

 Tops-20 Common Lisp

 Red Pages

 Charles L. Hedrick

 1985

 Copyright (C) 1983,1984,1985 Charles L. Hedrick

The information in this document is subject to change without notice
and should not be construed as a commitment by Charles Hedrick or
Rutgers University. Charles Hedrick and Rutgers University assume no
responsibility for any errors that may appear in this document.

Note: The following are trademarks of the Digital Equipment
Corporation: DECSYSTEM-20, DECsystem-10, TOPS-20, TOPS-10

 i

 Table of Contents

1. Introduction 1

 1.1. How to read this manual 1
 1.2. The genealogy of DECSYSTEM-20 Common Lisp 2
 1.3. Design Goals 2
 1.4. Overview of the Design 3

2. Current Status of the System 5

 2.1. Efficiency Issues 5

3. User Facilities 6

 3.1. Interrupt Characters 7
 3.2. The Break Facility 7
 3.3. Trace 10
 3.4. The Stepper 11
 3.5. The Editor 12
 3.6. Special features for system builders 13
 3.7. I/O Implementation 14
 3.7.1. Opening files 15
 3.7.2. Representation of files and lines 16
 3.7.3. Device handling 17
 3.7.3.1. Disk files 17
 3.7.3.2. Terminals 17
 3.7.3.3. Other devices 18

4. Reference Manual - Additional Functions and Features 20

5. Differences between Spice Lisp and Common Lisp 26

 1

 1. Introduction

This document contains implementation-dependent information describing
the Common Lisp implementation for the DECSYSTEM-20. In the rest of
the manual, I will simply refer to it as "Lisp". Lisp is designed to
be used with the Common Lisp Reference Manual, (Guy Steele,
Carnegie-Mellon University Computer Science Dept.) This manual
documents only the peculiarities of this particular implementation. I
hope that there aren't very many of those. Indeed many people will
probably never need this document at all.

1.1. How to read this manual

This document is organized into the following chapters:

 1 General material about the history and goals of DECSYSTEM-20
 Common Lisp, and an overview of its internal organization.

 2 A description of the current status of the system, including
 the facilities that are not yet implemented, and various
 issues affecting the speed of your program.

 3 A description of the major user facilities of the system.
 This chapter contains a number of sections, each giving a
 general discussion of some facility. It is intended to
 cover the same material as the next chapter, namely all of
 the implementation-defined facilities. However this chapter
 is organized topically, whereas the next one is organized
 alphabetically by function. Also, it is at a conceptual
 level, whereas the next chapter is intended as a reference
 manual. There is a section at the beginning of this chapter
 that provides an overview of its organization.

 4 This is intended as a complete reference manual for all
 functions that are extensions or whose definition is
 implementation-dependent. In those cases where a full
 description seems to belong in the previous chapter, there
 is a cross-reference to the appropriate section. This
 chapter is organized alphabetically by function or variable
 name.

 5 Hints for people who want to import system-dependent Spice
 Lisp code.

 2

1.2. The genealogy of DECSYSTEM-20 Common Lisp

This Lisp is in fact an implementation of Carnegie-Mellon's Spice
Lisp. Spice Lisp was originally intended for a micro-coded machine
with bit-mapped screen. However implementations based on it are being
done for the DECSYSTEM-20 and VAX. We are attempting to keep the
Spice implementations as similar as possible. Here are the pieces of
DECSYSTEM-20 Common Lisp, with an indication of which of them came
from Spice Lisp:

 - Compiler - This is the Spice compiler, with code generation
 rewritten to produce code for the DEC-20.

 - System code - This is the portion of the runtime system
 written in Lisp. It includes most of the functions that the
 user calls. These functions are taken directly from Spice,
 with minor modifications where the code is representation-
 dependent.

 - Kernel - This is the assembly language portion of the
 system. It contains low-level functions, mostly things that
 manipulate internal data representations, e.g. CONS and the
 garbage collector. Most of these functions implement the
 basic byte codes of the Spice machine. These are documented
 in the Internal Design of Spice Lisp (Scott Fahlman et al,
 Carnegie-Mellon Computer Science Dept.) That document
 should be regarded as the blue pages for this
 implementation. In addition, we have added some
 higher-level functions to the kernel, when it seems that
 this would help performance noticibly. For example, the
 interpreter (EVAL) and much of READ and PRINT are
 hand-coded. In general the assembly language code follows
 the Spice Lisp code very closely.

The interior design is sort of a cross between the Spice machine and
Elisp, the Rutgers extended-addressing version of UCI Lisp. The Elisp
manual documents most of the internal data structures in detail. By
the final release, we will provide a real blue pages that integrates
the information in the Elisp manual and the Spice internals manual,
but for the moment, those two documents should allow you to find your
way around in the code. Fortunately, the internal data
representations used by Spice Lisp and Elisp are surprising similar.

1.3. Design Goals

In evaluating this implementation, you might find it useful to know
what goals we had in mind.

 - We intend this implementation to stick very close to the
 Standard. The extensions are largely tools for the
 implementors, which we have made accessible to users. There

 3

 are also a few features added to increase compatibility with
 the VAX implementation. However our experience with Pascal
 has lead us to realize how important standards are. I
 believe that Pascal's greatest weakness is that no
 interesting program written in it is portable. We are
 determined that this will not be the case with Common Lisp.

 - We are quite concerned about performance. However we are
 interested in the performance that a normal researcher will
 see, rather than in providing tools to let benchmarks be
 tuned to blinding speeds. This means that we worry most
 about programs that use no declarations and which are
 written without undue concern for speed. (Note however that
 the current copy is considerably slower than it should be,
 because our register allocation is not yet being done in the
 compiler. This leads to slow code, and it also makes the
 system larger than it should be. The size is probably at
 least as important as the CPU time use.)

1.4. Overview of the Design

Lisp uses extended addressing, which gives it a much larger address
space than conventional programming languages. Lisp runs only on
Model B KL-10 processors running TOPS-20 release 5 or later. That is
because extended addressing is only implemented for those systems. In
particular, Lisp does not run on TOPS-10, on older 2040's and 2050's
(those with Model A CPU's), or on 2020's.

The internal design of Lisp is modelled after the Lisp Machine. All
Lisp objects are type-coded pointers. They consist of 3 fields:

 - high order bit is used by the garbage collector for marking.
 It is normally off (for extended addressing to work).

 - next 5 bits are a type code, used internally by the system.

 - last 30 bits are the data for the object. In most cases
 this is the address of the object itself. However in some
 cases the actual object fits in 30 bits, and no pointer is
 needed. E.g. we have 30-bit integer constants.

There are two free spaces. Most Lisp pointers point to objects within
one of these spaces. When a space is full, a copying garbage
collector is invoked to copy all currently used objects to a new
space.

This implementation is a shallow-binding Lisp. It stores atom
bindings in a "value cell" associated with the atom, saving old
bindings on a pushdown stack. List cells take two words, each
containing one object. Atoms consist of small blocks of memory, with
the following structure:

 4

 value cell

 pointer to property list

 string pointer to pname

 function definition, or NIL if none

 other internal information involving function definitions - set
 by DEFUN or other function-defining forms, not directly
 visible to the user

 5

 2. Current Status of the System

This is a preliminary release of this system. The basic data
structures are in their final form. So is almost all of the kernel
code. However a few features are not yet implemented. We also plan
to make some additional performance improvements to the system.

The only major omission we know of is complex numbers. However there
may be minor oversights. If so, we would appreciate having them
brought to our attention.

The compiler is currently unable to handle functions that use lexical
closures. When it finds such a function, the compiler will pass
through the source into the .LAP file. Thus the function will work,
but will not be compiled.

Bugs are documented in the file BUGS. Please report any errors, even
minor ones, that are not in this file.

2.1. Efficiency Issues

There are still major inefficiencies in the system. We will fix these
over the next 6 months or so. These inefficiencies can cause
slowdowns ranging from factors of 2 to 5. The most serious slowdowns
are in the string and sequence functions. These use DO loops and
array indexing. We hope to hand-code them to use small ILDB loops.
This will probably not affect most traditional Lisp code, however.

We expect compiled code to be reduced by at least a factor of 1.5 in
code size, and almost this much in CPU time. Currently the compiler
does no register allocation. It keeps all data on the stack. The
compiler is designed to allow for register allocation and other kinds
of optimizations. This will be a high priority over the next few
months.

Additional compiler optimizations will require open-coding of common
functions, and automatic detection of fixnum arithmetic and linear
array references. This should affect the sequence functions
dramatically. If these optimizations prove too difficult, we will
hand-optimize the sequence functions.

The interpreter is nearly as fast as we can make it. There is one
more optimization, which may speed things about by 10% or so.

 6

 3. User Facilities

This chapter contains the following sections:

 3 - how to run the system, and what the top-level is like. A
 description of the system-wide help convention.

 3.2 - the break handler. This is an interactive system which is
 entered when an error happens.

 3.3 - TRACE, a function that you can use to get a trace of your
 program's behavior.

 3.4 - STEP, a function that you can use to control your program's
 execution on a expression by expression basis, seeing the
 results of each evaluation.

 3.5 - the editor, which is actually an interface to EMACS

 3.6 - some miscellaneous facilities primarily for system
 builders: Customizing the top level (including changing the
 prompt), creating a saved core image file, loading code into
 a specified package, and calling DDT.

 3.7 - details about the I/O implementation, including how the
 various OPEN options work, the way the Common Lisp and
 TOPS-20 file models are matched, end of line handling, and
 details about how I/O is done to specific devices
 (particularly terminals). This section has a paragraph at
 the beginning that describes its organization.

We intend the Lisp system to be installed on your system as
SYS:CLISP.EXE. If it is, you start it by typing

 CLISP

Lisp has a simple EVAL top level. You type Lisp forms to it, and it
prints the result. If the form returns multiple values, you will see
all of them (each on a new line).

? should usually give you useful information about the context you are
currently in. In many cases you will have to type a carriage return
after the ?. At the top level, it tells you how to define functions,
and describes some of the most important facilities. In other
situations ? is rebound to messages that are useful in that context.
We urge users to continue this convention for packages that they
write.

 7

3.1. Interrupt Characters

Several interrupt characters are defined. When you type one of these
characters once, its effect will happen the next time the program
reads from the terminal. If you type it a second time, the effect
will happen immediately, most of the time. If your program happens to
be in the middle of a garbage collection, the effect will normally be
delayed until the end of the garbage collection.

 ^B (Break)
 This causes Lisp to enter the break package, just as if an
 error had happened. This is sometimes useful if you think
 your program is in an infinite loop. You can use the
 commands in the break package to look around. Currently
 there is no way to continue your program after you have done
 this. However GO will reevaluate the most recent form, and
 so may allow you to continue in many cases.

 ^C This will return you to the EXEC. If you are in the garbage
 collector, it will delay the return until the garbage
 collection is finished. If you type more than one ^C, Lisp
 will count them. If you 6 of them, it will return you even
 if you are in the garbage collector. This is to protect
 against bugs in the garbage collector that would otherwise
 make it impossible to escape from Lisp.

 ^G [Note that ^G is the bell.] This will return you to the top
 level of Lisp. If you are currently in a break loop, it
 will return you to the top-most break loop.

 ^Y This is a high-priority version of ^C. It always causes
 Lisp to exit, even if a garbage collection is going on. It
 takes precedence over any other interrupts that may be in
 progress. It is intended to make sure that you can always
 get out of Lisp, even if bugs exist in the ^C code.

3.2. The Break Facility

The default condition handlers for errors call a built-in break
package. This is a specialized READ-EVAL-PRINT loop. It evaluates
forms in the context of the bad form. When an error occurs, you will
see something like the following:

 Error in function FOO.
 Undefined function: BAR
 1>

The "1>" is the break level number. It indicates that this is the
first level of error. If you make an error while already in a break,
you will get another recursive level of break. It will prompt with
"2>".

 8

When you enter a break, the system attempts to put you at the place
where the error occured. When you type forms to the "1>" prompt, the
system will evaluate them in the context of the error. That is, the
variables of that function will be visible, and can be changed. (If
the function is compiled, then of course only special variables are
visible.)

You can tell where you are by typing the "BK" command. This prints a
"backtrace". Here is an example of a standard recursive Factorial
function, which has a bug that shows up only at the bottom level of
recursion:

 CL>(fact 2)

 Error in function FACT.
 Undefined function: FOO
 If continued: Please define it before continuing
 1> bk

 72 (FOO)
 70 (COND ((ZEROP N) #) #)
 64 ****** FACT
 57 (FACT (1- N))
 55 (* N (FACT #))
 53 (COND ((ZEROP N) #) #)
 47 ****** FACT
 40 (FACT (1- N))
 38 (* N (FACT #))
 36 (COND ((ZEROP N) #) #)
 30 ****** FACT
 23 (FACT 2)
 23 compiled call to EVAL
 1> n
 0
 1>

Notice the numbers on the left margin. These are depth indications.
You can use them to access levels other than the default one. For
example, suppose you want to look at the values of variables inside
the top-level incarnation of FACT. Any number between 36 and 40 will
do that. To change to a new level number, you simply type the number.
Here is an example:

 1> 40
 1> n
 2
 1>

Note that the debugger will continue at this level until you change it
again. To get back to the initial level, use a negative number.

The following forms have special actions when typed to the break
system, and thus can be thought of as commands to it.

 ^^ Returns you to the top-level loop, i.e. exits the break

 9

 abruptly.

 ^ Returns you to the next higher level break loop. (There can
 be more than one, if you generate an error in a break loop.)

 OK Attempts to proceed from the break, returning NIL from
 CERROR. This will only work if the error is "correctable".
 For this to work, you have to know how to correct the error.
 Some cases are obvious. If a function is undefined, you
 must define it. If a variable is unbound you must set it to
 a value. In fact these are the main cases where OK is
 useful. Most other error types require you to return a
 value, which will then be used to repair the error. This
 requires (OK value), which is documented below. OK is
 equivalent to (OK nil). If the error is not correctable,
 see "GO" below.

 (OK <value>)
 Attempt to proceed from the break, returning the specified
 value from CERROR. This value is returned to the error
 handler. It is used in an attempt to repair the error. E.g.
 if the system complains that something is not an symbol, you
 should return a symbol. The system will attempt to do
 whatever it was trying to do, using the symbol you return
 instead of the original non-symbol.

 GO Attempt to proceed from a non-continuable error. In this
 case, there is no way to exactly continue the computation.
 Instead, the form that generated the error is simply
 re-executed. The hope is that you have fixed something so
 that it will work. If this is not practical, RETURN may
 allow you to proceed.

 (RETURN <value>)
 Proceed from a non-continuable error. In this case, the
 form that generated the error is abandoned. The system
 pretends that that form returned the value specified.

 BK Displays the call stack. See the example above.

 ? Displays the list of commands.

Note that <value> is evaluated in the context of the error. I have
not done extensive testing of evaluating forms in the context of the
error. The intent is that you are put in the exact binding
environment of it, and any sideeffects are actually made in that
context (i.e. you can do SETQ to change variables). I have little idea
what would happen if you execute a GO, RETURN-FROM, etc., in this
manner. I'm not even sure I know what I want to happen.

 10

3.3. Trace

The trace facility allows you to ask for printout whenever a certain
function is called. The printout shows the arguments with which it is
called and the value returned. It is indented to show recursion.
Here is a typical example:

 CL>(defun fact (n)
 (cond ((zerop n) 1) (t (* n (fact (1- n))))))
 FACT
 CL>(trace fact)
 FACT
 CL>(fact 4)

 0: (FACT 4)
 1: (FACT 3)
 2: (FACT 2)
 3: (FACT 1)
 4: (FACT 0)
 4: returned 1
 3: returned 1
 2: returned 2
 1: returned 6
 0: returned 24
 24
 CL>

There are a number of options, to allow for more selective output. In
order to use an option, you must enclose the function name and the
options in parentheses, e.g.

 (TRACE (FOO :CONDITION (NEED-TRACE)))

Here are the available options:

 :CONDITION
 A form that controls whether the trace information is
 printed. It will be EVAL'ed at each entry to the function.

 :BREAK
 A form that controls whether a break will occur before the
 function is executed. It will be EVAL'ed at each entry to
 the function.

 :BREAK-AFTER
 like :BREAK, except that the break occurs after the function
 is executed.

 :WHEREIN
 Allows you to specify that tracing should happen only if the
 function is called inside another specific function. This
 may be either a symbol or a list of symbols.

 11

 :PRINT
 A list of forms to EVAL and PRINT at the start of each call.

 :PRINT-AFTER
 A list of forms to EVAL and PRINT at the end of each call.

To turn off tracing, use (UNTRACE). Untrace checks to see that its
args are all symbols. If they are, it returns a form which will
untrace each one. Otherwise, it signals an error, and none of the
forms are untraced. With no args, untraces all traced functions.

3.4. The Stepper

The single stepper is another facility to make it easier to debug
functions. It allows you to watch the interpreter EVAL each form
individually. Here is an example of what it looks like:

 CL>(step (fact 3))
 (FACT 3) : n
 3 = 3
 (BLOCK FACT (COND # #)) : n
 (COND ((ZEROP N) 1) #) : n
 (ZEROP N) : n
 N = 3
 NIL
 T = T
 (* N (FACT #)) : n
 N = 3
 (FACT (1- N)) : s
 2
 6
 6
 6
 6
 6
 CL>

I typed the lower-case "n"'s and "s". In the stepper, you do not have
to type a return after each command. If you don't like this, then set
TERMINAL-LINE-MODE to T. Notice what it is doing: It types out a
form, and then waits for me to type something. If I type N, it
evaluates that form and prints the result. If this involves
evaluating another form, it stops for that, too. Typing S causes it
to evaluate the form without showing what going on inside it.

Here is a complete list of commands to the stepper. If you type "?"
while in step mode, you will get this list:

 N (next)
 evaluate current expression in step mode.

 S (skip)

 12

 evaluate current expression without stepping.

 M (macro)
 steps a macroexpansion, signaled by a :: prompt.

 Q (quit)
 finish evaluation, but turn stepper off.

 p (print)
 print current exp. (ignore *step-print-level* & *step-print-
 length*)

 P (pprint)
 pretty-print current exp.

 B (break)
 enter break loop.

 E (eval)
 evaluate an arbitrary expression.

 ? (help)
 print this text.

 R (return)
 prompt for an arbitrary value to return as result of current
 exp.

 G throw to top level.

The stepper automatically refuses to step through system code, even
when it is interpreted. If you need to debug system code with the
stepper, you should look at the macro STEP-STEP-FORM in STEP.CLISP.
This is where system functions are made un-steppable.

3.5. The Editor

Lisp uses EMACS as its editor. Lisp will check your definition of
EDITOR: when looking for EMACS. If EDITOR: seems to point to some
version of EMACS it will be used. Otherwise SYS:EMACS will be used.
You can call it with the function ED, described in the manual, or
EDIT. EDIT is just like ED, except it does not evaluate its argument.
In most cases, EDIT is probably more convenient. Otherwise these
functions are identical.

As described in the Common Lisp manual, there are three different
things you can do with EMACS:

(ED symbol)
 Edit a function definition. Lisp will pretty-print the
 current definition into the EMACS buffer and call EMACS.
 When you are finished editing, type ^X^Z (the normal EMACS

 13

 command to return to the superior). Lisp will read the
 first S-expression back in from the EMACS buffer and EVAL
 it. Should you decide that you don't want to redefine the
 function, put something innocuous at the beginning of the
 buffer (e.g. a NIL).

(ED pathname)
 Edit a file. Lisp will simply call EMACS and pass it a
 request to edit the specified file. When you are finished
 editing, type ^X^Z to return to Lisp. Lisp will not do
 anything additional. If you want to write out the modified
 file, do ^X^S (or your favorite file-saving command) before
 exiting. If you want to read in the file after modifying
 it, you can use the LOAD command.

(ED)
 With no arguments, ED simply reenters EMACS. Whatever you
 edited last is still there. ^X^Z will return to Lisp. Lisp
 will not do anything additional, such as reading in from the
 buffer.

This is a fairly simple interface, as Lisp-EMACS interfaces go. The
primitives are present in Lisp to do as hairy an interface to EMACS as
you like (see section 4). We are planning an interface modelled after
the Maclisp LEDIT.

There is also a function (KILL-EDITOR). It kills the EMACS fork.

3.6. Special features for system builders

This section documents some internals of Lisp that you may find useful
if you are building a system of your own.

(%TOP-LEVEL) - never returns
 When a copy of Lisp is started, it first prints out the
 greeting message (set by SAVE - see below) and then calls
 LISP::%TOP-LEVEL. LISP::%TOP-LEVEL should be a function of
 no arguments that never returns. If you redefined
 LISP::%TOP-LEVEL, the redefinition should not take effect
 until a saved core image is run. The current incarnation
 will not be affected, since Lisp has already started the
 existing top level function, and it will never return.

 If you intend to use the error handlers that we supply, your
 top level function should include (CATCH 'LISP::TOP-LEVEL-
 CATCHER ...) around any EVAL's. That is because the ^^
 function within the error handler THROWS to LISP::TOP-LEVEL-
 CATCHER.

 Should %TOP-LEVEL return, you will be in a READ-EVAL-PRINT
 loop in the kernel. It prompts with a "*". It is a minimal
 top-level, intended for testing the kernel.

 14

PROMPT - variable
 If you prefer to use the existing top level, you can change
 its prompt to anything you like. The variable *PROMPT* is
 PRINC'ed to produce the prompt. It will normally be a
 string, without any newlines. (FRESH-LINE is called right
 before printing the prompt.)

(SAVE filename &OPTIONAL greeting-message)
 The SAVE function can be used to produce an executable file
 containing the current Lisp system. The first argument is a
 file name, which is passed to OPEN. The second argument
 (which is optional) is a normally a string. It is PRINC'ed
 when the saved core image is started. It is intended as a
 greeting message. If this argument is not supplied, or is
 NIL, the PRINC is not done.

(LOAD filename :PACKAGE package)
 LOAD has an extra option, :PACKAGE. This allows you to
 specify the package into which the code is to be loaded.
 The system code must be in the internal Lisp package, not
 the user's package. So if you wanted to load a new version
 of PPRINT.CLISP (the pretty-printer), you would type

 (LOAD "PPRINT.CLISP" :PACKAGE *LISP-PACKAGE*)
 (LISP::PPRINT-INIT)

(DDT)
 (DDT) calls DDT in section 1 (the section in which the
 kernel code is loaded). It gives DDT access to the kernel's
 symbol table. To return to Lisp, type

 IRET$X

 where $ is an escape. Be careful about using $X in DDT to
 single-step. There are bugs in some versions of DDT that
 cause extended-addressing byte instructions to be
 incorrectly simulated in $X and $$X.

3.7. I/O Implementation

The Common Lisp specificiations leave some aspects of I/O up to the
implementor. This section will describe what has been done with some
of them. It has the following subsections:

 3.7.1 - opening files, including details of filename handling,
 and how the various OPEN options are implemented.

 3.7.2 - how the Common Lisp file model is mapped onto TOPS-20,
 including file structure, random access, and end of line
 handling.

 3.7.3 - details on how Lisp handles various devices. The most

 15

 interesting is the terminal. This section describes a
 number of options you have to control how Lisp interfaces
 with the terminal.

3.7.1. Opening files

A NAMESTRING is simply a TOPS-20 file specification. Host names go at
the beginning of the string, followed by "::". For example
"RUTGERS::PS:<HEDRICK>CLISP.EXE". Note however that host names don't
have any effect at the moment. The filename parser understands all of
the options that TOPS-20 normally understands, including wildcards and
the special version numbers 0, -1, -2, and -3.

There may be a slight problem with namestrings because of ambiguity
about null file types. In most cases, a field in the file
specification can be omitted if it is not specified. Unfortunately,
there is no way to omit the file type if the version is specified.
"SOURCE..3" is interpreted by TOPS-20 as having a null file type.
That is, the file type is specified, and is the null string. If you
need to specify the version and leave the file type unspecified, you
will simply have to leave the result in pathname format.

All of the keywords described in the manual as "suggested" are
implemented except for INSTALLED. If someone can suggest a reasonable
meaning for it in TOPS-20, I will be happy to implement it.

Currently Lisp cannot do network I/O. Thus host names are ignored
when opening files. The functions that manipulate namestrings and
pathnames do handle host names properly. We intend to implement
Internet I/O eventually.

All of the OPEN options are implemented. Here are some details:

 - NEW-VERSION operates according to TOPS-20 conventions. That
 is, if you specify an explicit version number, that version
 will be used, and NEW-VERSION will be ignored. This gives
 an effect similar to SUPERSEDE.

 - If you specify UNSIGNED-BYTE or SIGNED-BYTE without a
 number, you will get 8-bit bytes. UNSIGNED-BYTE allows any
 byte size up to 35, and SIGNED-BYTE allows any byte size up
 to 36. Note that you may specify UNSIGNED-BYTE or
 SIGNED-BYTE even if you intend to use a file for text I/O.
 This allows you to handle text files with non-standard byte
 size. For example, if you open a file for (SIGNED-BYTE 8),
 READ-BYTE will return a signed integer, but READ-CHAR will
 still return a character. Note that the byte size may
 affect the way certain devices work. For example, opening a
 terminal with a byte size of 8 will cause I/O to occur in
 binary mode.

 - DEFAULT gives you STRING-CHAR. STRING-CHAR represents 7-bit

 16

 ASCII characters. This is the normal Tops-20 representation
 for text.

 - RENAME and RENAME-AND-DELETE rename the file to have a file
 type of "LISP-BACKUP". If there is more than one version of
 the file, they are all renamed.

3.7.2. Representation of files and lines

The file model that Common Lisp uses is very close to the DEC-20's
actual file model. Thus most I/O is quite straightforward. TOPS-20
files have user-determined byte size. All I/O is done in terms of
these bytes. The file length as shown in a VDIRECTORY command gives
the number of bytes. This all corresponds nicely to Common Lisp. The
Common Lisp OPEN function allows you to specify the byte size to be
used for the file. FILE-LENGTH returns the file size in these bytes.
NB: FILE-LENGTH will use the byte size that you specified when you
OPENed the file. If you are reading an existing file, this might not
be the same as the byte size used to write the file. Thus FILE-LENGTH
might not return the same result as the length shown in VDIRECTORY.
If you don't specify the byte size in OPEN, it will be 7 bits, which
is the normal byte size for text files.

Random-access is also quite simple. Tops-20 stores files as simple
character streams. So if you do (FILE-POSITION file 23), Lisp will
position the file after the 23'rd byte. As with FILE-LENGTH, Lisp
will use the byte size you specified when you OPENed the file. As in
Common Lisp, end of line is indicated in a TOPS-20 file by characters
in the text. So if your lines are different lengths there is no easy
way to position to the Nth line. It is common for programs to
maintain an index into the file. You can build such an index by
calling FILE-POSITION when you are writing the file, to tell you where
the object you are about to write will go. You can also arrange to
pad short lines with extra characters, so that all lines are the same
length. WARNING: Lines will be longer in the file than they are in
Lisp, because end of line is one character in Lisp, but two in the
file. See the next paragraph for details.

Unfortunately there is a slight discrepancy between Common Lisp and
TOPS-20 conventions regarding end of line. The Common Lisp manual
specifies that lines are terminated by a single end of line
characters, referred to as NEWLINE. TOPS-20 normally uses a
two-character sequence: carriage return (CR) followed by linefeed
(LF). Thus Lisp has to turn CR/LF into NEWLINE when reading files,
and NEWLINE into CR/LF when writing them. The manual allows the
implementor to choose the character code for NEWLINE, but it
recommends octal 12, which is LF. We have followed that
recommendation. Any possible choice has its consequences. The
consequences of this one is that a Lisp program will not be able to
tell the difference between CRLF and a bare LF in a file. Both will
show up as a single NEWLINE character. If you really have to be able
to tell what your end of line is, you should read the file with

 17

READ-BYTE. This treats CR and LF just like any other character.

3.7.3. Device handling

Lisp has three different sets of I/O routines for handling external
files. (There are also routines for reading from and writing to
strings and the EMACS buffer.) When you OPEN a file, Lisp will choose
the set of routines to use based on the the of device involved.

3.7.3.1. Disk files

If the file is on disk, Lisp will normally use a set of I/O routines
that use the PMAP JSYS. These routines are capable of random access,
using FILE-POSITION. They will do I/O using any byte size that you
specify in the OPEN. In a few cases PMAP is not possible. If you to
append to a file for which you have append-only access, of if you
write to a file for which you have write-only access, the PMAP JSYS is
not allowed. In this case, another set of routines is used. They use
BIN and BOUT for each character individually.

3.7.3.2. Terminals

If OPEN is done to a terminal, there are several possibilities.
Normally, input is done with the TEXTI JSYS and output with BOUT.
TEXTI implements the normal TOPS-20 terminal handling conventions,
including special actions for rubout, ^R, ^U, and ^W. In order to
allow this editing, it keeps characters in a buffer until you type and
end of line character (normally carriage return, but line feed, ^Z,
^L, and escape also activiate it). The Lisp program starts reading
from the buffer once you have typed the end of line. At that point
you can no longer make changes on that line. If you print a prompt,
Lisp will automatically put it into the ^R buffer for the next read.
That is, you can do something like

 (PRINC "LISP>") (READ)

What you will see on the terminal is a prompt

 LISP>

with the cursor waiting for input on the same line. If you type ^R or
^U, the LISP> will remain at the beginning of the line. Lisp will
keep putting input and output into the ^R buffer as long as you remain
on the same line. This is done on a stream by stream basis. If you
open a second stream on the same terminal, you should not print a
prompt from one stream and read the results from the other stream.

 18

(Such a sequence would work, however ^R would not show the prompt in
the right way.)

Because output is done using BOUT for each character. Thus output
will show up on your terminal as soon as you generate it. You do not
need to do anything special to force buffers to be written.

If you OPEN a terminal with a byte size of 8 (by specifying an
ELEMENT-TYPE of SIGNED-BYTE or UNSIGNED-BYTE), this has a special
meaning to both the operating system and Lisp. A byte size of 8
implies "binary mode". In this mode there is no echoing, and normal
character processing (e.g. rubout and ^U) is not done. In some
circumstances it is even possible to read ^C in binary mode. Lisp
handles terminals opened this way by using simple BIN and BOUT jsyses
for each character.

The choice between normal and binary mode is made when you open the
file, on the basis of whether or not you specify a byte size of 8.
You cannot change between these modes once the file is opened.
However if you open a terminal normally, you can use the function
SET-TERMINAL-MODES to change some of its parameters. These include
the equivalent of the EXEC commands TERMINAL WIDTH, TERMINAL PAUSE
END-OF-PAGE, TERMINAL ECHO, and RECEIVE/REFUSE SYSTEM MESSAGES. In
addition, you can enable or disable PASS-ALL, TRANSLATE, and ESCAPE
modes, which have no equivalent in the EXEC.

 - PASS-ALL mode is very similar to the effect of opening a
 terminal for 8-bit I/O. It allows your program to read and
 write any character. ^C and other interrupt characters
 become normal data characters. ECHO is still done, unless
 you have disabled it with SET-TERMINAL-MODES. In many
 cases, PASS-ALL mode is not really required. If all you
 want is to be able to output escapes and other control
 characters, disabling TRANSLATE is often enough.

 - TRANSLATE mode causes control characters to echo as ^
 followed by a letter, and escape as $. If you disable it,
 then your program can output any character.

 - ESCAPE mode is a designed to allow you to read the escape
 sequences produced by terminals with special function keys.
 When it is turned on, Lisp handles the escape key specially.
 When it sees an escape, it expects one of these special
 escape sequences. It does not echo the escape, nor the
 characters that make up the escape sequence. When it
 reaches the end of the escape sequence, it activates your
 program, as it would have if you had typed an end of line
 character. At the moment ESCAPE mode has no effect if you
 are already in PASS-ALL mode.

 19

3.7.3.3. Other devices

If you OPEN something that is neither a disk nor a terminal, Lisp will
use the BIN and BOUT monitor calls. It will do a separate call for
each character you read or write. These are TOPS-20's general-purpose
device-independent I/O calls, so the results should be satisfactory
for most devices. However there is no special handling for tape,
networks, or other devices.

 20

 4. Reference Manual - Additional Functions and Features

This section contains documentation for all functions and options that
are not part of standard Spice Lisp.

(APROPOS string &OPTIONAL package)

(APROPOS-LIST string &OPTIONAL package)
 When package is omitted, these will search all symbols, as
 documented in the manual, except that they will omit
 internal symbols of the LISP and COMPILER packages. These
 symbols are presumably of no signficance to the user, and
 clutter up the output. If you really want to see
 everything, T as a package argument will cause it to look at
 all packages. Mentioning a specific package causes all of
 its symbols to be searched, as well as externals all
 packages that it uses. (The manual is ambiguous as to what
 is meant by supplying a package argument.)

(COMPILE-FILE filename &KEY :OUTPUT-FILE)
 The compiler is just as documented in the manual. The
 default output file spec is the same as the input spec,
 except with the extension .LAP. Currently, output of the
 compiler is a form of assembly language. Shortly, we will
 be implementing a binary format, so users should not depend
 upon the format of the .LAP file.

(DDT) --> NIL
 Go into DDT. To exit, type IRET$X. (See also section 3.6.)

(ED thing)

(EDIT thing)
 See section 3.5 for documentation on the editor. EDIT is an
 additional function. It is just like ED, except that it
 does not evaluate its argument.

(SYS:EDITOR-BUFFER-SIZE integer) --> size
 Make sure the buffer has at least the specified space
 (number of character) for insertion. This space is made at
 the EMACS "point". If no buffer exists, creates one. If no
 EMACS fork exists, create one. Returns the actual size of
 the gap, which is at least as big as what was ask for.

(SYS:EDITOR-CALL-FORK integer) --> AC3
 Calls the FSsuperior code in EMACS, passing it INTEGER as an
 argument. Returns what EMACS returns in AC3. This is not
 the normal way to call EMACS. See EDITOR-RUN-FORK. This is
 used to call a special kludge in EMACS. Create a fork and
 buffer if none exists.

(SYS:EDITOR-CLEAR-BUFFER) --> NIL
 Clear the EMACS buffer. Set point to beginning and make the

 21

 buffer be zero size.

(SYS:EDITOR-CLIP-BUFFER &OPTIONAL stream)
 Use this when you are finished writing into the buffer,
 before calling EMACS. It updates some status variables.
 They are invalid between the call to EDITOR-WRITE-CHANNEL
 and the call to EDITOR-CLIP-BUFFER. Do not do any more
 writing after calling this function. If STREAM is NIL (or
 not given), the current output stream is used.

(SYS:EDITOR-CREATE-FORK)
 Make sure you have a valid editor fork and buffer. Differs
 form EDITOR-GET-FORK in that is calls EMACS with 0FSExit if
 needed to create a buffer, whereas EDITOR-GET-FORK just gets
 the fork without starting it, so there is no buffer yet.
 No-op if there is already a fork and buffer.

(SYS:EDITOR-GET-FORK)
 Gets a fork and puts EMACS into it. Doesn't start it.
 No-op if there is already a fork.

(SYS:EDITOR-KILL-FORK) --> NIL
 Kills the editor fork, i.e. makes the fork and EMACS
 completely go away.

(SYS:EDITOR-MODIFIED-P) --> T or NIL
 Returns T if the editor buffer is modifed, else NIL.

(SYS:EDITOR-READ-CHANNEL) --> stream
 Returns an I/O stream such that if you read from it, your
 input comes for the EMACS buffer. It is set up to start at
 the "virtual beginning" of the buffer, and give EOF at the
 "virtual end". An ESCAPE will be provided as the N+1 st
 character if you try to read beyond the end. Illegal if
 there is no EMACS fork.

(SYS:EDITOR-RUN-FORK small-number) --> AC3
 If SMALL-NUMBER is a small number, start the editor fork at
 that offset in it's entry vector, else if it is NIL continue
 the fork if it has been started (or start it at entry vector
 offset 0). In any case, wait for it to stop, and return the
 value EMACS puts into AC3.

(SYS:EDITOR-SET-JCL string) --> the string
 Sets the STRING into the RSCAN buffer.

(SYS:EDITOR-SET-MODIFIED switch) --> switch
 If the SWITCH is T, sets the editor buffer as modified. If
 NIL, sets the editor buffer as not modifed.

(SYS:EDITOR-WRITE-CHANNEL) --> stream
 Creates a stream such that if you write to it, your output
 goes into the EMACS buffer. Certain status variables in
 EMACS will be temporarily invalid after this. Call
 EDITOR-CLIP-BUFFER when you are finished writing to make

 22

 them good again. the stream is set to that things output
 are inserted after the EMACS "point".

FEATURES - variable
 The following "features" are true in this implementation.
 Thus you can use any of them in a #+ test: COMMON
 DECSYSTEM-20 TOPS-20.

GC-TRIGGER - variable
 A variable, initialized to 1.0. This controls the how often
 a garbage collection will happen. At the end of each GC,
 all used space is compact. A certain amount of space above
 this compact, used space is then allocated for the system to
 grow in until the next GC. This is called "free space".
 Free space is computed as the number of words used *
 GCTRIGGER. GCTRIGGER should normally be a floating point
 number between 0 and 2. The default is 1.0. You will
 always get at least 64000 words of free space, even if the
 calculation just documented leads to a smaller number.

(GET-TERMINAL-MODES stream) --> mode list
 Returns a list of terminal parameters, of the following
 form: (:BROADCAST T :ECHO T :ESCAPE NIL :PASS-ALL NIL
 :PAUSE T :TRANSLATE T :WRAP 80) See SET-TERMINAL-MODES for
 the meaning of these parameters. STREAM must be a stream
 that has been opened on a terminal for character I/O (i.e.
 not :ELEMENT-TYPE '(UNSIGNED-BYTE 8)).

(KILL-EDITOR)
 Kills the subfork that has EMACS in it. You may find this
 necessary if EMACS because unusable for one reason or
 another.

(LOAD filename :PACKAGE package)
 LOAD takes an additional keyword, :PACKAGE. This specifies
 the package into which the file will be loaded. If the file
 contains package specifications of its own, they will take
 precedence. This keyword simply rebinds *PACKAGE* for the
 duration of the LOAD.

#\NEWLINE - a character
 See section 3.7.2 for a description of the newline
 convention that this implementation follows.

(OPEN file)
 See section 3.7.1 for documentation on the effects of the
 various OPEN options. Various other I/O details are
 discussed in the sections following that one.

PRINT-GC-INFO - variable
 A variable, initialized to NIL. It you set it to non-NIL,
 the garbage collector will print a message showing the total
 amount of free space used before and after the garbage
 collection. The difference between these quantities is the
 amount of garbage that was removed.

 23

PROMPT - variable
 A variable, initialized to "CL>". The default top level
 uses this is its prompt.

(SAVE filename &OPTIONAL greeting-message) --> NIL
 Saves your entire core image on the file specified. The
 filename should probably end in .EXE. This function is
 similar to the SAVE command in the EXEC. However you should
 use this function instead of the EXEC's command, since the
 EXEC's command will not save the registers. Note that you
 need lots of disk space to use SAVE. The base core image
 (with just Common Lisp) is currently over 700 pages.

 If you specify a greeting-message, it will be PRINC'ed when
 the core image is started.

(SET-TERMINAL-MODES stream &key parameters) --> NIL
 This function allows you to control the way Lisp will handle
 the terminal. STREAM must be a stream that has been opened
 on a terminal for character I/O (i.e. not :ELEMENT-TYPE
 '(UNSIGNED-BYTE 8)). In many cases these setting will affect
 all processes using the particular terminal, not just the
 particular stream that is set. Here are the possible
 parameters. Unless otherwise stated, the default is taken
 from the way your terminal is set up when you enter Lisp.

 :BROADCAST
 non-NIL if you want your terminal to receive
 messages such as [You have mail from ...], and
 SEND's from other users. NIL to suppress these
 messages. Note that a privileged user can
 override this setting. Changing this affects all
 users of this terminal.

 :ECHO
 non-NIL for input that you type to be "echoed",
 assuming that you are on a full-duplex terminal.
 (On half-duplex terminals, the system never echos
 input.) NIL turns off this echo. Changing this
 seems to affect other streams open on the terminal
 within Lisp, but not other processes than use it,
 except in PASS-ALL mode, where it affects only
 that one stream. Default is T.

 :ESCAPE
 non-NIL if you want escape sequences sent by ANSI
 terminals to be treated as terminators. Within
 this, it is moderately hard to read these
 sequences. The problem is that Lisp does not
 normally process input until you type carriage-
 return, line-feed, escape, form-feed, or ^Z.
 However typically you want an escape sequence to
 be processed immediately. This mode causes input
 to be processed as soon as a complete escape
 sequence is seen. It also turns off echoing

 24

 during processing of the escape sequence. The
 escape sequences recognized are a superset of
 those accepted by the ESCAPE option in VMS. This
 includes all legal ANSI escape and control
 sequences, plus most of the sequences sent by the
 older VT52-compatible terminals. This affects
 only the one stream for which you issue it.
 Default is NIL. Escape processing currently does
 not work for pass-all mode.

 :PASS-ALL
 non-NIL if you want to be able to treat most
 special characters as ordinary data. With this
 turned on, rubout, ^U, etc., are just ordinary
 characaters for input. Also, output characters
 are sent as is. That is, escape is not turned
 into dollar sign, control-X into ^X, etc.
 Interrupt characters, such as ^C, will be treated
 as normal data characters. This affects only the
 one stream for which you issue it, except that
 interrupt characters are turned on and off
 globally. Default is NIL. If echoing is turned
 on, you had better have opened the stream
 :DIRECTION :IO, since Lisp will have do the
 echoing explicitly.

 :PAUSE
 non-NIL if you want the system to wait for ^Q each
 time it fills your screen. This is equivalent to
 TERM PAUSE END-OF-PAGE in the EXEC. Changing this
 affects all users of this terminal.

 :TRANSLATE
 non-NIL if you want control characters and escape
 to be translated on output. That is, a control
 character appears as ^ followed by a letter, and
 escape appears as $. NIL if you want these
 characters to be sent as themselves. With
 :TRANSLATE NIL, the setting of TERM TAB or TERM NO
 TAB is still obeyed. That is, if your terminal is
 shown as having no tabs, tabs are turned into
 spaces. The default is :TRANSLATE T.

 :WRAP
 non-NIL if you want the system to supply a
 carriage-return line-feed when it thinks it has
 reached the right margin of your terminal. This
 is equivalent to TERM WIDTH x in the EXEC.
 Turning the feature off (NIL) is equivalent to
 TERM WIDTH 0. It is somewhat unfortunate that
 there is no way to turn this off without losing
 the terminal width parameter. If you know the
 terminal width, you can specify it as the argument
 to turn wrapping back on. For example, you can say
 (SET-TERMINAL-MODES TERM :WRAP 80). Lisp will

 25

 remember the terminal width that was present when
 you opened the terminal, if it was non-zero. (If
 it was zero, Lisp uses a width of 80.) If you
 specify an argument of T, Lisp will use this
 remembered value.

 others
 This function specifically ignores keywords that
 it does not know about, because other
 implementations of Lisp may have other keywords
 that do not make sense on a DECSYSTEM-20.

 It is sometimes convenient to save an old terminal state, as
 returned by GET-TERMINAL-MODES, and then reset it. To make
 this easier, SET-TERMINAL-MODES may also be used in the
 form:

 (SET-TERMINAL-MODES term modes)

 In this case, modes is a list of keyword-value pairs, as
 returned by GET-TERMINAL-MODES.

(STEP form)
 For documentation on the STEP facility, see section 3.4.

(%TOP-LEVEL) - never returns
 For documentation on customizing the top level, see section
 3.6.

(TRACE function)
 For documentation on the TRACE facility, see section 3.3.

 26

 5. Differences between Spice Lisp and Common Lisp

The section is really intended for the benefit of implementors and
maintainers. It describes the general nature of the changes we have
had to make to the Spice Lisp system code in order to use it as part
of Common Lisp. Such changes should not be necessary for user code,
so this should not affect normal users.

Unfortunately, we have not been able to use very many of the Spice
Lisp files unmodified. However in many cases the changes take only 5
minutes or so to put in. In general, our data representations are
quite similar. %SP-TYPE converts the internal data type code to the
correct Spice Lisp type number. Thus there are few changes necessary
due to differences in types. Most of the changes are due to the fact
that we implement more in the kernel than Spice Lisp implements in
microcode. Here are the major things to look for in converting a
file:

 - Look for (PRIMITIVE and %SP-. Spice Lisp is in the process
 of changing its primitives. Some of them are %SP-foo and
 others are (PRIMITIVE foo). We have normally used the old
 %SP names, although we have HEADER-REF and HEADER-LENGTH
 without the %SP. We do not have PRIMITIVE at all. When
 Spice Lisp changes completely to using the (PRIMITIVE
 format, we should define PRIMITIVE as a macro. This would
 eliminate a lot of the conversion.

 - Look for code of the form (DEFUN CAR (X) (CAR X)). This is
 used to provide Lisp definitions for the Spice Lisp
 primitives. Since our kernel uses normal Lisp calling
 conventions, such definitions are not needed, and should be
 deleted.

 - Look for functions that we define in the kernel. Large
 parts of HASH, EVAL, PRINT, READ, and FILESYS are
 implemented in the kernel. We have tried to be consistent
 with Spice Lisp in the function names that we used for
 kernel code. So often you just have to remove those
 functions that are already in the kernel. In some cases it
 was inconvenient to do all of the argument processing in the
 kernel, so I supply a small Lisp function to do that. For
 example, most of OPEN is in the kernel. But the kernel
 function is called %SP-OPEN. In FILESYS.CLISP the actual
 OPEN is defined in Lisp. It simply does some defaulting and
 then calls %SP-OPEN. Arithmetic is done almost entirely in
 the kernel.

 - Some of the functions, particularly in FILESYS and MISC, are
 inherently system-dependent.

 - Some of our changes are simply bug fixes.

