—~——

SAILON 28.2 - S T

ABSTRACT

This manual describes the PDP-6/10 LISP 1.6 system developed by
the Stanford Artificial Intelligence Project. The manual is not a.

tutorial on LISP but is intended to supplement existing LISP tutorials. 5‘

Differences from other LISP systems and new functions and features are
described in order to prepare one to understand and.usg'this LISP
system. 4 - : ' A

This manual supercedes-and replades SAILONS 1; 4; 28 and. 28.1.

a
a2 .

" ACKNOWLEDGMENT |

.

The Stanford AI LISP 1.6 system>is an adaptation by John R. Alieﬁ .

and Lynn H. Quam of a LISP system developed at M.I.T. Sections of

this document were contributed by John R.. Allen and Anthony C. Hearn. ~

This work was supported by the Advanced Research Projects Agency of
the Office of the Secretary of Defense under Contract SD-183.

SAILON No. 28.2

TABLE OF CONTENTS

ADSETACE . v v v v 4 e e e e e e e e e e e e e
Acknowledgement o0 e e e e

CHAPTER
1. INTRODUCTION |, . & ¢ o o s o o s s » » @
1.1 Document Conventions , , .,
2. INTERACTIVE USE OF THE SYSTEM
2.1 The Top Level « . .
2.2 Special Control Characters e e e e
3. IDENTIFIERS .+ + « ¢ o o v o o o o o o &
3.1 Property Lists « . .
3.2 The Oblist e e e e e e e e e
4. NUMBERS e e e 4 & e e s e e e e e e e e
4.1 Integers . . .« « v v o o o o o & 0
4.2 Reals R
5. S-EXPRESSIONS + « « « ¢ o ¢ o o o o o & &
6' IJAMBDA EXPESSIONS s e 1 1 L] 1] E] 1] 1] 1 1]

10.

11..

12,

6.1 EXPRs e e e e e e e e 4 e e e e
6.2 FEXPRs e e v e v e e e 4 e e e .
6.3 LEXPRs e e e e e e e e e e e e e
6.4 MACROs e e e e e e e e e e e e
EVALUATION OF S~-EXPRESSIONS e e e e e

7.1 Variable Binding e e e e e e e e

7.2 The A<List e e e e e e e e e e

7.3 Functional Arguments e e e e e e

CONDITIONAL EXPRESSIONS e e e e e e
PREDICATES e e e e e e e e e e e e
9.1 S-Expression Predicates
9.2 Numerical Predicates e e e e e e e
9.3 Boolean Predicates e e e e e e e
FUNCTIONS OF S-EXPRESSIONS
10.1 S-Expression Building Functions . .
10.2 S-Expressions Fragmenting Functions
10.3 S-Expression Modifying Functions .
10.4 S-Expression Transforming Functions
10.5 S-Expression Mapping Functions = . .
10.6 S~-Expression Searching Functions .
10.7 Non-Standard S-Expression Functions
FUNCTIONS ON IDENTIFIERS + .
11.1 Property List Functions , . , . . .
11.2 Oblist Functions « + « .
11.3 1Identifier Creating Functions . . .
FUNCTIONS ON NUMBERS . « + « + « « o « &
12.1 Arithmetic Functions

12.2 Logical Functions v + v o5

ii

= ' ‘

QUVWOWWOUWOWONNNNOODOTOANONO VNP PPWLWWWNNNFE
'

NMWNNRMEBRERENNEFEFNREREREBEBENDERERMONENDEERERFER

Page

A

SAILON 28.2

CHAPTER

13. PROGRAMS
13.1 SET and SETQ

e e e * o e o o&. e o e o o

o
. e o o ,‘.{ - e e e o o

14, INPUT/OUTPUT « o o o o o o o oae o o o
14.1 Device Selection and Control .
14.2 TInPUL ¢ o o o o o o o o o s o o o
14.3 Output « o o o ¢ o o o o o o o &

15. ARRAYS

APPENDIX

- APPENDIX
APPENDIX
APPENDIX

-APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

APPENDIX

INDEX .

A.
B.
c
D
E.
F.
G
H
I

J.

. . . o o o . . . o o o o . . .

DIFFERENCES FROM STANDARD LISP
by Anthony C. Hearn ~« - « « =«
ERROR CONDITIONS AND CONTROL -
MEMORY ALLOCATION + & o & o &
GARBAGE COLLECTION =« « « « .« &

L[]

COMPILED ‘FUNCTION LINKAGE AND ACCUMULATOR USAGE

THE LISP COMPILER ¢ « « « & &
THE LISP ASSEMBLER ~ LAP . . .
THE LOADER R L I I
THE LISP EDITOR -~ ALVINE

by John R. Allen « « ¢ « « « &

BIGNUMs - ARBITRARY PRECISION INTEGERS

o o ¢ o o o o o e

iii

.

L

') [
R S

m oo A vaw>

-
| SN
—

J-1

SAILON 28.2
CHAPTER 1
INTRODUCTION

This manual is intended to explain the interactive LISP 1.6 system
which has been developed for the PDP-6/10 at the Stanford University
Artificial Intelligence Project. It is assumed that the reader is
familiar with either some other LISP system or the LISP 1.5 PRIMER by
Clark Weissman. Users who are familiar with another system should see
Appendix A: Differences from Standard LISP.

The LISP 1.6 system described has as a subset most of the features
and functions of other LISP 1.5 systems. In addition, there are several
new features such as an arbitrary precision integer package, an S-expre-
ssion editor, up to 14 active input~ouput channels, the ability to control

the size of memory spaces, a standard relocating loader to load assembly
language or compiled programs, etc.

This system uses an interpreter; however thereis also a compiler
which produces machine code. Compiled functions: are approximately ten
times as fast and also take less memory space.

This manual is organized in a functional manner. First the basic .
data structures are described; then the functions for operating on

them. The appendices present more detailed information on the system,‘
its internal structure, the compiler, and several auxiliary packages.

1.1 DOCUMENT CONVENTIONS

1.1.1 REPRESENTATION CONVENTIONS

In the description of data structures, the following notational
conventions will be used:

‘ represents a 36-bit word in
—> FREE STORAGE with 2 18-bit
: pointers.

T M-

v | ,

Y L//;//// | ;1 means . ? :LNIL
‘5' | v; h» ‘$.

. represents a 36-bit- word in
FULL WORD SPACE. .

1-1

SAILON 28.2

1.1.2 SYNTAX CONVENTIONS

A modified BNF will be used to define syntax equations. Literal
(terminal) strings will be explicitly quoted with " . Non-terminal
syntax rules are not bracketed with<{and > . Parentheses occur around
optional constructs. ‘

1.1.3 CALLING SEQUENCE CONVENTIONS

Calling sequences to LISP functions are presented in S-expression
form, with the CAR of the S-expression being the name of the function.
An argument to a function is evaluated unless that argument is surrounded
by quotes (") in the calling sSequence definition. - Quotes mean that the
function implicitly QUOTEs that argument. 1

Examples (SETQ "ID" V) ID is not evaluated, but V is evaluated.

(QUOTE ''v') V is not evaluated.

2

1.1.4 OTHER CONVENTIONS

The blank character '(ASCII 40) is indicated by "' when appropriate
for clarity. ~ . .

1-2

SAILON No.

28.2

CHAPTER 2.

INTERACTIVE USE OF THE SYSTEM

This chapter attempts to explain how to use the LISP system in the
interactive time sharing environment of the PDP-6/10.

2,1 THE
The
systems.
(DE

The

TOP LEVEL

top level of this system does not use EVALQUOTE as do many
However, EVALQUOTE may be defined as follows: .

EVALQUOTE NIL
(PROG NIL
L~ (TERPRI)

(PRINT (EVAL (CONS (READ) (MAPCAR
(FUNCTION (LAMBDA (X) (LIST (QUOIE QUOTE) X))).

(READ)))))
(Go 1)))

top level of LISP is equivalent to:

(PROG NIL
L (TERPRI)

(PRINT (EVAL (READ)))

(GO L))

All examples at the top level assume this definition.

The following dialog shows how to log into the time-sharing sjstem;

start the LISP system, and interact with it at the top level.
lined characters are typed by LISP.
"S" means altmode.

feed.

login

starting
LISP

examples
at
top
level

.R LISP
—LISP 1.6 (date of systenQ,

ALLOC?
3T$Z,_ 515, 2

““(QUOTE (A B C))$2,_

ABC
% (INC)EINPUT SYS: SMILE))$,

SMIIEFNS,

<a long sequence of output)
* (CONS 1 (QUOIE A))S$

*

Under-

’b” means carriage-return and line=-

Give your project-programmer
number.

Core size may be specified.
See note 1.

Memory allocation can be
specified. See note 2.

T and NIL always evaluate to
themselves

You are talking to EVAL.

This READs the file SYS:SMILE

The output can be suppressed
with 0.

SAILON No. 28.2

Note 1. For limited use of the LISP system, type R LISP, .
If more core is needed, type R LISPn , , where n is the
desired number of 1024 word blocks. %

Note 2. For limited use, type , after ALLOC?.. To allocate memory o
spaces type Y. The afiocatlon procedure is explained in EE
Appendix C. ' ! o . :

2,2 SPECIAL TEIETYPE "CONTROL CHARACTERS

The time sharing system treats many control characters in special
ways. For a complete discussion of ‘control characters see the PDP-10
TIME SHARING MONITOR MANUAL. Briefly, the following control characters
should be useful in LISP. ' '

teletype ITI display) ' meaning
1C - CALL Stop the job and talk to the

time sharing system.
10 § Suppress console printout
: until an input is requested.

tU 3 ’ Delete the entire input line
' : now being typed. (Only with
(DDTIN NIL)). ' ‘

e o N 8 ' Stop the LISP interpreter and
return control to the top
level of LISP. Only effectiive
when LISP is asking for console
input.

rubout BS : ™ - " Delete the last character

typed. (For (DDTIN T) see
14.2.1), °

2-2

SAILON No. 28.2

CHAPTER 3. IDENTIFIERS

Identifiers are strings of characters which taken together
represent a single atomic quantity.

Syntax: ignored-character ::= carfiage-return.| line-feed °
delimiter = n(u l 1 | >n.u I VAL l blank '

tab | altmode

character ::= (any ASCII character other than null and
rubout) '

digit , ce= Ngn | nyn l Ve l ngn

letter ::= (any character not a digit, not a delimiter,

and not an ignored-character)

identifier ::= letter
::= identifier letteér
::= identifier digit
::= "/" character
::= identifier '"/" character
Semantics:

Identifiers are normally strings of characters beginning with a
letter and followed by letters and digits. It is sometimes convenient
to create identifiers which contain delimiters or begin with digits.
The use of the delimiter "/'" (slash) causes the following character to
be taken literally, and the slash itself is not part of the identifier.
Thus, /AB is the same as AB is the same as /A/B.

Examples: A
APPLE

FOObaz

TIME~OF~DAY ‘

AlB2 ‘ o
/(

o

/13245
/.
LPT:

SATILON No. 28.2

Representation:.

An identifier is internally represented as a dotted pair of the
following form:

identifier —>] -1 e - property list
which is called an atom header.

Thus CDR of an identifier gives ‘the property list of. the identifier,
but CAR of an identifier gives the pointer 777777, which if used as an
address will cause an illegal memory reference, and an error message.
An identifier is referred to in SymbOllC c0mputat10n by the address of
its atom header. - B - R e

3.1 PROPERTY LISTS

The property list of an identifier is a list of pairs: (property
name, property value) associated with thgt identifier. The normal kinds
of properties which are found in property lists are print names, values,
and function definitions corresponding to identifiers.

3.1.1 PRINT NAMES

Every identifier has a print name (PNAME) on its property list.
The print name 0f an identifier is a list of full words, each containing
five ASCII characters. :

Example: The identifier TIME-OF-DAY would be initially represented as
follows: .
other properties

atom header —>{ -1 | > —S» PNAME| e——3] ? I ~ |
. A *
print name [y T sy [eb 1 17]
(THE=] [oF=DA] rev i

where , means null or ASCII #.

3.1.2 SPECIAL CELLS

When a value is assigned to an identifier, the property name VALUE
is put on the identifier's property list with property value being a
pointer to a special cell. The CDR of the special cell (sometimes called

3-2

SATLON No. 28.2

VALUE cell) holds the wvalue of the identifier, and the address of a
special cell remains constant for that identifier unless REMPROPed, to
enable compiled functions to directly reference the values of special

variables. Global variables and all variables bound in 1nterpreted i
 functions store their values in Spec1a1 cells.

Example: The atom NIL has the follow1ng form:

atom header property - 1list - e :

NIL “7\‘f___;_°_-}'—>'VALUE _— ME] T 17
e

\ special [gi NI - print ")

N cell ' y , name [:ff:[:Z:j

S~ L7 e

e INIL A Al

3.2 THE O0BLIST

In order that occurrences of identifiers with the same print names’
have the same internal address (and hence value), a special list which is
the VALUE of a global wariable ealled OBLIST is used to remember all
identifiers which READ and some other functions have seen. For the sake
of searching efficiency, this list has two levels; the first level contains
sequentially stored "buckets'" which are "hashed" into as a function of the
print name of the identifier. Each bucket is a list of all distinct
identifiers which have hashed into that bucket. Thus, (CAR OBLIST) is the

first bucket, and (CAAR OBLIST) is the first identifier of the flrst
bucket.

3-3

e
i R AT

Mt e T .
i}

SAILON No. 28.2

CHAPTER 4. NUMBERS : .

£

PRI

i

There are two syntactic. types of numbers: integer and?real.

i
3 s

4.1 INTEGERS

Syntax: : 2
7 o o= 7 101 mnon ‘ ‘T\
integer ::= (sign) digits (".") E b

4 et

digits ::= digit g

::= digits digit

sign ca= Mg I o
Semantics:

The global variable IBASE specifies the input radix for{integers
which are not followed by "." . 1Integers, followed by ", are decimal
integers. IBASE is initially = 8. Similarly, the global variable BASE
controls output radix for integers. If BASE = 1§. then integers will

print with a following "." , unless the global‘variaBlen*NOPQ;NTu= T.

Examples with IBASE=8

input meaning N f

-13 = -11. = —111¢ _
1866 = 512, =+5121g
19 = 17. = +17m 3

Representation:

There are three representations for integers depending on the

numerical magnitude of the integer: INUM, FIXNUM, and BIGNUM. -Their
ranges are as follows: ’

INUM In] <K K is usually 216
FIXNUM K¢ |n] <233
BIGNUM 235 < |n]

SAILON No. 28.2

Representation of INUMs:

INUMs are represented by pointers outside of the normal LISP
addressing space. INUMs are addresses in the range 21852K+1 to 218-1,

Examples:

INUM representation
- (K-1) 218~ (k-1)

-1 218.x-1

) 218.x

+1 218 x41

+(K-1) 218,31

Representation of FIXNUMs:

L

FIXNUMs are represented by list structure of the following form:

atom header
(<1 | < —FIXNUM| et+—> value

where value is the 2's ‘complement representation of the fixed point
number.,

Examples:

+100000000g —>I ~1] +>{FIXNUM| ——>{000001990000)
-140p000032g — -1 —HFIXNUM] ~4—3777763777756]

Representation of BIGNUMs:

BIGNUMs are represented by list structure of the following forms:

.’Z Ng li‘, . '~QNn~

TR

Positive BIGNUMs . e—>POSNUMI > ¢ | ... Y 17]
_ X : ’
| No : [Nn

Negative BIGNUMs ' S NEGNUMI > 3 [> il ¢ [/]

SAILON No. 28.2

where N; are positive 36 bit integers ordered from least to most
significant. The value of a BIGNUM is

n

sign -:Ej Ni-(235)5L .
i=0

Note: BIGNUMs are not normally a part of the interpreter. Appéndix H
describes the procedure for loading the BIGNUM package.

4,2 REALS
Syntax:
real ::= (sign) digits expovent |
' ::= (sign) (digits) "." (exponent}
exponent ::= "E" (sign) digits
Examples:
meaning
3.14159 +3.14159
+1E-3 +3.001)
-196.37E4 -1963700.0
3.3 +3.3 ’
-¢a 3E+1 "3-¢
Restrictions:

A real number x must be in the (approximate) range:

197% < p+38

|x| < 1 or x=0
A real number has approximately eight significant digits of accuracy.

Representation:

atom header .

=11 ot > FLONUM! °——‘———‘>{| value [

where value is in PDP-6/10 2's complement floating point representation.

4=-3

SAILON No. 28.2

CHAPTER 5. S=EXPRESSIONS

Syntax:
atom ::= identifier | number
S-expression ::= atom N
se= (" S-expressipn—list mmn
pi= (" S = NIL
S=-expression-list ' ::= S-expression
::= S=expression S-expression-list
:= S-expression list “.; S-expression
Examples:
S—-expression ’ representafion
A . (B.C) —Aa | ¢ i
3 [¢ Q
(4 . B) (C.D)E) —> s [s | s E] /]
H:/sz < T
(AB.C —> A | =—+—>{ B | C |

Exceptions:

The identifier NIL is the identifier which represents the empty
list, i.e., () . -

5-1

SAILON 28.2

CHAPTER 6. LAMBDA EXPRESSIONS

LAMBDA expressions provide the means of constructing computational
procedures (often called functions, subroutines, or procedures) which
compute answers when values are assigned to their parameters. A LAMBDA
expression can be bound to an identifier so that any reference to that
identifier in functional context refers to the LAMBDA expression. In
LISP 1.6 there are several types of function definition which determlne
how arguments are bound to the LAMBDA expres31on..- ‘)

(LAMBDA "ARGUMENT - LIST" ”BODY”)

LAMBDA defines a ‘function by specifying an ARGUMENT-LIST, whlch is
a list of identifiers (except for LEXPRs, see 6.3) and a BODY, which is
an S-expression. LAMBDA expressions may have no more than five arguments

if they are to be compiled.

Examples: (LAMBDA NIL 1)
This LAMBDA expression of no argiments always evaluates

to one.

(LAMBDA (X) (TIMES X X))
This LAMBDA expression computes the square of its
argument. .

(LABEL "ID'" "LAMBDA-EXPR')

LABEL creates a temporary name ID for its LAMBDA expressiom.
This makes it possible to comstruct recursive functions with temporary

names.

Example:

(DE REVERSE (L)
((LABEL REVERSEl
(LAMBDA (L M)
(COND ((ATOM L) M)
(T (REVERSEL (CDR L) (CONS (CAR L) M))))))

L NIL))

LAMBDA expressions are evaluated by 'binding' actual arguments
to dummy variables of the LAMBDA expression, (see Chapter 14) then
evaluating the body inside the LAMBDA expression with the current dummy
variable bindings. However, actual arguments to LAMBDA expressions are

6-1

SAILON 28.2

handled in a variety of ways. Normally, there is a one-to-one corres-
pondence between dummy variables and actual arguments, and the actual
arguments are evaluated before they are bound. However, there are

three special forms of function definition which differ in their handling

of actual arguments.

6.1 EXPRs

An EXPR is an identifier which has a LAMBDA expression on its
property list with property name EXPR. EXPRs are evaluated by binding -
the values of the actual arguments to their corresponding dummy vari--
ables. DE (see 11.1) is useful for defining EXPRs.

Examples:

(DE SQUARE (C) (TIMES X X))
(DE *MAX (X Y) (COND ((GREATERP X Y) X) (T ¥)))

0.2 FEXPRs ,

A FEXPR is an identifier which has a LAMBDA expression of one
dummy variable on its property list with property name FEXPR. FEXPRs
are evaluated by binding the actual argument list to the dummy variable
without evaluating any arguments. DF (see l1.1) is useful for defining
FEXPRs. ‘

Examples:

(DF LISTQ (L) L)
(LISTQ A (B) C) = (A (B) C)
(LISTQ) = NIL
(DF DEFINE (L)
(MAPC (FUNCTION (LAMBDA (X) (PUTPROP (CAR X)
(CADR X)
(QUOTE EXPR))))
L)) . :
(DEFINE (LEQ (LAMBDA (X Y) (OR (LESSP X Y)
(EQUAL X Y¥))))
(GEQ (LAMBDA (X Y) (OR (GREATERP X Y)
(EQUAL X Y)))))

6.3 LEXPRs

An LEXPR is an EXPR whose LAMBDA expression has an atomic argument
"list" of tae form:

6-2

SATILON 28.2

(LAMBDA "ID" “'FORM')
LEXPRs may take an arbitrary number of actual arguﬁents which are .evalu-,

ated.and referred to by the special function ARG. ID is bound.to'the
nuuder of arguments which are passed. : o S

@

ARG returns the value of the Nth argument to an LEXPR.

Example:
(DE MAX N
(PROG (M)
(SETQ M (ARG N))
L (SETQ N (SUBL N))

(COND ((ZEROP N) (RETURN M))
((GREATERP (ARG N) M) (SETQ M (ARG N))))
(GO L))) .
(MAX 1 1.2 4 3 =50) = 4 ‘)

6.4 MACROs

A MACRO is an identifier which has a LAMBDA expression of one dummy
variable on its property list with property name MACRO. MACROs are
evaluated by binding the list containing the macro name and the actual
argument list to the dummy variable. The body in the LAMBDA expression
is evaluated and should result in another 'expanded'" form. In the :
interpreter, the expanded form is evaluated. In the compiler, the expand-
ed form is compiled. DM (see 11.1) is useful for defining MACROs.

Examples:

1) We could define CONS of an arbitrary number of arguments by:

(DM CONSCONS (L)
(COND ((NULL (CDDR L)) (CADR L))
(T (LIST (QUOTE CONS)
(CADR L)
(CONS (QUOTE CONSCONS) (CDDR L))))))

(CONSCONS A B C) would call CONSCONS with L = (CONSCONS A B C).
CONSCONS then forms the list (CONS A (CONSCONS B C)). Evaluating this
will again call CONSCONS with L = (CONSCONS C). CONSCONS will fim lly
return C. »

The effect of (CONSCONS A B C) is then (CONS A (CONS B C)).

6-3

SATLON 28.2

2) We could define a function *EXPAND which is more generally useful
for MACRO expansion:

(DE *EXPAND (L FN)
(COND ((NULL (CDR L)) (CAR L))
(T (LIST FN (CAR L) (*EXPAND (CDR L) FN))))) "

Then we could define QNSCONS:
(DM CONSCONS (L) (*EXPAND (CDR L) (QUOTE CONS)))

It should be noted that MACROs are more general than FEXPRs and
LEXPRs. In fact the previous definitions can be replaced by the
following MACROs: :

(DM LISTQ (L) (CONS (QUOTE QUOTE) (CDR L)))
(DM MAX (L) (*EXPAND (CDR L) (QUOTE *MAX)))
(MAX A B C) would expand to:
(*MAX A (*MAX B (*MAX C D)))

SAILON No. 28.2
CHAPTER 7. EVALUATION OF S-EXPRESSIONS

This chapter describes the heart of the LISP 1nterpreter, the
mechanism for evaluating S-expressioms.

(*EVAL E)
(EVAL E)

*EVAL and EVAL (see 7.2) evaluate the value of the S-expression e.

Examgles:

(EVAL (CONS (QUOTE ADD1) 3)) =
The top level of LISP 15'
(PROG NIL"
L (PRINT (EVAL (READ))) (TERPRI) (GO L))

(APPLY FN ARG§)

APPLY evaluates and binds each S-expression in ARGS to the
corresponding arguments of the function FN, and returns the value of FN.
See 7.2. .

E';‘-:{amgle:

(APPLY (FUNCTION APPEND) ((QUOTE (A B)) (QUOTE (C D)))) = (A B C D)

(QUOTE "E™)

QUOTE: returns the S=expression E without évaluating it

The folliowing function definitions lack some details but explain
the essence of EVAL and APPLY. The A-LIST feature of these functions is
not shown, but will be explained in 7.2.

7-1

. SAILON No. 28.2

(DE EVAL (X)
(PROG (Y)
 (RETURN
(COND ((NUMBERP X) X)
((ATOM X) (COND ((SETQ Y (GET X (QUOTE VALUE)))
: (CIR Y))
(T (ERR (QUOTE (UNBOUND VARIABIE)DB))
((ATOM (CAR X))
(COND ((SETQ Y (GETL (CAR X) (QUOTE (EXPR FEXFR MACRO))))
(COND ((EQ (CAR Y) (QUOTE EXPR))
(APPLY (CADR Y) .
(MAPCAR (FUNCTION EVAL) (CDR X))))
((EQ (CAR Y) (QUOIE FEXPR))
(APPLY (CADR Y) (LIST (CIR X))))
(T (EVAL (APPLY (CADR Y) (LIST X))))))
((SETQ Y (GET (CAR X) (QUOTE VALUE)))
(EVAL (CONS (CDR Y) (CDR X))))
(T (ERR (QUOTE (UNDEFINED FUNCTION))))))
(T (APPLY (CAR X) (MAPCAR (FUNCTION EVAL) (CDR X))))))))

(DE APPLY (FN ARGS) .
(COND ((ATOM FN)
(COND ((GET FN (QUOTE EXPR))
(APPLY (GET FN (QUOTE EXFR)) ARGS))
(T (APPLY (EVAL FN) ARGS))))
((EQ (CAR FN) (QUOTE ILAMBDA))
(PROG (Z)
(BIND (CADR FN) ARGS)
(SETQ Z (EVAL (CADDR FN)))
(UNBIND (CADR FN))
(RETURN Z)))
(T (APPLY (EVAL FN) ARGS))))

The functions BIND and UNBIND dimplement varlable blndlnos as
described in the next section.

7.1 VARIABIE BINDINGS

This section attempts to explain the different types of variable
binding and the difference between interpreter and compiler bindings.

7.1.1 BOUND AND FREE OCCURRENCES

An occurrence of a variable is a "bound occurrence' if the variable
is a variable:.in any IAMBDA or PROG containing the occurrence so long as
the occurrence 'is not contained:in a FUNCTIONAL argument which is contained
in the defining IAMBDA or PROG. The defining ‘TAMBDA or PROG is the inner-
most IAMBDA or PROG which contains the variable in its parameter list.

7-2

SAILON No. 28.2

Examples:

(LAMBDA (X) (TIMES X Y))
X has a bound occurrence.
Y has a free occurrence.
(LAMBDA (Y 2) (MAPCAR (FUNCTION(ILAMBDA(X) (CONS X Y)))Z)
X and Y have only bound occurrences.
Y has a free pccu:rencefbgund by the
outer LAMBDA. ’ '

7.1.2 SCOPE OF BINDINGS

A variable bound in a IAMBDA or PROG is defined during the dynamic
execution of the IAMBDA or PROG. Free occurrences of variables are
defined if and only if either the variable is globally defined or the
variable is bound in any IAMBDA or PROG which dynamically contains the
free occurrence. A variable .s globally defined if and only if it has
a value at the top level of LISP. Variables can be globally defined by
SETQ at the top level.

L]

7.1.3 SPECIAL VARIABIES

In compiled functions, any variable which is bound in a IAMBDA or
PROG and has a free occurrence elsewhere must be declared SPECIAL
(APPENDIX E).

Example:

(LAMBDA (A B)
(MAPCAR (FUNCTION (LAMBDA (X) (CONS A X))) B))

The variable A which has a free occurrence must be declared‘SPECIAL
if the outer IAMBDA expression is to be compiled.

7.1.4 BINDING MECHANISMS

All variables in interpreted functions, and SPECIAL variables in
compiled functions store their values in SPECIAL (or VALUE) cells.
These variablies are bound at the entry to a IAMBDA or PROG by saving
their previous values~-on the SPECTAL pushdown list and storing their new
" values in the SPECJAL cells. All references to these variables are
directly to their SPECIAL cells. When the IAMBDA or PROG is exited, the
old values are restored from the SPECIAL pushdown list.

In compiled functions, all variables not declared SPECIAL are
stored on the REGUIAR pushdown list, and the SPECIAL cells (if they
exist) are not referenced.

7-3

SAILON No. 28.2

7.2 THE A-LIST

The A-LIST which is used in some LISP systems does not exist here,
but its effects are implemented through the SPECIAL pushdown list, and
some special mechanisms. The functions EVAL and APPLY allow an extra
last argument to be passed, which is either a list of paired identifiers
and values (like an A-LIST) or some previous state of the SPECIAL push=-
cown list which defines the context of variable binding in which to
evaluate S=-expressions.

If an FEXPR is defined with two arguments, then the second argument
will be bound to the current state of the SPECIAL pushdown list, which
is represented by a number specifying the value of the SPECIAL pushdown
pointer.

Example:

(DF EXCHANGE (L SPECPDL)
(PROG(Z) (SETQ Z(EVAL (CAR L) SPECPDL))
(APPLY (FUNCTION SET)
(LIST (CAR L) (EVAL (CADR L) SPECPDL)
SPECPDL) ,

(APPLY (FUNCTION SET)
(LIST (CAIR L) Z)

SPECPDL)))

In this example, the use of the extra argument SPECPDL has only one
effect: to avoid conflicts between internal and external wvariables
with names L and SPECPDL.

(EXCHANGE L M) will cause the values of L and M to be exchanged.
The variable L in EXCHANGE is not referenced by the calls on SET,

7.3 FUNCTIONAL ARGUMENTS

An argument to a function which is itself a function is called a
functional argument. Because most arguments to functions are evaluated
when they are passed, the special functions FUNCTZION -and *FUNCTION are
used to control the passing of functional arguments.

(FUNCTION "FN'") = (QUOTE "FN")
(*FUNCTION "FN')

*FUNCTION causes‘the current state of the special pushdown;list to
be passed in a list of the following form:

(FUNARG FN . SPECPDL)

When APPLY sees a FUNARG list, APPLY performs evaluation of FN in the
context of the SPECTAL pushdown list which was passed in the FUNARG list.

7-4

SATLON No. 28.2

CHAPTER 8. CONDITIONAL EXPRESSIONS

A conditional expression has the following form:
(COND (elgl el’2 <es €1 n)

(e2,1 2,9 »++ € 1)

(e
where the e; .'s ar
1,]

The e, 1'5 ar

Ly "
truth value.” The e,

etc., until the firs
correspondin e

p g €k,2
value of e, n 1s
for nyp=1, in which

Gii e; - wvaluate
i,.

Examples:

m, 1 em’z

1

2

))

ese €

m,nm

e any S-expressions.

e considered to be predicates, i.e., evaluate to a
's are evaluated starting with e e

3 1.1 » 2,1 »
¢’"ey 1 is found whose value is not RIL. Then the
ey 3 «+. €y are evaluated respectively and the
returned as’ tfe value of COND. It is permissible
case the value of ey ; is the value of COND. If
to Nil, then NIL is tae value of COND.

(DE NOT (X) (COND (X NIL) (T)))
{_Z AND (X Y) (COND (X (COND (Y T)))))

(DE OR (X

Y) (COND (X T) (Y T)))

(DE IMPLIES (X Y) (COND (X (COND (Y T)))

(1))

8-1

SAILON No. 28.2
CHAPTER 9. ©PREDICATES

Predicates test S-expressions for particular values, forms, or
ranges of values. All predicates described in this chapter return
either NIL or T corresponding to the truth values false and true, unless
otherwise noted. Some predicates cause error messages or undefined results
when applied to S-expressions of the wrong type, such as (MINUSP (QUOTE FOO)).

(ATOM X)

The value of ATOM is T if X is either an identifier or a number;
NIL otherwise.

ixamples: (ATOM T) =T
(ATOM 1.23) =T
(ATOM (QUOTE (X Y Z))) = NIL
(ATOM (CDR (QUOTE (X))) =T

(EQ X Y)

The value of EQ is T iff X and Y are the same pointer, i.e., the
same internal address. Identifiers on the OBLIST have unique addresses
and therefore EQ will be T iff X and Y are the same identifier. EQ will
also return T for equivalent INUMs, since they are represented as
addresses. However, EQ will not compare equivalent numbers of any other
kind. For non-atomic S-expressions, EQ is T iff X and Y are the same
pointer,

Examples: (EQ T T) =T
(EQ T NIL) = NIL
(EQ (QUOTE A) (QUOTE B)) = NIL
(EQ 1 1.9) = NIL
(EQ 1 1) =7
(EQ 1.6 1.¢) = NIL

(EQ (QUOTE (A B)) (QUOTE (A B))) = = NIL
(EQUAL X Y)

The value of EQUAL is T iff X and Y are identical S-expressions.
EQUAL can also test for equality of numbers of the same type. - To .
compare numbers of different types use: (ZEROP (DIFFERENCE X Y)). -
For non-numerical comparisons, EQUAL is equivalent to: , B

(TAMBDA (X Y) (COND ((EQ X Y)T)
((ATOM X) NIL)
((ATOM Y) NIL)
((EQUAL (CAR X)(CAR Y)) (EQUAL (CDR X)(CDR Y)))))

9-1

SAILON No. 28,2

Examples: (EQUAL T T) =T
(EQUAL 1 1) =T
(EQUAL 1 1.¢) = NIL
(EQUAL (QUOTE (A B)) (QUOTE (A B))) =T
(EQUAL (QUOTE (T)) T) = NIL

9.1 S-EXPRESSION
(NULL L)

(MEMBER 11 12)

PREDICATES

T iff L is NIL.

T iff L1 is EQUAL to a top level element of L2,

MEMBER is equivalent to:

(LAMBDA (L1 12) (COND ((ATOM L2) NIL) R i
((EQUAL L1 (CAR L2))T) . %y
(T(MEMBER L1 (CDR 1L2))))) -
Examples: (MEMBER (QUOTE (C D)) (QUOTE ((A B)(C DE))) =T

(MEMBER" (QUOTE C) (QUOTE ((€)))) NIL

"l B

ﬁ .
(MEMQ L1 1.2) = T iff L1 is EQ to a top level element of L2,

MEMQ is equivalent to: _ . w

(IAMBDA (11 12)(COND ((ATOM L2) NIL)

((EQ L1 (CAR 12))T)
(T(MEMQ L1 (CDR L2)))))

Examples: QEMQ (QUOTE (C D)) (QUOTE ((A B)(C bj E))) = NIiv
(MEMQ (QUOZE A) (QUOTE (Q A B))) =T >

9.2 NUMERICAL PREDICATES

(NUMBERP X)

{ZEROP X)

(MINUSP X)

= T 1f X is a number of any type.
NIL . otherwise

i

Il

T if X is zero of any numerical type
error if X is a non-numerical quantity
NIL otherwise

o

a]

T 1f X is a negative number of any type'
error 1f X is a non—numerlcal quantlty
NIL otherwise

il

9-2

SAILON No. 28.2

{(*GREAT X Y) =T if X and Y are numbers of any type and X > Y.
error i1if either X or Y are not number
NIL otherwise

Il

]

(*1ESS X Y) (*GREAT Y X) °

(GREATERP X; Xy ... Xp)

T if (*GREAT Xy X 2) and

(*GREAT X, X3) and ...

(*GREAT X -1 X))
error if any X:L is a non—numerlcal quantlty
NIL otherwise

]

L]

(LESSP X1 X, .. Xp)

(GREATERP X X__1 -.. Xp)

Other numerical. predicates may be defined as follows:

(DE FLOATP (X) (EQUAL X (PLUS X 9.6)))
(DE FIXP (X) (NOT(FLOATP X)))

(DE ONEP (X) (ZEROP (DIFFERENCE X 1)))
(DE EVENP (X) (ZEROP (REMAINDER X 2)))

4

9.3 BOOLEAN PREDICATES

The Boolean predicates perform logical operations on the truth
values NIL and T. & non-NIL value is considered equal to T.

(NOT X)

T 4if X is NIL
~“IL otherwise

(4XD X XZ e Xn) T 7if all X; are aon-NIL

NIL otherwise

ce: (AND)=T. AND evaluates its arguments from left to right until
either NIL is found in which case the remaining arguments are not
evaluated, or until the last argument is evaluated.

]

{OR X7 X9 <o X)) T 4if any X. is non-NIL
1 2 n ——z 1L

NIL otherwise

Note: (CR) = NIL. OR evaluates its arguments from left to right until
either non-NIL is found in which case the remaining arguments
are not evaluated, or until the last argument is evaluated.

8-3

SAILON No. 28.2
CHAPTER 10. FUNCTIONS ON S-EXPRESSIONS

This chapter describes functions for building, fragmenting, -
modifying, transforming, mapping, and searching S-expressions, as well
as some non~standard functions on S~expressions.

10.1 S-EXPRESSION BUILDING FUNCTIONS

(CoNs X ¥)

The value of CONS of two S=-expressions is the dotted pair of those
S-expressicis.

Example: (CONS (QUOTE A) (QUOTE B)) = (A . B)

Note: See Appendix B for information on functions associated with
CONsing, such as SPEAK, GCGAG, and GC.

I

(XCONS X ¥)

(CONS Y X)

(CONS X NIL)

(NCONS X)

(LIST X

X, ... X)) = (CONS Xj (CONS X5 ... (CONS X NIL)...))

1

List evaluates all of its arguments and returns a list of their
values.,

Examples: (LIST) = NIL
(LIST (QUOTE A)) = (&)
(LIST (COTE A)) (QUOTE B)) = (A B)

(APPEND X Y)

*APPEND forms a list which is the second list appended to the first
according to the following definition:

(DE =223 (X V)
©(COND ((NUZ. X) ©)
(T (CONS (CAR X) (®APPEND (CDR X) Y)))))

(APPEND X{ Xp ... X_) = (YAPPEND X, (*APPEND X, ... (*APPEND X, NIL)...))

Example: (APPEND) = NIL
(APPENC (QUOTE (A B)) (QUOTE (C D)) (QUOTE (E F))) = (A BCDE F)

10-1

SAILON No. 28.2

10.2 S-EXPRESSION FRAGMENTING FUNCTIONS
(CAR 1)

The CAR of a non-atomic S-expression is the first element of that
dotted pair. CAR of an atom is undefined and will usually cause an
illegal memory reference.

The CDR of a non-atomic S-expression is the second (and last)
element of that dotted pair. The CDR of an ident._.iier is its property
list. The CDR of an INUM causes an illegal memory reference. The CDR
of any other number is the list structure representation of that number.

Examples: {(C& (QUOTE (A B C))) = A
{(CAR (QUOTE A)) is illegal
(CDR (QUOTIE (A B C))) = (B C)
(CDR (GUOTE A)) is the property list of A
(CDR (QUOTE (A))) - NIL

%.A_B). .__‘C:ﬁ: p EJJ. LL!M

All of the composite CAR~CDR functions with up to four A's and D's
are available.

Examples: (CADR X) = (CAR (CIR X))
(CAADDR X) = (CAR (CAR (CDR (CDR X))))
(LAST L)

IAST returns the last part of a list according to the following
definition:

(DE IAST (L)
(COND ((ATOM (CDR L)) L)
(T (IAST (CDR L)))))

Examples: (IAST (QUOTE (A B C)))

= (C) = (C . NIL)
(IAST (QUOTE (A B . C))) = (B

. C)

10.3 S-EXPRESSION MODIFYING FUNCTIONS

The following functions for manipulating S-expressions differ from
all others in that they actually modify existing list structure rather
than construccing new list structure. These functions should be used
with caution since it is easy to create structures which will confuse
or destroy the interpreter.

10-2

SAILON No. 28.2

(RPLACA X Y)

Replaces the CAR of X by Y. The value of RPIACA is the
modified S-expression X.

(RPIACA (QUOTE (A B C)) (QUOTE (C D))) = ({C D) B C)

Example:
Representation:
X .,_>'1A§u—$—_~'t){B}w—r__¥ \',?C i
BEFORE .
Y 3 C [D /]
Y __.__.>§‘74 ‘: *J,“‘_: ->| BT o "::Jl ¢ 1 /
AFTER R
X -3 C e——=iD 7
(RPIACD X Y

RPIACD replaces the CDR of X by Y. ,The value of RPLACD is the
modified S~expression X. '

(NC?NQ hl X2 “se Xn)

NCONC is similar in effect to APPEND, but NCONC does not copy list

structur.. .. NCONC modifies list structures by replacing the last element
of X, by & pointer to X,, the last element of X, by a pointer to X4, etc.
The value of NCONC is the modified list Xj, which is the concatenation of

Xl, Xz, coey Xn.

Examples: (NCONC) = NIL
- (NCONC (QUOTE (A B)) (QUOTE (C D))) = (A B C D)

Representation:

X —>A | ~—>B | /]

BEFORE
X, —=C «3[D 7
X, —> A 3B | <
AFTER K%
Xz ~=C § =3 D | /]

10-3

SAILON No. 28.2

10.4 S~EXPRESSION TRANSFORMING FUNCTIONS

The following functions transform S-expressions from one form to
another.

(LENGTH L)

LENGTH returns the number of top-level elements of the list L.
LENGTH is equivalent to:

(DE LENGTH (L)
(COND ((ATOM L) ©)
(T (ADD1 (LENGTH (CDR L))))))

QREVERSE L)

REVERST returns the reverse of the top level of list L. REVERSE
i& equivalent to:

(DE REVERSE (L) (REVERSEL L NIL))
(DE REVERSEL (L M)
(COND ((ATOM L) M)
(T (REVERSEL (CDR L) (CONS (CAR L) M)))))

4

(SUBST X Y S)
SUBST substitutes S-expression X for all EQUAL occurrences of
S-expression Y in S-expression S. SUBST is equivalent to:

(DE SUBST (X Y S)
(COND ((EQUAL Y S) X)
((ATOM S) 9)
(T (CONS (SUBST X
(SUBST X

Y (CAR $S))
Y (CDR S$))))))

Note: (SUBST @ & X) is useful for creating a copy of the list X.

Example: (SUBST 5 -{QUOTE FIVE) (QUOTE (FIVE PLUS FIVE IS TEN)))
= (5 PLUS 5 IS TEN)

10.5 S-EXPRESSION MAPPING FUNCTIONS

The following functions perform meppings of lists according to the’
functional arguments supplied (see 7.3).

10-4%

SAILON No, 28.2

(MAP FN L)

MAP applies the function FN of one argument to 1list L and to
successive CoORs of L until L is reduced to NIL., The value of MAP is

L. MAP is equivaleut to:

(DE M42 (FN L)

(PROG NIL .
L1 (COND ((NULL L)(RETURN NIL)))
(FN L)
(SETQ L (CDR L))
(GO L1)))
Example: (MAP (FUNCTION PRINT) (QUOTE (X Y Z))) =
PRINT: (X Y 2)
PRINT: (Y Z)
PRINT . (2)
RETURN: NIL

(MAPC FN L)

MAPC is identical to MAP except that MAPC applies function FN to
the CAR of the remaining list at each step. MAPC is equivalent to:

(DE M42C (FN L)
(PROG NIL
L1 (CONI ((NULL L) (RETURN NIL)))
(FN (CAR L))
(S:7Q L (CDR L))

(GO L1)))
Example: (MAPC (FUNCTION PR:.T) (QUOTE (X Y Z))) =
PRINT: X
PRINT: Y
PRINT: z
RET 0 RN NIL

(MAPLIST FN L)

MAPLIST apwlies the function FN of one argument to list L and to
successive CD&s o. o un. -~ L is wreduced to NIL. The value of MAPLIST
is the list of values returned by FN. MAPLIST is equivalent to:

(DE MAPLIST (FN L)

(COND ((NULL L) WIL)
(T (CONS (FN L) (MAPLIST FN (CDR L))))))

10-5

SAILON No., 28.2

Examples: (MAPLIST (FUNCTION CAR) (QUOTE (A B C D))) = (A B C D)
(MAPLIST (FUNCTION REVERSE) (QUOTE (A B C D))) =
((D CBA) (DCB) (DC) (D))

(MAPCAR FX L)

MAPCAR is identical to MAPLIST except that MAPCAR applies FN to
the CAR of the remaining list at each step. MAPCAR is equivalent to:

(DE MAPCAR (FN L)
(COND ((NULL L) NIL)
T (CONS (FN (CAR L), (MAPCAR FN (CDR L))))))
Examples: (MAPCAR (FUNCTION NCONS) (QUOTE (A B C D))) = ((A) (B) (C) (D))
(MAPCAR (FUNCTION ATOM) (QUOTE ((X) Y (Z)))) = (NIL T NIL)

10.6 S-EXPRESSION SEARCHING FUNCTIONS

(ASSOC X L)

ASSOC searches the list of dotted vpairs L for a pair whose CAR is

EQ to X. If such a pair is found it is returned as the value of ASSOC,
otherwis. JIL is returned. ASSOC is equivalent to:

(DE ASSOC (X L)
(COND ((NULL L) NIL)
((EQ X (CAAR L)) (CAR L))
(T (ASSOC X (CDR L)))))
Example: (ASSOC 1 (QUOTE ((i . ONE) (2 . T#0)))) = (1 . ONE)

(SASS0OC X ' ')

SASSOC searches the list of dotted pairs L for a pair whose CAR
is EQ to X. 1If s :h a pair is found it is returned as the value of
ASSCC, ccherwise the value of FN, a function of no arguments, is returned.

(DE SASSCC (X L FN)
(CONZ {(NULL L) (FX))
((EQ X (CAAR L)) (CAR L))
(T (SASSOC X (CDR L)))))

Example: (S4SSOC @ (QUOTE ((1 . ONE) (2 . TWO))
(FUNCTION (LAMBDA NIL (QUOTE LOSE)))) = LOSE

10-6

SAILON No. 28.2

10.7 NON-STANDARD S~EXPRESSION FUNCTIONS

(EXPLODE 1)

EXPLODE transforms an S-expression into a list of single character
Identifiers identical to the sequence of characters which would be
produced by PRINI.

Examples: (EXPLO-2 (QUOTE (DX /- DY)))
= (/J(DX /., /] /- /3D Y/

(EXPLODE (QUOTE APPLE))
= (AP?LE)

(EXPLODEC L)

EXPLODEC transforms an S-expression into a list of single cnaracter
identifiers identical to the sequence of characters which would be
produced by PRINC. :

Example: (EXPLODEC (QUl I (DX /- DY)))
=({/(DX/,/-/ DY/

(FLATSIZE L) = (LENGTH (EXPLODE L))

(DL\A\\TAN L)

MAKNAYM transforms a list of single character idenrifiers (actually
takes the rirst character of each identifier) into &« S-expression
identical to that which would be produced by READing those characters,
MAXNAM however does not INTERN any of the identifiers in the S-expression
it produces. :

Examples: (MAKNAM (QUOTE (A P P L E))) = APPLE
(MAKNAM {"TOTE (// 1)) =/)

(READLZIST L)

READLIST is identical to MAKNAM except that READLIST INTERNs all
identifiers in the S-expression it produces. READLIST is the logical
inverse of EXPLODE, i.e.,

(READLIST (EXPLODE L)) =L
(EXPHODE (READLIST L)) = L

16-7

SAILON No, 28.2

CHAPTER 11, TFUNCTIONS ON IDENTIFIERS

There are three basic types of functions on identifiers: those
which manipulate their property lists, those whic: create new identifiers,

and those which control their membership in the OBLIST.
Note: All functions described in this chapter which expect an identifier .
as one (or more) of its arguments will give either erroreous

results, or an ervor condition if any S-expression other than an
identifi.r is supplied.

21,1 PROPERTY LIST FUNCTIONS

(GET I 2)
GET ¢ -~ Zuncticn which searches the property list of the ideutifier
i looking .. the property mname which is EQ to P. If such a property

vame 1s founc, the value associated with it is returned as the wvalue of
GET, otherwise NIL is returned. Note that confusion exists if the pro-
perty is found, but its value is NIL. GET is equivalent to:

(LAM2DA(Z P) (COND((NULL (CDR I)) NIL)
((EQ (CADR I) P) (CADDR I))
(T (GET (CDDR I) P))))

(GETL I D

GETL s another function which searches yrovserty lists. GETL
Searches the property lii: of the identifier I looking for the first
Property which is a member (MEMO) of the list L. GETL returns the
Temaining >roper: "“st, inclucd..z the property name if any such
Property was founa, ~IL otherwise. GETL is equivaleat to:

(LAMBDA (I L) (COND ((NULL (CDR I)) NIL)
((MEMQ (CADR I) L) (CDR I))
(T (GETL (CDDR I) L))))

(PUTPROP I V P)

PUTPRO? is a function which enters The roperty name P with
Property va. - V into the property list of identifier I. The value
"Of PUTPROP is V.

Example: (PUTPROP (QUCTE POSP) {QUOTE (LAMBCA (X) (GREATERP X @)))
(QUOTE EXZR))

11-1

SAILON No. Zo.2

(DEFPROP "I" "Y' "P") = (PUTPROP (QUOTE I) (QUOTE V) (QUOTE P))

DEFPROP is the same as PUTPROP except that it does not evaluate
its arguments.

ixample: (DEFPROP POSP (LAMBDA (X) (GREATERP X @)) EXPR)
DE, DF and DM are useful for defining EXPR, FEXPRs, and MACROs.

(»DE lu| IDI! ”A;RC 3 Il ”BODY’L)

= (PROG2 (PUTPROP ID (LIST (QUOTE LAMBDA) ARGS BODY) (QUOTE EXPR))
D)

(DF "'ID” "ARGS" ''BODY')

= (PROG2 (PUTPROP ID (LIST(QUOTE LAMBDA) ARGS BODY) (QUOTE FLXPR))
1D)

(DM HIDU HAAM/\}‘S'—”BODY”)

= (PRCGZ (PUTPROP ID (LIST(QUOTE LAMBDA) ARGS BODY) (QUOTE MACRO))
ID)

(RLMP?M“ 12

REMPZ 2 wemoves the property P from the property list of identifier
I. REMPiO? return. T if there was such a property, NIL otherwise.

(INTERN 1)

INTZRN puts the identifi I ip the appropriate bucket of OBLIST.
If the icentifier is al;eady a membeL of the OBLIST, then INTERN returns
a2 pointer to the identifier already there, otherwise INTERN returns I.

Note: INTERY i: only necessary when an identifier which was created by
GENSYM, MAKNAM, or ASCII needs to be uniquely stored,

)’.’LOB ”}& | IXZH ... HX H}

REMOB remove: all of the identifiers X1 X9, «.. , X from the
OBLIST and returns NIL. None of the Xl s are evaluated,

Example: (REMOB FOO BAZ)

11-2

SAILON No. 28.2

:1.3 1IDENTIFIER CREATING FUNCTIONS

The following functions create new identifiers but do not INTERN
them onto the OBLIST.

GENSYM iZncr.ments the generated symbol counter corresponding
and retuvr.s a new identifier specified by the counter. The GENSYM
counter is initialized to the identifier C15H0. ' ;

Ixample: Suc.cssive executions of (GENSYM) will return;
GUIgL, ~T302, GUTE3, ...

CSYM initializes generated symbol counter to:the identifier I,
and returns I. U3YM does not evaluate its argument.

Cample: (CSYM ANGE) = ARYED
(GENSYM) = £RY@1
(GENSYM) = ARY(?2

etc,

(ASCII X)

ASCIT creates a single character identifier whace ASCIT print
Same cquais N,

Example: (ASCL. 101) 1is an identifier with print name "A",

11-3

SAILON No. 28.2
CHAPTER 12. TFUNCTIONS ON NUMBERS

There are two types of functions which operate on numbers to create
new numbers: avithmetic and logical.

12,1 ARITHMETIC FUNCTIONS

Unless otherwise noted, the following arithmetic funcitions are
defined for both integer, real and mixed combinations of arguments,
and evalucce all their arguments. The result is real if any argument
is vzal, and integer if all arguments are integer. Most arithmetic
-unctions may cause overflow which is described in Appendix B.

(MINUS X) = X
(*PLUS X Y) = X +Y

PLUS X1 ¥2 ... Xn) X1 +X2 + ... +Xn

9DIF X YD) = Xo-Y ,

(DIFFERENCE X1 X2 ... Xn) X1 -X2 - ... =Xn

(*TIMES X Y) = X *Y
(TIMES X1 X2 ... Xn) = XL %« X2 * .., * Xn
(*QUO X Y, = X /Y

(QUOTIENT X1 X2 ... Xn)

t
>
R
~
>
3]
~
~
o
B

Note: For intege:

inte;er gdgtieut.
(REMAINDER X Y) ... X - {X /YY) * Y
Note: Remaiander is rot defined for real arguments.
(DIVIDE X YV) = (CONS (QUOTIENT X Y) (REMAINDER X Y))
(GCD X Y)

GCD returns the greatest common divisor of the integers:
iXi and {Yy.

(ADDL X) =X + 1
(SUB1 X) =X -1
(ABS X) = X
(FIX X)

SATLON No. 28.2

FIX returnc the truncated 2's complement integer value of X.

Examples: (FIX 1) =1
(FIX 1.1) =1
(FIX ~1.1) = =2 not -1
Other arithmetic functions not defined in the LISP interpreter

(FLOAT X)

(LFLUS X 8.8)

(angghX) = {_ OTIENT 1 X)
v

(EXPT X ., =7

SQRT X) = X

(SIGN X) (COND ((ZEROP X) @)
T ((MINUSP X) =1)
(T 1))
(EINTIER X) = (SIGN X) * (FIX (43S X))
(MIY { = (COND ((MINUSP (DIFFERINCE X Y)) X) {V),
(MAX X ¥) = (CONXD ((MINUSP (DIFFERENCE X Y)) Y) (X))
Examclies: (MINUS 1) = -1
(MINUS =1.2) = 1.2
(PLUS 1 2 3.1) = 6.1
(PLUS 6 3 =2) =17
{DIFFERENCEZ 6 3 1) = 2
{JIMES -2 2.9) = =4.¢
(QUOTIENT 5 2) = 2
(QUOTIENT 5.0 2) = 2.5
(GUOTIENT -5 2y =2
(:EMAINDZ.. 5 2) = 1
(REYAL\DER 5 2y = -1
(REMAINDER 5.0 2) = undefined
(ABS =-32.5) = 32,5
(FIX 32.5) 32,
(F*u -32.5) = -33,
12,2 LOGICAL FUNCTIONS

functions
but their results

The following
arguments,
arguments.

are intended to operate on INUM and FIXNUM
are not defined for BICNUM or FLONUM (real)

2-2

L

SAILON No. 28.2

(BOOLE : & X2 ... Xa)

BOO™ T causes a & bit Boolean opevation to be performed on its

argumencs. The value of N specifies which of 16 Boolean operations
to perform,

For n=., each bity in (BOOLZ . a B) is defined:

N result N rasult
o ¢ 10 A. 4 B,
iM%t
i A. AB. 11 L= B
iM% " i
N . 1 7
Z Ai/\Bi 12 Hi
3 B, 13 A v By
‘it- A,‘ :‘\,—B___- :.1 »Ba
e s i
5 A 15 . A,vB
i
6 A # 3B 6 A.v 3B
i . i i
7 A\ B, 17 1

For n> 2, 300LE is defined:

(BOOLZ N ... (BOOLE N (BOOLE N Xi X2) X3) ... Xn)

LSH pexforms iogical left «...Zt of N places on X. If n is
negative, X w..l be shifted right. 1In both cases, vacated bits are
led withh zeros

(BOOLE 1 76 133) = 32
(BCOLE 1 76 133 7¢) = 30
(ZCJLE 12 13 §) = 777777777764
(BS0LE 7 7 12) =17
(LSH 15 2) = 64
(Ls7 15 =2) =3
(LSH -1 -2) = 177777777777

12-3

SAILON No., 28.2

CHAPTER 13. PROGRAMS

The 'program feature" allows one to write ALGOL-like sequences of
statements with program variables and labels.

(PROG "VARLIST" '"BODY')

ments VARLIST, a list of

; LIL when the PROG is entered
(see 7.1), and a DCDY waich iist of labels which are.

identifiers av.. scatements wh are non-atomic S-expressions. PROG
evaluates Lts ..atements in secquence until either a RETURN or GO is

; v list of statements is exihausted, in which case the

PROG is a func:ion wh4c axes a
program variables ializ

is Nil.

RFTURY causes the PROG containing it to be exited with the value X,

ol L URGY

GO causece the secuence of control within a PROG to be transferred
to the nex: statement forlowing th: label ID. In interpreted PROGs,
c, it is repeatedly evaluated until an atomic value
d PRCis, .D is no: evaluated, GO cannot

I ID is non-.<
is found. THowever, in compile
transfer ato or cut of a PROG.

Note: 32oun ZTURN and GO should occur either at the top level of
a P0G, or a compositicns of COND, AND, OR., and NOT which
> e 3> 3 z

i
gre &I the .oo level of a PROG.

The function LENGTH may be defined as foi.ows:

(DE LENGTH (L)

(PROG (1
(SETQ N 0)
L1 (COND ((ATOM L) (RETURN &)))

(SETQ N (ADD1 X))
(SETQ L (CDR L))
(GO L1)))

(PROG2 X, X, ... X)) , o X5,

PROG2 evaluates all expressions X{ X9 ven X, and returns the
—_— ol

13-1

SAILON No. 28.Z

13,1 SET and SETQ

: and SETQ are used to change the values of variables whici are

bound b5y «ither LAM3DA or PROG, or variables which are bound globally.
(See 7..,.

(SET I V)

v/

to V and returns V.

Note: ET can be used only on globally bound
(SETQ "id" V)
SET; ¢ ~tges the vaiue of ID to V anc returas V.

SETQ evaluates

e

V, but does ol evaluate ID,

13-2

SAILON No. 28.2
CHi/TER 14. INPUT/OUTPUT

14.1 DEVICE SELECTION AND CCNTROL

The followin, functions select and control imput/output devices

File numes are specifie’ by & filename list of the following form:

Syrtax: filename-1list ::= device-name
1= filename-list device=-name
;= filename-list filename
device-name ::1= icdentifier ":"
ce= "0 gtom atom ")
fi.cname = icentifier
c:= (7 ddentifier "." identifier ')

A ce-name is either an identifler followed by colon (:) which
is the newme ¢ some insu: or output device, ! a ;ist containing a
project-prosrammer number wihich implicitly specifies the disk.

i7.2s a filename with
d extension. In both
o the left) specified

is either an identifier w
ne.on, or a dotted pair of
ilename applies to the most re

: following examples show the correspondence between LISP
and PIP filename specifications.

LIS?P (UYS: (SMIIE .ISP))

PIP SV :SMIIE.IS?

LISP (DSK: FOO (1,F00) (BAZ . ZAM) MAZ)
PIP DSK:Z u0, DSK: [1,FO0 BAZ.ZAM,MiZ

14.1.2 CEANNEL NAMES

Chamnel names can optionally be assigred to files selected by the
functions INPUT end OUTPUT. A channel fane is any 1dept1L1er which is
not foliowed by & colon. 1If no channc. name is specified to INPUT or

SATILON No. 28.2

OUTPUT then .the channel name T is assumed.

the teletype in the
active at any time.

14.1.3 INDUT
(INPUT "CEANNELY .

The chanrel name NIL specifies

functions INC and OUTC. Up to 14 channels may be

NFIIENAME~LIST'

on the channel, and
he filename-list.
therwise. INPUT does

(INC CioNnli, ACTIOND
8C 8 s the specified channel fox input. The channel NIL
scliceis Lae Letype., I the opticaal crgument ACTION is not specified
or ACTIGN = NIL, then the previous.ly selec.ad input file is not released,
bul only dooaiecced, I1f ACTION = T, then that file is released, making
1 a @l ilabi

he

from t selected input
.hausted, then the next
.laiized and input, until
is automatically selected
of ERRSET around: '
possibic to detect
to the top level of
previously selected

READ from multiple inmput sources, separate channels
ized by INPLU., aud INC can . .cn select the appropriate
rom.
Examples: (At the top lecvel)
(INC (INPUT SYS: (SMILE . ISP)))
will READ the £ile SYS: SMIIE . 1S? on chaanel T and reselect
the teletype when the file is ended.

(INC (INPUT FOO DSX: BAZ Z4i3))

will READ the
and v .clect

-

1.

he teletype

files DSK: BA d DSK: ZAB on channel FOO

ter both files are exhausted.

SAILON No. 28.2

14.1.4 OUTPUT

(OUTPUT 'CHANNEL' . 'FIIENAME-LIST'),
QUTPUT initializes for output on the specified channel thé single
file specified by the.filename-list. OUTPUT does not evaluate its

arguments, and returns the channel name if specified, T otherwise.

(OUTC_CHANNEL ACTION)

OUTC selects the specified channel for output. The channel NIL
selects the teletype. The output functions in 14.3 transfer output
to the selected output channel.

If the optional argument ACTION is unspecified, or ACTION = NIL,
then the previously selected output file is not closed, but only
deselected. TIf ACTION = T then that file is closed, i.e., an end of
file is written. OUTC evaluates its arguments and returns the previously
selected channel name.

Examples: (At the top level)
(oUTC (OUTPUT LPT:) T)
(OUTC NIL T)

(OUTPUT FOO DSK: BAZ)
(OUTC (QUOTE FOO) NIL)

(LINELENQTH«N)

LINEIENGTH is used to examine or change the maximum output linelength
on the selected output channel. If N = NIL then the current linelength is
returned unchanged, otherwise the linelength is changed to the wvalue of N
which is returned and must be an integer.

(GHRCT)

CHRCT returns the number of character positions remaining on the
output line of the selected output channel.
14.2 INPUT
(READ)

READ causes the next S-expression to be read from the selected input
device, and returns the internal representation of the S-expression..

14-3

SAILON No. 28.2

READ uses INTERN to guarantee that references to the same 1dent1f1er are

EQ.

(READCH)

REANDCH causes the next character to be read from the selected input
device and returns the corresponding single character 1dent1f1er. READCH
also uses INTERN.

axn

TYI causes the next character to be read from the selected input
device and returns the ASCII code for that character.

A function TEREAD which ignores all characters until a line-feed is
seen can be defined:

(DE TEREAD NIL

(PROG NIL
L (COND ((EQ (TYI) 12) (RELURN NIL)))
(GO 1))

14.2.1 TELETYPE INPUT

When input is from the teletype, READ is terminated by either an
entire S-expression or by an incompilete S-expression followed by altmode.
Altmode has the effect of typing a space followed by the appropriate
number of right parens to complete the S-expression. This feature is
particularly useful when an unknown number of right parend are needed or
when in (DDTIN NIL) mode.

(DDTIN X)

DDTIN is a function which selects teletype input mode. With (DDTIN NIL),
and typing to READ, READCH, or TYI, a rubout will delete the last character
typed, and control U (4U) will delete the entire last line typed. Input
is not seen by LISP until either altmode or carriage return is typed.

With (DDTIN T) and typing to REATD, a rubout will delete the last
S-expression typed if the previous character was a space, right parens, tab,
or comma, otherwise rubout will delete the last atom fragment typed or
the last left parens. READ will terminate as soon as a complete S~
expression is typed.

Note: (DDTIN T) is not recommended when the time-sharing system is
swapping, since the program is reactivated (and hence swapped
into core) after every character typed.

14-4

SAILON No, 28.2

14.3 OUTPUT

(ERINL S)

PRIN] causes the S=-expression S to be printed om the selected output
device with no preceding or following spaces. PRIN1 also inserts slashes
("/") before any characters in identifiers which would be syntactically
incorrect otherwise (see Chapter 3).

(ERINC S)

PRINC is the same as PRINL except that no slashes aré inserted.

(IERFRI)

TERPRI prints a carriage-return, line-feed pair and returns NIL.

(PRINT S)

= (PROG2 (TERPRI)
(PRINL S) ’
(PRINC (QUOTE /')))

(IYo M)

TYO prints the character whose ASCII value is N, and returns N.
14.3.1 TEIETYPE OUTPUT

Output to the teletype is accumulated in a buffer until some
condition causes the buffer to be printed (FORCE). The buffer is
always printed when a teletype input is requested or when the buffer
is full. The following functions determine other conditions for printing
the buffer.

(DDIOUT X)

DDTOUT selects the teletype output mode. (DDTOUT T) returns T
and causes the teletype output buffer to be printed after every character.
(DDTOUT NIL) is the normal mode and returns NIL. (DDTOUT) returns T or
NIL according to the currently selected mode.

(EQRCE)

FORCE is sometimes useful for output to the teletype when in
(DDTOUT NIL) mode. FORCE causes the teletype output buffer to be printed.
This allows one to see output during long computations which would other-
wise be buffered until the computation was finished or until the buffer
was full.

14-5

SAILON No. 28.2 o |

15.1 EXAMINE AND DEPOSIT

(EXAMINE N)

EXAMINE returns as an integer the contents of memory location N.

s

(DEPOSIT N V)

———

BN ———

DEPOSIT stores the integer V in memory location N and returns V.

15~3

© =Y
'

B ’ : P . . .
: LI oo
:g f‘c{,gn1 PAGE 5t oULD ﬁ‘\‘f SEO TS OUTLINE o 07 I

- x N - . — = B M
bu ¢ ‘. \ . o ‘ i . e : o »

L) : e le e) . e e e et g P = e e et P it ey

SAILON éé.a o - o R

APPENPIX A
1 S i i

DIFFERENCES FROM STANDARD LISP

by Anthoninl Hearn

Standard LISP was developed to provide for the easy assembly of
a given LISP program in more than one LISP system. Its syntactical form
is described in detail in a Stanford AI Project Memo which a prospective
user should consult for details. We shall not duplicate the content of
this Memo here, but simply point out that the translation between a

Standard LISP program and a given LISP system is achieved by a preprocessor -

which is defined for a given system and always loaded ahead of any
Standard LISP program. This Appendix will therefore limit itself to
pointing out the essential differences between Standard LISP and .
Stanford AI LISP 1.6 and the procedure for loading the preprocessor ahd
running Standard LISP programs in this system.

_A.1 WRITING STANDARD LISP PROGRAMS

i The major differences betweén a program written in Standard LISP as!

Opposed to one in Stanford AI LISP 1.6 are as follows:

(1) Programs are written in EVALQUOTE rather than EVAL format.

(i1) All atoms or character strings containing non-alphameric char-
acters (alphameric characters in this context being the
capitalized Roman letters A through Z and decimal digits O
through 9) must be replaced by an alphameric atom. The
particular value required for the atom in Stanford AI LISP 1.6
must then appear in a call to the preprocessor function NEWNAM
described in the Standard LISP memo. It is advisable for the
user to prepare a special file containing this call to NEWNAM,
which can then be loaded with the preprocessor.

(111) MACROS, LEXPRS and LSUBRS are not defined in Standard LISP.

(iv) COND expressions can have only one consequent, and must end
with a pair (T FORM) unless the COND occurs within a PROG.

(v) The functions MAP, MAPCAR and MAPLIST are defined, but their
arguments are in the conveqtional order opposite to LISP 1.6..

(vi) The following functioms have alternative names or ferms in
Standard LISP. Users should consult the Standard LISP Memo

- for the particular definitions-of-the functions mentioned. <"

]

e | A

P A‘f]. e . Do o '
CENTERPAGEPﬂﬂJBER///{ o R) ’
BEYWLEEN THESE LINES _ l] . R o .

e

S
. e g e o ————— -
’ : i :

/‘5‘

L RO PAG

SAILON 28.2.

S

Stanford AI LISP 1.6 Function

APPEND

APPLY
ARRAY
CHRCT

ERR

ERRSET
EVAL (with one argument)
GENSYM

INC

INPUT
LINELENGTH
LSH
MAKNAM
OuTC
OUTPUT
PUTPROP
READLIST

REMOB

(vii)
Standard LISP.

processor for another LISP

BT <

e A MNUMIBE R/
PVVLLIN THESE LINES

!Use PUT (put[u,v,w]

SUIOUNLTD N,O'l,' FOLCET TS QUL L

‘Standard LISP function'

Same name, but only two arguments

‘ allawed.

'fAPPEY

Same'namg, but‘different arguments.
|Use P05 instead.

iUse ERROR instead.
ERRORST

| ¥EVAL

Use MKSYM (mksym[] = intern[gensym[

,Use RDS

Same name, but different arguments.

| oTLL
LEFTSHIFT
Use COMPRESS instead.

! Use WRS

'Use COMPRESS instead.

Same name, but is a SUBR taking a
single atom -as. argument.

The following functions and value cells are not defined in
They may be included in a given program if
the user can provide an equivalent definition in his pre-

system:
3

*i

' Same name, but different arguments.,

i

= putprop [u,w,v])

N b

L)

R ERTIEE : :
umuMALREPORthmrguoULDNOTEXHf-vnusoUTUNa\\\

e e I R —
SAILON 28.2 : . _ oo
ALIST DM . INTERN , TYI ,

ARG ED LAST TYO)
ASCII EXAMINE ~ LOAD XCONS b
ASSOC EXARRAY MAKNUM : *AMAKE T e
BAKGAG EXCISE : MAPC "+ . *APPEND

BASE ' EXPLODEC MEMQ . *DIF ‘
BOOLE FLATSIZE ~ NCONS R ¥EVAL '
BPEND FORCE - NOUUO , *FUNCTION

BPORG GC NSTORE . *GREAT

CSYM GCD NUMVAL ~ *LCALL o
DDTIN GCGAG OBLIST *LESS |
DDTOUT GCTIME PUTSYM *NOPOINT 3

DE GETL SPEAK _ *PLUS

DEFPROP GETSYM SPECIAL *QUO

DEPOSIT IBASE STORE *RSET

DF INITFN TIME *TIMES

A.2 RUNNING STANDARD LISP PROGRAMS

|
To facilitate the running of Standard LISP programs in the Stanford
AI LISP 1.6 system, a SYS: file PREP.LSP is available containing the
Standard LISP preprocessor for this system. A LAP version of this file |
is also available on SYS: with filename PREP.IAP. To use the latter E
file, the user must have previously loéded LAP into his core partition.

Both PREP files are in Stanford AI LISP 1.6 format and can thereforp
be loaded using INC. In addition to the preprocessor, the files contain
the following functions to help with the running of programs:

SINC CHANNEL ACTION i
SINC is like INC, except that the files read in should be in
Standard LISP format.

Example
(SINC (INPUT DSK: F1 (F2.. LSP))

will load the Standard LISP DSK: files Fl1 and F2.LSP.

(CMFILE 'DEVICE-NAME'."FILENAME-LIST')

This function is used in conjunction with the LISP 1.6 compiler.
CMFILE compiles all functions defined in the Standard LISP files appearing
in FILENAME-LIST and outputs the LAP onto DEVICE-NAME as files in Stanford
AI LISP 1.6 format with the same name as the input files and an extension
IAP. Any EVAIQUOTE pairs in the file which are not“function‘definitions
are also output after conversion toJLISP 1.6 format. <

L.)

-

Ao e
L NTIIR PAGE NUMBER // A
BoTWEEN THESE LINES) !.3

O R O TR &

N

SAILON 28.2

The standard ¢ompiler messages are printed by CMFILE. In additionm,
a check is made for the existence of a function indicator on the property
list of any function being compiled. If one is found, a message

(FUNCTION-NAME IN SYSTEM) |

-

is printed« This is useful for detecting conflicts between system and
user-program function names. Finally, any special variable declaratioms 4
should be added to the user preprocessor file containing the call to NEWNAM j

Examgle ,]
' (CMFILE DSK: DSK: F1 (F2 . LSP)) -

! 8 ' |

will produce LAP versions of the DSK: files Fl and F2.LSP as DSK: files ;
with names F1.LAP and F2.IAP, respectively. E

i

(GRINFILE "DEVICE-NAME","FILENAME-LIST") ;
e i
This function produces GRINDEF copies in Standard LISP format of all
Standard LISP files declared in FILENAME-LIST. The files are produced |
with the same name and an extension NEW so that the disk can be used for:
both input and output. All the new files can have their extensions easily
changed using PIP. To use GRINFILE, the SYS: file GRIN or the editor |
ALVINE must also be loaded. ‘

L
{—~<—-.-—~

Example
(GRINFILE DSK: DSK: F1 (F2 . LSP))

i

will produce GRINDEF copies of the files Fl and F2.LSP as DSK: files with
names F1.NEW and F2,.NEW, respectively.

i
|
(GETDEF "DEVICE-NAME'" "FILENAME" "FUNCTION-NAME” ... "FUNCTION-NAME"Z ?
—_—— e i

GETDEF searches the Standard LISP file FILENAME for the function
names specified andlopds them when Egyountered. If any of the function
names are not found, a message / o

(FUNCTION-NAME ... FUNCTION-NAME NOT FOUND)

is printed.

Example

(GETDEF DSK: F1l CALLl CALI2) | .

will load the f“nCtionsVQALL;wand-gAtn%_fEQ@;EhQWDSK:,filemﬁl,w_-' o |

S 9

A t
el YD NUMBER,/ -,* . a '
P vy SR LINES A 1 E .

SAILON No. 28.2

APPENDIX B.

ERROR MESSAGES AND CONTROL

B.1 ERROR MESSAGES

The LISP interpreter checks for.some error conditions and -prints
messages accordingly. Many erroneous conditions are not tested and
result in either the wrong error message at some later time, or no error
message at all. 1In the latter case the system has screwed you (or itself)
without complaining. 4 o R

When error messages are printed, it is usually difficult to determine
the function which caused the error and the functions which called it. In
this situation, (BAKGAG T) will turn on the BACKTRACE flag which causes
the hiéerarchy of function calls to be printed as described in the next
section.

The following is an alphabetical listing of error messages, their
cause, and in some cases, their remedy. Some error messages print two

lines, such as:

FOO
UNBOUND VARIABLE =~ EVAL

These messages are described last in the listing, and are of the form:

X (message)

BINARY PROGRAM SPACE EXCEEDED

ARRAY, EXARRAY, or IAP has exceeded BINARY PROGRAM SPACE., ALLOCATE
more BPS next time,

CANT EXPAND CORE

INPUT, OUTPUT, LOAD, or~-ED failed:to expand core. Your job.
is too large.

CANT FIND FIIE - INPUT

The input file was not found. You probably forgot to give the file
name extension, or a legal file name list, '

S
H

SATLON No. 28.2

DEVICE NOT AVATIABIE

INPUT of OUTPUT found the specified device unavailable. Some other
job is probably using it.

\

 DIRECTQRY. FULL
The directory of the output device is full.

DOT CONTEXT ERROR

READ does not like dots adjacent to parens or other dots.

FIIE IS WRITE-PROTECTED

OUTPUT found that the specified file is write-protected.

FIRST ARGUMENT NON~-ATOMIC = PUTPROP

An attempt was made to PUTPROP ontq a non-identifier.

GARBAGED OBLIST

Some member of the OBLIST has been garbaged. You are in trouble.

ILIEGAL DEVICE

INPUT or OUTPUT was‘attempted to either a non-existant device or
to a device of the wrong type. I.e., INPUT from the lineprinter.

- ILLEGAL OBJECT = READ
READ pbjeéts to syntactically‘incorrectﬁs-expressions.
INPUT _ERRCR-

Bad data was read from the sélected device.

g2

- SAILON No. 28.2

MCRE THAN ONE S-EXPRESSION -~ MAKNAM :

MAKNAM and READLIST object to a list which constitutes the characters

for more than one S-expression.

NO FREE STG IEFT

All free storage is bound to the OBLIST and protected cells
(such as list ARRAY cells), and bound variables on either the
REGULAR or SPECIAL pushdown list. Unbinding to the top level
will usually release the storage. If you are in a bind for more
free storage, try to REALLOC as described in APPENDIX C.

NO FULL WORDS IEFT

All full words are being used for print names and numbers.
The problem and its solution are similar ito: FREE STG.

NO I/0 CHANNELS LEFT

I}

INPUT or OUTPUT failed to find a free I/O channel. There is
a maximum of 14 active I/0 channels.

NO INPUT ~ INC

An attempt was made to select a chanmel for input with INC Wthh
was not initialized with INPUT. : ‘ :

NO LIST - MAKNAM

MAKNAM and READLIST‘objéct”fQ an empty 1i$t;‘;;o

NO OUTPUT - OUTC

An attempt was made to select a" channel for output with OUTC, whlchf '
was not 1n1tlallzed w1th OUTPUT..

NO PRINT NAME. - INTERN

INTERN found a member of the OBLIST which has no: print name.
You are in trouble.

SAILON No. 28.2

OUTPUT ERROR

f
Data was improperly written on the selected output dev1ce.~
Possibly a write=locked DECTAPE.

OVERFLOW

Some arithmetic function caused overflow - either fixed or floating.

PDL OVERFLOW FROM GC - CANT CONTINUE

There is not enough regular pushdown list to finish garbage
collection. You lose. Try to REALLOC as described in
APPENDIX C,.

READ UNHAPPY - MAKNAM

MAKNAM and READLIST obJect to a list which is not an entlre
S-expression.
»
REG PUSHDOWN CAPACITY EXCEEDED
SPEC_PUSHDOWN CAPACITY EXCEEDED

A pushdown list has overflowed. This is usually caused by
non-termination of recursion. Sometimes you need to ALLOCATE
or REALLOC more pushdown list. '

TOO FEW ARGUMENTS SUPPLIED - APPLY
TOO MANY ARGUMENTS SUPPLIED - APPLY

APPLY checks all calls on interpreted functlons for the proper.
number of arguments.

X MADE TLIEGAL MEMORY REFERENCE

The function X referred to an illegal address. Usually caused by
taking the CAR or CDR of an atom or number. .. :

X NON-NUMERIC ARGUMENT

Arithmetic functions require that their arguments be numbers.

X PROGRAM TRAPPED FROM

An' illegal instruction was executed in function X.

ek

SAILON No. 28.2

X UNBOUND VARIABIE - EVAL

EVAL tried to evaluate an identifier and found that it had no
value. You probably forgot to QUOTE some atom or to initialize it.

X UNDEFINED COMPUTED GO TAG 1IN

A GO in some compiled function had an undefined label.

X UNDEFINED FUNCTION
X UNDEFINED FUNCTION - APPLY

The function X is not defined.

X UNDEFINED PROG TAG =~ GO

A GO in some interpreted function had an undefined label.

B.2 FUNCTIONS FOR CONTROLLING ERRORS
(ERRSET E "F")

ERRSET evaluates the S-expression E and if no error occurs during
its evaluation, ERRSET returns (LIST E). If an error occurs, then the
error message will be suppressed if F # NIL, and NIL is returned as the
value of ERRSET. If the function ERR is called during evaluation, then
no message is printed and ERRSET returns the value returned by ERR.

(ERR E)

ERR returns the value of E to the most recent ERRSET, or to the top
level of LISP if there is no ERRSET.

(*RSET X)

*RSET sets a special flag in the interpreter to the value of X.
Normally, (with (*RSET NIL)) when an error occurs, special variables
are restored to their top level values from the special pushdown list.
With (*RSET T), the special variables are not restored and still contain
the values at the time of the error.

(BAKGAG X)

BAKGAG sets a special flag in the interpreter to the value of X.
I1f the flag = T when an error occurs, then a backtrace is printed as a
series of function calls, determined from the regular pushdown list,
starting from the most recent call. The format for printing is;

B=5

SAILON No. 28.2

printout o meaning
fnl-fn2 Function 1 called functionAZ.
fnl - EVAIARGS - The arguments to fnl are being
evaluated before entering function 1.
fnl - ENTER The function 1 is entered.
? - fnl Some internal LISP function éalled

function 1.

Note:

The BACKTRACE printout is often confused by compiled function calls
of the form (RETURN (FO0O X)) which is compiled as (JCALL (E F00)) which
can be changed to (JRST entrance to FOO), which will not show up in
the BACKTRACE.

(INTTFN FN)

INITFN selects the function of no arguments FN as an initialization
function which is evaluated after a LISP error return to the top level
has occurred or whenever a BELL is typed. (INITFN) returns the currently
selected initialization function.

Initialization functions are useful when it is desirable to change
the top level of LISP. For instance,

(INITFN (FUNCTION EVAIQUOTE))

causes the top level of LISP to become EVALQUOTE instead of EVAL.

B-6

SAILON 28.72

APPENDIX C g

MEMORY ALLOCATION

The LISP 1.6 system has many differont areas of memory for
storing data which can independently vary in size. Some LISP applica-
tions demand larger allocations for these areas than others. To allow
users to adjust the sizes of these areas to their own needs, a memory
allocation procedure exists.

C.1 ALLOC

When the LISP system is initially started, it types "ALLOC?".
1f you type "N" or space (for no) then the system uses the standard
allocations. If you type 'Y'" (for yes) then the system allows you to
specify for each area either an octal number designating the number of
words for-that area, or a space designating the" standard allocation
for that area. While typing an octal number, rubout will delete the
entire number typed.

¥

standard allocation alternative
ALLOC? Y type Y or space
FULL WORDS = AL octal number or space
BIN.PROG.SP = 2000 " '
SPEC.PDL = 1660 "
REG.PDL = 1000 "
HASH = 77 "

Any remaining storage is divided between the spaces as follows:

1/16 for full word space,
1/64 for each pushdown list,
the remeinder to free storage and bit tables.

HASH determines the number of buckets on the OBLIST.

€C.2 REALLOC

I1f you have an existing LISP core image but have exhausted one of the
storage areas, it is possible to increase the size of that area
using the reallocation procedure. First, expand core with the time
sharing system command CORE (C) and then reenter the LISP core image with
the REE command. For example, if the original core size was 20K, you
could increase it by 4K as follows:

o1

SAILON 28.2

e
*C 24
*REE

%

When you reenter a core image, all additional core is allocated as
follows:

1/4 for full word space
1/64 for each pushdown list,
the remainder to free storage and bit tables.

C.3 BINARY PROGRAM SPACE

The reallocation procedure does not increase the size of binary
program space. However, it is possible to increase binary program
space by expanding core with the CORE (C) command and setting BPORG
and BPEND to the beginning and end of the expanded area of core.

For example, if you now have 32K of core and want 4K more BPS, do the
following: 1

1C
.C 36

.S

*(SETQ BPORG (TIMES 32. 1024.))
*(SETQ BPEND (PLUS BPORG 4895.))

Note: 1If you use the reallocation procedure after having expanded core
for any purpose, it will reallocate this additional core for its
own purposes, thus destroying the contents of the expanded corc.

The following are the standard causes for expansion of core:
1) using :I/0 channels. !

2) using the "LOADER ~. (LOAD). .

3) expanding core for more binary program space.

4) using (ED).

C.4 SUMMARY OF STORAGE ALLOCATION AREAS

BINARY PROGRAM SPACE Area for compiled functions and arrays.
FREE STORAGE Area for LISP mnodes.

FULL WORD SPACE Area for print names and numbers.

BIT TABLES Area for the garbage collector.

REGULAR PUSHDOWN LIST Area for all function calls and non-special

variables in compiled functions.

c-2

SAILON 28.2

SPECIAL PUSHDQ.WN LIST Area for interpreted variables and special

EXPANDED CORE

special variables.
Area for I/0 buffers, ALVINE, LOADER, and auny
loaded programs.

TOP OF CORE

EXPANDED CORE

SPECTIAL PUSHDOWN LIST

REGULAR PUSHDOWN LIST

BIT TABLES

FULL WORD SPACE

FREE STORAGE

BINARY PROGRAM SPACE

LISP INTERPRETER

BOTTOM OF CORE

Memory map for the LISP 1.6 system.

SAILON No. 28.2

APPENDIX D
GARBAGE COLILECTION
All LISP systems have a function known as the garbage collector.

This function analyzes the entire state of list structure which is
pointed to by either the OBLIST, the regular pushdown list, the special

pushdown list, list arrays, and a few other special cells. By recursively

marking all words in free and full word spaces which are pointed to in
this manner, it is possible to determine which words are not pointed to
and are therefore garbage. Such words are collected together on their

" respective free storage lists.

GC causes a garbage collection to occur and returns NIL. Normally,
a garbage collection occurs only when either free or full word space has
been exhausted.

(CCGAG X)
GCGAC sets a speeial flag in the interpreter to the value of X.

When any garbage collection occurs, if the flag # NIL, then the
following is printed:

either FREE STCRAGE EXHAUSTED
or FULL WORD SPACE EXHAUSTED
or nothing

followed by X FREE STORAGE, y FULL WORDS AVAILABIE
where x and y are numbers in radix BASE.
(SFEAK)

SPEAK returns the total number of CONSes which have been executed
in this LISP core image.

(GCTDE)

GCTIME returns the number of milliseconds LISP has spent garbage
collecting in this core image. S

(ZIME)

TIME returns the number of mllllseconds you; iob has computed -
since you logged into the system. : -

SAILON No. 28.2

It is possible to determine the lengths of the free and full word
free storage lists by:

(LENGTH (NUMVAL 15g)) = length of free storage list
(LENGTH (NUMVAL 168)) = length of full word list

D-2

SATILON No. 28.2

APPENDIX E

COMPILED FUNCTION LINKAGE AND ACCUMULATOR USAGE

This appendix is intended to explain the structure of compiled
functions, function calls, and accumulator usage. This discussion is
relevant only if one intends to interface hand coded functions or
possibly functions generated by another system (such as FORTRAN) with
the LISP system. In such a case, it is highly recommended that one":
examine the IAP code generated by the LISP compiler for some familiar
functions.

ACCUMUIATOR USAGE TABIE
s means ''sacred" to the interpretex
p means ''protected'" during garbage collection

Header for fhe atom NIL.

NIL) S,p

A =1 p Results from functions, lst arg to functions
B =2 P 2nd arg ' "
C 3 P 3rd arg

ARl =4 p 4th arg

AR2A = 5 p 5th arg

T =6 p used for LSUBR linkage

TT =7 p

T1¢ = 1¢ p rarely used in the interpreter

S = 11 rarely used in the interpreter

D = 12

R = 13

P = 14 S,p regular pushdown list pointex

F = 15 S,p free storage list pointer

FF =16) full word list pointer

Ssp =17 S, special pushdown list pointex.

TEMPORARY STORAGE

Whenever a LISP function is called.from a compiled function, it is
assumed that all accumulators from 2 through 13 are destroyed by the
function unless it is otherwise known. Therefore, local variables and
parameters in a compiled function should be saved in some protected cells
such as the regular pushdown list. The PUSH and POP instructions are
convenient for this purpose.

SAILON No. 28.2
SPECJAL VARIABIE BINDINGS

Special variables in compiled functions are bound to special cells
by: ' '
PUSHJ P,SPECBIND
¢ ny,var
¢ np,var;

start of function code.

SPECBIND saves the previous values of var; on the special pushdown list

and binds the contents of accumulator n, to each varj. The var; must
be pointers to special cells of identifiers. Any ni=0 causes the varj
to be bound to NIL. :

Special variables are restored to their previous vaiues by:

PUSHJ P,SPECSTR

which stores the values previously saved ci the special pushdown list in
the appropriate special cells.

NUMBERS

To convert the number in A from its LISP representation to machine
representation use:

PUSHJ P,NUMVAL

which returns the value of the number in A, and its type (either FIXNUM
or FLONUM) in B.

To convert the number in A from its machine representation to LISP
representation use either:

PUSHJ P,FIX1A ' for FIXNUMS
or PUSHJ P,MARKNUM with type in B.

Both of the above functions return the LISP number in A.

FUNCTION CALLING UUOS

To allow ease in linking, debugging, and modificating of compiled
functions, all compiled functions call other functions with special
opcodes called UUOs. Several categories of function calls are dis-
tinguished: :

1) Calls of the form (RETURN (FOO X)) are called terminal calls
and essentially ''jump'" to FOO.

SAILON No. 28.2

2) Calls of the form (F X) where F is a computed function name or
functional argument is called a functional call.

The function calling UUOs are:

non-terminal terminal
non-functional CALL n,f JCALL n,f ¢
functional CALIF a,f JCALLF n,i

where f is either the address of a compiled function or a pointer to the
identifier for the function, and n speciiies the type of function being
called as follows:

n=y%to5 specifies .a SUBR call with n arguments
n = 16 specifies an LSUBR call
n = 17 specifies an FSUBR call.

The function calling UUOs are defined: in MACRO by:

OPDEF CALL [34BE
OPDEF JCALL :35B8
OPDEF CALLF [36B¢]
OPDEF JCALLF 37B8 ,

(NOUTO X)

NQUUO sets a special flag in the UUO calling mechanism to the value
of x. When a CALL or JCALL to another compiled funcition is executed, if
the flag = NIL then the CALL or JCALL is changed to a PUSHJ or JRST
respectively. If the flag # NIL then no change is made. CALLF and
JCALLF are never changed. :

NOIE: For debugging compiled functions, (NOUUO T) is recommended.
For running debugged compiled functions, (NOUUO NIL) is more
efficient.

SUBR TTINKAGE

SUBRs are compiled EXPRs which are the most common type of function.
Consequently, considerable effort has been made to make linkage to SUBRs
efficient.

Arguments to SUBRs are supplied in accumulators 1 through n, the
first argument in 1. There is a maximum of 5 arguments to SUBRs.

To call a SUBR from compiled code, use call n,FUNC, where n is the
number of arguments, and call is the appropriate UUO.

The result from a SUBR is returned in A(= 1).

SAILON No. 28.2

FSUBR LINKAGE

FSUBRs receive one argument in A and return their result in A.
FSUBRs which use the A-LIST feature call: :

PUSHJ P,*AMAKE
which generates in B a number encoding the state of the special pusndown
pointer. To call an FSUBR, use call 17, FUNC, hexe call is the.
appropriate UUO.

LSUBR LINKAGE

ISUBRs are similar to SUBRs except that they allow an arbitrary
number of arguments to be passed. To call an LSUBR, the following
sequence is used:

PUSH P, {ret} ;return address
PUSH P,argl ;1st argument
PUSH P,argn ;nth and last .rgument
MOVNI T,n ;minus number of arguments
call 16,func ;the appropriate UUO

ret: ;the LSUBR returns here

When an LSUBX is entered, it execu.es:
JSP 3,*LCALL

which initializes the ISUBR. A wil. contain n. The ith argument can
be referenced by:

MOVE A,-i-1(P)
Exit from an LSUBR with
POPJ P,

which returns to *ICALL to restore the stack.

SAILON 28.2

< APPENDIX F
.THE LISP COMPILER

The LISP compiler is a LISP program which transforms LISP functions
defined by S-expressions into LAP code. This code can be loaded into
binary program space by LAP which produces actual machine code.

Compiled functions are approximately ten times as fast as interpre-
ted functions. Compiled functions alsoc take less memory space, and relieve
the garbage collector from marking function definitions. In g very
large system of functions, this last point is particularly significant.

To use the LISP compiler, the following procedure is recommended:

1. Pro-orve your functions in an I/0 file (disk, dectape, etc.)
in DEFPROP format such as produced by GRINDEF. (See DSKOUT and
GRINL in SMILE = Operating Note No. &41).

a. It is also permitted for this file to contain global variable
definitions, MACROUs, and SPECIAL variable definitions.

b. SPECIAL variable definitions must occur before the functions
which bind these variables. (DEFPROP FOC T SPECIAL) will
declare the variable FOO to be SPECIAL. Variables which
are used in a functional context must be declared SPECIAL
or else the compiler will mistake them for undefined EXPRs.

¢. TFEXPR definitions should occur before functions which call
" them, If this cannot be arranged, a FEXPR forward reference
can be declared to the compiler by (DEFPL 2 FOO T *FEXPR)
where FOO is the name of the FEXPR. The compiler assumes
that undefined fuactions are EXPRs unless otherwise declared.

d. MACROs must occur before the functicns which use them.

e. Global variable definitions are required to be in DEFPROP
format. :

2. START the LISP compiler by typing to the system:
- R COMPLR

<

a. Declare any FEXPR forward relferences, MACROs, or SPECIAL
variables which are not defined in your I/0 file.

F-1

SAILON 28.2

b. The global variables IFL and OFL designate to the compiler
the names of the input and output devices for compilation.
These are both initialized to DSK:.

c. Compile your function definition f£iles with:
(COMPL fnl fn2 fn3 ...fnon)

where each fn, designates a file name on device IFL.

Each fn; is either an atom designating a file name, or

a dotted pair designating file name and extension. COMPL
praduces LAP output on device OFL on files with the same
rile names but with LAP extensions. COMPL also transfers
through unaltered any DEFPROPs with properties other than
EXPR, FEXPR, MACRO, and SPECIAL.

d. COMPL wili type out:

«x UNDEFINED) for undefined function references..The compiler
assumes that » is an EXPK. 1% x 1s actually an FEXPR,

you must recompile and declare x as an FEXPR by (DEFPROP

x T *FEXPR).

(x UNDECLARED) for undeclared global variable references.
You need not worry about thi: message unless x is
SPECIAL and you forgot to declare it,

e. When COMPL is done, it returns:
(n PROGRAM BREAK)
where n is the 1éngth of the LAP code producea.
Load LAP into your core image, then lcad the compiled functions.
For example: (INC (INPUT SYS: LAP DSK: {(F0O . LAP)))
Bz sure to allocate sufficient binary program space for the

functions. The proper size is the sum ¢f the program breaks
plus the length of IAP which is about 4008 words.

SAILON No. 28,2

APPENDIX G

THE LISP ASSEMBLER - LAP

IAP is & primitive assembler designed to load the output of the
compiler. Normally, it is not necessary to use LAP for any other pur-
pose.

The format of: a compiled function in LAP is:

(L4AP name type)
< sequence of IAP instructions >

NIL

where name 1is the name of the function, and typc 1s either SUBR, LSUBR,
or FSUBR.

A TA? instruction is either:
1. A label which is a non-NIL identifier.
N 2. A list of the form

(OPCODE AC ADDR INDEX)

a. The index field is optional.

b. The opcode is either a PpP-6/10 imstruction
which is defined to LAP and optionally suffixed by @
which designates indirect addressing, or a number which
specifies a numerical opcode.

c. The AC and INDEX fields should contain a number from
¢ to 17, or P which designates register 14.

d. The ADDR field may be a number, < label, or a list
of one of the following forms:

(QUOTE S-expression) to reference list structure.
(SPECIAL x) to reference tie value of identifier x.
(E £) to reference the function f.

(C OPCODE AC ADDR INDEX) to reference a literal constant.

~ .7
(&)

SAILON No. 28.2

For example, the function ABS could be defined:

(LAP ABS SUBR)
(CALL 1 (E NUMVAL))
(MovMS @ 1)
. (JCALL 2(E MAKNUM))
NIL

SAILON No. 28.2

APPENDIX H

THE LOADER

A modified version of the standard PDP-6/10 MACRO-FAIL-FORTRAN
loader is available for use in LISP. One can call the loader into a
LISP core image at any time by executing:

(LOAD)

When a * is typed, you are in the loader, and loader command strings are
expected. As soon as an altmode is typed, the loader finishes and exits
back to LISP.

Both the loader and the programs loaded are placed in expanded core.
The loader removes itself and contracts core when it is finished. 1In
the following discussion, a "RELOC" program will refer to any program
which is suitable for loading with the loader. The output of FCRTRAN
or MACRO is a RELOC program.

- (EXCISE)

EXCISE unexpands core to its length afcer ALLCC or the last REE.
This removes I/0 buffers, ALVINE, and all RELCC programs.

(GETSYM BT 'S17."52". o225,

GETSYM searches the DDT symbol table for zach of the symbols §; and
places the value on the property list of S; under property P.

Example: (GETSYM SUBR DDT)

This causes DDT to be defined as a SUBR located at the value of the

symbol DDT.

Note: 1In order to load the symbol table, either /S or /o must be typed
to the loader. Symbols which are declared INTERNAL are always in
the symbol table without the /S or /D. 1In the case of multiply
defined symbols, i.e., a symbol used in more than one RELOC
program, a symbol declared INTERNAL tzkes precedence, the last
symbol occurrence otherwise.

(PUTSYM "Xy "Kp" ... XMy

‘n the DT sy bol table. If X.

PUTSYM 1s used to place symbe' = i

is an atom then the symbol X. ‘s placed in the symbol table with its

SAILON No. 28.2

value pointing to the atom X;. If X, is a list, the symbol in (CAR Xi)
is placed in the symbol table with its wvalue (EVAL (CADR X;)). PUISYM
is useful for making LISP atoms, functioms, and variabl:s available to
RELOC programs. Symbols must be defined with PUTSYM before the LOADER
is used.

Zxamples: (PUTSYM BPORG (VBPORG (GET (QUOTE BPORG) (QUOTE VALUE))))

Defines the identifier BPORG and its value cell VBPORG. A RELOC program
can reference the .lue of BPORG by:

MOVE X,VBPCRG

(PUTSYM (MAPLST (QUOTE MAPLIST)) (NUMBRP (QUOTE NUMBERP)))
(PUTSYM (MEMQ (GET(QUOTE MEwx7) (GQUOTE SUBR))))

A RELOC program would call these functions as follows:

CALL 2,MAPIST
CALL 1,NUMBRP
PUSHJ P,MEMQ or CALL 2,MEMQ

An example of a simple LISP compatible MACRO program to compute square
roots using the FORTRAN library.

TITLE TEST
P=14
A=1
B=2

EXTERN MAKNUM,NUMVAL,SQRT,FLONUM

LSQRT: CALL 1, NUMVAL
MOVEM A,AR1
YOVE A, [XWD §,BLIL}; SAVE THE AC'S
BLT A,BLT1+17
JSA 16,SQRT
JUMP Z,AR1 ;SOP TO FORTRAN
MOVE §,AR1
MOVE A, 'XWD BLTL ,§]
BLT 4,17
MOVE A,AR1
MOVEI B,FLONUM
JCALL 2, MAKNUM

AR1: 1)
BLTI1: BLCCK 290
END

SATILON No. 28,2
APPENDIX I

ALVINE

by John Allen

A new LISP editor, Alvine is now availcble. Significant
improvements have been made in the command structure and speced of
Alvine. The major addition to Alvine is a pointer which can be moved
through the editor's string; the editing featur:.. affect only the area
to the right of this pointer. One can insert and delete arbitrary
character strings; and file and defile these strings on various I~0
devices.

The data for Alvine are aribtrary strings of LISP atoms, numbers,
parens and dots. The Alvine commands cre designed <o edlt tnese strings
into LISP S-expressions with a minimgl amount of fuss,. The editor is
initially equipped to handle the special indicators, FEXPR, EXFPR and
VALUE. This list may be ammended by the programmer (see the description
Of ”G”) .

the Command Structure

ngle c..oracter followed by

ingl
ify the text string presently
troduced -to Alvine a pointer

Each commznd to Alvine consi
a string of ar guﬂenLS= Thes; commgnds mod
occupying Alvine's buffer. i
is attached preceeding the firs in the buffer. Alvine
commands aliow the user to move thi nter through the buffer. Alvine's
text moolrylno commands only affect the string to Lﬁe right of th;s
pointer.

The modificaticn commands include

insertion and deletion of material}
"poirter string' refers to the string to the right ©

"

f the pointer.

COMMAND MEANING vuSCRIPTIOV
A All : Print the buffer string. No attempt
is mgde ©o make the output pretty.
B Balanced? . Examines the number of parens in tic

ring., Hevurng the count of
right parens if umbalanced;
7
<

K 1M E
Lo BAL N

: ‘ - e e A N [N PN - Amm e HITTY

nC Count For readability, the commanas D',
A i . H Ti g Vg I

anl, H>I|j ”:::”5 15 . and ’v‘.’“, will

SAILON No. 28.2

nD Delete

E Expunge

F xy: 2 File

Gx Get

I ’ Insert

M Match

1=

print an inlcial segment of the
pointer buffer. 'nC" sets the

length of this printing segment to

n objects.

Delete the Zirst n objects to the
right of the peuiuter. If n is omivted,
1 is assumed.

Expunge the first S-expression in the
pointer buifer.

CGRINDEFS toe material referred to by "x"
on device "y using "z' as a file
name. L& "x" 1s a list then each
eit nc of "x'" is filed under 'z''; if
" s &0 atom then "x'" is assumed to
be SETGed = to a list of names to

] el

1]

the S~expression with
the Alvine bufier aad

pointer to the lefi-
> buifer. If the

with "x" is
sees:

SETQ ¥ . .2 .« o .y Otherwise
V“?mﬂlx(5 indicator). alvine
looks for the indicators on the list

“7%7“” which is dnitialized to
UE)".e %%%L may be

>
G also knows

eé a8 needed.
traced functions and will edit
Toperiy.
ri comes in two flavors:
i. 1§ sert "¢ immediactaly to
the £ DO
2. Iz sex
oc e (
of rin
co sty
el as
ig ”}7
the Sr w8

Move he po*n:;:
wil pointer

15 w0 such s=-expres=
ot moved and the

SAILON No, 28.2

P X Put
RxySS Replace
nsSxs$ - Search
Ux-vy: z Unfile
v Vomit
W Where?
n> and n <

Bell

Y

Returns the editor string to X
through EVAL., Thus, for

example, DEFPROP and SETQ are handled
by the editoz.

Replace the first occurrence of "x"

by llyll. AS with YII”’ ”X” may be
described elliptically; and if "y" is

%, the first occurrence of '"x" is deleted,

Search for the n*D occurrence of the
string "x" (in the pointer string).

If founc, the pointer is moved to the
beginning of the string following that
occurrence., If less than n occurrences
are located, the pointer is positioned
after the 1ast such occurrence. If none
z—-2 found the pointer is not moved., If
"' is not given, i.e., "nS$", then the
last given search-string is used.

READS the functions specified by "x"
from device "y' uvsing ''z'" file name.
If "x" is an atom then x is assumed
to be SETQ to a list of names to be READ.

¢ balanced paren section
of tne pointer in pseudo

inning of the p01nuer

These commands are dual; they move
che string pointer 'n' objects to the
right or lefi respectively. If '"n"
is such that either the left or right
end of the string would be exceeded,
the pointer is set Lo that extreme
and "pell" is typed,

To reset to the extremz left of
the string "§" may be used.

retu-ns control to LISP.
fer is ileft iatact, and
wlvine, the user will
nter at the left hand end

may De used during aﬁy comnand to
eturn control to Alvine's command-listen-
loop.

SAILON No. 28.2

AN EXAMPIE OF ALVINE

Note: 1. All typeout is underlined.

2. Bell, space and alt-mode are represented by [j, & and §
respectively.

Yol

"R LISP 12&
LISP 22-At10=A8
ALLOC? No >

Ty 2

I

D)

H e~

% S(DEFPROP TEST(LAMBDA &; the strimg bounded by "7 is introduced
to ALVINE

Aw

(DEFPROP TEST(ILAMBDA ; print the eatire ALVINE buffex

*

Bu

21PS

$ RES

e
w

|

IAMBDA $ (X) (CAR Y) EXPR) S; append the . iring Lounded by "$' to
the buifer
*
Bu
41LPS
3 RPS
*
I CAR Y $)$; add the deficient rigat paren
%

BAL

Vi

(DEFPROP TEST (ILAMBDA (X) (CAR Y))EXZER)

¥

P TESTu; convert ALVINE string to LISP function
%

N

SAILON No. 28.2

t+ 3 exit ALVINE

Tw; now talking to LISP

T ' :

(TEST (QUOTE(A B)))

Y

UNBOUND VARIABIE-EVAL ; LOSE
(ED) -3 reenter ALVINE,

ale
w

W

(DEFPROP TEST ; "G' need not be executed since the buffer is always

. - e im s oy e
W ~oLt riniiG L

RX $ Y8
w .
P 7811 ; flush incorrect

PTESTw ; redefine TEST

e

TEST (QUOTE(A B)))w 5 try agaii

5 Wi

sk -~
=3
lw)
N

SRy
C

|

5Cwa ;3 change print count
> 5

b =]
C

AN
/

DEFPROP. TEST (IAMBDA (¥)5- X1

rs
e

>
e
]

-

K TEST ...) $%$

¥

Ao

(DEFPROCPYEXPR) ; same effect by :

1. "SpZFPROP $", "6D™

°”©

I-5

SAILON No. 28.2

APPENDIX J

BIGNUMS - ARBITRARY ZRECISION INTEGERS

LISP numbers have always been seacond class citizens, in the sense
that unlike strings (print names) numbers have had a maximum length.
In the PDP-6/10 LISP system there is an options. arbitrary precision
integer package which extends the length of LISP integers from 36-bits
to any length. ’

To load the BIGNUM system, execute the following at the top level
of LISP:

and then rour core image will perform arbitra
operaLions using the standard LISP <soithmetic
edefined by AZNINIT.

It is possible to load the BIGNUM package at any time unless you
heve alvecdy executed compiled functions with (NOUUO NIL), in which case
you must reconstruct your core image.

Gy

INDEX

28.2

SAILON No.

s~

o N 2#.31134:.)4‘,../_32112?_1155..;.

Ulrd =4 <F M ed vd NV e OO 4 N 4 N D o™ o
oGt teot [I I B | 1 1 1 ' 1] t 1 1 t [| . . .t 1 1 1 1 ¥ i]] H L] L] PR | LI N
FIN I N OO NSO N OO MG N (&} O oo DO F 0 O et I N ord ey od O i -4 Y ON BN~
Pafrd v r—t ot ed e ~ 4 v et et Rt e Bt R ST B S IR I S i P
i L] ’
]
™ >
LS S S T . F S T I .
F S Y . [Y L S T T T [N
4
L L TR . S v S S S T T) [
&)
T S T R T T T S S . .
~ N
. . - ~ . LY . . « O . . > . . - - . . .
. (v} n
TS T T S S L S S S S o B “ . . e
o Q Q
R L L . [N LY [TS S & BT P T Y . . P T PO . .
U4 =R
O o T & T T I T T T T T T T S S Y [
e 0D o)
S S S o o < J S S o S .o o
@) Q 3
o T T O o T/ T e S
« i
D P e | S S e S T T . . . 73
4) 4J
. . . . N - - - . . . -~ . . S}
9] 0 v] 2} o
. . .] . s v s . G} . M . . . « s s [P ¥ B . s « s A s s s . s s I v g
o i B R o o 3
“ s P} [o . o el oo 4 « T = I T T S o) S S S S SR 3
= 13} I A 14 g on
P N [] IS T < S SR 1 T > S S R O IS FSY . Y
&0 ® ol e 2 °o o
F I R L & T > IR ST & B & | F o T T e = e S R S .
[0 td] et o -4 (01 v)
. S . . . ooyl)] . s o . oo o ool) . . v W o N . .o
o el 3 o wd D Q2 <« o o}
P S S T Y [Y v e s R S . O
. 3]
- - - - - - - . - . . . - - . . - ~ . . - v dJ/ > - %]

o2 [53}) o~ o4
[sa el o) i .

[(e e ’
D 3 M M s s s M QD MDD
i -
¥

jas}

ALUE
SUBR

U
Al
S
S
A
A
U
)

FSUBR
S
U
S

SUBR
SUBR
FSUBR
LSUBR

U

B

J

B

B
SUBR

FSUBR
U
CBR
o
LSUBR

-
|3
L

N = 0 N Tmon K

S
V

:/\R

1
S

DIFFERENCE

DIVIDE

DEFPROP
oM
ED

ABS
LD
LI
AND
APPEND
PL
C
RA
I
G
L TOM
BAKGAG
BASE
BIGNUM
BOOLE
BPEND
BPORC
CAR
CDR
CDDDDR
CHRCT
COND
CONS
CSYM
DDTIN
DDTOUT
DE
DEPOSIT
DF
EQUAL
ERR
ERRSET
EVAL

C

SAILON No. 28.2

EXAMINE SUBR
EXARRAY FSUBR
EXCISE FSUBR
EXPLODE SUBR
EXPLODEC SUBR
EXPR

FEXPR

FILENAMES

FIX SUBR
FIXIA

TIXNUM

FLATSIZE SUBR
FLONUM

FORCE SUBR
FSUBR

FUNARG

FUNCTION FSUBR
FUNCTIONAL ARGUMENTS
GC SUBR
GCD SUBR
GCGAG SUBR
GCTIME SURR
GENSYM ;
GET

GETL

GETSYM

GO

GREATERP

IBASE

IDENTIFIER

INC FSUBR
INITEN FSUBR
INPUT FSUBR
INTEGER

INTERN SUBR
LABEL

LAMBDA

LAST

LENGTH

TESSP LSUBR
LEXPR

LINZLENGTH SUBR
LIST FSUBR
LOAD SUBR
LSH SUBR
LSUBR

MACRO

MAKN AM SUBR

g

)

Q
o

Bt Bt P bt ey
SO PPN O O
| T T R T T T T R |

=y

=

(==

1 1

pod
Pt

L sull o Bl w B TR w2 B B e

bt e

O R R R U S N SN S OO U SU AU NS N O el I SRR OO

e

Fid

et

ONON R S g WO W

Pt

}»-.I
]] 1 1
TSI RS e S

o
]

[
QIO SO
I~

i

=t e

-t

[

LI
W P W s W o W

)
N

1

O o

-

SAILON No.

MAKNUM
MAP
MAPC
MAPCARD
MAPLIST
& i._.; L uu Q
MED i&{
MINUS-
MINUSP?
NCONC
NCONS
NIL

NOT
NOUUOC
NSTORE
NULL
NUMBER
NUMBERP
NUMVAL
CBLIS
on
LTTC
GUTPUT

-3

PNAME
PRINL
PRINC
PRINT
PROG
PROGZ2
ROPERTY LIST
PUTPROP
PUTSYM
QU0
QUOTIENT
READ
READCH
READLIST
REMAINDER
REMOB
RETURN
REVERSE
RPLACA
RPLACD
SASS0C
SET
SETO
S-EXPRESSICN

28.2

SUBR
SUBR
SUBL
SUBR
SUBR
SUBR
SUBLR
SUBR
SUBKR
LSUBR
SUBR

VALUE
SUBR

SUBR
TSUBR

Uy hj
[
ov]
v

=
-
d

73

~o

b ot < B UL
eI v R

v mnwe Mo
oot o

=

CREK:
Ao A W

ok
<
s}

SUBR
SUBR
SUBR
FSUBR
SUBR

SUBR
FSUBR
FSUBR
LSUBR
SUBR
SUBR
SUBR
SUBR
FSUBT
SUBR
SUBR
SUBR
SUBR
SUBR
SUZR

FSUBR

.

us
PR
PR
..
. .
in
PR
PR
. .
. .
P
. -
o .
P
P
PR
. .

. .

TER?P

« .
e .
n
v .
e v
.
. .
T
e .
..
e .

. .
- .
. .

1

EL

)
P
« e e e
e v e e .

e e e e
iticiize o
e e e
e e .

e e e e .
e e e
e e ..

C e e .

e e e e
e e e
e e e
e e e
e e e .
arguments
e e .

lows non-ct

P
DT F e g -
Nl TLirsc
e e 4 e .

e e e
e e
arguments
...
e e
e e . .
ce e e
e e e
e e
Coe e e
e e .
Ce e e
es EQ
. .
e e e
e e e
e e e .

o
<

Foie

I

. .
e .
o .
P
o .
e e
]
P
P
¢ .
o .
¢« .
o .
o .
e .
P
P
o .
o .
.« e
. .
o e
e
e .
PR

L

.
. .
o« .
DY
‘ .
B .
¢ .
o« .
. .
e
C—
. .
LR
. .
e
-
P
P
o .
. .
. e

s
|3

NV OO OO
1
W N DD U oYU U NG

- e
R tor o

PN
]

bt
-
-

1

o
)

ivu=1

.
t O Ui
[|

WO oW
i

.
i

-
fID N W Lo e

1

W W E
1

bed bl pot

bt e
R LSS
I T S T |

FLUTGI U 2 WWWww N

H
™~
]

+
[ERIES

o
]

[
L W
[I |

t
s L0 bt e e e N e

bt
1

S et
'

U1 (v OGO Wb O P o s
1

4
3]

1 1
N b

LI |

'

[}
B DD PN O W e

L bt bl b ped ped ped pand ped el et et

—

SAILON No.

SPEAK
SPECBIND
SPECIAL

SPECIAL VARIABLES

SPZCSTR
STORE
SUBL
SUBR
SUBST

o

TERPRI
TIME
TIMES

AV
.

TYD
VALUE

8.2

VARIABLE BINDING

XCONS
oD
A

*GREAT
*LCALL
*LESS

¥ OPOINT
FELUS
*QUO
*RSET

RTIMES

Sy galel

SUEBR
SYM

SYM
FSUBR
SUBR

SUBS
VALUE
STLR

SUBR

LSUBR

SUBR
SUBR

“t

b o

tx
7 B

4

vi

v

wawn

[ee i aviie

w
PRP VAP

S B v I

Ui
C
-

w

&
s
-~

%
i <
Ll
wd

(AN
[RN e i o
W ool

SRRV S IS

C

SUI

o

I3

.

.

.

not interpreter

n argumen

.

.

.

rd
O]

o~ Wt Ul
]

W

oy

] !
£ 10 DS W N PO e

et P
'

'
Pl bt 7 bt

e O b
1

=t

[

D R NN NOHE O W
]
R

1

1
t

et

)
Pl pet

- P
1ot
U B

	Abstract
	Acknowledgment
	Contents
	1. Introduction
	2. Interactive Use of the System
	3. Identifiers
	4. Numbers
	5. S-Expressions
	6. Lambda Expressions
	7. Evaluation of S-Expressions
	8. Conditional Expressions
	9. Predicates
	10. Functions on S-Expressions
	11. Functions on Identifiers
	12. Functions on Numbers
	13. Programs
	14. Input/Output
	[15. Arrays -- missing pages]
	Appendices
	A. Differences from Standard LISP by Anthony C. Hearn
	B. Error Messages and Control
	C. Memory Allocation
	D. Garbage Collection
	E. Compiled Function Linkage and Accumulator Usage
	F. The LISP Compiler
	G. The LISP Assembler - LAP
	H. The Loader
	I. ALVINE by John Allen
	J. BIGNUMs - Arbitrary Precision Integers
	Index

