p—

oo e (Vi v - iV bn dilw il '*aw .iom 'véum AEES N‘b A XY

NIL N
‘L NIL
IL NIL
NIL NI
NIL N

A4 NIL O NTL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL
su._JL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL
NILTNIG NIL NIL NIL NIL WIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NI
DnIe NI NI SAILON 28.3 . NTL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL N
L ONIL NIL N.o ... o . IL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL |
IL ML NIL NIL WIL NIL NIL NIL NIL NIL NIL NIL NIL-NIL NIL NIL NIL NIL NIL NIL NIL
NIL NI
NIL N
L NIL |
IL NIL
NIL NI
PNIL N
L NIL !
IL NIL

NIL NIL NIL NIL NIL N NIL NIL NIL NIL NI
' NIL NIL NIL NIL NIL ¢ STANFORD LISP 1.6 MANUAL . NIL NIL NIL NIL N
£ ONIL NIL NIL NIL NIL oo oo oo oot e e e e e e IL NIL NIL NIL NIL ¢

IL NIL NIL NIL NIL NIiL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL
NIL NI
P NTL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NJ
L NIL

IL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL
NIL NTL NIL NIL NIL NIL NIL NIL NIL N1t BY L NIL NIL NIL NIL NIL NIL NIL NIL NIL
CNIL NIL NIL NIL NTL NIL NIL NIL NIL NI. .o . IL NIL NIL NIL NIL NIL NIL NIL NIL N
L NIL NIL NIL NIL NIL NIL NIL NIL 7 e " "L NIL NJL NIL NIL NIL NIL NIL ®

IL NIL NIL NIL NIL NIL NIL NI LYNN H. QUAM ITL NIL NIL NIL NIL NIL NIL NIL
r\ 1L NIL NIL NIL NIL NIL NIL M _ . .- NIL NIL NIL NIL NIL NIL NIL NIL

;NIL NIL NIL NIL NJL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NEL NIL NI
= NIL A
FL NIL
NIL NIL
CNIL ONIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NI
¢ NIL NIL NIL NIL NIL NIL NIL WNIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL N
fL MIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL
NIL ONIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL
NIL NI

» NIL NIL NIL NIL NIL NIL NIL N7 7 7" NIL NIL NJL NIL NIL NIL NIL N
EL O NIL NIL NIL NIL NIL NIL NIL SEPTEMBER 1969 ~ . NIL NIL NIL NIL NIL NIL NIL
§TL NTL NIL NIL NIL NIL NIL NIL 'L NIL NIL NIL NIL NIL NIL NIL

INTLONIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NI
L NTL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NJL NIL NIL NIL NIL N
IL.NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL
MTL NTL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL
UTUONIL NILONIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NJ
. NiL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL N
(L NIL
¢ ' NIL

farey

LONIL ONIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NI

SOUNIL NIL NIL VIL NIL NIL NIL N
L NIL NIL NIL NIL - STANFORD ARTIFICIAL INTELLIGENCE PROJECT NIL NIL NIL NIL
IL NIL NIL NIL NI L NIL NIL NIL NIL

N /NILONIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NI
. vee= NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL N
L NIL
JIL NIL NIL NTL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL
INIL NI
CNIL N
L NIL
éﬁ NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NJL NIL NIL

SAILON-28.3

PREFACE

This manual is an extensive rewrite of SAILON 28.2, and supercedes
and replaces SAILONs 1, 4, 28, 28.1 and 28.2. Sections have been
rewritten for both clarity and accuracy.

The major language changes since SAILON 28.2 are summarized as
follows:

Sections 14.3.3, 3 and 3.3 - READ now has strings, super=
parentheses, comments and QUOTEing.

Chg - EQUAL now compares integers with reals.

Ch 16 - *RSET and BAKGAG have been changed.

ii

/‘\

SAILON8.3

Acknowledgment

The STANFORD A.I. LISP 1.6 System was originally an adaptation
of one developed by the Artificial Intelligence Project at M.i.T. Since
1966, that system has been largely rewritten by John Allen and the author.

John R. Allen implemented the storage reallocation system which make
it possible for the user to change the sizes of the various memory spaces.
He also designed and coded the editor ALVINE, wrote the first loader
interface, and generally maintained and debugged the system. John Allen
contributed the ALVINE documentation in Appendix A.

The author implemented the multichannel input-output system, the
compatible loader interface, a faster arithmetic package which interfaces
to the BIGNUM package, the BIGNUM. package and various other smaller

packages.

iii

SATILON-28.3

TABLE OF CONTENTS

Abstract.......... Cheeea Ce ittt erer e . e
Preface e et et ettt et ettt et e i e it e e e ii
Acknowledgementv.iieiuereeeneuneneanenrnornsnnanesnsncnannonns iii

LCHAPTER'

1. INTRODUCTION . .uteeuuunnesennnnneenunnnssennsessnsnnennns cee 11

1.1 Guide to Novice Ceeeieeietieet e s, 1-2
1.2 Guide to the User Experienced with Another LISP System. 1-2
1.3 Guide to Useful Functions and FeatuUresS....ee.vsseeooess 1-3
1.4 Document Conventionsc.o..... e A

2. INTERACTIVE USE OF THE SYSTEM ...vevvrrnnnnnennsn Ceeaeenrona 2-1

2.1 The Top Level............ et teiceseceereneese s aanenea 2-1
2.2 Using the System = e S |
2.3 Spec1a1 Teletype Control Characterseveeeuenss 2-3

5. IDENTIFIERS........... Chtecssets et eennnsnn Sacecercansnasen

3
3.1 Property Listsvvn.. Cececeaneas ceescsersenreanan 3
3.2 The OBLIST ...'v'teeeeeeneenennnnnnes Ccecesersesicnennn 3
3.3 Strings St et it e ettt teteeaeeceenentt et taneeen 3=

L
L
L

Lol Integersvi'veveeoeeennneneenneneenns i, ..
L2 Reals ,....viiivivnnennns Cre e ettt

5. S EXPRESSIONS SRR AR L R LR R PR ERAIRACERRERE 5-1
6. LAMBDA EXPRESSTIONS :evvecevancnnn Creertseaieeanaea Y T |
EXPRs and SUBRs e ceeees Cereeeeeas B
FEXPRS and FSUBRS tiivviveesncvenccanoscnancsosenancnes 62

LEXPRS and LSUBRS «veveevecoossennccssnsonasesennnanass 62
MACROS +ovevvveesencnnaess Cerieeeieaa. emeer e arnaas 6-3

OO\ ON
N e

7. EVALUATION OF S-EXPRESSION R R R R

.

7.1 Variable Blndlngs Ceeareeee e °..;......;.};;;... 7

7.2 The A-LIST and FUNARG Featuresiooiiee. 73
8

8. CONDITIONAL EXPRESSIONS e e
9. PREDICATES +uuvurvnvuenvanannasnesoinnsnssaaneenasaansnnsnns 9-1

1 S-Expression Predicates "'f""""‘ff";;' 9-2
2 Numerical Predicates ..;...;;.;;.;;;;..;....;.;;....2.. 9-2
%3 Boolean Predicates .sv.ieeeeeirecrerrincccenssncscasosnns .o 9-3

9.
9.
9

.APPENDIX

SAILON-28.3

CHAPTER

10. FUNCTIONS ON S-EXPRESSIONS....ciieseernccencanss

10.1
10.2
10.3
10.4
10.5
10.6
10.7

S-Expression

. S-Expression

S-Expression
S-Expression
S-Expression
S-Expression

Building FunctionS.eeeeeeeoss
Fragmenting Functions........
Modifying Functions..........
Transforming Functions.......

Mapping Functions.........o.u.

Searching Functions..........
Character List Transforming Functions.....

11. FUNCTIONS ON IDENTIFIERS...s.vveeevnneerennnnnns

11.1 Property List FunctionS...veeeeveeeesoassn e
11.2 OBLIST Functions...... ceereeeean ceseean et
Identifier Creating Functlons.............

11.3

12, FUNCTIONS ON NUMBERS.

12,1 Arithmetic FunctionS..eeeseeeesscrocaesnscnasacns ceseean
12.2 Logical FunCtionS..ceeeiveeoserosesnsossescosssascsannss
13. PROGRAMS..........vcou. e eeteeeteet it ctasatseoseteraannannn
4. INPUT/OUTPUT............ i e ieeeieii e
Ihol File NameS..ueeeeeseeeeeocecanoneseocnononnnecesns . e
14.2 Channel Names......... t e teenerseriaseesaccatetevasenne
153 InPUL . et eerenrnnennennoneannan et e Ceeeeceeann
It OUtPUt. . ieieerieenennonoonnnsans e teceeeeeeaes Ceeieenn
15, ARRAYSiiiervereeronncnonanonanns ceretencanne Cheeerresenn
15.1 Examine and DeposSit.....ceeeeveceocanoaensscnsnnes ciecee
16, OTHER FUNCTIONS, v veeeeeeennnenesnnennsnneanens . cerevaenn

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX K

L«HEO’HMUOWP

.

.

ALVINE - by John Allen......... e
ERROR MESSAGES .« «svvvnn. T N
MEMORY ALLOCATION:::veeesreeannananannns
GARBAGE COLLECTION: .:oeueeuurannacasnasas
COMPILED FUNCTION LINKAGE AND ACCUMULATOR USAGE.......
THE LISP COMPILER.«vveeeeeererannnnnnans

THE LISP ASSEMBLER - LAP.....ccctvatvencnns

THE LOADER..

BIGNUMS - ARBITRARY PRECISION INTEGERS....
REFERENCES ¢ ¢ cevtveveoerosocscnnsecnnnssnsnas

INDEX.....

.

e e e e o e R A I R R B B Y

00 000000 c00 0000000000000 a0

DR R R R A)

1h-1
14-1
1h-1
14 -1
-l
15-1
15-2

16-1

NRumHMIDOHEBOO®E P
[]
[l el R e e S S e]

1
[LEY

SATLON-28.3

CHAPTER 1

INTRODUCTION

’ This manual is intended to explain the interactive LISP 1.6 system
which has been developed for the PDP-10 at the Stanford University
Artificial Intelligence Project. It is assumed that the reader is
familiar with either some other LISP system or the LISP 1.5 PRIMER by
Clark Weissman. . R

The LISP 1.6 system described has as a subset most of the features
and functions of other LISP 1.5 systems. .In addition, there are several
new features such as an arbitrary precision integer package, an S-expre-
ssion editor, up to 14 active input-output channels, the ability to
control the size of memory spaces, a standard relocatingﬂloader to load
assembly language or compiled programs, etc.

This system uses an interpreter; however, there is also a compiler
which produces machine code. Compiled functions are approximately ten
times as fast and also take less memory space,

This manual is organized in a functional manner. First the basic
data structures are described; then the functions for operating on
them. The appendices present more detailed information on the. system,
its internal structure, the compiler, and several aux111ary packages.

1-1

SAILON-28.3%

AN
1.1 Guide to the Novice:
The user who is not experienced with any LISP system is advised to
follow the instructions below:
1) Become familiar with Weissman's LISP 1.6 Primer(g) or some
equivalent introductory LISP Manual,
2) Learn the document conventions (l.k4).
3) Become superficially familiar with LISP 1.6 identifiers,
numbers and S-expressions (Chapters 3,4,and 5).
4) Understand the most useful functions: Those proceeded by
exclamation marks " ! " in chapters 6 through 14.
5) Learn how to define functions (6.1).
6) Learn how to interact with LISP (Chapter 2).
7) Try some examples. Weissman(l) has some good problems.
8) Learn what other useful functions and features are available
(105)0 :
N
1.2 Guide to the User Experienced with Another LISP System
The user who has used another LISP system is advised to follow
these instructions:
1) Learn the document conventions (1.4).
2) Learn top level of LISP 1.6 is EVAL, not EVALQUOTE.
3) Use DE,DF and DEFPROP for defining functions. (Section 11.1).
4) Many functions differ from those in other systems. Most of these
are noted in the index.
5) The syntax of atoms is different from other systems (Chapters 3
and 4).
6) Learn how to interact with LISP (Chapter 2).
7) Try same examples.
8) Learn what other useful functions and features are available
(1.3).

SAILON£8.3

1.3 Guide to Useful Functions and Features

The following is a partial list of useful features and functions in
LISP 1.6 and what they might be useful for.

1) ALVINE (Appendix A) is useful for editing functions and
manipulating I/0 files.

2) READ has some very useful control characters (Sectioh 14.3),
" 3) Input/Output (Chapter 14) is very flexible.
L) One can control error messages (Chapter 16).

'5) There is a LISP compiler (Appendix F) which genmerates code that runs
‘approximately ten times as fast as interpreted functions.

6) There are auxiliary files on the disk which are often useful:

filename use ; document
SYS: SMILE file manipulation SAILON 41
SYS: TRACE tracing function calls SAILON k1l
and SETQs
- SYS: (LISPDP.LSP) III display functions SAILON 41
SYS: (BIGNUM.LSP) arbitrary precision Appendix I
' integers
SYS: (DEBUG.LAP) interactive debugging SAILON 41
(SP DOC) LISP corrections to this
manual
'SYS: GRIN Interpreted GRINDEF Appendix A

7) One can load and link LISP to assembly language and Fortran
compiled programs (Appendix H).

SAILON- 28.3

1.4 Document Conventions

1.4.1 Representation Conventions

In the description of data structures, the following notational
conventions will be used.

represents a 36-bit word
— oo in FREE STORAGE with 2
18-bit pointers.

-------------- means l ; NIL

represents a 36-bit word
in FULL WORD SPACE.

Q——o

F

1.4.2 Syntax Conventions

A slightly modified form of BNF is used to define syntax
equations. Optional terms are surrounded by curly brackets { and }.

1.4.3 Calling Sequence Conventions

Calling sequences to LISP functions are presented in S-expression
form, with the CAR of the S-expression being the name of the function.
An argument to a function is evaluated unless that argument is surrounded
by quotes (") in the calling sequence definition. Quotes mean that the
function implicitly QUOTEs that argument.

Examples: (SETQ "1D" V) ID is not evaluated, but V is
evaluated.
(QUOTE 'v'") V is not evaluated.

1.4.4 Other Conventions

The blank character (ASCII 40) is indicated by "' when appropriate
for clarity.

A special notation in the left margin is used to indicate the
degree of utility or difficulty of each section of this manual:

mark meaning

! basic

<no mark> generally useful

* useful but more sophisticated
not generally useful

SAILON-8.3

CHAPTER 2

INTERACTIVE USE OF THE SYSTEM

This chapter attempts to explain how to use the LISP system in the
. interactive time-sharing enviromment of the PDP-6/10.

2.1 The Top Level

The top level of this system does not use EVALQUOTE as do many
systems. However, EVALQUOTE may be defined as follows:

(DE EVALQUOTE NIL
(PROG NIL
L (TERPRI)
(PRINT (EVAL (CONS (READ) (MAPCAR
(FUNCTION (LAMBDA (X) (LIST (QUOTE QUOTE) X)))
(READ)))))
(6o 1)))

The top level of LISP 1.6 is equivalent to:
(PROG NIL
L (TERPRI)
(PRINT (EVAL (READ)))
(o L))

All examples at the top level assume this definition.

2.2 Using the System

The following dialog shows how to log into the time-sharing system,
start the LISP system, and interact with the top level of LISP. Lines
beginning with period " . " are typed by the user to the time-sharing
system, and the lines beginning with asterisk are typed to LISP. The
aymbol ':y'specifies carriage-return and line-feed, "$" means altmode,
and 4 means space typed by user.

IL
Log in —~#1/FOOD Give your project-programmer number.
TR LISP» Core size may be specified - Note 1.
2 i -
Starting ALLOC?L) Memory allocation can be specified - Note 2.
LISP -WAUXILIARY FILES 2 Useful auxiliary files can be loaded - Note 3.
| DECIMAL ?LY Respond "Y' for decimal initialization of

BASE and IBASE.

2-1

SATLON-28.%

[%13 T and NIL always evaluate to themselves.
T
*(QUOTE(A B C))D
(A BC) - Value of QUOTE A .
*(CONS 1 (QUOTE A))D Numbers always evaluate to themselves and
(1 . A) thus need not be quoted.
*(PLUS 1 2)D
5

*(INC (INPUT SYS: TRACE)) This READS the system file TRACE
NIL

L<a long sequence of output> This output can be suppressed with 1C.

2=-2

SAILON-28.3

Note 1. For limited use of the LISP system, type R LISP9.
If more core is needed, type R LISP n , where n 1is the
desired number of 1024 word blocks.

Note 2. For limited use, type?) after ALLOC?. To allocate memory
spaces type Y. The allocation procedure is explained in
Appendix C.

Note 3. A response of Y to "AUXILIARY FILES" will read in auxiliary
files of functions. Type Y for yes, blank for no after
each question mark.

AUXILIARY FILES?Y

SMILE? Functions for file handling - See SAILON L41.
ALVINE? The LISP editor - see Appendix A.

TRACE? Functions for debugging - See SAILON Ll.
LAP? The LISP assembler - see Appendix G.

2.3 Special Teletype Control Characters

The time-sharing system treats many control characters in special
ways. For a complete discussion of control characters see the PDP-10
TIME SHARING MONITOR MANUAL. Briefly, the following special control
character is used in LISP.

Teletype III Display Meaning
1C CALL Stop the job and talk to

time~-sharing system.

t+0 3 Suppress console printout
until an input is requested.

tu 51 Delete the entire input
line now being typed.
(Only with (DDTIN NIL)).

t G (BELL) T Stop the LISP interpreter
and return control to the
top level of LISP. Only
effective when LISP is
asking for console input.
See INITFN (16).

rubout BS Delete the last character
typed. (For (DDTIN T) see
14.2.1).

SATLON-28.3

CHAPTER 3
IDENTIFIERS

Identifiers are strings of characters which taken together represent
a single atomic quantity. :

Syntax:

<comments>::= <ASCII 176> <any sequence of characters not. including
line-feed> <line-feed> ’ S

‘<deliﬁitéf>;:=(l) ‘[']k|@|/|ﬁ| <b1ank>| <altmode>|<carriage-return>
<1ine-feed>|<tab>|<form-feed>

<character>::= <any extended ASCII character other than null and ASCII 176>

<digit>::= @|1]|2|3]4]5]6|7|8]9

<1etﬁeﬁ>:;=<any character not a digit and'not a delimitef}

<identifiéﬁ>::= <1etter> | |

<identifier><letter>

il

B
]

<1dent1f1er><d1g1t>

/ <character>

i <identifer>/<bharacter>
Semantics:

Identifiers are normally strings of characters beginning with a
letter and followed by letters and digits. It is sometimes convenient to
create identifiers which contain delimiters or begin with digits. The use
of the delimiter '"/" (slash) causes the following character to be taken
literally, and the slash itself is not part of the identifier. Thus, /AB
is the same as AB is the same as /A/B.

Comments are useful for allow1ng descrlptlve text in files which
will be completely ignored when read. Comments also make it possible to
extend atoms (identifiers, strings and numbers) across line boundaries with-
out any of the characters in the comment becoming part of the atom.

ASCII 176 cannot be typed directly into LISP. - In :STOPGAP, 7?3
designates ASCII 176. On the line printer and III displays, ASCII 176
. prints as tilde " ~'". . ASCII 176 does not print on teletypes. (See

CHRCTin1414) o - : , ,
, A

E mgles. a _
FOObaz 3-1

SATLON -28.3%

Examples (Continued)

TIME-OF-DAY
A1B2

/(

?

/13245

/.

LPT:

- Representation:

An identifier is internally represented as a dotted pair of the
following form:

identifier-»_ =1 | _e—J]—) property list

which is called an atom header.

Thus CDR of an identifier gives the property list of the identifier,
but CAR of an identifier gives the pointer 777777, which if used as an
address will cause an illegal memory reference, and an error message. An
identifier is referred to in symbolic computation by the address of its
atom header.

3.1 Property Lists

The property list of an identifier is a list of pairs: (property
name, property value) associated with that identifier. The normal kinds
of properties which are found in property lists are print names, values,
and function definitions corresponding to identifiers.

3.1.1 Print Names
Every identifier has a print name (PNAME) on its property list.
The print name of an identifier is a list of full words, each containing

five ASCII characters. -

- Example: The identifier TIME-OF-DAY would be initially represented as
follows: - S : :

atom header={_=-11 lPNAME l ’—]")[1 |/7|

print name }Sﬁ!ﬁff%?l | —Ply L/*ﬂ
where A means null or ASCII @. TIM [OF DA;[IYAAAAfT

3.1.2 Special Cells

When a value is assigned to an identifier, the property name VALUE
is put on the identifier's property list with property value being a
pointer to a special cell. The CDR of the special cell (sometimes called

5-2

SATLON-28.3

VALUE cell) holds the value of the identifier, and the address of a
special cell remains constant for that identifier unless REMPROPed (11.2),
to enable compiled functions to directly reference the values of special
variables. Global variables and all variables bound in interpreted
functions store their values in special cells.

Example: The atom NIL has the following form:

atom header property list
NIL L-1] —bNATE] F>[[[—3>[eaME] 4> | [—]
A
\\ special

. cell princ{%lzx
N / name
N e e . - - =7

3.2 The OBLIST

In:order that occurrences of identifiers with the same print names
have the same internal address (and hence value), a special list which is
the VALUE of a global variable called OBLIST is used to remember all
identifiers which READ and some other functions have seen. For the sake
of searching efficiency, this list has two levels; the first level contains
sequentially stored '"buckets' which are 'hashed' into as a function of the
print name of the identifier. Each bucket is a list of all distinct
identifiers which have hashed into that bucket. Thus, (CAR OBLIST) is the
first bucket, and (CAAR OBLIST) is the first identifier of the first bucket.

3.3 Strings
Syntax:
string::= '<any sequence of characters not containing "'

Semantics:

A string is an arbitrary sequence of characters surrounded by
double quotes and not containing double quotes. Strings are represented
identically to identifiers except that strings are not automatically
INTERNed on the OBLIST. The double quotes surrounding strings actually
become part of the PRINT NAME of the string unlike slashes in slashified
identifiers.

Examples:

"I AM A STRING"
"1,3-X 5"

3-3

SATLON-28.3

CHAPTER 4

NUMBERS

There are two syntactic types of numbers: integer and real.

' <number> <integer> | <real>

4.1 Integers

Syntax:
<integer> = [<sign>) <digits> {.)
<digits> = <digit>{<digits>}
<s1gn> ri= 4| -

Semantics:

The global variable IBASE specifies the input radix for
integers which are not followed by ".". Integers followed by ", " are
decimal integers. IBASE is initially = 8. Similarly, the global variable
BASE controls output radix for integers. If BASE = 1¢ then integers will
prlnt with a following ".'", unless the global variable *NOPOINT = T.

. mgles with IBASE=8

input . meaning
213 = -1l = -l
1900 = 512, =4512y
19 = 7. =417y
VRepresentation:

: There are. three. representations for integers depending on
the numerical magnitude of the integer: INUM, FIXNUM, and BIGNUM. Their
ranges are as follows:

INUM S |ﬁ| <K' K is usually 216
FIXNUM K< [n]<2”

BIGNUM 235 < | o] '

Representation of INUMs:

INUMS are small integers represented by pointers outside of the
normal LISP addressing space.’ INUMs are addresses in the range 218-2x to
218.2, The INUM representation for zero is ¢ = 218-k-1.

L-1

SAILON-28.3

Examples: INUM representation
S @ - ®D
-1 - o -1
0 o = 28.g-1
1 o +1 |
K-1 o + K-1

Representation of FIXNUMSs:

FIXNUMs are represented by list structure of the following form:
atom header
eSS

-where value is the 2's complement representation of the fixed point
number. : ’

Eiamples:

+100000000 | -1] F>[Fxvmm | ——> (000 100000000|
1400000032y [-1] A [FIXNmM][J——>[776377777746]

Representation of BIGNUMs

BIGNUMs are represented by list structure of the following forms:

Positive BIGNUMs e -1] > [posnumM] G- | l [— l —]

Fe]]
Neggt?ve BIGNUMSL - = -1] > |NEGNUM] | l | —f 1 L]
S | , ""l‘Nb 1 — [

where N; are positive 36 bit integers ordered from least to most significant.
The value of a BIGNUM is

Note: BIGNUMS are not normally a-part of the interpreter. Appendix H
' - describes the procedures for loading the BIGNUM package.

L-2

SAILON-28.3

4,2 Reals
Syntax:
<real> ::= {<sign>} <digits> {-} <exponent>
= {<sign>} {<digits>} - <digits> {<exponent>}
<exponent> = E {<sign>} <digits>
Examples:
meaning
3.14159 +3.14159
+1E-3 +.001
-196.37E4 -196370¢.¢
@.3 +J.3
-0.3E+1 -3.9
Restrictions:

The radix for real numbers is always decimal.

be in the (approximate) range:

107% < 5] < 10M8 or x=9

A real number x must

A real number has approximately eight significant digits of accuracy.

Representation:

atom header

= [Fraw] ——

where value is in PDP-6/1¢ 2's complement floating point representation.

SAILON-28.3

CHAPTER 5
S-EXPRESS IONS
Syntax:
<atom> ::= <identifier> | <string> | <aumber>
<S-expression> ::= <atom>

(<S-expression list>{s<S-expression>})

= () = NIL

<S-expression list> <S-expression>

[]

<S-expression> <S-expression list>

Representation:
S-expression representation
(A . (B.C) lAlJ\VT

(4 .B) (C .D) E) —> [] %Li [[[—]

A5] e[7
(AB.C) —> LA | —F[3T T
Exceptions:

The identifier NIL is the identifier which represents the empty
list, i.e., () .

5-1

CHAPTER 6

IAMBDA EXPRESSIONS

IAMBDA expressions provide the means of constructing computational

- procedures (often called functions’, subroutlnes, or procedures) which
* compute”anhswers- when values are assigned to their parameters. A IAMBDA

- expression can be bound to an identifier so that any reference to that
- identifier in functional context refers to the IAMBDA expréssion. 1In

#

LISP 1.6 there are several types of function definition which determine
how arguments are bound to the IAMBDA expression. The following 'is a
LAMBDA expression:

(IAMBDA "ARGUMENT-LIST" 'BODY'?)" b

IAMBDA defines a function by specifying an ARGUMENT-LIST, which is
a list of identifiers (except for IEXPRs, see 6.3) and a BODY, which is
an S-expression. IAMBDA express1ons may have no more than f1ve arguments

e if they are to be compiled

ExampleS: g (LAMBDA NIL 1)

ThlS IAMBDA expression of no arguments alwa?s évaluates
to one.: -

(IAMBDA (X) (TIMES X X)) SR
This IAMBDA expression computes the square of its
argument, if x is a number. Otherwise an error will result.

(IABEL "ID' "IAMBDA-EXPR'')

IABEL creates a temporary name ID for its IAMBDA expression.
This makes it possible to construct recursive functions with temporary
names. .

Example:

(DE REVERSE (L)
((IABEL REVERSE1
(IAMBDA (L M)
(COND ((ATQM L) M) i
(T (REVERSEL (CDR L) (CONS (CAR 1) M))))))
L NIL))

IAMBDA expressions are evaluated by 'binding" actual arguments to
dummy variables of the IAMBDA expression, (see Chapter 14) then evaluating
the body inside the IAMBDA expression with the current dummy variable
bindings. However, actual arguments to IAMBDA express1ons are handled in

a- variety of ways. Normally, there is a .one-to-one correspdndence between
“dummy variables and actual arguments, ‘and” the ‘actual arguments are ‘évaluated

beéfore ‘they are ‘bound. ‘However, there are three special forms of functlon
definition which differ in their handling of actual arguments.

6-1

i

SATLON-28.3

6.1 EXPRs and SUBRs

An EXPR is. an identifier which has a ILAMBDA expression onm its property
list with property name EXPR. EXPRs are evaluated by binding the values
of the actual arguments to their corresponding dummy variables. DE (see
11.1) is useful for defining EXPRs. The compiled form of an EXPR is a SUBR.

Examples:

(DE SQUARE (X) (TIMES X X))
(DE *MAX (X Y) (COND ((GREATERP X Y) X) (T Y)))

6.2 TFEXPRs and FSUBRs

A FEXPR is an identifier which has a ILAMBDA expression of one dummy
variable on its property list with property name FEXPR. FEXPRs are
evaluated by binding the actual argument list to the dummy variable
without evaluating any arguments. DF (see 11.1) is useful for defining
FEXPRs. The compiled form of an FEXPR is an FSUBR.

Examples:

" (DF LISTQ (L) L)
(LISTQ A (B) C) = (A (B) C)
(LISTQ) = NIL o
(DF DEFINE (L) : :
(MAPC (FUNCTION (IAMBDA (X) (PUTPROP (CAR X)
(CADR X)
(QUOTE EXPR))))
L))

(DEFINE (LEQ (IAMBDA (X Y) (R (LESSP X Y)
(EQUAL X Y))))
(GEQ (LAMBDA (X Y) (OR (GREATERP X Y)
(EQUAL X Y)))))

6.3 'IEXPRs and LSUBRs

An IEXPR is an EXPR whose LAMBDA expression has an atomic argument
"list" of the form:

(LAMBDA "ID" "FORM")

LEXPRs may take an arbitrary.number of actual arguments which are evalu-

‘ated and referred to by the special function ARG. 1ID is bound to the

number of arguments which are passed. The compiled form of an LEXPR is
an ISUBR.

(ARG N)

ARG returns the value of the Nth argument to an IEXFR.

62

Example:

(DE MAX N
(PROG (M)
(SETQ M (4RG N))
(SETQ N (SUBL N)) |
(COND ((ZEROP N) (RETURN M))
((GREATERP (ARG N) M) (SETQ M (ARG N))))

(GO L)))

(MAX 1 1.2 4 3 -50) = &

(SETARG N V)

SETARG sets the value of the Nth argument to V and returns V.

6.4 MACROs

A MACRO 1is an identifier which has a IAMBDA expression of one dummy
variable on its property list with property name MACRO. MACROs are
evaluated by binding the list containing the macro name and the actual
argument list to the dummy variable. The body in the IAMBDA expression
is evaluated and should result in another "expanded" form. 1In the -
interpreter, the expanded form is evaluated. 1In the compiler, the
expanded form is compiled. DM (see 11.1) is useful for defining MACROs.

Examples:

1) We could define CONS of an arbitrary number of arguments by:

(DM CONSCONS (L)
(COND ((NULL (CDDR L)) (CADR L))
(T (LIST (QUOTE CONS)
(CAIR L)
(CONS (QUOTE CONSCONS) (CDDR L))))))

(CONSCONS A B C) would call CONSCONS with L = (CONSCONS A B C).
CONSCONS then forms the list (CONS A (CONSCONS B C)). Evaluating this
will again call CONSCONS with L = (CONSCONS C). CONSCONS will finally
return C.

The effect of (CONSCONS A B C) is then (CONS A (CONS B C)).

2) We could define a function EXPAND which is more generally useful for
MACRO expansion:

(DE EXPAND (L FN)
(COND ((NULL (CDR L)) (CAR L))
(T (LIST FN (CAR L) (EXPAND (CDR L) FN)))))

Then we could define CONSCONS:

(DM CONSCONS (L) (EXPAND (CDR L) (QUOIE CONS)))
6-3

SATLON-28.3

It should be noted that MACROs are more general than FEXPRs and

LEXPRs. In fact the previous definitions can be replaced by the following
MACROs:

(DM LISTQ (L) (LIST (QUOTE QUOTE) (CDR L)))

(DM MAX (L) (EXPAND (CDR L) (QUOTE *MAX)))
(MAX A B C D) would expand to: ’
(*MAX A (*MAX B (*MAX C D)))

3) (*EXPAND L FN)
(*EXPAND1 L FN)

EXPAND and£XPANDl are MACRO expanding functions used by PLUS, TIMES,
etc. They are equivalent to:

(DE *EXPAND (L FN) (*EXPAND1 (REVERSE (CDR L)) FN))
(DE *EXPAND1 (L FN)
(COND ((NULL (CDR L)) (CAR L))
(T (LIST FN (*EXPANDl (CDR L) FN) (CAR L)))))

Example:
With PLUS defined as
(DM PLUS (1) (*EXPAND L(QUOTE *PLUS)))

(PLUS A B C D) expands to:
(*PLUS (*PLUS (*PLUS A B) C) D)

"

F

CHAPTER 7

EVALUATION OF S-EXFRESSTIONS

This ghapter desCrihes the heart of the LISP interpreter, the
mechan%sm;fdr,evaluatingiS-expressions.

! (*EVAL E)

(EVAL E)
i;;%gyé;#éna‘gzégf(eee 732),e§elue£e the:yeluebof the S-expression E,
Examples: N A A
(EVAL (LIST (QUOTE ADDL) 3)) = e U
The top level of LISP is:

(PROG NIL = ‘ ’
L (PRINT (EVAL (READ))) (TERPRI) (GO L))

(APPLY FN_ARGS)

APPLY evaluates and binds each S-expression .in ARGS to the
correspondlng arguments of the function FN, and returns the value of FN.
See 7.2 - :

Examgle:_

Crvinyo. o o

(APPLY (FUNCTION APPEND) (QUOTE ((AB) (cp))))= (A'B ¢ D)

! (QUOTE "E")

. QUOTE returns the S-expression E without evaluating it.
(FUNCTION "FN')
FUNCTION is the same as QUOTE in the interpreter. - In' the compiler,

FUNCTION causes the S-expression FN to be compiled, but QUOIE generates an
S-expres31on constant.. See- *FUNCTION in 7.2 for the special FUNARG feature.

The follow1ng functlon def1n1t10ns lack some details but explain the
essence of EVAL and APPLY., The A-LIST feature of these functlons is not
shown, but will be explained in 7.2, ’

(DE EVAL (X)
(FROG (Y)
(RETURN
(CND ((NUMBERP X) X)
- ((AT@M X) (COND ((SETQ Y (GET x (QUGTE' VALUE)))
~ (CIR Y))
.. (r (ERR (QuorrE (UNBOUND VARIABI.E M)
"((ATOM (CAR X))
(COND ((SETQ Y (GETL (CAR X) (QUOTE EXPR FEXFR MACRO))))

7-1-

SATLON28.3

(coND ((EQ (CAR Y) (QUOTE EXPR)) —
(APPLY (CADR Y)
(MAPCAR (FUNCTION EVAL) (
((EQ (CAR Y) (QUOTE FEXPR))
(APPLY (CADR Y) (LIST (CDR X))))
(T (EVAL (APPLY (CADR Y) (LIST X))))))
((SETQ Y (GET (CAR X) (QUOTE VALUE)))
(EVAL (CONS (CDR Y) (CDR X))))
(T (ERR (QUOTE (UNDEFINED FUNCTION))))))
(T (APPLY (CAR X) (MAPCAR (FUNCTION EVAL) (CDR X))))))))

cR X))))

(DE APPLY (FN ARGS)
(COND ((ATOM FN)
(COND ((GET FN (QUOTE EXPR))
(APPLY (GET FN (QUOTE EXPR)) ARGS))
(T (APPLY (EVAL FN) ARGS))))
((EQ (CAR FN) (QUOTE LAMBDA))
(PROG (Z)
(BIND (CADR FN) ARGS)
(SETQ Z (EVAL (CADDR FN)))
(UNBIND (CADR FN))
(RETURN 2)))
(T (APPLY (EVAL FN) ARGS))))

The functions BIND and UNBIND implement variable bindings as
described in the next section.

* 7.1 Variable Bindings

This section attempts to explain the different types of variable
bindings and the difference between interpreter and compiler bindings.

* 7.1.1 Bound and Free Occurrences

. An occurrence of a variable is a "bound occurrence' if the variable
is a variable in any LAMBDA or PROG containing the occurrence so long as
the occurrence is pnot contained in a FUNCTIONAL argument which is contained
in the defining IAMBDA or PROG. The defining LAMDA or PROG is the inner-

most LAMBDA or PROG which contains the variable in its parameter list.

Examples:

(LAMBDA (X) (TIMES X Y))
X has a bound occurrence.,

Y has a free occurrence.

(LAMBDA (Y Z) (MAPCAR (FUNCTION (LAMBDA(X) (CONS X Y)))Z)
X and Z have only bound occurrences.
Y has a free occurrence bound by the outer LAMBDA

* 7.,1.2 Scope of Bindings

A variable bound in a LAMBDA or PROG is defined during the dynamic
execution of the LAMBDA or PROG. Free occurrences of variables are

defined if and only if either the variable is globally defined or the

7-2

SAILON-28.3

variable is bound in any LAMBDA or PROG which dynamically contains the
free occurrence. A variable is globally defined if and only if it has a
value at the top level of LISP. Variables can be globally defined by SEIQ
at the top level

"**7 1.3 Special Variables

In compiled functions, any variable which is bound in a LAMBDA or
PROG and has a free occurrence elsewhere must be declared SPECIAL
(APPENDIX E).

Example:

(LAMBDA (A B)
(MAPCAR (FUNCTION (LAMBDA (X) (CONS A X))) B))

The variable A which has a free occurrence must be declared SPECIAL
Cif the outer LAMBDA expression is to be compiled.

% 7.1.4 " Binding Mechanisms

All variables in interpreted functions, and SPECIAL variables in
compiled functions store their values in SPECIAL (or VALUE) cells.
These variables are bound at the entry to a LAMBDA or PROG by saving
their previous values on the SPECIAL pushdown list and storing their new
values in the SPECIAL cells. All references to these variables are
directly to their SPECIAL cells. When the LAMBDA or PROG is exited, the
old values are restored from the SPECIAL pushdown list.

in compiled functions, all variables not declared SPECIAL are
stored on the REGULAR pushdown list, and the SPECIAL cells (if they
exist) are not referenced.

7.2 The A-LIST and FUNARG Features

The A-LIST which is used in some LISP systems to implement recursive
" variable bindings does not exist here, but its effects are simulated
through a special A-LIST feature. The functions EVAL and APPLY allow an
extra last argument to be passed which is either a list of paired identifiers
and values (like an A-LIST) or a "binding context pointer".

In the case of an A-LIST second argument, EVAL and APPLY will bind the
SPECIAL cells of the variables in the A-LIST to their specified values,
saving their previous bindings on the special pushdown list. When EVAL and
APPLY return, the variable bindings are restored to their previous values.

A '"binding context pointer" (BCP) is a pointer into the SPECIAL
PUSHDOWN LIST designating a level in recursive variable binding. When
EVAL and APPLY receive a BCP as their second argument, all SPECIAL (VALUE)
CELLS are restored to the values they had at the time the BCP was generated.
This then causes EVAL and APPLY to reference these variables in the binding
context which existed at thée time of BCP generation. This feature primarily
is useful to prevent variable name conflicts when using EVAL, APPLY, and
functional arguments. As with the A-LIST, when EVAL and APPLY exit, the
previous bindings are restored.

T3

SATLON-28.3

There are two ways to generate a BCP:

If an FEXPR is defined with two arguments, then the second argument
will be bound to the SPECIAL PUSHDOWN LIST level at the time the FEXPR
is called. ‘

' The second way to generate a BCP is with *FUNCTION. -
(*FUNCTION "FN')
*FUNCTION returns a list of the following form:
 (FUNARG FN . <BCP>)

. where BCP is the SPECIAL PUSHDOWN LIST level at the time *FUNCTION
is called. Whenever such a functional form is used in functional
context, all SPECIAL bindings are restored to the values they had at the
time *FUNCTION was evaluated. When the functional argument has been

APPLYed, the previous bindings are restored as with the A-LIST.

The use of FUNARGS is discussed further by Robert Saunders(B).

" Example using the BCP feature:

(DF EXCHANGE (L SPECPDL) —
(PROG(Z) (SETQ Z(EVAL (CAR L) SPECPDL))
(APPLY (FUNCTION SET)
(LIST (CAR L) (EVAL (CADR L) SPECPDL)
SPECPDL)
(APPLY (FUNCTION SET)
(LIST (CADR L) Z
SPECPDL)))
In this example, the use of the extra argument SPECPDL has only one effect:
" to avoid conflicts between internal and external variables with names L and
SPECPDL. .
(EXCHANGE L M) will cause the values of L and M to be exchanged.
The variable L in EXCHANGE is not referenced by the calls on SET.

SATLON-28.3

CHAPTER 8

CONDITIONAL EXPRESSIONS

A conditional expression has the following form:
1
. (COND (8131 el’z cee el’n)

(e2,1 32,2 cos eZ,n)

))

(em’1 em’2 ees €

m,n,

where the ei’j's are any S—-expres$ions.

The e 's are considered to be predicates, i.e., evaluate to a
truth value.’ The e 's are evaluated starting with 1.1 > 22,1 »
etc., until the first® ex,1 is found whose value is not RNIL. Tﬁen the
corresponding ey 2 €k,3 s+ € p, are evaluated respectively and the
value of ey n is returned as’the value of COND. It is permissible
for np=1, in 5hich case the value of e ; is the value of COND. If
all ei,1 evaluate to NIL, then NIL is the value of COND.

Examples:

(DE NOT (X) (COND (X NIL) (T)))

(DE AND (X Y) (COND (X (COND (Y T)))))

(DE OR (X Y) (COND (X T) (Y T)))

(DE IMPLIES (X Y) (COND (X (COND (Y T)))
(T)))

SAILON-28.3

CHAPTER 9

PREDICATES

Predicates test S-expressions for particular values, forms, or
ranges of values. All predicates described in this chapter return either
NIL or T corresponding to the truth values false and true, unless
otherwise noted. Some predicates cause error messages or undefined
results when applied to S-expressions of the wrong type, such as (MINUSP
(QUOTE FO00)).

ATQM X

The value of ATOM is T if X is either an identifier or a number;
NIL otherwise.

Examples: (ATM T) =T
(ATOM 1.23) =T
(ATOM (QUOTE (X Y 2))) = NIL

(ATM (CDR (QUOTE (X))) =T
EQX Y

The value of EQ is T if X and Y are the same po4nter, i.e., the
same internal address. 1Identifiers on the OBLIST have unique addresses
and therefore EQ will be T if X and Y are the same identifier. EQ will
also return T for equivalent INUMs, since they are represented as
addresses. However, EQ will not compare equivalent numbers of any other
kind. For non-atomic S-expressions, EQ is T if X and Y are the same
pointer.

Examples: (EQTT =T
(EQ T NIL) = NIL
(EQ (QUOTE A) (QUOTE B)) = NIL
(EQ11.9) = NIL
(EQ 11D T

(EQ 1.9 1.9) NIL

(EQUAL X Y)

The value of EQUAL is T if X and Y are identical S-expressions,
EQUAL can also test for equality of numbers of mixed types. EQUAL is
equivalent to:

(LAMBDA (X Y) (COND ((EQ X Y) T)
((AND (NUMBERP X) (NUMBERP Y))
(ZEROP (*DIF X Y)))
((OR (ATOM X) (ATOM Y)) NIL)
((EQUAL (CAR X) (CAR Y))
(EQUAL (CIR X) (CIR Y)))))

9-1

SAILON-28.3

1
.

Examples: (EQUAL T T) =T
(EQUAL 1 1) =T
(EQUAL 1 1.8) =TT

(EQUAL (QUOTE (A B)) (QUOTE (A B)))
(EQUAL (QUOTE (T)) T) = NIL

]
3

9.1 S-Expression Predicates

(NULL L) T iff L is NIL.

(MEMBER L1 L2)

T iff L1 is EQUAL to a top level element of 12,

MEMBER is equivalent to: |
(IAMBDA (L1 L2) (COND ((ATOM L2) NIL)

((EQUAL 11 (CAR 12))T)

(T(MEMBER L1 (CDR 12)))))

Examples: (MEMBER (QUOTE (C D)) (QUOTE ((A B)(C D)E))) =T
(MEMBER (QUOTE C) (QUOTE ((C)))) = NIL

(MEMQ L1 1.2) =T iff L1 is EQ to a top level element of L2.

MEMQ is equivalent to:
(IAMBDA (L1 L2) (COND ((ATOM L2) NIL)
((EQ L1 (CAR 12))T)
(T(MEMQ L1 (CDR L2)))))
Examples: (MEMQ (QUOTE (C D)) (QUOTE ((A B)(C D) E))) = NIL
(MEMQ (QUOTE A) (QUOTE (Q A B))) =T

9,2 Numerical Predicates

(NUMBERP X) = T 1if X is a number of any type.

- = NIL . otherwise

(ZEROP X) = T 1if X is zero of any numerical type

D = error if X is a non-numerical quantity
= NIL otherwise

(MINUSP X) T if X is a negative number of any type

error if X is a non-numerical quantity
NIL otherwise

9-2

. SAILON-28.3

(*GREAT X Y) =T if X and Y are numbers of any type and X > Y.

error if either X or Y is not a number
NIL otherwise

(*LESS X Y) = (*GREAT Y X)
(GREATERP X. X ... X_) = T if (*GREAT X, X) and
L2 2 (*GREAT X x%) e
(*GREAT X X
n-1
= error if any X, is a non-numerical quantity
= NIL otherwise -
(LESSP X)Xy ees xn) = (GREATERP X X 4 e xl)

Other numerical predicates may be defined as follows:

(DE FLOATP (X) (COND ((EQ X (PLUS X @))NIL)
((EQ (CADR X) (QUOTE FLONUM)) T)
(T NIL)))
(DE FIXP (X) (NOT(FLOATP X)))
(DE ONEP (X) (ZEROP (DIFFERENCE X 1
(DE EVENP (X) (ZEROP (REMAINDER X 2

—
S
N

. 9.3 Boolean Predicates

The Boolean predicates perform logical operations on the truth
values NIL and T. A non-NIL vale is considered equal to T.

(NOT X)

T if X is NIL
NIL otherwise

T if all Xi are non-NIL

QAN?VXI X, .en xn)

NIL otherwise

Note: (AND)=T. AND evaluates its arguments from left to right until
either NIL is found in which case the remaining arguments are not
evaluated, or until the last argument is evaluated.

(OR X, X, ... Xn) T if any X, is non-NIL

NIL otherwise

Note: (OR) = NIL. OR evaluates its arguments from left to right until
either non-NIL is found in which case the remaining arguments
are not evaluated, or until the last argument is evaluated.

SATION-28.3

CHAPTER 10

FUNCTIONS ON S-EXPRESSIONS

This chapter describes functions for building, fragmenting,
modifying, transforming, mapping, and searching S-expressions, as well
as some non-standard functions on S-expressions.

. 10.1 S-Expression Building Functions

(CONS X Y)

The value of CONS of two S-expressions is the dotted pair of those
S-expressions.

Example: (coNS (QUOTE A) (QUOTE B)) = (A . B)

Note: See Appendix D for information on functions associated with
CONSing, such as SPEAK, GCGAG, and GC.

(XCONS X Y) = (CONS Y X)
gNCONS XZ = (CONS X NIL)

(LIsT X, ... xn) = (CONS X, (CONS X

o vee (CONS X NIL)...))

1

List evaluates all of its arguments and returns a list of their
values,

Examples: (LIST) = NIL
(LIST (QUOTE A)) = A
(LIST (QUOTE A) (QUOTE B)) = (A B)

(*APPEND X Y)

(DE *APPEND (X Y)
(CoND ((NULL X) Y)
(T (CONS (CAR X) (*APPEND (CDR x) Y)))))

(APPEND X; X, .o xn) = (*APPEND X, (*APPEND X, oo (*APPEND X NIL)...))
Example: (APPEND) = NIL

(APPEND (QUOTE (A B)) (QUOTE (C D)) (QUOTE (E F))) = (ABCDEF)

10-1

SAILON-28.3

10.2 S-Expression Fragmenting Functions

(CAR'L)

The CAR of a non-atomic S-expression is the first element of that
dotted pair. CAR of an atom is undefined and will usually cause an
illegal memory reference.

(CDR L)

The CDR of a non-atomic S-expression is the second (and last)
element of that dotted pair. The CDR of an identifier is its property
list. The CDR of an INUM causes an illegal memory reference. The CDR
of any other number is the list structure representation of that number.

Examples: (CAR (QUOTE (A B C))) = A
(CAR (QUOTE A)) is illegal
(CDR (QUOTE (A B C))) = (B C)
(CDR (QUOTE A)) is the property list of A
(CDR (QUOTE (A))) = NIL

CAAR, CADR,..., CDDDDR

All of the composite CAR-CDR functions with up to four A's and D's
are available.

Examples: (CADR X) = (CAR (CDR X))
(CAADDR X) = (CAR (CAR (CDR (CDR X))))

(IAST L)

IAST returns the last part of a list according to the following
definition:

(DE IAST (L)

(COND ((ATOM (CDR L)) L)
(T (IAST (CDR L)))))

Examples: (IAST (QUOTE (A B C))) = (C) = (C . NIL)
(IAST (QUOTE (A B . C))) = (B . C)

10.3 S-Expression Modifying Functions

The following functions for manipulating S-expressions differ from
all others in that they actually modify existing list structure rather
than constructing new list structure. These functions should be used
with caution since it is easy to create structures which will confuse
or destroy the interpreter.

10-2

SAILON-28.3

(RPIACA X Y)

. - ;. Replaces the CAR of X by Y. The value of RPIACA is the

modified S-expression X.

Example: (RPIACA (QUOTE (A B C)) (QUOTE (C D))) = ((C D) B C)

Representation:
X —(Al<}{B] e} €

Y SC|et—nD LA

BEFORE

X 3T FAB[e4—C |]
AFTER ’

(RPIACD X Y)
P]

RPLACD replaces the CDR of X by Y. The value of RPIACD is the
modified S-expression X.

(NCONC Xp X, «e0 X)

NCONC is similar in effect to APPEND, but NCONC does not copy list
structures. NCONC modifies list structures by replacing the last elsment
of X, by a pointer to X,, the last element of X5 by a pointer to X,, etc.
The value of NCONC is tﬁe modified list Xj, which is the concatemation of

XI’ X2, ecvey Xn-

Examples: (NCONC) = NIL
(NCONC (QUOTE (A B)) (QUOTE (C D))) = (A B C D)

Represenﬁatipnl
X3 A [—4+3[B]~
X, —s{C T DT

X, —>A | 4B] $]
x, =N Ta-»0 1=

- BEFORE

AFTER

10-3

SAILON-28.3

10.4 S-Expression Transforming Functions

The following functions transform S-expressions from one form to
another.

(LENGTH L)

LENGTH returns the number of top-level elements of the list L.,
LENGTH is equivalent to:

(DE LENGTH (L)
(COND ((ATOM L) @)
(T (ADD1 (LENGTH (CDR L))))))

(REVERSE L)

REVERSE returns the reverse of the top level of list L. REVERSE
is equivalent to:

(DE REVERSE (L) (REVERSEl L NIL))
(DE REVERSEL (L M)
(COND ((ATOM L) M)
(T (REVERSE1l (CDR L) (CONS (CAR L) M)))))

(SUBST X Y S)

SUBST substitutes S-expression X for all EQUAL occurrences of
S-expression Y in S-expression S. SUBST is equivalent to:

(DE SUBST (X Y S)
(COND ((EQUAL Y S) X)
((ATOM S) S)
(T (CONS (SUBST X Y (CAR S))
(SUBST X Y (CDR S))))))

Note: (SUBST @ @ X) is useful for creating a copy of the list X,

Example: (SUBST 5 (QUOTE FIVE) (QUOTE (FIVE PLUS FIVE IS TEN)))
= (5 PLUS 5 IS TEN)

10.5 S-Expression Mapping Functions

The following functions perform mappings of lists according to the
functional arguments supplied . .

10-h

SATILAN-28.3

(MAP FN L)

MAP applies the function FN of one argument to list L and to
successive CDRs of L until L is reduced to NIL. The value of MAP is
NIL. MAP is equivalent to:

(DE MAP (FN L)

(PROG NIL
L1 (COND ((NULL L)(RETURN NIL)))
(FN L)
(SETQ L (CDR L))
(GO L1)))
‘Example: (MAP (FUNCTION PRINT) (QUOTE (X Y Z))) =
PRINT: (X Y Z)
PRINT: (Y Z)
PRINT: (Z)
RETURN: NIL
(MAPC FN L)

MAPC is identical to MAP except that MAPC applies function FN to
the CAR of the remaining list at each step. MAPC is equivalent to:

(DE MAPC (FN L)

(PROG NIL
L1 (COND ((NULL L) (RETURN NIL)))
(FN (CAR L))
(SETQ L (CDR L))
(GO L1)))
Example: (MAPC (FUNCTION PRINT) (QUOTE (X Y 2))) =
_PRINT: X
. PRINT: Y
PRINT: z
RETURN: NIL

(MAPLIST FN L)

MAPLIST applies the function FN of one argument to list I and to
successive CDRs of L until L is reduced to NIL. The value of MAPLIST
is the list of values returned by FN. MAPLIST is equivalent to:

(DE MAPLIST (FN L)
(COND ((NULL L) NIL)
(T (CONS (FN L) (MAPLIST FN (CDR L))))))

10-5

SAILON-28.3%

Examples: (MAPLIST (FUNCTION CAR) (QUOTE (A B C D))) = (A B C D)
(MAPLIST (FUNCTION REVERSE) (QUOTE (A B C D))) =
((DC BA) (DCB) (DC) (D))

(MAPCAR FN L)

MAPCAR is identical to MAPLIST except that MAPCAR applies FN to
the CAR of the remaining list at each step. MAPCAR is equivalent to:

(DE MAPCAR (FN L)
(COND ((NULL L) NIL)
(T (CONS (FN (CAR L)) (MAPCAR FN (CDR L))))))
Examples: (MAPCAR (FUNCTION NCONS) (QUOTE (A B C D))) = ((A) (B) (C) (D))
(MAPCAR (FUNCTION ATOM) (QUOTE ((X) Y (Z)))) = (NIL T NIL)

10.6. S-Expression Searching Functions

(ASSOC X L)

ASSOC searches the list of dotted pairs L for a pair whose CAR is
EQ to X. 1If such a pair is found it is returned as the value of ASSOC,
otherwise NIL is returned, ASSOC is equivalent to:

(DE ASSOC (X L)
(COND ((NULL L) NIL)
((EQ X (CAAR L)) (CAR L))
(T (ASSOC X (CDR L)))))
Example: (ASSOC 1 (QUOTE ((1 . ONE) (2 . TWO)))) = (1 . ONE)

(SASSOC X L FN)

SASSOC searches the list of dotted pairs L for a pair whose CAR
is EQ to X. 1If such a pair is found it is returned as the value of
ASSOC, otherwise the value of FN, a function of no arguments, is returned.

(DE SASSOC (X L FN)
(COND ((NULL L) (FN))
((EQ X (CAAR L)) (CAR L))
(T (SASSOC X (CDR L) FN))))

Example: (SASSOC @ (QUOTE ((1 . ONE) (2 . TWO)))
' (FUNCTION (LAMBDA NIL (QUOTE LOSE)))) = LOSE

10-6

SATLON-28.3

10.7 Character List Transforming Functions

(EXPLODE L)

EXPLODE transforms an S-expression into a list of single character
identifiers identical to the sequence of characters which would be
produced by PRINL.

Examples : (EXPLODE (QUOTE (DX, /-.DY)))
~HEIR2ES = (/(Dx)0/l /- JoDY)))

(EXPLODE (QUOTE APPLE))
= (APPLE)

(EXPLODEC L)

EXPLODEC transforms an S-expression into a list of single
character identifiers identical to the sequence of characters which
would be produced by PRINC.

Example: (EXPLODEC (QUOTE (DXy/=-4DY)))
(/(DX/,/-/LDY/))

(LENGTH (EXPLODE L))

]

(FLATSIZE L)

(MAKNAM L

MAKNAM transforms a list of single character identifiers (actually
takes the first character of each identifier) into a S-expression
identical to that which would be produced by READing those characters.
MAKNAM however does not INTERN any of the identifiers in the S-expression
it produces.

Examples : (MAKNAM (QUOTE (A P P L E))) = APPLE
(MAKNAM (QUOTE (//_,/)))) = /)

(READLIST L)

READLIST is identical to MAKNAM except that READLIST INTERNs all
identifiers in the S-expression it produces. READLIST is the logical
inverse of EXPLODE, i.e.,

|
£

(READLIST (EXPLODE L)) =
(EXPLODE (READLIST L))

10-7

SAILON-28.3

CHAPTER 11

FUNCTIONS ON IDENTIFIERS

There are three basic types of functions on identifiers: those
which manipulate their property lists, those which create new identifiers,
and those which control their membership in the OBLIST.

NOTE: All functions described in this chapter which expect an identifier
as one (or more) of its arguments will give either erroneous
results, or an error condition if any S-expression other than an
identifier is supplied.

11.1 Property List Functions

(GET I P)

GET is a function which searches the property list of the identifier
I looking for the property name which is EQ to P. If such a property
name is found, the value associated with it is returned as the value of
GET, otherwise NIL is returned. Note that confusion exists if the
property is found, but its value is NIL. GET is equivalent to:

(DE GET (I P) (COND((NULL (CDR I)) NIL)
((EQ (CADR I) P) (CADDR I))
(T (GET (CDDR I) P))))

GETL I L

GETL is another function which searches property lists. GETL
searches the property list of the identifier I 1looking for the first
property which is a member (MEMQ) of the list L. GETL returns the
remaining property list, including the property name if any such
property was found, NIL otherwise. GETL is equivalent to:

(DE GETL (I L) (COND ((NULL (CDR I)) NIL)
((MEMQ (CADR I) L) (CDR I))
(T (GETL (CDDR I) L))))

(PUTPROP I V P)

PUTPROP is a function which enters the property name P with property
value V into the property list of identifier J. 1I1f the property name P
is already in the property list, the old property value is replaced by
the new one; otherwise the new property name P and its value V are
placed on the beginning of the property list. PUTPROP returns V.

(REMPROP 1 P)

REMPROP removes the property P from the property list of identifier
I. REMPROP returns T if there was such a property, NIL otherwise,

11-1

SATLON-28.3

SET and SETQ are used to change the values of variables which are ~
bound by either IAMBDA or PROG, or variables which are bound globally.
(See 7.1).

* (SET E V)

SET changes the value of the identifier specified by the expression E
to V and returns to V. Both arguments are evaluated.

Note: 1In compiled functions, SET can be used only on globally bound
and special variables.

« (SETQ "ID" V)

SETQ changes the value of ID to V and returns V. SETQ evaluates
V, but does not evaluate 1ID.

(DEFPROP "IV V' "'P') = (PROG2 (PUTPROP (QUOTE I) (QUOTE V) (QUOTE P)) (QUOTE I))

DEFPROP is the same as PUTPROP except that it does not evaluate
its arguments, and DEFPROP returns I.

Example: (DEFPROP POSP (LAMBDA (X) (GREATERP X @#)) EXTR)

(DE_"ID" "ARGS" "BODY")

DE places the form (LAMBDA ARGS BODY) on the property list of ID
under property EXPR. If ID previously had any of the properties EXPFR,
FEXPR, SUBR, FSUBR, LSUBR, or MACRO, then DE will return the list (ID
REDEFINED). Otherwise, DE returns ID.

(DF_"ID" "ARGS' "BODY')

Same as DE except defines a function with FEXPR property.

(DM IIIDH "ARGS” ”BODY")

Same as DE except defines a MACRO.

11.2 OBLIST Functions

(INTERN 1)

INTERN puts the identifier I in the appropriate bucket of OBLIST.
If the identifier is already a member of the OBLIST, then INTERN returns
a pointer to the identifier already there. Otherwise, INTERN returns I.

Note: INTERN is only necessary when an identifier which was created by
GENSYM, MAKNAM, or ASCII needs to be uniquely stored.

(REMOB ”Xlﬂ ”XZH cee HXI):I)

REMOB removes all of the identifiers Xj, X2, ... , Xp from the
OBLIST and returns NIL. None of the Xj's are evaluated.

Example: (REMOB FOO BAZ)
11-2

SAILON-28.3

11.3 1Identifier Creating Functions

The following functions create new identifiers but do not INTERN
them onto the OBLIST,

(GENSYM)

GENSYM increments the generated symbol counter _
and returns a new identifier specified by the counter. The GENSYM
counter is initialized to the identifier GOHOOP. Successive executions
of (GENSYM) will return.

Geovl, c@ed2, caed3, ...
(CSYM IIIII)

CSYM initializes generated symbol counter to the identifier I,
and returns I, CSYM does not evaluate its argument.

Example: (CSYM ARY@@) = ARYPD
(GENSYM) = ARY@1
(GENSYM) = ARY@2

etc,

(ASCII N)

ASCII creates a single character identifier whose ASCII print
name equals N,

Example: (ASCII 1¢1) 1is an identifier with print name "A".

11-3

SAILON-28.3

CHAPTER 12
FUNCTIONS ON NUMBERS

There are two types of functions which operate on numbers to create
new numbers: arithmetic and logical.

12.1 Arithmetic Functions

Unless otherwise noted, the following arithmetic functions are
defined for both integer, real and mixed combinations of arguments,
and evaluate all their arguments. The result is real if any argument is
real, and integer if all arguments are integer. Most arithmetic functions
may cause overflow which produces an error message.

(MINUS X) = =X
(*PLUS X Y) =X +Y

(PLUS X1 X2 ... Xn) X1 +X2 + ... +Xn

(*DIF X Y) =X - ¥

(DIFFERENCE X1 X2 ... Xn) X1 - X2 = ... = Xn

(*TIMES X.Y) X*Y

[]

X1 % X2 * .., * Xn

(TIMES X1 X2 ... Xn)

(*QUO X Y) X/Y

(QUOTIENT X1 X2 ... Xn) X1/ X2/ ... / Xn

For integer arguments, *QUO and QUOTIENT give the integer part of
the real quotient of the arguments.

Examples: (*QUo 5 2) =2
(*QUO =5 2) = =2

(REMAINDER X Y) ... X = (X / ¥Y) * Y
Note: Remainder is not defined for real arguments.
(DIVIDE X Y) = CONS (QUOTIENT X Y) (REMAINDER X Y))

(GCD X Y) GCD returns the greatest common divisor of the integers X andy.

(ADD1 X) =X +1
(SUB1 X) =X -1
(ABS X) =[X|

12-1

SAILON-28.3%

(FIX X) returns the largest integer not greater than X.

(FIX 1) =
(FIX 1.1) = 1
(FIX =1.1) = =2

Examglés: 1

not -1

Other arithmetic functions not defined in the LISP interpreter can be
defined as follows:

(FLOAT X) = (*PLUS X 3.0)

(RECIP X) = (QUOTIENT 1 X)

SIGN X) = (COND ((ZEROP X) @)
((MINUSP X) -1)
(T 1))

(ROUND X) = (TIMES (SIGN X) (FIX (PLUS (ABS X) #.5)))

Examples: (ROUND .5) =1
(ROUND .49) = @
(ROUND =-.49) = @
(ROUND -35.1) = =35
(MIN X Y) = (COND((LESSP X Y) X) (¥))
(MAX X Y) = (COND((LESSP X Y) Y) (X))
Examples: (MINUS 1) = -1
(MINUS -1.2) = 1.2
(PLUS 1 2 3.1) =6.1
(PLUS 6 3 -2) =7
(DIFFERENCE 6 3 1) = 2
" (TIMES -2 2.9) = ~4.0
(QUOTIENT 5 2) =2
(QUOTIENT 5.4 2) = 2.5
(QUOTIENT -5 2) =2
(REMAINDER 5 2) =1
(REMAINDER -5 2) = -1
(REMAINDER 5.0 2) = undefined.
(ABS -32.5) = 32.5
(FIX 32.5) = 32,
(FIX -32.5) =

12.2 lLogical Functions.

The following functions are
arguments, but their results are
arguments.

"'33 .

intended to operate on INUM and FIXNUM
not defined for BIGNUM or FLONUM (real)

12-2

SATLON-28.3

(BOOLE N X1 X2 ,., Xn)

BOOLE causes a 36 bit Boolean operation to be performed on its
arguments. The value of N specifies which of 16 Boolean operations
to perform.

For n=2, each bit; in (BOOLE N A B) is defined:

N result N result
) ¢ 19 KiAT%
1 Ai/\Bi 11 Ai EBi
2 Ki/\Bi 12 .9}

3 B, 13 A; VB,
4 A NBy 14 A

5 A, 15 A{V By
6 A # By 16 Kiv B,
7 AV B 17 1

For n> 2, BOOLE is defined:
(BOOLE N ... (BOOLE N (BOOLE N X1 X2) X3) ... Xn)

(LSH X N)

LSH performs a logical left shift of N places on X, If n is
negative, X will be shifted right. 1In both cases, vacated bits are
filled with zeros.

Examples with IBASE = 8

(BOOLE 1 76 133) = 32

(BOOLE 1 76 133 74) = 3¢

(BOOLE 12 13 @) = 777777777764
(BOOLE 7 7 12) = 17

(LSH 15 2) = 64

(LSH 15 -2) =3

(LSH -1 -2) = 177777777777

12-3

SAILON-28.3%

—~
CHAPIER 13
PROGRAMS

The "program feature'" allows one to write ALGOL-like sequences of
statements with program variables and labels.

(PROG "WVARLIST" '"'BODY")

PROG is a function which takes as arguments VARLIST, a list of
program variables which are initialized to NIL when the PROG is entered
(see 7.1), and a BODY which is a list of labels (which are
identifiers) and statements which are non-atomic S-expressions, PROG
evaluates its statements in sequence until either a RETURN or GO is
evaluated, or the list of statements is exhausted, in which case the
value of PROG is NIL.

(RETURN X)

RETURN causes the PROG containing it to be exited with the value X,

~— (GO "ID")

GO causes the sequence of control within a PROG to be transferred
to the next statement following the label ID. In interpreted PROGSs,
if ID is non-atomic, it is repeatedly evaluated until an atomic value
is found. However, in compiled PROGs, ID is evaluated only once. GO -
cannot transfer into or out of a PROG.

Note: Both RETURN and GO should only occur either at the top level of
a PROG, or in compositions of COND, AND, OR, and NOT which are
at the top level of a PROG.

Example: The function LENGTH may be defined as follows:

(DE LENGTH (L)
(PROG (N)
(SETQ N @)
L1l (COND ((ATOM L) (RETURN N)))
(SETQ N (ADD1 N))
(SETQ L (CDR L))
(GO L1)))

(PROG2 X; X5 ... X)) , n <5,

PROG2 evaluates all expressions X; X, ... Xn’ and returns the

~ value of X,.

2

13-1

-

SATLON- 28.3

CHAPTER 14
INPUT/ OUTPUT
"14.1 File Names
Syntax: <filgname - list> ;1= <device-name>

<filename - list> <device-name>
<filename - list> <file - name>

]

<device - name> <identifier> :

(Katom> <atom>)

]

<identifier>

<filename>
o ‘ (<identifier> . <identifier>)

Semantics:

A device-name is either an identifier ending with colon (:) which
is the name of some input or output device, or a list containing a
project-programmer number which implicitly specifies the disk.

A filename is either an identifier which specifies a filename with
a blank extension, or a dottéd pair of filename and extension. 1In both
cases the filename applies to the most recently (to the left) specified
device-name.

14.2 Channel Names

Channel names can optionally be assigned to files selected by the
functions INPUT and OUTPUT. A channel name is any identifier which is
not followed by a colon. If no channel name is specified to INPUT or
OUTPUT then the channel name T is assumed. The channel name NIL specifies
the teletype in the functions INC and OUTC. Up to 14 channels may be
active at any time.

14.3 Input

14.3.1 Selection and Control

(INPUT "CHANNEL" . "FILENAME-LIST")

~ INPUT releases any file previously initialized on the channel, and
initializes for input the first file specified by the filename-list.
INPUT returns the channel if one was specified, T otherwise. INPUT does
not evaluate its arguments. ' ;

-1

SATLON-28.3

INC CHANNEL ACTION

INC selects the specified channel for input. The channel NIL
selects the teletype. If ACTION = NIL then the previously selected
input file is not released, but only deselected. If ACTION = T then
that file is released, making the previously selected channel available.
At the top level, ACTION need not be specified.

The input functions in 14.3.3 receive input from the selected input
channel, When a file on the selected channel is exhausted, then the next
file in the filename-list for the channel is initialized and input, until
the filename-list is exhausted. Then the teletype is automatically
selected for input and (ERR (QUOTE EQF))is called. The use of ERRSET
around any functions which accept input therefore makes it possible to
detect end of file. If no ERRSET is used, control returns to the top
level of LISP. INC evaluates its arguments, and returns the previously
selected channel name.

In order to READ from multiple input sources, separate channels
should be initialized by INPUT, and INC can then select the appropriate
channel to READ from.

Examples: (At'the top level)
(INC (INPUT SYS: (SMILE . ISP)))

will READ the file SYS: SMIIE . ISP on channel T and reselect
the teletype when the file is ended.

(INC (INPUT FOO DSK: BAZ ZAB))

will READ the files DSK: BAZ and DSK: ZAB on channel FOO
and reselect the teletype after both files are exhausted.

(PGLINE)

When reading an input file, it is sometimes desirable to know the
page and line being read from. PGLINE returns the dotted pair (page
number . line number) for the selected input file. The page number is
applicable only to STOPGAP files. If the file has no line numbers,
PGLINE will always return (1 . @).

14.3.2 Teletype Input Control

When input is from the teletype, READ is terminated by either an
entire S-expression or by an incomplete S-expression followed by altmode.
Altmode has the effect of typing a space followed by the appropriate
number - of right parens to complete the S-expression. This feature is
particularly useful when an unknown number of right parens are needed or
when in (DDTIN NIL) mode.

SAILON-28.3

(DDTIN X)

DDTIN is a function which selects teletype input mode. With
(DDTIN NIL), and typing to READ, READCH, or TYI, a rubout will delete
the last character typed, and control U (tU) will delete the entire
last line typed. Input is not seen by LISP until either altmode or
carriage return is typed.

With (DDTIN T) and typing to READ, a rubout will delete the entire
S-expression being read and start reading again.

Note: (DDTIN T) is not recommended when the time-sharing system is
swapping, since the program is reactivated (and hence swapped
into core) after every character typed.

14.3.3 Input Transfer

READ

Read causes the next S-expression to be read from the selected
input device, and returns the internal representation of the S-expression.
READ uses INTERN to guarantee that references to the same identifier
are EQ.

READ will accept any S-expression which conforms to the following
syntax:

Syntax:

<atom>

HH @<readable S-expr> _

: (<readable S-expr list>{. <readable S-expr>})
[<unbalanced S-expression list>]

() = NIL

<readable S-expr>

<readable S-expr>
<readable S-expr> <readable S-expr list>

<readable S-expr list>

Semantics:

; 'The delimiter '"®'" designates that the following readable S-expr
is to be quoted.

Examples: ®A means (QUOTE A)
®(@ B) means (QUOTE ((QUOTE A) B))
@@A means (QUOTE (QUOTE A)))

The delimiters "['" and '"]'" operate as ''super-parentheses'. A
right bracket "]" will close all open left parentheses "(" up to the
matching left bracket "[". If there is no matching left bracket, it
will close the entire S-expression as does altmode. No syntax is given
for unbalanced-S-~expression-list, but it is intended to mean an S-
expression-list which is lacking one or more right parentheses.

14-3

SATLON-28.3

Example: (COND [(ATOM X) (REVERSE(CDR Y][T(APPEND Y Z])
(cOND ((ATOM X) (REVERSE(CDR Y)))(T(APPEND Y Z)))

(READCH)

READCH causes the next character to be read from the selected input
device and returns the corresponding single character identifier. READCH
also uses INTERN.

(TYI)

TYI causes the next character to be read from the selected input
device and returns the ASCII code for that character.

A function TEREAD which ignores all characters until a line-feed is
seen can be defined:

(DE TEREAD NIL

(PROG NIL
L (coNDp ((EQ (TYI) 12) (RETURN NIL)))
(Go L)))
14k Qutput

14 .4 .1 Selection and Control

(OUTPUT '"'CHANNEL' . "FILENAME-LIST')

OUTPUT initializes for output on the gpecified channel the single
file specified by the filename-list. OUTPUT does not evaluate its
arguments, and returns the channel name if specified, T otherwise.

(OUTC CHANNEL ACTION)

QOUTC selects the specified channel for output. The channel NIL
selects the teletype. The output functions in 14 .4 .3 transfer output to
the selected output channel.

If ACTION = NIL, then the previously selected output file is not
closed, but only deselected. If ACTION = T then that file is closed,
i.e., an end of file is written. OUTC evaluates its arguments and
returns the previously selected channel name. At the top level, ACTION
need not be specified.

Examples: (At the top level)
{(ourc (OUTPUT LPT:) T)
(OUTC NIL T)

(OUTPUT FOO DSK: BAZ)
- (OUTC (QUOTE FOO) NIL)

1=k

SAILON-28.3

(LINELENGTH N)

LINELENGTH is used to examine or change the maximum output linelength
on the selected output channel. If N = NIL then the current linelength is
returned unchanged, otherwise the linelength is changed to the value of
N whichis returned and must be an integer. ‘

CHRCT

CHRCT returns the number of character positions remaining on the
output line of the selected output channel.

When characters are output, if CHRCT is made negative, an ASCII 176
followed by a carriage-return and a line-feed are output. These

characters are completely ignored on input. (See Chapter 3).

1.4 .2 Teletype Output Control

Output to the teletype is accumulated in a buffer until some
condition causes the buffer to be printed (FORCE). The buffer is
always printed when a teletype input is requested or when the buffer
is full. The following functions determine other conditions for.
printing the buffer. '

(DDTOUT X)

DDTOUT selects the teletype output mode. (DDTOUT T) causes the
teletype output buffer to be printed after every character. (DDTOUT NIL)
is the normal mode. DDTOUT returns T or NIL according to the previously
selected mode.

{(FORCE)

» FORCE is sometimes useful for output to the teletype when in
(DDTOUT NIL) mode. FORCE causes the teletype output buffer to be printed.
This allows one to see output during long computations which would other-
wise be buffered until the computation was finished or until the buffer
was full.

14 .4 .3 OQutput Transfer

(PRINI S)

PRIN1 causes the S-expression S to be printed on the selected output
device with no preceding or following spaces. PRINl also inserts slashes
(""/'") before any characters in identifiers which would be syntactically
incorrect otherwise (see Chapter 3). Double quotes around strings are
printed. ‘

(PRINC S)

PRINC is the same as PRINl except that no slashes are inserted and
double quotes around strings are not printed.

-5

SAILON28.3

(TERPRI X)

TERPRI prints a carriage-return and line-feed and returns the
value of X. X may be omitted if the value of TERPRI is not used.

Example: (PRINC(TERPRI X))
is the same as

(PROG2 (TERPRI) (PRINC X))

+ (PRINT 8

= (PROG2 (TERPRI)
(PRIN1 S)
(PRINC (QUOTE /_)))

(1Yo M)

TYO prints the character whose ASCII value is N, and returns N.

14-6

SAILON28.3

CHAPTER 15
ARRAYS
(ARRAY "ID" TYPE B, B, ... B) n < 5.
- <

ARRAY is a function which declares an array with name ID, and
places an : array referencing function on the property list of ID. TYPE
determines the type of an array as follows:

TYPE INITIAL VALUE ARRAY ELEMENT

T NIL LISP S-expressions stored as pointers
2 per word

NIL ¢.0 REAL numbers stored one per word in
PDP-6/1¢ floating point representation.

36. @ 36 bit 2/s complement integers
stored 1 per word,

#<n<36. @ n bit positive integers packed
[36./n] per word.

B, B, ... B are array subscript bounds which should evaluate to either
positive integers S;, or to dotted pairs of integers (Lj . Uj) where
L; < Uy, which specify lower and upper subscript bounds as follows:

By LOWER BOUND UPPER BOUND LENGTH
S; ¢ Sg-1 S;

The elements of an array are referenced by:

(<array name> i, 4, ... i) where Lj g'ij < Uj .
The ARRAY subscripts i. must be integers. References to memory locations
outside of the area reServed for the array are prohibited and will cause

an illegal memory reference message. Array elements are stored in
BINARY PROGRAM SPACE. ’

Examples:

1) To declare a 1 dimensional array CHARS of 7 bit characters and with
subscripts 1 to 50:

(ARRAY CHARS 7 (QUOTE (1 . 50)))

15-1

SATLON-28.3

The first element of CHARS is referenced:
(CHARS 1)

2) To declare a 2-dimensional array A of REAL numbers and.with
subscripts P < i< N, § < j <M:

(ARRAY A NIL N M)

3) To declare a l-dimensional array FOO of S-expressions and with
subscripts -K < i <K:

(ARRAY FOO T (CONS (MINUS K) K))

(EXARRAY "ID" TYPE B, B2...Bn) n<5.

EXARRAY is identical to ARRAY except that array elements are stored

in the body of a subroutine loaded by the LOADER (see Appendix H), and
exarray elements are not initialized. The array referencing subroutine

is stored in BINARY PROGRAM SPACE as with ARRAY. EXARRAY searches symbol

tables as does GETSYM (see Appendix H).

Note: Both ARRAY and EXARRAY consume BINARY PROGRAM SPACE. If there
is insufficient room there (see Appendix C) the error message
"BINARY PROGRAM SPACE EXCEEDED" will result.

(STORE ("ID" i

1 ip - ln) value)

STORE changes the value of the specified array element to value,
and returns value.

Note: STORE evaluates its second argument first.
Examples: With the arrays declared previorsly:
(STORE (FOO $) (QUOTE (A B)))
(STORE (FOO (BAZ L)) 1)
(STORE (A I J) (A J1I))
(STORE (CHARS 1) 17)

15.1 Examine and Deposit

EXAMINE N
EXAMINE returns as an integer the contents of memory location N.

(DEPOSIT N V)

DEPOSIT stores the integer V in memory location N and returns

15-2

SATLON-28.3

CHAPTER 16
OTHER FUNCTIONS

(TIME)

TIME returns the number of milliseconds your job has computed
since you logged into the system.

(ERRSET E "F'")

ERRSET evaluates the S-expression E and if no error occurs during
its evaluation, ERRSET returns (LIST E). If an error occurs, then the
error message will be suppressed if and only if F f NIL, and NIL is returned
as the value of ERRSET. If the function ERR is called during evaluation,
then no message is printed and ERRSET returns the value returned by ERR.

The following example shows the use of ERRSET to keep trying to
initialize the line printer until it is available:

(DE LPTGRAB NIL
(PROG NIL
L (COND((ATOM(ERRSET (OUTPUT LPT:) T))
(WAIT) (GO L)))))

where WAIT is some function (such as the time-sharing sleep UUO) which
causes a delay.

(ERR E)

ERR returns the value of E to the most recent ERRSET, or to the top
level of LISP if there is no ERRSET.

¥RSET X flag = NIL initially

*RSET sets a special flag in the interpreter to the value of X,
and returns the previous value of the flag. Normally, with (*RSET NIL),
when an error occurs, special variables are restored to their top level
values from the special pushdown list, and the top level READ-EVAL-PRINT
loop is entered.

With (*RSET T), specials are not restored, neither pushdown list
is changed, and the READ-EVAL-PRINT loop is entered. This makes it
possible to examine the variable bindings immediately after an error
message has been printed. To restore special bindings to their top
level values and return to the top level, type a bell (TT), or evaluate
(ERR).

(BAKGAG X)

BAKGAG sets a special flag in the interpreter to the value of X and
returns the previous setting of the flag. Only if the flag # NIL when an
error occurs, then a backtrace is printed as a series of function calls,

16-1

SAILON-28.3%

determined from the regular pushdown list, starting from the most

recent function call. If X 1is an integer, then X specifies the number
of regular pushdown list words to include the backtrace. If X is T then
the entire regular pushdown list is backtraced to the most recent ERRSET.
The format for printing is:

printout meaning
fnl-fn2 : - Function 1 called function 2.
fnl - EVALARGS The arguments to fnl are being
evaluated before entering function 1.
fnl - ENTER The function 1 is entered.
? - fnl Some internal LISP function called

function 1.

Note:

The BACKTRACE printout is often confused by compiled function calls
of the form (RETURN (FOO X)) which is compiled as (JCALL (E F00)) which
can be changed to (JRST entrance to FOO), which will not show up in the
BACKTRACE. '

(INITFN FN)

INITFN selects the function of no arguments FN as an initialization
function which is evaluated after a LISP error return to the top level has
occurred or whenever a BELL is typed. INITFN returns the previously
selected initialization function.

Initialization functions are useful when it is desirable to change the
top level of LISP. For instance,

(INITFN (FUNCTION EVALQUOTE))

causes the top level to become EVALQUOTE instead of EVAL.

16-2

N

SAILON-28.3

APPENDIX A

ALVINE

by John Allen

ALVINE is a LISP editor which is very convenient for interactive
debugging. ALVINE allows one to edit both function definitions and
S-expression values. ALVINE is characterized by the simplicity with which
one can correct parenthesis mismatch and make context searches and
replacements. This simplicity arises from the data structure ALVINE
uses to represent a S-expression. All S-expressions are flattened into
a list of atoms including the atoms ¢LP, $RP and %D which represent
"(","™™ and "." . Because of this representation, ALVINE looks more
like a string type text editor with the smallest unit of resolution
being a single atom or S-expression delimiter ($LP %RP or %D).

ALVINE has a pointer which can move through the string being
edited. The editing functions affect only the string to the right of the
pointer.

ALVINE also contains functions for manipulating input-output files,
and GRINDEF which is useful for printing function definitions.

ALVINE is not ordinarily a resident part of the LISP system, but
is automatically loaded whenever the function ED is called.

(ED X)

ED loads ALVINE if it is not already loaded. If X = NIL then
the editor is entered. IF X =T, the editor is not entered. This is
useful to load GRINDEF without entering the editor.

From the top level of LISP, (ED) is the same as (ED NIL).

(SPRINT X Y 1)

SPRINT prints S-expression X in a special format which automatically
indents according to parenthesis level. Whenever any sub-S-expression of
X cannot fit entirely on the same printing line then its sub-S-expressions
are printed on separate lines with matching indentation. The parameter
Y specifies the initial left hand column indentation. SRRINT uses CHRCT
and LINELENGTH to determine the number of characters remaining on the
print line.

(GRINDEF "F1" '"F2" ... "Fn'")

GRINDEF is used to print the definitions of functions and values in
DEFPROP format. GRINDEF uses SPRINT to print function definitions in a
highly readable format. GRINDEF prints all properties of the identifiers
F1, F2, ... Fn which are in the list 4%##L which is initialized to
EXPR, FEXPR, VALUE, MACRO and SPECIAL.

A-1

SAILON28.3

Example: (GRINDEF PLUS) B
(DEFPROP PLUS
(LAMBDA (L) (*EXPAND L (QUOTE *PLUS)))
MACRO)
Description of the Command Structure
Each command to ALVINE consists of a single character (possibly
preceeded by a number) followed by a string of arguments. These commands
modify the text string presently occupying ALVINE's buffer. When text
is introduced to ALVINE a pointer is attached preceeding the first object
in the buffer. ALVINE'S commands allow the user to move this pointer
through the buffer. ALVINE'S text modifying commands only affect the
string to the right of this pointer.
In the following command descriptions, ''pointer string' will mean
the string to the right of the pointer, and "$'" means an altmoae. All
of the commands which allow a repetition argument n assume 1 if
n 1is omitted.
COMMAND MEANING DESCRIPTION
A All Print the buffer string. No attempt
is made to make the output pretty.

B Balanced? Examines the number of parens in
the buffer string. Returns the
count of left and right parens if
unbalanced; otherwise replies ''BAL".

nC Count For readability, the commands 'D",
”M", ||>n’ n<n’ "S”, and ”W", will
print an initial segment of the
pointer buffer. '"nC" sets the
length of this printing segment
to 1 objects.

nD Delete Deletes the first mu 'objects" to
the right of the pointer.

nE Expunge Deletes the first n S-expressions
to the right of the pointer.

Fxvy:z File GRINDEFS the identifiers referred
to by x on device y using file
‘name z. If X is a list of identifiex
then each element of x 1is GRINDEFed.
If x is an atom, then the value of
x is used as a list of atoms to
GRINDEF. -

A-2

T

SAILON-28.3

COMMAND

Gx

nM

Px

Qx

MEANING

Get

Insert

Match

<follows P>

A-3

DESCRIPTION

G will convert an S-expression with
name x into ALVINE form, move it
into the ALVINE buffer and initialize
the pointer to the left hand end of

the buffer. GET looks on the property

list of x for the first property
in the list $##L which is
initialized to (FEXPR EXPR VALUE
MACRO SPECIAL). ¢4#L . may be
SETQed globally as desired. G

also knows about TRACEd functions

and will handle them properly.
ALVINE format was described earlier
as a single level list of atoms
including the special atoms ¢LP, 4RP,

4p.

Insert comes in two flavors:

1. Ix: insert "x" immediately to
the right of the pointer.

2. Ixy: insert "y" after the
first occurrence (in the pointer
string) of the string "x". "x"
may be a complete string or
described by ellipsis as "w ... z
If "x" is 4 then 'y" is
introduced to the editor as the
current string.

Move the pointer n S-expressions
to the right of the current pointer

‘position. If n is negative, move

n S-expressions left. 1If there is
no such S-expression the pointer
is not moved and the bell is sounded.

Converts the editor string from
ALVINE format to an S-expression
and puts it back on the property
list of x with the appropriate
property.

Same as P except no function name
need be specified. Q puts the
S-expression in the editor buffer
back on the property list of the
identifier the last G specified.

"

SAILON-28.3

COMMENT MEANING , DESCRIPTION
Rxy Replace Replace the first occurrence of "x"

by Ily". AS With "I", "x" may be
1.

described elliptically; and if "y
is 4, the first occurrence of "x"

is deleted.

nSx$ Search Search for the nth occurrence of the
string "x" (in the pointer string).
If found, the pointer is moved to
the beginning of the string following
that occurrence. If less the n
occurrences are located, the pointer
is positioned after the last such
occurrence. If none are found the
pointer is not moved. If "x" is
not given, i.e., "nS$", then the
last given search-string is used.

Uxy:z Unfile READs and defines the functions
specified by the list x from
device y using z as a file
name. If x is an atom, then the
value of x 1is used as a list
function names to READ. U prints
the names of the functions as it
defines them. The specified file
must be in GRINDEF format.

\ Vomit Print the first balanced paren
section to the right of the point
in pseudo GRINDEF format.

W Where? Prints the beginning of the pointer
string.
n> and n< These commands are dual; they move

the string pointer 'n'" objects to

the right or left respectively. If
"n"" is such that either the left or
right end of the string would be
exceeded, the pointer is set to

that extreme and '"bell” is typed.

To reset to the extreme left of
‘the string "f<"” may be used.

4 This command returns control to
LISP. ALVINE'S buffer is left
intact, and returning to ALVINE,
the user will find the pointer at
the left hand end of the old string.

SAILON-28.3
4 COMMAND MEANING
Gx Get
I Insert
/\
nM Match
Px Put
Qx <follows P>
~

A-3

DESCRIPTION

G will convert an S-expression with
name x into ALVINE form, move it
into the ALVINE buffer and initialize
the pointer to the left hand end of
the buffer. GET looks on the property
list of x for the first property
in the list $#4L which is
initialized to (FEXPR EXPR VALUE
MACRO SPECIAL). ¢44L . may be
SETQed globally as desired. G

also knows about TRACEd functions

and will handle them properly.
ALVINE format was described earlier
as a single level list of atoms
including the special atoms ¢LP, 4RP,

4p.

Insert comes in two flavors:

1. Ix: insert "x" immediately to

the right of the pointer.

2. Ixy: insert "y'" after the
first occurrence (in the pointer
string) of the string "x". "x"
may be a complete string or
described by ellipsis as "w ... z".
If "x" is ¢ then "y" is
introduced to the editor as the
current string.

Move the pointer n S-expressions
to the right of the current pointer

‘position. If n 1is negative, move

n S-expressions left. If there is
no such S-expression the pointer
is not moved and the bell is sounded.

Converts the editor string from
ALVINE format to an S-expression
and puts it back on the property
list of X with the appropriate
property.

Same as P except no function name
need be specified. Q puts the
S-expression in the editor buffer
back on the property list of the
identifier the last G specified.

SAILON-28.3

COMMENT MEANING
Rxy Replace
nSx$ Search
Uxy:z Unfile
\ Vomit
W Where?
n> and n<

DESCRIPTION
Replace the first occurrence of "x"
by "y". As with "I", "x" may be

1" 1

described elliptically; and if "y
is 4, the first occurrence of "x"

is deleted.

Search for the nth occurrence of the
string "x'" (in the pointer string).
If found, the pointer is moved to
the beginning of the string following
that occurrence. If less the n
occurrences are located, the pointer
is positioned after the last such
occurrence. If none are found the
pointer is not moved. If "x" is

not given, i.e., "nS$", then the
last given search-string is used.

READs and defines the functions
specified by the list x from
device y using =z as a file
name. If x 1is an atom, then the
value of x 1is used as a list
function names to READ. U prints
the names of the functions as it
defines them. The specified file
must be in GRINDEF format.

Print the first balanced paren
section to the right of the point
in pseudo GRINDEF format.

Prints the beginning of the pointer
string.

These commands are dual; they move
the string pointer "n'" objects to
the right or left respectively. If
"n'"" is such that either the left or
right end of the string would be
exceeded, the pointer is set to

that extreme and 'bell” is typed.

To reset to the extreme left of
the string "f<” may be used.

This command returns control to

LISP. ALVINE'S buffer is left

intact, and returning to ALVINE, —~
the user will find the pointer at

the left hand end of the old string.

SATLON-28.3%

COMMAND MEANING DESCRIPTION
Bell Bell may be used during any command

to return control to ALVINE'S
command-listen-loop.

A-5

SATLON-28.3

AN EXAMPLE OF ALVINE

Note: 1. All typeout is underlined.

2. Bell, space and alt-mode are represented by T, o, and $
respectively.

(ED)

*
T % $(DEFPROP TEST(LAMBDA $; the string bounded by "$" is introduced
to ALVINE

*
A3

(DEFPROP TEST(LAMBDA ; print the entire ALVINE buffer
m

B$

2LPS

§ RPS

*

I LAMBDA $ (X) (CAR Y) EXPR) $; append the string bounded by "$" to
the buffer

*
I CARY $)$; add the deficient right paren
*

; the following commands would also
have the same effect:

; 1. "11<ll’ III $)$H

;2. "syg'", 1 $)$

(DEFPROP TEST (LAMBDA (X) (CAR Y))EXPR)
#*

P TEST$; convert ALVINE string to LISP function
*

SATLON -28.3

t 3 exit ALVINE

T$; now talking to LISP
T-

(TEST (QUOTE(A B)))
Y

B ~EVAL ; LOSE
(ED) ; reenter ALVINE,
*
w3
(DEFPROP TEST ; '"G'" need not be executed since the buffer is always
* left intact.
RX $ Y$
*

P TS ; flush incorrect "put" command by typing bell. ()
*

PTEST $; redefine TEST
*

T

(TEST (QUOTE(A B))) $; try again
A "3 win
(ED)

*

55 %

U'lx-t
<

a
<

; change print count

> % MI*SZI*
< < s €5
= &
o
N’
N’
]

=%
€

*
:
R |

0<
T(DEFPROP TEST(
*

R TEST «..) $%$
*

>|

$
(DEFPROP)EXPR) ; same effect by :
1. "SDEFPROP $", "6D"
*

A-T

SATLON-28.3

APPENDIX B,

ERROR MESSAGES

The LISP interpreter checks for some error conditions and prints
messages accordingly. Many erroneous conditions are not tested and
result in either the wrong error message at some later time, or no error
message at all. 1In the latter case the system has screwed you (or itself)
without complaining.

When error messages are printed, it is usually difficult to determine
the function which caused the error and the functions which called it. 1In
this situation, (BAKGAG T) will turn on the BACKTRACE flag which causes
the hierarchy of function calls to be printed as described in the next
section.

The following is an alphabetical listing of error messages, their
cause, and in some cases, their remedy. Some error messages print two

lines, such as:

FOO
UNBOUND VARIABLIE - EVAL

These messages are described last in the listing, and are of the form:

X (nessage)

BINARY PROGRAM SPACE EXCEEDED

ARRAY, EXARRAY, or IAP has exceeded BINARY PROGRAM SPACE. ALLOCATE
more BPS next time.

CANT EXPAND CORE

INPUT, OUTPUT, LOAD, or ED failed to expand core. Your job
is too large.

CANT FIND FILE - INPUT

The input file was not found. You probably forgot to give the file
name extension, or a legal file name list.

SAILON-28.3

DEVICE NOT AVAIIABIE

INPUT or OUTPUT found the specified device unavailable. Some other

job is probably using it.

DIRECTCORY FULL

The directory of the output device is full.

DOT _CONTEXT ERROR

READ does not like dots adjacent to parens or other dots,

FIIE IS WRITE-PROTECTED

OUTPUT found that the specified file is write-protected.

FIRST ARGUMENT NON-ATOMIC - PUTPROP

An attempt was made to PUTPROP onto a non-identifier.

GARBAGED OBLIST

Some member of the OBLIST has been garbaged. You are in trouble.

ILIEGAL DEVICE

INPUT or OUTPUT was attempted to either a non-existant dewvice or
to a device of the wrong type. I.e., INPUT from the lineprinter.

ILLEGAL OBJECT -~ READ

READ objects to syntactically incorrect :S-expressions.
INPUT ERROR

Bad data was read from the séelected device,

B-2

SATILON-28.%

MORE_THAN ONE S-EXPRESSION =~ MAKNAM

MAKNAM and READLIST object to a list which constitutes the characters
for more than one S-expression.

NO FREE STG IEFT

All free storage is bound to the OBLIST and protected cells
(such as list ARRAY cells), and bound variables on either the
REGUIAR or SPECIAL pushdown list. Unbinding to the top level
will usually release the storage. If you are in a bind for more
free storage, try to REALLOC as described in APPENDIX C.

NO FULL WORDS IEFT

All full words are being used for print names and numbers.
The problem and its solution are similar to. FREE STG.

NO I/0 CHANNELS LEFT

INPUT or OUTPUT failed to find a free I/0 channel. There is
a maximum of 14 active I/0 channels.

NO _INPUT - INC

An‘attempt was made to select a channel for input with INC which
was not initialized with INPUT.

NO LIST - MAKNAM

MAKNAM and READLIST object to an empty list.

NO OUTPUT - OUTC

An attempt was made to select a channel for output with OUTC which
was not initialized with OUTPUT.

NO PRINT NAME. - INTERN

INTERN found a member of the OBLIST which has no: print name.
You are in trouble.

SAILON-28.3

OUTPUT ERROR

Data was improperly written on the selected output device.
Possibly a write~locked DECTAPE.

OVERF LOW

Some arithmetic function caused overflow - either fixed or floating.

PDL_OVERFLOW FROM GC - CANT CONTINUE
There is not enough regular pushdown list to finish garbage
colliection. You lose. Try to REALLOC as described in
APPENDIX C.

READ UNHAPPY - MAKNAM

MAKNAM and READLIST object to a list which is not an entire
S-expression.

REG PUSHDOWN CAPACITY EXCEEDED
SPEC PUSHDOWN CAPACITY EXCEEDED

A pushdown list has overflowed. This is usually caused by
non-termination of recursion. Sometimes you need to ALLOCATE
or REALLOC more pushdown list.

TOO FEW ARGUMENTS SUPPLIED - APPLY
TOO MANY ARGUMENTS SUPPLIED - APPLY

APPLY checks all calls on interpreted functions for the proper
number of arguments,

X MADE ILLEGAL MEMORY REFERENCE

The function X referred to an illegal address. Usually caused by
taking the CAR or CDR of an atom or number.

X NON-NUMERIC ARGUMENT

Arithmetic functions require that their arguments be numbers.

X PROGRAM TRAPPED FROM

An illegal instruction was executed in function X.

B

SAILON-28.3

X UNBOUND VARIABLE - EVAL

EVAL tried to evaluate an identifier and found that it had no.
value. You probably forgot to QUOTE some atom or to initialize it.

X UNDEFINED COMPUTED GO TAG IN

A GO in some compiled function had an undefined label.

X UNDEFINED FUNCTION
X UNDEFINED FUNCTION - APPLY

The function X is not defined.

X UNDEFINED PROG TAG - GO

A GO in some interpreted function had an undefined label.

SATILON28.3

APPENDIX C

MEMORY ALLOCATION

The LISP 1.6 system has many different areas of memory for storing
data which can independently vary in size. Some LISP applications demand
larger allocations for these areas than others. To allow users to adjust
the sizes of these areas to their own needs, a memory allocation procedure
exists.

C.1 Summary of Storage Allocation Areas

BINARY PROGRAM SPACE Area for compiled functions and arrays.

FREE STORAGE Area for LISP nodes.

FULL WORD SPACE Area for print names and numbers.

BIT TABLES) Area for the garbage collector.

REGULAR PUSHDOWN LIST Area for all function calls and non-special
variables in compiled functions.

SPECIAL PUSHDOWN LIST Area for interpreted variables and special
variables.

EXPANDED CORE Area for I/0 buffers, ALVINE, LOADER, and any
loaded programs.

____TOP OF CORE

EXPANDED CORE

et e o re———e e | o e . s g e P

SPECIAL PUSHDOWN LIST

A — i St 8

Memory map for :
the LISP 1.6 REGULAR PUSHDOWN LIST

system. —_— - é

g BIT TABLES

FULL WORD SPACE

FREE STORAGE

BINARY PROGRAM SPACE

LISP INTERPRETER

el . e] c-1

BOTTOM OF CORE

SAILON-28.3%

C.2 ALLOC

When the LISP system is initially started, it types "ALLOC?".
If you type "N" or space (for no) then the system uses the standard
allocations. If you type "Y" (for yes) then the system allows you to
specify for each area either an octal number designating the number of
words for that area, or a space designating the standard allocation for
that area. While typing an octal number, rubout will delete the entire
number typed.

Standard allocation Alternative
ALLOC? Y type Y or space
FULL WORDS = Lpp octal number or space
BIN.PROG.SP = 2pp octal number or space
SPEC.PDL = 1ppp octal number or space
REG.PDL = 100 octal number or space
HASH = 77 octal number or space

Any remaining storage is divided between the spaces as follows:

1/16 for full word space,
1/64 for each pushdown list,
the remainder to free storage and bit tables.

HASH determines the number of buckets on the OBLIST.

C.3 REALLOC

If you have an existing LISP core image but have exhausted one of
the storage areas, it is possible to increase the size of that area
using the reallocation procedure. First, expand core with the time
sharing system command CORE (C) and then reenter the LISP core image with
the REE command. For example, if the original core size was EbK, you
could increase it by 4K as follows:

t+C
_'_CQLI-
~REE
*

When you reenter a core image, all additional core is allocated as
follows:

1/4 for full word space
1/64 for each pushdown list,
the remainder to free storage and bit tables.

SATLON-28.%

C.t Binary Program Space

The reallocation procedure does not increase the size of binary
program space. However, it is possible to increase binary program
space by expanding core with the CORE (C) command and setting BPORG
and BPEND to the beginning and end of the expanded area of core.

For example, if you now have 32K of core and want 4K more BPS, do the
following:

1C
.C36
S

E(SETQ BPORG (TIMES 32. 1p2k.))
*(SETQ BPEND (PLUS BPORG L4f95.))

Note: If you use the reallocation procedure after having expanded core
for any purpose, it will reallocate this additional core for its
own purposes, thus destroying the contents of the expanded core.

The following are the standard causes for expansion of core:

using I/0 channels.

using the LOADER - (LOAD).

expanding core for more binary program space.
using (ED).

FW M
R g

SATLON-28.3%

APPENDIX D

GARBAGE COLLECTION

All LISP systems have a function known as the garbage collector.
This function analyzes the entire state of list structure which is
pointed to by either the OBLIST, the regular pushdown list, the special
pushdown list, list arrays, and a few other special cells. By recursively
marking all words on free and full word spaces which are pointed to in
this manner, it is possible to determine which words are not pointed to
and are therefore garbage. Such words are collected together on their
respective free storage lists.

{ec)

GC causes a garbage collection to occur and returns NIL. Normally,
a garbage collection occurs only when either free or full word space has
been exhausted.

GCGAG X flag = NIL initially.
GCGAG sets a special flag in the interpreter to the value of X, and

returns the previous setting of the flag. When any garbage collection
occurs, if the flag # NIL, then the following is printed:

either FREE STORAGE EXHAUSTED
or FULL WORD SPACE EXHAUSTED
or nothing
followed by . x FREE STORAGE, y FULL WORDS AVAILABLE

where x and y are numbers in octal.
SPEAK

SPEAK returns the total number of CONSes which have been executed
in this LISP core image.

(GCTIME)

GCTIME returns the number of milliseconds LISP has spent garbage
collecting in this core image.

It is possible to determine the lengths of the free and full word
free storage lists by:

(LENGTH (NUMVAL 158)) = length of free storage list
(LENGTH (NUMVAL 168)) length of full word list

D-1

SAILON-28.3
APPENDIX E

COMPILED FUNCTION LINKAGE AND ACCUMUIATCR USAGE

This appendix is intended to explain the structure of compiled
functions, function calls, and accumulator usage. This discussion is
relevant only if one intends to interface hand coded functions or
possibly functions generated by another system (such as FORTRAN) with
the LISP system. In such a case, it is highly recommended that ome:
examine the IAP code generated by the LISP compiler for some familiar
functions.

ACCUMUIATOR USAGE TABIE
s means '"'sacred" to the interpreter

p means ''protected" during garbage collection

NIL =@ S,p Header for the atom NIL.

A =1 P Results from functions, lst arg to functions
B =2 p 2nd arg

C =3 p 3rd arg

ARl =4 p 4th arg

AR2A =5 p 5th arg

T 6 p used for LSUBR linkage

TT =7 p

T = 1¢ p rarely used in the interpreter
S =11 rarely used in the interpreter
D = 12

R =13

P =14 S,Dp regular pushdown list pointer
F = 15 S,P free storage list pointer

FF =16 S,p full word list pointer

sp =17 S,P special pushdown list pointer.

TEMPORARY STORAGE

Whenever a LISP function is called from a compiled functiom, it is
assumed that all accumulators from 2 through 13 are destroyed by the
function unless it is otherwise known. Therefore, local variables and
parameters in a compiled function should be saved in some protected cells
such as the regular pushdown list. The PUSH and POP instructions are
convenient for this purpose.

E-1

SAILON-28.3
SPECIAL VARIABIE BINDINGS

Special variables in compiled functions are bound to special cells
by: '
PUSHJ P,SPECBIND
¢ ny,var
@ ny,var,

start of function code.
SPECBIND saves the previous values of var; on the special pushdown list
and binds the contents of accumulator n; to each varj. The var; must
be pointers to special cells of identifiers. Any nj=@ causes the varj
to be bound to NIL.
Special variables are restored to their previous values by:

PUSHJ P,SPECSTR

which stores the values previously saved on the special pushdown list in
the appropriate special cells.

NUMBERS

To convert the number in A from its LISP representation to machine
representation use:

PUSHJ P,NUMVAL

which returns the value of the number in A, and its type (either FIXNUM
or FLONUM) in B.

To convert the number in A from its machine representation to LISP
representation use either:;

PUSHJ P,FIXI1A for FIXNUMS
or PUSHJ P,MAKNUM with type in B.

Both of the above functions return the LISP number in A.

FUNCTION CALLING UUOS

To allow ease in linking, debugging, and modificating of compiled
functions, all compiled functions call other functions with special
opcodes called UUOs. Several categories of function calls are dis~
tinguished:

1) Calls of the form (RETURN (FOO X)) are called terminal calls
and essentially "jump" to FOO.

E-2

SATLON-28.3

2) Calls of the form (F X) where F is a computed function name
or functional argument is called a functional call.

The function calling UUOs are:

non-terminal terminal
non-functional CALL n,f ' JCALL n,f
functional CALLF n,f JCALLF n,f

where f 1is either the address of a compiled function or a pointer to the
identifier for the function, and n specifies the type of function being
called as follows:

n=gptoh specifies a SUBR call with n arguments
n =16 specifies an LSUBR call
n =17 specifies an FSUBR call.

The function calling UUOs are defined in MACRO by:

OPDEF CALL [34B8]
OPDEF JCALL [35B8]
OPDEF CALLF [36B8]
OPDEF JCALLF [37B8]

(NOUUO_X) flag = T initially

NOUUO sets a special flag in the compiled function calling mechanism
to the value of X and returns the previous setting of the flag. Compiled
functions initially call other functions with function calling UUOs which
"trap" into the UUO mechanism of the interpreter. Ordinarily, such
function calls involve searching the property list of the function being
called for the functional property, and then (depending on whether the
function is compiled or an S-expression) the function is called.

If thenoyyo flag is set to NIL, then the overhead in calling a compiled
function from a compiled function can be eliminated by replacing the CALL
by PUSHJ and JCALL by JRST. CALLF and JCALLF are never changed.

However, there are several dangers and restrictions when using
(NOUUO NIL). Once the UUO's have been replaced by PUSHJ's then it is not
possible to redefine or TRACE the function being called. It is therefore
recommended that compiled functions be debugged with (NOUUO T).

SUBR_LINKAGE

SUBRs are compiled EXPRs which are the most common type of function.
Consequently, considerable effort has been made to make linkage to SUBRs
efficient.

Arguments to SUBR§ are supplied in accumulators 1 through n, the
first argument in 1. There is a maximum of 5 arguments to SUBRs.

To call a SUBR from compiled code, use call n,FUNC, where n is the
number of arguments, and call is the appropriate UUO.

E-3

SATLON-28.3

The result from a SUBR is returned in A(= 1).

FSUBR LINKAGE

FSUBRs receive one argument in A and return their result in A.
FSUBRs which use the A-LIST feature call:

PUSHJ P,*AMAKE

which generates in B a number encoding the state of the special pushdown
pointer. To call an FSUBR, use call 17, FUNC, here call is the
appropriate UUO.

LSUBR LINKAGE

ISUBRs are similar to SUBRs except that they allow an arbitrary
number of arguments to be passed. To call an LSUBR, the following
sequence is used:

PUSH P, [ret} ;return address
PUSH P,argl ;s 1st argument
PUSH P,argn ;nth and last argument
MOVNI T,n ;minus number of arguments
call 16,func ;the appropriate UUO

ret: ;the LSUBR returns here

When an ISUBR is entered, it executes:
JSP 3,*LCALL

which initializes the ISUBR. A will contain n. The ith argument can
be referenced by:

MOVE A,-i-1(P)
Exit from an LSUBR with
POPJ P,

which returns to *ICALL to restore the stack.

E-L

SAILON-28.3

APPENDIX F '

THE LISP COMPILER

The LISP compiler is a LISP program which transforms LISP functions
defined by S-expressions into LAP code. This code can be loaded into
binary program space by LAP which produces actual machine code.

Compiled functions are approximately ten times as fast as interpre-
ted functions. Compiled functions also take less memory space and relieve
the garbage collector from marking function definitions. In a very
large system of functioms, this last point is particularly significant.

To use the LISP compiler, the following procedure is recommended:

1. Prepare your functions in an I/0 file (disk, dectape, etc.)
in DEFPROP format such as produced by GRINDEF. (See DSKOUT and
GRINL in SMILE - SAILON-41).

Ae

b.

It is also permitted for this file to contain global variable
definitions, MACROs, and SPECIAL variable definitions.

SPECIAL variable definitions must occur before the functions
which bind these variables. (DEFPROP FOO T SPECIAL) will
declare the variable FOO to be SPECIAL. Variables which
are used in a functional context must be declared SPECIAL
or else the compiler will mistake them for undefined EXPRs.
Use (SPECIAL FOOl FOO2...FOOn) for several SPECIAL decla-
rations.

FEXPR definitions should occur before functions which call
them., If this cannot be arranged, a FEXPR forward reference
can be declared to the compiler by (DEFPROP FOO T *FEXPR)
where FOO is the name of the FEXPR. The compiler assumes
that undefined functions are EXPRs unless otherwise declared.

MACROs must occur before the functions which use them.

Global variable definitions are required to be in DEFPROP
format.

2. START the LISP compiler by typing to the system:

.R COMPIR

* N

F-1

SATION-28.3

a. Declare any FEXPR forward references, MACROs, or SPECIAL
variables which are not defined in your I/O file.

b. The global variables IFL and OFL designate to the compiler
the names of the input and output devices for compilation.
These are both initialized to DSK:.

The global variable LISTING designates a file and device for
output of compiler messages such as (FOOBAZ UNDECLARED). For
example, if it is desired to output this listing on file DSK:
LISTING, evaluate (SETQ LISTING (QUOTE (DSK: LISTING))).
LISTING is initialized to NIL which designates the teletype.

c. Compile your function definition files with:

(COMPL fnl fn2 fn3 ... fnn)
where each fnj; designates a file name on device IFL.
Each fnj is either an atom designating a file name, or
a dotted pair designating file name and extension. COMPL
produces LAP output on device OFL on files with the same
file names but with LAP extensions. COMPL also transfers
through unaltered any DEFPROPs with properties other than
EXPR, FEXPR, MACRO, and SPECIAL.

d. COMPL will type out:

(x UNDEFINED) for undefined function references. The
compiler assumes that x is an EXPR., If x is actually
an FEXPR, you must recompile and declare x as an FEXPR
by (DEFPROP x T *FEXPR).

(x UNDECLARED) for undeclared global variable references.
You need not worry about this message unless x is SPECIAL
and you forgot to declare it.

e. When COMPL is done, it returns:
(n PROGRAM BREAK)
where n 1is the length of the LAP code produced.
Load LAP into your core image, then load the compiled functions.
For example: (INC (INPUT SYS: LAP DSK: (FOO . LAP)))
Be sure to allocate sufficient binary program space for the

functions. The proper size is the sum of the program breaks
plus the length of LAP which is about ll-OO8 words.

SAILON- 28.3%

APPENDIX G
THE LISP ASSEMBLER - LAP

LAP is a primitive assembler designed to load the output of the
compiler. Normally, it is not necessary to use LAP for any other pur-
pose.

The format of a compiled function in LAP is:

(LAP name type)
< sequence of LAP instructions >

NIL

where name is the name of the function, and type is either SUBR, LSUBR,
~— or FSUBR.

A LAP instruction is either:
1. A label which is a non-NIL identifier.
2. A list of the form
(OPCODE AC ADDR INDEX)
a. The index field is optional.
b. The opcode is either a PDP-6/10 instruction
which is defined to LAP and optionally suffixed by @
which designates indirect addressing, or a number which

specifies a numerical opcode.

c. The AC and INDEX fields should contain a number from
@ to 17, or P which designates register 14.

d. The ADDR field may be a number, a label, or a list
of one of the following forms:

(QUOTE S-expression) to reference list structure.
(SPECIAL x) to reference the value of identifier x.
(E £) to reference the function f.

(C OPCODE AC ADDR INDEX) to reference a literal constant.
G-1

SATLON--28.3

For example, the function

ABS could be defined:

(LAP ABS SUBR)

(CALL 1 (E NUMVAL))
(MovMs @ 1)

(JCALL 2(E MAKNUM))
NIL

G-2

SATLON£8.3

APPENDIX H

THE LOADER

. A modified version of the standard PDP-6/10 MACRO-FAIL-FORTRAN
loader is available for use in LISP, One can call the loader into a
LISP core image at any time by executing:

(LOAD X)

When a * {is typed, you are in the loader, and the loader command strings
are expected. As soon as an altmode is typed, the loader finishes and
exits back to LISP.

The loader is placed in expanded core. If X = NIL then loaded
programs are placed in expanded core, otherwise (if X # NIL) they
are placed in BINARY PROGRAM SPACE.

The loader removes itself and contracts core when it is finished.
In the following discussion a "RELOC" program will refer to any program
which is suitable for loading with the loader. The output of FORTRAN or
MACRO is a RELOC program, ' ‘

(EXCISE)

EXCISE unexpands core to its length after ALLOC or the last REE.
This removes I/0 buffers, ALVINE, and all RELOC programs.

(*GETSYM S)

*GETSYM searches the DDT symbol table for the symbol S and if found
returns its value,votherwise it returns NIL.

(‘GETSW l-uP:—nsln-lsen v "S—n"_)-

GETSYM searches the DDT symbol table for each of the symbols S and
places the value on the property list of Si under property P.

Example: (GETSYM SUBR DDT)

This causes DDT to be defined as a SUBR located at the value of the
symbol DDT.

Note: In order to load the symbol table, either /S or /D must be typed
- to the loader. Symbols which are declared INTERNAL are always in
the symbol table without the /S or /D. In the case of multiply
defined symbols, i.e., a symbol used in more than one RELOC program,
a symbol declared INTERNAL takes precedence, the last symbol
otherwise.

H-1

- LSQRT: . CALL 1, NUMVAL

SATLON~28.3

(*PUTSYM S V)

¥PUTSYM enters the?symbol S into the DDT symbol table with
value V. ' .

(PUTSYM "X]_” "X2" Ve "Xn”>

- PUISYM -is used to place symbols in the ' DDT symbol table. If
Xi is an atom then the symbol Xi 'is placed in the symbol table with its
value pointing to the atom Xi' If X; is a list, the symbol in (CAR X,)

is placed in the symbol table with its value (EVAL (CADR X, ;)). PUTSYM
is useful for making LISP atoms, functions, and variables avallable to

'RELOC programs . ‘Symbols must be defined with PUTSYM before the LOADER is

used.

Exam les:‘ - (PUTSYM BPORG (VBPORG (GET (QUOTE BPORG)(QUOTE VALUE))))

deflnes the identifier BPORG and its value cell VBPORG A RELOC program
can reference the value of BPORG by: A

f MDVE X VBPORG ‘

ot

"(PUTSYM'(MAPLST (QUOTE MAPLIST)) (NUMBERP (QUOTE ‘NUMBERP)))
(PUTSYM (MEMQ (GET(QUOTE MEMQ) (QUOTE SUBR)))) ~

A RELOC program would call these functions as follows:
CALL 2. MAPLST
' CALL 1,NUMBRP
PUSHJ P ,MEMQ or CALL 2,MEMQ

An example of a simple LISP compatlble MACRO program to compute

' 'square roots using the FORTRAN library.

TITLE TEST .
P=14 R AT T
A=l

B=2

EXTERN MAKNUM,NUMVAL,SQRT ,FLONUM

MOVEM A,AR1
MOVE A,[XWD ¢,BLT1]; SAVE THE AC'S
- BLT A,BLT1+17
.. JsA 16 SQRT . .
1 JUMP 2,ARIL. ;SOP TO FORTRAN ’
MOVE f),ARL o
. MOVE A,[XWD BLT1 ,ﬁ] o I
BLT A, 17 h o o
MOVE A ,AR1
MOVEI B,FLONUM

JCALL 2, MAKNUM

SAILON-28.3

AR1:
BLT1:

END

p

BLOCK 20

SAILON-28.3

APPENDIX J

References

John McCarthy, et al, LISP 1,5 Programmer's Manual (Cambridge,
Mass., MIT Press, 1962).

Clark Weissman, LISP 1.5 Primer, (Dickenson Publishing Co., 1967).

Robert A. Saunders, "LISP - On the Programming System', in Edmond
C. Berkley and Daniel G. Bobrow (eds.), The Programming Language
LISP: Its Operation and Applications, 2nd ed., (Cambridge, Mass.,
The MIT Press, 1966), p5k.

SAILON-28,3

APPENDIX K

»
i

NDEX

l

W MM A N AMO A NMMMT NN

| 200 TR R R TR R R AN D N D P R B R BN DR B | | I T)
i) D RS I I) " v o Spar S P
- i -—
oooooooooo [} e o e & & o s s e+ e P
2] L 4 c
e & e 8 9 o & & » e ®» ® ® @«) * o e s o » ®
[3
= % ® ® 5 e & ° & e = o o » o ® G = o & e o o O
(S 3N] ®
oooooooooooo * o o * o e o o o 0N
QE c
» o w - * & « » o = e N & <« o +» & & o
-~ [¢]
® & # o e » o o o o s e o o s E D e s e s o o
w O (-]
« & @ o ¢ ° ° e o = » o o o ot & e o o o o - C
S oa . o
000000 *» & 5 e « « D * o o o o o
: — © - > c
e« o e @ & o @2 o L] e o0 & © o o o o o o
(o o] o £
* ® o o » e e e o 8 PP +¢ e ML e e o o o LR 4
B
» . ® o 2 @) & * o = 2V TV *» o @ L5 © o o o o o @
2 [N] | o
e 2 o o T s 4P 2 e SN N ° =Y & o s e s o O
@ c - c o £
o » » o ff o e M o e —— o - * o o ® @ »
> - LW - o« - E (2}
o o 8 o TP e o Q@ e @ mm e o e D O e e & s s e X
ol . Y [] R - B =
- U4 Cc C [« o} -_—
> o e - £ - e T - 3 ® e e e 4P) * o e e e [\
o g 2 o romoeooaxrxroeoa D [aRpen Rhun Y s 4 « 4 (s« < ¢ ¥ 2 o]
| puus gy o J5 5 « Juio 55 o Jho « B o QG s DI 301D DD D
ww LJdIJNLOLVLOVM> A>>>0VD0N NN W LWL
[on] &] = r o
- Z> > aO DwWaw < Qar
~ w3 - D EXOVOWZE U2 <000
NO— 4o a0 ronNoxnNyoowo Xy eaQCxX 2
DO I Zc a0 rxrnNnkFada—-0O0 0 <0 <X O
I CACACACACAAICASCO0OMMDMDODDODOD - D000

. e e o e o - . . » * e s * w

EEEREREREEEEEEEEREEN
ST FT A ANANNACOO O ON
il vivivli vl vd vl i ! i
..... ".'...',..’
........... » o e & o -
* ® ® © ® o ° o & o o ° @ o e o »
. e o ® s e " s e e @ & o & e 2D
@
........ ’..’.'.'u
(o]
nnnnn ® & o e & e & o o o &=
000000000000 > e oo
OOOOOOOOO e & o o o o o
C
oooooo * o o o s e o e o o @
E
» o o o o o o ol e e e o e o «3J
+ o
® @ o e o o o o f o @ o o & o = [,
(] «©
ooooooo e E o o ® o o o
2 ©
''''' * o o I s & & o = = e
— ©
W » - + s e e e o
[+
........ C @ ¢ o & e o =1(n
a ja s & xo ac x o
X aorraaoeoraroroecocd
2DV II22D20DIDDTIDXV®ODO
N VNLLAONLETVLOLOLVOVL I

NEPCSIT
DIFFERENCE

DEFPROP
OF

K-1

NN AR ANAGANAUNAURMINT T A A A At St M A A A AP At AN AN S AN T NN A D

R N I L e e O e e O e R L R R R e e e e S e R e e e e e L L T O e D D N

SAILCN=-28,3

i ~ ! Ll ! -~ Ao] - vt «~ « 4 ! Lol
- e o o ®© o e ®8 e & o e e e ® o s e e e ® e & e e e o o = e o o o o o o e ° e o ® e o o o
e © ® o . . p® @ e e ¢ié e Talp e e e e ¢ e eie e wle o Yo é e e e e e le *s e lete &

e e o & e o @8 te . - . - - . - - - . ® ® e e e e o o re o i® e @ .® @ e - - - . . - - - . - -
e o o s ® ® e B e = .® @ @ ® . ® .» e e e e e 8 e o ¢ & 6 & # & & o e & e s s & & & & i &0 o
e @ ® o o ® e e ; - e . ® e & o & ® © o ‘é e e ® e @ ® ® ® e 4 e e 6 & & & e &4 & o e @ & éd e
(0] .
e o o o ®m ® & ® o & ® 6 ®» o o ® .6 o e ‘e 4 e e & w @ ® e @ © & &-6 & & é ‘e e o o & & o Lo o
e [o's] — Ee
e« W ® e @& ® o & ®»® ® @ i@ @& ® @ & & &« & e e o o * ® = ¢ = e ® & o & & & e . e« & & & e - -
A o T 9
e © o e o ® o e o a & e & ® ® 'm o & o ‘@ ‘w e 4 e B e & @ 43 & e ¢ & & & ‘a € e & & ¢ e o
* © ® ® o @ e ® & s ® e o e « i & e @ 8 o & = o + & & e eP s e & o o & = sQY LW & o =2 o .
w (] c 7
@ o ® o » ® & o o e e ° e e @« ¢ © @ o o © o ® s & 6§ N o o o o o & & o @ T & i 6 o
= — © -
e e e o o ® e ® o o e ® o @ e * ®o e & 5 e e & ® o & E e~ & o o o o 6 o (1 o ¢ & &7 o
. 3 [\ [2
. - e e o - . ® @ ®© e @ e ® ° &« s e = ,a e = @& ®» » o o O} & e 5 ° e » & & o o ft= e N o P e 6 e
& -~ 4 = “ -
. « ®» o & e o e @ « e e« o e & ;e Te e s s ¢ &S - - e « . 42 - < s & “@ .
o 3 = @ e
e @« © & © P & o ®© & o ® o © a e @ - e e M e @ o ® & o L e— & o & & & @ & a2 o o & é Jo e
w % e
| o
a . S Xz - s <3 G @ Be QRTV : ax o - |2 oo
I ¢ 5 b b 0 > = s MITDODIITFIOIIDOITDLULIETU oo Ww - DO« DU D
«f.l. . R < -
<€ -
. - : s . - s - a: \.”. ,...Z. . I
W st 'S P ZZ ; ot e c Co (LIRS
L > L Gl c s L SO O e PR ' <8 VIR o Lot e e : = =
Z <D © <€ = — T [R d = wl Ll — z w Z << B e 5%
— 0o Voo x = g DU D e O 3 > > - 0w - L o 1o Ll 8 T & SR
MR X XX rer=rw— | JOWIDDODDLLLLU WWWWCOC XX O ZZZZIZIA<<AWWLW—~r—DOW
MU wWwiwit bbbt OQOQOCOOOOOOOO merr s —— | _§_ 3 3 3 1 3 3.3}

SAILON=28,3

TMHOANUDINOVINANNANMAAIAMMENANNM M T T 00

LI T T B DU D D DU R D D DN R D R D e R B
rr_6%EG@@U9929@059E949E394.44
vt vd 4t Aal 11 i vt
* e o e & o L] - - - - - . - - L d - - - L3 . Ld

L]
. .
A L]
D

SUBR
SUBR
SUBR

LSUBR:
MACRO
MAKNAM
MAKNUM -
MAP

different argur

nent order.,

s 2
x x
n o
-2
|2 Y]
x
<
(SRS)
aa
<C <C
b3 3

"

SUBR
SUBR

MAPLIST
MEMBER

[] L]

EQUAL .

uses

*® o o s e
—
ooooo —
<z

- o o a e
©
e o o o o 4
e e e o «O
@
e« o o o e N
D e o o o -
o8} <

s & o
n +
@ o o o o
(] [
J e e e & -
x Ll
xXaxaoax s
DDOLODODV I
22DV D <
nNnnaIm>
a

e w

23202 Z
r¥rZ2Z2Ccod
Ll o= 0 1D D »=
¥z

L]

ajized to T

@ ww @ = & @ @ e e ®© o o+ -

@ tem & 6 ® & e & e e =

In

.

SUBR
SUBR
SuUBR
SUBR
SUBR
VALUE
FSUBR
SUBR
FSURR
SUBR
.MACRU

NOT
NQOUUO
NULL
NUMBER
NUMBERP
NUMVAL -
OBLIST
OR

ouTC
ouUTPUT
PGLINE
PLUS

X
N
\al

L]

n. arguments

(4]
]
M

PNAME

. 14-5

.

first

.

allows non=~atomli¢c S-expresslions 14-5
TERPRI

1]

SUBR
SUBR

SUBR

PRIN1
PRINC
PRINT

e 4

[eola g
2m
[R}
[FYL7]
(3%}
(& &)
O O
o
ac

Ll ’ . L] . L] . L] [] L] .
allows up to 5 arguments.

*

PROPERTY LIST

.)
. (] . . L] .
]

order of arguments different

L]
1]

xaxd
xd o
DX 220
D«
N L X
-

o N =z
22X ol
X >) e
a. v - -
=00
D202
a0 o0

n arguments

lllll

- x
roxec oo
TN PDOO@
33DDOD2DWO T
nomununnnu nnm

ac

- W

wm o o

I ez o Z
OJd—~O oo
oOo0<0Q O
AL C<ET X F
[PNE R R PR TV Py
oo oo

e st s

SATILON=-28,3

"M
| IR S R R AR D D 2 R R B D B R D D N N SN R RN T R DU B B AN R | [T T T R T A D BN BNET SN DN IR N RN SN N B
ORIV A 0VANOWLWLWMLNAGNINMNLAOEOOT ONTIMNES O TWSANNOORNIOCOCWARAITNI NON
e 4 - -4 - v v v el - Lo ! i B L La Rl o)
@ e o ® e o o o e o o e s e o o e o » ® e o e o e e o o = e © e76 & ® o e o ® o o ° o e e o o
- - L4 . e - - - L] - - L - L d . > o - - o - L d ® ® e e & = = . ® & ® e & ¢ o s s o - - - - - - -
e o o o @ @ @ s ‘@ e @ @.'d e & _e @& & e ® o ® &6 s 6 a's o = e ® e @ o ‘@ o ®» @ o o @ . '» 6 o6 & o e
¢ o e Tm B @ s @e'e e ® e e o » 'e's e e @ ® o a e @ ‘o ‘6 o @. e # e e 0o'e o o’ie ‘e @ w @ aile o e e
- - .« e & & © e & @ & & e & °© & & & s © - - * & e & e e e ® e e @& & ¢ & = & ¢ = . - - - - -
........ - ‘e - - e ‘e - - - - o - - *® e - - e - - - - - - - - - e o - - - - - - -
e [Tk - 4 -4
nnnnnnnnn a e @D * e o o ‘e e o e ® ® o e+ o s e = e ® o ®© s e o ‘6 @ & ® et o © opu -
e« e o © 8 o o eie’e a@) e ® . ® @ o e e e @« @ e o e e e o » o o ® o % e e = e e o @ -
sl M [o L () [»]
* o o & ' e e o e e e) e e e o o o+ o 42 o e e o & o ia e ‘e s ® 4 e e ® e @ e o s o 43 o o o 4F e
----- o o o % @ o @ ® « T o .8 o oV o o U) o * o o s e o o o ‘s o @ ®w ® ® o eV e+ e eV =
lag 43 B+) + [0 @
nnnnnnnnnnn C o o © o o s oN © «aF @ » o o e e o % o ® o o o o © o oN o o o N o
B : — R, @© -~ o— —
e e oCF o e ee o o = e o p e is o e-~= o o E « o o o oo e oo ® v o o = o o e o— o «— o
S - «© 3 © «©
- - - e ® e e & @ & e o @ e o e @ o= = e TN e - - o . e - - - e o ® ® e ® @& & & = & © & o -
. (1] +2 (€3 ’ e + +
e o o @ 4 o o e o o o 43 o . . o - S - o . . e " s o o e o = e = o & esm =
“ o o « e - | 3 (=
e o e & e o o o o C o o @ a o & o= = = C e o o o @ Y e ei® = % ® e @ ® @ @ ew— o * o— =
: o x il 2 B ” x ad
DTLDIDDD mxZ X Ww X D ra) M40 DOLIODDX (€285 e Js o FODMOBIPDNOD2DNDOVTTO IJODDDD
N LUL;mO L nwnw m v wn nN>nmunz=unwm — NN N LBLKNWMLLLOND>NDL U OWw
. . v < . . 2 Ca . - . i B - ~ ® B
= sz .
P Qe —y -
o < as] .
: pimy - -) : . - 2o s 5
(7, B o - - e Lol Loenom B R P e @ s e e T
w - ® : v Z o g : : : Co=d I (R Wl S N S S
[7- 30 i N6 SEURN & JEIRE W apa g N e 0 2 o] L v o T 1L -4 Bl b ol SIS B I o n
xououLo x XX O UG 7 W Z - a4 w L << O XL A DWW C IS WY —
ul <€« <t T A CODDO =X = HAX WV a Lt wd D= Z 0 LA LISALALZFFRLW<N2L DOF0OWXE
rrocnuvnNn Mmoo nERERFRRRERRFRD>>>XN A ok ok ok kX % ok & k& % &k X % % K X &

PN N NP NP N Nl il P P N N N P B P N Nt Tt N b B i Tkl NP B NP N St A

— — — - W R e T W N Nl Nl N P Nl il P P P P N) P b b il NP

. la el ol o W oW I e el el o I W WP W W WP W R N I N W W LI I B B W W
-t N N s I\I\(I\I\I\(l\l\(l\l\l\l\((l\l\l\l\(l\l\, Lol ol B W N N e el e el e e e e o Y oY K X X X Rk B B o B B B
P N Nt . \I\f\l\l\l\'\(I\l\(l\l\(l\l\(((l\(l\l\l\l\v PRI N TN N TN PN PN TN TN PN PN NPT TN ISR PO Y S SN S PN S o
- N WP W N N P Wt N Nt Nl it Nt N P Nt Nt N N N N A O Nl Nt Nt) Nl ot S LR I R o W B o B N e i o I WP S N P N et i e I o I] [W o W W W W
-t et o s N Nl N Nt B N Nl N Nl S B NP N Nl N A P N Nl P B NP N S\ PN PN PN PN PPN PN PNN NPT PSPPI NP A

LA A I e i I ¥ I S . T - P A N Y. Y.
‘(((((I\‘l\(l\l\l\(l\l\’\(I\.l\l\l.\l\((l\l\(l\((l\\l)))\l,)\l\l\l)\‘)\‘\‘\l\'\'\'\’\l\l)\’))\'\'”),\
NP NI NP N Wl N Nl N NP N D NP N Nt N NP NP Nh Nl S N Nk N T Nl P Nt b Nl NS F NP 5NN PN NSNS PN PNPN NP PNTNINPN PN INPN PPN PN PNPN PN PPN PP PP
N N N W Nl Nl B N T T D Nl Nl N B Nl P D Nl B NP N T B N N P P P Nl NP PN SN PN PN PN NN PPN PPN PN PNN PPN NN PN PN PN P N N
TN NP Nl N NP N N Nt P T T Nl N b N Nl B N Nl Nl Nl P b NP Nl b P P NS NP P PN PN PPN PN PN PPN PN PN PSPPI PPN PNTS PPN PP PP
N N N Nl Nl Nl Nl NP N B N Nl N Nl N N Al Nl B S B T P S i N Bl B NP NP PN SN PPN TN PN PN NPT P TN PN TSI PPN PN PN P PP SN N PP P
N N Nl Nl Nl Nl N) Nl N N N Vil Nl N Nl N Nl B A b P Nt N b N A N B NP P PPN PN PNV PN PPN PPN PNINTNIN PO TN PPN PPN PN PP PPN PN
N Nl N N N Nl P N NP P N B Nl P B P Nl P NP B T P P ol P P NP P P B P NP P SN PPN PN NP PPN NP PPN PN PN PN PN PPN O PN O P
S N Nl Nl il N P B Nl NP P N b N P B P D N NP T il Nt P Nl S A N A N NP NP P PN SN PN NN PN PN PPN PNTNPNPNPNIN PN PN PN OIS PN PN PN PN SN S PN S O
‘((((l\(l\(l\l\(l\((l\(l\l\(('\l\((l\l\l\((l\(\l\'\l\l\l)))\l)\l\'\'\l\l))\l\l))\’)))\'),),’))‘
N Nl N D Nl P S Nl P Nl NP P B B b P B P P i Nl NP P P Nl S N P NP PN PN PN PN N PN PNPNPN NSNS PN NP SNSRI PN NN PN PN N P
\(((f\.(((l\l\(l\'\((((l\(l\((('\l\((l\(I\I\i\\'\l\l\l\l\l)\l)\l\”\‘)))\l\')\’\0)\'”)”’))"
N Nl N) N N A A S B Nl N i B B A P B P WP N N N B B B P P P NP PN SN PN PN PN PN PPN PN PN PN PN PN PN PN PPN N PN PN NPT PN PN PN PN
T N T Nl N Nl Nl D N WL N N ekt) e D P N P P D Nl N P P P NP B P N PN PN PN TN PN PN P PPN PPN PPN TCPN PPN PSP TN TIPS INPN OISO
BN N Nl Nl Nl Nl T N N N Nl NP D D A P A b Pl P S N P P NP P A NP N P P PN PN PN PN TN PN PPN N PN PPN PN PPN PPN PRI PPN PN PPN PN PPN PN O
Nt N Nl Nl N N B Nt B N NS kb) S P b N N) h P NS S) Nl S T b N PN N PN PN PN PN PN HN PPN TN PN PN PNIN PN PN TN PN PN SN PN O PPN PN PN S PP O
Nl Nkl Nl Nl il Nl N Al T Nl D Nl N T S W) P N N T P Nl A B B P N NP P PN PN PN LN PN AN PN PN PN PN PN PN PPN TN TSN SN PN NN PN PN PR S PN SN PN SN oY
Nt N Nl W L N Nt P NS Nl S Nl NP N P N d NP NP N Nl N T N N b N Nk Nl S P PN PN SN PN PN GNP PN PN PN PN BN PN IS PN SN PN SN TN PN TP PPN PN NI P P
N Nt NP Nl N N N P N NP N NP Nl N T N NP P P Nl NS d i NP Nl P Nl i P NP Nl T N PN PPN PN PPN TN PSPPI TN TIPS PPN PN PPN P P PP
N Nt Nl N W Nk Nt S Nt N T N Nl b NP N Nt b NP Nl NP b N Tl wh Nl N P N NS N BN LN PN TN BN PN PN TN PN PN PN PNPNINONPN TN INTN T PN PPN PS PO PNPN PO
P NS N Nl N Nl P N P P Nt Nl Sl N P NP P T O P P h h h il P O Ol P ik NP P SN S PN NN PN PN NN INPN PN NN PN PN PN PN SN PN PN PN PN SN P u N P PN O
N N Nl Nl Nl Nl N Nt Nl Nl Nl NP S P NP NP NP NP Nl T b N N Nk P l b N N NP Nl o P P SN TN TN PP PN TN TN NPT P OIS PN TN TNTN PN PP N P PO
W NS Nt Nt Nl N P Nt b Nh P) d Nt N N N P N P NS Nt b T Nt i N S b D N N PN PN PN SN PN PN PN PN NN NI NSNS PN PPN ININPN PPN IO
BN N NS N NS b N N NP N N W NP S T Nl Nt Nt N W NP Nl NP Nl NP wt Wttt {[) N PN PN PN PN TN TN TNTNPNTN NI PN TP TS PN TN TSN TP PN TP PSS
T NS N N S S M N Nl P N P Ch N W O N P N P P P Nt P N Nl T Nl N NP b G FN PN PN PN PN PN PN PN PN PN PN PPN PN PN PPN PN
W N N Wt N NS B Nt b N N N S P T Nt Nt Nl b S d ik Vb P P i t t () PN O PN N PN PN TN TNTN PTG TPNP T TPV PPN TN PN PPN P P
PN NP N ol N it S P P P NP D b P P N D P P Nl b ok P P P N Nt P NS d o P N PN PN PN NP NPT PN TN PN PN PNIN PPN PN PN PP PN PN PN Pu PPN
AN NP N T N Nt N N S NP N S P N P NP P F NF S N S Nt WS NS Nt N NP N Nt _ [PN PN TN PPN TN TN PN PNTNTNTCINPNPNINTS PP TIPS PN OO
((((l\(l\l\(l\l\l\'\(f\(l\l\(((l\(l.\l\(l\(l\(I\(A))\l)\l)\l\l)))\l\l)\l))))\l\l\'\l)))\'\'))))
P el N P P N N T il P T T P P P P N b) P P P P W P P WP Pt t L SN PN PN TN TN NN TN PPN TN N PN TN PN TN PPN PPN PN O o
" Ml N Nd Nl NP N N et NP P S % NP N NP N NP e N Nt N Nl Nt P Nd N o Nt N NP Ll o N NI A N e e el o W W W N N e alala el W W WP N Y
NP N N Nl P P P B S P T B B P P P NP P b Nt NPl i NP B B P NS N S _J NN INTNIN N INININ NPT TN PNIN PN PN PN PN PN SN PN PN PO N
W Nt NP Nt W Nl Nt N N Nt Nl N b Nl f NP NP NP b N Nl d Nl NP N N NS Nt T Nttt L NN PN TN PN PN PPN TN TNTNNINPNINDNTN PN PN NPT PN PN PN
\(((l\f\((l\l\(l\((l\((l\(((((((l\I\l\l\(((C))\l\l\l)))\l)))\l))\'\l\l\.l\l)\l)\l))\’))))
N NS N N h il Nt N N P Nt Nl S N P T P h NP P S N N Nd T Nl d N B Pl PN PN N PN PN TN IS TN PNTNPNTNINPNININ DTN PPN PPN PN PPN PN PO
T Nl N Nl Nl Nl Nl T Nl P NP P Nl Nl il N N P D N P N B N Ol ol N ot o ot (Y PN PN PN TN PN P PPN NN PN NN PN PN PPN PN PN P PN P o o
W Nl NS N el N W P Nt P T Nl Gl NP Nl P NP T NS P NF NP Nl B N Nl N i Nt Nt ot S U] PN PN PN PN TN P PPN TN NI PN PN ININ PN TN NP PPN TIPSO PN
" W N N Bl Wl M N Nt Bl NS NS Bl Ul N N s d Nd NP N Nt Nl Nl NS Nl Nt Nt Nt N Nt Wl) BN PN BN O PN B P BN PPN BN SN PN BN PN N BN TN TN PN N OO SO P o
((‘((((I.\(I.\((I\((((I\I\I\I\(I\I\(I\I\(I.\(((N))))))))))\'\I)\l))))\l\’\l)\l)\l)))))’)
P Wl NS Wl NP WP U NP N Nl NP Nl Wl Nl N Nl Nl Nl P N N Nt N NP Nl el Nt it Nt d N Lol oI N o P ol e e la ol a i W W N N N I W W et ekea el eleXeRae el eX e
P Nl N Nl P N Nl N NP NP P NP P N P NP NP S N T P N NP N Nl NP P il 8t h (L] SN SN N PN PN PSP SN N NN PN PN TN TN NN TSN TN PN NN PN N o PN P P PN
P N Nl NP Nl N Nl NS Nl Nf P N il Nl Nt N Nl NS T P P Nt i P i R A S Sl N N N e e e e e aRea e el ol ala e ool ae e la el o e X o R0 2"
NP Nl N N Nl N Nl Nl T P P okl D B N NP N il N N N N Ol P NP N S N NP N P KL NN NN TN PPN OSSN INPNININNTN NI PN PPN PN PN TN PN N PN NN o
P Nl NP Nt N Nl N N Nt Nl P Nl N Nl NP P NP NP Nl NP P Nl NP F P NP P P T P P P PN PN SN TN PN PN INPNSN PPN INTNPNTN NP PN PN PN TN NN PN PN SN O PN PN O
W NP NP Nl Nt Nh Nt NS N Nk NP NS el N NP N Nl Nl N Nl NP Nk Nl N NS Nl b T T Nd N h Bl PN PN PN PN TN PN TNINTS IS PN INTN PN PNPNTN PN PN NN PN PN PN N PN PN PN PN
N Nl N N N P N P NP N NP 0l N b P NP NP AT Nl T Nl N P NP N NS P NP NP NS NP Nl PN O PN PN PN P TN PN TN TN PN TN NN N PNININ NN TN PN NN PN PN PN N NN
B Nt N N Nt N P NP N D N Nt N N NP T Nl NP N Nt NP Nl N N N NP NP N N N Nt T NP PN PN PN BN PN P PPN PN TN PN PPN PN SN TN PN TN PN PN TN PN PN TN PN PPN PN SO O P
- N N Nl N NP NP NP Nl NP T N Wl NP NP NP NS NP N NP T P P N NP T Nt P Nl NP Nl NP P PN PN LN NN PN NP TNPN NP TN PN TN NP PN NP PN N PN PN PPN PN PN N P
NS Nl N P Nl s NP Nt P N NP Nl Nl N NP Nl NP NP Nl NP Nl Nl N Nt NP Nl Nt P NS Nl N Nl PN PN PN PN PN PN PN PN TN PN PN PN SN PN PN PN IO PN TN PN PN PN PN PN PP PN PPN N
b A A g e Al e e R e aRe Re Ha o lle e e N o NS Ea e it le e le I e N e it I o W W W o W
[R L . IR R N R e e I e e e s I N N e W W I I P W o
P NP Nl NP P P N Nl it Nl NP NP Ml Nl Nl N NP NP NP NP N Nl T N Nl Nl Nl Nl Nl B Nl B NS PN PN PN PN TN PN PN PPN PN NN OIS PNPNPN PN PN NN PN PN PN PN NP PP P P
W Nl N N N NP N P N NS N NP Nl Nt Nt NP Nt N Nl Nl N Nl Nl NP N N NS N Nl Nl Nl Nl N N N PN PN PN P PN P PN N N N o

W Nl N Nl NP NP Nl NP Nl N N P P N NP P P NP Nl wd P b P NP N N Nl NP Nl N NP Nl PN PN N N TN SN PN PN PN PN PN PN PN S N P I N N kel e el e e e o o
P N Nl NP NP Nd N NP N NS N Nl Nl Nl NF P NP WP Nd N N N NP Nl NP NS N Nt P Y S a e el ke e el a e el a e e e o N o W P N A W I N R o o ea e e a o e
B Nl N Nl N N NP NP NP NS N NP P B P P P NP B il NS Nl N B P NP Nl l P N Nk B Nl PN PN TN TN PN P TN TN PN PN PN PN PN PN PN NPT TN PN TN PN TN PN PN NP P PN P P
- Nl Nl Nl N Nl Nl Nl Nt N N N d Nl Nl N Nl N N S Nl Nl Nd N h N Nt Nt N Nl N f Nt I PN PN PN PN PN PN PN SN SN PN PN NN N Lol N I B o N e T i e I NP N N Y e
Nl N N N Nl Nt P Nl Nl N NP) Nl NP N Nh N i Nl Nl Nl P P i NP NP N NP Nl N NS Nl PN SN SN N PN PN PN PN PN N N PN PN S~ o W A W e e e alele Rele e e
P N el el N Nl Nl NP N N N NP P NP Nl N P NP N N b NS N N P B Nl P P Nl N Nl Nl PN PN N TN SN PN TN TN PN PN TN PN P P TN NI N TSN PN SN SN SN e e e S o
P N N Nl Nl Nl P Nl Nl N NP N P P T NP NP NP N T N Nl P N N N T ik Nl N f P PN PN PN SN PN PN PN PN PN PN~ P~~~ o~ Pl o W o W W o N IR N I W W N o e e e e

W Nt N N N Nl Nt N N N P Nl Nt Nt Nt Nt NP NP N N Nt Nh NS N N Nt S N d N NS N PN PN PN N PN PN PNTN N PN TN TN SN TN PN PN ININ PN N PN N PN PN SN PN PN PN PN PN PN PN

W Nt N N NP N N S Ol N) P N N N P S P b N N b Nl P NP Nd S Nl i Nl Nl NF PN PN PN TN TN PN PN TN TN TN TN TN TN TN NN TN TN PN PN SN PN PN PN SN PN TN PN N N N

W Nl N Nl Nl N N Nl P Nt N P i Nt NS P Nl P N N N Nh Nl N Nl NP it P N Nt NP Nl N PN PN TN TN PN PN N TN TN PN PN TN SN SN TN ON TN TN NN TN TN T PN PSP PN P PN P
W NP Nl NP NS NP NP P NP i N NP Nl il Nl P Nl N N N N il Nl N NP NT N N NP N Nl NS Nl PN PN PN PN TN PN TN PN TN TN TN TN SN SN I NN TN N TN PN PN TN TN PN PN N PN N N N

AN N Nl Nl Nl N N Nl Nd N Nl il N Nt NP it NS Nl NP N Nl N N Nt N Nt N NP Nd N NP Nl I PN PN PN O PN PN PN N TN TN FN PN TN TN PN NN PN PN PN PN PN SN PN PN N PN PN SN PO

P N Nl Nl NP N Nl Nl NP N N b N NP P T P ol N Ol P d h b Nl Nl N N il Nl) o NP I PN PN TN PN PN OO SN PN NN NN SN PN TN TN PN SN TN PN PN PN SN PN SN PN PN N N
P Nl N Nt N N NP P Nl NS T P il Nt N Nl NS NS NS Nl N Nt NP N Nl N NP Nl N N ik Nt Nl PN AN TN N TN PN TN TN TN TN TN TN TN PN TNTTN TN NSNS
P N N N N P Nl S N N T N Nl N P Nl b N NP O il NP NP NP N NP N P O NP P Nt PN SN SN TN SN NN

LR o B W N e e e
PN N N NN TN SN SN SN PN SN SN PN SN SN PN PN PN PN PN N O NP
P Nt Nl Nl N Nl N NP Nl St P N Nl NP NP N Nt NS d Nl Sd Nl N Nd N N N Nt Nd N N Nl N PN PN PN TN TN PN TN NN TN PN N PN TN PN PN N TN PN TN PN NSNS PN PN PN PN SN N PN PN

P NP NP P e P P P f P P s e it il w wd it vt I A N N N el N N Nl N N N PN PN PN PN PN N PN PN PN PN PN PN N PN SN PN PN PN PN PN NN PPN NN N NN N
P Nt Nl Nl N N Nt N N Nt N N N Nt Nt NP Nl N Nt Nl Ml NP NS Nl Wl Nt N Sl N Nl NS Nl PN PN SN PN TN NSNS SN PN SN SN SO SNIN PN OSSN SN SN SN TS PN PN PN oSN
P Nl Nl NP N P Nl NP NP N P Nl Nl N P N il O Nl il b b P N NP N P NP Sl B N N NP SN PN PN TN PN PN PN SN PN TN PN TN SN SN SN SN SN TN SN T T R T TN ST PN PN R P PN N PN

\((I\(((((l\(l\l\(I.\I.\((I\I\I\((I-\((P\((I\I\((\l)\l)\l),.\,’.tx_ﬁ;,)\l\l\l)\l\’\l)\l .I\.J\l))\l))\l)\l)\l;
- : e TR

M a e . . . | om

	Preface
	Acknowledgement
	Contents
	1. Introduction
	2. Interactive Use of the System
	3. Identifiers
	4. Numbers
	5. S-Expressions
	6. Lambda Expressions
	7. Evaluation of S-Expressions
	8. Conditional Expressions
	9. Predicates
	10. Functions on S-Expressions
	11. Functions on Identifiers
	12. Functions on Numbers
	13. Programs
	14. Input/Output
	15. Arrays
	16. Other Functions
	Appendices
	A. ALVINE by John Allen
	B. Error Messages
	C. Memory Allocation
	D. Garbage Collection
	E. Compiled Function Linkage and Accumulator Usage
	F. The LISP Compiler
	G. The LISP Assembler - LAP
	H. The Loader
	J. References
	K. Index

