
o

:0

•

LIS P F 3

IMPLEMENTATION GUIDE AND
SYSTEM DESCRIPTION.

by
Mats Nordstrom

June 1978

Mailing address:
Datalogilaboratoriet

Sturegatan 2B
S-752 23 UPPSALA

S WED E N

This work has been supported by the Swedish Board for Technical
Development (STU) no 76-4253.

o

ABSTRACT.

A LISP interpreter is written in FORTRAN IV. The LISP dialect
used is a subset of INTERLISP. This paper consists mainly of

- implementation guide.
- program description.
- Advices for changing and adding new FORTRAN code.

All facts of how to use the LISP F3 system are found in No78 (LISP F3
- Users guide).

i
I
f
t

$-,

0

0

G

0

TABLE OF CONTENTS.

1. How to implement LISP F3 on your computer.
2. Internal representations.
3. Recursive programming in FORTRAN
~. The eval-apply system. ,
5. How to add new SUBR's and.rSUBR's.
6. Advices for saving space if your computer is a mini.
7. Comments about the FORTRAN routines used.
Appendix A: Cioss-reference list of FORTRAN routines.
Appendix B: Definition of eval, apply, r~ad and print in

LISP.
Appendix C: References.

:} ,

i
f

:

,

"

..
~
~

i
I·
"
;t

·t

.:!!
j>

~

l'

I

t
I:

"
&.
'" ' f t,
i,

f
~ ,

t
--1
i'

"

I
I

o

o

"
0:

CHAPTER 1

HOW TO I~PLEMENT LISP F3 ON YOUR CO~PUTER.

The lISPF3 system consists mainly of three parts:
A. The interpreter written in FORTRAN ~.
B. 'SYS-ATOMS' A file which will be read by lISPF3 at initiation.
C. Additional functions, written in LISP.
Before compiling the interpreter, the following steps must be checked
in order to fit the system into your computer.

1 •
If your compiler requires it, insert a PROGRAM statement at the
beginning of the FORTRAN code.

2.
Observe, that the COMMON block is separated from the rest of the
FORTRAN code and replaced by something like:

/INC F3COMMON

instead. This makes it easy to change the common block, but"if you do
not have any source editor which performs "including" you must write a
trivial preprocessor to take care of this.

3. Half word integers.

The system 1s delivered with some arrays declared as INTEGER*2. If
you do not have this facility (or if you do not want it), change
INTEGER*2 to INTEGER in the "COMMON" block and in the routines D~PIN2
and DMPOU2.

4. Non-standard FORTRAN routines.

The routines GETCH and PUTCH must be coded in assembler. They are
used for moving bytes (characters) to/from an array. Calling format:

CALL PUTCH(VEC,CH,I)
CALL GETCH(VEC,CH,I)

t.
$

Move from/to place I in VEC to/from CH. The character in CH is left i
justified (with space padding) Characters--1n VEC_-Bre numbered 1,2,3- __ I

(1 = the-Ieftmost one). ,

The routine MSLEFT which returns the number of
the job. Replace with a dummy(return 0)
similar time-scheduling routine.

millise-conds left in
if you do not have any

--~

. 0'

5. Chang~s of arrays etc.

In order to make LISP F3 as machine independent as possible, quite a
large number of constants must be preset in routine INIT'.

N~ME

NATOM= n
NFREET=f
NSTACK=s
NHTAB= h

NPNAMF=p
BYTES= b
MAXPN= mp

NBYTES=nb

MAXMES
NBMESS

NCHTYP=c

MAXREC=r

MARG= m
LUNIN= Ii
LUNUT= 1u
LUNSYS=ls
CHDIV=d

t-'AXBTG

MAXI NT

HAXLUN :-/.~~'

. IOBUFF

REMARK CORR. ARRAY IN .COMMON

Nr of atoms. PNP(n+1)
f > 2*n. Nr of atoms + cons cells. CAR(f), CDR(f)
s>500 ~ STACK (s) .
h == 1.5*n HTAB(h)

== means "about"
p == 2*n PNAME(p+1)
Nr of bytes in an INTEGER.
Len~th of the longest atom <= MARG below.

nb = 2**x where x = nr of bits in a
byte (normally x = 6 for BCD, 7 for

ABUFF,BUFF,RDBUFF,
PRBUFF(2*mp)

ASCI! and 8 for EBCDIC). CHTAP(nb)
Number of messages.
~ax nr of characters in a message.
Change it only when you add more
(and longer) messages to the system •
Size of IMESS:
im = MAXMESS*NBMESS/BYTES IMESS(im)
Nr of different "character types"
such as () < > etc.
c = size of COMMON /CHARS/.
Used as "buffer size" for binary
I/O. (The routines DMPIN/OUT,
DMPIN2/0U2) •
Right margin in I/O buffers.
Logical input.
Logical output.
logical unit for the SYS-atoms.
Used for calculating an index from a
character. If CH is an INTEGER,
holding a character left justified the
value of i=ABS(CH/d)+1 must be in the
range (1,nb). CHDIV is only used in
routines GETCHT and SETCHT. Make sure
that they work! If they do not, LISPF3
will fail while reading the SYS-atoms
and consequently never reach the LISP
top-loop.
The largest positive integer that fits
in a full word.
The largest positive integer that fits
in the word size used for CAR and CDR.

(If you don't use half word
integers, MAXINT = MAXBIG).
The largest logical unit number
allowed •
Size of ABUFF BUFF RDBUFF PRBUFF.

i
I

,

0.
I

•
•

6.
Depending on how many bytes an INTEGER can hold you may have to change
the FORMAT(•• ,A4) in RDA4 and WRA4 to FORMAT(.•• ,A5) (or whatever
wordsize you have).

7.
It is now time to compile and run the system. Assign your
input(LISP-CODE) to logical unit Ii (normally teletype), and your
output to lu- (normally teletype). The file SYS-atoms should be
assigned to logical unit Is. If all is OK so far, the system starts t
(after reading the SYS-atoms) with a message ~

LISP F3, LATEST UPDATE =
8.
Read those LISP-packages
To change standard input

(IOTAB 1 unit)

you want to use.
in the "scratch" system, use

You may choose between:
BASIC1 (this one is necessary)
BASIC2
101
FUNC1
DEBUG1
DEBUG2
MAKEF
EDIT

BASIC2 and

9.

DE,DF etc
BREAK1,error
BREAK,ADVISE, TRACE
MAKEFILE
STRUCTURE EDITOP

101 are almost necessary to do something meaningful.

For convenience you may now save your system by doing
(ROLLOUT unit)

10.
Next time you enter LISPF3 start with (ROLLIN unit).

11 •
Or, if you want to, replace the subroutine INIT2 by CALL ROLLIN(unit)
and you have not to care about the SYS-atoms any longer.

DEC-10 Users only: If you have got LISPF3 on a DEC-tape, this
also contains:
- necessary MACR010 routines (extension MA~)
- LISPF3.CMD A Commandfi1e for compiling etc.
To compile, do EXEC \LISPF3

IBM Users only:
Your tape also contains GETCH and PUTCH written in Assembler.

tape

!

I ;

•
o

o

Additional hints:

- The print routine uses FORMAT(1X,150A1) for writing. If you write
on a non-printer file, and want to get rid of the first blank
character, change in the routine WRA1.

- The range for small integers (MAXINT - BlGNUM)/2 should not be too
small.' Make·i t > 10.00.

- The routine GARB may call LISPF3 "recursively" in case or error.
This is done only in order to offer' the user a nice error handling,
but if your OS checks (and prohibits) "recursive" calls in FORTRAN you
must either do it indirectly through an assembler routine or replace
the call by an "error-return" by locking the stacks and placing an
error code at the top or FSTACK. (See chapter 7.7!) •

i
i

CHAPTER 2

INTERNAL REPRESENTATIONS.'

On the next page there is a picture over the most important areas and
pointers used by the system. Pointers are marked with straight arrows
(-------» and the flow of characters are marked with sparse arrows
(- - - - -».
Alpha numerical atoms:
Let us follow what will happen when the atom FOO is read and printed.
FOO is stored in RDBUFF by a previous FORTRAN-READ (with A1 format).
ROPOS points to "the next character to be read". FOO is now inserted
to ABUFF and escape characters are 'moved. Before being moved the
character is used as an index in CHTAB to determine its type. A hash
addr~ss is calculated and used as entry In HTAB. Suppose that FOO has
not been read before. After finding an empty place in HTAB, this
place is updated to point to NATOMP and NATOMP is increased by one
(new atoms are stored consecutively). Suppose that NATOMP had the old
value i. The printname FOO is now stored in PNAME and JWP;JBP are
updated to point to the next empty character position in PNAME. (Also
printnames are stored consecutively starting from the bottom). The
starting address for the printname is stored in PNP(i) and the ending
address+1 is stored in PNP(i+l). A pointer to the atom NOBINO is
placed in CAR(l) and COR(i) is set to NIL. Finally the pointer i is
returned to the caller.
If later on FOO is to be printed, the print routine recognizes FOO as
an atom (the pOinter value 1 ia- below HATOM). The prlntname is
fetched using PNP(i) and PNP(i+1) and moved the PRBUFF at position
PRTPOS. While moving CHTAB 1s consulted to check if escape characters
(I) are needed. When PRBUFF 1s filled up (PRTPOS > MARG) or if
terpri() is called, the line is printed using FORTRAN-WRITE with
format (1X,150A1).

- --------------

c

o

F '
I'

!

o

i , i
I
!
I .. '

MAXINf Address space: Lenght = NATOM

I~IL NAmt I NFREEB NFREE1 r -..J. BIGMiJ rukDn I .
1,-- \.. _, 'l_~. '-- V ___ ---. ... ,------..J, ---y ~. --

atoms and lists big integers small integers
strings' .

OITAB
NBYTES

ii~~~~-___ ._(_~nn_. __ t_n_am __ e_b_U_£_£e_r_l _____________ r
I ~ABUPI
\. , - -

CAR CDR
NIL

-.-- .. -.~ _
. _______ ~_~~.t..~.lt\~

~ ____ ~ _______ ~NA~
,

Unused {itan
space

.....
'-

PNAME

,-JWPl
JBP~

printnames

, -------
, big integers .

~e addre~ I NPNAME-

I ~
hash­
table

free.1iSt start

./

I

~

. ,.
,;

in PNAME ~

I

./

~-----;J

OIfAB
NBYTFS

__ 1

tQ;JFJ

---- --_. ----.-,-~=--=-=~~-------

•
o

o

o

Small integers:
The address space NFREET+NATOM MAXINT is reserved for small
integers, and they are stor~d in the list structures -as pOinters. The
numerical value of a small integer is pointer-NUMADD.

~ig integers:
Big integers are represented as pointers in the address 'space NFREET+'
- BIGNUM. The length of this range is NATOM •. The int~~ers th~ms@lves
are stored consecutively as full word integers in PNAME starting from
the top and using NU~BP as "free integer space pointer". When no more
space for big numbers is left, a big number" garbage collection is
activated.

Strings:
Strings are treated the same way as literal atoms except for that they
do not have an entry in HTAB and that a pointer to the atom STRING is
stored in CAR(i). (n" are removed from the printname by the read
routine and added if asked for by the print routine) •

Substrings:
Substrings are represented as pointers in the same range as those
representing atoms and strings (1,NATOM).
CAR(substring) = SUBSTR
CDR(substring) = (sourcestring start • length)
Substrings do not have a printname of it's own (and thus do not occupy
space in HTAB or PNAME).

Lists:
List--structures are represented as pointers in the range
(NFREEB,NFREET). The varia~le NFREEP points to the free list. After
a compacting garbage collection the free list is a consecutive list of
cons cells starting from NFREEP and growing backwards down to NFREEB.

o

o

•
0'

CHAPTER 3

RECURSIVE PROGRAMMING IN FORTRAN.

The LISP F3 interpreter is an almost direct translation of the
definition given iin appendix B. That definition is highly recursive
and in this chapter we will explain how recursion has been programmed
in FORTRAN.

The stacks:
There are two stacks for recursive calls of sub functions. One stack
(named ASTACK) is used for saving values which are to be saved during
a recursive call. The other stack (named FSTACK) is used to hold
return jump indicators, here represented as integers which are used in
a computed GOTO-statement. Both ASTACK and FSTACK are physically
stored in the same vector STACK using IP and JP as stack-top pOinters.

NSTACK --->
STACK

I val I
I val I
I. val I

JP ---> I val I
I I
I I
I I

IP ---> I ret I
T ret I
I ret I
I ret I ,

part ASTACK

part FSTACK

Pushing and popping are done by the routines

APUSH APUSH2 APUSH3
APOP APOP2 APOP3
FPUSH

and sometimes (for efficiency) in line as in
998 I = STACK(IP)

IP=IP - 1

o

o

o

RECURSIVE PROGRAMMING IN FORTRAN. • Pa~e 3-2

Recursive calls and returns:

All recursive· functions are coded rin the FORTRAN subroutine LISPF3.
That means .that they are not subroutines themselves put just pieces of
FORTRAN code. '
A call is performed by saving necessary values with APUSH (or APUSH2,
APUSH3) ~nd by saving a return jump indicator with FPUSH •.
After all this .pushing follows an unconditional GOTO to the."f~nction"
and then follows (normally) a statement with the same statement number
as indicated by IND, there the execution is to continue at return from
the called fun~tion. Saved values are th~n fetched by a proper number
of calls to APOP.
A return from a recursive function is done by GOTO 998 where the
indicator saved on FSTACK is popped and used in a computed
GOTO-statement leaving the program control to the caller.

N.b.
In order to give the user a chance in case of stack overflow, we have
done the following:
Whenever the difference JP-IP becomes less than a pres~t value ~IDDL,
MIDDL is divided by 2 and SYSERROR is called (which in turn normally
calls the break package). When MIDDL has becom~ too small RESET is
performed and MIDDl is reinitialized to its original value.

o

•

CHAPTER It

THE EVAL-APPlY SYSTEM:

Eval-apply and all SUBR's and FSUBR's are handled by (or called from)
the subroutine lISPF3 which is "the heart of the interpreter".
Calling format is

CALL LISPF3(IND)

where IND = 1 means "this is the first call to lISPF3".
= 2 means "restart the interpreter" o < 0 means "call SYSERROR with error number -IND.

o

o

The top level loop is defined as

lispx();
errore);
reset();

where lispx() is a SUBR defined as

loop: print(eval(read())); go loop;

but may be redefined by the user.

Transmission of arguments:
The variables-XRG ARG2 ARG3 are reserved to hold the first three
arguments to SUBR's.
In case of SUBRN (see below) and FSUBR arguments are pushed onto
ASTACK and the number of arguments are held in the variable IARGS.
The value of a function is assigned to IRES before returning and IRES
rs EQUI-VALENCE: d- to ARG-.- -(S-o-me-t imes an argument just passes through).
In addition the variable FORM holds the form currently under
execution.

(In the definition in appendix B, evlis is used for evaluating
arguments also to a SUBR. In practice arguments to SUBR's are pushed
onto ASTACK and if n€cessary spread to ARG ARG2 and ARG3 afterwards.)

-'

o

o

"
•

- - -

THE EVAL-APPLY SYSTEM. • Page 4-2

Variable bindings:
LAMBDA, NLAMBDA and PROG variables are pushed onto an association list
(the variable ALIST) in traditional manner. This list should be
thought of as a simulated variable stack (and is used implicitly by
eval, apply setq etc.).

Representation of SUBR's and FSUBR's etc.
The type of a function (if not LAMBDA-or-NLAMBDA) is indicated by the
pointer value of the atom itself as seen in th~ following picture:

NIL
1----------1-----------1----------1--------1-------1-------1--•••

1 SUPRO SUBR1 SUBR2 SUBR3 SUBRN" FSUBR

I SUBR's I FSUBR's I

SUBR's with no arguments are numbered in the range 1-SUBRO and so on
for SUBR1, SUBR2 and SUBR3. In the range SUBR3+1 - SUBR we have
SUBR's with an indefinite number of arguments (as PLUS). FSUBR's are
numbered in SUBR+l - FSUBR.
These conventions make it easy for apply to determine the proper
argument actions and then jump to the corresponding code using the
pointer value of the atom in a computed GOTO.
From the user's points of v-iew apply uses the LISP function getd (f) to
determine the type of f. Still as seen from the user getd(f) returns
(SUBR. f) or (FSUBR f) in the case of FORTRAN coded lisp
functions.
In practice getd(f) is
construct the list (SUBR
form, cases like «SUBR •

used inline in eval-apply and does not
f), but as (SUBR. f) is a legal function

f) •••••) are also taken care of.

Error handling:
Two classes of errors may occur in the system.

reset() is called. 1. Hard errors -
These errors jump
detected inside
other subroutine.

to the reset point (statement nr 1) in L1SPF3 (if
LISPF3) or perform CALL L1SPF3(2) if detected by an

Typical errors are stack overflow or very
memory •

2. Soft errors - syserror() is called.

little space

All these errors jump to a place where a call to

syserror(errnr, fn, args, form)

is built up and sent to apply for further action.

left in free

SYSERROR is defined as a SUBR which just prints a message and jumps to
RESET. Normally SYSERROR is redefined in lisp to make use of the
br~akpackage-~£ter-±be-message.

o

o

o

THE EVAL-APPLY SYSTEM. • Page ~-3

Removing of recursions:
Though eval-apply works as given in appendix B not all help functions
are called but placed inline. Moreover it does not recursively call
eval when a straight jump to eval is as good. This situation arises
when the form to be evaluated is the last one in
- PROGN
- a LAMBDA ,body.
- a COND .or SELECT clause.

Especially as (LAMBDA (..) S) is quite a common expression this little
trick saves a lot of good stack storage when the recursion digs down.

o

o

o
- -

c

•

CHAPTER 5

HOW TO ADD NEW SUBR'S AND FSUBR'S.

There are two ways of adding new lisp-functions in the interpreter.
The simplest way is to use xcall(nr,args), the other way is to add
code inline in the same fashion as other SUBRS etc.

1. How to use xcall.
TheSUBR-Xcall is defined just to return NIL, but given -to lISPE3-
users as a handle where you may add calls to other FORTRAN routines.
It is recommended to add your pieces of code inside the FORTRAN
function XCAlL(nr,args) (for example some FORTRAN call statements) and
use nr as a "code selector" and args (a list of arguments) as the
arguments to the specific new routines. Proper calling functions may
then be defined as IISP functions using xcall.

Note:
If your routine makes use of some other SUBR you must write the code
inline in LISPF3 to make use of the recursive calling conventions.

2. How to add new SUBR's etc but not using xcall.
In this case you have to dO:- --- ---

a) Insert the function name in the file SYSATOMS. The location of the
name is important' First select the corresponding list (the first one
1s all SUBR's with 0 arguments, second one is all SUBR's with 1
numerical argument, third on~- is all SUBR's with 1 nonnumerical
argument. Then comes those with 2,3'- indefinite numbers and finally
all FSUBR's).
Second, place the name preferably in alphabetical order in the
selected list and remember the number of the location.

-"til1 :Ch~"ang}e- ·t·h'e~ co-rr-espond i ng--- GOTO-st-atieme-nt. determi ned by the
the function. Insert the statement number refering to your
of code so that the order in the selected list from
corresponds to the GOTO statement. It is also recommended
the comment card telling which function refers to which
number.

c) Put in your piece of code somewher~.

type -->-Gf-~

own piece
a) still
to change
statement

At entrance the arguments are held in ARG ARG2 ARG3 (or in the stack
AS_TACK in which~_ase NARGS = the number of arguments).
Normal return is then done by assigning IRES to the result value and

HOW TO ADD NEW SUBR'S AND FSUBR.S. • Page 5-2

then dOing GOTO 99B. (In fact ARG and IRES are equivalent). If your
code is a SUBRN or FSUBR you also have to reset ASTACK before
returning. The 'variab1e EJP holds the old value of JP as before
pushing. arguments onto the stack, so just reset JP t.o EJP before
returning.

Warning:
.. If. you-make_ -use. of CONS Cor. ~KNUM .or· MATOM) explicitly or imp.licl~~y.,:.
variables which earlier have been given lists as a value must be saved
in case of a garbage collection. To be sure that new structures are
recognized as active storage by the garbage collector (if they can not
be reached in a normal way) the three variables TEMP1, TEMP2 and TEMP3
are given and should be used for temporary pointers to "lists under
construction".

o

o

o

•

CHAPTER 6

ADVICES FOR SAVING SPACE IF YOUR COMPUTER IS A MINI.

- Do not use double buffering in I/O.

Some operating systems gives a choice between single and doubl~ C» buffering as an option. Use single!

o

~ : 11-. J _

o

o

- '~ewrite some routines in assembler.

Especially FORTRAN I/O is used in a very trivial manner, and is very
easy to recode in assembler. In many cases this will save a lot of
program storage. (See chapter 7 where those routines which make use
of I/O ar~ explained).

- Overlaying.
The following routines never call each other directly or indirectly
and should thus be possible to overlay on most computers:
LISPF3 vs. INIT' INIT2. (INIT2 ought to be replaced by a call to
ROLLIN anyhow).
(GARB MARKL REHASH ROLLIN ROLLOU MOVE) vs.
(LSPEX NCHARS EQUAL GET).
But as the last list consists of very small routines only it is
probably not worth overlaying. However this list can be extended by
the routines (IPRINT PRIN1 PRINAT TERPRI) if you remove the call to
IPRINT and TERPRI from the routine GARB, rename GARB to GARB1 and
~deffne a small routine- GA-R13=--whic-h calls- GARB1 and -then - does the
IPRINT call.
See also the cross reference listing given in appendix A.

- Removing code.

~~-~ 1-a)t-"I1t-GkR'B':]-l~mo-v~e--the- parr~::s--ttra-t- p-e-ri'orm - atom· --- -bi-gnumber -and
compacting gbc. Also remove the recursive (inline) code for list
marking and use MARKL only.
Remove REHASH.
This implies that ROlLIN/ROllOU must read/write the entire list
space and the hash table HTAB.

b) In PRIN1. Remove the parts that are active during pretty-print
only.

o

o

•

CHAPTER 7

COMMENTS ABOUT THE FORTRAN ROUTINES USED.

The FORTRAN routines are grouped in the following manner.
appendix A, where a cross reference listing is given).

1. The "main" subroutine.
LISPF3

2. Input routines.
IREAD RATOM MATOM MKNUM SHIFT

3. Output routines.
IPRINT PRIN1 PRINAT TERPRI

4. ROLLIN/OUT.
ROLLIN ROLLOU MOVE

5. Garbage collection.
GARB MARKL REHASH

6. Help routines to LISPF3

(See also

COMPPN CONS EQUAL GET GETNUM GETPN LSPEX MESS MSLEFT NCHARS
SUBST XCALL

7. Push and pop.
APUSH APUSH2 APUSH3 APOP APOP2 APOP3 FPUSH

~ 8. Other helproutines.
GETCH PUTCH GETCHT SETCHT

9. Fortran I/O.
~ JI)O~;'.:1 =--: ~T : ~IfDN-1 -W-RA-r· RDNlF WRA4~ DMPOtJT ~-DM'PIN DMPOU2 DMPIN2 E-JECTcR'EW __ :L_A ~ r_ LL r ..

10. Initiation routines.
INITl INIT2

o

•

o

o

COM~ENTS ABOUT THE FORTRAN RoUtINES USE-D. Page 7-2

1.1 SUBROUTINE LISPF3(IREE)

The eval-apply system and all FORTRAN coded LISP functions. See
chapter·4 for details.

2.1 FUNCTION IREAD(N)

(N is a dummy).
IREAD reads ~n S-expression into internal form. (Spe also appendix B
where TREAn is defined in LISP).
It uses RATO~ to read separate tokens sudh as atoms numbers
parenthesises etc.
The value is a pointer to the constructed S-expression.

2.2 INTEGER FUNCTION RATOM(A,IOP)

Used by IREAD to read the next token from the
(lOP = 1).
RATOM is also called from LISPF3 (lOP = 0).
RATOM classifies the token and returns a type
parameter A) as follows:

token

atom
(
)

returned value returned in A

1 atom
2 NIL
3 NIL
4 NIL
5 the atom •

input buffer

(and a value

RDBUFF.

in the

RATOM keeps < and> in a separate bracket stack and (if called frem r

IREAD) < or > are never seen but returned as (or as a proper number
of) , s •

2.~ FUNCTION MATOM(L)

At entry abs(L) characters are stored in ABUFF. If L > 0 MATOM
creates an atom. Otherwise a string is constructed.
If ~n atom with the same printname aJready exists, that atom is
returned as the value of MATOM; otherwise a new atom is created. If
no more space for atoms are left a compacting atom garbage collection
is per formed.

2.4 FUNCTION MKNUM(N)

N is a full word integer.
Returns a small integer or big int-e-ger' depending O-f}.· ·the numerical
value of N.

- -

2.5 SUBROUTINE SHIFT(I)

--,---,-,,.------~ ----

COMMENTS AROUT THF FORTRAN R6UrT~ES US~D. Page 7-3

Reads thp next character from the input buffer RDBUFF (and reads a new
line into RDBUFF if necessary). "The character is returned in CHR and
the type of the character in CHT. The table CHTAR is accesspd with
the character value (range 1 - NBYTES) to determine the type. (A list
of different types is given"in LISPF3 - Users guide).

If I = 1 at entry the previous CHR is stored in ABUFF (the buffer for
~ printname given to MATOH).

If I = 3 at entry, the previous CHR belongs to a string under
construction and is stored in PNAME.

The escape character % is never returned by SHIFT but signals the next
character to be treated as a letter, digit, + or - sign (depending on
its type).
Normally SHIFT is called from RATOM (the flag IFLG2 = NIL) but
sometimes also from the code for unpack(x) in LISPF3 (IFLG2 = T). If
called from unpack, characters arp read from PRRUFF instpad and all

Ct characters are treated as if they were prefixed by a 1,.

o

0

o

~.1 SUBROUTINE IPRINT(I)

CALL PRIN1 (I)
CALL TERPRI
RETURN
END

3.2 SUBROUTINE PRIN1(S)

This is the routine which prints as-expression.
output is directed by SYSFLAG(i) as follows:

The format of the

SYSFLAG nr value
---------- -----

2 NIL
T

3 NIL
T

5 NIL
T

7
NIL

T

means

fast printing
pretty printing
(QUOTE s) prints as (QUOTE s)
(QUOTE s) prints as's
Do not add I or "
Add i or " when so needed
for a correct read back.

(This flag is checked by
PRIMAT) •
Only used during pretty-print.
Do not begin a new line if
the current expression will
fit on line.
Begin a new line whenever a
sublist is found unless it is
the first (or sometimes second)
sub-expression.

A definition of PRIM1 in LISP is -~iven f~ appendix ~.

o

•

o

o

CO~MENTS AROUT THE FORTRAN ROUT!NE:S US~t>. Page 7-4

PRIM1 may also have been callpd from NCHAR~ in order to generate a
printname. In this case TERPRI is responsible for not writing the
output buffer PRBUFF on the physical output unit.

3.3 SUBROUTINF PRINAT(X,NKW,JPOLD)

Pri.nts 'an atom X or ..• (if X = -1) or --- (if X = -2).
NKW is the number of '-s to be printed.
JPOlD is a saved stack pointpr which is used to res~t the stack in
case of error.
The printname is first stored in PRBUFF, then 'checked if it fits.
(That is why the size of the print huffpr is twice maximum of a
printname).
If overflow ~as occurred TERPRI prints the line up to the old print
position and then the printname for the atom is moved to the proper
position in PRBUFF.
For each character sent to PRBUFF a test by the routine GETCHT is
performed to check whether a ~ is needed or not. This check is not
done if SYSFLAG(5) = NIL.

3.U SUBROUTINE TERPRI

Writes PRBUFF on logical unit LUNUT and resets PRTPOS (the print
position) to LMAFG (current left margin). If called from NCHARS (the
flag IFLG1 is rrot = NIL) output is not printed but the numhers of
characters (= value of PRTPO~-1) is accumulated to IFLG1.

4.1 SUBROUTINE ROLLOU(lUN)

The routine saves a binary pattern of the LTSP memory~~o bp used later
on (read by ROLLIN).
The following parts of the memory are written on logical unit LUN.
(The values of im,c and nb below are explained in chapter 1.4)

CINF(1-14)

IMESS(1-im)
AREA(1-NAREA)
PNAME(..)
PNP (••)
·C-IrR ,-oDIt(': ••)- L.-

BCOM(1-c)
CHTAB(1-nb)

The 14 first words in COMMON IA/.
Used by ROLLIN to detect if rollin is
possible.
All messages.
COMMON IBI up to (and including) DREG(7).
Printnames. Only used upper and lower parts.
Printname pointers. Only used lower part.
'(}n-}~y us-~ct lower (atoms) and upper (-l ists)
parts. The free list is not written.
COMMON ICHARS/. (Character variables).
The character translation table.

Before writing a compacting garbage collection as called in order to
save a lot of space and time by not writing the free-list~
CINF(1-6) consists of those variables which must not be changed until
next ROLLIN.
CINF(7-14) are those local pointers which may be updated if th~_size..s
of arrays have been changed.

•
•

o

COMMENTS ABOUT THE FORTRAN ROUT1NES USED.

Arrays which may have been declared as short integers are writt~n by
DMPOU2, others with DMPOUT.
ROLL~~ rewinds LUN before returning.

~.2 INTEGER FUNCTION ROLLIN(LUN)

Reads' a fi.l e pr.od·ucea by ROLLOU from .log iCf;!l un it LUN.
If rollin is not possib]e NIL is returned otherwise 'th~ value is LUN.
If th~ size of any ~rray has changed since the last ROLLOU a lot of
pointers must be updated. This is done by the routine MOVE.
After reading, a new free list is constructed in the empty list space
and the atoms are "rehashed" using th~ routine REHASH in order to
establish a correct hash tabJe.
Finally read and write buffers arp cleared, REWIND LUN is performed
and LUN is returned as the value 9f ROLLIN .

SUBROUTINE MOVE(DIFF,MIN,~AX)

Used by ROLLIN to add DJFF to poin~ers in the range MIN < p <= MAX:
Pointers p are taken from CAR,CDR and ARGS(1-10) where ARGS is
equivalent to ARG ARG1 ARG2 etc. in COMMON IB/ •

5.1 INTEGER FUNCTION GARB(GBCTYP)

This is the routine responsible for garbage collection. The kind of
gbc is indicated by GBCTYP:

GBCTYP action

o Normal gbc. List cells only.
1 List compacting.
2 Big numbers.
3 Big numbers and atoms.

called from

CONS
ROlLOU
MKNUM
MATOM, MKNUM

GARB may also have been called from LISPF3 (the LISP function
rec1aim(gbctyp)). ~ - .-~ -
Here is a short description of the working behavior of the garbage
collector:

Step 1:
~ark active cells by negating CDR. If big number gbc mark in the

··-~O,,·- ~~t/()t": 1 :PWP'.l"· ; 'If ~ :at~m'T~gbc"mark'-:also in' CDR of atoms (by temporari1y­
setting NFREEB = T+1).

Step 2:
Select proper action depending on GBCTYP.

o goto step 7
1 goto step 3
2 goto step 5
3 goto step 5

•
•

0

o

•
CO~~ENTS ABOUT THE FORTRAN ROUTINE~ USED. Page 7-6

Step 3:
List compacting (GBCTYP = 1).
Move active CAR tDR to the top of free storage and unmark CDR. Le~ve
new address in CDR of moved cell. Goto step 6.

Step 4:
-Atom gbc (GBCTYP =_ 3). _
"Move active atoms to the lower part of atom space -(16wer CAR;CDR).
Le~ve new address in (negative) HTAB and unmark CDR. Goto step 6.

Step 5:
Big numbers (GBCTYP = 2,3).
Move active numbers (marked in PNP) to the top of PNAME.
address - -in old place in PNAME. Reset PNP. .If GBCTYP =

Leave new
2 then goto

6, otherwise goto step ~.

Step 6: Restore moved pointers (GBCTYP = 1,2,3) •
Check all list pointers and change to new value if they have moved.

Step 7:
Clear memory.
GBCTYP = 0,1

2
3

Construct a free list and return •
Return.
Rehash all saved atoms and return.

Marking active atoms and cells starts from:
- The COM~ON variables ARG ARG2 ARG3 AllST FORM TEMP1 TEMP2

TEMP3 I1CONS I2CONS
Current ASTACK (temporarily saved values).

- CAR and CDR of defined atoms.

Marking is performed by changing the sign of CDR. This is done inline
by a local recursive piece of code. If however stack overflow occurs
a non recursive routine MARKL takes over.

The free list which is
tank" as follows:

NFREEP-> I I I -- . .

built up at

--> I

i
V

I I

step 7 is equipped

<--- ISPARE

I T I -->1 T I ---> •..

10 cons cells

with a "spare

If less than 10 cons cells are found no spare tank is constructed (and
ISPARE = NIL), but RESET is called (CALL LISPF3(2)).
If less than 15 cons cells are found the spare tank is switched on by
doing CDR(ISPARE) = CAR(lSPARE) and RESET is called.
In both cases the user still has a chance to release memory before the

•
•

•
COMMENTS AROUT THE FORTRAN ROUTINES USED. Page 7-7

definitely exhausted. space is
Actually
routin~
gbc. If
hreak.

the user has in these cases been warned before as the CONS
checks if there is a reasonabl~ amount of space left after a
not, SYSERROR is called ~hich in turn normally goes into a

5.2 SUBROu1INE MARKL
This is a non recursivp marking routine used by GARB if local stack
overflow has occurred. It is somewhat slower than the corresponding
inline code in GARB as it looks upon each cons 'cell twice. Rut in
case of program space problems, you may use onJy MARKl. and remove the
marking code in GARB.
The algorithm is described in Sc 67.

5.3 SUBROUTINE REHASH
The routine is used for constructing a new entry in HTAB for each
existing atom. REHASH is called from ROLLIN and from GARB (when atom
gbc is asked for).

6.1 TNTEGER FUNCTION COMPPN(X,Y)

returns:
-2
-1
o
1
2

if:
x is invalid
x < y
x = y
x > Y
y is invalid

6.2 INTEGER FUNCTTON CONS(T1,I2)
Does cons(I1,I2).
In case of an empty free list garbage collection is activated (GARB).
If the number of free cons cells is less than ISPLFT a weak error is
triggered (SYSERROR - break) and ISPLFT is divided by 2.

-"- - ;:':""-I~SPL-FT :1.5-- reset---to 400 whenever a RESET is performed.- T, -

o

o

6.3 INTEGER FUNCTION EQUAL(II,JJ)
Does equal(ii,jj).

6.4 INTEGER FUNCTION GET(J,I)
Does get(j,i).

6.5 INTEGER FUNCTION GETNUM(I)
Returns the FORTRAN integer valtre-:of a s-m-all or big :LISP- -i-nteger. The
caller is responsible for that I is a LISP integer.

-

6.6 INTEGER FUNCTION GETPN(X,~ATN,JB,IPL)

• . r _- . IT.

•

o

COMMENTS ABOUT THE FORTRAN RbUTINES USSD.

MAIN=
JB=
IPL=
GETPN=

Pointer to main string if substring.
Byte offset in printname.
Byte length of printname.
-1 X is invalid.
o if X literal atom.
1 if X string or suhstring.

6.7 SUBROUTTNt L~PEX

Page 7-8

Exits from LISP F3 after ~'lritin~ statisticC\J messages.
done by the FORTRAN statement STOP.

The exit is

6.A SUBROUTINE MESS(T)
I f I = 0 then 'MESS w'as c'~lled from INIT2 and messages ar~ read from
LUN~YS. Otherwis~ a message corresponding to the nr I is printed .

6.9 MSL FFT
The time scheduling routine which is coded in assembler.
MSI:EFT is only called from lISPF3, the LISP function . .clock(),. Use I

your own time routine, or just skip it if you do not care about the
clock function. Remember that clock shall return a dotted pair in
order to avoid introducing big numbers in the result.

6.10 INTEGER FUNCTION NCHARS(S,IFLG)
This routine is used by the LISP functions concat, pack, unpack, and
nchars in order to create a printname representation in PRBUFF. It is
done by saving the current print status (buffer and pointer) and
calling PRIN1 for each member in S (which is a list of S-expressions).
IFLG = T indicates that ~ is to be printed by PRIN1 when needed.

-The flag IFLG1 is set to---N-UMADD (mot = -NIL) to indiC"e--t.e to~-rER:P1R--I that
lines should not be print~d but print positions should b~ added to
IFLG1 (in order to count characters).
After c~lling MCHARS,

- concat

- nchars
- pack
- unpack

creates a string. TERPRT builds the printname from
the print buffer.
returns the number of ch~racters.
creates an atom from the print huffer.
creates a list of atoms by reading the print
buffer character by character.

6.11 INTEGER FUNCTION SUBST(IX,IY,IS)
Does subst(ix,iy,is)

6.12 INTEGER FUNCTION XCALL(FN,L)
A dummy function (returns NIL) where you may add your own pi~ces of
FORTRAN codes such as calling other subroutines. Use FN as a sel ecto_r
in-a computed GOTO a~d L as the argument list. FN is a FORTRAN

o

o

o

•
CO~MENTS ABOUT THE FORTRAN ROUTINEg USED. Page 7-9

integer at calling.

7. PUSHING and POPPING.
the following subroutines handle ASTACK, the upper part of the arr~y

STACK. JP points t~ the current top.

APUSH(I) APUSH2(I,J) APUSH3(I,J,K)
APOP(I) _APOP2(I,J) APOP3(I,J,K)

(Pushing and popping are done from left to right in the argument
lists).
The subroutine FPUSH(I) pushes a statement number indicator onto
FSTACK, the lower -par-t or STACK-. - Here JP points to the current top.

If stack over/underflow occurs no action is performed but a reset
address is put onto FSTACK (which forces LISPF3 to jump to the reset
label at ~ext recursive return.).

Remark: In the eval-apply '~yste~ pushing and popping are coded
inJine. At the entrance of eval thp.re is a check whether the stack
space left is reasonable. See chapter 3 for further details.

8.1 GETCH and PUTCH.
These -are c"'6ded in assembl er- and- -u-sed- for moving bytes from/to an
array. Calling format:

CALL PUTCH(VEC,CH,I)
Store a character CH at location I in the array VEC.
CALL GETCH(VEC,CH,I)
Fetc'h -a character from location I in VEC to CH.

The character in CH is left justified with space padding.
The array VEC behaves as a character array numbered 1,2,3 ••• (1 = the
leftmost one).

8.2 GETCHT and SETCHT
These routines are used for fetching/storing the internal type of a
character. Calling format:

I=GF.TCHTCIC)
CALL SFTCHT(IC,IT)

A character should he placed left justified in IC before calling. The
integer value of that character is used as an index in the table
CHTAB. The variable CHDTV is used to calculate this index by an
integer division.
CHTAB is accessed and its content is returned (GETCHT) or replaced
with a new one (IT in SETCHT).
It is recommended to recode GETCHT and SETCHT in assembler.

9. FORTRAN I/O - routines.

o

•

o

o

•

COMMENTS ABOUT THF FORTRAN ROUTINE~ USED. Page 7-10

The following routines are the only ones which us~ FORTRAN 1/0. Only
very simple format codes are used, and it is recommend~d to recode
them in assembler, mainly for the matter of program space.
All th~se routines are found at the end of the LISP F3 program.

- SUBROUTINE RDA1(LUN,CARD,I1,J2,IEOF)

Reads from logical unit LUN to the array CARD(I1-I2) using A1 for~at.
If end of file is found, IEOF is set to 2.
Used by SHIFT and I~JT2.

- SUBROUTINE WRA1(LUN,LINE,J1,I2)

Writes LINE(11-12) on logical unit LUN using format (1X,150A1).
Used by TERPRI.

- SUBROUTINE RDA4(LUN,CARD,I1,I2)

As RDA1 but uses format A4.
Used by MESS •

- SUBROUTINE WRA4(LUN,CARD,I1,I2)

As WRA1 but uses format (1X,100A4).
Used by MESS.

- SUBROUTINE DMPOUT(LUN,AREA,MIN,MAX)

Writes AREA(MIN-MAX) in binary format on logjcal unit LUN.
Used by ROlLOU.

- SUBROUTINE DMPIN(LUN,AREA,MTN,MAX)

Reads AREA(MIN-MAX) in binary format from logical unit LUN.
Used by ROLLIN.

- SUBROUTINE DMPOU2/DMPIN2(LUN,AREA,MIN,MAX)

As DMPOUT/DMPIN but AREA is declared as a half word integer array.
Used by ROLLOU/ROLLIN.

- SUBROUTINE EJECT(LUN)

Skip to next page by writing format (1H1) on lUN.

- SUBROUTINE REW(lUN)

o

•

•
o

•
COMMENTS ABOUT THE FORTRAN ROUTINES USED. Page 1-11

Does REWIND LUN~

10. Initiation routines.

10.1 INIT1
Here all mashine depended variables are' set. See also' chapt~r 1.4~·

10.2 INIT2
This routine reads the file gYSATOM and sets up the character table,
the symbol table anrl the list-space memory. Also some variables
corresponding to some LISP atoms are dpfined. Tt is recomrnendpd that
INIT2 is replaced by a c~l] to ROLLIN as soon as a working system is
generated.

•

APPENDIX A

CROSS-REFERENCE LIST OF FORTRAN ROUTINES.

0 Routine: Calling:

~AIN INIT' INIT2/ROLLIN LTSPF3 (L~PEX)

INJT2 JREAD RDA1 SETCHT MESS
LISPF3 All routines hut:

0 TNTT' INIT2 MAIN (These are not called).
REHASH DMPIN DMPOUT (These and th~ followin~

DMPTN2 DMPOU2 RDA' are only called indirectly).
WRA' RDA4 WRA4

IREAD RATOM CONS FPUSH APUSH2 APOP2
RATOM MATOM MKNUM CONS SHTFT
MATOM GARB PUTCH GETCH
MKNUM GARB MESS
SHIFT LSPEX MESS GETCHT RDA1 MATOM

IPRINT PRIN1 TERPRI
PRIN1 PRINAT TERPRI APUSH2 APUSH3

APOP2 APOP3
PRINA! GETNUM TERPRI GETCH GETCHT GETPN
TERPRI WRA1 MATOM PUTCH

0 GARB MARKL MESS IPRINT REHASH
GETCH PUTCH TERPRI LISPF3

REHASH GETCH

0 CONS GARB
SUBST CONS APUSH APOP FPUSH
EOUAL GETNUM APUSH2 APOP2 COMPPN
NCHARS PRIN1 MKNUM APUSH
MESS RDA4 ~1RA4

ROLLIN MOVE REHASH REW DMPIN DMPIN2
ROLLOU GARB RFW DMP()UT DMPOU2
LSPEX J PR r~!T MKNUM tAFSS TERPRJ
GETPN GETNUM
COMPPN GETPN GETCH

• I
1

" •• oj.

I '

j
("~

- - - - .-

(--'~I

•

APPENDIX B

DEFINITION OF EVAL APPLY READ AND PRINT.

- ,--- --~------~-~-'--
<DEFlNEQ -- -.- .. ,.

<LISPF3
(LAMBDA (N)

(PROO (EVALSW ERRFN ALIST *BACKTRACE *BACKTRACEFLG)
(AND (EQ N 1) (PRINT "LISP F3 etc."»
(RESET) I

(APPLY 'LISPX NIL)
(ERROR 25 'LISPX NIL NIL>

<LISPX
(LAMBDA NIL

<EVAL

(PROO NIL
LOOP (PRINT (EVAL (READ»)

(GO LOOP)

(LAMBDA (FORM)
(COND «OR (NUMBERP FORM) (STRINGP FORM» FORM)

<APPLY

. «ATOM FORM)
(COND «FORM ON ALIST?) (USE BOUND VALUE»

«NEQ "TCAR FORM) 'NOBIND) (CAR FORM»
(T (ERROR 1 'EVAL FORM FORM»

(T (SETQ EVALSW T)
(SETQ ERRFN 'EVAL)
(EAPPLY (CAR FORM) (CDR FORM>

(LAMBDA (FN: ARGS)

<£APPLY

(SETQ EVALSW NIL)
(SETQ ERRFN 'APPLY)
(SETQ FORM (CONS FN ARGS»
(AND FN (EAPPLY FN ARGS>

(LAMBDA (FN ARGS)
(COND «LITAToM FN)

(COND «GETD FN) (APPLYFN2 (GETD 'FN) ARGS»
(T (ERROR 2 ERRFN FN FORM»

i (T (APPLYFN2 FN ARGS>
! <APPLYFNl '

- --.---·---i·.---1LAMBDA'(FN ARGS) "
: (COND «SUBRP FN) (AND EVALSW (SETQ ARGS (EVLIS ARGS»)
; . ___ ,_ . ____ .. . - (SAPPLY FN ARGS» .

«FSUBRP FN) (~APPLYrN ARGS» .
(T (ERROR 2 ERRFN FN FORM>

~- ...,....--~--- --"..--- ~ ... - - - - - -~........----~--.,-----

I .

__ . __ - _. ____ ~-_-------.--.---- ~ ___ ~ _: __ ---~-~-:------- .. -. __ , - ---0- ---- .. -------

____ . _ _ ____ ~ _ ______ __ _ __ __ . _________________ _ .'::;;i._---. __ A_-, __ -_____ - ~--<:._-~-__ "'__ - - - -- -- -- - - - ~- ,---

,

, i

,
" .~- ! -~~:-' -..

o

, -

..
<APPLYFN2·
(LAMBDA (FN ARGS)

. (COND «NLISTP FN) (ERROR. 2 ERRFN FN FORM»

<LAPPLY

.'.'_. (T (S~CTQ (C.R. FH) . .' _, _'

(L~BDA (AND EVAI,.SW (SETQ ARGS~ (EVLIS ARGS»)
(LAPPLY FN ARGS» , .

(NLAHBDA (LAPPLY FN ARGS»"
«SUBR FSUBR) (APPLYFNl (CDR FN) ARGS»
(FUNARG (PUSH ALIST)

(SETQ ALIST (CADDR FN»
(SETQ RES (EAPPLY (CADR FN) ARGS»
RES)

(ERROR 2 ERRFN FN FORM>

(LAMBDA (FN ARGS)

<SAPPLY

(AND *BACKTRACEFLG
(SETQ *BACKTRACE (CONS FORM *BACKTRACE»)

(PUSH ARGS ON ALIST)
(SETQ-RES TEVLAST (CDDR FN»)
(AND *BACKTRACEFLG

, (SETQ *BACKTRACE (CDR *BACKTRACE»)
RES>

(LAMBDA (FN ARGS) _
(JUMP _TO_CODE JOR IN>

(GETD
(LAMBDA (FN)

(COND «GETp· FN 'FNCELL»
i «SUBRP FN) (CONS 'SUBR FN»
. «FSUBRP FN) (CONS 'FSUBR FN>

<ERROR . .
(LAMBDA (ERRORN FN ARGS FORM)

(APPLY 'SYSERROR
- - -- ~- - ~--:- r.-.DU-.. (LIST ERRORN FN AR~ FORM>

\

<SYSERROR
(LAMBDA (ERRORN FN ARGS FORM) .

(ERRORMESS ERRORN)
(PRIN1 FN)
(~RIN1 1_)
(PRINT ARGS)

- - '\ (RESET>

,
\

'\

~ ___ J __ _____ • ~ _______ ~___.. -~ - ~ --. h" ----~------ -.------------- ---------- ~- - -----... ~-..,..

•• -------... __________ • __ _ r~ __ .____ _ , ... _... - ---_..co

_____ ___.., _____ .' • _____ • _____ • _____ - - - - -~--.-~--- -~ - -- - - -- -<- """"t. -.. -

-. --_. -.--------------.~-------- ------ -.--.... --- ~-.---~ --- ~----

-'- - - ~.-- ~ - --~ ---~-------
-- ---- ---~-~--- - -_ -, - ---- - -~-~ -­~---~-~-~ ----_. ---- ---- .----- ----~--- --- ~- _._.---

.. ~-- -- .p. - ---~.~ - ---~--~~-- .-.---.--~--- -----~ ... --~----.-----~-- -~-~-~------~--:- -~ -------......... ---- ------ --~ --- _ - ---

__ ~__ _ _____ ~ __________________ ~ ___ ._~-_.-------- p _________________ - ___ • ______ ~ ___ ~ ____ •• ___ __'__ _ __;_--~__:_-----;:-~.------- ... --... -~----- _ ,__ < ~ ___ ri ... __ •

- -- -- -~- ~~---~-- -. - .- ~-~ ..,--- ----.:...----:.-------------~----- ---~- ---.....,.. --- --- --

---- ----- ~---- -- --- . --~ ._--------- --- -~----~..............------,-~~---"'---- -----------------'-~--
\, ~ .

00------_. --~ _____ ~--~ -.-~- - -'---------.-.-- -.-.~---~---------- .-.-~- - - -

, i

o

•

(PRINT '"LISP F3 READ -- 7 FEB 79")
(PRINT '(VERSION 0»
<DEFINEQ
<BRSTK
<LAMBDA (X)

(RPLACA BRSTK (PLUS X (CAR BRSTK»)
(COND «ZEROP (CAR BRSTK»

(SETQ ·FLG NIL).- - . - . -
. (SETQ -B'RSTr- tC1YJrtrRSTKt1)-- , '-~
«MINU~P (CAR B~S~K» (SETQ OB NIL»

<READ-L
(LAMBDA (Sl SN)

(PROG (X)
L (SETQ X (READ-V»

(AND (EQ X '~» (GO R»
(AND (NULL Sl)

<SETQ Sl (SETQ SN (LIST (READ-S X>
(GO L»

(COND «NEQ X 'J.)
- - - lRPLACD SN (LIST (READ-S X»)

(SETQ SN (CDR SN»
(GO L»)

(SETQ X (LIST X» -,.\
I

o

o

(SETQ X (READ-L X X»
-(RPLACD SN

(COND «AND (LISTP (CDR X»
(NULL (CDDR X»)

(CADR X»
(T X»)

R (RETURN Sl»»

<READ-S
(LAMBDA (X)

(SELECTQ X
(J ((R EAD-L))
(J) (BRSTK 11 NIL)
(S' (BRSTK 1)

X»>

(PROGl (LIST 'QUOTE (READ-S (READ-V»)
(BRSTK -1»)

<READ-V
(LAMBDA NIL

<*READ

(OR FLG (SETQ OB (RATOM»)
(SELECTQ OB

(,< (SETQ BRSTK JCONS 1 BRSTK» 'J()
(J> (SETQ FLG T) (BRSTK -1) 'J»
(J((BRSTK 1) OB)
(J) (BRSTK -1) OB)
OB»>

<LA"MBDA --NIL- ------------ - ------- .------ -_.,-

(PROG (FLG OB (BRSTK (LIST 0») .. ".~" r-~>' , · _n.··· ... (RETURN ~ (READ-S, (READ-V> > - .. - ~

I
(SETOQ REA~FNS (BRSTK

• (SETQO READCOMS ftLISP
\ (SETO READGENNR 0)

READ-L READ-S READ-V -READ»
F3 READ -- 7 FEB 79")

I STOP

I]"' h- -, '},.,T -

o

o

o

o

•

(PRINT '"LISP F3 PRINT -- 7 FEB 79")
(PRINT '(VERSION 0»
<DEFINEQ
<EDITFLAG
(LAMBDA NIL (SYSFLAG 7»>

<ESCAPEFLAG
(LAMBDA NIL (SYSFLAG 5»>

~-

<EXAMINE
(LAMBDA (S) (PROGl (UNKWOTE S) (SETQ *NKW *COUNT»»

<LASTDEPTH
<LAMBDA (S)

(PROG «DEPTH LEVEL»
-C -CC~(jND «OR (GREATERP DEPTH (PRINTLEVEL»

(NLISTP S»
(RETURN (DIFFERENCE DEPTH LEVEL»)

(T (SETQ DEPTH (ADDl DEPTH»

<LINEBREAK
<LAMBDA (S)

<SETQ S (UNKWOTE (CAR (*LAST S>
(GO L»

(COND «NULL PPBREAK) (SPACES 1»
«AND (LISTP S)

(LITATOM (CAR S»
(EQUAL -'(FSUBR • QUOTE) (GETD (CAR S>

<LMARG

(TAB (PLUS -19 *RMARG»)
«AND (EQ 1ST 'PROG) (GREATERP I 1»

(TAB (PLUS (LMARG)
(COND «ATOM S) -5) (0)

«OR *LBEFORE (LISTP S» (TAB (LMARG»)
«SPACES 1»

(LAMBDA (X) (IOTAB 7 X»>

<MIN
(LAMBDA (X Y) (COND «LESSP X Y) X) (T Y»»

<PPFLAG
(LAMBDA NIL (SYSFLAG 2»>

<PRINT-A "'\ " 1" J, ... ~ 1. -,.-

(LAMBDA (A) (RPT *NKW '(PRINl n'n» (PRINO A (ESCAPEFLAG»»

i· .. --- <-- ..

i
.. - .. J ,,-. ,

o

O-n

(PRINT-L
(LAMBDA (S RP)'

.... -. -.' .

_ 4'

(PROG «1 0)
_ (LEVEL (ADD1 LEVEL»

(LMARG (LMARG»
(1ST (CAR S»
PPBREAK X) ,

(RPT *NKW '(PRINl ft'ft»
(PRIMl (COND (RP ft(ft)

«AND (PPFLAG)
(GREATERP

(SETQ RP (LASTDEPTH S»
*HAXPAR»

1I(ft)
(T (SETQ IP 0) W(W»)

(COND «PPFLAG)
(SETQ PPBREAIC

(AND (LESSP LEVEL (PRIMTLEVEL» 1 .. ·_··-

(OR (EDITFLAG) I

(GREATERP
.. (PL'US '--'"''~-''''' -

(PRINTPOS) - .. --.-.-~ .~--.
(NCHARS S)') .- .-~ . -

.. -. - -- ---- -- - ---------- -------~·MARG>-~---------· '-'

L

. (LMARG (M IN (PL.US - 3 -RMARG)
(ADDl (PRINTPOS)

(SETQ X
(COND «QFLAG) (EXAMINE (CAR S»)

«CAR S)
(OR (ZEROP I) (LIHEBREAK X»
(PRINT-S X (AND (NULL (SETQ S (CDR S») RP»
(SETQ I (ADD1 ~»
(AND (PPFLAG)

(EQ I 1)
(NLISTP 1ST)

i~ -­

,

(LESSP (PRINTPOS) <)

(WEIGH (LMARG) *RMARG -WEIGHT 1» l ,

(LMARG (ADD1 (PRINTPOS) ~
(COND «NULL S» - .. _.- 'il

«NLISTP S) .(PRIHl ft • W) (PRINT-A S»
«EQ I (PRINTLENGTH» (PRINl ~ ___ ft»
«GO L»)

(SELECTQ RP
(0 (PRINl w)w».
(1 (PRINl ")W»
NIL)

(LMARG LMARG)
(RETURN S»»

t .

--+---_. -.~--- ...

. ---.:...-...:. .. ~
-. _. I

I
.. ~

- .. -~-- . 1
1

. - -- -- - .,j
;

(PRINT-S
(LAMBDA (S RP)

(AND (EQ LEVEL· (PRINTLEVEL'» (SETQ S .~ ••• »
(COND «NLISTP S) (PRINT-A S) (SETQ '~LBEFORE)l.

(T (PRINT-L S .
{SELECTQ RP «0 NIL) RP) (SUBl RP»)

(SETQ -LBEFORE T»

------ ---- ~---- --,--------- ~-- -- -- ~~ - ~ - -

o

o

o

o

•

<QFLAG
(LAMBDA NIL (SYSFLAG 3»>

<RMARG
(LAMBDA NIL (IOTAB 8»>

<TAB
(LAMBDA (X)

(AND (GREATERP (PRINTPOS) (SUBl X» (TERPRI»
(PRINTPOS X»>

<UNKWOTE
(LAMBDA (S)

(PROG NIL
(SETQ *COUNT 0)

L (AND (LISTP S)
_ (EQ (CAR S) 'QUOTE)

(LISTP (CDR S»
(NULL (CDDR S»
(SETQ *COUNT (ADDl *COUNT»
(SETQ S (CADR S»
(GO L»

(RETURN S»»

<WEIGH
(LAMBDA (Xl X2 Wl W2)

(QUOTIENT
(PLUS (TIMES Xl Wl) (TIMES X2 W2»
(PLUS Wl W2»»

<-LAST
<LAMBDA (L)

(PROG «I 0»
L (RETURN (COND «NLISTP (CDR L» L)

«EQ I (PRINTLENGTH» '(---»
(T (SETQ I (ADDl I»

(SETQ L (CDR L»
(GO L»

<-PRINT
(LAMBDA (X)

>

(PROG «*NKW 0)
(-RMARG (RMARG»
(LEVEL 0)
-LBEFORE .COUNT)

(AND (QFLAG) (SETQ X (EXAMINE X»)
(PRINT-S X)
(TERPRI)
(RETURN X»»

(SETQQ PRINTFNS
--(EDITFLAG ESCAPEFLAG EXAMINE LASTDEPTH LINEBREAK LMARG MIN PPFLAG

PRINT-A PRINT-L PRINT-S QFLAG RMARG TAB UNKWOTE WEIGH -LAST
·PRINT»

(SETQQ PRINTVARS (-MAXPAR -WEIGHT»
(SETQQ PRINTCOMS "LISP F3 PRINT -- 7 FEB 79")
(SETQ PRINTGENNR 0)
(SETQQ -MAXPAR 3)
(SETQQ -WEIGHT 8)
STOP

o

o

o

o

Ha 75

McC 62
No 71

No 78
Te 74
Sc 67

A. Haraldsson:

J. McCarhty:
M Nordstrom:

M Nordstrom:
W.Teitelman:
H. Schon etc:

•

APPENDIX C

REFERENCES

"LISP-DETAILS. INTERlTSP 360/370"
DLU 75/9.
"LISP 1.5 Manual" ~IT Press 1962.
"LISP Fl - A FORTRAN Implementation
of LISP 1.5", DLU71/1

"LISP F3 - Users Guide", DLU 78/4.
"Interlisp Reference Manual", Xer~x Corp.
"An efficient machine independent
procedure for •••. " CACM Aug 1967.

