IMPLEMENTATION GUIDE AND
SYSTEM DESCRIPTION.
by
Mats Nordstrom

June 1978
|
i é Mailing address:
; Datalogilaboratoriet
! Sturegatan 2B
! S-752 23 UPPSALA
’ SWEDEN

This work has been supported by the Swedish Board for Techniecal
Development (STU) no 76-4253.

—_— - - x —_

)

i

R e T e U L

o e

Y. e W,

g iy e

ABSTRACT.

A LISP interpreter is written in FORTRAN IV. The LISP dialect
used is a subset of INTERLISP. This paper consists mainly of

- implementation guide.

- program description.

- Advices for changing and adding new FORTRAN code. ‘
A1l facts of how to use the LISP F3 system are found in No78 (LISP F3
- Users guide).

U R TN SR e AR, 7 ey T s e 8

f-

Py B P A B W R e SN AR e 2 s

B o T e 4

TABLE OF CONTENTS.

How to implement LISP F3 on your computer.

Internal representations.

Recursive programming in FORTRAN

The eval-apply system.

How to add new SUBR's and FSUBR's.

. Advices for saving space if your computer is a mini.

. Comments about the FORTRAN routines used.

Appendix A: Cross-reference list of FORTRAN routines.

Appendix B: Definition of eval, apply, read and print in
LISP.

Appendix C: References.

e o o 3 .

NN WM =

gt i

g RN

) W AU P SR v AN ol

3,
¥

ol

CHAPTER 1
HOW TO IMPLEMENT LISP F3 ON YOUR COMPUTER.

The LISPF3 system consists mainly of three parts:

A. The interpreter written in FORTRAN 4.

B. 'SYS-ATOMS' A file which will be read by LISPFR at initiation.

C. Additional functions, written in LISP.

Before compiling the interpreter, the following steps must be checked
in order to fit the system into your computer.

1.

If your compiler requires it, insert a PROGRAM statement at the
beginning of the FORTRAN code.

2

Observe, that the COMMON block is separated from the rest of the
FORTRAN code and replaced by something like:

/INC F3COMMON

instead. This makes it easy to change the common block, but if you do
not have any source editor which performs "including" you must write a
trivial preprocessor to take care of this.

3. Half word integers.

The system is delivered with some arrays declared as INTEGER¥2. If
you do not have this facility (or if you do not want it), change
INTEGER*2 to INTEGER in the "COMMON" block and in the routines DMPIN2
and DMPOU2.

4, Non-standard FORTRAN routines.
The routines GETCH and PUTCH must be coded in assembler. They are
used for moving bytes (characters) to/from an array. Calling format:
CALL PUTCH(VEC,CH,I)
CALL GETCH(VEC,CH,I)

Move from/to place I in VEC to/from CH. The character in CH is 1left

justified (with space padding) Characters.in VEC_are numbered 1,2,3 .

eee (1 = the Teftmost one).

The rodiigérMSLEFT which returns the number of millisecénds left in
the job. Replace with a dummy(return O0) if you do not have any
similar time-scheduling routine.

s

et o3 O B S By B o s a0

B n

R N

< —

5. <Changes of arrays etc.

In order to make LISP F3 as machine independent as possible, quite
large number of constants must be preset in routine INIT1.

NAME

NATOM=
NFREET=
NSTACK=
NHTAB=

NPNAMF =
BYTES=
MAXPN=

NBYTES=nb

MAXMES
NBMESS

NCHTYP=

MAXREC=

MARG=
LUNIN=
LUNUT=
LUNSYS=
CHDIV=d

MAXBIG
MAXINT

MAXLUN = .
“TOBUFF

n
f
s
h

p
b

mp

C

r

m
1li
1u
1s

REMARK ' P “CORR. ARRAY IN COMMON
Nr of atoms. PNP(n+1)
f > 2%¥n, Nr of atoms + cons cells. CAR(f), CDR(f)
s>500 © STACK(s)
h == 1.5%n HTAB(h)

== means "about"
p == 2¥%n PNAME (p+1)

Nr of bytes in an INTEGER.
Length of the longest atom <= MARG below.
ABUFF, BUFF,RDBUFF,
PRBUFF(2%*mp)

nb = 2¥%¥y yhere x = nr of bits in a

byte (normally x = 6 for BCD, 7 for

ASCIT and 8 for ERCDIC). CHTAR(nb)

Number of messages.

Max nr of characters in a message.

Change it only when you add more

(and longer) messages to the system.

Size of IMESS:

im = MAXMESS*NBMESS/BYTES IMESS(im)

Nr of different "character types"™

such as () < > etc.

¢ = size of COMMON /CHARS/.

Used as "buffer size" for binary

I/0. (The routines DMPIN/OUT,

DMPIN2/0U2).

Right margin in I/0 buffers.

Logical input.

Logical output.

Logical unit for the SYS-atoms.

Used for calculating an index from a

character. If CH is an INTEGER,

holding a character left justified the

value of i=ABS(CH/d)+1 must be in the

range (1,nb). CHDIV is only used in

routines GETCHT and SETCHT. Make sure

that they work! If they do not, LISPF3

will fail while reading the SYS-atoms

and consequently never reach the LISP

top-loo0p.

The largest positive integer that fits

in a full word.

The largest positive integer that fits

in the word size used for CAR and CDR.
(If you don't use half word

integers, MAXINT = MAXBIG).

The largest logical unit number

allowed. ’

Size of ABUFF BUFF RDBUFF PRBUFF.

\

e G AR SRR S 1

a

6. :

Depending on how many bytes an INTEGER can hold you may have to change
the FORMAT(..,A%) in RDA4 and WRALY to FORMAT(...,AS5) (or whatever
wordsize you have).

7.
It is now time to compile and run the system. Assign your
input(LISP-CODE) to 1logical wunit 1i (normally teletype), and your
output to lu- (normally teletype). The file SYS-atoms should be
assigned to 1logical unit 1s. If all is OK so far, the system starts
(after reading the SYS-atoms) with a message
LISP F3, LATEST UPDATE =
8.
Read those LISP-packages you want to use.
To change standard input in the "scratch" system, use
(IOTAB 1 unit)
You may choose between:

BASIC1 (this one is necessary)

BASIC?2

101

FUNC1 DE,DF etc

DERUG1 BREAK1,error

DEBUG?2 BREAK,ADVISE, TRACE

MAKEF MAKEFILE

EDIT STRUCTURE EDITOPR >

BASIC2 and IO1 are almost necessary to do something meaningful.

9. ,

For convenience you may now save your system by doing
(ROLLOUT unit)

10.

Next time you enter LISPF3 start with (ROLLIN unit).

11.
Or, if you want to, replace the subroutine INIT2 by CALL ROLLIN(unit)
and you have not to care about the SYS-atoms any longer.

DEC-10 Users only: If you have got LISPF3 on a DEC-tape, this tape
also contains:

- necessary MACRO10 routines (extension MAC)

- LISPF3.CMD A Commandfile for compiling etc.

To compile, do EXEC \LISPF3

IBM Users only:
Your tape also contains GETCH and PUTCH written in Assembler.

R

et PN

citti RRPHIE dohass Ty A LR

RPN ARG W3

Additional hints:

- The print routine uses FORMAT(1X,150A1) for writing. If vyou write
on a non-printer file, and want ¢to get rid of the first blank
character, change in the routine WRA1.

- The range for small integers (MAXINT - BIGNUM)/Z should not be too
small., Make it > 1000.

- The routine GARB may call LISPF3 "recursively"” in case of error.

- This is done only in order to offer the user a nice error handling,

but if your OS checks (and prohibits) "recursive" calls in FORTRAN you
must either do it indirectly through an assembler routine or replace
the call by an "error-return" by locking the stacks and placing an
error code at the top of FSTACK. (See chapter 7.7!').

R e B MR PSR SR

%wn 5k, o SR SRS I Nt £ olgots

o im0 i S e B B S b i AN R AR S R it 5

©

CHAPTER 2

INTERNAL REPRESENTATIONS."

On the next page there is a picture over the most important areas and
pointers used by the system. Pointers are marked with straight arrows
(cmmcmee >) and the flow of characters are marked with sparse arrows

Alpha numerical atoms:

Let us follow what will happen when the atom FOO is read and printed.
FOO is stored in RDBUFF by a previous FORTRAN-READ (with A1 format).
RDPOS points to "the next character to be read". FO0O is now inserted
to ABUFF and escape characters are moved. Before being moved the
character 1is used as an index in CHTAB to determine its type. A hash
address is calculated and used as entry in HTAB. Suppose that FOO has
not been read before. After finding an empty place in HTAB, this
place is updated to point to NATOMP and NATOMP is increased by one
(new atoms are stored consecutively). Suppose that NATOMP had the old
value i. The printname FOO is now stored in PNAME and JWP,JBP are
updated to point to the next empty character position in PNAME. (Also
printnames are stored consecutively starting from the bottom). The
starting address for the printname is stored in PNP(i) and the ending
address+1 is stored in PNP(i+1). A pointer to the atom NOBIND is
placed in CAR(i) and CDR(i) is set to NIL. Finally the pointer i is
returned to the caller.

If later on FOO is to be printed, the print routine recognizes FOO as
an atom (the pointer value { 1is below NATOM). The printname is
fetched using PNP(i) and PNP(i+1) and moved the PRBUFF at position
PRTPOS. While moving CHTAB is consulted to check if escape characters
(%) are needed. When PRBUFF is filled up (PRTPOS > MARG) or if
terpri() is called, the 1line is printed using FORTRAN-WRITE with
format (1X,150A1).

[— T e UUU N U

Address space: Lenght = NATOM MAXINT
1 { | 1 1
'NIL NATOM ' NFREEB NFREBT‘ BIGNUM NUMADD ﬁ’
- S——v — " ’ — .
* atams and lists big integers small integers
strings - T : o o
' B B ead buffer) : o
| o R0 1.---1
' CHTAB 1 IMARGR .tj!DPOS MARGR IOBUFF
' NBYTES)
‘ comsulting —30 /
1 —
- ‘ i buffer) ,
. FOO - - 1
i
% - - - - - = ~ \»]WP
[~ 3 N JBP
y PNP Y PNAME
g NIL 1 \
| \ Pprintnames
-1 |y
~1 & some imden2l 7] \
\":'Fym
NATOMP
Unused atam '
space . oM --'...-__..... —_——
N ; ANA . .
' } NFREEB naTawe1| | 4 big integers -
] > /
NHTAB | ‘byte address , CNUMBP NPNAME
Vha\r;]\l' - : in PNAME
: - free 1ist start INFREEP
(_) table o/
T ‘ | ’ v, /
O t Y CHTAB
C ~ P NBYTES
Vd
4
l/ 1
int- buffer) U - ,
! | FOO
_IrT = PRIPOS ————— IO’W%

Small integers:

The address space NFREET+NATOM -~ MAXINT is reserved for small
integers, and they are stored in the list structures as pointers. The
numerical value of a small integer is pointer-NUMADD.

Big integers:]
Big integers are represented as pointers in the address ‘space NFREET+1
- BIGNUM. The length of this range is NATOM. The integers themseélves
are stored consecutively as full word integers in PNAME starting from
the top and using NUMBP as "free integer space pointer". When no more
space for big numbers is left, a big number’ garbage collection is
activated.

Strings:

Strings are treated the same way as literal atoms except for that they
do not have an entry in HTAB and that a pointer to the atom STRING is
stored in CAR(i). ("" are removed from the printname by the read
routine and added if asked for by the print routine).

Substrings:

Substrings are represented as pointers in the same range as those
representing atoms and strings (1,NATOM).

CAR(substring) = SUBSTR

CDR(substring) = (sourcestring start . length)

Substrings do not have a printname of it's own (and thus do not occupy
space in HTAB or PNAME).

Lists:

List structures are represented as pointers in the range
(NFREEB,NFREET). The variable NFREEP points to the free list. After
a compacting garbage collection the free list is a consecutive list of
cons cells starting from NFREEP and growing backwards down to NFREEB.

1
\

o

N
e :

CHAPTER 3
RECURSIVE PROGRAMMING IN FORTRAN.

The LISP F3 interpreter 1is an almost direct translation of the
definition given 4in appendix B. That definition is highly recursive

and in this chapter we will explain how recursion has been programmed
in FORTRAN.

The stacks:

There are two stacks for recursive calls of sub functions. One stack
(named ASTACK) is used for saving values which are to be saved during
a recursive call. The other stack (named FSTACK) is used to hold
return jump indicators, here represented as integers which are used in
a computed GOTO-statement. Both ASTACK and FSTACK are physically
stored in the same vector STACK using IP and JP as stack-top pointers.

NSTACK -==> ccccece--

part ASTACK
JP -==>

IP --->
part FSTACK

|
: I
Pushing and popping are done by the routines
APUSH APUSH2 APUSH3)
APOP APOP2 APOP3
FPUSH
and sometimes (for efficiency) in line as in

998 I = STACK(IP)
IP=IP - 1

RECURSIVE PROGRAMMING IN FORTRAN. . Page 3-2

Recursive calls and returns:

All recursive functions are coded -in the FORTRAN subroutine LISPF3.
That means .that they are not subroutines themselves put just pieces of
FORTRAN code. _

A c2ll is performed by saving necessary values with APUSH (or APUSH2,
APUSH3) and by saving a return jump indicator with FPUSH. . ‘
After all this pushing follows an unconditional GOTO to the. "function"
and then follows (normally) a statement with the same statement number
as indicated by IND, there the execution is to continue at return from
the called function. Saved values are then fetched by a proper number
of calls to APOP.)

A return from a recursive function is done by GOTO 998 where the
indicator saved on FSTACK is popped and used in a computed
GOTO-statement leaving the program control to the caller.

N.b.

In order to give the user a chance in case of stack overflow, we have
done the following:

Whenever the difference JP-IP becomes less than a preset value MIDDL,
MIDDL is divided by 2 and SYSERROR is called (which in turn normally
calls the break package). When MIDDL has become too small RESET is
performed and MIDDL is reinitialized to its original value.

CHAPTER U

THE EVAL-APPLY SYSTEMf

Eval-apply and all SUBR's and FSUBR's are handled by (or called from)
the subroutine LISPF3 which is "the heart of the interpreter".
Calling format is

CALL LISPF3(IND)

where IND 1 means "this is the first call to LISPF3".
2 means "restart the interpreter"

0 means "call SYSERROR with error number -IND.

AN

The top level loop is defined as

lispx();
error();
reset();

where lispx() is a SUBR defined as
loop: print(eval(read())); go loop;

but may be redefined by the user.

Transmission of arguments: :

The variables ARG ARG2 ARG3 are reserved to hold the first three
arguments to SUBR's.

In case of SUBRN (see below) and FSUBR arguments are pushed onto
ASTACK and the number of arguments are held in the variable IARGS.

The value of a function is assigned to IRES before returning and IRES

. © s EQUIVALENCE:d to ARG. (Sometimes an argument just passes through).

In addition the variable FORM holds the form currently under
execution.

(In the definition in appendix B, evlis is used for evaluating
arguments also to a SUBR. 1In practice arguments to SUBR's are pushed
onto ASTACK and if necessary spread to ARG ARG2 and ARG3 afterwards.)

THE EVAL-APPLY SYSTEM. ‘ . Page U-2

Variable bindings:

LAMBDA, NLAMBDA and PROG variables are pushed onto an association list
(the variable ALIST) in traditional manner. This list should be
thought of as a simulated variable stack (and is used implicitly by
eval, apply setq etc.). :

Representation of SUBR's and FSUBR's etc. ,
The type of a function (if not LAMBDA or NLAMBDA) is indicated by the
pointer value of the atom itself as seen in the following picture:

N

NIL

) Q.) R) G) P) QR) QT | U
1 SURRO SUBR1 SUBR2 SUBR3 SUBRN- FSUBR

1 SUBR's I FSUBR's I

SUBR's with no arguments are numbered in the range 1-SUBR0 and so on
for SUBR1, SUBR2 and SUBRS3. In the range SUBR3+1 - SUBR we have
SUBR's with an indefinite number of arguments (as PLUS). FSUBR's are
numbered in SUBR+1 - FSUBR.

These conventions make it easy for apply to determine the proper
argument actions and then jump to the corresponding code using the
pointer value of the atom in a computed GOTO.

From the user's points of view apply uses the LISP function getd(f) to
determine the type of f. Still as seen from the user getd(f) returns
(SUBR . f) or (FSUBR . f) in the case of FORTRAN coded 1lisp
functions.

In practice getd(f) is used inline in eval-apply and does not
construct the list (SUBR . f), but as (SUBR . f) is a legal function
form, cases like ((SUBR . f)) are also taken care of.

Error handling:
Two classes of errors may occur in the system.

1. Hard errors - reset() is called. -

These errors jump to the reset point (statement nr 1) in LISPF3 (if
detected inside LISPF3) or perform CALL LISPF3(2) if detected by an
other subroutine.

Typical errors are stack overflow or very little space left in free
memory.

2. Soft errors - syserror() is called.
All these errors jump to a place where a call to

syserror(errnr, fn, args, form)
is built up and sent to apply for further action.

SYSERROR is defined as a SUBR which just prints a message and jumps to
RESET. Normally SYSERROR is redefined in lisp to make use of the

. break package after. the message.

THE EVAL-APPLY SYSTEM. o . Page 4-3

Removing of recursions:

Though eval-apply works as given in appendix B not all help functions
are called but placed inline. Moreover it does not recursively call
eval when a straight jump to eval is as good. This situation arises
when the form to be evaluated is the last one in .

- PROGN

- a LAMBDA body.

- a COND or SELECT clause.

Especially as (LAMBDA (..) S) is quite a common expression this little
trick saves a lot of good stack storage when the recursion digs down.

CHAPTER 5

HOW TO ADD NEW SUBR'S AND FSUBR'S.

There are two ways of adding new lisp-functions in the interpreter.
The simplest way is to use xcall(nr,args), the other way is to add
code inline in the same fashion as other SUBRS etec.

1. How to use xcall.

The SUBR xcall is defined just to return NIL, but given :to LISPE3-
users as a handle where you may add calls to other FORTRAN routines.

It is recommended to add your pieces of code inside the FORTRAN
function XCALL(nr,args) (for example some FORTRAN call statements) and
use nr as a "code selector" and args (a2 1list of arguments) as the
arguments to the specific new routines. Proper calling functions may
then be defined as LISP functions using xcall.

Note:
If your routine makes use of some other SUBR you must write the code
inline in LISPF3 to make use of the recursive calling conventions.

2. How to add new SUBR's etc but not using xcall.
In this case you have to do:

a) Insert the function name in the file SYSATOMS. The location of the
name is important! First seleet the corresponding list (the first one
is all SUBR's with 0 arguments, second one is 2all SUBR's with 1
numerical argument, third one is 2all SUBR's with 1 nonnumerical
argument. Then comes those with 2,3, indefinite numbers and finally
all FSUBR's).

Second, place the name preferably in alphabetical order in the
selected list and remember the number of the location.

b)Y ‘Change the' corresponding GOTO-statement determined by the type --of-

the function. Insert the statement number refering to your own piece
of code so that the order in the selected 1list from a) still
corresponds to the GOTO statement. It is also recommended to change
the comment card telling which function refers to which statement
number.

c¢) Put in your piece of code somewhere.
At entrance the arguments are held in ARG ARG2 ARG3 (or in the stack

. ASTACK in which_case NARGS = the number of arguments).

Normal return is then done by assigning IRES to the result value and

HOW TO ADD NEW SUBR'S AND FSUBR'S. . Page 5-2

then doing GOTO 998. (In fact ARG and IRES are equivalent). If your
code is a SUBRN or FSUBR you also have to reset ASTACK before
returning. The ‘variable EJP holds the o0ld value of JP as before

. pushing. arguments onto the stack, so just reset JP to EJP before
returning. :

Warning: ’ '
-If. you- make .use of CONS (or. MKNUM or- MATOM) explicltly or implicitly,;_
variables which earlier have been given lists as a value must be saved
in case of a garbage collection. To be sure that new structures are
recognized as active storage by the garbage collector (if they can not
be reached in a normal way) the three variables TEMP1, TEMP2 and TEMP3

are given and should be used for temporary pointers to "lists under
construction".

CHAPTER 6

ADVICES FOR SAVING SPACE IF YOUR COMPUTER IS A MINI.

- Do not use double buffering in I/0.

Some operating systems gives a choice between single and double
€; buffering as an option. Use single!

- Rewrite some routines in assembler. .

Especially FORTRAN 1/0 is used in a very trivial manner, and is very

é? ’ easy to recode in assembler. In many cases this will save a lot of
program storage. (See chapter 7 where those routines which make use
of I/0 are explained).

- Overlaying.
The following routines never call each other directly or indirectly
and should thus be possible to overlay on most computers:
LISPF3 vs. INIT1 INIT2. (INIT2 ought to be replaced by a call to
ROLLIN anyhow).
(GARB MARKL REHASH ROLLIN ROLLOU MOVE) vs.
(LSPEX NCHARS EQUAL GET).
But as the last list consists of very small routines only it is
probably not worth overlaying. However this list can be extended by
the routines (IPRINT PRIN1 PRINAT TERPRI) if you remove the call to
IPRINT and TERPRI from the routine GARB, rename GARB to GARB1 and

Coree T o= idefine a small routine GARB-which calls GARB1 and -then does the
IPRINT call. '
é: See 3lso the cross reference listing given in appendix A.

- Removing code.

€= - - = 'ray>*Int GARB. - ‘Remove the parts that perform- atom - bignumber and
compacting gbc. Also remove the recursive (inline) code for list

marking and use MARKL only.

Remove REHASH.

This implies that ROLLIN/ROLLOU must read/write the entire 1list

space and the hash table HTAB.

b) In PRIN1. Remove the parts that are active during pretty-print
only.

CHAPTER 7

COMMENTS ABOUT THE FORTRAN ROUTINES USED.

The FORTRAN routines are grouped in the following manner. (See
appendix A, where a cross reference listing is given).

1.

2.

The "main" subroutine.
LISPF3

Input routines.
JREAD RATOM MATOM MKNUM SHIFT

Output routines.
IPRINT PRIN1 PRINAT TERPRI

ROLLIN/OUT.
ROLLIN ROLLOU MOVE

Garbage collection.
GARB MARKL REHASH

Help routines to LISPF3
COMPPN CONS EQUAL GET GETNUM GETPN LSPEX MESS MSLEFT NCHARS
SUBST XCALL

Push and pop.
APUSH APUSH2 APUSH3 APOP APOP2 APOP3 FPUSH

Other helproutines.
GETCH PUTCH GETCHT SETCHT

Fortran 1/0.

“RDA1 WRA1 RDAY4 WRAY¥ DMPOUT -DMPIN DMPOU2 DMPIN2 EJECT-REW -ir>:

10. Initiation routines.

INIT1 INITZ2

also

COMMENTS ABOUT THE FORTRAN ROUTTNES USED. 7 Page 7-2

1.1 SUBROUTINE LISPF3(IREE)

The eval-apply system and all FORTRAN coded LISP functions. See
chapter -4 for details.

2.1 FUNCTION IREAD(N)

(N is a dummy).

TREAD reads an S-expression into internal form. (See also appendix R
where TREAD is defined in LISP).

It uses RATOM to read separate tokens such as atoms numbers
parenthesises etec.

The value is a2 pointer to the constructed S-expression.

2.2 INTEGER FUNCTION RATOM(A,IOP)

Used by TREAD to read the next token from the input buffer RDBUFF.
(I0P = 1),

RATOM is also called from LISPF3 (IOP = 0).

RATOM classifies the token and returns a type (and a value 1in the
parameter A) as follows:

token returned value returned in A

atom 1 atom
(2 NIL
) 3 NIL
' y NTL
. 5 the atom

RATOM keeps < and > in a separate bracket stack and (if called frem
IREAD) < or > are never seen but returned as (or as a proper number
of)'s.

2.2 FUNCTION MATOM(L)

At entry abs(L) characters are stored in ARUFF. If L > 0 MATOM
creates an atom. Otherwise a string is constructed.

If an atom with the same printname already exists, ¢that atom is
returned as the value of MATOM; otherwise a new atom is created. 1If
no more space for atoms are left a compacting atom garbage collection
is performed.

2.4 FUNCTION MKNUM(N)

N is a full word integer.
Returns a small integer or big integer depending on--the numerical
value of N.

2.5 SUBROUTINE SHIFT(I)

~ COMMENTS ARPQUT THF FORTRAN ROUTTNES USED. - Page 7-3

Reads the next character from the input buffer RDBUFF (and reads a new
line into RDBUFF if necessary). The character is returned in CHR and
the type of the character in CHT. The table CHTAB is accessed with
the character value (range 1 - NBYTES) to determine the type. (A list
of different types is given in LISPF3 - Users guide).

If I = 1 at entry the previous CHR is stored in ABUFF (the buffer for
a printname given to MATOM).

If I = 3 at entry, the previous CHR belongs to a string under
construction and is stored in PNAME. : :

The escape character % is never returned by SHIFT but signals the next
character to be treated as a letter, digit, + or - sign (depending on
its type).

Normally SHIFT is called from RATOM (the flag IFLG2 = NIL) but
sometimes also from the code for unpack(x) in LISPF3 (IFLG2 = T). 1If
called from unpack, characters are read from PRBUFF instead and all
characters are treated 2s if they were prefixed by a %.

2.1 SUBROUTINE IPRINT(I)
CALL PRIN1(I)
CALL TERPRI
RETURN
END

3.2 SUBROUTINE PRIN1(S)

This is the routine which prints a S-expression. The format of the
output is directed by SYSFLAG(i) as follows: -

SYSFLAG nr value means
2 NIL fast printing
T pretty printing
3 NIL - - (QUOTE s) prints as (QUOTE s)
T (QUOTE s) prints as 's
5 NTL Do not add % or "
T Add % or " when so needed

for a correct read back.
(This flag is checked by
PRINAT).
7 Only used during pretty-print,

NIL Do not begin a new line if
the current expression will
fit on line.

T Begin a new line whenever a
sublist is found unless it is
the first (or sometimes second)
sub-expression.

|
|

A definition of PRIN1 in LISP is given in appendix B.

COMMENTS AROUT THE FORTRAN ROUTINES USED. Page 7-4

PRIN1 may also have been called from NCHARS in order to generate a2
printname. In this case TERPRI is responsible for not writing the
output buffer PRBUFF on the physical output unit.

3.3 SUBROUTINF PRINAT(X,NKW,JPOLD)

Prints an atom X or ... (if X = -1) or --- (if X = -2).

NKW is the number of '-s to be printed.

JPOLD is a saved stack pointer which is used to reset the stack in
case of error.

The printname is first stored in PRBUFF, then ’‘checked if it fits.
(That is why the size of the print buffer is twice maximum of a
printname).

If overflow has occurred TERPRI prints the line up to the o0l1d print
position and then the printname for the atom is moved to the proper
position in PRBUFF.

For each character sent to PRBUFF a test by the routine GETCHT 1is
performed to check whether a % is needed or not. This check is not
done if SYSFLAG(5) = NIL.

3.4 SUBROUTINE TERPRI

Writes PRBUFF on logical unit LUNUT and resets PRTPOS (the print
position) to LMARG (current left margin). If called from NCHARS (the
flag IFLG1 is not = NIL) output is not printed but the numbers of
characters (= value of PRTP0S-1) is accumulated to IFLG1.

4.1 SUBROUTIMNE ROLLOU(LUN)

The routine saves a binary pattern of the LTSP memory -to be used later
on (read by ROLLIN).

The following parts of the memory are written on 1logical wunit LUN,.
(The values of im,c and nb below are explained in chapter 1.14)

CINF(1-114) The 14 first words in COMMON /A/.

T T ' Used by ROLLIN to detect if rollin is -- - -
possible.

IMESS(1-im) All messages.

AREA(1-NAREA) COMMON /B/ up to (and including) DREG(7).

PNAME(..) Printnames. Only used upper and lower parts.

PNP(..) Printname pointers. Only used lower part.

CAR,CDR(=. .)-~ Only used lower(atoms) and upper(lists)
parts. The free list is not written.

BCOM(1-c) COMMON /CHARS/. (Character variables).

CHTAB(1-nb) The character translation table.

Before writing a compacting garbage collection as called in order to
save a lot of space and time by not writing the free-list-

CINF(1-6) consists of those variables which must not be changed until
next ROLLIN,.

CINF(7-14) are those local pointers which may be updated if the sizes
of arrays have been changed.

COMMENTS AROUT THE FORTRAN ROUTINES USED. Page 7-5

Arrays which may have been declared as short integers are written by
DMPOU2, others with DMPOUT.
ROLLOU rewinds LUN before returning.

y,2 INTEGER FUNCTION ROLLIN(LUN)

Reads a file produced by RCLLOU from 1oglcal unit LUN.

Jf rollin is not possible NIL is returned otherwise the value is LUN.
If the size of any array has changed since the last ROLLOU a 1ot of
pointers must be updated. This is done by the routine MOVE.

After reading, a new free list is constructed in the empty list space
and the atoms are "rehashed"™ wusing the routine REHASH in order to
establish a correct hash table.

Finally read and write buffers are cleared, REWIND LUN 1is performed
and LUN is returned as the value of ROLLIN.

SUBROUTINE MOVE(DIFF,MIN,MAX)

Used by ROLLIN to add DIFF to pointers in the range MIN < p <= MAX,
Pointers p are taken from CAR,CDR and ARGS(1-10) where ARGS is
equivalent to ARG ARG1 ARG2 etc. in COMMON /B/.

5.1 INTEGER FUNCTION GARB(GBCTYP)

This is the routine responsible for garbage collection. The kind of
gbe is indicated by GBCTYP:

GBCTYP action called from
0 Normal gbe. List cells only. CONS

1 List compacting. ROLLOU

2 Big numbers. MKNUM

3 Big numbers and atoms. MATOM, MKNUM

GARB may also have been called from LISPF3 (the LISP function
reclaim(gbetyp)). ST
Here is a short description of the working behavior of the garbage
collector:

Step 1:
Mark active cells by negating CDR. If big number gbc mark in the

" vedtor ' PNP- © If " atom " gbc mark-also in CDR of atoms (by temporarily

setting NFREEB = T+1).

Step 2:
Select proper action depending on GBCTYP.

0 goto step 7
1 goto step 3
2 goto step 5
3 goto step 5

COMMENTS ABOUT THE FORTRAN ROUTINES USED. Page 7-6

Step 2:

List compacting (GBCTYP = 1).

Move active CAR CDR to the top of free storage and unmark CDR. Leave
new address in CDR of moved cell. Goto step 6. ' :

Step U4: - .

Atom gbe (GBCTYP = 3). .

‘Move active atoms to the lower part of atom space (lower CAR,CDR).
Leave new address in (negative) HTAB and unmark CDR. Goto step 6.

Step 5:

Big numbers (GBCTYP = 2,32).

Move active numbers (marked in PNP) to the top of PNAME, Leave new
address in old place in PNAME. Reset PNP. .If GBCTYP = 2 then goto
6, otherwise goto step &,

Step 6: Restore moved pointers (GBCTYP = 1,2,3).
Check all list pointers and change to new value if they have moved.

Step T:

Clear memory.

GBCTYP = 0,1 Construct a free list and return.
2 Return.
3 Rehash all saved atoms and return.

Marking active atoms and cells starts from:
- The COMMON variables ARG ARG2 ARG3 ALIST FORM TEMP1 TEMP2
TEMP3 I1CONS I2CONS
- Current ASTACK (temporarily saved values).
- CAR and CDR of defined atoms.

Marking is performed by changing the sign of CDR. This is done inline
by a local recursive piece of code. If however stack overflow occurs
a non recursive routine MARKL takes over.

The free list which is built up at step 7 is equipped with a "spare
tank" as follows:

NFREEP-> I I I -- .. -->1 T I {--- TSPARE

10 cons cells

If less than 10 cons cells are found no spare tank is constructed (and
ISPARE = NIL), but RESET is called (CALL LISPF3(2)).

If less than 15 cons cells are found the spare tank is switched on by
doing CDR(ISPARE) = CAR(TSPARE) and RESET is called. - o
In both cases the user still has a chance to release memory before the

T

COMMENTS ABOUT THE FORTRAN ROUTINES US%D. Page 7-7

space is definitely exhausted.
Actually the user has in these cases been warned before as the CONS
- routine checks 1if there is a reasonable amount of space left after a .
' gbe. Tf not, SYSERROR is called which in turn normally goes into a
break.

5.2 SUBROUTINE MARKL
This is a non recursive marking routine used by GARR if 1local stack
overflow has occurred. 7Tt is somewhat slower than the corresponding
inline code in GARB as it looks upon each cons ‘cell twice. But in
case of program space problems, you may use only MARKL and remove the
marking code in GARB.

The algorithm is described in Sc 67.

5.3 SUBROUTINE REHASH

‘} The routine is used for constructing a new entry in HTAB for each
existing atom. REHASH is called from ROLLIN and from GARB (when atom
gbe is asked for). -

GB 6.1 TNTEGER FUNCTION COMPPN(X,Y)

returns: if:
-2 X is invalid
-1 x <y

0 X =¥y

1 X >y

2 y is invalid

6.2 INTEGER FUNCTTON CONS(T1,I2)
Does cons(11,12).
In case of an empty free list garbage collection is activated (GARB).
If the number of free cons cells is less than ISPLFT a weak error is
triggered (SYSERROR - break) and ISPLFT is divided by 2.

- - -I:SPLFT :is.reset to 400 whenever a RESET is performed. -. -

6.3 INTEGER FUNCTION EQUAL(II,JJ)
Does equal(ii, jj).

é:‘ 6.4 INTEGER FUNCTION GET(J,T)
Does get(j,i).

6.5 INTEGER FUNCTION GETNUM(I)
e - Returns the FORTRAN integer value of a sma2ll or big 1.ISP integer. The
caller is responsible for that T is a LISP integer.

6.6 INTEGER FUNCTION GETPN(X,MATN,JR,IPL) -

COMMENTS ABOUT THE FORTRAN ROUTINES USED. Page 7-8

. MAIN= Pointer to main string if substring.
JB= Byte offset in printname.
IPL= Byte length of printname.

GETPN= -1 X is invalid.
0 if X literal atom. .
1 if X string or substring.

'6.7 SUBROUTTNE LSPEX
Exits from LISP F2 after writing statistical messages. The exit is
done by the FORTRAN statement STOP.

6.8 SUBROUTINE MESS(T) \
If T = 0 then MESS was called from INTT2 and messages are read from
LUNSYS. Otherwise a message corresponding to the nr I is printed.

% 6.9 MSLFFT
The time scheduling routine which is coded in assembler.

'rom MSLEFT is only called from LISPF3, the LISP function clock(). . Use . -
your own time routine, or just skip it if you do not care about the
clock function. Remember that clock shall return a dotted pair in
order to avoid introducing big numbers in the result.

6.10 INTEGER FUNCTION NCHARS(S,IFLG)

This routine is used by the LISP functions concat, pack, unpack, and
nchars in order to create a printname representation in PRBUFF. It is
done by saving the current print status (buffer and pointer) and
calling PRIN1 for each member in S (which is a list of S-expressions).
IFLG = T indicates that % is to be printed by PRIN1 when needed.

"The flag IFLG1 is set to-NUMADD (mot = NIL) to indicate to-TERPRI that
lines should not be printed but print positions should be added to
IFLG1 (in order to count characters).

After c2lling NCHARS,

concat creates a string. TERPRT builds the printname from
the print buffer.

nchars returns the number of characters.

pack creates an atom from the print buffer.

unpack creates a list of atoms by reading the print
buffer character by character.

-

& E”B@f‘or'ef Treturming they must -reset the print-status. =.rrvr v 0 i v -

6.11 INTEGER FUNCTION SUBST(IX,I1Y,IS)
Does subst(ix,iy,is)

6.12 INTEGER FUNCTION XCALL(FN,L)

A dummy function (returns NIL) where you may add your own pieces of
_ . FORTRAN codes such as calling other subroutines. Use FN as a selector

in"a computed GOTO and L as the argument 1list. FN is a FORTRAN

COMMENTS ABOUT THE FORTRAN ROUTINES USED. Page 7-9
integer at calling.

7. PUSHING and POPPING.
the following subroutines handle ASTACK, the upper part of the array
STACK. JP points to the current top. :

APUSH(I) APUSH2(I,J) APUSH3(T,J,K)
APOP(I) APOP2(1,J) APOP3(I,J,K)

(Pushing and popping are done from 1left to right 1in the argument
lists). ,

The subroutine FPUSH(I) pushes a statement number indicator onto
FSTACK, the lower part of STACK. Here TP points to the current top.

If stack over/underflow occurs no action 1is performed but a reset
address is put onto FSTACK (which forces LISPF3 to jump to the reset
label at next recursive return.).

Remark: 1In the eval-apply system pushing and popping are coded
inline. At the entrance of eval there is a check whether the stack
space left is reasonable. See chapter 2 for further details.

8.1 GETCH and PUTCH.
These are coded in assembler and used for moving bytes from/to an
array. Calling format:

CALL PUTCH(VEC,CH,T)

Store a character CH at location I in the array VEC.
CALL GETCH(VEC,CH,TI)

Fetch a character from location I in VEC to CH.

The character in CH is left justified with space padding.
The array VEC behaves as a character array numbered 1,2,3... (1 = the
leftmost one).

8.2 GETCHT and SETCHT
These routines are used for fetching/storing the internal ¢type of a
character. Calling format:

I=GFTCHT(IC)
CALL SFTCHT(IC,IT)

A character should be placed left justified in IC before calling. The
integer value of that character is wused as an index in the table
CHTAB. The variable CHDTV is used to calculate ¢this index by an
integer division.

CHTAB is accessed and its content is returned (GETCHT) or replaced
with a2 new one (IT in SETCHT).

Tt is recommended to recode GETCHT and SETCHT in assembler.

9. FORTRAN I/0 - routines.

COMMENTS ABOUT THF FORTRAN ROUTINES USED. Page 7-10

The following routines are the only ones which use FORTRAN 1/0. Only
very simple format codes are used, and it is recommended to recode
them in assembler, mainly for the matter of program space.

A1l these routines are found at the end of the LISP F2 program.

- SUBROUTINF RDA1(LUN,CARD,I1,T72,TEOF)

Reads from logical unit LUN to the array CARD(I1-I2) using A1 format.
If end of file is found, IEOF is set to 2.

Used by SHIFT and INTTZ2.

- SUBROUTINE WRA1(LUN,LINE,T1,I2)

Writes LINE(I1-I2) on logical unit LUN using format (1X,150A1).

Used by TERPRI.

- SUBROUTINE RDA4(LUN,CARD,I1,12)

As RDA1 but uses format A4,

Used by MESS.

- SUBROUTINE WRAU4(LUN,CARD,I1,T12)

As WRA1 but uses format (1X,100A4).

Used by MESS.

- SUBROUTINE DMPOUT(LUN,AREA,MIN,6 MAX)

Writes AREA(MIN-MAX) in binary format on logical unit LUN.

Used by ROLLOU.

- SUBROUTINE DMPIN(LUN,AREA,MTN,6MAX)

Reads AREA(MIN-MAX) in binary format from logical unit LUN.

Used by ROLLIN,

. - SUBROUTINE DMPOU2/DMPIN2(LUN,AREA,MIN,6 MAX)

As DMPOUT/DMPIN but AREA is declared as a half word integer array.
Used by ROLLOU/ROLLIN.

- SUBROUTINE EJECT(LUN)

Skip to next page by writing format (1H1) on LUN.

- SUBROUTINE REW(LUN)

COMMENTS ABOUT THE FORTRAN ROUTINES USED. Page 7-11
Does REWIND LUN.

10. Initiation routines.

10.1 INIT? : - . : , :
Here all mashine depended variables are set. See also chapter T1.04.

10.2 INIT? .

This routine reads the file SYSATOM and sets up the character table,
the symbol table and the 1list-space memory. Also some variables
corresponding to some LISP atoms are defined. 7Tt is recommended that
INIT2 1is replaced by a c2ll to ROLLIN as soon as a working system is
generated.

Routine:

MAIN
INTT2
LISPF3

IREAD
RATOM
MATOM
MKNUM
SHIFT

IPRINT
PRIN1

PRINAT
TERPRI

GARB
REHASH

CONS
SUBST
EQUAL
NCHARS
MESS
ROLLIN
ROLLOU
LSPEX
GETPN

_COMPPN

APPENDIX A

CROSS-REFERENCE LIST OF FORTRAN ROUTINES.

Calling:

INITH INIT2/ROLLIN
TREAD RDA1 SETCHT
A1l routines but:
INIT1 INIT2 MAIN
REHASH DMPIN DMPOUT
DMPTN2 DMPOU2 RDA?1
WRA1 RDAN WRAY
RATOM CONS FPUSH
MATOM MKNUM CONS
GARB PUTCH GETCH
GARB MESS

LSPEX MESS GETCHT
PRINM1 TERPRI

PRINAT TERPRI APUSH2
APOP2 APOP3

GETNUM TERPRI GETCH
WRA1 MATOM PUTCH
MARKL MESS IPRINT
GETCH PUTCH TERPRI
GETCH

GARB

CONS APUSH APOP
GETNUM APUSH2 APOP2
PRIN1 MKNUM APUSH
RDAY WRAU

MOVE REHASH REW
GARB REW DMPOUT
TPRINT MKNUM MESS
GETNUM

GETPN GETCH

LTSPF3 (LSPEX)
MESS

(These are not called).

(These and the following
are only called indirectly).

APUSH2 APOP2
SHTFT

RDA1 MATOM

APUSH3
GETCHT GETPN

REHASH
LISPF3

FPUSH
COMPPN

DMPIN DMPINZ2
DMPOU2
TERPRT

APPENDIX B

~

DEFINITION OF EVAL APPLY READ AND PRINT.

<DEFINEQ

{“\ <LISPF3

e L - (LAMBDA (N)

R (PROG (EVALSW ERRFN ALIST ¥*BACKTRACE ¥BACKTRACEFLG)
(AND (EQ N 1) (PRINT "LISP F3 ete."))

(RESET) .
o (APPLY 'LISPX NIL)
? AN (ERROR 25 'LISPX NIL NIL>
QLISPX
(LAMBDA NIL
(PROG NIL
LOOP (PRINT (EVAL (READ)))
(GO LOOP>
‘ CEVAL

(LAMBDA (FORM)
(COND ((OR (NUMBERP FORM) (STRINGP FORM)) FORM)
((ATOM FORM)
<COND ((FORM ON ALIST?) (USE BOUND VALUE))
((NEQ TCAR FORM) 'NOBIND) (CAR FORM))
(T (ERROR 1 'EVAL FORM FORM>)
(T (SETQ EVALSW T)
(SETQ ERRFN 'EVAL)
(EAPPLY (CAR FORM) (CDR FORM>

Q O <APPLY _
(LAMBDA (FN ARGS)
(SETQ EVALSW NIL)
(SETQ ERRFN 'APPLY)

R (SETQ FORM (CONS FN ARGS))
q O

(AND FN (EAPPLY FN ARGS>
<EAPPLY
(LAMBDA (FN ARGS)

(COND ((LITATOM FN)

<COND ((GETD FN) (APPLYFN2 (GETD FN) ARGS))
(T (ERROR 2 ERRFN FN FORM>)
(T (APPLYFN2 FN ARGS>

| <APPLYFN1
——— 1~~~ ———(LAMBDA (FN ARGS)

. (conn ((SUBRP FN) (AND EVALSW (SETQ ARGS (EVLIS ARGS)))
i (SAPPLY FN ARGS))

(T (ERROR 2 ERRFN FN FORM> = . = ~

e —. = P — I e e s e = e, .+ S i

((FSUBRP FN) (SAPPLY FN ARGS)) - _ : -

*— o0 —

D

I

PP TR NN & ¥ 3N

<APPLYFN2-
(LAMBDA (FN ARGS)
' (COND ((NLISTP FN) (ERROR.2 ERRFN FN FORM))
- .. (T (SELECTQ (CAR FN)

(LAMBDA (AND EVALSW (SETQ ARGS. (EVLIS ARGS)))
: (LAPPLY FN ARGS)) . -
(NLAMBDA (LAPPLY FN ARGS))"
. ((SUBR FSUBR) (APPLYFN1 (CDR FN) ARGS))
" (FUNARG (PUSH ALIST)
(SETQ ALIST (CADDR FN))
(ss;o RES (EAPPLY (CADR FN) ARGS))
; RES
(ERROR 2 ERRFN FN FORM>
<LAPPLY

(LAMBDA (FN ARGS)
(AND *BACKTRACEFLG
(SETQ *BACKTRACE (CONS FORM ¥BACKTRACE)))
(PUSH ARGS ON ALIST)
(SETQ RES (EVLAST (CDDR FN)))
(AND *BACKTRACEFLG
" (SETQ *BACKTRACE (CDR *BACKTRACE)))
RES>
<SAPPLY
(LAMBDA (FN ARGS) _
(JUMP_TO_CODE_FOR_FN>
<GETD
(LAMBDA (FN)
(COND ((GETP FN 'FNCELL))
((SUBRP FN) (CONS 'SUBR FN))
((FSUBRP FN) (CONS 'FSUBR FN>
CERROR

(LAMBDA (ERRORN FN ARGS FORM)
(APPLY 'SYSERROR

(LIST ERRORN FN ARGS FORM>
<SYSERROR
(LAMBDA (ERRORN FN ARGS FORM)

(ERRORMESS ERRORN)

(PRIN1 FN)

(PRIN1 *-)

- (PRINT ARGS)

. (RESET>

b e e e = TS e e o e o

e ¢ e st et i~ =

k34

ANE S e |

(PRINT ‘"LISP F3 READ -- 7 FEB 79")
(PRINT “(VERSION 0))
<DEFINEQ '
<BRSTK
<LAMBDA (X)
(RPLACA BRSTK (PLUS X (CAR BRSTK)))
(COND ((ZEROP (CAR BRSTK))
(SETQ FLG NIL)- e
" (SETQ BRSTK'tcnn*snsrx??T—‘“'“‘
((MINUSP (CAR BRSTK)) (SETQ OB NIL>>

[

<READ-L
(LAMBDA (S1 SN)
(PROG (X)
L (SETQ X (READ V))
(AND (EQ X “%)) (GO R))
(AND (NULL S1)
<SETQ S1 (SETQ SN (LIST (READ- s x>
(GO L))
(COND ((NEQ X “%.)
(RPLACD SN (LIST (READ-S X)))
(SETQ SN (CDR SN))
(GO L)))
i (SETQ X (LIST X))
(SETQ X (READ-L X X))
(RPLACD SN
(COND ((AND (LISTP (CDR X))
(NULL (CDDR x)))
(CADR X))
(T X)))
R (RETURN S1)))>
<READ-S
(LAMBDA (X)
(SELECTQ X
(%((READ-L))
(%) (BRSTK 1) NIL)
(%° (BRSTK 1)
(PROG1 (LIST °“QUOTE (READ-S (READ-V)))
(BRSTK -1))) :
X))»
<READ-V

!

(LAMBDA NIL

(OR FLG (SETQ OB (RATOM)))

(SELECTQ OB
(%< (SETQ BRSTK (CONS 1 BRSTK)) "%()
(3> (SETQ FLG T) (BRSTK -1) “%))
(%((BRSTK 1) OB)
($) (BRSTK -1) OB)
0B))>

<®*READ
<LAMBDA NIL ~ - - e
(PROG (FLG OB (BRSTK (LIST 0)))

boo e (RETURN- (READ-S. (READ-V>> 50 v -

> o ' S
(SETQQ READFNS (BRSTK READ-L READ-S READ-V #READ))
(SETQQ READCOMS "LISP F3 READ -- 7 FEB 79")

(SETQ READGENNR 0)

STOP

TR A

(PRINT °“"LISP F2 PRINT -- 7 FEB 79")
(PRINT “(VERSION 0))

<DEFINEQ

<EDITFLAG

(LAMBDA NIL (SYSFLAG 7))>

<ESCAPEFLAG
(LAMBDA NIL (SYSFLAG 5))>
AN

e

<EXAMINE
(LAMBDA (S) (PROG1 (UNKWOTE S) (SETQ ®*NKW ¥*COUNT)))>

<LASTDEPTH
<LAMBDA (S)
(PROG ((DEPTH LEVEL))
L (COND ((OR (GREATERP DEPTH (PRINTLEVEL))
(NLISTP S))
(RETURN (DIFFERENCE DEPTH LEVEL)))
(T (SETQ DEPTH (ADD1 DEPTH))
<¢SETQ S (UNKWOTE (CAR (*LAST S>
(GO L>>

<LINEBREAK
<LAMBDA (S)
(COND ((NULL PPBREAK) (SPACES 1))
(<AND (LISTP S)
(LITATOM (CAR S))
(EQUAL °(FSUBR . QUOTE) (GETD (CAR S>
(TAB (PLUS -19 ¥RMARG)))
<(AND (EQ 1ST °PROG) (GREATERP I 1))
(TAB (PLUS (LMARG)
(COND ((ATOM S) -5) (0>
((OR *LBEFORE (LISTP S)) (TAB (LMARG)))
((SPACES 1>>

<LMARG
(LAMBDA (X) (IOTAB 7 X))>

<MIN
(LAMBDA (X Y) (COND ((LESSP X Y) X) (T Y)))>

<PPFLAG
(LAMBDA NIL (SYSFLAG 2))>

<PRINT‘A . - [- - R TR SR RS T St
(LAMBDA (A) (RPT ¥*NKW “(PRIN1 "°")) (PRINO A (ESCAPEFLAG)))>

O
Y,

[V S SVIU N) R

<
3

H

-4

i

!

:

e ,

g e

<PRINT-L ,
(LAMBDA (S RP) -
(PROG ((I 0) '
(LEVEL (ADD1 LEVEL))
(LMARG (LMARG))
(1ST (CAR S)))
PPBREAK X) <
(RPT *NKW °“(PRIN1 "°"))

(PRIN1 (COND (RP "(") I PR

((AND (PPFLAG)
(GREATERP :
(SETQ RP (LASTDEPTH S))
*MAXPAR))
ﬂ(ﬂ)
(T (SETQ RP 0) "(")))
<COND ((PPFLAG)
: <SETQ PPBREAK -
(AND (LESSP LEVEL (PRINTLEVEL))

(OR (EDITFLAG) L

(GREATERP
* (PLUS _
(PRINTPOS)
(NCHARS S))
"(LMARG (MIN (PLUS -3 ®RMARG) -
- . (ADD1 (PRINTPOS> |
L <SETQ X '
(COND ((QFLAG) (EXAMINE (CAR S)))
((CAR S>
(OR (ZEROP I) (LINEBREAK X))
(PRINT-S X (AND (NULL (SETQ S (CDR S))) RP))
(SETQ I (ADD?! I))
<AND (PPFLAG)
(EQ I 1)
(NLISTP 1ST) °

(LESSP (PRINTPOS) - L

(WEIGH (LMARG) *RMARG ®*WEIGHT 1))
(LMARG (ADD1 (PRINTPOS>
(COND ((NULL S)) , ‘
. ((NLISTP S) .(PRIN1 * . ") (PRINT-A S))

((EQ I (PRINTLENGTH)) (PRIN1 ® ---")) 3

((G0 L)) | L

(SELECTQ RP
(0 (PRIN1 ")"))-
(1 (PRINY ">7"))
NIL)

(LMARG LMARG)

(RETURN S)))>

<LAMBDA (S RP) ‘ :
~ (AND (EQ LEVEL. (PRINTLEVEL)) (SETQ S 7...))
(COND ((NLISTP S) (PRINT-A S) (SETQ *LBEFORE)).
(T (PRINT-L S .
(SELECTQ RP ((0 NIL) RP) (SUB1 RP)))
(SETQ ®*LBEFORE T>> . :

PR YO LTI LTI L e e

i ; i

e m o e ey e e e s o i ey o5 b e A i e i b

CPRINT-S o o — -

e,

Ll

<QFLAG
(LAMBDA NIL (SYSFLAG 3))>

<RMARG
(LAMBDA NIL (IOTAB 8))>

<TAB
(LAMBDA (X)

(AND (GREATERP (PRINTPOS) (SUB1! X)) (TERPRI))
(PRINTPOS X))>

<UNKWOTE
(LAMBDA (S)
(PROG NIL
(SETQ ¥#COUNT 0)
L (AND (LISTP S)
. (EQ (CAR S) ‘QUOTE)
(LISTP (CDR S))
(NULL (CDDR S))
(SETQ *COUNT (ADD1 *COUNT))
(SETQ S (CADR 8S))
(GO L))
(RETURN S)))>
<WEIGH
(LAMBDA (X1 X2 W1 W2)
(QUOTIENT
(PLUS (TIMES X1 wn) (TIMES X2 wW2))
(PLUS W1 W2)))>
<#LAST

<LAMBDA (L)
(PROG ((I 0))
L (RETURN (COND ((NLISTP (CDR L)) L)
((EQ I (PRINTLENGTH)) ‘(---))
(T (SETQ I (ADD1 I))
(SETQ L (CDR L))
(GO L>>

<®PRINT
(LAMBDA (X)
(PROG ((*NKW 0)
(*RMARG (RMARG))
(LEVEL 0)
*,BEFORE ¥COUNT)
(AND (QFLAG) (SETQ X (EXAMINE X)))
(PRINT-S X)
(TERPRI)
(RETURN X)))>

>
(SETQQ PRINTFNS o
" (EDITFLAG ESCAPEFLAG EXAMINE LASTDEPTH LINEBREAK LMARG MIN PPFLAG

PRINT-A PRINT-L PRINT-S QFLAG RMARG TAB UNKWOTE WEIGH ®LAST
®#PRINT))

(SETQQ PRINTVARS (®*MAXPAR ¥®WEIGHT))

(SETQQ PRINTCOMS "LISP F3 PRINT ~-- 7 FEB 79")

(SETQ PRINTGENNR 0)

(SETQQ *MAXPAR 3)

(SETQQ *WEIGHT 8)

STOP

b

APPENDIX C
REFERENCES

Ha 75 A. Haraldsson: "LISP-DETAJILS. INTERLISP 360/370"

DLU 75/9.
MeC 62 J. McCarhty: "LISP 1.5 Manual" MIT Press 1962,
No 71 M Nordstrom: "LISP F1 - A FORTRAN Implementation
of LISP 1.5", DLUT1/1
No 78 M Nordstrom: "LISP F3 - Users Guide", DLU 78/U4.
Te TH W.Teitelman: "Interlisp Reference Manual", Xerox Corp.
Se 67 H. Schon etc: "An efficient machine independent

procedure for" CACM Aug 1967.

