLG)

(COND ((NULL (CDR ATM)) (CADDR (RPLACD ATM (LIST PROP (LIST
: NEW)))))
((EQ PROP (CADR ATM)) (CAR (RPLACA (CDR ATM)
(SELECTQ FLG

(T (CONS NEW (CADR ATM)))
)

(NCONC1 (CADDR ATM) NEW))))
(T (::ADDPROP (CDDR ATM) PROP NEW FLG)))))

In the first test the caddr is made for obtaining the correct
value.

5. (DE =LCONC (PTR L)

(conp ((NULL PTR) (SETQ PTR (CONS NIL NIL))))
(conp ((NULL (CAR PTR) (RPLACA PTR L)

(RPLACD PTR (LAST L)))
(T (RPLACD PTR

(LAST (RPLACD (CDR PTR) L>

We start to set up a pointer cell if it does not exist, then if
this is the first element set the begin pointer and lastly

concatenate the new list at the end and update the end pointer.

(Solutions, Secticn 21)
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6. (DE =ATTACH (X Y)
(RPLACA (RPLACD Y (CONS (CAR Y) (CDR Y))) X)

7. We redefine insertnode
(DE INSERTNODE (NODE TREE)
(COND ((NULL TREE) NODE)
(T (RPLACA (SEARCHTREE TREE NODE)
NODE)
TREE)))

If the tree is empty node is returned as the root of the tree,
otherwise searchtree finds the terminal node, to which node
is connected. But tree, the pointer to the root of the tree,

is returned as value.

Searchtree is defined as

(DE SEARCHTREE (TREE NODE)
(coND ((ORDER (GETDATA NODE)
(GETDATA TREE))
(COND ((NULL (GETLEFT TREE)) (LEFTP TREE))
(T (SEARCHTREE (GETLEFT TREE) NODE))))
((NULL (GETRIGHT TREE) (RIGHTP TREE))
(T (SEARCHTREE (GETRIGHT TREE) ‘NODE))))

Leftp and rightp are introduced for readabiiity in the same way
as getdata, getleft etc.
(MOVDQQ CDR LEFTP)

(MOVDQQ CDDR RIGHTP)

(Solutions, Section 21)
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Section 22

1. (DE FILENAME (FILE) (FILENAME1 (UNPACK FILE)))
(DE FILENAME1 (L RES)
(COND ((NULL L) FILE)
((EQ (CAR L) '=) (PACK RES))
(T (FILENAME1 (CDR L) (NCONC1 RES (CAR L))))))
Without the # in the filename we can return the original

filename. This is done by filenamel through returning the
free variable file.

An alternative is to use nthchar and directly check if the
third character from the end is#.

(DE FILENAME (FILE)

(COND ((NEQ ‘'# (NTHCHAR FILE -3)) FILE)
(T (FILENAME1 (UNPACK FILE)))))

Using string functions

(DE FILENAME (FILE) STRF)

(SETQ STRF (MKSTRING FILE))

(COND ((STREQUAL ''#'' (SUBSTRING STRF -3 -3))
(GLC STRF)
(GLC STRF)
(GLC STRF)
STRF)

(T FILE)))

2. (DE STRPOS (SUBSTR STR)
(PROG ((LSTR (NCHARS STR))
(MIN 1)
MAX)

(* USE SUBSTRING ON STR FOR GETTING SUCCESSIVE SUBSTRINGS.
MIN AND MAX ARE LIMITS FOR THE SUBSTRING)

(SETQ MAX (NCHARS SUBST))
LOP
(COND ((1GREATERP MAX LSTR) (¢ NOMATCH) (RETURN NIL))
((STREQUAL (SUBSTRING STR MIN MAX) SUBSTR)
(¢ MATCH) (RETURN MIN)))
(SETQ MIN (ADD1 MIN))
(SETQ MAX (ADD1 MAX))
(GO LOP))) (Solutions, Section 22)
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Section 23

1. The index function, which will be generated, can be found
in Knuth's Fundamental Algorithms. Given a k-dimensional
array A with elements

A['l"z’ ves ,lk] for
1< Ils dl’ 1$l2sd2, ceene 1<Ik§dk the index function is
noex[iy 1, woo s 3= Fal =3 a
where I<rgk 1<rgk =1
ar=TTds
r<sgk

The example will generate an index function

INDEX[1,d,K] = 3521 + 72J + K - 42
or a LISP expression

(LAMBDA (1 J K) (IPLUS (ITIMES 35 1) (ITIMES 7 J) K -42))
Some auxiliary functions are introduced and explained later.

(DF DEFARRAY (ARR . INDICES)
(PROG (LAMBDAVARS INDEXFN)
(¢ ALLOCATE SPACE AND ASSIGN THE ARRAY POINTER)
(SET ARR (ARRAY (MULT INDICES)))
(x GET THE CORRECT NUMBER OF LAMBDAVAR|ABLES)
(SETQ LAMBDAVARS (VARS INDICES
(1 JKLMNOP)))
(s¢ CONSTRUCT INDEX FUNCTION)
(SETQ INDEXFN (GENINDEX INDICES LAMBDAVARS))
(% STORE INDEX FUNCTION ON THE ARRAYS PROPERTY LIST
UNDER PROPERTY INDEXFN)
(PUT ARR 'INDEXFN (LIST 'LAMBDA LAMBDAVARS INDEXFN))
(¢ CONSTRUCT AND STORE ACCESS FUNCTION)
(PUTD ARR (LIST 'LAMBDA
LAMBDAVARS
(LIST "ELT ARR INDEXFN)))
(RETURN ARR>

One weakness in this design is that the array names must differ
from function and variable names that are in the system.

(Solutions, Section 23)
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(DE GENINDEX (INDS VARS)
(PROG ((L (CONS)))

(x L IS USED BY TCONC AS A QUEUE POINTER)
(* SIMPLE IF ONE-DIMENSIONAL)
(COND ((NULL (CDR VARS)) (RETURN (CAR VARS))))
(** GO LOOPING UNTIL THE INDEXFUNCTION IS BUILT)
Lop
(TCONC L (LIST '"ITIMES (MULT (CDR INDS)) (CAR VARS)))
(SETQ INDS (CDR INDS))
(SETQ VARS (CDR VARS))
(COND ((CDR VARS) (GO LOP)))
(TCONC L (CAR VARS))
(TCONC L (IMINUS (CONSTANT (CAR L))))
(RETURN (CONS 'PLUS (CAR L>

Mult multiplies the numbers in a list.

mult[(3 5 7)1 = 105
(DE MULT (L) (COND ((NULL L) 1)
(T (ITIMES (CAR L) (MULT (CDR L>

Vars returns a list of the kth first variables on a variable
list, where k is the number of indices.

(DE VARS (INDS VARLIST)

(COND ((NULL INDS) NIL)
(T (CONS (CAR VARLIST) (VARS (CDR INDS) (CDR VARLIST>

Constant calculates the constant in the index function. It goes
through the generated index expression and adds the calculated 3p-
(DE CONSTANT (L)
(COND ((NULL (CDR L)) 0)
(T (IPLUS (CADAR L) (CONSTANT (CDR L>

Setarray is defined by

(DF SETARRAY (ARRPOS VAL)
(:x A NO-EVAL FUNCTION)
(SETA (EVAL (CAR ARRPOS))
(APPLY (GETP (CAR ARRPOS) 'INDEXFN)
(MAPCAR (CDR ARRPOS) 'EVAL))

(EVAL VAL>
(Solutions, Section 23)



(36)

Notice how we must evaluate car[arrpos] in order to get the
array pointer, and also that we evaluate the indices and

the value.

(Solutions, Section 23)
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Section 25
The choice function can be defined as

(DF CHOICE (VAR VALLIST FORM)
(PROG (VALUE)
LoP
(COND ((NULL VALLIST) (*ALL VALUES USED, REPORT FAILURE)
(FAILURE)))
(SET VAR (CAR VALLIST))
(SETQ VALLIST (CDR VALLIST))
(* EVALUATE THE FORM WITH ERRORSET) -
(SETQ VALUE (ERRORSET FORM))
(COND ((NULL VALUE) (* BACKTRACKING HAS OCCURRED,
MAKE A NEW CHOICE)
(GO LOP))
(T (SUCCESS (CAR VALUE>

The failure and success functions can be defined by

(MOVDQQ ERRORB FAILURE)
(MOVDQQ RETURN SUCCESS)

The 8-queen problem can now be stated as

(DE QUEEN (ROW BOARD)
(PROG (COL) (RETURN
(COND ((EQ ROW 9) (* ALL QUEENS ARE NOW PLACED ON BOARD)
(PRINTBOARD)
(SUCCESS 'DONE))
(T (CHOICE coL
(12345678)
(COND ((TESTBOARD) (* OK TO PLACE QUEEN
IN THIS COLUMN)
(QUEEN (ADD1 ROW)
(PLACEBOARD)))
(T (* CAN NOT PLACE HERE)
(FAILURE>

(Solutions, Section 25)
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If the problems are without solutions we will "errorbang' out through
the function 8-queen and return to the top-loop. A better solution is
to catch this "errorbang'' simply by putting an errorset in 8-queen.
We redefine it to

(DE 8-QUEEN NIL (PROG (VAL)
(SETQ VAL (ERRORSET '(QUEEN 1 (STARTBOARD)))))
(RETURN (COND (VAL (CAR VAL))
(T '"FAILURE>

These two functions are defined to be independent of the implementa-
tion of the board. Startboard initializes a board, printboard prints

the board, testboard checks if a queen can be placed safe at the posi-
tion given by row and col and returns the T, otherwise NIL, and place-
board places the new queen on the board. The functions are without argu-
ments but they can use row, board and col as free variables.

The board could be implemented as an 8x8 array or as a list with 64
elements. A simpler representation is a list of those columns where
queens already have been placed. Let us look at this representation a
little closer and later discuss a problem concerning the other mentio-
ned representations.

Suppose on the first row a queen is placed in column one, on the second
row a queen in column three and on the third row a queen in column five.
The board is then a list (53 1). To test if a new queen placed on (row,
col) is safe from attack from queens already placed, the following tests
are made

a. Is the column already occupied? Is col in the board list.

b. Is the diagonal already accupied? Take the first element ¢ in the
board list and compare if col is equal to ¢ + 1, if it is the diago-
nal is occupied otherwise take the next element c and compare if col
is equal to c + 2 etc until all elements are tested.

The functions can now be defined as

(DE STARTBOARD NIL NIL)
(DE PRINTBOARD NIL (PRINT BOARD))
(DE TESTBOARD NIL
(PROG ((B BOARD) (V 1) P)
TOP
(COND ((NULL B) (* SAFE PLACE FOR THE NEW QUEEN) (RETURN T)))
(SETQ P (CAR B))
(ConD ((OR (EQ cOL P)
(EQ coL (IPLUS P V))
(EQ COL (IDIFFERENCE P V)))
(* THE NEW QUEEN CAN NOT BE PLACED HERE)

(RETURN NIL))) (Soluions, Section 25)



(SETQ B (CDR B))
(SETQ Vv (ADD1 V))
(GO TOP)))

(DE PLACEBOARD NIL
(CONS COL BOARD ))

An 8x8 array could naturally have been used as the representation of the
board. A problem will then occur at backtracking and when an already
placed queen must be removed from the array. The array is a global struc-
ture and elements set in the array since the last choice-statement must
get their old values when a failure statement is executed. After back-
tracking to a choice-statement we want the environment to be exactly the
same as it was the earlier time we were at this statement. This can be
solved if a function with side effects (relaca, setq, put, seta etc)
saves its old value. This technique is used by INTERLISP in the editor
and the history package (not included in INTERLISP/360-370). All func-
tions with side effects have a /-form (/rplaca, /setq, /put, /seta etc)
and these functions save a form every time they execute. If this saved
form is evaluated the side effect will be undone.

(Solutions, Section 25)
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Section 26

1. First printstat.

(DE PRINTSTAT NIL
(TERPRI)
<MAPC STATFNS (FUNCTION (LAMBDA (FNV)
(PRINT (CAR FNV))
(SPACES (IDIFFERENCE 20 (POSITION)))
(PRINT (CAR (CDR FNV>
(TERPRI>

In unstat we unadvise and remove corresponding pair from statfns,
by using repassoc (see example 7c in Section 11). If arg to unstat
is NIL all functions are unadvised.

(DF UNSTAT FNS
<COND ((NULL FNS) (SETQ FNS (MAPCAR STATFNS (FUNCTION CAR)))
(SETQ STATFNS NIL))
(T (MAPC FNS (FUNCTION (LAMBDA (X)
(SETQ STATFNS (REPASSOC STATFNS X>
(APPLY 'UNADVISE FNS)
FNS>

In restat we only need to initialize the counters to 0 again.

(DF RESTAT FNS
<COND ((NULL FNS) (SETQ FNS (MAPCAR STATFNS (FUNCTION CAR>
(MAPCAR FNS (FUNCTION (LAMBDA (FN)
(PROG (TEMP)
(SETQ TEMP (SASSOC FN STATFNS))
(COND ((NULL TEMP)
(* IN CASE WE RESTAT FUNCTION NOT
ON STATFNS)
NIL)
(T (RPLACA (CDR TEMP) 0)))
(RETURN (CAR TEMP>

Yes, (CAR IN F00) can be used and stat will create the counter
%(CAR% INZ FOO0%)

but we must redefine repassoc to make an equal-test instead of an
eq-test.

(Solutions, Section 26)



Section 27

1. (DE PPDUMP (POS1 P0S2)
(PROG (M N SLOT)
(:: MAKE STACK POSITIONS IF THEY ARE GIVEN AS LITERAL ATOMS)
(COND ((NULL POS1) SETQ POST (STKNTH -1 'PPDUMP)))

((LITATOM POS1) (SETQ POS1 (STKPOS POS1 -1))))
(COND ((NULL P0S2) (SETQ P0S2 (STKNTH 4)))

((LITATOM P0S2) (SETQ POS2 (STKPOS P0S2 -1)))
((NUMBERP P0S2) (SETQ P0S2 (STKNTH (MINUS P0S2) POS1))))
Lop
(3 OUTER LOOP FOR EACH FUNCTION BLOCK)

(SETQ N (STKNARGS P0S1))

(SETQ M 1)

LpP

(: INNER LOOP FOR EACH SLOT IN A FUNCTION BLOCK)
(COND ((GREATERP M N) (GO NXTPOS)))
(SETQ SLOT (STKARG M POS))

(PRINT (CDR SLOT))

(SPACES 2)

(PRINT (CAR SLOT))

(SETQ M (ADD1 M))

(GO LP)

NXTPOS

(COND ((EQ POS1 P0S2) (RETURN)))
(SETQ POS1 (STKNTH -1 POST1))

(GO LOP)))

2. (DE *RESET NIL (RETFROM 'EVALLOOP))

(Solutions, Section 27)
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Section 28

The value returned is -3 and the variable h in the prog will be
bound to

(FUNARG F [(A . 2)])
If the call to function in g is changed the value 3 is returned.

We want dp to make a function definition to randomprocess to look
like

(LAMBDA (RANDNR) (FUNCTION (LIM) ++++++ (RANDNR)))
To perform this dp is defined as

(DF DP (PROC LOCVAR PARAM . FNBODIES)

(PUTD PROC
(LIST 'LAMBDA
LOCVAR
(LIST 'FUNCTION (CONS 'LAMBDA (CONS PARAM FNBODIES))

LOCVAR))))
spit is defined as
(DP SPIT (L) NIL (PROG1 (CAR L) (SETQ L (CDR L))))
alternate is defined as
(DP ALTERNATE (PROCA PROCB) NIL
(PROG (TEMP) (SETQ TEMP PROCA)
(SETQ PROCA PROCB)

(SETQ PROCB TEMP)
(RETURN (APPLY PROCB))))

we create a process by

(SETQ ALTPROC (ALTERNATE (SPLIT '(AB C D E F))
(SPLIT '(123L56 7>
and the process is called by evaluating

(APPLY ALTPROC)

(Solutions, Section 28)
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APPENDIX

HOW TO RUN INTERLISP/360-370 ON YOUR COMPUTER

This appendix should contain all necessary information depending
on the installation for running INTERLISP/360-370. This page is
only a skeleton of what information this appendix should contain
and, hopefully, every installation will make an appendix of their
own.

INSTALLATION:
COMPUTER:

OPERATING SYSTEM }_
TIME SHARING SYSTEM

HOW TO RUN LISP:

Commands or procedures for running LISP.

FILEHANDLING:
How to allocate a dataset for LISP file handling.
How to delete a dataset or a memeber of a dataset.
How to list names of the LISP files (members of the dataset).

How to compress a dataset.

THE SAVE-FACILITY:

How to create a save. Allocation of dataset etc.

CHARACTER SETS:

Differences between the characterset used in LISP-details and the
set used on your computer.

Differences between character sets on available equipment, such
as terminals, line printers, card readers etc.

Special characters, such as
end of line

delete character
delete a line

control characters (attention).
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