TR-4738 NCOD14=-76C=-0477
July 1978 NSG=7253

Maryland LISP Reference Manual

Philip Agre
Computer Science Department
Unjversity of Maryiand
College Park, Maryland 20742

This work wase supported in part by the Office of Naval Research
unaer arant number NQOO14~76C~-0477 and the National Aeronautics
ang Space Administration wunder grant number NSG-72573., Their
support is aratefully acknowledged.

1+ Jut 1678 MarykLanc LISP Retference manual

Secticn
Section
Setcticn
Section

Section

[WH

S

Table of Contents
introduction
Marylenc LISP Intrinstic Functions
Paryland LISP Function Packayes
Marylanao LISP Assemtier

Appendices

#

14 Jul

1578

Maryland LISP Reference Manual

Section 1

Introguction

™

14 Jul 1678 Maryland LISP Reference Manual

Contents
1« Apbovut This Document
2+ Highlights of Maryland LISP
I Kistory anc Acknowledgements
by LISP and UNIVAC EXEC=-E

‘4.1- EXEC""8
Loie Files
G432, Charactier Sets anu Special Characters
“4ebs CLontrol Carcds of Use in LISP
La5. Interrupting LISP
Se “aryland LISP Objects and 3jyntax
5.7 Cons ANpdes, Lists, and txtendec Lists

Sede HNumeric Types
S5e2e Atomic Symools
Sebe Strings

e
o
v
-

Utner LISP Data Structures
S5¢£e LISP Directives

ryltand LISP Structures and Concepts
tele variable Binding

Cews Maryland LISP Functions

Cels Lontroi Struttures

Cebe Storave Management

7« ticlicgraphy

™~
#
&

SNOSW U UL T B L L LR T R = O 0 O O (0 g W

[P N N N W G e S e B I e)

14 Jul 1978 Maryland LISP Reference Manual 4

Te Acout This Document

Tnis report ococuments Marylang LISP, a2 dialect of the LISP
lanzuage Jdevelopeo a8t the Universities of wisconsin and Maryland.
The reaoer is a&assumed to have some knowledge of LISP., There
exist several excebllent texts on LISP, including [wei&?73,
Uiie?ﬁ], and [Sik?bj-

This report is caivided into several sections, <covering all
asgects of the wuse of Marylanoc LISP. Section 1 serves as an
intrvauctions Section 2 describes the wvariocus functions ang
cirectives oavaitaole to the Maryland LISP user. Section 3
gocuments Marytano LISP s extensive liorary packages. The final
section documents the Marylana LISP assembler anc proviaes
insi¢hts into the implementation of Maryland LISF. There are
slao several appencices on various topics.

14 Jdul 1978 Marytang LISP Reference Manual 5
Ze Hi_ hiights of Maryland LISF

¥arylana LISPF is avaitable on the UNIVACL 1100/40 anc 1108
machines ot the JUniversity of Maryland. It can be calleg Lty:

BLISF*L Il LISP .

If the D option is specified, Maryland LISP will run in demang
MOUE The B option causes catch mode operation. 1f neither of
these ¢prions ts specifiec, Maryleand LISP will run in whatever
moae the user is in, The CAR ang (DR functions can pe made not
to check if their arguments are cons nodes if the 2 option s
specifiea. The F optrion can pe used to cause the staeck unwinding
routines (seey for example, :PEEK on page 1M58) to print out every
opject on the stack rather than just alists and s-expressions
veine cVALuatec. The X option can bLe used to cause LISP to
terminate if an error conuition is founo, In adgiticn, the V
optiony, 1f specified on the 113G/4G, causes Maryland LISP to wuse
a form of virtual memory described in an appendix {see page 2361},

AlL the proyrams which accompany Marylanag LISP reside in
LISP* IBsy and the user can get & Llist of what is there by aoing:

IPRT,T LISP*LIG.

with regara to implementation, Maryland LISP uses a
deep-pinoing strategy together with a global binoging capapility
for system constants. There are eleven oata types, numbered
acceraing to this taple:

type # gata type

- —— . - - o

cons node
integer
octteal
flgating-point number
system coge
compiled code
tinker node
atamic symool
string node
puffer

0 unatlocated page

-0 00 =G W s P = L)

Functigns are implementea as "linker nodes™ rather than being
identifica with particular atoms. Therefore, a function
definition is represented as the value of an atom, avoiding many
of the ambiguities associated with "special-cell®™ function
binzdingse. Data nodes of like types are collectea together on
12i-~word '"*pages'", and the type of a given object is determined by
its acdress through a table of page types. Evatluation cata is
meintainec on two stactksy a ¢control stack ang a value stack. aAll

14 Jul 1978 Maryland LISP Reterence Manual &

Maryland LISP cata transactionsy including strings (and excluding
special~purpose control code 1/0), are in UNIVAC”s 6b4-character
FIZLGATA character set.

Some of the more dimportant and interesting features of
Marytang LISP inciude:

(1) Several gseneral-purpose debugging and error=-handling
facilities,

(¢) Strinv=nandling functions,

(3 Zxtensive 1/0 capabilities, including random=- and
seuuenticl-access file 1/0,

(v) Cptional virtual memory extension to 128K,

(3} A pgrogram-cailable interface to the University of
YVarylend Text Editor,

(¢) 2 faecitlity (LOAD/DUNMP)Y for saving anog restoring the
zinszry representations of structures and compiled code without
reinterpretation or recompilation, and

(7) An extensive library of functions, including an
assemplery, array and matrix facilities, a bignum manipulation
pacrazey implementaticns of Stanford MLISP and Micro=-Planner, a
prettyprinter, a comgiler, ano a debugging package.

14 gut 1572 Mmarylang LISP Reference Manual 7

. History anc Acknowledocements

The program which has evolved into Marylano LISP was begun
in 19¢9 wpy <Cric Norman of the Univerity of wisconsin. Several
pasic implementation decisions made in the writine of WwWisconsin
LI3P remasin in Marylund LISP, though there have bteen many chanyes
anc extensions. The bulk of the ccde for Maryland LISP s control
structures, as well as the compiler, prettyprinter, debugoer, anc

¥icro~Flenner oroyrams are revised versions of routines written
at Wisconsin,

wisconsin LISP arrived at the University of Marylana in 1974
anu was modified and adepted by, among others, Chuck Rieaer and
Milt Grinberya Mache Creeger acced the string functiaons,
randcem~access file I/06, the text ecditor interface, ASCII
tharacter 1/¢, an implementation of Stanford MLISP, the
Suscenu~kesume Packagye, the contingency routines, and nNumerous
cther extensions. Phit Agre acded the seqguential file 1/0
functiocns, a new carttage collectory, thke wvirtual wmemory option,
the assembler, the arrayy matrixy, end bignum packages, and the
core Gumping and mail routines.

The suthors wish to thank numerous individuals for theidir
efforts, advice, and criticisms. Primary among these are (Chuck

ficgery Henan Samet, *ilt &Grinverg,y, Fhil Lonaoon, Steve Small,
Fich Adoouy and Gyorgy Fekete.

14 Jul 1978 Maryiand LISP Reference Manual B

4. LISP and UNIVAC EXEC-§

This chapter contains the information about UNIVAC”s EXEC-§
operatinyg system that one needs to know to use Maryland LISP
effectively. The University of Maryland Computer Science Center
(CSC) publishes two useful manuals on this subject, [Doy76] and

LPro763, and 1these are available +from the <Center”s FProgram
Liorary.

Lu1u tXEC-S

After logging into one of Marylano“s UNIVAC machines, one is
talking to the EXEC-3 operating systeme Commands to EXEC-8 begin
with at=-signs ("2"), and are not read until a carriage return is
ENTEerece. Normallyy, eny such "controlL card®™ witl cause whatever
is huprening to terminate anc whatever 1is specified in the
commana toc begin. Exteptions are tew and include BADD, AECF, and
@EwlXy, which are explainec later. LISP manages to cefeat this
mechanismy, as we snatl see.

LeZ. Files

Fur the LISP user”s purposes, there are three kinds of
fites, pProgran, data, and rancom=access. In general, an EXE(=-8
tile is an wunstructured area of mass storage spacee. Any
structure which s glaced on the file is completely definea by
the user”s software. Most text files are in the system Standard
Pate Format (SOF)y, in whicn each Line of text is a separate
record with a (usvatiy invisiole) header woras It is this format
with which the Text Editor [Hz,;77) deals,

The syntax of a file name 1is:
[<qualifier>*]<name>.,

where the cefault <gqualifier> is the user”s project
identification. An important concept for LISP wusers is the
"internal name™, This is a one ty six character alphanumeric
string by whicn the system can uniguely refer to a files. I
<gualifier> is the user”s project identification, then the <name>
tietu will serve as an internal name for the file. Also, one can
estatlish an alternate name for the file with the EXEC-B8
prucessar PUSE:

JUSE <new-name>,;<file>,

where <new-name> is some 1 to 1¢ chgsracter alphanumeric name.
The Marylamg LISP functions which deal with file names all
require internal file names. These functions are LOAD, ODUMP,
FICPEN, COPYIN, anc COPYOUT.,

14 Jul 1978 maryland LISP Reference Manual g

A pregram file is roughly the EXEC-8 eguivatent of what is
usuaily known as a user directory, & coltlection of smaller fites
known as “elements" uncer a table of contents. The syntax of an
element is:

[<file~-name>,)<eit-name>[/<version>]

where the default <file-name> is the user”s workspace file. The
<version> field dis an optional extension to <elt-name>. Eoth
<elt=name> and <version> shoulu ve 1-to~12 character atphanumeric
names. cflements come in fcur types, symbolic, relocataple,
sosolute, and omnibue, The ordinary LISP user has need for only
symtolic and omnibus element types. A symoolic eltement contains
teat in Stancera Date Format (Uni7&l. It is usually createa by
entering the Text tditor with the name of an element whicn <dues
rct eaista. in this «case, the Editor «creates the eleqsgent
sautoraticstlys OUmnibus elements have no precefined structure;
the user”s software <can impose 3its own when the traditional
recorg structure is inconvenient. Lt ISP uses omnibus elements

with the tinary aumping functiocn DUMP and its reloader LCAD.

A CGota fite is & plock of mass sturage which can pDe used Dby
a wuser gprogram for any purposes in any format. Usually, dats is
in Standaro Data Format. A rancom access ftite 1s just & cats
file «ith a structure 1imposec Ly the random access routines,
zliowing arbitrary records to 0€ aCCesS5€da.

T AR {haracter Sets and Special Characters

ALl LISP uats transactions {excegt those of the AREAD and
AXHMIT cevice contral functions) are 3in UNIVAC s infamous FIELDATA
charazcter set (cescribed fully in the appencgix on page 237).,
FICLDATA is a 64—character set inclucing upper~case letters only
ana no control codes.

There are several special control characters which one
should know about pefore using LISP. The Line delete character
s auesticn-mark (Y?")., Typing this <character will <cause the

current line to pe ignored by the systeme This can be changed by
gotngc:

22TTY Ls<new-charactier>

The cheracter gelete character (called the rubout or backspace on
other systems) is pback=arrow or underiine (" _"). This is

trequently changea to the backspace character control=-H (cenotea
“H) vy doing:

ATTY ¢ ,"H
Any sucth system—-gefined spectal character can be entered

Literatly (ie, without any special meaning) by preceding it with
the escape coce {(markec ESC on most terminals).,

14 Jul 1978 Mmarylancg LISP Reference Manual 10

LISP defines several special characters of its oOwn. Three
tevels ot parenthesization are aliowed, using the square-bracket
({1 y angle-bracket ("<>"), and parentheses ("™()"™) characterss.
A closing delimiter (cne of "3J", ">", ")}*) matches alt opening
celimiters pack 1o one of its own type. This is wuseful for

clusin, off & long s-expression typed at one”s terminal, for
exampgles

(PLUS (QUOTIENT A B) (TIMES C (PLUS E (ADD1 F2

The perica character (".") has two uses in LISP, in the syntaxes
for octied pairs and floating-point numbers. The distinction is
exulsainec in the paragraph on the syntax of PMarylana LISP
CoJECt S The oouble-guote <character (""™") 435 yused to ogelimit
STrin;se In aoccitiony, Dby means o¢f the READMAC and DELIM
functiuns one may assign special meanings to other characters.
Any character may be used literally in LISP by prefixing it with
tne LIuP escape Ccherectery, exclamation-point ("'™), Ffor example,
tne following will ve interpreted 2s a single LISP atomic symool
which =iil orint as (A , E}:

Yeal Y, g
boso Control Cards of Use in LISP

faryland LISP has an arrangement with EXEC-~8 whereby all
tontrol caras with the exception of "eED', “GEOF", “aADDY, anc
Mo ENDX™ will De rejected as input,. These four npave special
mearine in LISF.

Arn EED card ¢an be entereg at any time when LISP wants to
reaC 1npul to enter the Text Eaditor. The Text Ecitor will return
vack 1o LISP with ali LISP data structures intacts The user
shuuld take care that any JED control card submitted in LISF has
the correct format and refers tc an existing fitee Otherwise,
the Text Editor «ill exit in &n error condition ang trigger the
LIsSP contingency routines. Ofteny LISP finds this serious enough
t¢c o3k the wuser whether LISP should be aborted, though this is
usuelly noct necessary.

The 2ADD control cvaro is one of UNIVAC s few contributions
to the genersl welfare ot mankind, when gADD <file>., @ADD
<etement>y, or oADD <fite>«<element> 1is entered at the user”s
terminsl, the contents of that file or element are inserted into
the input stream as though they hac been typed in by the user.
This is most wuseful for entering files full of LISP function
detinitions into LISP. Indeed, each of the chapters in the
secticn documenting tne Maryland LISP function packages gives an
gADD carc which <can be wused to Load the functions being
distusseds

Tne ;EQF card has basicatlly the same effect as the :STOP

14 Jul 1978 Maryland LISP Reference Manusal 11

girective; it causes LISP to exit normatliy.

Thne 2ENDX cara is used to turn cff the mode which allows
LI:F t¢ iunore alt but the four control cargs described here. If

tnis is. done, any control card but RADD will cause LISP to eait
ans 30 whatever it is the card ingicates.

L,5. Interrupting LISP

Te dinterrupt a LISP computation, enter the cheracter
seguence X If LISP is printing putput, it can be haltec by
hittin, the ZREAKR key prior to entering 33%3X. This causes control
1o he transferrec to the LISP contingency routine, which allows
any certege cotlection or baenk swapping which may have bteen in
eftect to finish, anag then perform any action the user might have
definec for such a case with BRKCON (see page 72 ory, it none,
rzturn to the most recent READ-EVAL-PRINT Loop.

To cause LISP to ue immeciately terminated, enter &aX TI10,
w3it for & cryptic message from EXEC-?, and type ZENDX.,

14 Jul 1978 Maryland LISP Reference Manual 12
£ Marylend LISP Objects and Syntax

This chapter expltains the syntaxes of the various things one
can type at LISP, namely the varifous dats structures and the
directivess Implementation details on each are given starting on
pa4e 20€. There are eleven Maryland LISP data types, six of
which can be represented symbolically and interpretec by the read
routines. These are cons nooes, integers, octal numbers, real
nuiversy atomic symbols, and strinys.

[

Sele Cons Nodes, Listsy, and Extended Lists

Cons nodes form the structure of the s~expressions which are
the tasic data structure of LISP, Syntactically, a cons node can
participate in either a "List* or an “extended List”, of which
the *“y¢otted pair" is a special cases An expression of the form
(37 52 ees 5n) is cailed a tist. An extenced list is a construct
of tne torm (51 S2 see Sn » T}, where T is referred to as the
"tait" of the (iste For examptey we have:

(A (8 C) D) is a list of 3 elements
(A (E €C) « D) s an extended Llist
(A B) . {C G)) is & dotted pair

we detine the term "atom"™ to mean any [ISP data structure which
iz not a cons nodes This term 4s sometimes Loosely useg to mean
"aromic symbol*, which is a specific data type described helow,

Zece Numeric Types

Merylandg LISP provides three numeric types, integers,
octals, and reals, Integers and octals are both "fixed-peoint
nambers™, and as Such are treateg iddentically by all routines
except the I/0 routines.

Syntectically, integers are denoted as strings of decimal
Jiyitsy possioly with a sign prefix ("-" or "+", with the latter
the cefaultl.,

An octal number is of the form <n>@[<e>), where <n> 1is a
string ot octalt digitsy and <e> is an optional integer suffix
cencting the number of impliecd zeros following <n>, For example,
1722173006, Cctals are always printed with trailing zeros
rather than the <e> notation,.

A real (floating-point) number is of the torm
[<s>1<n>.<a>[E<e>], where <s> 1Js an optional sign, <n> and <d>
are non-null seguences of decimal cigits, and <e> is a (possibly
signeg) scientific notation exponentiation factor, where <u>gEced>
represents "<x> times 10 to the <e> power"., Reals are printed in
this format, where <n> is always a single digity, and an E<e>

14 Joul 1678 marylanog LISP Reference Manual 13

suffix s provided if necessary. For example, 345.27 is printec
as Z,452782, and U.G0458 s printed as 4,58E-2, The forms
390%, and «245 are not legaly since the decimal points might then
also ce interpretaple as "cons® points. As a general rule, any
non-escaped period will be interpreted as a cons poeint wunless

there are no opening celimiters prececing it or it has all digits
to the left ang righte.

These numters are all single=-precision. I¥f fixeg-point
numbers larger than 36 bits are requireo, the bignum packace {(see
Page 1c3) can be used.

5¢3¢ Atomic Sympols

Marytand LISP uses the usuat LISP cgefinition of an atomic
symhol, &n "inagivisiule®” nooce which has associated with 3t a
valuey a property list, ans a print name, and which is
represented syntactically by its print name., Marylandg LISP uses
separate fields for these three parts of an astomic symopol, maintly
far purposes ot efticiency. desictallyy any dnput object which
cenrot wpe interpretea as Cceing any other kind of data type is
esSsumeu 1o be an atomic symuol. Ey wusing the LISPF eccape
tharectery, one can have atomic sympols with aroitrarily unusual
trint names, although it s generally not a gooo dJdea to
tconstruct an atomic symbol whose print name exceeds 50 characters
in Lenythe The following are examples of atomic symbols:

ABCDEF
SECOND~ENTRY~IN-SCHEME-TASLE
1092372642R

va

tIr o taxyzr

t1>X

5S¢4+ Strings

Marylano LISP has a FIELDATA string facility, in which the

stringcs may ©pe of any length, A Maryland LISP string is a
seyuence cf characters enctosed by double~guotes (“"°), No
tharacters have special meanings inside of strings since L ISP
does nut attempt to parse strincs. In order to dnclude a
double-gquote 1in o string, enter two consecutive double-quotes
Cegey "HE SAID ™UHIftw wy, The <characters 1in the string are

humbered wpeginning with 1 for the first character, so that the
number of the last character coincides with the Llength of the
string. The atomic symbol NIL serves as the string of tength U.

5¢5s OUther LISP Data Structures

Yiarylana LISP has eleven cata structures in all, the six

£

14 Jul 1973 Maryland LISP Reference Manual 14

descrited above and five which cannot be parsed as input. Two of
the five, unallocated pages and system code, are only called data
tyres for the convenience of LISP hackers. The other three,
compiled code, linker nodes, and buffers, are printed by LISP as
either [<a>], where <a> is some atomic symbol which is bound
constantly te the object, or [<t>:<addr>}, where <t> is the
numeric type of the object and <addr> is its octsl address in
core. They are described in the notes on Maryland LISP
implementation (see page 206).

r

‘efs LISP Directives

There are several other things one can type at LISP, The
cirectives (see page 1053 begin with a colon (":") in column 1
anuv pertorm operations relating to the LISP environment, such as
turning, output listing and 1input echoing echoing on angd off,
returniny to the top level of the current Level of supervision,
anuw interfacing with EXEC-8 file-handling commands.

T4 Jul 1978 Maryland LISP Reference Manuatl 15
£ tfaryland LISP Structures and (oncepts

Trhis chapter sttempts to explain to sn experienced wuser of
ancther. ciatect of LISP how thinus are cone in Marylard LISP.
Emihasis is placed on those Marylana LISP conventions which
giffer from those of other dialects.

Eala variabtite Binging

#arylang LISP uses two 0inding strategies, global "constant®
bindings and local "fluid" binagings. A c¢onstant bincing is a
pointer storeg in the value field of an atomic symbols. Constant
cincginys are usually used for implicit functions anc for other
values which need not change during & LISP run. Maryland LISP”s
ftuiu ctinding strategy is deep binding, implementeo through a
stangard cons ncue assoctation Llist. because retrieval of
constant oindings must be a fast operation, & vaeriavle may not
have coth 3 constant ana a fluid binding; if & constant binging
is present, all functions deating with that atomic symbol”s
"value®* Wwill refer to the <¢onstant binding. Attempting to
associate a fluiu value with & constantly vound variable (through
function application or PROG entry) results in an error message,

£s2s waryland L1ISP Functions

In Marytand LISP, & function is embodied vy a "linker node',
«Nich is a data object returnea oy LA¥SDA, LAMDA, aor FUNCTION,
anc which contains the information necessary to use the functione
A Linker node may or may not te bound to an atomic symbol, and it
it is couna to ane, the ¢inding is implementeoc as a simple
pointer to the Linker nodes just Like normal bingings.

There are three kinos of functions in Marylanao LISP: regular
functions, special forms, ano macros {(known roughly as expr”s,
fexpr’s, anc macro”s, respectively, in some other gialects),
Regular function linker nodes may be passed as arguments to
functicns in the same manner 35 any other data object; specifying
"TEQ® as an argument will pass the atomic symbol EQ, wheras
specifying "EQ" will pass the function cefinition attached to £Q.,
The FURCTION function serves only as a saver of enviroments, and
it is not necessary to acply FUNCTION to every functionat

arjument. The layout of a linker noce s cescribea in detatl on
paye 2(3.

Gels Centrol Structures

Marylano LISP has two stacksy, the control stack and the
value stack, described in the impterentation notes on page 212,
Several tevels of control can be set uwp with the LISP function
(see page 25), which calls the standard READ-EVAL-PRINT loop with

14 Jul 1978 Maryland LISP Reference Manual 16

5 user~-gefined read routine and establishes a "level of
supervision”, celow which error exits of functions cannot fall.

Given an s-expression (F A1 A2 e+ An) to evaluate, the

fotlowing algorithm is performed in the Marylana LISP
imptementation:

evaluate F
it F dio not evaluate to a function
then perform the action specified through FUNCON
to get a function
endif
it F evaluated to a macro or special form
then push the argument List (A1 ... An) intact
jump to F°s value
else evaluate cach Ai and push the results
jumg to F”s wvalue
endit

Cetve Storage Management

Magrylang LISP°s data area s partitioned into 128«worga
pacesy, each of which is unallocatea or is dedicated to @ single
data types The cata type of an arbitrary node is computed by
Lookin, wp its page number in & master page taole (see page 218).
In one modey LISP will cperate a virtual memory scheme to allow
tne user access to 128K of memory. This 1is documented in an
apcencix (see page 236). The oblist in Marytand LISP dis a hash
tatle with 64 entries pointing to chains of atomic symbols with
the same hash coqe.

14 Jut 1978 Maryland LISP Reference Manual 17

T zicliography

CALLTE]

{bau72]

r
3
L&
r
-}
3%
Lo

fbeoy7el

LFri?4

[Knusx)

Eknus?l

[MmcCED]

[Laclce?2 s

fMcb 7435

" gy

(Pro76;

Atten, J., The Apatomy of LISP, McGraw-Hill, New VYork,
1978

teumgart, 2., Micro-Planne

r Alternate Reference Mapual

Stanfora AI Lab Operating

“corowy Re Joy Re Re Hurton, and D. Lewis, U LISP
Mapuels Intormation anc Computer Science Dept.y
University of Celifornia at Irvine, Technical Report
21, Octocer 1972

1™
—

Doyte, Js, Getting Started on the University of ‘Maryiang
Univat Computersy Note (N17, Computer University of

—— - -

Marylano Computer Science (enter, May 1674

Frieaman, De Psy The Little LISPer, Science Research
Associates, Pato Altc, California, 1974

treenblatt, R., et, al., LISP Machipne Prooress Report, AI
Memo 444, Artificial Intellijence Lap, MIT, August 1577

Heyertyy Poe Eoy and K+ Eo Siktcald, Ig‘l_s faitor User”s

- ——— - e

Guide, CLomputer Note (N7.11, University of Marylana

Computer Science Center, May 1977

Knuthy Ds tey The Arr of Ccomputer Proareoming, Volume 1,
Reading, Mass., 196

[4

Knutny De Luy Ihg
Adaison-wesley,

McCarthy, Jay Recursive Fun

- A - -

3
apg Their Computation by Yag
ACM, vola 3’ no. & (1069), 1

of Symholic Expressions

- - e o W m b e e e -

ons ¢

hipey Communications of the
4=195

McCartny, Jey L 5 Prozrammer’s Manpualks, MIT Press,
{ambriage, ¥a

Mcdermotty De Vey and Ge Jeo Sussman, T

Reference Mapuagl, Al Memo 259a, Artificial
Laty, MIT, January 1974

e Conniver

h
Intetligence

Moses, Jo, The Fupction of FUNCTION in LISE, or Why 1the
Funarg Proolem 5Snould bte (Calleg the Environment
Proplem, AI Memo 199, Artificial Intellicence Lab, MIT,
18790

Prochazka, J. Cs4y and E. U. Putnam, University ot

- o -

Maryliaond Upiwvag 1100 Series Referepnce Manwal, Computer
Note CN13.32, University of Maryland Computer Science
Centery, January 167¢

14 Jul 1978 Marytand LISP Reference Manual 18

{Rie74]

[sik761

[smi?C3

(Sus7?1l

[Tei74s

fUni?4i

[Uni7Te]

Cweiid]l

Riegery Cey Everyman’s LISP, unpublished Llecture notes,
1974 '

Siklossy, Ley Let”s Talk LISP, Prentice-Hall, Englewood

Cl‘lffS. Ned oy 1976

Smithy De Cey MLISP, Stanford Artificial Intelligence

-

Memo AIM-135, October 1970

Steely Goy Lamugdas the Ultimate loperative, AI Memo 353,
Artificial Intelligence Lab, MIT, March 1976

Sussman, Gey Te Winograd, and E. Charniak, Micro-Planner

Reference Manual, MIT Al Lab Memo 203a, December 1971

- R A e R

ference Manual, Xerox Palo

-

y UNIVAC

——— - - ALY AR A L T -T

UNIVAC 1100 Series Executive System Programmer References

- - - - - e w o —— e o e SR = e e

UNIVAC Pubiication UP-4144,11, Sperry=-Univac, 1978

Weissmany, Coy LISP 1453 Primer, bickenson, Encino,
California, 1974

14 Jul 1978

Maryland LISP Reference Manual

Section ¢

Maryland LISP Intrinsic Functions

19

14

1.
2o

b

Jul 1978

Maryland LISP Reference Manual

{ontents

Introduction
LISP Control Functions

cela
2.2.
2e3e
2'4.
ceSe
cnby
d.?.
-
e
S-txpres
3ot

3.1.1.'

Zea142.
30143,
3‘1.4'
l1'5.
.2.

ecels
vdela
IE.}.
I2I4I
'205'

2

LI

et Lod e

LR WO PN PO PN v

VT I

.3.2.
.3.3.

l3'4.

SIR WA WO N W

36305
Selebs
Setre

Zatasts
5.4‘2.
3643,
3.5.

Je541e
Ze5s2
3e5.3.
3e5ats
o545,
3¢546
Ze5e7

guote
eval
do
{isp
oblist
type
stack
alist
rand
sion Mantpulation Functions
Basic Functions
car
car
cons
*car
*car
S-gxpression Predicates
eq :
egual
atom
nuti
member

Function Application Functions

into
mapc
ento
map
inaex
ocnaex

S=expressfon Pseudo-Functions

rplaca
rplacd
nconc
Other S-Expression Functions

list
abpend
tength
subst
reverse
nth
assoc

Atom Manipulation Functions

47,
bels
42,
QOAI
4.5‘
4.6.
4aTa
‘.'8.

atom
gensynm
string
atsymbp
*car
*cdr
compress
exploage

20

14 Jut 1978 Maryland LISP Reference Manual

=
e

4.%. explode?
4,10+ remob
4.11e erase

Value andg Function Definttion Funct ions

5¢1s Value Assignment Functions
Zetale csety
Setelds cset
Se1e3. setqg
S5eludre set
Sc1|5- age f ine
5¢2« Function Assignment Functions
Sacsle cvetspec
Svcels defmac
2 Function Definition Functions
2.7 lambga
el Lamds
+3+« tunctrion
-0utput Functions
Input Functions
Input Parsing Functicons
. read

v
2

r
1]

L o @

LI
L B

»

agelim

Input Buffer Manipulation Func¢tions
clearbutff
turchar

- - - -
L - » - -

packsp

1« readch

2« readrec
Miscellaneous Input Functions

«1e enuchar

OQutput Functions

S~Expression Printing Functions

e print

« prinit

« pring

Output Buffer Maniputation Functions
currcot

0.2 2 terpri

Gelele Output Formatting functions

T & 20 o SO o 0 o S Sl o A S ¢ chO‘Drr‘l::' (VI V.0 VR e

- - - L] » L] - »

P PR VS I WY I W O I VIR LN B LN SN e R g e S

- - - - * - -

. & 0
- - -
* -

[S A o SO o S R]

LI]

3
t
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
é
<
2
<
c
2

*» & & @

J.—.I.

L]
L]
]
.

00‘

1
1
1
1
2
2
2

] Lelededs SpacCée

60203-20 Qigits

Celedals plimit

teZ2ebe Print Lencth Functions
Oscsbhale plength

Celelbacoe p{engthE

SeZe ASCII I/0 Functions

033010 axm‘it

Celaloe axm‘it‘l

0ele3s areaa

Gebe Sequential File 1/0 Functions

L
»
L
« Record and Character Reading functions
*
»

21

L4
44
45
L6
46
4o
46
Lé
be
46
47
&7
47
4E
LE
49
50
52
5¢
52
52
s5e
53
53
54
54
54
54
55
55
55
56
56
56
5¢
56
56
56
57
s7
57
57
57
57

58
58
58
5¢
9
59
60
60
60

14 Jul 1978

-

o
- "

Q

1J.

11,

6!5.3'
0.5'4'
GeSele
CcSléu
0.5.?'
€+e5.8,
6.5.9.
5.5.10
Ee5411
tebuycin
?l‘].

-4
- . = « = = 8 e =
A e s & ® e ® s s &
=0 VS) £ D -
. & # & & &

I N I e e e T Bt e ARV AR N R
-

- = 8

-
-

AN A P M BT B PO PR b b ed A

-
)
-

~F
-
8
-

1

»

P
&-2.
5.3.
Evdo
LQS.
8'6'

Gl

Logical

9.1.
9.2.
9‘!3.
90"0
Program
101,
1042
13.3.
Numertic
T1e1e
11761
11.1.2

Maryland LISP Reference Manual

fiopen
ficlose
clearbuft
terpri ‘
Random Access File I/0 Functions
fiopen
fiprint
tiread
fierase
fiarop
fipack
fitoc
fiprintrec
fireadrec
. copyout
+ copyin
g and Error Handling Functions
Error Handling Functions
attempt
error
conlim
backtr
Contingency Definition Functions
of fender
eafcon
misscon
funcon
cingcon
carcon
crkcon
Tracing Functions
oreak
unbreak

Property List Functions

put
get

remprop

flag

iffiag
unflag

prop
and Conditional Functions
cond)
ana

or

not

Feature Functions

prog

go

return

Functions

Arithmetic Predicates

« nDumberp

« ZETCP

14 Jul 1978

[e e
vl ol -t
- » @ -»
[P S e -
* & L] L]
4 O U I N
* = @ L]

11.10!0
11.1.8.
11.2.

11.2.1,
11.2.2,
11eca3

1Teced

11 .2'5..

114246,
11 e2e7
11.2!8!
1143
11'3'1.
11.:‘:02.
112243
11204
11!‘0‘
11 ebals
112442
11443,
T1eb b
11050
T1+5a21,
1Te562,
12 String F
2.7

2'2.
1230
12 o6
12.5.
12.0.
1247
12.8.
12:%a

13, Executiv
13.%.
1242
133
1344
1345
13‘6.
14+ Prouram
149
?4.1.1.
140102.
14 el
14.241
144242
14 .3
14.2.%.

Maryltand LISP Reference Manuatl

egual
greaterp
Lessp
minusp
¥1ixp
floatp
Arithmetic Functions
plus
times
difference
guotient
remainder
adgatl
subi
minus
Fortran Library Math Routines
sin
Cos
log
power
Bitwise Logical Functions
{ogor
Logana
Lcgxor
leftshift
Miscellaneous Numeric Functions
fuzz
entier
unctions
size
stringp
srev
match
cat
substring
readgstr
string
atsymb
e Interface Functions
exec
pct
twait
ea
dump
loag
Statistics Functions
Timing Functions
time
gctime
Time/Date Functions
deate
dtime
Memory Management Functions
trash

23

g2
g2
82
83
83
83
&3
83
g4
P4
54

85
25
g6
86
&s
86
ge
g7
87
27
87
LY
8€&
28

39
90
90
9¢
9D
91
91
91
92
92
92
04
94
94
95
95
96
96
97
97

97
97

g8
38
98

14 Jul 1978

15.

10-

17

14 8.2
14.,8.3,
164244,
144,

Maryland LISP Reference Manual

memory

grow

Swaps
*nack

Coempiler Functions

15.1.
15141,
15.1e2
15.1.3.
154744,
1542,
154241
15242
154243
152
1EeGe1,
15:.2e2%
15.3.3.
18430t
154205,
LISP Dir
161
1842,
16.“_’:.
1644,
1645
164t
15.7,
16'3.
16.Q.
1613,
16.,11.
1612,
16413,
16.14.
16.15.
16.16.
Alphapet

Function Definition Retrieval Functions
*rgef

*spec
*macro
*chain
Code Generating Ffunctions
*begin
*emit
*ory
Other Lompiler—-0Oriented Functions
*ept
*exam
*Jdeposit
manifest
buffer
ectives
:LOAD
TEND
ILISTY
tUNLIST
CKPT
tRSTR
tLISP
TEXEC
:CODE
tBANK
tTIME
1BACK
:PEEK
sSTOP
:00PS
:DATA
ic Ingex

24

98

98

99

99
100
100
100
100
101
102
102
102
102
103
103
103
103
103
104
104
105
105
105
105
105
105
1n6
106
106
107
107
107
107
108
108
108
108
110

14 Jul 1678 Marylana LISP Reterence Manuat 25

1. introduction

This section is a description of the intrinsic functions of
Maryland LISP, that is, the functions which are availaole in a
minimal system catied up vie "ALISP*LIB.LISF". They are oivicec
somewhat arbitrarily into an ocutline accorging to their various
OurposeS, anc on alphavetic inoex is provided in the last chapter
tor easy reference. In the syntax descriptions oprovides with
each function, angle brackets (deey M<eea>") delimit logical
tokens whose tygpes an¢d meanings are explained in the text
detininc the purpose ot each tunction. A function”s description
may ve accompanied by examples which, in addition to giving some
jdea * the gurpose of the function in guestion, make clear the
function”s behsvior in special tases or give some interesting
applicetion of the function,

in acdition to the function names Listed belowys three other
stomic symbols have constant tindings when LISP is loaded. These

are NiL (value NIL), F (vatue NIL), and T (value T). Cne only
tampers with these values at one”s own riske.

The user should note that most of these functions do wvery
tittie or no checking ot the correctness of their arguments, so
that a function sziven erronecus {eg., not enough or too many, oOr
of the wrong type) arjuments wilt most likely return nonsensical
results or have unpredictable effects.

The outhor wishes to acknowleoge the efforts ano advice ot
Mache Creegery, who wrote the text describing the ASCII character
1/0 @nc random access 170 functions, as well as many of the
facitities that this section coucuments.

14 Jul 1978 Maryland LISP Reference Manual 26
Ce LISP Control Functions

The functions documented 4in this chapter are the basic

controi functions of Marylano LISP. They are: QUOTE, EVAL, DO,
LI>?y OBLIST, TYPE, STACK, ALIST, and RAND.

Z+1+ guote
{yuote <sexp>) or “<sexp>

QUOTE 45 a speciat form which returns its one argument
unevaluated.

Zece eval

(eval <sexp>)

Performs a LISP evaluation on its argument andg returns the
resalt of the evaluations Note that EVAL is not a special form,
so that <sexp> 1is evaluated once by the automatic argument
handiing mechanism before bein, handeo to EVAL.,

Examples.

{eval (List “times & £ (adal 3))) = &0
((eval {cons “lLambda “C({X Y)Y ¥)}) “¥1 “v2)
{eval (quote x)) = the value of x, for att x

Y2

[EN)

05- GO

(a0 <sexpi> » » o+ <sexpn>)

B0 is a special form which applies EVAL to each of 1its
aFuuments and returns the result of evaiuating the Llast
eapression, <sexgn>,

Zebe Llisp

(lLisp <¥fn>)

(Lisp)
The LISP function estaplishes a new level of LISP
supervision, That is, a reac-eval=print Loop is entered with

<fn>, which shoulc be a function of no arguments, doing the
prompting (if any) ano reacing. Also, any errors causeag by
evaluations at the new level will be routed to the new “latest
level of supervision”, so that the only way tc escape from the
new level is to 0o a8 RETURN outside of a PROGs The default valiue
for <fn> could be written as (tamboa nit (xread "EVAL: ")).

14 Jul 1978 Marytand LISP Reference Manual 27

2e5a ablist

{oblist <fn>)
{oblist?}

The CBLIST function takes one argument, which itselft shoulo
be a function of ore argument, <fn>, which it applies to every
atomic symbol currently on the cblist. All atomic symbols except
those created py GENSYM are always on the oblist., The cefault
value for <fn> is a function which will perftorm a PRINT on its
argument and do & (TERPRI) at the eno of each Llinked hash bucket.

Examples.

{csetq allatoms (lLambda nil
{prog (val)
(oblist (lLambda (x?

(setg val (cons x vall)))
(return val})))

This vefines a function which constructs a Llist of
all atomic symbols in the system.

Cele type
(type <sexp>)

This function returns the type of its argument as an integer
as listeg in the table of type numters given in the introcuction
to this manual. It shoulo pe noted that the STRINGP, NUMBERP,

FIXP, FLOATP, anac ATOM functions could be written using TYPE and
EQUAL.

Examples.

(type (cons “A “B}) = {

(type 47) = 1

(type 1?77@) = 2

(type ~2.4091E7) = 3

(type car) = &

{type fn) = 5 if fn is a3 compiled function
(type {lampda nil nil)) = ¢

(type “XYZ123) = 7

(type “"ABCDEFGHIJKLM"])} = 8§

(type (bufferd) = ¢

{stack <L>)

STACK is a pseudo~function which takes as 1its argument a
tist <Ll> of s-expressions and expands it so as to have the
members of <i> sitting on the stack just as though they hac been

14 Jul 1978 Maryland LISP Reference Manual 28

arguments of the tunction cailing STACK. In some sense, STACK is
the inverse of LIST. Note that giving a call on STACK as an
argument to a special form does not usually result in the desirea
substitution of arguments.

Examples.

(List “A "B (stack “(C Db E)}Y “F) = (A B CDEF)
(or NIL (stack (Llist NIL “TRUBLU NILJ)) NIL) = NIL

If a call on STACK s EVAL “ed, the result is NIL.
STACK anag special forms don”t mix.

Zelw atist
(alist)

This function returns the current association list, which is
a List of dotted pairs pairing fluidly bound variables with their
pindinys at all Levels on the stacks

(The user gdoing sophisticated alist manipulations will note
that the alist alsoc <c¢ontains one or more atoms which print as
“"I1",., Thnis is a marker which is placed on the alist whenever a2

new tevel of LISP supervision is entered (ie., at the beginning
of the run and whenever the LISP function is used) to mark where

the tevels of supervision are on the stack and to assure that the
dl1st 15 never empty. Since ASSOC skips over non—ccns nodes when
looking through an association Llist, these markers pose no
protlem for ASSOC, though user-defined functions should watch out
toCe)

EXamiJKG!Sl

(csetq tookup (lambda (atm)
(assoc atm (alist))))

This function lLooks its argument up on the alist,
and returns NI1L if 7t is not there, and its dotted pair
it it is.,

a7 rand

Ing

(rand <al1> <a2> .+ « « <an>)

This function returns ope of its arguments at random.

Examples.

{csetg die (Lambda nil
(ranag 1 2 2 4 5 £)))

14 Jul 1978 Maryland LISP Keference Manual 29

This defines a function which wilt roll an imaginary
die and return the result,

14 dut 1678 Maryland LISP Reference Manual 30

z, S~Expression Manipulation Functions

The functions described in this chapter are used for
manipulating LISP s~expressions. They are: CAR, CDR, CONS, *CAR,
*CH2, EGy, ATOM, NULL, MEMBER, EQUAL,y MAPC, MAP, INTOs ONTO,
INDFEX, ONDEX, RPLACA, RPLACD, NCONC, LIST, APPEND, LENGTH, SUBST,

CvERSEy NTH, enc ASSCOC,

The user should note that in addition to the (AR and (DR
functicns, it is possiple to use (<ad>R as a function name, where

<ag> stands for any string of 0 to 35 A”s and D”s, in any
combineticn,

Examoles.

(car (A . B)) = A

{cr “(A + BY) = (A . B)

(cadadr “(A B C D EY)Y = D

{cadadadr “(A (B (C DX))) = p

(cadr x) = {car (cdr x)}

(caddaar x)} = (car {cdr (car (car (cdr x3)))))

0t tne functions in this chapter which may take Lists as
aryuments, the following functions also allow extenced lists
(e.oy (A3 C o« D))y and handle the non-NIL “tail™ as though it is
NIL:

MEMBER MAPC INTO
ONTO NCONC APPEND
LENGTH REVERSE NTH
ASS0C

2.1. basic Functions

Jelele cer
(car <obj>)

Returns thne left pointer of the cons node <obj>. An error
results if <obj> is not a cons node.

Ietete car
(cdr <opj>)

Returns the right pointer of the cons node <obj>. An error
results if <op3> 1is not a cons node,

14 Jul 1678 Maryland LISP Reference Manual 21

3.1e3 cons

(cons <obj1> <obj2>)

Creates a new cons node whose Left pointer is <obj1> ana
whose right pointer is <obj2>, where both arguments are arbitrary
LISPF ocujects.,

3.104: *car

(*car <cbj>)

Same as (AR except no type-checking is performed on the
argument <obj>. The +«CAR of an atomic symbol, for example, is

its value cell,

Zelele kcdr

{*cdr <ob)>)

Same as CDR except no type-checking is performed on the
argument <obji>. The *({DR of an atomic symbol, for example, is

its property List.

3.2+ S~Expression Preaicates

Telele €q
(eg <s1> <s2>)

Returns T if <s1> and <s2> are pointers to the same memory
locationy, and NIL otherwisce.

Examples.

(eg x x} =T if x is an atomic symool
{eq (cons “A “B) (cons “A “B)) = NIL
{(Lambaoga (a3Y (eg a a)) x) =T tor any x

. - equal
(equal <s1> «<s52>)
See also the definition on page 82,

Returns T if <s1> and <s2> have the same structure and
content, and NIL cotheruise,

Examples,

(equal “(A . B) (cons “A “E))

(egual (adal &7) (subt1 49)) = T
(equal "S" “S) = NIL

T

14 Jul 1978 Maryland LISP Reference Manual X2

(equal (lLambda nit nil) (lambda nil nil)) = NIL
If ¢egq x y) = T then (equal x y) = T,

Telele atom
(aotom <a>)
Returns NIL if <a> is a cons noce anad T otherwise.,
Examples.
(atom “(A , B)) = NIL
(atom “XYZ2) =71
(atom 4S2) = 7T

(atom ™THIS IS A STRING™) =T
(actom (lampda (x) x)) =T

tad

AN null
(nuil <a>)’

Returns T it <a> s the atomic symbol NIL, and NIL
otheraisce.

3.205. mEmber
(memocer <a> <{>)

It <8> is EQUAL to one of the top~level members of the Llist
<k>, this function returns that sublist of <l> which begins with
the tirst occurence of <a>, Otherwise, NIL is returned. If <a>
s an atomic symbol, then a "“fast™ E& is used to make the
egquality test. OQOtherwise, an explicit call on EQUAL 1is made.
The MEMBER function”s implementation could be coded as:

{csetqg member (Lambda (a2 L) \
(membert (cond ((equal (type a) 7) eq)
{t equal))
a LM

{cserq member? (lambda (fn a)
(cond ({atoem L) nil)
{In a (car L)) 3 :
{t (memberl fn a (cdr LI)) 1))

Examples.

(member “A& “{(B D C E X)) = NIL

(member “(A B C) “(D E A B C F)) = NIL

(member “(X 3) “{(a 3) (B 9 X 3) (B 1N
= ((X 3) (B 1))

(member "W “(A B W X Z T)) = “(Ww X 2 T)

(member x NIL) = NIL for any x.

14 dul 1978 Maryland LISP Reference Manual 23

(member “A (8B (A C))) = NIL

3.3. Function Application Functions

2.3.1, liﬂtO

{(into <L> <fn>)

Applies the function of one argument <fn> to each member of

the Llist <l>, returning a Llist of the results. The functian
could e written this way:

(csetq into (Lambaa (L fn)
{cong ({(atom L) nil)
{t (cons (fn {(car 1})
(into (cdr L) fr))) 3))

Examples.

(inte “(A 8 € D) List) = ((A) (B) (C)} (D)}
(into “((A « B (C .+ 4) (WYSS « XX))

car) = “(A C WYSS)
(into NIL tn} = NIL for any function fn,

Zelels Mmapc
(mapc <L> <fn>)

Appiies the function of one argument <fn> to each member of
the List <>, and returns NIL. MAPC could be written as:

(csetq mapc (lambgda (Ll ¥n)
{conag ({atom L)Y nil)
(t (fn (car L))

{mapc (cdr L)Y fn)) 2))

Examples.
(mapec “(F1 F2 F3) {(tambda {fn) {(cset ¥n nil)})

This sets each of the atomic symbols F1, F2¢, and F3
1o NIL and returns NIL.

(csetg message (lambda msgs
(mapc msgs print) (terpril))

This tunction takes any number of arguments, and
prints them all out on the same Line.

MAPL is often &an efficient way to replace Lloop

14 Jul 1978 Maryland LISP Reference Manual 24

constructs in PROGs by making the LISP system do the
toopings For example, the REV function given as an
example uncer PROG could be rewritten as:

{csetq rev (lLambda (L)
(prog (r) '
(mapc L (lLambda (x)
(setg r (cons x r)l)))
(return r3})))

Similar constructions can be done with ONTO. In any
eventy, because of the overhead involved with PROGs and
SET®s, & recursive algorithm Js wusually competitive
(providea there 1is no ocanger of running out of stack
spaced.

JTedele cnto
(onto <> <fn>)

This function apelies the function <fn> to <l>», and to each
successive CDF of <i>, and returns a Llist of the results. The
functicn coultd be written as:

{csetg onto (lLambda (L fn)
{cona ((atom L) nitl)
(t {cons (fn L) {onto C(cdr L) ftn))))))

Examples.

(onto L car) = L for any list L.

{onto KIL fn) = NIL for any tuncticn fn.

{onto “{(1 ¢ 3 4) {(tembda (L) (times (stack 1))))
= {24 24 12 &)

(onto “(X Y W U) reverse)
= (U W Y X)) (U w YY) (U W (UM

Teldeda fMMap

(map <[> <fn>»)

This function applies the function <¥fn> to <i{> and to each

successive (DR of <l>, and returns NIL. The function could be
written as:

(¢setg map (lampda (L fn)
{concg ((atecm L) nil)
{(t {(fn L) (map Ccdr L) fn)) 2))

14 Jul 1978 Maryland LISP Reference Manual 15

Examples.

(map “(1 2 3 4) print) would print:
(1 2 3 43

(2 3 43

(3 4)

(4)

305050 index
(ingex <L> <e> <fn>)

This function defies verbal explanations Basically, given a
non-hIL list <i>, any LISP object <e>, and a two-argument
function <fn>, it computes:

(fn Cecar L) (fn C(cadr 1) (4se (fn (C3Ceesedr L) @) see J)).
The function can be written as:

(csetqg inoex (lampaga (L e fn)
(cong ((atem L) e)

(t (fn (car L) (ingex Ccdr L)Y e fndY))2}

Examples.,

It L = (x1 X2 X2 X4), then (INDEX L E FN) =
(FN X1 (FN X2 (FN X3 (FN X4 EJDI))

(index “((A B C)(D £ F)(G H 1)) NIL append)
=(AB L DEFGHD
(index “(A B CD E) “F cons)

= (AB £DE « F)
(index “(1 2 3 4 5) C plus) = 15

(csetag minval (lambda (nl)
(index (cdr nl) (car nl)
{lambda (x y)
{cond ((lessp x vy} x)
(t y32))))

This function returns the smafilest of a list of
numbers.,

3e346 ondex

(ondex <L> <e> <ftn>)

Tnis function is similar to INDEX, and it alsoc defies verbal
explanation., Given arguments of the same description as those
required for INDEXy it computes:

14 Jul 1978 Maryland LISP Reference Manual 36

{(fn 1 {fn Ccar L)Y { sae (¥n (cdasedr L) €) oses X)),
It ¢ten pe written as:

(csetq oncex (Lambda (L e tn)
{cong ({atom L)} ¢)

{t {(fn | (ondex (cdr L) e fn))))))

Examples.

If L = (X1 X2 X3 X4) then (ONDEX L E FN) =
(FN “(X1T X2 X3 X4) (FN “(X2 X3 X&)

(FN “(X3 X4) (FN “(X4) EXIM)
{ondex “(1 2 T 4) NIL List}

= {((1 2 T 432 3 &)C3 4) ((4) NILIDD))

(csetq artist {(lambda (subs)
{ondex (cor subs) “(1) (tambda (ilp Lr)
{cons (times {(stack Lipl)) Ler))3))

This function is used by the Maryland LISP Array
Lrackage to compute the coefticients to be used when

computing an 2aocdress in a8 muiti-dimensional array, See
(Kknué8], Section 2el b, Page 296 on "Sequential
Altocation™ of arrays. This function computes the
alrl”s,)

Je4e S—=Zxpression Pseudo-Functions

30‘1-1- f‘;:')laca

{rplaca <cn> <ot ji>)

Feplaces the left-side pointer ot the LISP object <en> by a
rointer to the LISP object <obj>, returning the new value of
<cn> .

Exaemples,

(csetg makeunbound (Lambda (atm)
{rplaca atm (xcar Jq))))

This function removes the constant binding from an
atomic symbol.

if the following s-expressions were EVALuated:
{csetqg X1 “(A . B))

(csetg X2 X1
(rplaca X1 “C)

14 Jul 1978 Maryland LISP Reference Manual 37

then both X1 and X2 will have the vailue “(C . B),

2
-

s4e2s rrpltacd
(rplacd <cn> <obj>)

Replaces the right-side pointer of the LISPF object <ecn> by a
pointer to the LISP object <obj>, returning the new value of
<Ln>.

Examples.

{(csetqg ::
(rplace ::7T1 ::7T1)
(rplacag ::T1 ::71)

This creates a ccns node whose pointers both point
at itselt, making it wunprintable and generally quite
dangerouss

(csetg circularize {lambda (lst)
(cond ((nutl Lst) nil)
(t (circularize? {st Llst)) 2))
(csetq circularizel (iambda (start (st)
{cond ((null (car Lst))
(rplacd Llst start)
start)
(t {circularizel start (cdr Lst)}))}

This cefines a function which, given a List, makes a
circular list out of it. Even though such objects are
sometimes wuseful, they should be used with great care,
For instance, the foltowing would result in an infinite
ioop:

(length (circutarize “(A B C L E)))

Zet o3, ncanc

{nconc <i1> <L2>)

Changes the CDR of the last cons node in the list <l1> to
point to the List <i2> and returns the new <L1>,

Examples,

If the feoilowing s-expressions are EVALuated:

(csetg X1 “C(A & C))
(csetg X2 “(b E F))
(csetg X3 X1)

{csetqg X1 {nconc X1 X2))

14 Jul 1978 Maryland LISP Reference Manual x8

then X1 ana X2 would poth be bound to (A B C 0 E FJ.

(csetq circularize (lLambda (Llst)
{nconc Lst (st)))

This is a faster way to create a circular List.
«5+ (ther S-Expression functions

3eS5e1s List
(list <el1> .+ » « <ek>)

Returns a lList containing the elements <el1> through <ek>.
Note that this function could be written as:

(csetg List {lambda elts elts))

Exemibles,

(List “A "8 “(C D EY 24) = (A B (L D E> 34&)
(list “XYZATOM) = (XYZATOM)
(list) = NIL

ZaS5ele append

(append <t1> <123

Returns a List whose members are <11>"s members followed by
<LZ>“s. In the result, the tons nodes representing the List <L¥>
have ceen copied while those forming the List <i2> are part of
the resulte This function could be written this way:

(csetq append (lLambaa (L1 (2D
(cond (Catom L1) 12D
(t C(cons {(car (1) (appena (car L1) 12))) 3))

Examplies,

(appenag “(F 0 0) “(8 A Z)Y = (F Q0B A 2)
(we give equal time to foobar and foobaz,.)
{appenag NIL x) = x for any List x.
{appenc x NIL) = x for any List x.
{append NIL NIL) = NIL
(appeng “A “(B C)) and (append “(A B} “C} are jllegal

(W8]

e >els tength

{length <L>)

14 Jul 1978 Maryland LISP Reference Manual 19

Returns the number of elements of the List <L>. The
function could be written as:

(csetg length (lambga (L)
{cong ((atom 1) 0)
(t Cadd? (length {(cdr L32Y))3

Examplies.,

{length “(A & C)) = 3
(length NIL)Y = C
(Length “(A B C b » EX)Y = 4

3.5 44, subst
(subst <new> <otd> <sexp>)

Returns a copy of the s-expression <sexp> in which all

occurances of <old>» have been replated by <new>. This function
could be written as:

{csetg subst (lLambda (new old sexp)
(cond (fequal sexp olo) new)
((atom sexp) sexp)
(t (cons (subst new old (car sexp))
(subst new old (cdr sexpll)}))1))

Examplese.

(subst “X 7Y “{((Y W) ¥ ¥Y) (w X ¥)))
= (00X WY X XY (W X X3)
{subst “(A « B NIL “{(A B8 C D)) = (AB CD A, B)
(subst “{L7T L3Y “C(4 RY “C€(& 7Y (& (4 RY)Y (4 RID)
= (4 Ty (& (LT L3))Y (L1 LZIYM)
{eval (subst & “X “(plus 1 2 X ZX)) = 12

Z2e545, reverse

(reverse <{>)

Returns a copy of the list <L> with its elements in reverse

aorder, The REVERSE function couid be implemented through these
definitions:

(csetg reverse (tambda (1)
(reversel L nil)))

(¢setq reversel (Lambda (L s)
(cona ({atom L) s)
{(t (reversel (cdr LY (cons (car L) s))3 23

14 Jul 1978 Maryland LISP Reference Manual 40

Examples.

(reverse “(A B C D)) = (D C B A)

(reverse (reverse L)) = t for any tList (.
(reverse NIL) = NIL

(reverse (X)) = (X)

(reverse “(CA B) (C DX)) = €(C D) (A B))

el 4G nth
(nth <L> <n>)

Returns the <n>th sublist of <l>. 1f <n>, which must be an
integer, s positive, then the result is what would be computed
by taking <n>=1 C(DR”s to <i>. If <n>-1 (DR”s <cannot be taken,
then NIL 95 returned. If <n> is zero, the result is NIL. 1% <n>
is neyative, then <s>+<n> (DR"s are taken, where <s> is the
LENGTH of <Ll>, s5¢ that a List consisting of the Last <n> eiements
ot <Ll> is returned.s The function could be written as:

(csetg nth (lampda (& n)
{(cond ((ierop n) nit)
((lessp n Q) (nth1 { (ptus (lLength L) n)
{Length ()))
(t (nth1 L (sup1 n) (length L))))}

(csetg nth? (Lamboa (L n s)
{cona {({greaterp n s} nil}
(t (nthe L n))))}

(csetq nthZ {tambda (L n)
(conuo ((zerop n) L2}
(t {nth2 (cdr 2 (subt n)))} X))

Examplies.

(nth L 0) NIL for any Llist L.

(nth L 1) L for any List L.,

(nth “(W3 PD2 G&7 & A) 2) = (PU2 G&7 6 RA)
(nth “(F 00 B A RY =1) = (R)

{nth “(ET1 £2 E3 E&) 7) = NIL

t

(nth “(A B« €) 2) = (B «)
(nth “(A B, € 3) = ¢
(nth “(A B . €} 4) = NIL

3¢547 as5so0cC

(assoc <e> <[> <m)
{assoc <e> <{>)

This function is used to Lloock wup wvalues on association
tists. The second argumenty, <L>, should be a Llist of
s-expressions. Any atoms in <{> are dignored. The result is the

14 Jul 1978 Maryland LISP Reference Manual 41

<n>th element of <!> which has <e> as ¥ts CARs The defasult value
for <n> s 1. If there are not <n> such elements, NIL is
returned. If <e> is an atomic symbol, ASSOC works in a "fast"
mocge in which single~instruction EQ tests are made for equality.

Otherwise, an expticit call on EQUAL is made, 50 that the ASS0C
functiocn”s implementation could be coced as:

(csetq assoc {(lambda (e L . n)
(assoc] (cond ({equal (type &) 7) eq)
(t equall)
L (cond (n C(car n)} {(t 1333))

(¢setq assoc) (lLambda (fn e L n)
Cconag ((atom L) nil?
((atom (car L)) {(assoct fn e (cdr L) nl}
({egq e (caar L))
(cond ({equal n 1) {car L)}

(t (assoct fn e Ccar L)Y (subtl n)))X))
(t {assoc1 fn e (car () n)))3)

Examples.

(assoc "X “CCT + $X(LSSC « 140Y(X 4 PI(T 7))

= (X + P)
(assoc "W “CA B (W YY) (E - RY X)) = (W Y)
{assoc x NIL) = NIL for any x.
(as80c 94 “((45 . ADX3) (94) RR . PL3I)I) = (94)
{assoc "W “{(W o &) (X & 33 (W « ®)F 23 = (W « %)
(assoc “RR “((RR . RR)Y (RR . E)Y (4 . PLW))

3y = NIL

14 Jut 1478 Maryland LISP Retference Manual 42
4. Atom Manipulation Functions

The functions in this chapter are used to manipulate atomic
symbols. They are: ATOM, GENSYM, STRING, ATSYME, *CAR, *(DR,
COMPRESS,_EXPLODE, EXPLODEZ, REMOB, and ERASE,

4.1+ ostom

(atom <sexp>)

See the definition on page 32.
bede zensym

(ygensym <a>)}
{(yensym)

This function returns 3 unigue atomic symboi. The symbol
which is returned «il1l have a print name which is an integer, but
will e printeg as the print name of the atomic symbol <a>
followed oy the integer, The cefault value for <a> is the atomic
symoel G. Symools produced by GENSYM do not exist in the oblist
ans will not ©pe recognized by their printed names by the dinput
routine. They are also subject to garbage collection when no
longer in use.

Examoles.
(gensym) = G1 {it this is the first call)
(gensym “NEW~ATOM#) = NEW~-ATOM& 2 (next call)
(string (gensym2) = 3 (next call)

balde string

Sce the definition on page 92.

bebo étsymb

See the definition on page 92.

balae *C&r

See also the definition on page 31,

When its argument is an atomic symbol, *CAR will return its
valuey, ¥t any, ana garpage otherwise.

14 Jut 1978 Maryland LISP Reference Manual 43

Examples.

{(csetq boundp (lambda. (atm)
(not (and (null (assoc atm Ccdr Calist))))
{eq (*car atm) (*car 0gQ)))))

This defines a function which returns T #f dits
argument is a fluidly or constantly bound atomic symbol,
and NIL otherwise. The CDR of the atist is used so that

ATM witl not appear bound unless it was bound before the
call on BOUNDP.

baboa *cor

See alsc the cefinition on page 31,

when its argument is an atomic symbol, *{DR returns 1its

property Lliste. When initialtly created, atl atomic symbols have
nutl property Listse.

Examples.

Suppose A has a null property list, If we do:

(put “A 71 “V)

(csetq x {(*xcdr “A))

(put “A 1 “w)

then X will be bound to ({1 + W),

4.7+« compress

{(compress <L>)

This function takes a List of single-character atomic
symbols <Ll> ana produces an atomic symbol whose print name is
produced by making a string of the print names of the wvarijous
atomic symbols in <t>. If all the atomic symbols on the list <l>
have print names which are digits, then the result is an integer.

Examples.

{(compress “(f 0 O B A R})) = FOOBAR

(compress “(!'1 R 'y, T !9 U)) = 1R,TOU

(compress “{1 2 3 4)) dis trash, but

(compress “(F1 12 13 14)) 1234, an integer.
(compress “(AB CD EF GH)) ACEG (put don”t do this)

n #

4.8, explode

{explode <a>»)

This function produces a list of atomic symbols which can be

To Jul 1978 Maryland LISP Reference Manual 44

COMPKESSed to form the atomic symbol <a>, The print routines are
used to ce this,

Examples.

{exploae “ABCDEFG) = (A B C DE F G)
(compress {(explode x))} = x

This works for any atomic symbol x not created by
GENSYM, (For gensymsy see the INTERN example below.) It

atso works for a number of other things that it wasn”t
really intended for,

{compress (append “(A T 0 M} (explode 137))) = ATOM137
(exptocge 12345) = (1 2 3 4 5)

But be carefuly cecause the resutt (1 2 3 &4 5) is a
List of atomic symbolsy not a List of numbers.

(csetg intern (lambda (gen)
(compress (explode gen)))}

This function takes & GEMSYM-created atomic symbol
any returns en atomic symbol which has a string
print-name field and which is Llinked into the oblist,
Thus (intern (gensym)) will always return a
non-carbage-coltectable atomic symbol which will be
recognized on inpute.

Le9s explode?

(explode2 <a>)

Tnis function is similar to EXPLODE, except it wuses the
PRINZ print routines to produce escape characters where needed in
the exploded result,

Examples.
(exploce2 “AB!'(1!x) = (A 8 'Y 1 vr 0 x)

.

where the escape characters (') are the ones which
woula pe PRINZ ed.

4e1C e remob
(remob <at>)

This function, given an atomic symbol, removes it from the
onplist, If the argument s either a yensym or not an atomic
symbbcly NIL is returned, cotherwise a pointer to the atom itself
is returned., Note that REMOE“ing an atom will not cause a

14 Jul 1978 Maryitand LISP Reterence Manual 4%

dangling pointer, since the symbol will not be garbage collected
until no other LISP structures point at it., However, REMOE ing
an a&atom and then attempting to reac it in before it is
garbage-collectea wilt cause two copies of the atom to be present
in the systemy, so that this is not a good practice. Needless to

sayy One should not seriously attempt to apply REMOR to NIL or
any other necessary atomic sympol.

4,11, erase
{erase <1>)

ERASE reverts all the atomic symbols on the list <l> to the
default conditiony that isy no wvalue and null property List.
ERASE always returns NIL.

Tne function coute be written as:

(csetqg erase (Lampda (alt)
(mapc a4l (lambda {(atm)
(rplaca atm {(*car 0q)) {(rptaca atm nil2)) M)

Examples.
(erase “(V] V2 XRTVAR))

This eliminates the values ang property {ists of the
atomic symools ¥1, V2, and XRTVAR.

(opblist (lambda (atm) (erase (List atm))))

This would dgestroy most of LISP before either ERASE
or LIST pecomes unusable.

T4 Jul 1978 Mmaryland LISP Reference Manual L4

Se Value and Function Definition Functions

Trne functions documentea in this chapter are used to define
tunctions and other objects as the values of atomic symbois.
They are: CSETQ, CSET, SETa, SET » DEFINE, DEFSPEC, DE FMAC,
LAMBDA, LAMDA, andg FUNCTIOCN,

5¢1e WValue Assignment Functijons

5¢T 4l csetqg
{(csetg <a> <wvw»)

Tnis is a specfal form which makes the atomic symbol <a>
constaently bouna to the value <v>, The first argument is not
evaluateo but the second one ise.

Cetace cset
(cser <a> <y>)

This is the same as CSETQ, except both arguments are
evaluatea, Thus, whatever is given for <a> should evaluate to an
gtumic symbole.

Celala setq
{seto <a> <wv>)

Tnis special form makes the atomic symboel <a> fluidly bound
te the value <y>, Like C3ETQRy the first argument 135 not
evaluated, but the second is. If <a> already has & constant
vindiny, SETG acts Like CSETG.

Salabds set
(set <a> <vy>)}

This function is Like SETd, except that both arguments are
evaluated,

Eelabe gefine
{define <pil>)

The DEFINE function, given a list <pl> of the form ((<at1>
<vall>) ses (Katn> <valn>}) assigns <ati> the value <vali> for
each iy and returns a Ltist of the <ati>’s., Each <vali> s
EVAL ec opefore its assignment dis made (eg., first <vall> is
EVAL ec and <at?1> is 3assigned that value, then <val2> is EVAL"eq
anu <ati> is assigned that value, etc.). The RPLACA routine is
usec tu make the assionments, sc that special forms and macros

14 Jut 1978 Maryland LISP Reference Manual 47

may not be createc this waye. The DEFINE function may be written
as:

(csetg detine {(lambda (pl)
(inte pl (Lambda {(avpr)
{cset (car avpr) (eval (cadr avprl))
(car avpr))}))

5«2« Function Assignment Functions

5«2¢%7« defspec
(cdefspec <a> <y>)

This function defines <a> to be a special form of the
function <vy>. The first argument, <a>, s not evaluated, and it
is given a giloval pinding. This binding consists of a speciatl
form Linker noge which in turn points at the resutt of EVALuating
<v», which should be a regular function®s linker node or a
pointer &t compiled or system code.

Examplese

{gefspec sfcons cons?
(defspec foobar (Lambaa (x y 2) {(list z x ¥}

Given these definitions, the following are true:

(sfcons A B)Y = (A « B)
(sfecons X (EVAL L)) = {X EVAL L)
(toocpar A W K} = (K A W)

Eelece dgetmac

(gefmac <a> <y>}

This is like DEFSPEC, except that it defines macros rather
than special forms.

Examples.

(defmac cetun (lambda {(name typ arys . stmts)
(list (cond ((eg typ “expr) “csetg)

(Ceg typ “fexpr) “defspec)
(t “defmac))
name (cons “lambda {(cons args stmtsl)))))

This defines the DEFUN function, which 1is the
standard way of defining functions in many other LISPs,
As an example of its use, consicer the following:

(defurn push fexpr (atm lstname)

14 Jul 1978 Maryland LISP Reference Manual 48

(cset Llstname (cons atm {(eval Lstname))))

5¢%+s Function Definition Functions

Selate {ambda
(lambda <args> <bodyl1> , . . <bodyn>)

This special form creates a function definition which
accerts arguments as given by <args>, ang evaluates <bady?l>
through <todyn>, returning <bodyn>”s result as its value. The
first aryument, <args>, should be either a List of atomic symbols
or a single otomic sympol. In the former case, each named symoot
is bouno to an argument which is passed to the defineg function.
1f there are not enough, &n error message will result. I¥ there
are too many aryuments, the extras will be thrown aways unless
the Li>t <arys> is an extended listy, 1in which case a Llist
containing the extra arguments is fluidly bound to the “extended"
entry of the argument Liste. I1f <args> 4s an atomic symbol rather
then = Aisty, the defined function will take any number of
aryumentsy, and all the arguments are put on a List which is
fluicly pound to this Lone atomic symbol.

Fxarples.

{csetg aad3 (lambda (x y 2z
{plus x y z %))

This 1s the noermal wuse of LAMBDA, wherein the
argument Llist is just a tList of atomic symbols.

Note that an atomic symbol which has a constant
binding may not be specified 1in a LAMBDA or LAMDA

argument List or in 3 PROG {local vartable List. Because
¢f this, the follewing is in error:

{csetqg foopar (Lambda (f) . 4+ &3

(kemember that F has a constant bincding, namely NIL.)

(csetg asm (lambda (ccue + options) « + +})

This 3s how the PFaryland LISP assembler hanales
gpticnal argumentsy in this catey, assembler options. 1If

it ¥s calttled by (asm mycode “X “Y “N), then OPTIONS gets
the binding (X Y N).

{csetg tracetn (lambda (atm fn . args)
{(mapec C(List “™CALLING: ™ atm ", ARGUMENTS: ™ args)
print) (terpri)
(tn (stack args))))

14 Jul 1978 Marylano LISP Reference Manual 49

This is a typical sort of function one would send to
BREAK to trace the entry of a8 certain function,

(csetq nargs (lambaa tst (length lst)))

This tuncrion returns the number of its arguments.

Ealdade lamda

(lamda <args> <bodyl1> « « « <€LOCYN>)

This functiocn is just like LAMBDA, except that it ensures
that whenever the function it defines is entered, the alist which
will be used i1s the one which was present when LAMDA was entered
to define the function. LAMDA shoulc be thought of as follows:

(cefmac lamda (lambda args
{iist “function (cons “lambda args)’)))

Examples,

(csetqg compose {(lambda (fn1 £n2)
{lamda args (fn1 (fn2 (stack args)}))))

This cgefines a function which, g¢iven two reguiar
function definitions {no speciat forms or macros

allowed)y returns a third which is a composition of them.
For examp le,

(csetq composelist (Lambaa (ftnlist)
{cond {{null {(cdr fnlist)) (car fnlist))
(t {compose (car fniist)
(composelist (cdr fnlist)))) J)))

would dgefine a function which, given a List of regular
functionsy would return a composition of them all. Of
course, atl but the last function in the list is assumed
to take Just gone argument, and the composed function
takes the same number of arguments as the last function
in the list,.

As anocther exampule of ComMPOSE, consider the
fotlowing:

(csetg f1 (lambda (y) (lList args y)))
(csetqg f2 plus)
(csetg f3 (lampda (args)

({compose f1 #2) 1 2 213})

The function F3 will not work as desired because of the
free variable in the gefinition of F1. See the examples
unhder FUNCTION for the solution to this.,

14 Jul 1978 Maryland LISP Reference Manual 50

5'3.3! 1Unctioﬂ
(function <tm>)

This takes as its singlie argument a function <¥fn>, and
returns & version of <fp> which will substitute the atist in
etfect when FUNCTION was entered for the current one while ¥t is
running., The concept of FUNCTION is one of the most important in
current control structure research. A goocd reference on the
intention and possibilities ot FUNCTION 1is [Mos7G].

Examples.

The proolem referred to in the example wunder LAMDA
occurs because free variables in functions being composed
might accidentally refer to variables bound in C(OMFOSE
itsetf, To fix F3, one might do:

(csetg f3 (lambda (args)
{({compose (function 1) (function f2)) 1 2 33))

Given the following definitions:

{cseta bump {lambda nil
(ser1qag x (add! x)) x2)
(csetq skip (lambda {(x y)
(calter (functiorn bump) ¥)))
{csetq calier (lambda (fn x)
(fn)))

then (skip 3 7) = 4, since BuMP changes the X in SKIP“s
frame rather than the one in CALLER s.

An alternative to the FUNCTION function is what s
known in the LISP Machine impltementation of LISP [Gre?71]
s the CLOSURE functicn. This function, given a tist of
variables and a function definition, returns a function
which, when executed, will attach the CLOSURE-time values
ot the variables given to CLOSURE to the front of the
current atlist, thus guaranteeine that the given variables
will have the proper values in the function. In Maryland
LI1SP, the CLOSURE function could pe «ritten as:

{defmac closure (tambaoa (vars ftn)
(List “lambda (arys fn)
(list “eval (list “quote (cons fn (args ¥fn)})
(List “append (list “quote (into vars
(Lambda (var) (cons var (eval wvarl}l))))
“(alistl))) »N

{ARGS is a function which, given a Linker node, returns
the argument Llist for the node.,) As an itlustration of
the (LOSURE function, consider the following example,
mace comprehensibie in [Ste?&] and [Gre?71:

14 Jul 1978 Marylana LISP Reference Manual 51

(¢csetqg generate-sqrt~of-given-extra~-tolerance
(Lambda (factor)
(closure “(factor)
(Lambaga ()

((tambds (epsiion) (sgqrt x?)
(times epsilon factorl)))))

In this exampie, SQRT is a function which computes the
sguare root of its argument to within a tolerance given
as the free variable EPSILON., This function returns a
version of S4RT whose error tolerance is greater than
EPSILON by a factor of FACTOR, where FACTOR is evaluated
unce when CLOSURE s called and EPSILON is evatuated each

time the new square-root functicon is <calleds As ap
example,

(setg epsilon J.01)

{setq sarts (generate-.ss—-tolerance 4))

(sqrt $.0) = 2.99 where [9.070.5 = 2.%991 < 0.0
(Sqft& 16-0) = 4.@4 where |16-0“‘1.5 - 4.”4' S G-O‘t
(setqg epsilon u.02)

(sgqrt 2.0) = 1,395 where }J2.070.5 - 1.395] £ 0.C2
(sarté 0.25) = 0.42 where |0.257°0,5 - 0,421 < 0.0C8

14 Jul 197 Maryianc LISP Reference Manual 52

G Input~Qutput functions

The functions definec here are READ, READREC, READCH, TOKEN,
CLEARBUFF, CURCHAR, SeTCOL, BACKSP, READMAC, DELIM, ENDCHAR,
PRINT, PRINIT, PRINZ CURPCUi o TERPRI, SPACE, DIGITS, PLINIT,
PLENGTH, PLENETHC, AXMIT, AXMITH, AREAD, FIDOPEN, FICLOSE,
FIPRINT, FIREAD, FIERASE, FIDROP, FIPACK, FITOC, FIPRINTREC,
FIREADKEC, COFPYOUT, and {(OQOPYIN,

SeTe Input Functions

Gelele Input Parsing Functions

6etelein reag

(rezg)
(read <prompt>)

Reacs the next s=-expression from the input stream, or if
CLEARBUFF has been used to reud from s sequential file, from the
fite. The result s 1tne object reace. 1¥ FREAD encounters an
eng-cf-file white reading from the normzt input stream, LISP will
termin.tey, anu if an enc-of=-tite 1s found during file input, an
(EKRCY =~11) condition will be uenerated.

I+ ¢n argument 1is given tu READ, it should be a string which
will De Lrintec as a prompts The promat #ill not be printed if
tfile 1/0 1s taking place.

Calalade token

{token?

(token <prompt>)

Returns the next token in the dnput stream. A token 1is
either & delimiter, o string, or a sezuence ot digits, letters,
ang non=celimiter symbols surrcunded cy celimiters. The result

is an atomic symuoly, 2 numver, or s string,

If an argument is given, it should be a string which will be
printec as a prompts The prompt will not ve given if file 170 is
GCCuLrring,.

Examples.

Suppose the following function were defined:

14 Jul 1978 Maryland LISP Reference Manual 52

{csetqg tokengrabber (lambda nil
{prog ((lst nil))
loop {setag tst (cons {token) Lst))
{cond ({nult (car Llst))
(return (cdr Llst)}))
(go Loopll))

Then the following exchange might take place:

EVAL ¢ (DO (PRINZ2 (TOKENGRABBER)) NIL)

(A Mg *x" C (23 g ., F)) NIL <~ user
(') Y)Y F ', E V7 23 (€ vwEg xm A V() <- LISP
VALUE: NIL

Celalale readmac

(readmac <c> <fn>)
{readmac <c>}

This function establishes 2 status for the character {ie.,
one-character string) <c¢> in the reaomacro table used by the LISP
Stanners The second argument, <fn>, shoulag pe a function of no
argyuments which should be appliec whenever the character <¢> s
rarsed in the input stream. The result of the function is the
olo readmacro taple entry for <c¢>,. 1t <fn> %s omitteac, the
ceurrent entry will De returneg ana there will be no effect., The
character <c> can ve cancelleo as & readmacro by submitting NIL
as the wvalue cf <¥fn>., Inftiatly, the readmacro characters are
M, oM, MM, and "7, where the first is the “quote™ character,
the next two are treated as atl-purpose delimiters, ang the tlast
is usea for comments.

Examples.

The readmacros for the four characters just
mentioned coulo be defined by:

(readmac """ {(Lambda nil (list (quote guote) (read))))
{readmac " " read)
(reacmac ", (readmac " *))

{readmac "?" (Lambda nitl (clearbuff) (read}))

S5elotobae detinm

(gelim <c> <wv>)
(delim <c>)

This function sets or retrieves the delimiter table entry
for the <character ({ie.y one-character string) <c>. The second
argument <v>, if given, should be either T or NIL, meaning that
<¢> should or should not (respectively) be a delimiter. A
detimiter 3s a character which is always parsed at¢ a separate
token, provided it dJdoes not occur in a string and it is not
preceded by the escape character, "'», The value s the old

14 Jul 1%78 saryitanc LISP Reterence Manuel 54

gelimiter tacle ontry tor <¢>, 1f <y> is omittec, the current
entry 18 returneg ana no channge is made .

Examrples.

The DELI® function helps make the Marylane LISP
scanner very versatile. For example, the Stanforgc MLISP
program uses the normal scanning functions (especially
TGRKENY &no a straightferwerc recursive descent parser to

handle an ALSOL-type sSyntax. in orcer to scan
capressions properly, the scanner must cause TOKEN to
scan cut arithmetic, lociczl, and list-manipulation

vperators as separate tokens, To do tnis for the
aritnmetic operators, MLISF just executes the following
calls vetore starting 10 scan & proaram:

(delim "+" T)

(aelim ¥=-"T)

(aelim "/¥" T)

(oelim "*" T)

be1¢2¢ Input Bufter Manipulation Functions

6eleZsle clearbuft

(clzarbuft)

Clesrs tne ingut cuffer s no more input tokens c¢an be
parsed from the current [(inee. This function has an alternate use
for file reading which is explainec below.

Geleleie cCurchar
{curcnar)
This function returns as its value the number of the next

position in the dnput buffer to “e processec as input. Butfer
positiuns are numocered starting a2t 1.

Examples.
If this 3s EVALuatec:
(DO (READ) (CSETQ % (CURCHAPDY (hEALD))

and this is entereg 10 be read:

(£ « B) ATOMICSYMEOL

then X will get the value 2.

14 Jul 1978 Maryland LISP Reference Manual 55

betlelelds setcol
(setcol <n>)

Sets the input pointer to position <n> in the current input
Ltine.

6.1-2.‘0- baCksp

{packsp)

Moves the input pointer back cne position in the current
input Lline. There 1s no effect if the pointer is already at the
start of the Line, The wvalue ¥s T, untess the input pointer was
already at the start of the line, if which case NIL is returned.

Examples.

The dinput pointer can be reset to the beginning of
the current Line by doing:

(prog nil
loop (cond ({packsp} (go loopl)))

0f course, (setcol 1) woulo have been a littte faster.,

The following example is based on the algorithm used
by the pighum package to read in lonyg strings of digits
angd process them into bignum representation, When the
readmacro for “°" 45 activated, it calls READCH until it
finds a non~digit, whereupon it backspaces and sends the
List of digits to a function for creating bignums.,

(readmac """ (Lambda nil
(prog ((lst nil) (ctr 1) (sgn (reaach))
(cond ((eqg sgn “=) (setg sgn =-1))
((eq sgn “+) (setg sgn 1))
(t (backsp) {(setqg sgn 1)1}
loop {setqg Lst {(cons (readch) Llst))
(cond ((digitp {(car Llst)) (go Loopl))
(backsp) (setqg Llst (cdr Llst))
(return (makebignum Lst sgnl) 3}))

Note the handiing of the optional sign. DI1GITP, of
coursey s just another bLDignum package function for
checking whether 1its argument 1is the atomic symbol
representation of a decimal gigit.

6:1+5. Record ana Character Reading functions

14 Jul 1874 Marylanc LIZP Reference Manual 56

G140t readch

(reauach)
{readch <prompt>)

Scans the next character in the ingut stream and returns it
as an atomic symbotl. 1f «n &srgument is given to READCH, it
should be a string which will e printec 3s a prompt, The prompt
will nct be printev i¥f tne function is reacing from a file.

5¢Te3ace readrec

{reacrec)
(readrec <prompt>)

Reads tne entire neat Line anac returns it wunparseg as a
stringa. If an argument s given, it should be 2 string which
will cv printed as a prompt, if the function is reacing from a
tile, the prempt will not be printed.

Selebs Fiscellaneous Input Functicuns

541+641« enuchar

(encchar <c>)
(encchar)

Declares or retrieves a character w«hich, whenever scanned as
input, shoulc ve interpreted s an end-of-file. The result 1is
the obkd endcnary, the cefault being the " _ " character.s If the
aryument <¢>, which shoul? ze a sinale~character string, 1is
omitteu, then the current enccher is returned ang no change s
made s

Sses Lutput Functions
te2else 3=Expressicn Frintine Functicons

Ge2elale print
(print <owui>)
This function egite the LISF object <obj> intoc the <current

output buffer anue prints out the whole puffer., Its value is
<00j>l

[

aletecs pfin1

(irinl <ouj>»)
(urinl <ooi> <col>?

14 Jul 1978 Marylamnd LISP Reference Manual 57

This function edits the LISP object <obj> into the <current
output buffer starting at cotumn <col>. The default for <col> is
the first coiumn in the output buffer 1into which no output
character has veen egited. 1f necessary, PRIN1 wiil print the
current output buffer 1o make room for extra2 output. If <col> is
not a positive integer, ocutput editing will start in column 1.

6e2elels pr'inZ

(prin2 <opj>
{prin2 <obj> <col>)

Tnis function 1is Llike PRINT except it supplies escape
characters ano string celimiters to make its output READable by
the LISP input routines,

belaila Output Buffer Manipulaticon Functions

EeleleTe currcol

(currcol)

Tnis function returns the numter of the next position in the
cutput buffer to receive an output tharacter.

OGoceilaioe terpri

{terpri)

This function causes the current ocutput buffer to be printec
aha & new one set upe It has an alternate use for file output

which is described below.

bae3e Output Formatting Functions

bece3als space
{space <n>)

This function causes <n> blank Ltines to be printed. It
<n>=-d, a page-eject will =ve inserted if output 1is being
preakpointed into « print file and 1 blank line will be printed
otherwise.

be20e3ule digits

(gigits <n>)
(gigits)

This function specifies the number of digits to be printed
on output for a floating-point number. The result is the old
number of digits, ano if <n> is omitted, this number is returned

14 Julb 1473 Marylanc LISP Reference Manual 58

without being chan.eds The. initial number of outout digits s 6.
6.{2.3!3. pt'lm'it

(plimit <p>)

(plimit)
This functijon sets deptn &nc Length Limits for the
outputtin: of LISP Listss The argument <p> should be 3 dottec

pair of integers (<d> , <w>), where <ao> is the number of levels
of mesting the output routines will tolerate before printing “E&"™
ang refusing to Gou Jeepgery ano <w> is the number of elements a
list peiny printec may have cefore the output routires print “--*
anu refuse to go furithers The value ¢f the function is the old
pair of plimits., It <p> 4s ¢mitted, the current pair will be
returned unchangeas Tne initiel PLIMIT pair is (10 o 5M),
Examples.

1f the print limits were set to 2 ahd & by:

(plimitv “(Z o+ 42)

then

(erint “C((CA 3) CY D 23 F 6 K I

would print:

((38 D E) F & H =-=))

Dazaba fFrint Lenuth Ffunctions

o
>
s

Zebhale plengtn
(plength <o i>)

This function returns the numter of output positions the
LISP c¢biject <o0cj> would take up if printed by PRINT or PRINT.
Note tnat for Long {(or deep) s-expressions, the printg length s
Limitec ty the current print ltimits, as set through PLIMIT,

Examples.

y

(plenath s) {size s) for ary non=NIL string s.
(plength a) = {size (strinc &))

for any atomic symuol nOot created by CGENSYM.
(ultength 17267531q) = °©
(zlength “(A , B)) =

-f T

It n is an integer, (plength n) can be used to finag
cut now meny digits i1 has.

14 Jul 1978 Marytandg LISP Reference Manual 5¢

b6sleleale plengch
{plength2 <obj>)

This function returns the numper of output positions the
LISP object <obji> would take up if printeg by PRINZ2. Again, the
print {ength of a composite s=-expression is Limited by the print
limits as set py PLIMIT,

Examules.

(plengthz "“ABCD*™) = &
(plength2 “ABCYID) = 6

6«34 ASCII I/0 Functions

Since Marylang LISP does ati dite normal I/0 in UNIVAC s
infamous FIELDATA character sety, i3t 1is not possicie via the
stanuard I1/0 functions to use ASCII control «codes to control
special gdevices. gEecause of tnis, Msryland LISP has three
functions to perform ASC11 character 1/C.

Eelals axmit

(axmit <octi1> €0ct12> oo <OCtnd>}

The AXMIT function takes as its argquments any number of
octal words, each of which represents four AS5CII characters. It

putls these characters into the ASCII output puffer and then cdumps
the cutfer.

There are several things which are important to note. First
the buffer usea by AXMIT (and AXMIT1) is different from the
stangard LISP output buffer. This allows the user to have some
measure of asynchrony (subh as in gevice control) when outputting
from LISP. The second and most dimportant idtem §s a notion
peculiar to Marylend”s computers called FUNNY MODE,

When one requests that an internal buffer pe crinted on a
terminal, EXEL & does not allow the programmer to add a CARRIAGE
RETURN (CR)Y LINEFEED (LF) called CRLF at the end of his image; it
is gone automatically. In the FIELDATA <character set, no
provisions have been made to represent these characterss For
purposes of sending commands to a graphics device it might be
nice not to have spurious CRLF”s floating arcund to screw up the
picture hence the inception of FUNNY MOBDE. In order to prevent
having a CRLF sequence tacked onto the ena of an ASCII Lline
image, the wuser should place a flag (octal 777) in the first
guarter word of the puffer to e printed.

EXAMPLE: Send seven betls to the terminalt with no trailing CRLF .

EVAL: (AXMIT 777007007007¢ 0C70C7007007@)

14 Jul 19738 Marylane LISP Reterence Manusl 60

Note that 777 is ocnly in the first gquarter word of the first
word of the buffer to be cent.,

VALUE: NIL

603920 3Kmit1
Caxmit?) <0ct1> <0Cti>® owe <OCtn>)}

Sumetimes the user might wish just te keep sending a Llarge
numbcer ot characters (graphics aiplications) anog let the system
figure out when to dump the buffer., This s @a perfectly
reaschable thing to do anc it the AXMITY function is usec insteasd
of AXMIT, LI3P will oump the bputffer 1f it detects imminent
overflowa The new ouffer is automatically prefacea with
711779771774y tne comrmand tc enter FUNNY MODE and sendg three RUB
0uUTs {nops)e. (Lt is assumec that the (RLF secguence is generally
not cesireoc if the user is senaging & Stream of <characters to a
device o)

Golele aread
{areaa)

Alon, witnh AXMIT ano AXMiITY1 there is an ASCII read facility
te accept characters from a scecific cevice. AREAD s a function
of no arguments which returns & List of octal numbers (four
cheratters per wors, 9 bpits ger character), representing the
tharacters sent . The utilizeaticn of AREAD, AXMIT and AXMIT1
allows fOor two way communication between an arbitrary device and
LISFP,

Gotro Seguential File I1/0 funciions

Tnic section describes the Maryland LISP functions for
sequantiai file (/G (The rancom access file 1/0 functions are
dgescricted in the next section.) In secuential file 1/0, the wuser
aetines file descriptors thruuwah FICPEN, anc when it is5s desired
to wuse the filey, CLEAREBUFF {input tiles) and TERPRI <(output
fites) arg used tu recgirect the normal flow of LISP I/0 to or
from the file. 1t a file it reac trom or written to on several
ccrasiuns using the same tile descrintor, at cach point the
readin, of writing conrtinues uhere it Left ofts, This process may
pe ended {angd an enc~ot-file Insertec tor output files) by
csendainy, the file aecscriptor to FICLOGSE. There may be several
input file descrigtors for a file, cacth reading independently,
tutl thnere may bDe unly one outpgut fite vescriptor et a time for a
filtese It is not presently possicle to pertorm seguential file
1/0 on program files.

As cn example of the use of the functions to be described,
consiaer the foliowing ftunction which, given the internal names

of t«0 data files (see page & for the gefinition of ™internal

14 Jul 1978 Marylana L1S5P Reference Manual 61

name"), copies the contents of the first to the second.

(csetqg fcopy (lambda (infn outtn)
{prcg ({info {(fiopen infn t))
(outtog (fiopen ocutfn nil)))
(ctearbuff infn) {(terpri outfn)
loop (attempt {prinZ2 {(read))
(«11 (go cont)})
(terpr i)
{go lLoop)
cont (clearbuff nit) (terpri nil)d
(ficlose infd) (ficiose outtd)
{returnl)l)

E.uste fiopen
(ficpen <n> <m>)

The FIOPEN function for sequential files takes . two
argyumentss The firsty, <n>, should vbe & string which is the
internal name of a&an existing seguential data file, and the
second, <m>, should be either T or NIL, indicating that the file
is to ve read from or printed to, respectivetyes Its resuit is a
list cf three elements, the fite“s internal name <n> and two
buffers which are used during the 1/0 process. This is a file

descriptor, and it should be passec to CLEARBUFF or TERPRI when
the fiile is to be used.

S5ebiace fictose
(ficlose <fd>)

This function Shoulo be usead to close off a2 sequential file
vefore the file 1s used for any other purposes. The argument,
<fd>, should be the file’s fite descriptor which was initially
createc by FIOPEN.

Gabale clearbuft
(clearbufft <fd>)

For purposes of seguential file I1/0, the CLEARBUFF function
is wused to specify the sequential file from which input is to be
read until another is given or LISP returns to the top-level
REAC~EVAL=PRINT Lloop. The argument <¥d> should be either NIL,
specitying that input should be taken from the wuser”s terminal
(or from the main input stream 1in batch mode), or a file
descriptor as descrived under FIOPEN., When used in this manner,
CLEARBUFF returns NIL, indicating that input had previcusly been
read from the user”s terminaly, or the file descripter which was
specified on the Last such call to CLEARBUFF.

14 Jul 1573 Maryland LIoP Reference Manual 62

Eab gbo, terpri

{1erpri <fd>)

In the context of sequential file 1/0, TERPRI 3is much Like
CLcARBUFF, specifying & file to which output is to be directed
untit another is given or control returns to the top-level Lcope.
Azain, <fd> shoutd be either NIL, specifying that output should
te Sune to the user”s terminal (or to the main output stream in
patch mooely, or a file oescrigtcr as described under FIOPEN.
TERPRI returns either NIL, indicating that output hao previously
been sent to the user”s terminaly or the file descriptor which
was specifieg on tne last suck caly to TERPRI.

.53+ Random Access FilLe 1/0 Functions

Merylany LISP has & ygyeneral-purpcse random access file
system, The destgn concept of the Ssystem is based arocund the
UNIVAC concept of o "prograr file"., (Indeecy, the program fite
woulo have been used cdirectly if not for the large amount of core
regquirea to implement 1t.)

LISF rangom access files are oividea into records (amalogous
to prougren elements), A reccorc contains the symbolic
representotion of & sinale LISP ocject, and is icdentified by a
positive intejers It 95 impurtant toc note that the recorc number
has no correlation with the physical location ot that record
within the file. Internal to records are the physical images
which represent the informatiun stoered. These images are stored
sequeniially in Standerc Data Formet (see [uUni?781y.

Dnce a "file gescriptor® has Leen established for a ranaom
access fiiley, each ocerstion on the file is self-contained, so
that the "open", I/0, ana “close" operations ot sequential file
I1/V0 are each done in every ranocm sccess fite 1/0 function.

A system conventicn has been estaplished to use record 1 as
a tactie 0of contents, represented as an asscciation List. It is
therefore advisable if one wishes to intertface with other LISP
suypcort routines to maintsin 3n association Llist with the
appropriete titles ang recorc numpbers in recorog 1. For example,
it the file contains function definitionsy the tacle of contents
in recora 1 might pe:

(CFACT o+ &Y (FOO o 9) (ZAR o &)

Wwhen une of tnese functions enccunters an error condition,
an error message is jiven, and an error number is providecd to
explain the nature of the protlems A List of current cocges is
given telcow:

14 Jul 1978 Maryland LISP Reference Manual 63

Error Number Error Type
-1 " BAD FILE TABLE INDEX
(File not LISP random accessS.)
-2 RECORD NUMBER OQUT OF RANGE
-3 RECORD UNWRITTEN
-4 RECORD ALREADY DELETED
-5 NO RECORDS AVAILABLE

(File may need to be packed,)

Ga5.1, fiQpEH
(fiopen <n>}

In the context of random access files, FIOPEN takes only one
arjument,; a string which is the internat name of an existing data
fite. It returns a four-member List which serves as a rancom
access "file gescriptor®™ and whicn is to be usea to refer to the

file when using the random access file 1/0 functions described
below.

Examples.
To open a file called LISP*FILE +,
First create an SUSE relation via:
CEXEC SUSE FeohISPAFILE.
and then assign the file:
tEXEC aASG,A F.

(Note that the EXEC function could also be used.) Now use
FIOPEN to open dit:

EVAL: (CSETQ FILE (FIOPEN "F*™))
vaLUE: (F [9:6100003 [(9:61200Q2 (9:61400@1)

where the [92...1"s are buffers to be wused by the 1/0

routines as a workspace for operations involving this new
file descriptor,

6e5e2s fiprint
{fiprint <ot j> <fd> <n>)

Prints out the LISP object <obj> as the <n>th recora of the
random access file for which <fd> is the descriptor. The vaiue
is <obj>. The PRIN2 routine is used to generate the text to be
written to the file, so that string quotes and escape characters
will pe generated where necessary for subsequent FIREADINGg. Note

14 Jul 19705 Marylane LIiP Reference Manual b4

that the printed forms of cCrjects such as linker no&es and
buffers cre still unreacable, whether one has printed them to a
tfile or 3 terminat,
Examples.

Given the example under FIOPEN. s

To store the list

("Tom® "LICK'"™ MHARRY™)

just EVALuate:

(FIPRINT “C"TOMY™ "DICK'™ “HARRY") FILE 2 T)

which will return the tist of strings. Ahote that since

FIPRINT ¢coes a FRINZ cut tc the file,y, the gouble-guotes
will remain arounc the stringss

s tfireacd

[a
°
e
°
Lot

(fircan <td> <n>?

Reacs ang returns as its value the <n>th record of the
rancom access Tite for whith <td> s the decscriptor. If no <n>th
record existsy an erpor meszsacse with error number =3 will be
given onc control «FLlLl return to the latest Level of supervision.
(See List of ranacm access file 1/C error codes abovee)

Examples.

Referrinyg to tne 2LOVES €x3TDLEs a»

tvAL: (FIREAD FILE &3
VALUE: (TN DICK HARRY)

This 15 o L35t of three strings, as PRINZ would show,

6:30‘@9 fierﬂse
(fierase <fud)

Erases aill records in the rancem access file for which <fd>
is the descriptor, The wvalue is T.

Lela5e fiaroo
{(ficrop <fd> <n>?

Deletes the <n>th recora in the ranvom access fite for which
<fug> {15 tte dvdescriptors. The vslue is T Note that atter a

14 Jut 1978 Maryland LISP Reference Manual 65

FIDROP is done, the Locations assigned to the oropped record have
not been deallocated but are merely flagged as being deleted.

Afrer s large numbter of FIDROPs, it i1s advisable to use FIPACK to
clean up the extra garbage,

Ee5.06. Ffipack
(fipack <fd>)

Reorgers the contents of the tite <fd> so as to eliminate
droppec recoras and minimize the size of the file. FIPACK aoes
nct renumoer the records,y, howevere. The value is T.

It is important to note that if the operating system crashes
guring a FIPACK there is the possibility of Losing at most one
records. Atthouygh this problem cannct be avoided, the damage is

usually not jdrreparabley, and & FILEDIT expert might be able to
f‘ix th

65,7, fitoc
(titoc <fa>)

Returns a List of integers which represent those records in
the ranaom access file <fd> which are currently being used. If
the file is empty, NIL is returned.

- fiprintrec

(tiprintrec <obji> <fd> <n>)

This function, together with FIREADREC, ailows the wuser to
do random access file 1/0 with records of arbitrary format,
treatec as strings. The first argument, <obj>, should be a tist
cf strings to be written to record number <n> in the file
represented by file cescriptor <fd>. Ncte that objects written

Dy FIPRINTREC may not be recognizable by FIREAD. The resultt of
this function is always <obj>.

6¢545, fireadrec

(fireadrec <fa> <n>)

This function reaas the <n>th recoroc in the tile represented
by file descriptor <fd> and returns it as a (ist of strings
without attempting to parse ite

be5410 copyout

{copyout <fa> <n> <fn>)

This function, given a random 2ccess file descriptor <fd>, a
record number <n>, and an internal name (atomic symbol or string)
of an asstgned fife <fn>, will copy the indicated record out into

14 Jul 1973 ¥aryland LISP Reterence Manual 66

the file in Stoncard lPata Formete.
Cezells copyin
{copyin <fd> <n> <fn>)
This function is similar to CCPYQUT, except that it copies

the text from the sequentizt file <fn> tu recora number <nd> of
the random access file represented By tre file descriptor <fd>.

14 Jut 1978 Maryland LISP Reference Manual &7
Te Depugging anc Error Handiing functions

Maryland LISP has extensive features for the hangling of
error contingencies, as described in this chapter, Two
error-handling schemes are used py Marylang LISP. The first s
implemented through the stack “Yunwinding™ process in which LISP
foilows pointers down the stacks leocoking for *traps" which are
applicaeble to the situation, Atthough several normal LISP
control structures are handled this way (the PROG feature among
them), the user has actcess to this facility only through the
ATTEMPT and ERROR functions, described in the first section here,

The secong error-nandliing scheme is the contingency
expression mechanism. In this case, when an error cgccursy rather
than giving up anc unwinding the stack, LISP transfers control to
a wuser- or system—-specified routine to aliow depugging and
possibly specification of & corrective measure that will ailow
the computation to continue safely.,

Wwhen Maryland LISP encounters an error it c¢annot handie,
such &8s & Guard Mode violation curing garbage collection, it
descrives the error to the user ano asks the user to specify if
processing shoutld continuee. There is wusually tittle risk in
continuing, but LISP makes no gyuarshntees about i1ts performance in

this cases in any event, @a problem of this kind should be
reported to a LISP hacker,

The functions documentes in this chapter are ATTEMPT, ERRCOR,
CONLIM, BACKTR, GUFFENDER, EOFCON, MISSCON, FUNCON, BINDCON,
CARCON, BFEKCON, BREAK, and UNBREAK.

7«1+ Error Handling Functions

Telals attempt

(attempt <exp> (<c=1> <e~=1-1> osos <e=1=n1>) see
{(<c=m> <e=m=1> +ses <e~m=nm>})

This special form is used to evaluate an expression anag
handle &ny errors which it may proveoke, The first argument to
ATTEMPT, <exp>, should be an EVALuatable s—-expression. The
succeeding arguments should be n-tuples of the form described
above, where each <c=-1i> is an inteyer, and the <e=-i=1>,,s<e~i=-ni>
form a set of expressions which witll be handed to D0 (ang thus
EVAtuated in order), should a stack unwind which is looking for
trap number <c-i> occur.

It <exp> is EVALuated successfully, its result will be the
value of ATTEMPT. Otherwise, if an unwind occurs on trap number
<¢=i>; then the value returned by DO, iesy <e-i-ni>, wit!l be
returned, In the case that <exp> prcocvokes an unwinding on a trap
number not included as a <c-i>, the unwinding witl continue down

14 Jul 1972 Marylano LISP Reference Manual 68

the sStaCke past the ATTEMPT, ountil such & trap is fouﬁd ory
failiny thaty to the lotest level of LISP supervisione

AllL rositive integers (less tnan 2717-1) are availacle to
the user as trap numberss LISF, though, has its own meanings for
several negative trap numbers, specifically:

numter Eurpcse

n generat«purpose EXEC error (ege.y arithmetic error)
-1 return to last prog because of a RETURN

“¢ return to Last prog becavuse of 2 GO

-2 return cecause of break—-key Interrupt

- errar trap not fcunc

-5 return to PEAD routine after :Q0PS

-2 return vueceuse ouf non-trsnsparent control card
-7 initiate backtrece vzcause of :PEEK

-11 sequential enc of file

-12 nv more compilec couve area

For example,

(csetqg fread (lembda nil
{attemot (read) (~11 MEND oF FILE™)DI M)

would cetfine 3 function which cenaves just Like READ for purposes
of reacins seguentiat fitles until on enc-of=-file is encountered,
when it returns the string "ELD OF FILE"™.

In accition, several of LISP”s Liurary packages make use of
this facility. The user shouwla tcheck the appropriate
documentation 10 make sure there are no conflicts between the
user”s anc the package’s trap numbers. '

Talelie c€rror
{error <n>)

The ERROR function is usec in conjunction with ATTEMPT to
cause &an unwinoing of the stack on trap number <n>. If a trap by
that numcer resices on the stocky controtl will revert to it in
the manner described 2bove. Ntherwise, control will revert to
the Llotest level of LISP supervision, Tne user should not make
use of any of the negative rezervea trap numcers Listed in the
tacte sbove so as to avoid confusing LISP,

Telala conlim

(contim <n>)
{conlim)

Semetimes, 2 complicatec error handiing routine will itself

14 Jul 1978 MarylLand LISP Reference Manual 69

provoke an error which it or some other routine must handle. 1In
order to avoid an infinite loop or simitar explosion resulting
from such an occurrence, there is a timit (initially 23) on the
number of such occurrences which c¢can happen during error
handling. If the wuser finds the current value of this numoer
inappropriate, it can be changed using the CONLIM function. This
function takes as its argument the new value of the contingency

timit (default is the old value), and returns in either case the
ola vaiue.

7e1l.4s backtr

(packtr <n>)

This function is used to specify the extent of the Llisting
which ds providea wnen an error causes the stack to be unwcund
Cack to an error trap. 1f <p> s T, a full backtrace is
provided, if <n> is NIL, no backtrace is provided, ang if <n> is
an integer, up to <n> stack entries will be dumped when a
backtrace occurs. Initially, LISP is set to give no backtrace.

7+2. Contingency Definition Ffunctions

The six functions which are the subject of this section are
used to transfer control to & specified s—-expression in tase one
of the following kinas of errors occurs: 1) EOFCON - end of file,
2) "MISSCON - missing argument to function, 33 FUNCON = object
specifiec as function 1is not executable, ie., either 2 linker
noge or compiled or system cocey 4} EBINDCON <« attempt to get
value of unbound atom, 5) CAKCON - attempt to take CAR of CDR of
atom, or 4) BRKCON - BREAK-3IEX sequence used by user to interrupt
tI15P. Since alt five are usecg in basically the same manner, one

example 1is given here to demonstrate how these functions can be
used.

Example.
Suppose the atomic symbol "A™ has no value.

EVAL: A
This would normally returnsee.

UNBOUND A
HELP:

However, Suppose we had previously the following:

(BINDCON “(DO (PRINT "UNBOUND ATOM, RETURNING NIL")
NILDDY
VALUE: NIL

Then,

CA
5]

14 Jul 137& Yaryland LISF Reterence nual 70

cVALL A
NOw we :Etolo

UNDBOUND ATOM, RETURMING NIL
VALUE Y NiL

752-10 Offender
(uffender)

In tne cese that an errur is cetected and control s passed
to a user—-definec cantincency functiony (QFFENDEF) returns the
object whose inapgoropriste properties provokeo the errors
ElamﬂlcS-

Mow we Can embetlish tne example pDy adaina OFFENDER:

cVAL: (BINLCON “(DO (PRINT (CFFENDERI)

(PRInT ™ I35 UNEOULNLD, RETURNING NIL") NIL))
VALUE: (D¢ {PPINT UNBOUND ATOM, RETURNING NIL) NILJ)
Note that the old SINLECON expression is returned.
hNecw LET”S try it 5987 Nves
EVAL: A

Andg we et the ftriendly message

A 1S UNBOUND, RETURNIAG NIL
VALUE: Wil

ANOther apurGach woultw Dg to enter a READ-EVAL=PRINT loop
1o see what misht oe wrong.

EVAL: (SINDCON “C(LISF (LAMEDA KIL (*READ "=>"))))

And the ovlu value 15 returnec.
how 3if something is unLounCy

tVAL: A
->

Ang :PEEK T ur other acvans cen Le used to poxe around and
see what the troucle is.

fauch of these functions takes as its Lone argument the new
value of the <contin.ency ¢xpression for the ociven kind of
contingency. The cetault arjument is the current value of the
expression, NIL 1f none. The value returned Ly each of these
expressions is the old value of the given contingency expression,

14 Jul 1978 Marylang LISP Reference Manual 71

and MIL if the system cdefault was in place,

If one of these functions has been used toc define an action
to take in the event of an error, it a function call causes such
an error, the ingicatead s-expression will be EVALuated, and its
result used as the value of the offending function call.,

Tecece eofcon

(eofcon <sexp>)
{eofcon)

This function defines the s-expression to be EVALuated 1in
case an end-of«file is encountered during seguential file
resdince The system default is to do an (ERROR -11).

Tecels misscon

(misscon <sexp>)
{misscon)

This funection defines the s-expression to be EVALuated in
tase some argument to a function is missings. In this case, the
(OFFENDEKRY is the unpbound argument, The system default 1s - just
to give a warniny message and allow the atom to remain unbouncs

Telsba tuncon

(tuncon <sexp>)
(funcon?

This function defines the s~-expression to be EVALuated in
case the CAR of an s-expression being EVALuated 1is not an
executzble object, ie,, not a tinker node, pointer into compilea
code, or pointer at system codes The defauit is to print "X IS
NOT A FUNCTION"™ for the QOFFENDER X, ano to reqguest a function
value via a “HELF:* prompt.

7+2¢5. bindcon

(Lindcon <sexp>)
(cinccon)

This function is used to oefine the s-expression to be
EVALuated 4n case an atomic symbol being EVALuated has neither a
constant nor fluid binding. The system default is to print an

“UNBOUND X" message for the OFFENDER X, and request & value via a
"HELP: " prompt.

Talaba carcon

(carcon <sexp>)
(carcon)

14 Jul 19783 Marylano LISF rReference Manual 72

Tnis functtun 1s usec tc uetine tne s-expression to be
EVALuateds in case LISP catches itself trying to take the CAR or
(DR of something which is not o« cons nocde (especially an atomic
symbol . The system default is to print “CANNOT TAKE CAR OR (DR
CF X" message for the QFFENDEIR X,

712070 brkcon

{crkcon <sexp>}
{urkcon)

Tnis function is useg to define the s-expression to be
EVALuwaied din <case the user enters a EREAK-?8X sequence to
interrupt LISP {(see page 11, when used, the value of this
s—exeression 1s ignoreg sitnce the computation should be able to
continue unharmec if the user cetermines that nothing is wrong.
This tacility is useful when c¢n infinite loop is suspected or in
& case where a larye orogram 315 executing and the wuser just
wishes tc see how tar it has .ctten.

7¢ee Tracino Functions

These functicns ore uses meinly Ly geougcing routines to
trace function entries ana exits, or otherwise trace program
execution,

7e3.1e ireak
(creak <a> <tn>)

This function establishes < function <fn> which will
intercept any cail on the function bLound to the atomic sympol
<a>. The fupctiuvn <frn> shoulc take o numoer ot arouments which
is two more than the numbcer <e¢>”s function takes. Whenever <a»”s
function Js calkled, <fn> will receive control with <a> followed
by €a>”s old value and all the arjuments which were given for <a>
as its arguments. .

Examples.
(break “cons {lamtca (atm cns arol argz)
(arintl MCONSING ') (print ar3ld
(erint * AND ") (print arpd) (print .M
(cns arg? arczld)

This causes & meszsage te De printed out whenever the
function CUNS is calleus wWhile this BREAK is in eftect,

(cons "X “(A = ()3
would grirt the messgsye:

CONSING X AND (A B (.

14 Jul 1978 Maryland LISP Reference Manuatl 73

Tedelse unbreak
(unbreak <a>)}

This function removes the effects of the last BREAK done on
the atomic symbol <a>.

Examples.,
(unbreak “cons)

This will undo the BREAK done in the above example.

T4 dol 1975 garyianc LISP Reference Manual 74

Ze Freperty List Functions

Prowerty lists in tarylandg LISP are Lists attached to
indivicual &tomic symbols which store information in one of two

W2YSa The wsual wse o¢f =3 procerty List, the sStorage of
indicator/value wairs, is Iimplemented as dotted pairs of
incdicators and their associateu values in the list. There are

alse "ftays™, which are single atomic symools on @ property list
whouse simple presence or absence i3 usefule.

Tne functiuns doucumentes in this <chapter are used to
manigulate groperty Lists. They are: PuTy GET, REMFPROP, FLAG,
IFFLAG, UNFLAG, ana PROUP,

N IR Lt

{put <z> <> <vy>)}

Assuciates the vaitue <v> with the indicator <i> on the
property tist for the atomic symool <3>. The value is <a>,

framples.

)

{cut “TOMATO “COLOR “3:ib
ALLY -SmALL)

X

ey 4

{cut “HADERUN “3T2E TR
{put “LXm “0PCUDE Z8%)
(Lut “GUUTE “FUNC~TYFE “SPECIAL-FORM)

Baloa et

{,et <a> <i>)

Returns the velue associcted with the dindicator <i> on the
property list o0t the stomic symbol €. If the indicator <i> is
not present on the property tListy WIL is returned. (Note that
the converse 1s not true, that s, if GET returns NiL, it is not

necessarily true tnat the inpcicator 1s not present; perhaps it is
there ana is paires with NIL?

Examelese.

5iven the examoles uncer PUT,

{(get “TOWATO “COLGRY = RED

(zet “HADRON “3IZEY} = REALLY=SMALL

(get “LAM “OPLIDE) = &G

(zcet "GUOTE “NON-EXISTENT-FRICPEIRTY) = KIL

2e3¢ Tremgrop
(remprop <a> <i>)

Removes the dndicator <3> and its associtated value from the

14 Jul 1978 Marylana LISP Retference Manual 75

croperty List for the atomic symbol <a>, if they are present.
The value is <a>.

Examples.

Given the above examples, doing:
{remprop “HADRON “SIZE)

causes:

(get “HADRON “SIZE) = NIL
Eebae flay

(flag <a> <f>)

Places the flag <f> on the property Ltist for the atomic
symbol <a>, if it is not already present. The value is <a>.

Examples.

(flag “APPLE “TASTY)
(flag “SULFUR=-DIOXIDE “CARCINOGENIC)
(flag “YELLOW-BELLIED~SAP=SUCKER “ISA=-BIRD)

2ele 1f‘f{ag
(ifflag <a> <t>)

Returns T if the ttag <t> can be found on the property {ist
for the atomic sympol <a>, and NIL otherwise.

Exsmples.,

Given the above exampies,

(ifflag “APPLE “CARCINOGENIC) = NIL
(ifflag “SULFUR~DIOXIDE “TASTY) = NIL
(ifflay “YELLOW-BELLIED-SAP-SUCKER “ISA-BIRD) =T

Bs6s wuntlag
{unflag <a> <¥>)

Removes the flag <f> from the property List for the atomic
symbol <a>, provigeg it is actually present., The value is <a>,

Examplese.

Given the above examples, the damage can be undone by:

(unfiay “APPLE “TASTY)
(unflag “SULFUR-DIOXIDE “CARCINOGENIC)

14 Jul 157% Maryland Li:f Reference Manual 76

(unflay “YeL OW=3ELLISL=SAF-SUCKER “ISA=BIRD)
EaT e prop
Cprop €3> <€i> <fn>)

It the inojcator <i> has <« value associated with it on the
property List for the atomic symibol <c>y the value is returnedoe
Gtherwise the function <fn> of no ercuments s called and dts
resuit is returnec.

Examclesa

(csetg 3etl (lamoca (etm ing)
{pror atr ind (leabea nil “not-present)}))

Scmetnine Like this ¢cun te uSea to distinguish the
situation where an irsicacar i5 associated with NIL on a
property ltist from the situetion where the inagicator s
not on tne property List 2t oll .

14 Jul 1978 Maryland LISP Reterence Manual 77
9. Logical anc Conditional Functions

Untike most languages, LISP has wvery few c¢onstructs tor
selectively executing program text. These and the other togical
functions are gocumented in this chapter. They are: COND, AND,
ORy and NOT.

9.1+ conu

{congd {(<exp~1> <res=1=1> .ea <res=1-m1>) ...
(<exp-n> <res-n=1> L4+ <res—n-mn>)))

This 9s the basic LISP conditional function, a special form
of an indeterminate number of arguments, It evaluates each
<exp=-i> in order until it finas one which evaluates ncn-NIL.,
Then the <res=i~1>, o+ « »y <res-i=-mi> are evatuated in order, and
the result of evaluating <res-i-mi> is returned as COND”"s value.
1¥f there are no <res-i-j>“s, then the wvatue of <exp-i> is
returned, and it none of the <exp~i>"s are non-NIL, then KIL is
returnede.

Examples.

(csetqg cdrassoc? (lambtoa (atm Llst)

{cond ((csetq ::t1 (asscc atm Lst)) (edr ::t1))
(t nil))))

(csetq cdrasscc?2 {(tampoa C(atm Lst)
((lambda (val)
(cond ({nuli val) nil)
(t {cdr val))))
(assoc atm Lst))))

These two functions demonstrate two methods for
computing a quantity as a concoition of a COND, and then
to use the guantity onty if it is non-NIL.

9-2. and
{angc <sexpl> «+ + « <sexpn>)

This is a special form which evaluates is arguments in order
until one evaluates to NIL, or wuntil all have been found to
evaluate non-NIL. In the former case, NIL is returned, and in
the latter casey the result of evaluating <sexpn> 1is returned,
is returned.,

Examples.,

{and)

(and T “(A . B} NIL “X} = NIL
=7
(and x) =

x for ali x.

14 Jul 1978 Mmaryland LISP Reterence Manual 78

(and (csetg atc “C(A B C)) (csetg ww NIL) {csetqg RE7 11

This will change the values of ABC and WW, but not
R87, and return NIL.

{cr <sexpl> +« « + <sexpn>)

This is a special form wnich evaluates its sarguments in
oraer wuntil one evalutates non=NIL or untit all have been found
to evatuate to NIL. In the former case, the first non-NIL value
is returned, and in the latter ¢asey, NIL is returned.

Exampless

{or NIL NIL “C& . 5) (csetg wW “E)) = (A .+ B)
The value of WW wili not be changed.

(or (zerop x) (oreaterp (aquotient 1 x> 0.2))
1f x=(, the secona expression will not be evaluated.

(or (atom x) (eg (car x) “AY)
if x is an atom, then (CAR X) will not be evaluated.

{or) = NIL
{or x) = x for all x.

_9-‘0. not
(not <sexp>)

Returns T if <sexa> is NIL, and NIL otherwise. This is the
same function as NULL. In Maryland LISP, the values denoting
truth ana falsehooc (es+, O0f predicates) are the atomic symbols T
and NIL. Other LISP systems (({Me¢C€2]1) prefer to use other atoms
or even non-atoums to represent these conceptss. The theoretical
treatment of LISP in [ALL7&Y cefines a different class of objects
to be the values of predicates, so that the tunctions NOT anc
NULL are quite differents

14 dul 197§ Maryland LISP Reference Manual 79
10. Program Feature Functions

The three functions, PROG, G0, and RETURN, described inm this
chapter imptement the standard LISP PROG facility. Since the
standard LISP references cited in the introduction describe this
facility in great cetaitl, only features specific to Maryland LISP
are discussed here,

10.1. prog
{prog <locs> <sexpl1/iabi1> « « « <sexpn/labn>)

This 1is the PROG function, a specfal form of an
indeterminate number of arguments, As usual, <locs> is the {ocal
List. It should pe a list of s-expressions, each of which is an
atom or a lList containing an atom and an s-expression which <can
pe EVALuateds In the case of an atom standing atone, its initial
vatue 1is set to NIL, and when an atom is given in a Z-member
tist, its initial value is set to the result of EVALuating the
s~expression it is paired with,

Each of the other arguments should pe an atomic symbol,
genoting a tabel, or an s-expression which can be EVALuated so as
to have some effect on the worids If control "falls out the end”
ot a PROG before encountering a RETURN, NIL is returned as the
vaiue ¢f the PROG calis The two special functions relating to
prcas, GO and RETURN, are describec next, and they may appear
only in cases when control is inside a FPROG.

Examples.

{csetq rev (Llambda (L)
(prog (r)
toop (cond ({null L) (return r)))
(setq r (cons (car L) r})
(setg | (cdr 11}
(go loopl)))

Could be used to define a function which reverses a
Ltiste.

10.2 go
(go <U1>)

This s the standard 60 function, a special form which
transfers program control to the Labet <L> in the {ast PROG in
which it eccurred. GOing to a non-existent Label causes an error
message at the latest Level of LISP supervision,.

14 Jut 1973 Marytand LITP Referencte Manual

0o
o

Examples.,

(csetg gol (lambda (lab)
{eval (List “go tabl)) M

Coul= be usec to define a function which behaves
like G0, except that 4t EVALuates its asroument.

1.7, return
(return <val>) (return)

This is tne sStanuvuafd function ot one optional argument which
declares a2 value for the most recently entered PROG or Llevel of
LI3P supervision, enterea via the LISP function. (If the RETURN
functiocn is Jgiven cutside a PP0G at the tLowest Lleveli of LISP
supervisiony, (LI3P «ill pe exiteos This way, it is possible to
write a LISP fumction that witi exit LISP.) If the argument s
not yiven, NIL is returnec.,

14 Jut 1978 Maryland LISP Reference Manual C 81

11+« Numeric Functions

Maryland L1ISP provides several functions tar doing
arithmetics There are three numeric cata types in Maryland LISP,
integers, octals, and reals (type numpers 1, 2, and I,

respectively). Except for the input/output routines, all LISP
functions treat 1integers and octats the sames, The arithmetic
functions provide type conversions between these numeric types
when necessary. Howevery most of the functions do no type
checking beyona real/non~-real; a cons node, for instance, wilt
usualtly be treated as a large, fixed-point number. Thus some
deyree ot caution 3s required.

The functions defined in this chapter are NUMBERPy, ZEROP,
EQUAL, GREATERP, LESSP, MINUSP, FIXP, FLOATP, PLUS, TIMES,
DIFFERENCEy QUOTIENT, REMAINDER, ADD1, SUB81, MINUS, SIN, oS,
L06, POWER, LOGOR, LOGAND, LOGXOR, LEFTSHIFT, FUZlZ, and ENTIER,

11«1« Arithmetic Predicates

An arithmetic predicate function takes numeric arguments and
returns a vatue of T or KIL.

11.1.1+ numberp
(numberp <n>)

Returns T if <n> is an integer, octat, or real and NIL
otherwise,

Examples.,

(numberp 4) = T

{numberp 3+141592E14) = 71
(numberp “13) = NIL
(numberp 4703620) = T
{numberp =-0) = T

(numberp “(A . B)) = NIL

114142+ zerop
(zerop <n>)

Returns T if <n> is 2eros If <n> is an integery, the test is
<n>=C, if <n> 4s an octal, the test is <n>=0¢, and if <n> 1is a
real, the test is <n>=5,0.

Examples.

{zerop 0) = T
(zerop 0.0) =7
(zerop 1) = NIL

P LTI

14 Jul 1973 maryland LIZP Reference Manual 82

(zerop Zw) = 7
1113+ equal
(equal <nl1> <n2>)
S¢e also the definition on paye 31.

1t <n1> and <ni> are numeric, FQULAL returns T $f they are
numerically egual. 1f either <ni1> or <n2> is reals, then the

cther is convertecd to realy ctherwise an integer comparison is
mace.

Examples.

{equal & &) = 7
(equatl 4 4.0) = 7T

(egual 1¢ 14Q) = T

(equal ~0 7?27777°?77777u) = T
(equal 3.482 0.0 = WiIL

Even though thys isn”“t FORTRAN, one still needs to
worry apout microscopic floating—-point round-off errors
which make "okviously"” ESUAL floating=-point gquantities
not EGUAL. In future examples involving floating-point
results, "=" snould De tcken to mean "is approximately

EGUAL to".
11Ta%ebe greaterp
{yreaterp <nl> <ni>)

Returns T if <n1> is numericaily grezter than <n2>. Type
conversion is similar to the ciscussion unaer EQUAL «

Examples.

(greaterp 4 3) = 7
{greaterp L =) = NIL
(createrp 3.01)
(greaterp 1640 12)

Hou
-t

11175+ Llessp
(lLessp <n1> <n2>)

Returns T if <n1> is numerically Lless than <n2>, Again,
type conversion is similar to the oiscussion under EFQUAL.

Examples.,

(lessp 3 4) = 7

14 Jut 1978 Maryland LISP Reference Manual 23

(lessp 12 14G) NIL

(tessp -0 W) T

Note that GREATERP says that =0=0, but that LESSP
says that ~0<0, Which comparison function one uses
cepends on whether -0=0 or not in the given application,

1116 minusp
{minusp <n>)

Returns T #f the argument is neyative. Integers and octals
are tested as integyers, ano reals oare tested as realss

Exampies,

{(minusp -34) =7
(minusp =2,4) = 7T
{(minusp -34G) = T
(minusp =0 = T
(minusp 1) = NI

1117, f'ixp
(fixp <n>)

Returns NIL it <n> is a real number, and T otherwise.

Examples.

(tixp Y =7

(fixp 3.4392) = NIL

(fixp “C(A . B = 7T (Be caretul?t)
(fixp 140¢) = 7T

11.1.8. floatp
(floatp <n>)

Returns T if <n> is a real number, and NIL otherwise.

Exampless

(floatp 3.493E3) = T
(floatp 38) = NIL
{floatp 19372) = NIL
{(floatp “(A 4+ B)) = NIL

11.2. Arithmetic Functions

14 Jul 1978 Marylanc LISP Reference Manual 24

i1.2.7. plus

{plus <nN1> <nN2> + « o <nk>}

Returns the numeric sum of its arguments. The arguments are
addea &s integers until one is found to ce real, 1in which <case
the adcition continues as a real acdition. If k=C, the result is
0, and if k=1, the result is <nl>,

Examples.

(Llus 1 ¢ X)) = ¢

{plus) = [

(plus 4.5) = 4,58

(plus 1 2 35 443 = 12.%5
(olus 16 zZy 33 = &

11 e el s times

{times <n1> <n2> o o« «» <nk>)

Feturns the numeric product of its arguments. Type
conversion conventions are 3s in PLUSe If k=3, the result is 1,
ana 1t k=1, the result is <nil>,

Examples.

(times 2 3 &) = 24
(times) = 1

(times L5} = 45
{times 2 ¢ 1.01) = 1
{times 12¢ 148y = &N

«F18€1
11«2.3. gaifference
(uifference <ni> <n2>»)

Returns the numeric difference of its arguments. If either
arjument is real, the result s real, otherwise it is an integer.

Examples.

{gifference 45 2&) = 1
(difference 47.0 12) =
difference 126 108 =
(cifference NIL NIL)Y =

T1sa2+4+ guotient
{guotient <n1> <n2>)
Returns the numeric aquotient of {ts arguments. Type

conversion conventions are 4s in O IFFERENCE, 1f <n2>=0, an
(ERROR 0) wiltl result.

14 Jul 1%78 Marylana LISP Reference Manual 85

Exampless

11.2.5.

{(cuotient & £) = 2 .

(guotient 12.9 4) = 3.0

(guotient <anything> () produces an “ARITHMETIC ERROR”
(guotient <anything> UJ0.0) likewise, an (ERROR 0)
(guotient 100@ 10@) = &

remainder

{renzinder <ni1> <pn2>)}

Returns the integer remainder when <nl1> is divided by <ng>.
Both arguments musSt be of type integer or ovctal.

Examples.

11.2.6.

(remainder 5 %) = 2

(remainder 5.0 3) prodguces “garbage®
{remainder 5 Z.7) ditrto.

{remainder 106 3@) = 2

{remainder %99 9} = {

add1

(ada? <n>»)

Returns the cguantity <n>+1, If <n> 3s real then the result

is realy

otherwise the result is an integer.

Examples.

116247

(add? 1) =
{adal 1.4}
(addl 7Q) = 8

subt

(subl <n>)

Returns the quantity <n>-1. If <n> is real then the result

is reatl,

gtherwise the result is an integer.,

Examples.

(subt1 2) =1
{(subl 2,7) = 1,7
(subt1 10a) = 7

(sub1 (acdi x)) = {plus x), for any object «x

(plus x) insteag of x because octals are converted
to integers by ADDY ang SUETy &5 are any non-floating
point objects, For exampie, if x=NIL in the (last
example, the EGUALity holds.

14 Jul 1978 Marytand LISP Reference Manual 86

11«2¢%% minus
{minus <n>)

Returns the guantity -<n>. If <n> §s real the result is
real, otherwise the result 9s an intecer.,

Examples.

{minus 4) = =4
{minus) = =°
{minus 4.3) = ~4,2

{minus =93

(minus 123u) TYTTI??TT? 05 4

11+%+ Fortran Library Math Routines

11.2.1« sin
{(sin <n>)

Computes the sine ot <n>, which shculd be in radian measure,
The result is always real.,

Examples.
(sin T) = L0
{sin 3.741592452%5) = ©,13912¢E-8 {iesy about 7.0)
(sin {gquotient 3.14715%26535 21 = 1.0

1T1e7 el s cCOs

(cos <n>)

Computes the cosine of <n>, whkich shoutcd be in _radian
measure, The resutlt s always reate

Examples.,

(cos 0.0) = 1.0
(cos (guotient 2.1413526533 £)) = 4 .56%56E~8

11eZu3 Log

(Llog <n>)

Computes the natural Logarithm ¢f <n>, which should be a
positive number, The result is always rezal.

Examples.

(Log x) preduces an error for x <= 2,
(log 1.0 = 5,0

14 Jul 1978 Maryland LISP Reference Manual RY7

(log 2.,7182818284) = 9,9999%E~1

(csetg Logn (lambda (n b)
(guotient ({ocg n) (log ©)))

pefines a function which takes the logarithm of n to
the base by, where n anc ¢ are positive numbers,
11244+ power

(power <ed>)

Rutses to the <e>th power ancg returns the result as a4
real numbers The arjuments can ve of any numeric type, but
may never be negative.

Examples.

(cower 240 1043) = 1.024E3
(power 2.7182818284 (log xJ)) = x for all positive x
(power x 0) = 1.0 for all positive x

1144, Bitwise Logical Functions

The arguments to these functions are treated as bit masks
rather than as numeric quantities, so that any argument which is
nut en octel or real will be useqo in its internal form. This is
usetul tor getting at the mantissa of a2 real numoer, or a
specific part of an atom or linker node, for example.

1M«4.1. Logor
(kogor‘ Cwi> €CwZ2> o s o <wk>)

Pertorms a pitwise Logical "or"” on its arguments and returns
an octal result.

Examples.

(Logor 176 1000Ce 317006000Ce) = 31703100174Q
{Logor 5555 2222¢) = 7777G
(Logor 12247776 777123246) = 77757774

11.4.2. logana
(tog&nd <wi1> <W2> &+ & » <wk?>)

Performs s bkitwise logical "ana®" on 3Jts arguments and
returns an octal result,

14 Jul 1978 Marytanc LI3P Reterence Manual 28

Examples.

(Logang (G x) = 96 for atl x.
(toganu 123432Z@ 177Q@) = 1c3¢
(togano 7777772000006 x) masks out the Llower half of x

Tteb o3 lOgXOI"
(logxor <wl> <wg> &+ & o <wk2)

Performs a pitwise logical "exclusive or" on its arguments
ano returns an octal result.,

Examplesa

(Logxor 775206 377Q) = 775774
(logxor 777777777777G x) gets the complement of x.
(logxor U x) = an octal trenslation of x.

11464 Lleftshift
(leftshift <w> <n>)

1t <n> is positivey LEFTSHIFT returns <wu> Llogically shifred
<n> to the left. Otherwise, the result is <w> circularly shifted
-<n> to the riyht. The result is always octate The argument <n>
should be an integer or octal.

Examples.

(teftshift x n) = (6 for any x if n >= 36.
{leftsnift x =-36) = x for ony cctal X.
{teftshift (teftshift x 13) -18)

= (logsna 7777770 x) for any octal x.
(teftshift 176 32) = 17d¢ '

11.5. ™iscellaneous Numeric Faﬂctiqps

11e5e%0 fuzz
(fuzz <n>)

This function specifies an amount of rounding which is to be
performea on atl real arithmetic results, Specifically, the <n>
lowest =order oits of every real result will be zerced. The
result will pe tne "fuzzing tactoer®™ vpeing replaced. If the
aryument is omittea, the result is the fuzzing factor currently
jn torce. The default fuzzing factor is 7,

The FU2Z function is used to help reduce the effects of
round-off error wnen applying EQUAL ond GREATERP, for example, to
fLoating=-point arguments., '

14 Jul 1478 Marytanc LISP Reference Manuat 89

Note that the mantissa c¢f a UNIVAC single-precision
floating=point number takes up the low-order 27 bits of &2 word.

11542+ entier

(entier <n>)

It <n> is real, the result is the greatest integer which is
less than or ecualt to <n>, If <p> 3s integer or octal, it is
returned as the result,

Examples.,

(entier 4) = 4
(entier 14y) =
(entier 127.3¢3
(entier =1.467) -2 (not =-1)

—l

14 Jut 1978 Marylana LISP Reference Manual e{
12« String Functions .

Marylangd LISP has a FIELDATA (upper=-case only) string
facility, in which the strings may be of any lengths Strings are
delimitea by dounle-guotes (°"“), and they may not contain
at-signs (“37). In orger to have 4 doutte-quote in a string,
type two double-quotes together (ey.y, "HE SAID, "“HI""."). The
characters in & string are numterea so that the first one is
number 1y, and the numper of the last one is returned by the SIZE
function. The atom NIL serves as the string of Llength zero,

‘Note that EGUAL shoula be used instead of EQ to test equality of
Strings.

The functions described in this section are wuseful for
manipulating strings. They are: SIZE, STRINGP,y SREVy MATCH, CAT,
SUBSTRING, READSTR, STRING, &nao ATSYMB.

12.1- size

(size <s>)

Returns, as &an integer, the lLength of the string <s> in
characters, It <s>=NIL then the result is (.

Examples.
(size "ABCDE FGH") = 9
{size NIL)Y = [
(size MUuH) = 1
122 stl‘ingp
{stringp <s>)
Returns T it <s> 38 & strinag, and NIL otheruisé.

Examples.

(stringp MIL) = T
(stringp “ABCDEF) = NIL
(stringp “ABCDEF"™) = T
(Str‘ingp nunn) - T
(strinap 123) = NIL

12434 Ssrev
(srev <s>)

Returns the string <s> in a reverseo form, that is, with the
characters in reverse order.

T4 Jul 1678

Examrples.

{srev NIL) = NIL .
(srev “ABCO"™) = "DCBA®
(srev Y“XYE” *=(3") = ")(=«

1244+ match

{maten <s1> <s52>

Returns NIL if
suestring of <s2>,
integer) in <sc>

the string
Otherwise,
in which <s1> tan

Examples.

{(match
{match
(match
{match

“ABCY YAABABCABCD™)
"CATY™ “pOG™) = NIL
“ABC“ "all) - NIL

HEH PE3I55358Y) = 1
Cal

{cat <sl1>» <s2>)

Tnis function returns as its

<s¢> is NIL, the other is returned

Examples.

{cat
{(cat
{cat
(cat

Nit x) = x
x NIL)Y = a
"ABC“ “DE?“) -

"123456799" “Q") =

12.64+ sutstring

(substring <s> <¢> <n>)
(substring <s> <¢>)

Tnis function will compute anc return a
in one of two different ways,
subs tring
position <¢> in <s> will be returned.

string <s>
given, as in the first form, a
starting at
<s> shoulc be fixeu=point numbers.
as in the secong forms the

pesition <c¢> and continues to the
If <¢> is out of its proper range
te either NIL or shorter thamn the

Maryland LISP Reference Manual

Q1
“RYX"™
<s1> does not anpear as a
the wvalue is the position (an

first pe found as a substring.

= 4

result the string <s1> with the
string <sZ> concatenated on the enc of it.

If either <s1> or

uncopied.

for any string x.
for any string x.
"ALCDEF™
“134567890"

substring of the
I1f three arguments are
<n> <characters Llong
Both <¢> and

1f two arguments are given,

substring of <s> which starts at
endg of <s>
in either case,
expected length,

witl be returned,

the result will

14 Jul 1978 Maryltaend LISP keference Manual @2

Examples. N

(substring “ABCDEFGH ™™ 2 33 = “g(p"
(substring "S 8 (YHA" 4) = “()g#"
{(substring "“12345" 3 7) = %i45%
(substring “"XYIPDG" 8) = NIL
(substring x n ¢) = NIL if n <= (.

127+« readstr
(readstr <s>)

While performing string processing it sometimes becomes
necessary to change the striny representation of an entity into a
list structure. The operation, somewhat analogous to COMPRESS,
is accomplished oy READSTR, a function of one string argument,
READSTR submits its argument to the read routines for parsing and
returns 2 List structure of eguivalent print form. If the read
routines fing that the string is not a wvalid print form (eage.
unbalanced parenthesis) an £nao of File contingency is registered
(see page 71},

EXAMPLE:
EVAL: (EVAL (READSTR "(PLUS Z 3)"))
VALUE: 5

In the pathological caseses

EVAL: (READSTR "((Cad))")
EQF ENCOUNTERED
EVAL:

2.8+, string
(string <a>)

This function returns.the"print name of the atomic symbol
<a>. The result will always be 2 string unless the symbol was
created by GENSYM, in which case the result will be an integer.

Examples.
(string “xyz) = "“xy:z*
(string NIL)Y = "NIL"™ .
{(string (gensym)) returns an integer
(string “FUNCTIONS! LOADED) = "FUNCTIONS LOADED"™
12.9+. atsymb
(atsymp <s>)
Thnis function hashes the string <s> dinto the oblisty, and

createsy, 1if necessaryy an atomic symbol with that name. If the
symbol 95 already in the oblist, it is returned, otherwise the

14 Jul 1978

Maryland LISP Reference Manual

newly created atomic symbol is returnea.

Examples.,

{atsymp
{atsymb
{(string
{atsymo

PXYZZZIM") = X¥Y1I1

WNIL") = NIL

(atsymo NILY) = NIL, not "“NIL"™.
X oYYy = X' oy

93

14 Jul 1978 Maryland LI3P Reference Manual 94
13. Executive Interface Functions .

The designers of Maryland LISP have ¢tried to make it a
self-contained programming system, free from the details of the
outsioe world. To allow the user to work girectly with EXEC-8 as
infrequently as possible, the functions documented in this
chapter have been included in Maryland LISP to allow the user to
do the necessary dealing with ZXEC=-2 from inside LISP. These
functions are: EXEC, PCT, TWAIT, ED, DUMP, and LOAD.

13.1. exec
{exec <s5>)

This function takes a string <s> which should be a legal
1100 EXEC CSF$ control carg anu suomits it to CSF$, returning the
octal status which the system returned from the requeste The
first character in the string should te an asterisk (™*") rather
than an at-sign ("a"), for getails on the Llegat CSF3 control
cards, see [uUni?8d, Volume 2, page 4-67.

Examples.

{csetg asstonfile (Lamvoa (fn)
{exec {cat "“+ASG,A " (cat (string fn) ","}))))

This function makes sure that the file whose
internal name it is given as an atomic symbol is assigned
to the run,

(csetqg usename (Lampbda (un ftn)
(exec (index (list "+USE " (string un) ",
(string fn)) nit cat)))}

This function estaptishes IJUSE names. .

132.2. pct
(pct <n> <s5>)

This function gets the wuser”s Frogram Control Table and
returns a2 Llist of <n> octal words starting at the <s>th word.
The PCT contains interesting information about the run status,
including the wvarious wuser jventifications, ana the status of
titess More specific information about the PCT and PCT$, the
EXEC-8 PCT access request can be found in [Uni7%3, especiaily
Volume 2, page 4-3us (The exact structure of the PCT changes
coften, so that the oniy way to get exact diagrams of it is by
scrounyinge. The ccpy of the PrkM (deey [Uni781) which resides in
the Computer Science Center Proyram Library is a good starting
pointel - -

14 Jut 1973 MaryLand LISP Reference Manual 25

Examples.

{pct 1 1) = user”s runid in octal form
(pect 2 17) = user”s project i¢ in octal form
(pct 2 19) = user”s account number in octal form

13.3. twait
(twait <n>)

This function takes a non-negative integer argument <n> and
returns NIL after waiting <n> seconds of real time.

Examiless

(csetq iale (lambda nil
{(prog nil
icop (print "I witL BE BACK IN A SECOND")
{twait 30) {go loop)))

This is a function which witl print a2 message every
thirty seconds wuntil stopped by & BREAK-@aX sequence or
something more forceful,.

12.4., ea

(ed <s5>)
(ed <s> <c¢>)

This function allows the user to use the University of
Maryland Text tditor ([Hag77] without teaving LISP. The first
argument, <s>, should be a string which can be interpreted as an
Egitor control carog, with the first character an asterisk (MxP)

rather than an at-sign ("3a"). The string s parsed and
interpreted as though typea at the Executive, and the user is
pltaced in the Text Editor. I1f a second argument, <c>, is

specitiea, it Should be & string which will be given to the Text
fditor as a "first command”, which will be executed betore giving
a prompt. If a fatal error, such as an attempt t0o access &
non-existent tiie, is encountered, the editing session will be
aportecs The result of the ED function is an integer denoting
the number of tines output by the Editor to the source output
file or element.

Examples.

(csetg textcopy (tambaa (f1 f2)
(ed (cat "+ED ™ (cat f1 (cat ","” ¥2)))
WEXIT"Y) D)

This function copies the text in file/element F1
into file/element F2e {egaes (textcopy “INFILE."
MLIBFILE « X—ELT/NUM3™) 2

14 Jul 1678 Maryland LISP Reference Manual gé

13:5. dump .
{oump <obj)> <fle>)

This function will cause the binary representation of the
LISP object <obj> to be written cut in & compact form to the file
or element encooged as <f/e>, It <¥fe> is an atomic symbol, it
will be interpretea as the internal name ot some data file which
exists and can safely be written intec. On the other hand, if
<f/e> is a dotted pair of atomic symbols, the CAR is taken to be
the internal name of an existing program file, and the CDR s
taken to be the name of an element which will be created to hold
the dumped output. The ocumped objects can be read back in by
{and only by) the LOAD function. The <obj> argument should be
either an atomic symbol or a tist of atomic symbols, The oniy
atomic symbols” vaiue cells which will be followed will be the
cnes given as arguments in this way. This is done so that if a
function points ot the cefinition of another function, that
definition «ill not unintentiatly overwrite the one in effect
when LCAD 1s catied,

Examples.

One neat trick is to assign the object being dumped
to an atomic symbol which descrives what it ISy €+Gey

(csetg PROJECT4! FUNCTIONS! LCADED “(SORT MERGE REV1
SEARCHLIST UNION INTERSECTION))
(cump “PROJECT4?! FUNCTIONS! LOADED “(LIB-FILE . PROJ4G))

The advantages of this become clear 1in the examples
section for LOAD,
13.6. losd

{loaa <fl/e>)

Tnis function recovers LISP objects which were sent to
file/element <t/e> by the DUMP function.

Exampless

Suppose that some things had been cdumped as in the
example uncer DUMP. Then if

(toad “(LI&S~FILE , PROJEL))
is typed at LISP, the resuit printec on the terminal is:

PROJECTS FUNCTIONS LOADED

14 Jul 1978 Maryitand LISP Reference Manual o7
14, Progyram Statistics Functions

The functions dQCUmentéd in this chapter are wused to keep
statistics on the operation of LISP during run~time., They are
usefult for testing the efficiency of proarams, and guiding

sturege managements They are: TIME, GCTIME, DATE, DTIME, TRASH,
MEMORY, GROW, SWAPS,y, and *=PACK.

14417+, Timing Functions

14,11 time
(gime)

This returns the amount of memory time used so far in the
current LISF session, tess the time taken by garbage collection,
The result is an integer in units of miliisecongs.,

Examples.

(csetq timer (Lambda (expr iter)
{prog {((sum Y (n iter))
toop (cond ((zerop iter)
(return (quotient sum n)}))
(setqg sum (plus sum
(print {(plus (minus (time))
(do (eval expr) (timeld))) M)
{setg iter (sub?t tter)}
{32 loopl))))

This vefines & function which allows one to test the
efficiency of another functicn. Given an s=-expression
and an integer, it EVALSs the s-expression the incicated
number of times, printing the amount of time each

EVALuation took, and returning the average of the printed
values,

1441424 gctime

(yctime)

Tnis returns the amount of memory time which has been wused
in garbage <coliections during the current LISP session. The
result is an integer in units of milliseconds.

14.2. Time/Date Functions

14 Sul 1978 Maryland LISP Reference Manual Q8

14.2.1 aate \
(aate)

This returns a2 Llist with three integer elements. The first
is the number of the current month, between 1 and 12, the second
is the number of the current day, bpetween 1 and %1, and the third

is the last two digits ot the current year, 78 at this writing.
ALl three are integers,.

T14eZel s gtime
{atime)

This returns the current time of day, an integer in units of
milliseconds past midnight.

14.2. Memory Management Functions

T4.3:1. trash
(trach)

The TRASH function calls the garbace collector, and returns
as its wvalue the number of data pagyes the collector was able to
return to the avaitlable page List.

14.3.2« memory
(memory)

This function returns a Z2-member List of integers (<u> <a>),
where <u> is the numper of woros of cata area being used, and <a>
is the total numuer of such words availabtle.

144%2.3. grow

(grow <n>)
(gyrow)

{ho virtual memory ogption): This function causes <n> more
S1c~word blocks of memory tc be alliocatea for LISP. The result
is the new highest address aveilable to LISP data areas. If LISP
attempts to grow ceyond the current system core Llimity, an error
message witl result and control witl revert to the latest ATTEMPT
te trep on error 0, or, failing that, the lLatest level of LISP
supervision. If <n> 1is zero, no growing is attempted, and the
current wupper timit 1is returned. The default value for <n> is
2T 0.

(vVirtual memory option}): The GROW function causes <n> more
16K data banks to "be made avaflable to the storage allocation
routines. There are six banks which CRCW can add, and an attempt

14 Jdul 14978 Maryland LISP Reference Manual %9

to allocate more than six witl cause Jjust the six to be

allocateds See the Appendix to this manual on the wvirtual memory
option for further detaiis on virtuail memory.

1‘0-30‘40_ Swaps

(swaps)

14 the virtual memory ortion is on, this functien will
return an integer representing the number of times the swapping
alyorithm has been catled to make a ceta bank available. If the
virtualt memory option s not on or if no GROWing has yet
occurred, SWAPS will return U.

14.4. *pack
(*pack <n>}

This function sets a fltag to trigger a garbage <collection
every time a new page for objects of type number <n> is
allocateay thus keeping pages of that type packed, Because of
the costs involved in repeated garbage collections, this shoulo
not cte used except In most extreme circumstances.

14 Jul 1978 Marylano LISP Reference Manual 100
15, Compiter Functions \

The functions documented in this chapter were designed for
use Dby the compiler in analyziny a function definition. For the
sake of compteteness, and because some are of use to the more
sophisticated wuser, they are presented here. They are: *DEF,
*SPEC, *MALCRD, *CHAIN, *BEGIN, *EMIT, *ORG, *EPT, *EXAM,
*DEPOSIT,y MANIFEST, and BUFFER.

157« Function pefinition Retrieval Functions

15.1.1. *gef
(xdef <a>)

This function, given an atomic symbol <a> ~ which is
constantly bound to a regutar function defined through LAMBDA,
will return a List of the arguments which were submitted to
LAMBDPA when the function was defined. If <a> is not constantly
bound, or if <a>“s value is not a function, or if <a> §is bound to
a special form, macro, compilea or assemtled function, or system
functign, *DEF returns N1L.

Examples.
If FOOBAR has been cefined like so:

(csetg foobar (lLambda (x y)
{plus (times x y) (times (addl x) (sub?1 ¥)))))

then

(xdef “foooar) = “((x y) (plus (times x y)
{times (add?1 x) {supl y32))

(csetq substdef (lambca (fn new old)
(eset fn (eval (cons “lapgbda
(subst new old (*def ftnd)))))))

This gefines a function which can make substitutions
in the detinitions of wuser-defined regular functions.
For example,

{substuef “footar “guotient “times)
Causes s

(*xgef “foobar) = ((x {) (plus (quotient x y)
(quotient (add? x) (sub1 ¥233))

14 Jul 1978 Maryland LISP Reference Manual 101

15.17.2« *spec
(*spec <a>)

This function, given an atomic symbol <a> which has been
definec to be a special form by DEFSPEC, will return the seconc
arzument which was submitted to DEFSPEC when <a> was defined.

Note that this may be a Linker node or a system function, but
wiltl never be a tons node. 1f <a> is not a user~defined special
form, *SPEC returns NIL.

Examples.

{csetq specp {(Lambda (atm)
(not (null (*spec atml}}))

pefines a function whichy, given an atomic symbol as
its argument, returns T if the sympol defines a special
form and NIL otherwise.

{csetqg specdef (Lambda (atm)
(xgdef (rplaca (plus Og 0Og) (*spec atm))})))

pefines a function which takes an atomic symbel eng
returns ijts definition if it is a special form and NIL
otherwise. For example, ¥f FOO0 is defined:

{cefspec foo (Lamboga (x y 2)
(ptus (times x y) 23)))

then doing
(specdef “foo)
returns
({x y 2) (plus {(times x y)} 2))
Note, however, that *SPEC and functions defined witn

it do not work with system-defined special forms such as
(SETQ, QUCTE, ana OR.

15.1+3+ *macro
(xmacro <a>)}

This function is similar to *SPEC, except that <a> must have
been defined a macro through DEFMAC.

Examples.

Functions similar to the ones given with *SPEC can
pe definea for *MACRO:®

(csetg mocrop (lambda (atm)
{not {nuli (*macro atm)}2))

14 Jul 1978 Mmaryland LISP Reterence Manual 102

(csetg macoef (lambda (atm) .
(*def (rplaca (plus 7q Cao) (*xmacro atm)))))

These are used in the same way as SPECP and SPECDEF,
which were defined as examples asbove.

15-1-4- *Chain
{(xchain <cr>)

This function takes as dts argument one of the special
C<A\D>*R atomic symools, and returns the octal code used by LISP
to folilow the inaicated <chain, where each pit stands for a
girection, with 1=CDR and 0=CiR, and a Leading 1 bit for counting
PUrDOSES ., ‘

Note that tne CAR ang CDR functions are implemented directly
rather than thouygh the general kit array mechanisme *CHAIN will
return cQ anoe 36 respectively for these, even though those bits
#ill nut normally exist.

Examples.

(*chain “cr) = 1q

(*chain “car) = 2q

(xchain “car) = 3g

{(xchain “cadaaadadr) = 705

(*chain “cododddadddddoaddodddddddddddddaddddr)
= FPTPTIT7?77777q

(Anyone wno woulo use the last one deserves to have

to count the D”s himseif.)

15.2. Code Generating fFunctions

15.2 4%, *Degin
(*begin)

This function is used by the comgfiter and assembler to set
up & boundary in the compiled <code area of corey, usually to
prepare for the yeneration of coce for 5 new function. Its value
is 2 pointer to the first lLocation at which the new code will be
placed.

156242« temit
(*emit <L>)
This function, given a Llist <> ¢f octal words, generates a

word of compiled cdode oy or”“ing tojether the etements of <i>.
The result is & pointer to the location where the new instruction

14 Jul 19738 Marylandg LISP Reference Manual 1032

was placeds.
15.2.3. *org
(xorg <a&a>)

This function is used by the compiler and assembler 1o
declare a position in core where *EMIT shoulo start placing code.
It is used mainly to plug in forward references.

15.2. Other Compiler-Orientea functions

15¢3.14 *ept
(*ept <n>)

This function, gyiven a non-negative integer <n> less than 32
returns a pointer at the <n>th compiler entry point into LISP,
The entry point table, which is cgescribed in detail in the LISP
assempcler documentation, is a set of pointers at LISP routines
which are helpful to the compiler,

1S5ele2s *exam
(xexam <p>)

This function, given & pointer <p> to an arbitrary location
in memorys will return an octal word representing the contents of
the word being pointed to.

Examples.
{csetg octal *exam)

This cefines a function whicn, given an integer,
returns its transtation into octal.

(*exam NIL) = 250000250006 (for the time peing)
{*xexam "ABC"™) = 607160250006 {(ditto)

154243 *depOSit

{*deposit <obj> <loc> <off>)
{xdeposit <op}> <loc>)

This function is used to alter the contents of an arbitrary
word of memory. The first argument, <obji>, should be an octal
word containing the new contents of the location being changed.
The second argument, <toc>, should be a pointer at the location
to be changed (as opposed to an octal word containing the address
to be changed). The tsst argument, <off>, should be an integer
which will be added to the pointer given as the second argument
to give the actual address to be changed. The default for <off>

14 Jul 1973 MaryLand LISP Reference Manual 104

is J. The result is <obj>. .

15.3.4. manifest
(manifest <sexp>?

This function informs the <comgiler that <sexp®> can be
evaluated at compile~time 0 as to avoid generating code to do
ite When evaluates by the interpreter, MANIFEST just returns
<sexXp>. The argument to MANIFEST may not bpe a special form or
Macro.

156345, buffer

(puffer)
(ouffer <inag>)

This function will return @ pointer to 8@ new buffer, which
is a blank 12&~work chunk of memory of type 9. If <ind> is
present and non=NIL, then whatever the buffer points to will be
marked oauring garoaye collection if the buffer itself is marked,
Also in this case, the buffer will be zeroed to keep things fronm
being wunintentionally marked. If <ind> is missing or NIL, then
the contents of the cuffer willL not ne marked.

14 Jul 1978 Maryland LISP Reference Manual 105

1%, LISP Directives

This chapter describes the LISP directives, commands which
can be typed at LISP to perform various tasks which cannot be (or
are not for various reasons) implemented as standard functions.
ALl the directives begin with colons (ege, ":LOAD'™), ano must
cegyin in column 1. The directives are: :LOAD, tEND, :LIST,
tUNLISTy :(CKXKPT, :RSTRy :LISP, :EXECLsy :CODEs :TIME, tBACK, tPEEK
:STOP, :00PS, ana :DATA.

1641, LOAD

This directive suppresses the "EVAL:"™ and "VALUE:" messajes
of a READ=-EVAL-PRINT loop, allowing targe numbers of
s-expressions to be processed withocut producing large amounts of
regundant or useless output, The suppression remains in effect
until & matching :END directive is found. :LOAD/:IEND pairs may
te nested to any depth, They are especialty useful in files
which ore to be aADD“eds The normal scheme s to have a :LOAD in
line 1 of the file, an :END in the next-to-last Lline, and some
descriptive string such as "FUNCTIONS LOADED"™ in the last tine,
thus causing LISP to respond to an Z2ADE of the file with &
friendily message indicating the loading has completea.

15.2, cEND

This directive cancels the effect of its matching :{0AD
girective, Also, the :END directive can pe used to turn off dgata
moue if a :DATA directive had been entered.

1643 TLIST

This causes all snput to LISP to be echoed vack before being
processeds The :LIST directive is useful when output 1is teing
redirected to a file so that outputs <can be conveniently
associated with their correspondiny inputs. The echoing remains
in effect untit an TUNLIST directive is found.

16+4+ :tUNLIST

This directive turns off the echoing of input causeo by the
processing of a :LIST airective.

1645 rCKPT

This directive, given the internal name of some assigned
data tite (with no trailing period), copies out att of LISP”s
data area to the indicated file for possible Llater recovery.

14 Jul 1978 _ Maryland LISP Reterence Manual 106

Tnis facility is wuseful when one desires to run a lLarge LISP
prugram such as the compiler, MLISP, or PLNR repeatedly without
having to sADD or LOAD a fresh copy €ach time.

1646 TRSTR

This directivey, given the internal name of an assianec cata
tite (again, without & trailing gerivg), copies 1ts contents in
ang uses them as LISP“s data area, If¥ the tile was not created
cy :(kPT, havoc will naturally resulit.

txamples.,

To use PLNR several times in & oay, enter LISP, set up @&
fiLtey, Loag in PLNR, ana :CxXPT to the file:

wLISP*LIb.LISP

TEXEC aASG,T FLNERE-DUMP,
tEXEC «USE LISP ., LISF+*LIB,
(LOAD “(LISP , PLNR))
:(KPT PLNR-DUMP

NOow uSE PLNR. If it cecomes necessary to f(eave LISP
pefore wusing PLNR azain, upon reentering LISP, PLNR can
te Lloaced rather quickly by coing:

IRSTR PLNR-DUNP

16.70 tLisP

Thnis cirective causes centrol to return to the latest tevel
of LISP supervision. It is useful as a response to LISP "HELPF: “
rejuests, and t0o make SUrc Oone 1S inageed taliking to a LISP
READ-EVAL-PRINT Lcop rether than one” s own program. or the Text
Editor, for instance.

16.%, tEXEC

This directive causes the UNIVAL control card which succeeds
it to pe sent to CSF%. when this grocess completesy, LISP
responus with ":EXEC COMPLETED™ or some error meSsage and error
coae as returned oy {(SF%. Documentation on £S5F% and the control
cards wnich it will process is fcund inm LUNni781y vVolume 2, nage
4“"6?-

Examples.

EXEC sASE,T LISP-TEMS,

XEC aSYM,U PRETTYP-FILEsy. g PRULC
SUSE LISPe,LISP*xLIL.,

XEC ESTART MYQUAL*LIST«FILES.

I TR T
m - M
2
m
[

14 Jul 1978 Maryland LISP Reference Manual 107
1667 tCODE

This directive should be used at the veginning of a LISP run
to reserve a contiguous chunk of data area to be occupied by
compiled and assembled code. Its format is:

:CODE <n>

where <n> is the number of 128-word pages veing requested, This
is o one-time request; if LISP runs out of this coce area, no
more can pe altocatea. Ample room is provided in LISP“s static
data area to handie atl but the largest applications. (Custom

versions of LISP <c¢an easily be put together for huge
applications.?

This directive, entered as :BANK <n>, specifies a wvirtual
memery bank number from which all data area s tec be allocatea
until the next :BANK or the eng of the run, where <n> is T means
any vank (effectively turning off the feature), NIL refers to the
static data area, and a non-negative integer refers to bank
number <n>, where <n> is, of course, no larger than the highest
active Gbenk numper, If the v option is not in effect, the :BANK
directive has no effect,

14.11, tTIME

This agirective causes LISP to give a message indicating the
amount of time wused so far for computation and garbage
collection, and the number of garbage collections performed so
far in the current run of LISP,

16.12, 15ACK

This causes LISP to unwind the stack back to the latest

level of LISP supervision (or any -7 trap via ATTEMPT), possipoly
with the contents of the stack printed along the way, I1f the

tBACK is followed by a T, everything unwound witl be printed, if
there is no argument nothing will be printedy, and if there is an
integyer, that many entries will pve printed,

Examples.,
tBACK T

This prints out everything on the stack.

:BACK

14 Jut 1973 . Maryland LISF Raference Manual 108

This prints nothing, and is rougnly eguivalent to doing
tLISP.

tBACK 12

This prints only the top 12 entries found on the stack
curing unwinaing.,

16+13. :PZEK

Tnis directive ¥s used Like :BACK, except control dis not
transferred back to the Llatest Levei of LISP supervision, but is
unaffected, since :PEEK is & transparent directive.

Examples.

tPEEK T
:FEEK
sPEEK 1

The first causes the entire contents of the stack to be
printed, 1the secong does nothind, and the third prints
the top entry on the stacks, 7The last one is useful as a
response to a PYHELPF: " guery from LISP, printing the
object which provoked the regquest.

16414, :STOP

This directive causes LISP to be exited normally. Any EXECS
controt card (except IcDy, FADD, anu sometimes JEQOF, will have the
same etffect).

16.15. :00PS

This directive can be useu to cause LISP to stop reading the
input currently ceing typed, ano to start reading againe.

Examples.

(CSETQ FALT (LMsDpA (N)
(COND ((ZEROP N)Y 1)
t00PS
{C3SETQ FACT (LAMBDA (xN)
(COND ((ZEROFP N) 1)
(T (TIMES M (FACT (SUET NX1)) D))

14 Jut 1978 Maryland LISP Reference Manual 109
16.16. :DATA

The :DATA directive may be inserted in front of data cards
to be read by a user program (via READ). This will prevent an
sttempt to evaluate any one of them in case something goes wrong
and a premature return to the supervisor is made. Data mode is
turned off when the next :END or :LISP directive is read.

14 dul 1978 Maryland LISP Reference Manuat 110

17. Alphabetic [ndex N

This is &n alphabetic index of atl the Maryland LISP
functions defined in this section. Function names marked with an
asterisk ("™=x%) are special tforms, those marked with a plus~-sign
("+") are predicates (ie.y, they never return anything but T or
NIL), and those marked with a pound sign ("™#") set and access
internal variables. A function of the latter kind usually has an
optional argument which, if given, is set as the new value of the
internal variavle (or entry in the internal table) in question.
In eitner case, the old value of the variaole is returnede.

*pegin 102 bindcon (n) 71
*car 31,42 bredk 72
*cdr T1.43 buffer 104
*chain 102 car 30
*def 1643 carcon (#) 71
*depos it 10:® cat) 91
*emit 102 car 30
*ent 1032 clearbuff 54461
*exam 163 cCompress 43
*macro 101 cond (%) 77
*agrg 122 conlim (i) 68
*pack 9 cons 21
*S5pec 1901 copy in 66
tBACK 107 copyout &5
sBANK 157 cos 86
tCKPT 105 cset 46
tCODE 157 csetqg (*) 46
tDATA 109 curchar 54
IEND 185 currcol 57
tEXEC 10¢é date 98
ISP 166 gefine 46
:LIST 165 defmac (%) 47
:LOAD 1G5 de fspec {(*) 47
:00PS 108 de lim (#) 53
tPEEK . 108 difference L 84
tRSTR 188 digits {(#) . 57
tSTOP 108 do {*) 2é
:TIME 107 dtime Q8
tUNLIST 1G5 dump 96
add1 8¢ eq 95
alist 2& endc har #) 5%
ang (%) 77 entier . g9
append 3 eofcon (#) 71
aread 6J eq (+) 31
assoc 43 equatl (+) 31,82
atom (+) T24412 erase ‘ 45
atsymt 42,92 error 68
attempt (%) 67 eval 26
axmit 57 e xXec 94
axmit? 6C expl ode 43
backsp - 55 expl ode? 44

backtr (%) &9 ficlose ' 61

14 Jut 1578 Marytand LISP Reference Manual 111

fiarop 664 or (*) 78
fierase & pct 94
fiopen 61,63 plength 5¢
fipack &5 plength? 59
fiprint 63 plimit St
fiprintrec 65 plus &4
firead 64 power g7
fireadrec &85 print 56
fitoc 6% prin2 57
fixp (+) 83 print 56
fiag 75 prog (*) 79
floatp (+) 83 prop 76
funcon (#) 71 put 7h
function S0 guot e (*) 26
fuzz (#) g8 quotient R4
gctime 97 rand 28
gensym 42 reaa 52
Jet 74 readch £6
go (%) 79 readmac C#) 53
greaterp (+) g2 readrec 56
grow 98 reagstr @2
ifflag 75 rema inder 5
index 35 remob b4
into 1z remprop 74
lambca (%) 48 return &G
lamda (*x) 49 reverse 39
teftshift g3 rplaca 16
tength 38 rptacd 37
lessp (+) 82 set 46
Lisp 26 setcol &3
list 38 se tqg (*) 46
load 96 sin 26
loy Y s1ze 80
loyand 87 space 57
logor 87 srev 20
loaxor 88 stack 27
manifest 104 string 42,92
map 34 stringp (+) 90
mapc 33 subt 25
match ' 91 subst 39
member 12 substring 51
memory 98 Swaps 99
minus gé terpri 57,62
minusp {(+} 83 time 97
misscon (%) 71 times 24
nconc 37 token 52
not TE trash 98
nth 40 twaift ‘ 95
nutl (+) 32 type . 27
numberp (+) 81 unbreak 73
chiist 2? unflag 75
ondex 35 zerop (+) B1

onto 34

14 Jul 1678 Maryland LISP Reference Manual 112

Section 3

Maryland LISP Function Packages

14 Jul 1978 Maryland LISP Reference Manual 113

Contents
1« Introduction, Explanation, and Acknowledgements 114
2. Arithmetic Package 117
Zs1e Basic Operations 117
ceds Basic Predicates 117
2e3. Other basic Functions 117
cebhe Sorting Functions 118
£e3s Numeric Output Formatting Functions 118
Ze6s Some Number Theory Functions 119
2efs The Expression Printer 119
2, Array Facility 121
2.7« Defining Arrays 121
le2s Pointer Arrays 122
3.3, Typeau Arrays 122
Zebse Internal Arrays 122
3+5« Using Arrays 123
Zebe Retrieving Array Specifications 123
3.7, Implementation 124
4 Autoloader Functions 126
4,1+ Using the Autoloader 126
42+ Autoloader Restrictions 126
Le3. Other Autoloader Applications 127
Se Bignum Packagye 128
5«1+ Creating Bignums 128
35¢2+ Bignum Predicates 129
5.3, dignum Arithmetic Functions 129
Seds Other Bignum Functions 129
6. LISP CLompiler 130
sele Using the Compiter 130
fe2se Free Variaoles 131
Gele When Free Variables Aren”t Reatly free 131
bebe Linking Between (ompiled Lode and LISP 132
45, Compiling PROGS 132
tebse Compiling Special Forms 133
6.7. Compiling Macros 133
Cele Using GROW 133
EaFe Haﬂifest . 133
610« Excise 1313
Gells Lis‘{ing 134
7. Deouy Package 135
7«1+ STRACE 135
7+2+ SBREAK 137
7.3. STRACEV 138
Tabe SUNBUG 139
7+45. SBRXPT 139
Tebe DB~LIMIT 140
7«7« DB=-YLEV and DE~BLEV 140
7:8. DB-ETEXT and DB~LTEXT 140
7.9 Tracing System Functions and Special Forms 140
7.10. Usage of DUMP and LOAD 141
8. Dynamic Dumping Package 142
Ge«1s Formatted Dumping Functions 142

Es1el1a Acorey Icore, Ocore, and Pcore 142

14 Jul 1978 Marylang LISP Reference Manual

Belsle Core

8ece Partial Word Examination Functions
te3s The Core Altering Function - Change
B8ehs Genersl-Purpose Dumping Functions
Seba Cdump

1,
Bebala Addroc?
Bsdels tontents
Bebobos gctal
Eebobe Integer
Bebebe Real
8euwe?e (Cnode

B«ebaBs Octstr
2. Function Editor
9.1« Catling the Function Eciter
9.2s Using the Function Editor
Ye3. Edit Mode Lommands
9.4. An Example
10. Generator Package
10.1+ Creating a Generator
1042« Using Generators
10.3. The Possipilities List
10.4. Example
1045+ Compiting Generators
11« Library File Functions
11«1+ Declaring a Library File
1142« Retrieving a Library File befinition
11.3. Creating a4 Library File Definition
11«4+ Library file Notes
12. Mail Systenm
12.1. Plugging in to the Mail System
12.2. Sending Messages
12.8+ Checking the Mailbox
12.4+ Receiving a Messecge
12+.4.74 1Isoclate Next Message ~ Rnext
124422+ Gao to Nth Message - Rgco
12.643. List the Current Message =~ Riist
1244.4. Delete the Current Message - Rdel
12.4.5. Copy Cut the Current Message = Rcopy
12.5. Finding Out About Other Users
13. Matrix Manipulation Package
1317« Matrix Addition - Matadd
13,2« Matrix Multiplication - Matmult
13.83, Matrix Sutraction - Matsub
13.4s Matrix~Scalar Muttiplication - Matcmult
135+ Materix-Scalar Adcition - Matcadd
13.6+ Print a Fatrix - Katprt
137« Copy a Matrix — Matcopy
14. Stanford MLISP
14.,1. Limitations of the Use of %
144.2+« Character Set Limitations
14.32. Operating Domain
4.4, Escape Character
1445 Loading MLISP
146« Running MLISF

114

143
143
144
144
144
144
144
144
145
145
145
145
146
146
146
146
148
150
150
151
151
152
152
153
153
153
153
154
155
155
155

156
156

156
157
157
157
157
157
159
159
159
159
159
159
160
160
161
161
161
162
162
162
163

14 Jul 1978 MaryiLand LISP Reference Manual

15.

16.

17

147« Sample Run
14.8. Compilation

Wisconsin MicroPlanner

15-1- Load‘ing PLNR

152« PLNR Primitives

15.3+ Abbreviations

15.4. PLNR Notes

15.5. PLNR Example
Prettyprinter

1647 Using the Prettyprinter

16.2+. Dumping

16+%2s Prettyprinter Notes
Suspend/Resume Package

115

163
164
166
166
166
172
172
173
175
175
17

176
178

14 Jul 19738 Maryland LISP Retference Manual 116

1. Introductiony Explanation, and Acknowledgements .

The LISP programs described in this section were written by
various hackers at the University of Maryland and elsewhere for
use with Marylanao and Wisconsin LISP. They reside in the LISP
liorary ftile, LISP*LIB., anoc the specifics of Loading and using
each program are listed in the various <chapters which follow,
The procedures for Loading the various programs are also detailed
in t he symbolic element LISP*LIB.LOAD-DOCS, which can be
inspected using #E0s The text in this element s kept wup to
date, so in tases where it differs from the accounts given here,
the element”s instructions are the correct ones.

The prettyprinter, MicroPlanner, compiler, the debugging
package, and part of the arithmetic package and their
documentation came to the University of Maryland with the
original Wisconsin LISP, and the cocumentation of the first four
is reproouced here 1in basically the original forme. The
Suspena-Resume functions were written and cocumented by Mache
Creeger. Maryland LISP”s version of Stanford MLISP was converted
to Maryland LISP by Chuck Rieger and documented by Mache (reeger.
The array, pignum, core dumping, oenerator, mail, ana matrix
maniputation packages were written and documented by Phil Agre.

14 Jul 1978 Maryland LISP Reference Manual 117
2 Arithmeiic Package

The Arithmetic Package is a collection of functions useful
for playing with numbers in LISP. Maryland LISP itself supports
several intrinsic arithmetic functions such as PLUS, POWER, ang
SINy, ond these are documented seperately (see page 81). To use
the functions described here, enter LISP and do:

SADD LISP*LIEB.ARITH

Tne functions documented here are M+, #=t, tan aigu, Haah,
MOD,y "=, 6T, LY, GE, LE, NE, EVENP, FLOAT, ABS, OCTAL, MAX, MIN,
FACTCRIAL, LOGN, RANDOM, TAN, SORT, SORTEDP, FPRINT, IPRINT,
OPKINT, XPRINT, PFACTS, PRIMEP, EXPPRT.

2etle bBasic Operations

The Arithmetic Package defines a set of short names for the

pasic arithmetic operations. These are: "“+" for PLUS, "-" for
MINUS, "« for TIMES, */* for QUOTIENT, ™*x" for POWER, and MOUD
for REMAINDER. Either these or the Lony names may be used once

the Arithmetic Package has been loaded.

ceis ODasitc Predicates

A set of pasic predicates 1is defined in the Arithmetic
Package, each with the obviocus meaning: "=", 6T, LT, GEy LE, NE,
EVENP,

2¢3. OQther Basic Functions
4 few other basic functions are de fined by the Arithmetic
Package.
The FLOAT function converts its argument to floating-~point,
The ABS function returns the absolute value of its argument.

The OCTAL function returns the octal representation of its
argument.

The MAX function takes any number of arguments and returns
the largest of them,

The MIN function takes any number of agrguments and returns
the smallest of them,

The FACTORIAL function computes the factorial of its integer
af gument .

14 Jul 1978 Marytand LISP Reference Manual 118

Thne LOGN function takes the logarithm of its first .argument
to the base of its secand argument,y, returning a reai number.

The RANDOM function of no arguments returns a vrandomly
generated floating point number in the range [0,1),

The TAN function returns the tangent of jts argument, which
should be in radian measure. It uses the intrinsic LISP
functions SIN and C0S.

2ehe Sorting Functions

The Arithmetic Package provices two functions which are
usetul for sorting, SORT and SORTEDP. Each takes as its
arguments a Llist + of LISP oojects and an ordering predicate F,
Before describing SORTEDP and SCRT, it is necessary to place some
restrictions on the nature of F. The function F must: 1) take
two argyuments; 2) accept as arguments any two members of the Llist
L in either order; 3) always return either T or NIL; and &) be
transitive, dee, if Flx,y)=T and Fly,z)=T, then Fx,2)=T, if x,
yy and 2z are any three members of L.

The function SORT returns a list (L1 L2 +00 LN} where each
Li is in L, and FLi,Ll3i)=T if i<j. If for some x and y in L,
both F{x,y) and F(ys,x) are NIL, then only one of them witl be 1in
the resulting List. Thus SORT can be made to remove duplicates
by specifying F such that F{x,x)=NIL for all x in L. If F has
the default value of LE, SORT witl return a sorted permutation of
L in non-decreasing order without removing duplicates. If, for
example, F is GREATERP, SORT will return a version of L in
decreasing order without duplicates, so that (SORT “(1 3 5 2 3 4
2) GREATERPY = (5 4 3 2 1),

The SORT function can accommodate arbitrarily complex
sorting tasks, depending on the sorting predicate F. for
example, if L is a list of atomic symbols, each of which_ has a
number under property List indicater IND, (SORT L {(LAMBDA (X Y)
(LE (GET X “IND) (GET ¥ “IND)))) will return 3 version of L in
which the atoms are reordered so that the values of (GET atom
“IND) are non-gecreasing.

(SORTEDP L F) returns F 3f (SORT L F} would return a result
EGUAL to L.

2e50 Numeric Output Fformatting Functions

The four functions ocescripea here altow the user to edit
numeric output into fields of specitic sizess

(FPRINT <real #> <field width> <# dec. places>) edits the

floating~point number <real #> into <field width> output
positions including <# dec. places> cdecimal ptaces and a decimat

14 Jul 1978 Maryland LISP Reference Manual 119

pointe. 1f the fielod specified 4s too small, the ocutput will

overftow the field. The user should remember to make room for
the decimal point.

(IPRINT <int> <width>) edits the integer <int> intoc the next
<width> columns on output, right~justified anag blank-filled to
the left.

(OPRINT <oct> <wicth>) ecits the cctal number <oct> into the
next <wioth> columns on ocutput, right-justifiea and zero-fillec
to the left.

(XPRINT <obj> <rep>) PRIN1”s the object <obj> <rep> times.

2.6« Some Numcer Theory Functions

(PFACTS <n>) returns the prime factors of <n> in ascenaging
order, For example, {(PFACTS 24) = (2 2 2 3), (PFACTS 0) = (Q),
(PFACTS 1) = NIL, (PFACTS =2) = (-1 3), ana (after a great while)
(PFACTS 233647) = (333667). The algorithm wused by PFACTS s
necessarity very slow for Large intecers.

{PRIMEP <n>) returns T it <n> is a prime numpber and NIL
otherwises. Note that no integer less than 2 can be prime.

2.7« The Expression Printer

For many purposes, LISP”s Polish notation for arithmetic
expressions is inconvenient. PBecause of this, there is the LISP
Expression Printer which, because of its size, does not come with
the Arithmetic Package but can be loaded by doing:

BADD LISF+xLIDEXPPRT

To print out an expression <exp>, call EXPPRT, ie., (EXPPRT
<exp>)., It witlt PRINT1 out in infix notation the expression <exp>
without (TERPRI)“ing. It comes with a set of pre-defined symbols
which may be inspected by tooking at the binding of the atomic
symbol FALIST. This #s an association Llist which associates to

each function name an infix symbol 1in string form, eg..
(PLUS « "#™), A Llist ot the function names recognizea s in
FLIST, The Expression Printer also recognizes operator

precedencesy and these are stored as an association List bouna to
the atomic sympol PRECS. Also recognized are symbols which come
before (ege, unary minus) and after (ege.y factorial) their
arguments. These function names are listed in UNOPS and POSTOPS,
respectively, ana are assoctated with their infix symbols in
UNALIST and POSTALISTs respectiveily. The user may freely change
these Lists to have the Expression Printer recognize any set of
symbolse Any function name which the Expression Printer does not
recognize is printed in the standard "f(x,y,2)" format atong with

14 Jul 1978 Marytand LISP Reference Manual 120

its arguments. N
For exampte, yiven the default function lists,
(EXPPRT “C(PLUS (F (MINUS X) (FACTORIAL N)) (TIMES X Y)))
prints
FO-X NEY+X Y

and
(EXPPRT “C(AND (6T X 4) (LE (+ X Y (- Z 1)) (/ & N)IDY)

prints

XK>LEX+Y+(Z-1)<=4/N

14 Jul 1978 Maryland LISP Reference Manual 121
2. Array Facility

The Marylano LISP Array facitity allows LISP users to define
multi-aimensional, {pseudo~)sequential-access arrays of LISP dats
structures. E£ach array is defined as a function which will
retrieve from or <change woras in the area of core assigned for
ite Thusy features such as subscript checking can be assigned
impticitly to each array when it is «created rather than
explicitly each time it 1is used. There are three kinds of

arrays, pointer, typed, and internal, and these are all getineog
DeLOwe

To use the Array facility, enter LISP and do:

SADD LISPxLIB.JARRAY

The functions documented here are ARRAY, ARRAY1, TARRAY,
TARRAY 1, IARRAY, IAFRAY1, ARRALIST, NUMSUBS, SURMAXS, MAXSUB,

ARRTYPE, ARRFUNC, ARRCHECKP, ARRAREA, ARRNWDS, ARRGET, and
ARRPUT .

Z.1. Uefining Arrays

The formats for defining the various kinds of arrays are:

pointer: (ARRAYL1] <agim List> [<init vat>l)
typed: (TARRAY[1] <dim List> <type num> [<init val>l)
internal: (IARRAY[L1) <dim Llist> <type num> [<init val>])

where Lsss] celimits optional constructs. In each <case the
returned value is the function which will be used to access the
array. 1t ARRAY1 or TARRAY? or IARRAY!1 is wused, this function
witl <check the legality of its arguments. The token <dim Llist>
stands for a List of non-negative integers which are toc serve as
the maxima of the various dimensions of the array (1 is always
the lowest value of each dimension). 1f the array 1is to be
one~dimensional, then <dim list> can be a single integer. In the
cases where it is given, <type num> stanas for an integer which
is the type number for the type of the array being defined:

code type

-1 pointer (ARRAY or ARRAY! will be callea)
g cons node

1 integer

2 octal

3 real

Attempting to specify an illegal type number in a call on TARRAY
or TARRAYY resutts in an error message and an (ERROR 3) (see page
673 . iIn each form, an optional last argument is <init val>,

14 Jul 1973 Marylanc LISP Reference Manual 122

which, if given, will cause each entry in the array space being
reserved to be initializec to that value. Otherwise, the initial
value will be “garoage",

3.2+ Pointer Arrays

The pointer array is the most general and, conseguently,; the
least space~efficient form of array. 1In the pointer format, each
word in an array space contains a stngle pointer to another LISP
object of any types. When the array s accessed, this pointer is
returned as the value, and when a new value i35 dJnstalled, the
pointer is replaced by a pointer to the new value. This way, one
can have arrays of linker nodes or strings or atomic symbols or
mixed arrays pointing at objects of different types.

2.3. Typed Arrays

Sometimes when all the elements of an array are of the same
type (especially when dealing with numbers); it is somewhat
inefficient to have the array entries stored as pointers into the
regular data area, thus taking up twice as much space as
necessarye. For this reason, typeg arrays are available. In the
typed format, the array entries {(presently lLimited to cons nodes
and numbers) are physically stored 1in the array space in the
conventional manner. When accessed, the array function creates a
news node of the proper type, copying out the contents of the
appropriate array spate entry ang returning a properly typea
ncdes+ Similarly, when a vatue is being changed in a typed array,
the contents of the nodge containing the new value are copied out
into the proper array space entry. This way, as far as the user
can tell, typeo errays are ingistinguishable in use from pointer
arrays.

Ts4e Internal Arrays

Sometimes when using typed arrays, it 1is inefficient to
create a new noce every time the arfray is accessed. For this
reason, there are internal arrays. Internal arrays are the same
as typed arrays, except when accessing the arraysy what is
returned is a pointer to the proper array space entry rather than
at & node containing its contents. Internal arrays have several
drawbacks which restrict the situations in which they may be
useds Firsty, the value returned from the array has no type
(actuaily 1t 4s of type 9, which for most purposes is the same
idealy s¢ that any routines which type-check their arguments
(most LISP internal routines do not) will reject them. Second,
since the value returned by the array function is a pointer into
array space, should &2 node in the array space be changed by the
array function, it will have the side-effect of <changing all
pointers to that node. Also, since the vaiue is just a pointer
to a type-~less object, there is no way of determining what the

14 dut 1978 MaryiLand LISP Reference Manual 1

3%
-

type of an object is just oy looking at it, so that most LISP
routines will interpret pointers at internal real or <tons node
array space entries as fixed-point numbers, For these reasons,
jt is usually not safe to use internal arrays of real numters or
tons noces. However, for many purposes involving numbers,
internal arrays can be mace to work i3f the user provides his own
type-converstons when necessary.

3.5« Using Arrays

As an tllustration of array usage, suppose that an array ARR
has peen defined by one of the six array-defining functions
tlisted above, say,

(CSETQ ARR (ARRAYT “(2 2) NILD

Then, (ARR “(7 1)) would return NIL, the first entry in the tirst
row of the array defined by ARR. The catl (ARR “(2 1) ‘(A . 5))
woulc cause & pointer to the structure (A . 8) to be placeo in
the first entry in the second row of ARR, ana a subsequent (ARP
“(2 1) would return (A « B8) as its value. (Any call which
changes an entry $n an array returns the new value.) Since ARRAY1
has been used here to oefine ARR, subscript checkine is performea
on ail uses of ARR. For example, (ARR “(1 4)), (ARR “(3 2} “Xx),
CARP “ (1)), (ARR “(0 3237, (ARR “(1.0 1) (PLUS & X))y, ana (ARR
(LIST “A 23) would atl result in error messages and (ERROR 1) 7s.,

Tne array ARR can be passed as an argument to a function,
ana the fjocal variable to which it becomes bound can be used to
access and change the array. For example, ((LAMBDA (A) (A “(2 3)
“(TWO THREED))) ARR) would have the same effect as (ARR ~“(2 3)
“{TwWwl THREE)). Note that for a one-oimensional array, the first
ary,ument need not be in a list, eg., (ARRY 27 “(C D).

The other kinds of arrays, typeo and internal, are used the
same wayYy the only differences being in what they return,

2.6+ Retrieving Array Specifications

Each array function carries with it information about the
way 3t was oaefined, and this information can be retrieved in
cases where a routine works with several kinds ot arrays ang
needs to discriminate among them. The information is stored in
an association tist in the function cefinition. This List and

the specific items of information on it can be retrieved by the
following functions:

1. (ARRALIST <array>) returns the entire List of information
for array tunction <array>.

2. (NUMSUBS <array>) returns the number of dimensions that

14 Jul 19738 Marytand LISP Reference Manual 124

were defined for <array>, N

3¢ (SUBMAXS <array>) returns the <dim Llist> (dimension
maxima list} which was specified when <array> was
gefinedg.

4o (MAXSUB <array> <oim num>) returns the <dim num>th entry
in the <dim list> dimension maxima list for <array>.

S« (ARRTYPE <array>) returns the numeric type of the entries
in <array>, where =1 is the code for pointers; 0 is for
cons noaesy 1 is for integers, 2 is for octals, and 3 is
for reals.

5. (ARRFUNC <array>) returns the name of the function which
defined <array>, that is, ocne of ARRAY, ARRAY1, TARRAY,
TARRAY1, JARRAY, or IARRAY1.

7+ CARRCHECKP <array>) returns T if subscript checking was
specifiec for <array>, and NIL otherwise.

8+ (ARRAREA <array>) returns a List of those (type 9) buffer
pages where <array>”s entries are stored, See the notes
on implementation details belouw.

9. (ARRNWDS <array>) returns the total number of entries 1in
<array»>, which <can be foung by multiplying together atl
the numbers in the <dim Llist> which was specified when
<array> was defined.

Since the 4+tntformation Listed apove must always be
accessibie, the wuser should not put a trace oft any array
function. Since it often is necessary to trace array accesses
and chanpes, though, there are two functions which provide
alternate ways 0t acctessing and changing arrays,; and these tan be
traceds The function ARRGET takes two arguments, an array
function and a Llist of subscripts. It simply passes the
subscripts along to the array and returns the vresult of the
accessing operation. The function ARRFUT takes three arguments,
an array function,y, a list of subscripts, and a vatue of an
appropriate type, and sends them along to the arrays making the
desirec change.

3.7« Impitementation

Maryland LISP provides as one of its data types a 1Z28-word
sequential area known as a buffer page. Arrays are Laid out on
these pages by a first—fit alyorithm which allocates NWDS/128
full pages and NwDS.mod.128 words on a broken page for an array
reguiring NWDS words, Indivioual entries are located by
converting an n-dimension subscript list into a sinole integer I,
(see [Knu6Bl, Section Z2eced, Page 296 on "Sequential Allocation™)
anc computing the address of the ({({I-1).mod.128)+1)th word on

14 Jul 1978 Maryland LISP Reference Manual 125

the (((I-1)7128)+1)¥th page which was allocated as describeo
above,

Array space is garbage collected a page at a time when all
arrays sharing a page have disappeared. The onjects to which the
pages themselves point are marked by the garbage collector for
pointer ana type 0 (cons node) array pages, but not for pages
dedicated to numeric arraysSe.

Because of the agifficulties involved in introducing buffers
to the aesign of Maryland LISP, it is at present impossible to
use LOAD and DUMP on arrays. Also, arrays may not be compilea,

14 Jul 1978 Maryland LISP Reference Manual 126
4., Autoloader Functions .

The Autoloader is a program which atlows the user to delay
loading the definition of a function, value of an atomic symbol,
or entry on & property list untii it is actually needed by EVAL,
and then to do it automatically. To use the Autoloader, enter
LISP and do:

aADD LISP+LIBJAUTOLUAD

It is also necessary to load the Library File routines (see page
1533 .

Most of the LISP support routines are in the file
LISP*AUTOLIB.y so that to use them, cne can do:

tEXE(QUSE AUTO.,LISP*AUTOLIB.
(SETFILE “AUTO)D

The rules for wusing the Autotocacer on each of the wvarious
function packages are contained in the element
LISPALIB.LOAD-DOCS, which may pe inspected using IED.

4.1 Using the Autoloader

Once a library fite has been established, it is possible to
proceecd as though everything in the filte has been loaded,
Whenever an atomic symbol is found to pe unbound or a property
list idngicator ds not founa when asked for, LISP contingency
routines will give control to the Autoloader, which will search
the table of <contents of the library file for the appropriate
entry. 1f it is found, the image in the appropriate record witt
be sent to EVALy and control wilt return to the user program,
Otherwise, the tracitional '"™UNBOUND X, HELP:" . message will
appear.) . . -

in order to put an entire list of definitions into a library
file, one may call (AUTOFILE <defns>), where <defns> is a list of
s~expressionss Those which AUTOFILE recognizes as being legat
vatue definitions wiil be put in the library file, and the rest
Wwill be returned as AUTOFILE s vatue. These definitions must be
loadea manually, via aADD or similar means. Given the result
from AUTOFILE and & sequential access file descriptor {(see page
607, the function GEN=-LCADFILE ¢an print out the extra
definitions into the file. By using the Text Editor”s BEGIN ang
COPY commandsy one can transfer this text into a file or element
which must be @ADD"ed vefore the Autoloaoer can load any other of
the gefinitions for that collection of functions.,

14 Jul 1678 Maryland LISP Reference Manual 127

4e2e hutoloader Festrictions

Several kinds of things may not be Autoloaded:

1) Special forms or macrcs; a special form or macro tinker
nocde returned by LISPF s contingency routines will be treateg
as 2 regular function,

2) unprintaole cbjects such as Linker nodes, ctompited or

system codey or wuffer pages whicth are not constantly bounao
to any astomic symool other than the one being dumpeo,

Z) Redefinitions of intrinsic LISP functions: an intrinsic
LisFr function®s atomic symowol will not normaltly pe unbound,
su that it will never trigger the Autoloader mechanism,

4) Ubjects whose cefinitions must ocgur before or after
trose of cther Autolcocacded {functions because of, Sa¥y
redefinitions ot functions.

Trere are some otner restrictions on Autoloader use. An
atumic symbol will only nrave its wvatue Autoloaded if it is
EVvALuatec ang tfounud to be unbounogs. Since the Fretiyprinter, for
exampley, uses LISP intrinsic functions such as *DEF to get at the
vatue ot ap atomic symbcls on unicaded atom witl appear unbsunc
to the Prettyprinter, Fluid binagings (via SET or SFTQ) may not
be Autoloaded., Cther LISP nhacks not explicitly saioa to be legal
in this manual will probacly foul u the Autoloader also,.

Note that the Autoloader recefines the GET function tao
carture non-existent property List entries and defines a BINDCON
continsency to capture unbounl atoms.

44e2. Gther Autoloacer Applications

Compiled code can be Autoloaded by using the PUTDEFN
function, for examgle,

(PUTDEFN “FODRAR “(LOAD “(MYFILE ., FOOQBARDY))

where FOORAR has bkeen compileac and DUMPed to element FOOGAR in a
prugram file witnh internal name MYFILE.

14 Jul 1978 raryland LISP Reference Manual 128

5. Biygnum Package .

The Bignum Package allows the user to do arithmetic with

integers of arpitrary magnitudes {up through several thousand
dtyits) and bases (up threough 16). To load it into LISP, Lload
the Arithmetic and Array packages anad co:

GADD LISP*LIB.BIGNUNM

5.1+ C(reating Bignums

There are two ways to Create a bignum, Literally and through
the BIGCONV functions, A literal bignum has the following form,
which §s interpreted by the ccde assigned as a reacdmacro for the
wr® character:

<pignum> => <based-bignum> | <basell-bignum>
<based=bignum> -> "3<base><sign><digits>
<basell-bignum> => “<opt-sign><digits>
<opt-sign> => <sign> |

<sign> => + | =

<base> -> an integer in {2,+0e4162
<digits> ->0 | 11 21 314 151&) 718191
Al st cl bl e LF

where, of course, each digit must pbe ltess than the base of the
bignume The following are examples of Literal bignunms:

“1098476 is a positive pase 10 integer
~22-1100101000 is a negative base 2 integer
~“$13+4A4099C 18735 is a positive base 13 integer

0 = *+0 = =0 = "“31U+0 = "$10-7 = zero in base 10

Note that there is no "negative zero* oignum; all ieros are given
positive sign by the bignum creation routine and by the various
functions which return bignum resutts. .

The seconc way to create & bignum is through the BIGCONV
function, which takes as its arguments a LISP integer anad an
jnteger base and bignum version of the first argument to the base
of the seconds. The inverse of BIGCONV is BIGINT, which, given a

bignum less than 2°35, returns &n integer version of it (it
returns the argument cotherwisel.

Generally speaking, bignums of {arger bases are more
efticient, because they take (stightly) less room, and because
the algorithms wused to manipulate bignums do digit-by~digit
operations. The only way to convert petween bases is to use
BIGINT to convert to an integer, and then to use BIGCONV with the
appropriate pase to convert back. There is no easy way to change
the base of a8 very Large bignum. ;

14 Jul 1678 Marvyland LISP Reference Manuat 126

Those bignum functions which take more than one pignum
aryument generally require that they be cf the same base,y except
as noted.

S.2. Bignum Preaicates

These functions take biynum arguments and return T or NIL.

SIGEGUAL (A4B) Returns T iff A=B
EIGLESSP(A,B) Returns T 11f A<p
EIGTEROP () geturns T tff B=0
c1GPOSP(B) Returns T itf B>J or EB=D
EIGNEGF{(x) Returrs T iff B<y

«3e ctignum Arithmetic Functicns

These functions each take two bicnum arguments of the same
tase and return oignums of that base:

BIGPLUS{A o) Returns A+t
EIGDIFFC(A &) Returns A—E
SIGMULTCA,,B) Returns A*({
LIGDIVIDE (Ay8) Returns (A/E « Asm0d.B)
The algorithm for BIGDIVIDE s wvery slow for Large
ar,uments. For & discussion of the integyer aivision aloorithm,

see [Knué®l, pages 23E-24C.

There is atso a function, EIGEXP, which takes two bignum
aryuments of any bases ana returns the first raised to the power
of the secono. The pase of BIGEXP’s result is the base of its
first argument. Tnis cost ot this operation grows rather rapicly

with the magnitude of the first argument and the logarithm of the
second arsgument.,

t.%e Other Bignum Functions

The SIGPRINT function takes one bignum argument ano prints
it out 1in the Lliterat notation without the """ prefix, and
without coing a (TERPRI)e It returns its argument.

The RIGSIZE function takes a cignum argument anc returns the
numcer of digits in its representation (ie., in its base).

The BEIGSIGNGET function takes a bignum argument and returns
1 if 4t is zero or positive, and -1 if it is negative,

Tne BIGEASE function takes a pignum argument and returns its
base as a LISP integer.

14 Jul 1978 Mmaryland LISP Reference Manual 130
&¢ LISP Compitler \

The Marylang LISP system normaltly acts as an interpreter
that reads expressions and evaluates them, However, there are
often times when one has already defined and debugged some
functions and would Llike them to run more efficiently. For this
purpose the Maryland LISP Compiler is used. The compiler uses
the cdefinition of the function to generate machine code. This
machine code is placed directly in c¢ore and thereafter wused
whenever the tunction is appiiedy Jjust as if it were a
hand-¢coded, system-defined function., It must be emphasized that
the compiler 4s decsigned to be used only after a2 function has
been debugged with the interpreter. The compiler gives almost no
diagnostics and the code generated for a badly definea function
will crap out in exotic and woncerful ways.

The functions documentec here are {OMPILE, FLUID, UNFLUID,
and EXCISE,

6.1« Using the Compiler

The compitler is loaded by typing (in LISP):
QADD LISPxLIB.COMPILER or,

tEXEC QUSE LISPe,LISP*LI1E.
(LOAD “(LISP 4 COMPILER))

Before anything may be compiled, it is necessary to use the
+CODE directive to allocate a contiguous chunk of memory for the
compiled code to reside on. GSee page 107 for detailse.

The major function in the compiler is COMPILE. To cause a
group of functions to be compiledy Say:

(COMPILE L)

where L evaluates to 3 List ot designators, each of which has one
of the foliowing forms:

F NN Compite the function, special form or macro
constantly bound to the atomic symbol FNN.

(I AT oo An) For each ot the atomic¢c symbols A1 oo AN,
compile the function on dts property list
indicated by I.

(Compare the form of the arguﬁent 10 PRETTYP.)

For example:

(COMPILE “(F1 F2 (IND AT1 ATZ)))

14 Jul 1978 Marylano LISP Reference Manual 1711

or s

(CSETG CLIST “(F1 F2 CIND AT1 AT2)))
(COMPILE CLIST)

COMPILE will then <generate machine <code for each function
ingicateo anc place the code directly into core.

Eois Free Variacles

NMormalbly, tnis is atl that needs tc be cone in order to wuse
the compiler., However, there is one situation where the comoiler
neecs some additional information - when free variables are used,
A free wvariable is an atomic symbol used in a function whicn
neither hes a glocal Linging nor agpears as & LAMBDA or PROO
variesble in the function. The compiler must know whether these
atumic symoots are actually constants (je., globelly bounc atoms)
which nave not yet been cefineasy or are fluio wvariables which
shoula te handlea through the association Llist mechanism. 8y
convention, the compiler sssumes that all free atomic symbols
«ill nave & constant bincging at run—time, uniess they have been
explicitly declarea as being fluid via the function FLUID:

(FLUIBD “(VT1 VZ 40

Any variacte which is wused free in a function to be
compileds, or which appears as & LAMBDA or PROG variagble in a
function to be compiled tut is referenced as a free wvariable in
some lower-leve l function, must ©pe declared fluid before
compileticn. After compiling all functions which either bind or
reference a free variaoley, 1t may we declared unfluid if desired:

(UNFLUID “(V1 V2 +.4))

Tnis allows supsequent functions in which the variaptie

appears as a normal Local veriable to be compilea in an optimal
manner .

As an aid to aciscovering free cccurrences of variables, the
value returneg by COMPILE is & tist of all atomic symbols which
were used free and had not been declared fluid {the compiler
assumec they are constants). If any are in fact pot comnstants,
you must declare them fluie, restore the original function
getinitions, and recompile.

6.3, When Free variables Aren”t Really Ffree

There are several cases where variables which appear free in
a4 LAMBEDA-expression needn”t e declared fluidy 1.4y the compiler

is smart enouyh to reference them directly. The necessary
conditions are:

14 Jul 1978 Marylanc LISP Reference Manual 132

(1) The LAMBDA-expression appears in the first position of an
expression, jeeay (C(LAMBDA +44) ses), OF as an argument to
one of the system functions MAPC, MAP, PROP or OBLIST; and

(2) The referencee variable is ©bpound in the function .being
compiled (in 2 higher~level LAMRDA or PROG).

Thus when compiling:
(LAMBDA (X L) .o (MAPC L (LAMBDA (Y) 540 X ¢es)))

X needn”t be declareag fluid even though it appears free in the
second LAMBDA-expression.

6ebhse Linking Between Compiled Code ana LISP

There is another somewhat more suotle situation, involving
calls from a compiled function to the LISP interpreter, in which
variables must be declared fluids, Normal variables are assigned
a Llocation on the stack and audressed directly by compiled code,
The interpreter, however, accesses variables by looking them wup
on the association Llist. Thusy any variables which are passed
unevaluated to the interpreter must appear on the association
Listy ieeey they must have been cgeclared fiuid at compile-time,

There are two ways by which a compiled function c¢an cause
the interpreter to ve entered (fortunately both rather rare).
The first involves explicit ¢calls to EVAL. For example, if V is
a wariable, (EvAL (LIST FEN “V)) will <cause V to be passed
unevaluated to the interpreter, so that it must have been
declared fluid., The second way to enter the interpreter is to do
a SET (SET@ s handled autcomatically by the compiler)., for
example, if V is a2 variable and L cets bpound to the List (V ss0l,
the expression (SET (CAR L) +..) will cause V to be passed to the
interpreter.,

To reiterate, any usade of'EVAL,or SET within a function to
be compiled should pe examineg carefully to see if any variables
might pe sent unevaluated to the interpreter.

645, Compiling PROGSs

Special care must be taken when compiling functions
involving calls on PROG. If X 4s a Label in a PROG to be
compited, (GO0 X) may not be cone outside of the PROG, Also, the
s—expression (GO X) may not oe sent to EVAL. In each case,
compilation will have reduced X to a hard-coded address which
cannot be found by the GO0 functiony, and 60 will unwind the stack
trying to find a PROG with a label X in it.

Also, at presenty, if a call on RETURN is to be compiled, it
must have an argument.

14 Jul 1978 Marylang LISP Reference Manual 12
6e0e C(ompiling Special Forms

Special forms may be compilec just as normat functions.,
Care muyst ©pe taken, howevery it the special form contains any
catts to EVAL {(see abovel). It is possible for function A to cass
an unevaiuvated varijaole to special form B, which then sends it on

te EVAL. In sucn & case, the varisble must pe adeclared fluio
before compiling function A.

6.7« Compiling Macros

The compiler handles macros Dy expanding them (at
compile~time) and compiling the resulting expression. Thus the
macro itself neea not pe compilea (although if it is frequently
useo 1t may be). After compiling atl functions which call a
garticular macro, the macro may pe discardec - it 1is no Llonger
needed at run—time. Note that this procedure works for normal
macros - it does not work for macros which expanag as a function
of tne run—-time environment, or whicth have any run-time
sige-effects (eeyey <changing a constant pinding or printing
anything). Such mecros should be written as special forms,

b+€s Using GROW

when not using the Vv option, it is recommended (though not
necessary) that functions toc be <compiled be loadee before
executing a GROW of more than 55 (47G8)s This ailows the compiled
coue 1o access aduresses directly rather than through 1inagex
registerses After reading in atl functions to pe compiled, core
may ve expanded obeyond this (imit if desired. It is imperative,
however, that compiled code which has been DUMPed be subsequently

LOADeg wuwefore executing a3 GRUW of more than 55, {see also page
GE)

te9e Manifest

The expression {(MANIFEST X) s equivalent to X when wusing
the interpreter, However, using this expression in & function to
te compiled tells the <comgiler that the wvalue of X can be
computec at compite~time, so that the compiter will evaluate it
then instead of generating the coce to evaluate it. ([Note: Some
expressions are automatically EvALea at compile=«time. Thus

(qU0TE X)) is actually equivalent to writing (MANIFEST (QUOTE
XY>r1.

&a1Jds Excise

The normait use of the compiler is to ctompile some functions
anc then save them using DUMP, However, there are several flags

14 Jul 1978 Marylanag LISP keference Manual 134

ano things left hanging around by the compiler which witl be
buUuMPed alsoy and hence will be with you forever after. Yo purge
these wunwanted ditems, type (EXCISE)Y when you are through
compiling to remove the compiter from core.

6.11. Listing

The compiler works by generating a pseudo-machine code
before generating the actual UNIVAC code. In certain cases it is
helptul (and dnteresting) tc Lloock at this code to see just what
the compiler thinks of vyour function (especially wuseful for
debugging the compilert), To have this code printed out on the
terminal or Lline printer, include & second argument to COMPILE,
e.g-:

(COMPILE CLIST T)

The intermediate code for each function will then be Listed as it
is compileds This code is for the most part self-explanatory.
1f it”s not, you prooably shouion”t pe printing it out anyway.

14 Jul 19738 Mmarylanog LISP Reference Manual 135

T Depug Package

The LISP bepbuyg Package provides the user with a powerful set
of functiocns for monitoring the execution of his programe It s
losded by typing (to LISP):

aADD LISP*LIB.DEBUG or,

:EXEC SGUSE LISP.,LISP+*LIE.
{LOAD “(LISP . DEBSUG))

The major functions in the Debug Package are STRACE, $BREAK,

BTRACEV and SUKNBUG. The guxittary function SRRKPT 1is also
aveilacle for use 1f cgesireqa. Each of these functions is
describec in detail Delow.

7+1. STRACLE

TTRACE allows the user to trace conditionally the entry to
ancg/or exit from functions. It is cesigned to be simple enough
for use in most normatl trace situations, while still providing a

capability for complex conditional monitoring of function
execution. This filexioility is attained sy provicina default
vatues for the various arguments. The complete form of the

calline sequence 1is:
($TRACE FNS £1 LY EZ LZ)

where FNS EVALs to either an atomic symbol to which a function,
special form or macro is constantly bound (it may be either
compiled or uncompiled), or to a List of such atomic symbols; E1
anag Ez EVAL to LISP expressions; and L1 ano LZ evaluate to lists
of expressionse.

Each time one of the functions indicated oy FNS is entered,
£1 will bpe EVALed. If it EVALSs to NIL, EVALuation proceeds as
usuale Otherwise each of the expressions in L1 1is EVALed ang
printec before entering the function, when evaluation s
complete, £2 is EVALed and, 1f non-NILs, the expressions in LZ are
EVALen anc printed. The function is then exiteg as usual,

£1, 52 ano the expressions in L1 ana LZ may reference the
ar,uments passed to the function wvia the variable $ARGS and
expressions ($ 1), (% 2), eoey where 3ARGS is pound to the entire
argument List ana (3 n) returns the nth argument (if n is <100
targey, the atomic symbol **UNDEF** is returned). When tracing
uncompited functions tnhe arguments may also be referencea Ly 1the
names of the corresponging formal parameterse. Thus you may
reference the two arguments of (LAMBDA (L V) ...) 2y ($ 1)} and
($ 2, or by L and V.

Ez and the expressions in Lz may reference the value

14 Jul 1978 Marylano LISP Retference Manual 136

returned by the function via the variaole 3VAL. This gives the
user the capability of congitionally tracing the exit from a
function depending on its value.

Since in most cases one goesn”t need alt of the power of the
compiete trace routiney, any of the arguments E1, L1y EZ2, or L2
may be omittea, with various dcdefault interpretations (of course,

if an arcument is present all arguments preceding it must also be
present)., The defgult intergretations are:

ARGUMENT DEFAULT VALUE

E1 T (TRACE UNCONDITIONALLY)

t1 T {(PRIKT ARGUMENTS TO FUNCTION)

Ed E1 (TRACE EXIT ONLY WHEN TRACING ENTRY)
LZ T(EVAL)D (PRINT VALUE RFTURNED BY FUNCTION)

Foileowing are several examples of the use of $TRACE:

€1 (STRACE “(F1 F2 2.4}
couses each of the functions F1, FZy e+« tO be

traced unconditionally, with the arquments printed
upcn entry and ithe value upon exit,

(2) ($TRACE “FUNC “ONULL (% 103
causes FUNC to be traced onltly when its first
afFgument s NIL.

£2) {(STRACE “FUNC T “((%2 1) (LENSYF (32 212D
causes FUNC to be unconditicnally traced, with its
first argument anc the Ltenuth of 1its secona
argument printea upon entry, and its value printeo
upon exit.

{4) (3TRACE “FUNC T T F) . ..
causes FUNC t¢ pe wunconditionally traceog wupon
entry ontyy witn its arguments printed.

(5) (STRACE TRFNS T NIL T “(TREL))
causes cach of the functions in the tist TRFNS to
he wuncongitionatly traced, with no expressions
printed upon entry and the wvalue of the atomic
symbol TREE printed upon exit.

As an example ot the trace formai, cunsider the following:

(CSETG LENGTH
(LAMBDA (L)
(COND [<Nubti t> 1]
[T <ADDT (LENGTH (CDR LII>3IM)

(STRALE “LENGTH)

14 Jul 1673 Maryland LISF Reference Manual 117

(LENGTH “(A B81))

>ENTERING LENGTH (03

L: (A B)
>ENTERING LENGTH [12
L: (B)
>ENTERING LENGTH [2]
L: NIL
<LEAVING LENGTH (2]
$VAL: C
<LEAVING LENGTH [11
$VAL: 1
<LEAVING LENGTH (0D
VAL 2

The tevel numcers (eegey [01) are printec to make it easier
to match entering/lteaving pairs in deeply nested functions.

when a function is traced or troken, the trace routine is
attached to the atomic sympol rather than to the function
dJefinition itselts Therefore, in the foliowing case, Y and 2
will Le tracegy, but X and W witl not:

(CSET@ X (LaMBDA (A b C) o « +))
(CSeET@ ¥ X)

($TRACEV “(Y))

(CSETQ 2 Y)

(CSETG W 2)

(SUNBUG “(w))

7+2¢ 3BREAK

TEREAK allows the user to condgitionatliy interrupt the
exccution of a function as it is entered and/or exiftea. It is
simitar to $TRACE, except that insteadg of printing the values of
& given set ot expressions, a READ-EVAL~-PRINT loop is entered to
give the user an opportunity to interrogate the status of nis
Droarame. Note that a function may be either traced or broken,
but not both at the same time. The complete form of the <catling
segyuence is:

($SBREAK FNS ET1 E2)

where FNS EVALs to either an atomic symbol to which a function,
speciat form or macro 1is <constantly bound (it may be either
compiled or uncompiled), or to a Llist of such atomic symbols; and
E1 and EZ EVAL to LISP expressicns.

fach time one of the functions indicated by FNS is entered,
E1 will e EVALea. If it EVALuates to NIL, evaluation proceeds
as usual. Otherwise a READ-EVAL=-PRINT Loop is entered - the user
may type in expressions which will be EVALed and printed. To
exit from the toopy type Te Evaluation of the function will then

14 Jul 1978 Maryland LISP Reference Manual 138

cont inue, when evaluation s comgplete, EZ is EVALed and, if
non-hILy, another READ-EVAL-PRINT loop s enteredes Again, type T
to =2xit. The function wilt then be exited as usual.

As in $TRACE, the expressions £1 angd E2 {(and expressions
typed in by the user) may reference the arguments passed to the
function and its resutt via SARGS, (% 1),y ($ 2}y +e0 oand SVAL.
Formal perameter names may also be usec when breaking uncompiled
functionse.

E1 and E2 may be omittec when calling $BREAK, with the
folLiowing detault interpretations:

ARGUMENT DEFAULT VALUE

v —— W e

E1 ¥ (BREAK UNCONDITIONALLY)
EZ E1 (BREAK EXIT ONLY WHEN BREAKING ENTRY)D

Following are several examptes ot the use of $BREAK:

(1) (3BREAK “(F1 F2 eael)

causes each of the functions F1y F2y sse to be
broken unconditionally on both entry and exit.

(z2) ($3REAX “FUNC “(% 22
causes FUNC to be bDroken onity 1if dts second
argument 1s non-Nil .

(3 (35REAX BRFNS T F)
causes each of the functions in the list BRFNS to
be broken wunconcitionatty wupon entry, with no
breakiny upon exite.

743+ SBTRACEV

STRACEV allows the user to monitor the wvalues assioned to
specifiec atomic sympols via SET, (SET, SET® or (SETQ@. There are
two calling seguences to STRACEV:

(3TRACEV ATS) anc (STRACEY ATS E)

where ATS EVALs to either an atomic symbol or a tlist of atomic
symbols, ano E EVALs to an expression, when the second argument
is not present, a message of the form "*CSETQ (namel: (val)" s
printec each time the bindinc of an atomic symbol indicated by
ATS is c¢nanged via SET, CSET, SETQ or CSETA. Note that this coes
not apply to other means of changing bindings (e.g.y PROG
varjable dinitialization), nor tou bingings <¢hanged by SET& or
CSETQ within compilecd code.

when the second argument to 3TRACEV is present, the above
message dis printed only when the expression £ EVALuates to

14 Jul 1978 Marylana LISP Reference Manual 139

non-MIL. In aodition, 8 READ-EVAL-PRINT loop is entered to allow
the user to examine the state of his program at a point just
before the value of the atomic symcol is changed., Type T to exit
from the Logops The new value about to be assigned to the atomic
symbol is bouna to $VAL, and may be referenced by E if desired.
For examcle, the following will cause a READ-EVAL~PRINT loop to

e enterea each time one o0f the incicated atomic symbols is set
to NIL:

(STRACEV “(AT A2 +as) “(NULL SVAL))
Note also that (STRACEY “AT T) may be used tec cause a
READ-EVAL-PRINT lLoop to be entered each time the bindino of AT is

chanyeaoe
Tade SUNBUG
Tracing, preaking or value-tracing may e turned off via
TUNBUGs The calling sequence is:
{3UNBUG ATS)

where ATS EVALs to either an atomic symbot or a List ot atomic

symbol s Each atomic symbol indicated Dby ATS will have atl
traciny, breaking or value-tracing removed. If an atomic symool
appears which is not currently being traced, broken or

vatue-traced, it is ignored,

It is occasionally useful to turn off all detugging without
having to type in a (possibly long) List of atomic symbolss This
may ve accomplisheg oy typing:

(FUNBUG)

Note that SUNBUG must be called before & traced or broken
functiun may be edited or prettyprinted. Also, you may trace a
proken function, break a traced function, or change the trace or
break conditions of & function ky catling $TRACE or SBREAK
without cothering to call SUNBUG first.

Note that if a traced function 3s regefined, it will not
still ve traced.

7Tede $BRKPT

$EREAK and 3STRACEV both use this function when F
READ~EVAL-PRINT ioop 1is reqguirecs It may also be used %n user
programs to establish oreakpoints at interesting locations.

(3BRKPT X3

will cause X to pe printed anug a READ-EVAL-PRINT loop to be

14 Qul 1978 Marylang LISP Reference Manual 140

entered. Expressions will be reacgsy EVALed and printed wuntil a T
is ready at which time SBRKPT wiltl exit with a value of T, For
exampley

CCOND (RRFLAL <38RKPT “SBRKPT 29%95:'>1)

will cause a READ-tVAL-PRINT Lloop to be entered whenever BRFLAG
is non=NIL.

?IQ. DB_LIMIT

The print depth and length Llimits used by the Debug Package
are bound to the atomic symopoi DB~LIMIT, and may be changed if
desired., The initial value of DB=-LIMIT ds “(3 . S) (i.eey a
depth of 3 and a tength of 5).

7¢7¢ DB-TLEV ano DB-BLEV

Both $TRACE and 9%BREAK maintain Litevel counters which are
printesc to Show tne current depth of nested function calls.
$TRACE also uses its counter to control the number of spaces to
incent Doefore printing. If a2 function exits abnormally, these
counters may get screwed uwpe It this happens, CSETG the atomic
symbols DB~ELEV andg DE-BLEV to (.

7ede LDB=ETEXT ang DB-LTEXT

When traciny on the teletype cne might Like to cut down on
the Llength of the message printed out when a function s entered
or exited. This may be accomglished by changing the constant
bindings of the atomic sympols DB-ETEXT and DB-LTEXT. For
example, (CSETQ DB-ETEXT "+'") will cause ">ENTERING FUNC [03" to
be changed to "+FUNC [01".

7.7+ Tracing System Funct{ons-énd Special Forms

Reason tells us tnat if we wish to trace or break a system
functicn, and that function is itself wused within the Debug
Package, there is a distinct possibility of an infinite loop
being entered C(horrorst). 3Since it is on occasion desirable to
trace certain system functions, the ©Debug Package has been
compiled in such a way that sny system function or special form
may be traced or broken when using the compiled version of the
bebug Package (Tnis heroic tfeat w#as brought about through some
rather sneaky uses ot the MANIFEST function). Thus, tf you wish
to trace or bresk any system functions or special forms, you
should use LCAD to load the Debiug Package rather than &ADD.

It should ailsu be noted that certain system functions (and
all system special forms) are compilec in-line by the compiler,

14 Jul 1678 Marytana LISP Reference Manual 141

so that they will not ve traced or broken when they appear in
compiled code.

Note further that STRACEV works by BREAKing SET, CSET, SETG

ana CSETG, so that if you are doing any value-tracing you must
not traece or break these functions yourseit.

Tel1Jde Usage of DUMP and LOAD

It is good practice to turn off all debuyging (e.0. via
(SUNGUGY)Y before doing a DUMP, since otherwise you may have
prublems when you Later LOAD what you dumped it debugging
routines are stiil attacheg to the function veing toadec. Note
also that if you do a LOAD while you are debuzging, all functions
toacded will automatically be 3$UNBUGeao. This normally s of no
serious consegquence, although it may surprise you occasicnally.
Probtems will arise, however, if you are doing any value=~tracing
(via sTRACEV) when you do a LOADS It is therefore strongly

recommended that all vetue-tracing be turnegd off before utilizing
the LCAD function.

14 Jul 1978 Maryland LISP Reference Manual 142

8+ Dynamic Dumping Package .

The bynamic Dumping Package is 2 set of LISP functions which
are useful for interactively examining and possibly altering the
innards of LISP while ¥t is running, 1t was designed primarily
for the purpose of debugging functions written with the Maryland
LISP Assembly Program, but has potential application for anyone
who is doing bit-pushing with LISP. The functions outlined here
are basic functions w«hich can be used to write specialized ctore
dumpinyg and examining routines.

Before attempting to use these functicons, it is a good idea
to wuncerstand the distinction bvetween & LISP pointer and the
octal address of an object. Normatly when referring to a LISP
object, one dis wusing a LISP pointer which 1is represented
internally as the address in core of the object. For exanmpley
feedinyg the LISP pointer to the LISP integer 3 to PRINT (eg.,
(PRINT 3)), prints "3v, The coctal address of a LISP objectsy on
the other hand, is a LISP octal noce which contains the address
of the otject., This should ve thouaht of as an indirect pointer
to the obpject. For exampiey the o¢ctal acdress of the LISP
integer 3 might ve 740366, and it would print that way. The LISP
garbage collector gges not foliow the pointers implied by octal
addresses, so that 1if a LISP object is only known by its octal
address, a garbage collection will take it away.

The functions which are cescribed pelow may be \loaded idnto
LISP by coing:

@ADD LISP*LIB +CORE

The functions ogocumented here are ACORE, ICORE, OCORE,
PCOREy, CORE, H%t, HZy XH1T, XHZy ST,y $2, $3, S4, 55, Séy, TTy T2,
T3, &1y @2, @3, @4, CHANGE, CDUMP, ADDROF, CONTENTS, OCTAL,
INTEGERy REALy CNODEs and OCTSTR.

8.1. Formatted Dumpiny Functiauns

Five functions are availatble in the ogcumping package for
progucing a CPMD-style formatted Listing of selected <core
locations. There are four different formats available: octal,
integer, alphanumeric (FIELDPATA), and instructions. For the time
beingy instruction format dumping is available only when the LISP
assembler is loadea, since several assemoler rcutines ano tables
are used by the gumping functions.,

8.1.1+ Acore, Icore, Ocore, and Pcore

These four tunctions are similar in use and effect, Each
dumps an arbitrary - number of words starting at an arbitrary
location in the ingicated format, as given here:

I

14 Jul 1978

function

ACORE
ICORE
0 CORE
PLORE

Maryland LISP Reference Manual 143

format

———

FIELDATA alphanumeric
integer

cctal (@ suffix)
instruction '

Each of the four functions is calied this way:

{<func> <starting adoress> <number of words>)

any provides a L{ine of output for

each aodress formattec this
way:
<address> : <contents>
Ayainy, note that instruction format dumping may not he Gcone
untess the Maryland LISP assembler is present in core,
Z2e1eZe (Lore
This function compines the facilities of the last fcur,

croviding a

dump of each worg in several formats.
same Tirst tw#0 arguments with the same meanings,

It takes the
as well as up to

four extra arguments specifying the formats in which each
location 1is to be dumped, A for alphanumeric, 0 for octal, I for
integery and P for instructions Each output Line will be of the

same basic format as before,
each
fotlowing order:

formats c¢f

82

There are 17 functions which are used for examining

and colons will seperate the various
WOTrd s The formats will be printed in the
aiphanumeric, integcery octal, and instruction,

Partial Word Examination Functions

only a

specific part of an occtal wora:

function

H1
HZ
XH1
XHZ
$1
§2

z
at

[
o

So
T1

bits returned

35-18
17-G

35"'18’
1?-37
15-3D
29 =24
23-18
17-12
11-6

5-0

3524,
23-12,

sign-extended
sign-extended

sign-extendeg
sign-extendec

14 Jul 1978 Marylana LI3P Reference Manual t44

T3 11-0y sign-extended .
&1 35=-27

az 26-18

Q3 17-9

Q4 3-0

Each takes a single argument which must be a a fixed-point
number, =2a2nd returns the specifiec part of 1it. ALL but the
quarter-word functions were written through the LISP assembler
ang are loaded in “compilted™ form.

8.3« The Core Altering Function - Change

There is & single function for altering the contents of a
given location or part of a location, This is the CHANGE
functiony; and it takes two requirec arguments and one optional
argument. The cailing format is: '

(CHANGE <pointer> <new value> [<partial-word mnemonic>l)

The first arcument is a LISP gointer to the object to be
changed. The second argument is a&n octal word which will be
inserted in the desired part of the woro incicated by the first
argument . The third argument is one of these partial-word
mnemonics: H1, H2, T1, T2, T3, S1, S22y SZ, S4, 55, S&, @1, @2,
@3, Q@4&, or Wy or the numeric coce for the mnemonic. The agefault
third argument 1is & whole-word transter., ALL but the
guarter-word transfers are handleoc through a functicn written
through the assembler. Note that the XH1 and XHZ mnemonics have
no meaning in this context.

Eebe General-Purpose Dumping Functions

Bedals Cdump

This function takes two arguméﬁts - an octal address and a
number of words - and returns a lList containing the octal values
stured in those lLocations.

8ebale Agdrof

This function takes one argument, & pointer at any LISP
object, and returns an octal word containing its address in core.

Bebol, Contents

This function takes one ergument, an octal word containing
the acadress of any LISP object in core, and returns a pointer at

its This is the inverse of the ADDROF function.

14 Jul 1973 marylanag LISP Referente Manual 145

Robatbe Octal

This function takes one argument, a pointer to any LISP
objecty and returns an octal word containing the contents of the
woro being pointed ate.

Belee Integer

This function 3s similar to OCTAL, Dput its result 1is an
integer rather than an octal number.

Hebeba Real

This is also simitar to O(TAL, but the result will pe 2 real
number, assuming that the argument goints at a word with a
suitaole normalizeg floating~point format.

jos]

eheTe (node

This function takes 3 pointer at an arbitrary worag anc makes
& cons node out of it. It is expected that both halves of the
woro will be fegitimate LISP pointers.

3-‘10:}& OCtStr‘

This function takes as its single argument a list of octal
numbers and makes those numbers into a3 string, assuming of course
that each word is the octal representation of six characters
except maype the tasty which, if it does not represent 5ix
characters, shoulc be teft-justified ana zero-filled. Note tnat
LISP dues not allow "3" signs or 077 characters in its strinys.
The OCTSTR algorithm stops processing when it finds an entire

hatf of 2 word zerced. For example, {OCTSTR ~({(C40710060711G
D100SLOusa0)YYY=ABCAIDCC M,

This function is useful four working with the user”s Program
Control Table. (see page $&) For example, (OCTSTR (PCT 1 1))
returns the user”s runid in string form, (OCTSTR (PCT 2 19))
returns the wusefr”s account numoer in string form, ana (OCTSTR
(PCT Z 17)) returns the user”s project ia in string formy, all
teft-justified ana padded with blanks to lengths ot ¢, 12, and 12
characters respectively.

14 Jul 1978 Maryland LISP Reference Manual 146

9. Function Eaoitor .

The Marylana LISP Function Editor is a program which allows
the wuser selectively to edit function definitions. It s
designed to be usead with the Library File routines (see page 153)
and the Autoloader (see page 126) to provive complete function
development facilities which <¢an be used as independently of
features outside LISP as possibles The Function Editor can be
loaded by typing:

FADD LISP*LIB.FUNC-ED

9.1« Caliing the Function Editor

The Function Editor is cailed through the function EDIT:
(EDIT “FUN()

where FUNC is some atomic symbol. If FUNC is constantly or
fluioly bouna, &n s—-expression which, when EVALuated, can
re-establish that value is tonstructed and is made available for
editing. The wuser is placed in edit mode (see next paragraphl.
1f FUNC has no value and a ticrary file has been established, the
fite”s table of contents is searched for an entry under FUNC, If
one is found, the binding is made and execution continues as
though the binding had originally been there. If FUNC has no
value ana either nu Library fiite has been estaplished or FUNC is
not 1in the Liorary file, the user is placed in the Text Editor
fHag?7) in input mode to enter and ecit the initial version of
the function. When the Text Egitor is exited, the s-expression
which was entered there is reag in to LISP and constantly bound
to FUNC, and the wuser is piacec in the Function Editor”s edit
mode .

9.2« Using the Function Editor

Once a binding tor the atomic symbpol peing edited has been
established, the wuser is placed in edit mode, under the control
of the function ecditing routines. This routine gives "==--=->" ag
a prompt, to which the user can respond with any of the commands
described belowe These commands can be useg to follow the
structure of the s—-expression to the region which needs changing.,
EFach time & command 1is given to cgescend into the structure in
this way, the editor ctalls itself with the part to be edited and
goes into a new Loops Once editing has finished at one level,
the user can cause that level to return to the one above it or to
the top level, with or without the chanyes whicth were made at
intervening levels.

14 Jul 1978 Maryland LISP Reference Manual 147
9.3+ Edit Mode Commancs

These are ail the commands one can type in response t¢ the
Function Editor”s prompt. Several may be typed on one Line, out
if one causes an error, the rest will noct be proctessed. I1f +the
user asks the Function Editor to dc something impossible, such as
editing the CAK of an atom, the Editor will give an error message
ang ofter the user ancther prompt without making any changes.,.

(1) P « use the Prettyprinter (see gage 175) to print out
what is peing edited at the current flevel.

{(c)Y A - recur and edit the CAR cf the current structure.
(2} D = recur and edit the (DR of the current structure.,.
() L <n> - if the current structure is a Llisty recur and

edit the <n>th memper of the List.

{5 R <s8> = replace the current structure with <s>, which
should be an s-expression with batanced parentheses.

(e U -~ return one Level, implementing the changes made at
the current lLevel.

(7Y T = return all the way to the top level, implementing
the changes made at ail levels.,

(LY AU - return one level without implementing the changes
made at the current level.

(9 £ - end the editing session and EVALuate the editea

structure, thus «c¢reating a new o©inding for the atomic symool
beiny edited.

(10) AB - aport the eciting session without making any
changes to the binding of the atomic symbol being edited.

(11 UF - if a Lliporary file has been established, write out
the current structure to the file as the vailue of the atomic
symbol being eaited.

(12) SE - call the Text Euitor with the current structure.,
If the Text Editor exits normally oy its EXIT command, the
structure resulting from the editing session witl Dpecome the
structure at the current level. 1If the Text Editor exits by its
ABORT commandy no change will be made at the current tevel.

(13) S <new> <otd> = substitutes <new> for every octurrence
of <ole> in the current structure.

{14} C <3> - cons the s—eapression <s> onto the front of the
current structure, and edit the result.

14 Jul 1978 Marytand LISP Reference Manual 148

(15) C* <s> = cons the current structure onto the {ront of
the s—exression <s>, and edit the result.

(16) EV <s> =~ print the result of EVALuating the

s~expression <s>., Both this ano the M command may make use of
the ftuid wvariaples STRUCTy which s bDound to the current
structure, and TOP, which is bound to T if the current Level is
the top Llevel ana NIL otherwise.

(17) M <a> - EVAtuates (<a>), where <a> 1is some atomic
symbol which 1is bound to a function of no arguments which,
presumably, makes some changes to the binding of the wvariaole
STRUCT .

9.4« AN Example

In this example, upper case text in quotes is that typed at
the user by LISP, unquoted uuper case text is that typed at LISP
by the user, and lower case text is commentary by the author, 1In
this example, we show the use of the Function Editor 1in the
deve lopment of a function FACTORIAL, which should accept an
integer argument and return its factortal.

TEXEC aASGsA MYFILE. assign the user”s Library file
“eCXEC COMPLETED"™

(EGIT “FACTORIAL)D factoriat need not have a binding
"INPUTY we are now in the Text Editor

(CSETQ FACTORIAL (LAMEDA (N)
(COND ((EQUAL N 1) 1)
(T (TIMES N (FACTORIAL (SUB1 M}))) 1))
CR gets us in Edit mode

I!ED I T'I

WANLA go to last line to fix that “m"
W(T (TIMES N (FACTORIAL (SUBT ™M))))) D3 Rl

vate f M/ NS (we’re stitl in the Text Editor)
(T (TIMES N (FACTORIAL (SUB1 N))2))™

Ha W E teave the Text Editor

e SR (now we“re in the Function Editor)

"(LSETw FACTORIAL

(LAMEDA (W) this is Prettyprinter ocutput

(COND [<EQUAL N 1> 13
[T <TIMES N (FACTORIAL (SuB1 N)JI>1)))*®
oops. <equal n 1> should be <equal n 0>
Mrzaw=)>" | 2 P go to thirc element and print

u(LAMBDA (N}
(Conb [<EQuUAL N 1> 11

(T <TIMES N (FACTORIAL (SuUB1 N))>]1))"

Mz=~e=>" | 3 DA AL I P go way in

ll1 "

Nazeead g 0 change the 1 to O

Mzz——ad® T p - go to the top level and print

W(CSETG FACTORIAL

14 Jubt 1978 Marylang LISP Reterence Manual 149

(LAMBDA (N)
(COND [<EQUAL N 1> 13
[T <TIMES N (FACTORIAL (SuB1 N>
Tzzae=DdY UYF E write the aef”n to the file ang exit
MEVAL: " (FACTORIAL &)
YYALUE: 24"

"EVAL: " (FACTCRIAL G always test special cases
BPYALUE: 1"

“EVAL: " (FACTORIAL -1 and error cases

HSTACK OVERFLOW™ we don“t want that

"EVAL: " (EDIT “FACTORIAL) let”s go fix it

Moz wae=b" § (LESSP N 2) (EQUAL N D) P

"(LSEZTw FACTORIAL
(LAMEDA (N)
(COND CKLESSP N 2> 13
[T <TIMES N (FACTORIAL (SUB?1 N)XI>T1)))™

Moz -==>" UF E write it out ang exit the editor
"EVAL: " (FACTORIAL -1) try it again
"WALUE ; 1™ it works

Now, during another LISP session, 1if the Autoloader s
hooked wup to the libprary file, the new FACTQORIAL function ¢an bpe
used as though it is part of LISP.

14 Jul 1978 marylanc LISP Reference Manual 150
10. Generator Package .

Maryland LISP has available a Limited generator facility (a
ta Conniver) which allows the user to write functions which can
return multiple (or no) results andg which have the sbility to
suspena themselves and be restartec where they left off, This is
basically a LISP implementation of coroutines. A somewhat deeper
understanding of tne intent of a generator facility can be had by
seeing [McD741,

To load the generator packayesy GO:
BADD LISP*LIE .GEN

131« Creating a Generator

The special form CDEFUN is used to cefine generatorses The
format of the call is:

(CDEFUN <name> <args> (PROG <vars> <stmt>.,,.<stmt>))

where <name> is the name of the generator, <args> is its argument
List (any form allowed by LAMEDA is Legal here), and <vars> and
<stmt> are the standard arguments to PROG. The CDEFUN algorithm
reformats the structure of the PROG and binds this redefinition
to <name>.

There are three functione which are of use in a2 generator.
The NOTE function returns its argument as one of the values of
the generator, The AU-REVOIR function of no arguments suspends
operation of the generator and allows the calling program to
process values which have been NOTE“d and resume the generator
Later. The ADIEU function returns from the generator and lets
the catlling function know that it should not be resumed because
it has no more values to NOTE. If ADIEU is given an argument,
that argument will be the last value returned by the generator.
This #s wuseful for marking the end of values returneo by that
call to the generators

Syntacticaliy, the functions AU-REVOIR, ADIEU, and NOTE are
used in the same manner as in Conniver, but the algorithm used to
resume the generators reqguires some restrictions on the ways in
which AU-REVOIR may be callea. If a cail on AU-REVOIR s
dynamically constructed or made outside of the scope of the
function body specifiea in the call on CDEFUN, then it must have
an argument (unquoted, since AU-REVOIR is 2 special form), which
s a Laebel in the cocy of the generator at which execution will
be resumed. If AU-REVOIR is calleo from inside the body of a
generator, then the <stmt> in the PRCG in which it @appears must
have the following form:

14 Jul 1978 Marytand LISP Reference Manual 151

<stmt> =-> (AU-REVOIR) | <call> | <sexpr>
<call> -> <cond> | <attempt> | <do>
<cond> => (COND <conacl>%)

<condcecl> => {(<sexpr> <stmt>*)

<attempt> -> (ATTEMPT <sexpr> <attci>w)
€attel> => (Kinteger> <stmt>x)

<do> => (DO <stmt>*) ‘

where <sexpr> is any EvALable LISP s-expression not dnvolving &
call on AU-REVOIR. This grammar may seem restictive, oput

exgerience has shown that almost all generator atgorithms can be
comfortaply sStated in these terms,

10¢2+ Using Generators

Tu use & generator, it is necessary to establicsh a3 variatctle
which is to be bound to the possipilities List for that
instantiation of tne generator. This <c¢an be done wusing the
GENERATOR functioun:

(SETR <var> (GENERATOR <call-on-generator>))

where <call-on-generator> is an s~expressiocn whose CAR is the

name of the generator and whose (DR is the argument list for this
Ca{.l.

The generator can then be made success fvely to return 1ts
vatues until failure by using the TRY-NEXT function:

{TRY=-NEXT <var> <cont>)

where <vor> is the wvariable established with GENERATCR, ang
<cont> is an s-expression to be sent to EVAL in case there are no
possibilities left to be returned by this gyenerator.

130.2. The Possipitities List

Two kinds of items reside on a possibilities Llisty, items
being returned and "*GENERATOR™ jtems which are used to restart a
generator which has been just created by GENERATOR or which has

just suspended ftself using AU-REVOIR. These items have the
form:

(*GENERATOR <call> [<bindings>})

where <call> is the s-expression which can pe EVALuated to <calt
the generator and <pindings> 45 a List of those alist entries
which were destroyed when the generator was last exited. If the
generator has not yet been entered, <bindings> 1is omitted.
GENERATOR and TRY-NEXT play with the arguments given in <calit> so
that 1) a new first argument is inserted which Js the Llaoel
inside the generator body where processing is to resume and 2) if

14 Jul 1978 Maryland LISP Reference Manual 152

the generator has already been ctalled, the other arguments have
been replaced oy NIL to aveid side-effects when they are
re-EVALuated. In the Llatter <case, the original values of the
arguments will be on the <bindings> list. Of course, it 1is not
advisavle to return as a possibility some s—-expression whose CAR
is *GENERATOR uniess it is intenceda to resume some generator,

It is possible for & possibilities List to contain several
*GENERATOR entries. In each casey when a generator is resumed,
the values 9t NOTE”s are appended to the end of the possibilities
List, that 15, the possibilities list s a queue structure,

10.4. Example

Suppose we define a data-base retrieval generator SFETCH:

{coefun $fetch (pattern)
{prog ((matches (fetch pattern)))
loop (cond {((rutl matches) (adieuld)
{(t {(note {(car matches))
(setq matches (cdr matches))
(au~=revoir)
{go loopl)))

Then, assuming that the function FETCH returns a2 List of those
data=-base entries which match the given patterny, the entries
which match, say, (LOVES =X =~YJ), can be retrieved one at a time
and printed by doing:

(prog ((poss (generator “(3fetch “(toves -x =-y}))))
toop (print (try-next “poss “(return)))
{go Loopl)

10.5. Compiting Generators

The games piLayed by the yenerator package with the -tacels in
the booy of a generator make compiling a generator a tricky
matter. To compile a generatory, toad the compiler, but call
COMPILEGEN instead of COMPILE. This function will automatically
dectare att the arguments and PROG variables in the generator
FLUID and slightly reformat the generator so as to awvoid
dynamicaldly constructing a catl on 60 .used to restart the
generator. However, the user must still obey the rule against
dynamicaldy buikding calils on G0 c¢cr teeding a call on 60 to EVAL
when the label is in a functicn to be compiled. This rule s
stateo and eaplained in the compiler documentation. For example,
a yenerator containing the following catl coula not be compiltea:

(TRY-NEXT “PGSS “(60 ALOORP))

14 Jul 1973 marylLano LISP Reference Manual 153
1M« Library File Functions

Tnese functions use the random access file I1/0 routines to
atlow the user tc maintain & tibrary of LISP function
cefinitions, each of which neea not be loaded until it is needed.
This package is desiyned to be used by the Autoloader (see page
124) anu the Functiion Eoitor (see page 146) s0 that the user can
work on & project completely within LISP, thus avoioing the
grunge work associated with EXE(C-& file manipulation. To ltoaa
the Liovrary File functions, enter LISP and do:

DADD LISP*LI3.LIBFILE

1«1+ Declaring a Library File

To geclare a file to ve useg as & {iprary file, establish an
internal name for it and send it toy the SETLIE functione This
initializes all the routines necessary to access the file.

As an exampley here is how One might create a Library tile
ang initialize it for use by the Library File routines:

cEXEC oCAT,P QGUAL*MYLIBRARY,
tEXEL cUSE L. ,QUAL*M¥YLIBRARY,
tEXEC oASG,A L.

(SETLIEe "L

1142+ Retrieving a Library Fitle Definition

To retrieve the definition of an atomic sympolt X in the
estaptished Llibrary file, do (GETDEFN “X). This returns the
s~expression which was written to the file as the definition of X
if such an entry exists, and NIiL cotherwises, It is also possiple
to store and retrieve property list entriess To retrieve the
value associated with the indicator 1 on the ¢groperty Llist of
atomic symbol A, do (GETDEFN “"(A « I)). This returns the
gefinition of the entry if one exists and NIL otherwise.

11¢2. <Creating a Library fFile pefinition

To treate an entry in the estaplished Ltibrary fite which
defines a value for the atomic symbol X, call {(PUTDEFN "X S),
where S 1is some s-expression which, when EVAiLuated, will
establtish a bpinaing for X. Simjlarly, to put a property lList
definitioen in the tibrary file, call (PUTDEFN “(A ., 1) S).

Alternatively, the defining s-expression ot some atomic
symbol or property List entry may be automatically generated and
written to the established Llibrary file a2y (PUTLIB “X) or (PUTLISB

14 Jul 1978 maryland LISP Reference Manuatl 154

“(A . 1)), .

In either case, the definition written to the file wmust be
made wup exclusively of printavte objects; buffers, Linker nodes,
and pointers to compiled or system code cannot be printed. 1f
PUTDEFN s wusec, the routines do not care what the s-expression
wilt do when it is EVALuated as long as one of dits side-effects
js to define a binoing for the given atom or property List entry.
This s especially important for the Autoloader, which goes into
an infinite lLoop it the binding is not made.

11.4. Library File Notes

A heavily-usea tiorary file may often contain many obsolete
copies of functions and property List entries. These can be
removes from the current library file by doing (LIBPACK),

As a system convention, recorag 1 of a tliorary file 1is an
association List which associates atomic symbols or

atom-indicaator pairs with record numbers in the file (see page
62 .

14 Jul 1978 Maryland LISP Reference Manual 1t5
12. Mail System

The Marytang LISP Mail System 1is a humble attempt at
2liowing the various members of the Marylana LISP user community
to communicate with one another, it has three basic
capabitiries: 1) the sending of messages, ¢) the receiving of
messagesy and 3) the dispersal of infcrmation about the users of
LISP at Maryland. Use of the Mail System is available tc anyone
using LISP on the University of Maryland UNIVAC 1100/40 computer.
Users are distinguished by their run 1identifications (runid”s),
anu each user of the Mail System should establish a unigue runid
for his own usage. The Maii System holas ail 4ts code ang
messayes in a single global file. Therefore, the user need not
pay tor file space to use the systems On the other hand, the
system is not burglar~proof (or icict-proof for that matter), so
that acsolute privacy cannot ue guaranteed. Alscy, wusers are
askeu to keep the amount of text they nave on file to a minimum,
ang to report any bugs to runio SYSTEM s mail fite.

The Mail System may be used by entering LISP via
BLISP*L Ig LISP
ang Loading in the System by doing
FADD LISP*MAIL JMAIL

The functions documented here are MAILHELLO, MAIL, MAILBOX,
ana GETMAIL.

12+.1%« Plugging inm to the Mail System

In order to use the Mail System, the wuser must tell the
system scomething about himsetf, This serves to identify users,
ana 1o allow users of LISP to yet in touch with one another, To
do this, enter LI3P and load the Mail System as described in the
introductions Then call the tunction MAILHELLO, which takes 7
arguments, all LISP strings. They are: 1) the runid you usuaily
usey 2) your name, 3) your home ancfor local street address, &)
your nome anc/or local city/state/zip code, 5) your home and/for
local and/or office phone numtery &) your office number if you
have a campus office (anmd the buitcing its in if not the Computer
Science C(Center), and 7)) a snort description of your project(s)
anc interest(s) relating to Computer Stience in general anag LISP
in particular. The strings may be up to 60 characters in length,
$0 you may go into considerable detail if you wishes If vyou do
not wish to give out cne or more of the seven jtems listed, just
specify a string of blanks. The information you supply will
subsequently be avaitacle to all other users of the Mail System.
To change the information from a previous MAILHELLD, just caltl it
agyain with the revised parameters, To remove yourself from the
Mail Systemy, senc a message to SYSTEM, asking that this be done.

14 Jul 1973 Marytand LISP Reference Manual 156
12.2. 5Sencing Messages N

To send a message to another uwsery, call MAIL. This function
takes one argumenty, which shouid be the runid of the receiver of
the message 1in string form or as an atomic symbol. You will be
put into the Text Editor (see [Ha377]))y ana an Editor macro
(initiated by LISP), witl ask you for the subject of your
messages After you answer thnis, you may proceed to type your
messagey, and edit that part of the tile which contains the text
of the current messaye. When you are satisfied with the message
anag want it sent, type “sexi" ("send exit"), and the message will
be recorded. None of the lines in the message being sent shoulo
have 2 percent sign ("%") in column one. The message sending may
be aborted by typing "abort"™ while in the editor. This will
cancel the message, but a message will be put down as having been
sente.

12.3. Checking the Mailbox

To see if you have any messages, enter LISP, toad the Mail
System, and cail the function MAILEOX of no arguments. It will
return a list of ail those Mail System users which have sent you
messages which you have not looked at yet.

12.4. Receiving a Message

To receive a4 message sent to you by another usery {enter
LISP, etcs.y of course, and) call GETMAIL. This function takes
one argument, which should oe the runig of the sencger in string
or atomic form. You will be olaced in the text editor, and a
(LISP-initiated) editor macro will tell you how many messages
from the senoer are 1in the elemert being edited. To inspect
these messages, you should use the system—supplied.editor macros
descrivea in the following paragraghs. .

~ Some points should be made before discussing these macros.
fFirsty, the Mail System BUSE"s EDSPF to the file where the macros
are stored, so if you want to use your OwWwn editor macros, You
must wuse the weditor call command and specify your filename.
Second, the Mail System”s macros need to keep values in editor
variabwes gy hy, i, anoc j, so your macros shoulae not play with
theme.

12+.441« l1solate Next Message - Rnext

This editor macro wiltl find the message directly after the
one you are currently looking at (or the first message if you are
at the top), and isolate it. The subject of the message will be
printec, and you will be prompted a4s to what to do next. If
there are no more messages after the current one, a message will

14 Jul 197E& Maryland LISP Reference Manual 157

e printed, anoc you will bDe placed at the top of the file.

124442 L0 to Nth Message - Rgo

An alternative to the rnext macro ig¢ rgoy which takes as its
arzument an integyer which is Leth positive and no greater than
the number ot messages currently in the element beiny edited,
That numuered message will be isolated for inspection. This s
convenijent for tooking at the most recent message in thre file,
whicn will oe the Last message in the file.

12.4.2s List the Current Message - Klist

Celling the rlist editor macrc witl cause the current
messace 1O De printed out in its entirety. Stancard egditor
commaenas caen pe used to list out parts of a Llarge message.

12.46.4., Delete the Current Message - Rdel

Once « messzue has been inspected, perused, and digesteq, it
shouuld be removec so that it will not pe around the next time
messszes trom the current senoer are Looked at. The rdel editor
macro coes this, deleting the entire text of the current message.
The rnext editor macro must pe wused to move o©on to the next
messzze it any.

12+s4.5+. Copy Cut the Current Message - Reopy

The current messaye can bDe copied out into an element by
using the rcopy editer macro, ana specifying e&s an argument the
element to be copijed to, for example,

rcopy mygualxlip-file.messagel?7/from-joe

or some Less ccemplicated specification. Doing

rcopy msg~from-sam

will CORY the current message into worksrace clenent
msy~from-sam,

12.%« Finaging Out Apout Other Users

There is & facitity availacle with the Mail System that
alilows &ny wuser of LISP to find out apout anyone else who uses
the Mail Systemes To fing out about someone whose runic you know,
use the function WHO. This function takes one argument, which
shoulg Le the runid din string or atomic form, and looks 1that
runiu up 1n the user directory. It an entry for that runid 1is

14 Jul 1978 Maryland LISP Reference Manual 158

found, the MAILHELLD dinformation that user specified will be
listed, Otherwise, a2 message 10 the affect that that person does
not use the Mail System will ve printed.

Otviously there is often a need to find out about a wuser
given only a name (or interests or 2ip code)d. For this resaon,
the user directory may be retrieved Like -so: Firsty, <c¢create an
FUSE name for LISP*MAIL.y say, M« Then enter LISP and do

(LOAD “(M o« INFOLIST))

After this is compietedy the LISP atom S$SINFOLIST willi be bound
to a3 Llist of tne arguments to MAILHELLO which were specified by
all the users of the system (that 4s, CAR=runid, CADR=name,
etcede This List may now be inspected. for example, this
tunctiony given & string which is someone”s first or Last name,
will +fing alt entries in 33INFOLIST whose name fields MATCH the
argyument: '

(csetqg namesearch (lambda (name)
{(prog ((result nil))
(exec "*USE Meg LISP*XMATIL. *)
(toad “(m . infelist))
{magc $%infoltist (Lamode (entry)
(cond {{(match name (cacr entry))
{setg resultt {(cons entry resultl)) 2)))

(return result) J3)

Further refinements «nd changes <could develop an algorithm
sufficiently general for a specific user”s purposeso.

14 Jut 1973 Maryland LISP Reference Manual 15¢
13. Matrix Manipulation Package

The Matrix Manipulation Package s a small cet of basic
functions for the dynamic manipulation of matrices, i€,
twu-dimensional arrays. Each of the functions takes one or more
matrices as arguments and returns a2 newly-created matrix as its
result. The Marylanoc LISP Array Package (see page 121) must be
loaded into LISP bpefore these functions can be usegc. To toad
these functions into LISP, do

GADD LISP*LIZ MATRIX

Tne ftunctions documented here are MATADD, MAT™MULT, MATSUR,
MATCMULT, MATCADD, MATPPT, and MAT(OPY,

13.1. Matrix Adgition - Matacao

Tne MATADD function takes any non-zero number of arguments
whicn shouleg pe two-dimensional numeric arrays of the same size,
anu returns thedir matrix sum, iesy (a1+a2%eaeran)liejd = ail04,33
+ 52[1’j3 +oeeet anLi,jJ for att i’jo

13.2. Matrix Multiplication ~ Matmult

The MATMULT function takes two arguments which should be
two-cadimensionad numeric arrays such that the secona subscript
maxitmum on the first array is eqgual to the first suuscript
maximum oaon the second array. Viclation ot this restriction
results in an error message anc an (ERROR 4) (see page 67).
Alsoy, §if both arrays are not numericy, an {(ERROR 5) occurs. The
resutlt 15 a new matrix which 35 the metrix procuct of the two
argument arrays, ieasy (a+b)[%,j3 = SUM(k=1 to n, ali,klxblk,ji),
for att i,jy where n is the number of rows in the first matrix
(and the number of columns in the second).

132.23. HMatrix Supbtraction -~ Matsub

The MATSUB function takes as arguments two two-dimensional
numeric arrays which are the same size and returns their
gifferencey jesy (a=DdLi,33 = ald4,3) - ©Lis3] for atl V4j.

134+ Matrix-Scalar Multiplication ~ Matcmult

The MATCMULT function takes two arguments, a number ¢ and a

two-citmensional numeric array a, ana returns their Matrix-Scatar
producty ieey a"Ligjd = ¢ * aliej) for att i,j.

14 Jul 1678 Mmarylandg LIZP Reference Manual 160

13,5+ Matrix-35calar Agagition - Matcaco .

The MATCADPD function takes two srgumentsy a pumber ¢ and a
two~agimensional numeric arrazy a anc returns their matrix—-scalar
sumy ies, 27L1,J] = ¢ + ali,jl for atl i,j.

13.6. Print a Matrix - Matprt

The MATPRT function takes as its argument any
two—-dimensional typeg or pointer array and prints out its entries
along=-side the corresponding incdices.

13«7+ Copy a Matrix - Matcopy
The MATCOPY function takes a5 its argument any

two-dimensional array ang returns a typed range-checked array
with the same type and entries.

14 Jul 1978 Maryland LISP Reference Manual 161

14 Stanford MLISP

This section describes the changes made at the University of
Maryland to make Stanford MLISP compatible with Maryland LISP,
For a full tutorial on MLISP, the reader is referred to [Smi7031],

which is Stanfora Artificial Intelligence Project Memo AIM-13%,
Octocer 1979,

14¢1« Limitations of the Use of 3

An additional reserved symbol, “$", | has teen added.

Occurrences of "3 in identifiers must be preceded by the escape
character "t",

i4.2. Character Set Limitations

Several operators in MLISP have been changed to accommodate

the wuse of the FIELDATA <character set useg by Maryland LISP.
These changes are:

Symbel Function

%= . SETGQ

$6 PRELIST

£S5 SUFLIST

3N NULL or NQT
$< LEGQUAL

$> GEGUAL

BE MEMBER

$9 or %/ GR

Precefined atoms in MLISP are timited to FIELDATA
representations. Changes have been made to accommodate the
thaeracter set Listed on page 11 of the MLISP manual. They are

Atom value

LARROW 5=
CIRCLEX X

beletions *trom this List because of missing FIELDATA
correlates are

14 Jul 19738 maryland LISP Reference Manual 162

TAB

LF

VT

FF

CR
ALTMOD &
UNDERBAR

14.3. Operating Domain

Note should ©re taken that MLISP at the University of
Maryland is operated in the aomain of Maryland LISP, NOT Stanford
LISP. Programming should ©be restricted to the use of Maryland
LisP functions since only part of Stantord LISP is defined (to
help the transtator work). One change has peen made, howevery in
the function CAT. Since tne function conflicts with Maryland
LISP"s CAT, MLISP“s CAT is now '&CAT. Maryland LISP"s CAT
remains the same (see page 91).

14.4, Escape Character

The escape character remains "'" nNOT *?" (see "Literaltly
next character,” p. 11, MLISF manualde. The "2?" remains the LISP
comment character, along witn the "I" <comment> wyn commenting
convention of MLISP. ALl didentifiers containing special operator
symbols (+, *, $, -, %, etc.,) must have "8 npreceding theme

14.%. Loading MLISP

There are two ways to loac the system on 1100 LISP.

1. To get started, issue the followiny two commands to 1100 .
EXcC (once per session is sufficient):

QUSE MLISPDUAP,,LISP*XLISPDUNP,
aASG,A MLISPDUNF,

To get into LISP, type
SLISP*LIB.LISP

Load in MLISP by typing

tRSTR MLISPDUMP

2., 1f you do not have the dump file available 10 Yyou, Yyou
have to go the more expensive route and loac the relocatable form
$rom diske To do this, get into LISP DY typing:

14 Jul 1978 MarytLand LISP Reference Manual 163

FLISP*LIB.LISP

First get a littte breathing room.
(GROW 207

Now Load in the system by typing

(LOAD “{L . MLISP)Y (L is an RUSE name for LISP*LIRB.)

14,44 Running MLISP

To run the MLISP translator after loading, simply type

(MLISP)
Now the transiator is waiting for your code. I¥f you feel
especially hardy, you <can type it in by hande The rest of us
mortals "ZADDY a fite containing our code.

If you wish to see the code being read as it is being parsed
(advisable for debugagingl, type

sLIST
To turn off listing mode, type
TUNLIST

In LIST mode, as the program is processed each Line will be
printea and errors pointed oute. At the end of the transtation
you will De askeg if you want to see the LISP producede. The
system wilbl guery

LIST CODE? (Y OR N)

1t you woutd (ike to see the LISP code produced dnitially,
type

(MLISP L)
insteaa of

{(MLISP)
14+7. Sample Run
BLISP*LIBLLISP
LISP/8,02«~KN 07/01-17:43

EVAL: {GROW 20)
VALUZ: 112244

14 Jut 1978 maryland LISP Reference Manual 164

EVAL: (LOAD “(LWMLISF))Y ? L is an 2USE name for LISP*LIB
VALUE: MLISP LOADED, TYPE (MLISP)

EVAL: (MLISP)

UOM~STANFORD MLISF

sLIST
FADD MYPROG

BEGIN
NEW VAR;
VARS=10;
WHILE VAR3S>D 0O
BEGIN
PRINT VAR;
VARS=VAR=-1
END;
PRINT ™ *";
PRINT ™ALL DONE™
END.
RESTART
PR R N
LIsT CODET (Y QR N Y
(CSETQ@ RESTART
(LAMEBDA NIL
(FROG <VAR>
<SETGQ VAR 10>
CLWHILE PROG2 “(GEGQUAL VAR T) ~
{PROG NIL
<PRINT VAR>
<SET@ VAR (SUST VARI>)>
CPRINT " u> o
<PRINT "ALL DONE">)) D
C ERKORS DETECTED, D FUNCTIONS REDEFINED
END MLISP. TIME: 106 MSEC, .
10

£y wd P L SO~ 00 ND

ALL DONE

VALUE: *hkkafND=OF ~RUN=—***%

14 Jul 1978 Maryiand LISP Reference Manual 165

14.2. Compilation

After debuaging your functions, you may wish to compile them

for greater efficiency. 7To do thisy, you must take the following
actions:

(1Y Call MLISP with the "C"™ option (MLISP () or (MLISP L C).
This action informs the transltator that you wish to compile.

(2) On initial lLoad, MLISP is not big encugh to handle the
compiler. If you 1intend to compile, before you callt MLISP,
suumit a (GROW 2U) to the LISP interpreter to increase its size.
when you call MLISP with the "C" option, it witl load the
compiler tor you (it mey gie trying if you don”t increase dts
Sile)o

(2} SPECIAL odeclarations should be wused to define the
Maryland LISP notion of FLUID (see page 131).

(4) To save compiled functions, see the documentation for

the Maryland LISP compiler (page 130) and the LOAD and DUMP
functions (page 96).

14 Jul 1978 Marylanog LISP Reference Manual 166

15¢ Wisconsin MicroPlanner ’ N

This document serves as a summary of the primitives
available in the Maryland LISP implementation (which was stightty
revised from a version written at the University of wisconsin for
Wisconsin LISP) of Micro-Planner (hereafter referred to as PLNR).
It s intended to be used in conjunction with (1) below, and thus
explains in detail only the difterences between Wisconsin PLNR
ana MIT MicroPlanners Useful (and relatively accessible) sources
of PLNR informetion include tre following:

For a complete description of the primitives:

(1) Sussman, G,, To winograc ang E. Charniak: Micro-Planner
Re ference Manual. MIT Al tab Memo Ko. 203a, December 1971.

For an overview of the language:

{2) winogyrad, T.: Unoerstancing Natural Language (Sec. &) .
Academic Press, 1972,

{(3) Hewitty Cs: Prccedural Embedoding ot Knowledge 1in Planner.
Pruceedings of the 2nd IJ4(Al, September 1971.

For cetails about the implementation:

(4) Baumgarty, Bae.: MHicro Planner Alternate Reference Manual.
Stanford Al Lap Operating Note No. A7, April 1972.

15.17. Loading PLNR

PLNR is Loaded py typing (to EXE(C-2):
GADD LISP*LIB,STRTPLAR -

This will start LISP running, change the comment character from
v 5 P:", loag in the compiled versions of PLNR, PRETTYP ana
EDIT, co & (GROW 2() tu get you some more corey, and then do a
(PLNR)Y to get PLNR runnings. You will then be communicating with
a new level of LISP supervision which acts as a READ—-THVAL-PRINT
loop 1insteaa of the normal READ-EVAL-PRINT. AlLL LISP control
cards are recoynized, except that a return 1o the supervisor
returns you to the PLNR supervisor (e.g. if you get into
trouble, :LISP will return you to PLNR}). You may return to the
normal LISP supervisor via (RETURN <expr>), and may re—enter PLNR
via (PLNR). '

14 Jul 1978 Maryland LISP Reference Manual 167

15.7. PLNR Primitives

This section describes the PLNR primitives which are
currently available. Comments are appended only when there are
differences between this implementation and MIT MicroPlanner,
Note that meta-tinguistic wvariables are enclosed in angle
brackets (<>), and argzuments which are evaluated before the
criritive 35 applied are indicated by preceding them witn a
guote-sign (7<>),

{PLKR)

This function enters a new level of PLNR supervision,
just as (LISP) enters a new level of LISP supervisicn
(see page 26)+. VYou may return from PLNR to LISP (via
RETURN), and then re-enter PLNR without affecting the
PLNR data Dase.

(THAMONG <PLNR-VAR> “<_IST>»)

(THAND <E1> <EZ> o)

(THANTE <THM=NAMED> <VYAR-DECLARATIONS> <PATTERN> <BODY>)
. s (3TA +40)

(THAPPLY <THM=NAME> <DATUM>)

(THASSERT <SKELETOND> <REC1> <RECZ> 44 +) tr (3A s.)

<RECS> :: (THPSEUDO)
(THPROP “<EXPR>)
(THTBF <FILTER>) £ST
{THUSE <TH1> <THZ2> 44}

st (THYBF THTRUE)]

(THASSERTLIST <<SKELETON> <LIST>> <REC1> <RECZ> ...)
4 {(SAL v}

This new primitive allows one to generate a number of
related assertions. For example,

($AL (ROSES ARE (RED PINK PRETTY)) <RECS>)
is equivalent to

(THDO (SA (ROSES ARE RED) <RECS>)

($A (ROSES ARE PINK) <RECS>)
{3A (ROSES ARE PRETTY) <RECS>))

14 Jul 1673 Maryland LISP Reference Manual 168
(THASVAL <PLNR-=VAR>) .

(THBKPT “<S1> “<EZ2> wese)

Each <£> will be EVALed and, 1if THBKPTS are being
THTRACEdD, printed separatec oy blanksy €sGeyy

(THEKPT “X “IS “NOW 37X)

(THBREAK “<ET> “<EZ> eae)

Each <E> witl ©bpe cVALed anae printed separated by
blanks, and thenm & READ-EVAL~PRINT loop is entered.
The Loop is exited (with a value of T) when T is read.

(THCOND <PAIR1T> <PAIRZ> «aa)

(THCONSE <THM=NAME> <VAR-DECLARATIONS> <PATTERN> <BODY>)
- (ETEC oeel

{THDATA)

The gata read should e of tne form ((AN ASSERTION)),
(AN ASSERTION) + PROP)Y, or (THM-NAME)., The Loop ends
when an atom is read, which is returned as the valtue of
THDATA .

(THDO <E1> <EZ2> 444}

(THOUMP “<FILENAME>)

<FILENAME> must be a cata-file which 1is currently
assigned, THDUMP osges a THPRETTYP of ali current PLNR
theorems, and then a (THSTATE) into the inaicated filLe,
An JADD <FILENAME> zt some later date will then restore
everytning to its current state. (THDUMP) witl print
out all the above on the terminal.

(THEDIT <THM=NAMED)

Allows one toc edit a PLNR theoreme.

(THERASE <SKELETON> <REC1T1> <RE(Z> ,5.) t: (BE +44)

(see THASSERT for ovaitable recommendations).

14 Jul 1978 Maryland LISP Reference Manual 169

(THERASING <THM=NAME> <VAR-DECLARATIONS> <PATTERN> <BODY>)
HH (STE oo

(THERT <COMMENT>)

Prints out <COMMENT> (une#atuated) ang, unitike MIT

MicroPlanner, causes failure to propagate all the way
back to the PLNR supervisor.

(THEV <EXPR>) t: SE<EXPR>

This is equivalent to (THVAL “<gEXPR> THALIST). Note
that 4t 1+t abbreviated $38<EXPR> instead of $e<EXPR>.
It may be used both in patterns or as a stana-alone

function {(eegsy if you want <E> THVALed instead of
EvALed when in a THBREAK lLoop, type S$E<E>),

(THFAIL <ARGT> <ARGZ2> <ARG3I>»)

(THFAIL THTAG <TAG> T)
(THFAIL THTAG <TAG>)
(THFAIL THPROG)
(THFAIL THEOREM) Causes the cturrent theorem to fait,
even if there are nested THPROGs.
{THFAIL THMESSAGE <MESSAGE>)
(THFATIL)

(THFAIL? “<PREDICATE> “<ACTION>)

(THFINALIZE <ARG1> <ARG2>)

(THFINALIZE THTAG <TAG>)
(THFINALIZE THPROG)

{THFINALIZE THEOREM) finalizes everything done in
current theorem, even if there are nested THPROGS.

(THFIND <MODE> <SKELETON> <VAR-DECLARATIONS> <B0DY>)

<MODE> :: ALL
<N>
CEXACTLY <N>)
{(AT=-LEAST <N>)
{AT=-MOST <N>)
(AS~MANY~AS <N>)
(AT=-LEAST <N1> AT-MOST <N2>)
(AT-LEAST <N1> AS-MANY-AS <NZ>)

14 Jul 1978 Maryland LISP Reference Manual 170

(THFLUSH <INDT1> <INDZD ses) . N

(THFLUSH)Y :: (THFLUSH THASSERTION $TC $TA S$TE)

(THGO <TAG>»)

: (THSUCCEED THTAG <TAG>)

(THGOAL <PATTERN> <REC1> <RECI> vee) 3 (3G o)
<RECS> :: (THNODR)
(THDSF <FILTER>)
(THTEF <FILTER>) [$T :: (THTBF THTRUE)]
(THUSE <THT> <THZ> o e’

(THANUM <N>) :: SN<ND
(THNUM <N>)

(THMATCH “<EXPRT> “<EXPRZ>)
(THMESSAGE <VAR-DECLARATIONS> <PATTERN> <3QDY>)

(THNOHASH <ATOM> <INDT1> <IND2> ses)

(THNOKASH <ATOIM>)
:: (THNOHASH <ATOM> THASSERTION $TC STA $TE)

(THNOT <EXPR>) I (THCOND [<EXPR> (THFAIL)J [C(THSUCCEED)YT)
(THNV <VARIABLE>) :: S$=<VARIABLE>
(THOR <E1> <E2> ..4)
(THPRETTYP “<THM-NAMES> “<FILE>)
The List of PLNR theorems indicateo by <THM~NAMES> will

be prettyprinteag to the wata~fite <FILE> (i¥ <FILE> is
absent they are printed on the user”s terminal).,

(THPROW <VAR-DECLARATIONS> <B0ULY>)

(THPUT “<ATR> “<IND> “<VALUE>)

(Notice the wWwisconsin PLAKR arcument order)

14 Jul 1978 Maryiand LISP Reference Manual 171
(THPUTPROP “<ATR> “<VALUE> “<IND>)}
(THREMPROP “<ATR> “<IND>)

(THRESTRICT <PLNR=VAR> <LISP-FN1> <LISP-FN2> ...) tr (SR

...)

(THRETURN “<EXPR>Y :: (THSUCCEED THPROG “<EXPR>)
(THRPLACA “<DOTTED~PAIR> “<NEW~CARD)

(THRFLACD “<DOTTED-~PAIR> “<NEW-CDR>)

(THSETG <VART> “<E1> <VAR2> “<EZ2> e

(THSTATE <INDT> <IND2> ses)

(THSTATEY z: (THSTATE THASSERTION $TC S$TA STE)

(THSUCLEED <AR1> <ARGZ>)

(THSUCLCEED)

(THSUCCEED THTAG <TAG>)
(THSUCCEED THPROG “<E>)
(THSUCCEED THPROG)
(THSUCCEED THEOREM “<E>)
(THSUCCEED THCOREM)

: (THGO <TAG>)
{ THRETURN “<E>»)

LRI 1]

(3]

({auses the current theorem to succeed, even if there
are nested THPROGS.

(THTRACE <INDI> <INDZ2> sus)

<INDS> :: <ATOM>

(<ATOM> <TRACE PREDICATE>)

(<CATOM> <TRACE PREDICATE> <BREAK PREDICATE>)
<ATOM> :: <THM~NAME>, THEOREM, $G, %A, SE, THEKPT

THBREAK s useg if the <BREAK PREDICATE> evals to
non~-hILs Type T to exit from the break Loop.

(THUNTRALE <ATOM1> <ATOMZ> +.44)

(THUNTRACE) :: Untrace everything that”s traced.

14 Jul 1678

(THUNI GUE “<EXPR1> “<EXPRZ2>

.O.)

(THV <VARIABLE>) t: 3?<KVARIABLE>

(THVAL “<EXPR> “<ALIST>)

(THVDO <E1> <E¢o>

ses)

This new primitive ascts

unaone c¢n failure backup, It

Maryland LISP Reference Manual

like THDO,

172

except it is

s equivalent to

not

(THPROG NIL (THDO <E1> <E2> .,.} {THFINALIZE THFROG))
(THVSETQ <VART> “<ET> <VARZ> “<EZ2> 4 es)
1537+ Abbreviations
The follecwing, apbreviations may be used to save your

thtingers from typing many long thnames:

E2CX> 1 (THY <y>)

F=<X> 1 (THNY <X>»)

$2<CX> 21 (THEV <X>)

ENCSKND 2: (THANUM <N>)

£T 1 (THTBF THTRUR)

$6 1 THGOAL

A 2 THASSERT oo

SAL :: THASSERTLIST

$E 1t THERASE

%R :: THRESTRICT

$TC i THCONSE -

STA t: THANTE

1TE 2 THERASING
154+ PLNR Notes

Most PLNR error messages are ogescribed in (1). Note,

howevery, that wisconsin PLNRK simply THFAILs back to the PLNR

supervisor after an errer ocCcurs.

ALL PLNR variasbies
they
list in a THEQREM, THFROG,
creating =z

LISP expressions may be used with relative

($72<X> or 3=<X>)
are referenced, either by appearing in a <VAR~DECLARATIONS>
THFIND or THMESSAGE,
global bincing (eegey (THSETE 39X “THUNASSIGNED)Y.

must be bound before

or by expiicitly

impunity within

14 Jut 1978 Maryland LISP Reference Manual 173

PLNR expressions < the rute ¥s that if an expression EVALS to NIL
it fails (tike (THFAIL)), otherwise it succeeds. To evaluate a
LISP expression which returns & value of NIL without faiting, you
must therefore do something Lixe (THDO <EXPR>) or (DO <EXPR> T).

Note, however, that complex PLNR primitives shoulc never be
rleced 1inside of a LISP expression. For example, a COND may
sppear in a THPROG, but it may not contain any THG6O0ALs (use
THCOND instead) . This is necessary since PLNR” s control
structures are not implemented through LISP”s recursive stack
mechanism. Simple PLNR primitives like THV and THASVAL may
appear in LISP expressions (e.gey (PRINT $72X) is 0K). When in
doubty you may always do an explicit $E<EXPR>.

Since PLNR makes rather extensive use of the guestion=-mark
Cheracter, the LISP comment character is changed to semi-colon
when PLNR is toadeds You may temporarily change it back to "7m

(€4Fey to 3ADD in some code that contains comments) by typing
(see page 53):

(READMAC "72" (READMAC *™;" F))
(DELIM ™72 (DELIM “;*" F))

1545« PLNR Example

The pest way to become familiar with an interactive
programming system is to sit down and ptay with ite As a simple
jntroduction to the use of PLNR, try the following conversation
{(gescribed more fuily in (1)):

dADD LISP*LIB.STRTFPLNR
;Wait for THVAL: to appear.

(3A (HUMAN TURING)Y)
sTuring is human.,.

(3TC (X)) (FALLIBLE $7?2X) (36 (HUMAN 27X)))
sALL humans are faltible.

(36 (FALLIBLE TURING))
;Is Turing fallible?
sNo? Aha - We forgot to tetil PLNR to
; use the available thecorems.

(36 (FALLIBLE TURING) &T)
;Poor Turing.

(THPROG {Y) (3G C(FALLIBLE $?Y) $T) (THRETURN $?Y))
;1s anything fallible?

(THDO ($A (HUMAN SOCRATES)) (%A (GREEK SOCRATES))
($SA (HUMAN NEWTON)D)

14 Jut 1978 Maryland LISP Reference Manuat 174

;Adu some more facts. 7 .

(THSTATE)
sCheck the data base.

(THDUMP)
;A more cumplete picture of the data base.

(THTRACE THEOREM 3%0G)
;Let”s watch PLNR work.

(THFIND 1 37X (X) (36 (FALLIBLE $7X) 3$T) (%G (GREEK $7X)))
;Find a falliple Greek - note the backtracking.

{(THUKTRACE)
;Note that it tells you what was untraced.

(RETURN “DONE)D

:STOP

16 Jut 1978 Maryland LISP Reference Manualt 175

16, Prettyprinter

The Prettyprinter allows the user to print constant bindings
anc property Llists in readable format on the printer or terminal,

or to cump them to mass storage for permanent storage. It is
loaded by typing (in LISP):

aADD LISP*LIB.PRETTYP or

tEXEC GUSE LISP.,LISP*LIE.
(LOAD “(LISP + PRETTYP))

16417+ Using the Prettyprinter

Tne major function of the Prettyprinter is PRETTYP. To
cause constant bindings and property iists to be printecd on the
current cutput device (printer or terminal), say:

{PRETTYP L}

where L evaluates to a list of designators, each of which has one
of the foliowing forms:

A Print the object <constantly bound to the
atomic symbol A (whicth may be a function, a
special form, 2 macro, a composite (but not

. ¢ircular) objecty a numbery, a string or
another atomic symopal),

(I A1 .. An) For each of the atomic symbols A1 «« Any
print the attribute-value pair and/or flag
indicated by 1.

il Print the readmacro and delimiter flag for
the character "C¥%,

For example:

(PRETTYP “(F1 F2 V1 (IND V1 V2> "!"))

or:

(CSETQ DUMPALL “(F1 F2 ¥1 C(IND V1 v2) "!"))
(PRETTYP DUMPALL)

1662 Dumpiﬂg

To redirect the prettyprinter output to a seaguential file,
create a file desciptor for it wusing FIOPEN with NIL as its
second argument (see page 60), and give that descriptor as the
secona argument to PRETTYP., This wiltl cause the prettyprinter

14 Jul 19273 Maryiang LISP Reference Manual 176

output to be sent to that file, with a :LOAD/ZIEND pair
surrounding the text and List of the printed objects as the
last Line of the tile. To specity some other last line for the
file (especially a string iuoentifying the functions should the
file be woADD"ed), give it as a third argument to PRETTYP.
Several sets of pPrettyprinted functions can be placed end-to-end
in the file by giving the same file descriptor to several calls
on PRETIYP. Once the wuser is cone Frettyprinting text into a
fite, it is necessary to give the {file desciptor to FICLOSE +to
wind up the output operation.

As an example of tile oumpine, consider the following:

tEXEC aASG,T DUMPFILE.,

(CSETQ DFILE (FIOPEN “DUMPFILE NIL))D
(PRETTYP DUMPALL DFILE “FUNCTIONS LOADED™)
(FICLOSE DFILE)

Then, if DUMPALL had bzen bounc to the Llist (X Y (FLG X Y)}), tnen
the DUMPFILE file might Look Llike:

:t. OAD

{CSETG X “X-=VAL)

(CSETQR Y “Y-vAL)

{PUT "X “FLG “X-FLGVAL)
(PUT “Y “FLE “Y-FLGVAL)
tEND

YFUNCTIONS LOADED™

Once the file nas been properly closed, the dumped
information may oe restored by typing:

JADD DUMPFILE .

The "value"™ of tne B3ADD will be the last Line o¢f the file, in
this «case the string “FUNCTIONS LGADEDY, The file may be copied
to a program file element with the Text Editor {see [Hag?771).

16.3. Prettyprinter Notes

Lines printed (or carg imeges dumped) will not extend beyond
column 72. To <c¢hange this parameter (for examplte when
pretiyprinting to the line printer) C(SETG the atomic symbol
PP-WIDTH to the desired maximum coiumn,

When prettyprinting functions which have been placed on
property Lists, a2 search ¥s macge to see if any atomic symbol is
constantly bound to the function. If so, 1its name 1+s5s printed

(eetiey (PUT “ATH “IND “FUNCD). Qtherwise the actual LAMFBDA
expression is printed.

It you attempt to prettyprint an object which can“t be
expticitly printed (evsQ+y compilec code or a traced function), a

14 Jul 1978 MarytLand LISP Reference Manual 1?77

search is made to see if any other atomic -sympol s constantly
pounad to the object. If so, its name is printed (e.g., (CSETQ
SumMm PLGS)). Otherwise the object is considered unprintable, and
the atomic symbob **UNDEFx**x witll be printed as its value. To
notify you of such mistakes, the value returned by PRETTYP is a
list of atl atomic symbols, attribute~-atom pairs or readmacro
characters which were pound to a nameless unprintable objecte.

14 Jul 1978 Marylano LISP Reference Manual 178

17+ Suspend/Resume Package N

The Suspend/Resume package provides a facility to save
output that would normally e sent to the terminal. To load the
package one either FADD s the source file LISP*LIB.SUSP~RESUME or
creates a USE relation on LISP*xLIB.,, ©py saying (for example)
tEXEC SUSE LISP,LLISFxLIB (cnce per session) and then loading in
the compiled version of the package by typing
(LOAD “(LISP + SUSP~RESUME)), Once the system s defined you
have access to two functions, SUSPEND and RESUME,

SUSPEND - A function of no arguments which directs all
succeeding output to & fitles

RESUME - A function with a single optional argument
which ocirects the cutput back to the terminal andg
determines its Jisposition. I1f ne adrgument 1is
gtven then the system will prompt you for it by
saying:

EXAMINE, HOLD,y PRINT OR DELETE?

The proper responses to this guestion are listea below:
E - Edits the output tile in the UOM Text Editor.

P - Prints tne output file on a high speed printer ang
then deletes ite

H - Holds the file for a future decision,
HP or PH - Prints tﬁé couiput file ano does not delete
it

D - Deletes the output file.

1t Py, PH or HP are given &5 responses the system will ask:

WHERE?

This allows on which you to select the printer ycu want your
work to appear. At Maryland printers can go wup end down with
little noticey, so it is acvisavle to use PRA for the 1108 and PRE
for thne 1133741, These wvirtual printers will get your job
printec on the first available physical printer.

EXAMPLE:

Send output-to a file

1 Jul 1978 Maryland LISP Reference Manual 179

(SUSPEND)

Perform intervening LISP computations.

Send file to system Editor.

(RESUME t)

The user may eche all inputs into LISP by wusing the sLIST
feature of the systeme To turn cftf echo mode submit :UNLIST to
the systema.

It may sometimes pe desirable to find cut the name of the

file «he&re your output was stashea. The atom tontaining the
string file name is calted SR-FILE.

14 Jul 1978 Maryland LISP Reference Manual 180

Section 4

Maryland LISF Assembler

14 Jul 1978 Maryland LISP Reference Manual

{ontents

Introguction
Sasic Features of the Assembler
Zels Calting the LISP Assempler
zeZe The Coue Format
wecsle Instructions
Ze2els Lavels
tscede Directives
cecebs Macrcs
Z+3s AXRS

L

Eotia Expressionsy Literats, and Forward References

ceS5s The Assembler Algorithm
ce5ele First Pass EQU Processing
cefe2s Instruction Processing
ceSels FoOrward Reference Resolution Table
cefelbs Symbol Table
cebe Miscellaneous Directives
Zetelse Conditional Assembly - ON and OFF
Zebede Storage Alltocation - 4+, RES, and GET
ta Areas and Location Counters
Zele Using Loao ang Dump
2.2 The nNormal Form of Data Area Allocation
3¢%Zs The Vv Option form of Data Area Allocation
Zehs LoOcation Counter Snaring
Lo Utility ano General Purpose Macros and fFunctions
Gets System=~Defineag Macros
Lalels Equf

Lot
-
L)
£

4s1a2s Provide a Pointer to an S-txpression - Sexp
4417424 Declare LISP Functions to te Called « Fnames

4ealeds Form

4ele5e Ftastr

4Lelebe Provide a Pointer into LISP - Ept
44147« Ept$ and Lspcont

42134 Register Saving Macros

4+748¢1s Generate Register Saving Area - Savepkt
4474842+ Saving the Minor Set of Registers
4,74%.3. Saving the Entire Set of Registers
4,749+ Mimic UNIVACs DO Directive - Ado
Lbe2e General Purpose Functions

beZeta Adaress

HaeZele NWf

bheields Ljstr

helale sttr

&.215. S

belobBoa Nbits
4¢3. Aritnmetic Functions
4ehe Macros for Quarter-worg Manipulation
Gobele Asc ii
bae4.2s Fieldata
5+ Interfacing with LISP
5+7. LISP HKaming Conventions
"542e LISP”s Data Structures
5.2+1« Cons Nodes

181

184
185
185
186
18¢
187
187
t1RE
156
189
19GC
190
191
191
192
192
192
102
193
193
194
194
195
167
197
197
167
198
198
198
1%
169
199
200
200
paels
200
<01
<01
201
202
202
2Nz
202
2n3
¢D3
203
2N
2Ns
205
206
<07

14 Jut 1978

v .
-« & & & »
O =~ O By
« 8 s * o ®

. g - - L

* & & =2 & & 9

SRR VIRV TR PR VR W RN DR AW 3 GV GV AV I oW AN]

. ¢
« = & o &

AU AR W LR LN LR LR U WS LR WU
O WA B P -

56309,

5+3.1C.
S«3.11.
543412
5¢3:1%,
52414
53415
Se3e16.
503,17
5'5.18.
503.19'
5e3:20
5¢2.21.
5e3422
3e¢3.23.
543424,
562425,
53426
5¢3427
5.2.28,

L L La DO L U

L]
~q
L]
—
L

5eTels
506763
S5e7etbo

Marylang LISP Eeference Manual

Numeric Types \
Una llocatea Pages anc System Coge

Assembleog and Compiled (ode

Linker Nodes

Atomic Symbols

S5trings

Buffer Pages

The Entry Points

The Stacks - {stak and Stack

Enter a Function - Entry

Enter a Routine - Entryr

Leave a Function - Exit

List the Gpbjects on the Stack - Listem

Apply a Sreak Function to Arguments - Breaker
Error Return - Zact

Look Up value of Fluid Vartable - Lookie
Create & Local vartatle - Bina

Node Allocation - Typtao

Return Nil ~ G6fatl

Closure of Function - Funarg

Routine to Run a Funarg - Funarg+3

Expand « Macroc - Mexpand

The Page Table - Pagtab

Remuve Several vVarigble Bingings - Unbino
Get the Type of an Cbject - Getyp

Put List Members on the Stack - Stakem
Expand a Special Form Call - Sexpand

Follow & Car-Cor Chein - fotlow

Apply S~Expression to Arcuments = Apply
Bpply function Closure to Arguments - Applyl
Establish a Trup Point - Trap

bisconnect a Trap Peoint - Untrap

Trace Path Lack Down Stack - Unwind

The Current Gensym humber - Genno

Create @ New Special Form or Macro = Detspm
Temporary for Prog Result Storage - .Pysave
Make a string out ot the Name Buffer - Makstr
Copy String into Name tuftfer -~ Getnama
Btank-Fill Rest of nName butfer - Blanks
Sequential String Buffer - Name

Argument Handling

Argyuments to Regular Functions
Arguments for Speciat Forms

e Returning & Value
« Calliny LISP Functions
. Macros for Interfacing with LISP

Get Car of 2 Wore = 3upper
Get Cdr of & Worao - Slower
Folluw a Chain ¢t Pointers - 3chain
Altocate LISP Object Nowes = $node

6. Frogramnming Advice and Notes
2+1e Concerning Large Intepgers

(o4
.

Zs More Load/Dump Siue~tEffects

bels Space Restrictions

182

207
207
207
208
210
211
211
21
212
213
214
214
214
214
215
215
215
216
217
217
217
217
218
218
219
219
219
220
220
221
221
222
222
223
223
223
223
224
224
224
Z24
224
227
227
227
229
229
230
<30
230
¢3e2
232
232
232

14 Jul 1678

Eedo

SGelbatle
c."z.
Detalde

maryland LISP Reference Manual

Support Routines
The LISP Dynamic Dumper
Asm-excise
Asm-prettyp

183

233
222
233
¢33

14 Jul 1978 Marytand LISP Reference Manual 184

1. Introduction _ .

This section serves two purposes.,. The first, as +indicated
by dts tititey is to document the Maryland LISP Assembler, a LISP
assembler for use with Marylano LISP on the UNIVAC 1100/40 system
at the University of Maryland., The purpose of the LISP assembler
s to allow a user of Marylandg LISP to do speciatized work in
LISP wusing UNIVAC capatilities for which functions are not
provided without physically altering LISF.

The second purpose of this section 1is to provide some
documentation of the implementation of Yaryland LISP, a subject
leng relegated to the depths of the c¢ryptic comments in the LISP
source code. This material should ve of help to any hardy sout
who wishes to make improvements anc alterations to Maryland L1ISP,
The implementation notes have ween given here rather than in some
appendix or separate section because of a realization on the part
of the author that the intersection of LISP users and UNIVAC
assembler users at the University of Maryland is not substantial,
consisting mainly of people involved with the upkeep of LISP,

Facilities are proviced in the assembler for macros, lListing
options, interfacing with the LISP system, and so forth, and the
use of these facilities 1s described 1in the sections which
follow.

In this section, L ISP functions and atoms to be evaluated
will wve underiines ang in lower cases Assembler instruction and
partial-word transfer mnemonics anc register and directive names
will e in wubper <case. Assemibler symbols (labels and other
EQU“egd constants) will be in ptain lower case., Iin descriptions
ot syntax, worus enclosea in angle prackets denote syntactic
entities and counstructs enclosed in souare brackets are optional.
Parentheses in syntax descriptions are always those of LISP
s=expressionse. Ellipses denote anything which can Llegatly
replace them in the expressions in which they appear.

Untess otherwise specifiea, the worg "assembler* refers to
the Maryland LISP Assembler.

Except for the section on LISP”s data structures, it is
assumea that the reader hazs some knowledge of LISP and/or the
UNIVAC &ASM assembler, (see [Uni?4]) wupon which the LISP
assembier”s synptax is pased.

14 Jul 1978 Maryiland LISP Reference Manual 185

ce fasic Features of the Assembler

2.7+ Calling the LISP Assembler

Tu use the LISP assembler, one must do the foilowing: After
entering LISPy Loaa in the assembler using:

dADD AGRE*AGREASM/LISP .

At present, no compiled version of the assembler is available.

eefore using the assemobler, it is necessary to have reserved

an area ot core for assembled code to be stored in. To do this,
one uses the :(CODE directive (see page 107).,

Then, assuming that an assembler program as described 1in
succeecing sections has been bound to the atom proggram, cne may
define a function, say focbar, by doing

P -)

(csetg foopar (assemple gregram))

- - - e .- - -

or 2 speciat form by doing

(gefspes foovsar (gssepble crograml) .

Once this is done and the assembly 195 completeco without
encountering .error or warning congitions, foobar is a function
whicn c¢an be used just Like any normal function. ¥analing of

arjuments and so forth is exptained in the chapter pertaining to
interfecing with LISP.

The name gssemble can also be shortenes to gsmy as both are
cdefined, Qptional extra arguments a&re the options, which are
guoted single-letter atomic symbols. For example, the a, Ly ana
o options could nave been specifieoc in either of the above calls:

(cserg foopar (assemple program "z “L “e))

-— -

The cptions, which need not be in any order, are as follows:

a Load the arithmetic package 1if 1t 1is not already

loaded. This s ocetermined by finding out whether the
stom ar-gupp hes & constant pincing.

c Share the use ot some location counters. The wuse of
this option is complex, so0 a thorough discussion has teen
postponed to a lLater chapter.

j4 X

Used with the | option to specify & double-spaced
instruction tisting.

3 Perform an {asm-exfise) to remove the assembler from

14 Jul 15678 Maryland LISP Reference Manual 186

core after the completion of the assembly. .

f pon“t clear the wvarious. flags and tables that the
assembler sets up for its own use after the assembly has
oeen completeo. This option is mainly for use in
debugging the assembtler.

g In the formatted instruction listing, use the backslash
prefix notation for lavels in expressions. The default
js to omit the backslash and the ggisym and getsyml catls
in the tisting.

L Provide & full Listing. Conflicts with the n option.

The d, gy Oy anc p options are meaningless unless the 1
option is also specified.

n Ssuppress atl output except for messages resulting from
really fatal error concitions.,

o] Print out octal numcers with & “d" prefix rather than a
et suffix.

[+ Page up after each section in the Llisting except the
Llast. This should only be used on very large programs

arnd usually in conjunction with the s option.

3 Load the suspend/resume package and breakpoint the
tisting into a file. The assembler will give the
standard “EXAMINE, PRINT, « « o* queries before returning
jts value. The suspenc/resume pactkage will not be loadea
if the atom suspend is found to have a constant binding.

v Indicates that the function peing cgefined uses the form
of data area allocation (next chapter) which is suitable
tor dumping ana re-lgcading. This entails some special

restrications anao mocifications in algorithms dinvolving
static data areas, but is not often used. -

The default listing gives simﬁl& a signon Ltine, starting
address, ana signoff timin, information. Other options may be
added according to the wishes of the user community.

2eds The {ode Format

The (required) first argument to the assembler is a list of
labels, instructions, directives, and macro caltls. They are
encoded as s-expressions, but retain the same basic form as the
analogous constructs in the UNIVAC 2ASM assembler.

el Instructions

Instructions should be coded as lists of this form: (<op>

14 Jut 197% Marytand LISP Reference Manual 187

[<a>] <u> [<x> [<j>11), Fields may be omitted by coding them
either as the atom nil or as the octal wvalue (@, and trailing
omittea fields may be dropped. The & field should not be present
in those instructions (for example, SZ, SLJ,y J, JO, EX, ER, etc.)
which ¢co not use 1it.

Examples:

LISP QASM

CLA AD O X5) LA AG,0,X°%

(eX output (* X&43) EX output y*Xb
(LM ATD (*» startloc) nil XH2) LNM,XHZ A10,*startloc
(R exit$) ER exits

(Lt X111 corout (x X1)) L *J X11,corout ¢*xx1

The constants, symools, and expressions which may arpear in the
various fietds ot an instruction are explained in detail later in
this chapter.

2elace Labels

The user may attach Lsbels to instructions in the source
code by simply inserting the atomic Label before the desired
instructione There is no Limit on the numpber of labels which may
appear in any one place, nor is there any limit on the number ot
tavels which may appear in the programs Any LISF atom {(except
nit) is 4« permissivte Label., o label may appear more than once
in en assemcler program. No constant binding is asssociated with
the latels by the assembler, su that a lepbel may be the name ot a
LISP=- ur user~defined function or constant, However, the user
should take <care that no label name coincides with any which is
getinea through gaxr$, that 4§s, register, partial-word, anag
executive regquest mnemonics, I03 function codes, the LISP naming
conventions, and the entry points 1intc LISP. AtL these are
expleinea ltater,

Exampbe: LISP assembler: (o « + Lab1 ovject (L A T nil U) « o &
print (ER print3) . » » (J print) .« + &)

UNIVAC cssembler: « s @

Lab1

object LU AL,
L] [] -

print £ER printt
- - »
J print
» » L

Zelale pirectives

For the time veing, the LISP assembler”s girectives are as
follows: EQUy +4y RES, SUSPENDy RESUME, LISTs UNLIST, ON, OFF,
END, 3, and GET. Atl but the last have the same meanings as 1in

14 Jul 1978 Marylana LISP Reterence Manual 188

the UNIVAC assempler. The exact eftects of many of these are
discussed in various sections Lelowe The last directive, GET, is
jnvolved with assembler storaze allocation and is a subject of
the next chapter. These terms will all be explained later,

Here dare some examples of LISP assembler directives and
their UNIVAC translations:

(RES 34) RES L ¥A
(END start) END start
{SUSPEND) SUSPEND

(% 9) 2 {G)

(0N (getsym abc)) ON abe>0

The lLlast example shows how a symbol tabte t{ookup function
gelsym is used to resolve ampiguities caused by assembler symbols
appearing in expressions. For a mcre detajled discussion of what
constants and expressions may appear as directive cperands, read
on in this chagter,

2elebhs Macros

The 1.1SP assembler has an easy-to-use and wvery powerful
macro facility. Simply statedy when the assembler comes across
an item in the source code List which is not an atom, and whose
car is neither and instructicn nor a directive name, it egvaluates
ite. The result should be 38 Llist of dnstructions, labels,
directives, anafor macro calls. Processing resumes st the start
of this list, This allows, among other things, macro generation
of labels anc recursive macros,

Many macros come pre~-defineq with the LISP assembler and
these are describec in the appropriate sections belows

2+3« AXRS%
A macro gxr$ is provideg tor ééfining system symbols. With
no arguments, axr® (conceptually) returns a Llist of EQU

directives which are processed by the assembler and which define
the stancard register and partiat-word mnemonics, that 1is,
X1-%15, AG-A15, R1-R15, $1-S¢, T1-T3, 4, U, H1-HZ, XH1-XHZ2, and
XU, Specifying an {unguoted) L opticon loads the LISP conventions
for register naming and other EGU ed constants. An e option
toads in the entry points by their LISP namess These are
explained in those sections which deal with interfacing with
LISP. An r option loads the codes for the executive requestsS.
Anyone doing ER”s from an assemoled program should specify the r
option on the axr$% call. Finatly, an § option Lloads the I0$
function codes, such as K3 anc Wi,

For those readers interestec in implementation details, gxri
actually installs the desired symbols in the symbol table itself

14 Jul 1978 Maryland LISP Reference Manual . 189

anu returns nily, this only to reduce the inefficiencies

associetec with buillding up anu tearing apart hundreds of EQU
girect ivec.,

The user should make it standard practice to make a call on
axr? the first thing in any assembler program. An example woulo
pe: C(axrt e L), This toaus the standard register and
partial-word mnemcnics, the LISP entry points, and the LISP
naming conventions, anu is the most common form of the gxrg call.

2e4e Expressions, Literals, and Forward References

LISP arithmetic expressions L[ike f{agdgl C(Coyxfuncg 2)) may
appear in severai places in an sssembler program, namely as
ar,uments to macros, as operands to most directives, and in the
£y Uy Xy ana j tietos of instructions. Severai restraints,
howevery must pe imposed because of the fact that the assembter”s
coce zenerating functions are those which were tailored to the
LIsP compiler, a~hich has a rather fixeg ano predictable style of
procrammings and because of the fact that macro expansion ana
pracessing of EGU directives 1s 2 seperate pass in the assembly.,
For this latter reason, the places in which EQU directives appear
in tne cooe have no meaning except perhaps to the user.

veECcause the assembler handles its symbol table through
rroperty Listsy there is & problem with assembler symbols
apipearing in expressions. Any assembler sympol which appears in
an arithmetic, expression which fs to be evaluated must be an
aryument to a call on cetsym. This is & special form which Llooks
its ar.,ument up on the symopoi table, returning its value if one
exi1Sts . A readgmacro for the character "\" has been defined so
that (yetsym mylab) can be shortened to \mylab, where mylab s
any symbpol that the user or gaxr} defines,

¥hen using jetsym, special precautions must be taken to
assure that & wvalue for the symbol will ingeed exist, lest
jarbage be returnegd. For the purpcses of our discussion here, we
will define three cateyories of assembler symbols, pre-defined
symbols, post-defined symbols, and labels. Pre~«defined symbols
are 1) all those defined throuuh agari, and 2) any symbol which is
EQiu"ed to a numeric constant, or to the vatue of any expression,
atl of whose symbotls” definitions through £8U gualify as being
pre-detfined ana are defined vefore it, Post~defined symbols are
all Ew«d"ed symbols which do not satisfy the aefinition of being
pre-detfined because the expressions defininag them either had
forwarc references or references to labels., tabels are those
atomic sympols which appear alone in the code. '

Example:
(equ L1 30
(EQU L2 {(ptus ‘LT 22))
(EQU L3 (Leftshift \id 2))

- e w e w—wm

(EQu L4 VLYY start

14 Jul 1678 Maryiand LISP Reference Manual 190

(EQY L5 \start) » .
(EQlu t6 (ditference V1 (logano VL5 776)13)

(3 (subl VLT

(+ VL2

(RES \LD3)

Here, each line put the LlLast is tegal. The symbols 1, 2y and
t4 are pre-definea. The symbol start s a lapel. The symbol L3
is post~cefineu because it has a forward reference to L4, The
symbol L5 is post-gefined because it depends upon a lavel, start,
anc the symbol L% is post-defined because its value depends upon
that of another post-defined symboly, L5+ The $(l1) directive 1is
tegal because L1 1is pre-defineds The + |3 directive is legal
because evaluation of its operand can bpe put off until L3 becomes
definec. And finally, the RES L2 airective is illegal, and will
generate an error message, because the assembler must know when
the RES is beina processed how many worogs to reserve.

The assempler is smart encugh not to evaluate any expression
which appears in the u field of an instruction of the operand
field of a + girective wuntil it can pe certain that atl the
assembler symbols used in it are oefined; this eliminates any
restrictians on the expressions which can appear in these places.
On the other hand, any exprescsion which appears in the a, x, or j
fiela of an idnstruction or as the operanc of a RES, ON, or GET
directive must countain only 1) numeric constants, ¢) pre-defined
symbols, and 3) labels which appear at least one instruction (or
RES or + directive) befcore the <dinstruction or directive in
question. This is onLy rarely a problem, and violations of this
restriction are marked with error messages in the right<hand
margin of an l-option tisting., (Note that if an expression which
appears in the a, uy, xy or j fielo of an instruction consists of
a singte symbol, then the geglszyp or "\" is optional.)

Useful for simulating literals are three functions, form,
of, and agdress, which are provided. with the assembler. Each is
describec gyenerally in another chagter, tut for the purpose of
titerals, form <cefines a function which returns an octal word
split up in the specifie¢ way, eaenc nf is a general-purpose
function that partitions an octal word into equal parts,
depending on the number of its argumertse The function address
should be wused to make the translation between a LISP object
(such as an octtal node) and the adaress of that objecty, for

purposes where it is the agdress that is required.

2:5. The Assemoler Algorithm

This section cescribes how the assembler works and sketches
the formet of the full (L-option) listing.

14 Jul 1676 Marylano LISP Reference Manual 191
2e5e1s First Pass EQU Processing

Pass one of the assembiler expands the macros and processes
the EZGaU cirectivess ALl £EQU directives which can be resolved at
this time without forward references, retferences to lLabels, or to
unagefined symbols are put on the symbol table. The arguments to
alt remaining EGQU directives are put on another table for
processing after all the code has been generated,

Each of the symooits whose value is put on the symbol tacle
in pass 1 4s lListed in the form <sym> = <expr>, where <sym> is
the symbol, ana <expr> is the expression or constant it was
EQUatec to.

e} [y
[)

ene Instruction Processing

As the code is uyenerated, an instruction Listing is rrovided
in whig¢h the various instructions ancg directives are listea in
the orger 1in which they are found after macro expansion, Each
line of the Listing has four fields: 1) the address f(octal) at
whicn thne instruction was placed; 2) the actual octal woro which
was placeg at that tocationy if any; I} the gqirective or
instruction 1tself in the UNIVAC format (so as to get the whole
thing on & 72~character Linel); and 4) any error message which the
instruction or directive may have provoked. Some fatal error
messages 4are printed on their own lines in case no instruction
tisting is being given.

The UNLIST directive of no operands will cause the Llisting
to te turned off, and the LIST cdirective {(also of no overancs)
witl turn it pack on, These are usetul for preventing 1he
listinyg of expanded macros. Some directivesy, such as ON,
SUSPEND, and RESUME, generate no instructionsy so that the
lListing recorcs no address or emitted woro for these, The RES
directivey on the other hand, may generate meny lLines of Llisting
{one ser emittec word). The SUSPEND and RESUME directives (both
of no cperands) can pbe used just as in the UNIVAC assembler to
avoeid grinting more than one line for @ RES agirective.

Ze3ele Forwarc Reterence Resolution Table

Usuallyy a program will contain forward references in the
coae., when & forwara reference occurs in the u fieldg of an
instruction or in the operand of a + directive, 2 record is kept
containing the address and the expression which could not be
resolved. Then after all the code has been generated, severat
passes through the List ot wunresclived symbols are made in an
effort to put them in the symool tabiee. When this is complete,
the forward reference list 1s processed., ALl expressions which
are resolvable (all symbols definec) are evaluated and plugged
intc the proper aodressese. All those which cannot be resolved

14 Jul 1978 Marylano LISP Reference Manual 192

are assumed to be zeros. The Fcrward Reference Resoluthon table
records the outcome of this process, Each entry in the table
contains the acgdress where the result was pluggedy, and the wvalue
of the expression itsetf. The wuser c¢an wuse this and the

instruction listing to reccnstruct exactly what code Was
generateds

2o ebe Symbo{ Table

The lLast part of the Listine is & lLlist of all wuser-defined
symbols (those not defineg through gxr$). FEach such symbol is
tisted here with dits value. Symbols whose values could not be
determined are flaggeo with an error message. This might happen
pecause the symbol ¥s5s EQU7ed to some expression containing an
undefinea symbot or if the symbol has a recursive definition.

260 Miscellaneous Directives

2e0s1e Conditionsl Assembly - ON anc OFF

The LISP assembler provigces two directives for the
conditional assembty of blecks of assembler code. These are ON
ana OFF end they work in pasicelly the same way as their
counterparts 1in the UNIVAC assemcler, ON takes one operand, an
expression, whith dis5 evaluated. 1f the resulting value s
positive, assembly continues normaliy. However, if the value is
zero or negativey, no code is genereted until the matching OFF
directive 1is reached. ON/OFF pairs may be nested to any depth,
1¥ the expression which 1is the operand of an ON directive cannot
be evaiuated (one of the symbols in it 1is undefined),y, the default
is 1, the assemoly continues normally, and an error message is
generatec if a listing is being produced. The OFF directive
takes no operand., puring any time that code s not being
generated because of an ON command, the dnstruction_ listing
continues normally, with tne aocdress and generated octal word
fields Lett blank.

2.0e2s Storape Allocation -~ +, RES, and GET

The + and RES directives are just a&as. used in the UNIVAC
assembler. The GET directive is peculiar to the LISP assembler.,
It takes a single operand, which must be an evaluatapble
expression (evaluatable din the sasme way that operands to RES as
descriueo above must ted)., Once the value of the expression is
optained, the asssembiler attempts to guarantee that that many
consecutive words of memory will be available for succeeding +
and RES Jdirectives. The &ET directive is only of use in data
areas a&s described in sutceeoing sect1ons, and it should never be
used or needed with the v option.

14 Jul 1673 Maryland LISP Reference Manuatl 193
2. Data Areas and Location Counters

The assemoler, because of restrictions placed on it by the
gesign of Marytand LISP, has & system of data area allocation and
location counters which differs somewhat from tnat of the UNIVAC
assemb ler. The Location counter faciiity idtself comes in 1two

versions, & more restrictive one ceiny necessary if the v option
is in force.

The zeginning user will prooscly want to skip this <chapter
secause of the fact that data area manipulation under the LISP
assembler is clumsyy, confusing, ang not totally debugged. The
use ©of static data areas such as descriped here can often be
circumvented by creative use of Literals and special registers,
and by using some torm of dynamic aliocation when Large chunks of
memory aore neecged for short-range storagé. Also, Maryland LISP

haes an a&rray facitity which may bte wusea instead for some
appticaetrionse.

fach lLocation counter torrespconos te (at least) one 128-word
arez known as a puffer pages Buffers have the advantace that
they will never ce split into parts oy LISP, thus maintaining the
consecutive nature of data areass. Howevery the disaovantages
compared ta the LUNIVAL assembler”s location cournter facility are
consigderavie, especially if the coge #s to oe dumped (read onl.

Lucation counter ¢ is the compilead code area. It is not a
buffer, rather the (type 5} compiled/assembled code area, $0 no
cata arez atlocaticns Larger than cone word can be done there. ToO
ceclare a location counter, put & ctatl to the 3 directive (as
cistinsuishea from the $ function) in the cesired location, just
as in the UNIVAC assemoler, for example, (3 3). Initiallyy, the
locatiogn counter s $(3). AlL code between a & directive and the
next one for the end of tne program) goes on the buffer page

corresgoncing to the number gotten by gvaluating the operand to
the acirective.

There is a tacility, the ¢ option, for allowing several
assenblies to use the same buffer pages for lLittle-used lLocation

counters. This is called sharing, and is descrined near the end
of tnis chapter.

Z2:.17¢ wusing Load and Dump

Irn many LISP Assembly Program (LAP) systems, the LAP is usec
poth to write assempler programs and (mainly) to provide a
meta~language for output from the compiler, This Latter use is
necessary because there is no general-purpose facility tor
dumping the ocinary core representations of s~expressicns and
compiled code out to @ mass-storage fTile. in these systems, the
LAP cude must be re~assembled every time it is needed (for
shame!)s In Maryland L15P, however, a tacility is available to

14 Jul 1978 Maryland LISP Reference Manual 194

write these binary representations out to files directly ano
reload them when needed 3in another LISP session. This s
implemented throuch the dump and lgag functions.

The function gump takes two dargumentsa. The first 1{is an
object to dump, wusually &n atom 10 which is bound either a
function or a List of LISP constructs. The second is either an
atom which is the name of an assigned mass storage cvata filey or
a dotted pair of such a file name anc an atom name representing
an element of that file. In the latter case, LISP dumps teo an
etement of type omnibus with that namey and in the former case,
LISP dumgs to the file itsetf in a2 form not readable by any other
Processor,

The tunction Load takes a single argument, which is a file
or omnitus element name as just describeds. From that file is
{oaded the object which dump wrote out to its The object loaded
is returned as the result, The loaded object{s) will not be at
the same docations they occupiec when gumpeds This facty, however
obvious, will prove inconvenient in the discussion of the dumping
of data areas in a later section.

Tnese functions can be used toc dump an assembleg program anag
store it until it is needed in another LISP session. In order to
dump an assembleg function which uses data areas as described in
this <chapter, 3t must have Dbeen generated under the v option
restrictions and modifications outiined in the section on that
subject.

Zs2¢ The Normal form of Data Area Allocation

For s one=shot uSsembler program which 3s not going to be
used againy or which 1is gcing to be re—assembled (yuck!) each
time it is used, the normal form of data area allocation is used.
In this, each Lavel has as its symgol tabie value . the absolute
core acadress it refers to, sa that it can be used Llike any label
in the UNIVAC assembler. Words on _puffer pages may -point at
anything they Like in the normat form provided that whatever they
point at is not subject to garvaye collection,

0f use when assemcled proyrams are not going to be gumped is
the GET directive, especially when oata area sharing 15 1in
effect. 3y putting a, say, f(G6ET 50) in front of a number of
RES"s ana +“s which must be physically together, one may assure
that they 1indeed will be together. 1If necessary, the assembler

will allocate a new buffer pagye to accomodate the GET. RES
directives do their own GETting automatically.

2.3+ The ¥ Option Form ot Data Area Aliocation

whereas the mechanics of cata area allocation are rather
straightforwara if the user does not have the restrictions

14 Jul 1978 Maryland LISP Reference Manual 1658

regyardin. gyppable code to deal with, if dumpaoility is desirea,
tnen certain rules must be followea. This section outlines the
rules which hold under the v option, whith must be present if the
result it to be gupped.

The first restriction is that the only place on a buffer
which may be pointed st by the coce 5 the first word. For this
reasun, the vatues of all Llavels under non-zero location counters
are relative to the start of the buffer itself. The best way to
operate wunder this restriction Js to keep the base address of
each pufter page handy, and have it in an index register to use
&3 én offset when data from that page 1is being used.
Unfortunatelyy, LISP has permanent infcrmation stored in registers
X1=X7 ana X9, and registers AT and AZ often have special meanings
in interfacing with LISP, so that the number of available ingex
resisters 1is small. In any event, it tne number ot location
counters is small, one buffer starting address could be stored in
each of several availacle index registers, and EQUF”s could ke
vsefineo for tne Labels to be the relative adaress Llabel indexeg
by the incex register for that buffer. Since it is necessary to
know on whicn buffer page any given Label isy it is important
thet only 128 words be put uncer any one tocation counter, even

tRrouan sharing. Therefore, tne GET directive i1s not of use in v
optiocn situations.

A function $ exists which, given a numoer, will return the

octal acaress of the beainning of the ouffer corresponding to
that numcer.

A final }estriction under v-option conditions is that no
worc un any dumped puffer page (non-zero lLocation counter) may
point at any ooject which woulu oe subject to relocation ugon
re-lcscing., Objects mot subject to relocation are as follows: 1)
all atoms which are initislly creastec with the system (and are
touna to system tunctionsy, egs cons)y their initial valtues ang
print names; 2) the atom nil; 3) all atoms whose print names are
single characters anc their initial values (if any) and print
names; 4) all entry points into LISP; anc 5) all other objects
classitiec as type & (unatlocated pages /system code) by LISP at
gymppineg time.

Zebs Location Counter Sharing

Often, the 128-word size of location counters” buffers is
much 100 Llarje, For this reascn, o facility is availacle for
several functions to share location counter areas. This way,y all
of a user”s assembler proerams coula wuse the same buffer or
butfers instead of each one just using a small part of one and
wastin, the rest. This facility is implemented by the ¢ option,

It the ¢ option ¥s specified, the assembler expects there to
be amn extra argument after alt the options which s either a
positive integer or a list of positive integers (the default is a

14 Jut 1978 Maryland LISP Reference Manual 196

. If the last argument is a positive integer, alls Location
counters up through and inclucing the integer”s willL be shared
with the previous assembly (which may have shared them with
othersl. 1f a list of dintegers is given, all those Llisted
counters will be shared. Counter ' is always shared. NoOte that
if the v option is in effectt on any of the sharing assembtlies,

the number of wurds reserved uncer any one non-2ero location
counter may not exceed 122.

If two or more functions share & puffer, they should always
be ocumpec and Loaged together, If not, then identical copies of
the buffers will be made for each gumpy, so that there will be
expensive duplication of buffers upon re~-locading.

14 Jul 1978 maryland LISP Reference Manual 197
4. WUtility ang General Purpose Macros and Functions

Secause there are several useful capabilities of the UNIVAC
assembler which are not oirectly implemented in the LISP
assembler, and becsuse LISP uses many conventions and structures
which are not compatible with assemoly language programming,
several spectal purpose macros and functions are provided along
with the assembter toc allow the assemoler wuser to apply
technigques familiar to him to deal with LISP. These are
gescripec in this section.

dala System~Defined Macros

Latlele Eouf

The macro equf i1s designed to be the LISP counterpart of the
UNIVAC EGQUF girective. 1t takes 2, 3, or 4 arguments. The first
is the symool ceingy detfined. The secondy third, and fourth
arguments are any expressions representing uy xy and j fielas
respectively. The expressions may <¢ontain forward references,
Lyt any symbol appearing in tnem must have a "* prefixe If the
expressions can oe evaluated immediatelyy they are. The resutt
of the egyyf call ¥s (a List containing) an EQU directive EGUating
the symbol to a2 constant (if all 7 expressions can be evaluated)
or another expression, which when finally evaluated can be
logeree with an existing dinstruction to give the intenaed
instructions Unwanted arguments should be codeg as 06, and it
the fourth argument s 26, it can be omitted, anc if both the
thirc eano fourth arguments are 04, they can coth te omitted. Yo
A0l COGe unNwanted arguments as Dile

4elele Provide & Pointer to an S-~Expression - Sexp

Since this assembier is meant to interface with LISP, there
is & need for symbols to have as their values the locations of
LISP s-expressions. The macrc gsexp provides this capability.
SEXD tokes two arguments. The first is the symbol being defined.
The seccnd is an s-expression (atom, number, coOns nodey etC)
which willt be evaluated. The address in memory of the resulting
vatue will be the value of the symbols The result will be (a
tist containing) an E®U gdirective EQUating the symbol to the
cctal adoress of the value of the s—-expression.

Examples

(sexp datastr (cat "*ASG,A ™ "“FILENAME., . ")) <causes datastr

to heve as its symbol table value the core ltocation of the string
“Y*ASGy A FILENAME, . ',

(sexp paramnum 42717Q) causes paranum”s symbol table value to
pe the location of an octal ncde containing the octat number

14 Jul 19578 Marytand LISP Reference Manual 198

4272728, Note that this ds not eguivalent to (EQUW paranum
427172), which causes paranum”s value to be the constant 42717Q.

(sexp cons cons) causes cons to have as its symbol table value
the core Location of the code for the function cons.

(sexp cons “couns) causes <¢ons to have as 1i1ts value the
Ltocation in core of the atom cons.

heTs3s Declare LISP Functions to pe falled = Fnames

The arguments to fpames shoulc be atoms to which are bound

those functions which are to be referred to in the assembly.
This i a means of declaring them anc gutting them on the symbol

tabvlie. ALL fpames does s to generate a ltist of gexp macro
caltis,
Example ’

(fnames cons fiopen) gyenerstes the List ((sgxp Soons cens) (sexp
fiopen ficpendl.

baelabse Form

The form macro 1is the LISP <counterpart of the UNIVAC
directive of tnhe same name. It takes any number of arguments,
the first of which must be an unbound atom, ano the rest of which
must be a series of integers or expressions whose values must add
to X6, The function form returns pil and defines the atom to be
a function which, ,iven a numuer of aryuments equal to the number
of fielus specifiea in the form catly will return an octal worg
in which the arguments are placed in the desired tocations and
truncated from the Left if necessary {(ie.y lLlow—~order bits are
kept). Since the function defined by form returns. an octal word
rather than its address, the address function can.be used to get
the address. For example, sugpose a (form pf 12 6. 18) s
executede Then C(pf 320 70 2014G6) = 32073020746, :

bLaleSe Flastr

Singce LISP strings are stored not in sequential memory but
as Linked Listsy some facility 1is necessary to make the
translaticnes This is the purpose of the flogstr macro. This
macro takes as its first argument a string of any length. It
generates a series of + directives, each of whose operands is an
octal .number representing up to six characters, and a GET
directive to keep them in sequential memory. 1f the string”s
tength is not divisiole oy sixy then the Llast word s
blank-filled, uniess a secono argument is given, 1in which case
the tast word is zero-filled. Note that LISP does not allow the
character "“3" to appeer in strings, nor is the {077 <character
atloweo as it 1is the LISP end-of-string flag. 1If zerces are

14 Jul 1¥738 Maryland LISP Retference Manual 199

required in a sequential strinygy a function using {ggand could be
written to mask out the undesired characters. The fldstr macro
shoula never be wuseg under 3({) uniess the string is less than

seven characters in Length.

Examples: (figsir “ABCD1Z 34™) generates the (ist: ((GET 2)
(+ o370809461620) (+ 56364050505a))

(fidstr “"ABC" t) generates the list: ((GET 1)
(+ £27083C00NCA))

4,176 Provide a Pointer inte LISP ~ Ept

Fer use by the LISP compiler, LISP provides a list of
agaresses of useful stacksy tables, and pieces 0f code which can

be accessed by an assembler program. The purposes of these
varicus sentry points dinto LISP are explained 1in a separate
section unaer their conventional LISP names. This macro, ept,

allows one to assign one s own names to these entry points. The
macro gpt takes two arguments, the sympol being defined, ana an
expression ar numeric constant. It returns {(a list containing)
an f4«U directive EtlUating the symbol to the acdress of the entry
point. It it is possible to evaluate the second argument (all
symbols involved in it are defined)y then the address of the
enctry point is computed and given &S the second operanc to EGU.
Otherwisey, an expression is constructed which will compute this
sadress, and 4§t is given as the EQU directive’s secoend coperand.
The symbol thus vefineo is lisied as beina s user~gefinea symcol
in the symbol tacley and is printed out as such in any Llisting of
the sympol tabie. Also, this symbol may appear arywhere in the
coue or in data areas, as it is not subject to relocation in any
gump/lgay oprocesse However, any assembler proogram using the
entry points shoulu be re-assemblecg each time that a2 new wversion
of LISP is put on Linece.

belate Ept® and Lspcon®

Tnese macros are used 1in olace of e and t options,
respectively, to axr$% sc as to make the conventional definitions
of the entry points and the LISP ctonventions user—-defined, Using
these instead of axri options has only the effect of having the
gefinitions show wup on any symbol tabtle listing. Neither eptl
nor Ltspcend takes any arguments, and each returns a Llist of EGU
girectives.

4o14fs Register Saving Macros

In complex assembler programs; a8 user will often use many
recisters and c¢alt LISP functions which also use them. Because
of this gproblemy a facility is proviged to stash registers away
in gata areas and restore them later. The basic saving macros
descripeg here are provably not going to be sufficient for many

14 dut 1978 Marytand LISP Reference Manual 200

situations; but they are provigegd shoulc they oe convenhente.

Most LISP functions can be expected to trash some or all of
the scratch index registers {(X6,X12,X11) anc the scratch
accumutators (AD~-A&6), as wetll o5 RI-R4s In addition, recgisters
Xt through X7 are reserved oy LISF for permanent storage, as are
X9, A15, and R15. The latter registers should, in general, not
be changed,

4,1.241. Generate Register Saving Area =~ Savepkt

To venerate an area to store the registers, the Ffunction
savepkt of one argument returns a Llist containing the lavel
savelarea anc a RES directive with the one argument, which should
be an expression or numeric constant, as itts operand. This
should be wused to provide the proper amount of space for the
registers being saved. The minor registers are 10 in number, The
x registers are 11 in number, the a registers are 16 1in number,
and the r registers are 15 in numper.

boleBscse Saving the Minor Set of Registers

A set of macros is provided for saving the minor set of
registers, that is, X111, AD-AS, ana R1-R3, The macro gavem of no
arguments returns a Sequence of Stcere instructions which store
the registers X11-A5 in the first 7 Llocations wunder savelarea,
ana the registers R71-R3 undger tne next 3 lLocations. The macro
restorem of no arguments reloads the 10 minor registers from the
area unger savelarea. A call to sgyem should preceed any
assembler program”s catl to any function which disturbs the minor

reyisters, and a call to restorem should come afterward.,

[-4 N o

4.1.8+3., Saving tne Entire Set of Recisters

A set of macrus 35 also provideao for saving and restoring
the entire set of 42 registers under saveSarea. This is most
useful for when a large number of iIndex registers and so forth
are necessary in a function so that LISP s permanent values must
pe stored upon functiun entry and restored upon exit. The
function save generates 2 List of instructions to save all 42
re,;isters under save$zrea, and the function restore generates
instructions to Ltoad them all backs In order to use these
safely, the user shoulo have a savepkt call reserving at least 42

locations unger scme location counter otner than $(0),

14 Jul 1978 Maryland LISP Reference Manual 01
L,1.%, Mimic UNIVACs PO Directive ~ Ado

1n the UNIVAC assembler, the cirective DO is used to provide

repetitive generation of similar instructions. The LISP
counterpart of this facility is the macro ago. This macro taxes
three required argumentsSy & cummy symbol, an expression

evaluating to & number, and a LISP assembler instruction or macro
catl which may or may not involve the dummy variabtie. If the
expression evatuates to & number which is less than one, the null
list nil is returned. Otherwise, a number cf copies of the
instruction or macro catl corresponding to the number is mage,
«ith intecers starting from 1 successively substituted for the
cummy wvariable. Even if the wvarijable is not involved in the
thirc aryument, it must pe present as an argument. No c¢onstant
bincin., is given tc the variable, so anything will do.

Exomple: (ado i VX11 (5 i (plus \savelarea (subl #3)))

senerates a2 list of Store instructions which wilt store the
first 11 x registers in the first 11 locations under savelarea.
This is how the register saving mactros work.

2
o

£~

« General Purpuse Functions

The functions described here are provided with the LISF
sssemoler and are meant to be used in the cperands ot the various
girectives and instructions.,

boials Address

Tnis ds a function which, given any LISP object
(s-expression or pointer into compiled code) will return an octal
word containing its core «eddress. This 1is wvery usefut for

sointing at the various linked-list type objects LISP deals with,
anc also proviaces a way to allocate single-word titerats without

rescrting to the mess and bother of tocation counters and data
areas.

“xample
Lyl AQ,address({guote((s . expre) ssi {o « n)))
LyHt A1,0,AD
LyHZ A, +AD

causes A to contain the loc ation of the s=~expression

((s + expre) ssi (o « n)), A1l to point at its gar, namely
(s . 2axpre), and AZ to point at its cdr, namely (ssi (o . n)l.

l‘.&n;. 'l“f

This function provides the equivalent of the @ASM literal
facility by partitioning an octal word into equal parts and

14 Jul 1973 Maryland LISF Reference Manual 202

putting its arguments in those parts, returning the resulting
octal woro., Tne aodress function function can be used to get the
address of this word for the purposes of u fields of instructions
anag operands of + oirectives.

Example. The UNIVAC assembler code lines:

LyU A3,(3,4,aDC,Q4*c0n*4)
+ 28ybuffer?

would translate into these two LISF assembler instructions:

(L AZ (ggdress (of 2 & Vadbe {plus
(times Vg4 Vcond 4)3)) nil W)
(+ (gt Zo \ouftfer3’)

Tne Lisir function takes o string whose length is no greater
than 6 characters and returns an octal word which is the FIELDATA
octal representation of the string left-justifieds Any remaining
part ot the word ts zero-fillea wunless a second argument s
specifiea (either a one-character string or the octal coging of a
single character) in which —case it 15 used to fill the space.
Remember that LISP does not allow "2' signs in dits strings.

P RjStl’

This function is similar to Ljstr except that the characters
in the resulting worgo are right-justifieoc and any filting which
occurs happens to the left of the characters.

4.2.5. $

The & function takes 2as its single argument a positive
integer and returns the tocation of the first word under the
location counter with that numcer. This dis wuseful 1in the v
cption form of data area allocation, in which all tabels are
relative to the ceuinninys of their respective buffer pages, and
index registers must be used to provide the starting addresses of
those pages. (Unfourtunately, the LISP debug package also has a §
function, so for the time teing, one must be careful when both
the assembler anc the debug package are peing used. Note that no
other assembler functions use the & function, so the user is safe
if there is no explicit call on it in the assembied program. 1t
poth the assempler and the debug package are to be used under
this restriction, though, the deouy package must be loaded laste.)

14 Jul 1978 maryland LISP Reference Manual £03

balZeba Noits

This function takes two arguments, the first an octal word
anua the second 4 positive numper not greater than 3¢é. The
function masks the wora so that only the number of low-order bits
inuicated by the second argument remains. for example, (nbits
777a 53)=327q ana (pLits =3 9)=777q.

4e3. Arithmetic Functions

Those very fluent in UNIVAL assembler Language may have
notices that there are several functions available in the UNIVAC
assempler which do not have oirect anazlogues 1in LISP. These

functicns are availaole with the LISP assembler and are listed
here:

name GASHM args value

1lexp 1+ Xy ¥ xx10%y

milexp /- X,y x/10"y

Zexp 1 * Xy Y xkiTy

asm-eq = ay b if a=b then 1 else O

gsm=gt > a, b if a>b then 1 else {

dam-lt < ayb if a<b then 1 etse (

CoOvVQuo 1/ Xy Y if xemodey=_" then x/y else x/y+1
/4 A7 Xy ¥ ditto

It i. true that Zexp is equivelent to Leftshift, but only as long
as it coes not proaduce an overflow. MNote that leftshift does 2
logicat shift if its second argument is gpositive {(denoting a teft
shiftyy and ¢ circular shift if its second argument is negative
(denoting a right shift)., Also mnote that i1t the arithmetic
package #s loadecy the * function may not be used to denote
muiltiplication in assenbler expressions, as it conflicts with the
notation used for inoirection and autoincrementation.

Lebh, Macros for Quarter-Word Manipulation

Since Maryland LISP presently operates in FIELDATA
(third-wordg) mooe, the quarter-word partial~word codes are not
normal Ly available to the assembler programmer. For this reason,
the ysgijld and fielgate macros are provideds The user of these
macros should note: 1) The third-word and XH1 partial-worc codes
may not be usea while quarter~word mode is on, 2) No LISP
function or routine shoulo be caltied unitess third-word mode is
cny ana Z) Although the guarter-word mnemonics ¢an be used by the
assembler user, any instruction-format core dump will use the
third-worg and XH1 mnemonics.

14 Jul 1978 Marytand LISP Reference #anual 204

batdhals Ascii

This macro generates two instructions which trash A0 and set
PSR bit 17 to 1. This causes the guarter-word mode to be turned
on'e

bob ol Fieldata

The fijeldata macro generates two instructions which set PSR

e e e v o AN v

bit 17 to 0. The dinstructions use only AG. If the ascii mode
has reen turneg on, this will turn it off.

14 Jul 1978 Maryiand LISP Reference Manual 205

S Interfacing with LISP

The most crucial part of wusing the LISP assembier s
interfacing with LISP jtself. Since the assembled programs will
be use¢ as LISP functions, and may need the services of other
LISP functions and parts of the LISP dnterpreter itselt, this
includes handliny function arguments, setting up function calls,
receiving wvalues from callec functions, returning a value as a
functiun, and returning contrcl back to LISP. Each of these
topics will be covered in this chapter.

Z+1¢ LISP Naminy Lonwventions

Inside the LISP interpreter”s source code, a Large number of

symboels are cetineg to ease understanding of the code, These
consist mostly of special names for registers, and will be
referred to as the LISP naming conventions, These symbols are

{oeded dintoe the LISP assembler by specifying an L option on the
catl tu axrd or oy using the Llspgopd macro,

LLISF uses severadl of the registers for permanent storace of
certain gquantities and the LISP naming conventions assign
mnemonic names to these registers., These are Listed below:

AXRS$ LISP purpose in LISP

X1 xT poitnts at top of walue stack

Xe XF points at function frame in stack

X3 XC points at top of control stack

X4 XL h1=current alisty hZ2=return address

X5 XP trap chain pointer for error recovery

X4 X1 pointer for tnput routine

X7 XR used in node allocation

X¢ Xw scratch register

X X0 pointer for output routine

X 19 XW1 another scratch register

Ay XX scratch

A Xy scratch

Ac XV scratch, usually current LISP object

Al (scratch) no LISP namey but used as Xv+1
A XA scratch

AS {scratch) no LISP name, but used as XA+1
Al XXA scratch

415 XMCNT contains # of words atlocated

R15 XFLAG permanently contains -0

None of tne registers listeog as scratch has any permanent
valuesy, but they are often wused to pass arguments to LISP
routines and are subject to trashing by many functions.

Alse in the LISP conventions are a series of constants which

14 Jul 1978 Marylandg LISF Reterence Manual 206

have been given mnemonic names, anao which are wused by various
macros, These are as follows: ‘

name cefined as purpose

consed U type # for cons nodes

integer 1 type ¥ for integer nodes

octal P type # for octal nodes

real 3 type # for real nodes

system 4 type # for unuseo pages/system code
code 5 type ¥ for compiled/assembled code
Linker] type # for lLirnker nodes

symool 7 type # for atomic symbols

string & type ¥ for string nodes

buffer 9 type # for 128-word buffers

maxtyp 9 the largest type number

numtyps maxtyp+] the number of types

pagbit 7 dgefinea such that 2%pagbit=128
pagsiz 2 pagbit # words in a page

pagmsk PP 7q-1776 mask to get page location

pagnum 2" (17~pagtit) # of pages in systenm

nodsiz 3 size of each type table entry

The last five of these are used by the variocous system macros
and funhctions and are added for flexibility. The type numbers
are the ones returned by the 3getype macro”s instructions and by
the type function.

During the discussions which fclliowy, the LISP convention
names for registers X1 through X190 anc the axr$ conventions for
all other registers will be used in discussion and examples.

S5.2¢ LISP s Data Structures

Maryland LISP has ten data types. These are cons -nodes,
integersy octal numbers, real numbers, unallocated pages/system
code (& general non~type), assempled/compiled code, linker nodes,
atomic symbols, strings, and buffer pages. At the ltevel at which
the regyular LISP user works, the details of these cata types and
their associatea structures are hidden from view, so that the
user may concentrate cn details considered more important than
the book~-keeping associated with the manipulation of data
structures. The power of the assembler, on the other hand, comes
from its ability to dinteract with these data structures to
provide specialized features and efticiency. Ffor this reason,
one not learneo in how Maryland 1.IS5P"s data structures are
oryanized should Lloock at this section. Little knowledge of
UNIVAC assembler is reguired to read these descriptions.

For book-keeping purposes, LISP civides the core avaitable
to $t into 128-word sezments known as pages. Each page is either

14 Jut 1873 Maryland LISP Retference Manual 207

& 1Z8-word chunk that happens to fatl in some of LISP"s code, a
paue which has not been alliocatedy, 0r a page devoted to a single
type of node, The number of this type is recorded in the page
table entry for that page. When ail available nodes of some type
have been atlocatedy and a new one is requested, LISP picks out a
new paye snd dedicates it to the reguested type, and when all the
noaes on that page become unusedy the garbage coliector returns
it to the List of free pages.

The gcarbage collector marks one- and two-word LISP ocbiects
Cy setting a pit in a mark it taple in the page the object is
cne Specificaliy, if an object resicges at octal adoress <a>,
then cCit number <s>.mod.22 in the worg at address <ad>-<a>.mod.%?2
is usec to mark Jt. Thus every rage of —cons nodes, numeric
nouues, tinkers, stringsy ang atomic symbols has four mark pDit
taeless Two words are reserves for every such tabile to maintain
uniformity ana to provide room for future extensions of the
carbagce collector. Compiled code ana buffer pages are marked
gifferentdyy as is expLained in the sections describing them,

Ceset. {ons Nodes

A couns node {(type) is a single 36-bit word broken cown
into two halves, eath of which is a pointer at one of the 2717
memory locations LISP can theoreticailly deal with.

Sececs humeric Types

’

Thnere arfe three numeric types n Maryland LISP, integers
{typre 1)y octals (type 2}y ana reals (type 3). Each is a single
word of memory which contains the number. While reals are stored
in the standarc exponent—-mantissa format, octals and integers are

stured and used exactly the same by atll routines except for the
cutput routines.

-

el inallocated Pages and System Code

|

Unallocsted pages (type 10) and system code (type 4) are the
two "non~-types" of Maryland LISP. It does not make sense to
allocate or deallocate a page of either of these types,
conseguently the garpage collector 1ignores pointers at them.
Type 10 is the state a page is in before it has been committec to
some type,y, and type & is the type which is assigned to pages
which are not availaole for data area allocation such as systenm
cooes., It does not make sense to atloucate or deallocate a page of
either of these types, consequently the garbtage coltector icnores
pointers at them,

14 Jul 1678 Maryland LISP Reference Manual 208
S.2e4s Assemblea ana Compileu Code . .

Maryland LISP has a feature which allows programs to be
compiled directly into machine language in memory anc to be moved
about on files andg so forth without 2 symbolic intermediate form.
Thusy the output from the compiler is a set of machine lLanguage
instructions placed airectly into core. These instructions are
placed in the compiled code area which is reserved by the :C0DE
directive (see page 1C7) and which is of type 5. When a type 5
address 1s given as the value of an atom, that address will be
taken as the startiny address of the function to be <c¢alled when
that atom is wused, just as though the function was one of the
assembity=-lLanguage functions Lloaded with LISP,. The garbage
collector will not de-aliocate parts of the compiled code areae.

Be2a5e Linker Nodes

A Linker noue is a two-word chunk of core on a type & page.
Linker nodes are wused in several ways, atil relating to the
execution of functions. In its most common formy, a Llinker node
toouks Like so:

HY K2
: LMJ Xt, : Ko mm maman-t===> applyl/apply
: * : * H
P ———— e R T tm————— -
! !
v v (type)
nothing or it g
alist for applyl t % 1 *=~4+=~w> hpdies
R e
!
v

arguments

As the structure here sucgests, to execute the function
associated with this Linker nodey, LISP just jumps to the first
word of the nocue, which in turn branches to the appropriate
processing routine ano passes along a method of getting at the
tambda expression asscciated with the function, tpply 1is the
routine to apoity & regular LISP function to a set of arguments
ana applyl is the routine which guarantees that a function s
only applied when a certain alist is in effect (funarg+3 has a
similar effect, read on)a. When such is the case, the alist to be
substituted for the real one is to be found in HY1 of word 2 of
the Linker node., Otherwise this hal f-word is unused. Both of
these routines are entry pcoints. Anything about the number of
aryuments can be determined by retrieving the lambda expression

- e

14 Jul 1978 Marylanc LISP Reterence Manual 209

creates & Linker node such as this one and puts its arguments on
a List in HZ2 of word 2.

Linker noges are used somewhat differently in the contexts
of speciat forms, macros, and "“funargs®. Specifically, they look
like s0: .

H1 H2
: LMJ XLy : ¥o - m—mm——i=~=> mexpand/
e s e — - ————— : sexpand/funarg+:
: 0 or 1 : * :
i Immm—————— tomem———— :
1
v

normat tinker node

In this construction, H2 of word 2, rather than pointing at a set
of arguments and function podies, points at another Llinker node
suych as in the first diagram of this section, unless H1 of wora 2
is 1, signalling that the special focrm was defined by the systen
anu must pe handieud oaifferentiy. The routines at sexpand,
mexpancy anag funarg+” (entry points all) handle the execution of
the normal linker as a special formy a macro, or @& funarg,
respectively. very specific dgescriptions c¢f what these routines

mean ond how they work caen be founa in the sections which deal
with them as entry points.

Trhere are- two more special cases for Linker nodes which bear
Gistussincs. The first is in the case of a function of the torm
C<AYD>*R which follow the pointers through on s—-expression. (For
example, g¢agdadadodaaar.) These azre handieg by the reao routine
which, it it detects a symbol of the form CCA\D)*R, <creates a
linker node to bina to the atom which would perform the desirec
functions Although in theory only 1 through 35 a“s and d"s are
accepted in the atom name, any number from U on up is accepted.
(The) casey €ry is interesting, resulting in & function which
just returns its single argument.) The Llinker node which is bound
te the atom has in its second word a bit string representing the
a”s anu c¢”s (with J=a and 1=d), with a teading 1. The first
worad“s H2 field is a8 pointer to the routine called tollow (which
is a2lso an entry point) which takes the bit string in the Llinker
node and applies its operations (except for that of the teading
1, which is just there to signal the end of the bit string) to
the ceryument on the stack.

Thne LISP function break is used for specifying a function
which 49s to be applies insteaa of the one bound to a given atom.
This s wuseful ftor function tracing and so forth, More

specificatlyy pDreak takes two arguments, like so:
(break <atom> <function>)

- -

where the first argument is an atom which is bound to a function

14 Jul 1978 Marylandg LISP Retference Manual 210

(teey a Linker node), anoc the second argument is a function
(again, a linker node), whose arguments are: 1) the <atom> it is
breaking, 2) the function that was bouna to the <atom>; and 3=n)

the arguments specified to <atom> in the ‘Yoroken™ call, Break
constructs a new Llinker node with

LMl Xi,breaker

in wore 1y, 2 pointer to its second argument (<function>) in HZ of
word 2, and a pointer to a cons node whose ¢afr points to the
<atom> and whose ¢dr points to dits vaiuve in H1 of word 2.
Breaker is a routine (and an entry point) which moves each
argument on the stack up two spaces and sticks the car and cdr of
the cons node pointed at by H1 of the second word of the Linker
in argument positions 1 and 2 respectively, and Jjumps to the
function pointed at by HZ of word 2 of the Linker nodes. The
function unbreak, if given as an argument a "broken®™ atom, will

restore it to its original concition.

Selebs Atomic Symbols

Marylangd LISP has a fairiy novel design for atowmic symobols
which allows a constderable gain in efficiency over other LISPS,
An atomic symbol ¥s a two-wordg part of a2 page of type 7. Each
atomic symbol has four fielas: H1 of word 1 §s the vatue fietd,
HZ of word 1 is the property tist, H1 of word 2 is a2 pointer 1in
the hash lList of atomic symbots (the oblist)y; and H? of word 2 is
a pointer to the oprint name in string form. When created, an
atomic symbol has no value (ie., the wvalue field 1is 0}, the
property Llist is null (je.y, HZ2 of worg 1 contains the address of
the atomic symbol nil), the print name is a pointer at a string
(exception: gensyms. read on.), and the hash Llink points at the
tast atom with the same hash code (exception: gensyms again),
Wwhen on atomic symbol is given a value (through cset or csetg or
more devious means) the wvalue ceil is changead to point at the
structure which is to be its vatue. However; when its value is
fluid, only the association lList is changed, No atomic - symbol
tan have beth a constant pinding ahua & fluid binding. In some
other LISPsy the value is kept on the property List, badly
slowing the evaluation process,

Gensymmed atomic symbols are constructed rather differentiy.
Firsty, a gensyn”s print name is an integer rather than a string
{egsy 61°s print name s 1)y, at least until it is interned by

creating a strinyg version of the print name, The print name is
reconstructed ty the print routines by checking the print name of
the atomic symbol at which the gensym”™s hash link points, and
printing it ana the integer which is the geposya”™s print name.
Gensymmed atomic symools are not recognized by oblist, but they
are not subject to garpage coliection, either,

ALL atoms which areé in the obtist and aitl atoms which are
pointed at by other non-garbage pointers in the system are

16 Jul 1578 Maryland LISP Reference Manual <11

marked, Since gensyms are not kept in the oblist, this means
that they will be garbage-collected when no Longer needed,

5¢2e70 Strings

Maryland LI1SP has a (FIELDATA) string capability in which
the strings are (conceptually) unlinited in tenath. Since each
paye has only a Limitec number of words, a Linked structure 1is
necessary to give this effect, Therefore, a string is made up of
a <chain of one-word structuresy each containing three tharacters
anu o pointer to another string node {(or the atom pnild. String
noues are on pages of type &, 1In c3se the string”s lenath is not
& muttiple of threey tne last node i5 paadec out with zeros. Ffor
this reason, "3" (Mat") symools are not permitted in strings (by
the various string manipulation routines whicth recognize the ngw
charescter as meaning end-of-string). The atom nil, for the time
teingy is Maryland LISP s null strinc.
£ 2, tuffer Pages

-
a0

A butfer paye is an entire pace of type 9 which is wused in
situations where Large blocks of conticguous memory are required.,
The name derives from their original use, as bufters for file
I1/0. They are slso used by the assembler as cata area, and will
somecay Le used teo implement an erray fpackage. Nothing they
point &t s marked (for the time beingl), and for the time being
they may not be gumped (or losged). Eufter pages are marked just
Lixe compileg code pagesy in the page table.

5.%. The Entry Points

The entry point 3is a set of pointers into the LISP system
which tan be used by the assembiler user. They were designed, as
was much else the user must oceai with here, for use by the
compilery which never makes mistaxes. Some are sections of code
which simulate or synthesize many of the actions taken when a
normat s-—expression 1is evaluateo by LISP. Others are tables,

stacks, and constants used by LISP to keep track of its inner
workinyse

These LISP facilities should only be used with the greatest
possiple cautiony as they are quite fragiley, and the LISP

system”s repertoire of error detection and reporting facilities
is not extensive,

Fuch of the terminology and notation used in this section is
rejrettauty ovut necessarity higshly obscures. Much of it can be
explainec by other sections of thts document, but a great deal of
the remainder c¢an only be explained by someone learned in the
inner workings of LISF.

14 Jul 1978 Mmarytand LISP Reference Manual 212

The entry points are explainec below in subsections - whose
numbers are the numoers of the entry points themselves (except
for the stacks, which are exptained together). Examptes of
calling sequences will often be written in the UNIVAC instruction
format, as the translations tc LISP are easy to make. The entry
points are referred to by their conventional LISP names, although
the user can declare other names for them using the ept macro.

Se3sle The Stacks - Cstak and Stack

Entry point O is cstaky the control stacke Each word in it
corresponas to a single function call anc Llooks Llike so:

L T S N O

A A e S MR e e MR s e e ks ol

where H1 points to the function frame of the <calling function,

that is, the value of XF just before the call was made, and HZ is
-7 if the c¢all was a function catl (py the evaluation of an
s-expression of by a call thrcugh macro $call or entry point 2,
entry), and 1is the function frame for the called function, that
jsy XT when the catl was made, if the <calt was as a routine
(through $callr or entry point 3, entryrl.

Entry point 1 is stack, the value stack. 1In addition to the
confusion resulting from the fact that it yrows down (ie., from
higher addresses to lower), it is somewhat more complicated in
structure than the control stack, which is basically just alot of
pointers into the value stack. When an assembled function is
called as either a function or routine, the stack looks Llike
this:

ey

T4 Jul 1978 Mmaryland LISP Reference Manual 213

H1 H2

} }

== e e e e s e e e e }

! : J¢mmmmmm X7
: | rmorm m—m e m————— R e Ll b bt i |
¢ i : argument n I
' R ettt et LT R ~m—m e -~
' } . . }
! . .
! } . . |
' | === - ————--- e |
' t : argument 2 |
]

<
Y
b
W
o
3
w
=
~+
-

up i old ALIST : return address |(-~m=me~- XF
f o e 2 et — e em -
| . . }
[] L]

Thus the first argument to & tunction can be toaded by:
L,HZ AE,Stack—‘!,XF

ang the number of arguments to a functiocn 1% given by
(XFEY=(XT)=1,. Note that XF and XT are addresses relative to the
stert «f the stack.

Tne offset XF points at the old value of XL, since H1 of XL
conteins the associtation listy and HZ of XL contains the return
adcress of the function calt.

In tne case that the wvatue stack overflows 1ts 2048
gallocatea wordsy a guard mode interrupt will occur and LISP s
contin_ency routines will issue the appropriate messages and
reset the interpreter.

The term “stack™ used unmogifieo usuallty refers to the value
stacky and this convention will be used in later sections.

It is not recommendeo that the inexperienced assembler user
play with either stack except through the provided macros, which
are explained in detail in a future section, as a messed=-up stack
will result in some of the most spectacular error aborts ever
witnessed.

A, SN Enter a Function ~ Entry

To call a function once the stacks have been arranged, do a

Lmd XLyentry

14 Jul 1978 Marytanag LISP Reference Manual 214

The macro $ca2il witl do this also, generating this single
instruction. Upon returningy the value of the function will be
sitting on top of the stacke. Further discussion may be found in

the section on function calling from assembled programs.

5.3.3. Enter a\Routine - Entryr

This is the analog of entry for calling routinese Calting
something as a routine means that the result will be returned in
A2, rather than on top of the stacke The stack should be set up
in just the same manner. Again, further discussion can be found
in the section on function calling.,

5.3.4s Leave a Function - Exit

Performing a
J exit

simply returns the contents of AZ as the value of the function,.
The macro $returp simply generates this single Jump instructione.

£.2.5. List the Opjects on the Stack - Listem

This entry point simply makes a List of the top several
entries on the stacks. If entering at Listem, A1 must contain the
stack offset "akbove™ which the tisting is to start. Normally,
(XFI2CA1)>(XT), and (AT1)XS(XT) is jllegal. Tne list 48 returned
in register A2. The calling sequence is as follows:

LMJ XLylistem B
If the entry 4s at listem-1,
LM XLy tistem=1
all stack entries will be Listed (by first doing a LX AT XF).

Re,isters AD, A2, A3, and in the second method A1 are changed,
and in either case, the result is returned in A2.

1f the user simply wishes to List the .stack entries and
return the Llist as the wvalue of the function in the same
operation (as in the Llist function), the foliowing wilt suffice:

LXM,U XL,exit
J Listem=1

14 Jul 1578 Maryland LISP Reference Manual 215
5¢3¢6« Apply & Break Function to Arguments - Breaker

Tnis entry point is used by the break function to apply an
alternate function to the arguments on the stacks. Its mechanics
are explained (as well as they can be) in the sectigon gon the
structure of {inker nodes.

Sa3d.7. trror Return ~ Badil

This 1is the abort routine for compiled and assembled
functions. A simple

J baai

causes an error message to be printeg and control to be returnec
back 1o the Latest Level of LISP supervision or to any gtteppt
catl wnich hanclies an error type .

-
-

vowsiLe Look Up Value of Fluid Variasble - Lookie

The entry point tookie aillows an assembled proaram to
inspect or aiter the fluid bincing (if any) of an atom on the
current association List, which is stored in the upper half of

XL, Its mechanics will not be discussed here, though its use
witle Lookie is calleg this way:

LMl XL, lookie
<op>,U <reg>,<atom>

where <op> is either a lLoad or store instruction {load will get a
value, store willi change it), <reg> is the register where the
velue 45 tov be placed (or the register where the new value is
stored), and <atom> is the address of the atom whose fluio
bindin, is to ve chanoged., Although these two instructions shoulag
Lbe coded consecutivelyy, the user should not worry that LISP might
place a jump instruction between them. Since this entry point is
also used by the LISP compitery there is 2 trick in lookie“s code
which folilows the pointer of any jump instruction XL might point
at. If the atom happens to have a constant binding, that binding
witl pe retrieves (or changed). If the atom 1i1s tluidly bound,
the (most recent) oinding will be retrieveg (or changed). If the
atom s found on the current association List but has no value
associatea with ity an attempted value retrieval (lcad
instruction) will cause LISP to resert to a wuser—- oOF
system—-defined contingency routine to obtain that value from the
user, And if the atom cannot be fcund on the current association
listy, a binding for it (Wwith no initial value) will be entered
and the whole process will ve repeated. The Lookie routine
trashes regtsters A4 and R2, as well as any registers (outside of
AJ=-A3) needed by any contingency handiing routine.

14 Jul 1978 Marylano LISP Retference Manual 2146
5.3.%s Create a Local Variacle - Eincd N
This 3s the routine which creates fluialy bound variables on
the association List (alist}. 1t #s called by
LMJ XL,bind
and it assumes that the atom”s ltocation is in A3 and its initial

value is dn A?. For example, to bino the first argument to the
variable argl,

sexp arglyargl . get loc of atom argl

LyU AZyargt . get argl”s Lloc in A3

$loaa 1 . macro to get 1st arg in A2
LMd XbLybind » make binding

So0th A2 and A3 are cthanged by the routine.

5:%3+10: Node Aliocation -~ Typtab

This is the type table, wused to allocate storage. This
table consists of 3 words for each of the 1C types. (In the LISP
conventionsy there are symbols EGUated to these two quantities,
namely nogsiz and numtyps respectively, and the user should wuse
these names rather than the numbers shoulg extra types or words

be added.) Each 3-word entry tooks like this:

51 52 83 HZ
| =mm e e R e]
i LMJ XR, : GETPAGE |
e et v ——— (e —————— e ——————— |
) GP(1) : PUTCI) |

i_—-____—mﬁmn______nnww_-_____gww_______l

| BANK : SIZE 3 TYPE: AVAIL(D) P

| eumnmm e - ———— -t e o e i i e m |

[T T3

where:

GETPAGE is either the page extraction routine if the
AVAILacle nodes list s emptyy, or the routine to get
the first AVAILable List node;

6P(1) is the page initialization routine for this type;

PUT(I) is the node allocation routine for this type;

BANK is the preferred vank for this type, 2 = must be
statdc, 1 = prefers to be static; 2 = doesn”t care; 3
= prefers to be dynamic; and 4 = must be dynamic;

SIZE is the size of each node of this type;

TYPE is the type, C=consed, « « o 9=buffer; and

AVAIL(I) is a pointer at the AVAILable node Llists for
this type, where avail{i)+n gets the available nodes
of type i in bank n, where n-'varies from -1 to the
maximum s liowable pank number.,

14 Jul 1978 MarylLana L15P Reference Manual 217

To allocate a node of type I, LMJ through XR to the location
computed py typtab+tnodsizxl., The function $5torit(type) computes
this lLocation, and the macro $node({type) will ogenerate the
instruction

LMJ Xty bstorit(type).

to allocate a noge of the desired types Note that this may
trigger ¢ garbage collection.,

eSe1t, Return NiL - Gfal

L9]

Performing a
J anl

simply returns pil s the vatue of the function. It has the same
eftect as

sexp nitatynit » €an”t use nil as asm symbol
Lyl AZynilat + get pointer to nil in A2
freturn « 4 exit

C.iwt2. Closure ot Function - Funarg

Funarj, as it happens, is the address of the «code for the
function functiony which, given a function as its (last)
argumenty returns another {inker which guarantees that 1its cupy
of the first 1is &slways executed with the association List in
effect which was in effect when funarg was called. This new
linker node is constructed by putting funarg+3 in hZ2 of word 1,
the first Linker in HZ of word 2y and the current atlist in H1 of

word 1. Funarg+3 (entry point 172) retrieves this stored alist
anc puts it into effect for purposes of the call to the originatl
{inker. This all has the same basic effect as applyty which is

usa¢ by tzmda to do the same thing.

- -

£e3.%3. Routine to Run 2 Funarg - Funarg+3

Tnis is the aodress wused py funarg To make sure the
appropriate alist is in eftect when a given btinker node is
catleds 1Its mechanics and use are explained in the discussion of
the funar; entry goint,

5¢3.1% . Expand a Macro - Mexpana

Mexpand is used in roughly the same way as apply, applyi,
ana Ssexpand in HZ of the first worog of a Linker node as the
routIne whith handles macros. Since it is jumped to by the first

T4 Jul 19738 Maryland LI5P Reference Manual 218

word of a linker node, it expects the stack to have on-+it a
single "argument™ which is a tist of all the arguments which were
specifiea to the macro, and it expects XL to point at the second
word of some linker node which in turn points at another Linker
node which defines 2 normal function using apply or applyl, It
then executes the macrc, and ships the results off to eval to be
evaluated and returnec as the result. Ffor the curiocus, the code
looks Llike:

fnames eval . get eval s address

$mark « mactro to set up first call
LyH2 AZs Dy XL » cet function address
$stiore » use it as function to call
LMy XLystakem « put allL args on stack
$callr « call function; value in AZ
$store 1 « set up 1 arg for eval

LXM, U XL,exit » eval returns its value

J eval « do final evaluation

S+3+4154 The Page Tawple - Pagtab

This is the page table, whith records information about
every page in the system. 1%, say, AD contains the page number,
doing

Ly53 Al,pagtab ,AC

will get the type of the nodes on that page in A1, To compute
the page number of any addrecss in the system, mask-and-shift-out

bits 16-7 of the audress. The macro %$getype will do just that by
generating the instructions

AND,U AZ2,paomsk « pagmsk is a LISP convention
SSL A%,pagpit e 50 15 pagbit
LA,S3 AZ,pagtab,A3 . type is in $3 -

assuming that A2 contains the node location.

At present each word in the page table contains only the
type in S3. In adaition, HZ2 of each word is used by some
routines for marking purposes.

Note that in the LI1SP conventions, pagbit is EQUateg to 7,
which s the number of oits which are not significant in
determining the page number, and the symbol pagmsk is EQUated to
octal D037760=((2717-127(2"pagbit))* (2 pagbit). The size of the
page table is yiven by the symbol pagnum=2"(17-pagbit)=1024,

53.1%5. Remove Several Variable 8B8incings - unoind

This i€ a pointer into the coge which undoes the effect of

T4 Jui 1078 Maryland LISP Reference Manual 219

Eind (entry point 9) by removing variables from the association
list. It is callec oy

LM) XLy unbind

and it assumes that the number of variables to be unbound ds in

Az, The wunbind routine changes the values of registers AD and
AT,

cxameles Remove the windings of &4 wvariables which were bound

earlier in the ftunction”s coge. hote that each function is
responsicle for uncinocing all the variables it has fluidly bounao
{using bind) before it leaves.

LyU AT, 4
LMJ XLyunbing

S¢3417+ Get the Type of an Object - Getyp

This is5 an entry point to a four-line piece of code which
simply gets the type of the coject A2 is pointing at ana returns
it in AJ. Its only practical use for the assembler wuser 1is to
save a few lines of source cocde toc make functions doing much

tywe-checking smaller in size. 7To use this entry point, assuming
A2 points at tne ouject in question, co:

LMJ, XiLygetyp
The type of the object will be returnes in A3 without <changing

the <contents of any other register. Of course, the user could
atso do:

3getype
which would generate three instructions instead of the one.

53418+ Put List Members on the Stack - Stakem

The purpose of this entry point is to take the List which A2
s pointing at and put its members on that stacks The calling
sequence is just:

LM XLystakem

Reyisters A2, A3, and A4 will be changed by the operation, and
the stack top pointer XT will atso have a new value upon
returning. This wilt be wuseful for dealing with argument

handling in special forms, which 1is explained 4in the next
section.

14 Jul 1978 Maryland LISP Reference Manual 220

£e3.19., Expano a Special Form Call - Sexpand .

Sexpand is the routine which is specified in HZ of the first
word of a Linker node for 2 user-defined special form. It 1is
much Like mexpano (entry point 14) in that it expects the
arguments which were specified to the special form to be on a
list on the top of the stack, and it expects XL to point at the
second word of the appropriate Llinker nodes It +s somewhat
simpler in that the second evaluation is not made. The code
tlooks Like so:

$mark s set cstak for calt

L.H2Z AZ, D, XL « get addr of func to call
$store s put it in new function frame
$loaa 1 « get {ist of arguments in AZ
LMy Xtystakem « and put them on the stack
LXM U XbLyexit « entryr returns its value

N entryr « evaluatey, return final wvalue

5.3,20, Ffoliow a Lar-Cdr Chain - Ffoliow

Follow is the routine which the input scanner places in the
linker nodes it creates for atoms of the form ¢<0-35 a/fd”s>r. It
expects a single argument to oe on the stack and it expects XL to
point at a word containing & (-to-35-tong bit string, prefixed
with a 1 for counting purposes. It moves through the bits one by
one, interpreting a 1 as a gor and a (as a car,y, applying these
functions to the single argument until onty the 1 prefix is lett,
at which point it returns the expression it has retrieved. AR
attempt to take the gar or g¢gr of an atom (non-~cons node) through
this routine will result in an errcr message, and the execution
of either a user=-gefined {(through carcon) contingency routine or
an (error 0) contingency action (which will result in an ER errd
in batch mode, and & return to either a trap of error code C or
the latest Level of LISP supervision in demand mode). .. More
details on the workings of routines related to these special
c<afd*>r atoms can be ;otten from the section on the structure of
tinker nooes.

S¢3¢21s Apply S—-Expression to Arguments - Apply

This is the place to which the interpreter is routec when it
is time tc apply a tampda expression to & set of arguments. it
expetts XL to point at the second worg of a linker node which in
turn should point at a List containing the arguments to Lagspbda
when the function was defined (that is, a single atom or List or
extended list of atoms consed toc a List of s~expressions), and XF
and XT to be arrangea as woulc be expected when a function s
called, The code for apply then makes the appropriate bindings
on the association listy branches to a *contingency routine if
there are not enouwgh arguments on the stack, and finally sends

——

14 Jul 1978 maryland LISP Reference Manual 221

the list of s-expressions to the code for the function do.

5435422+ Apply Function (Closure to Arguments - Appiyl

This entry point is identical in use to apply except that it
is the entry point usea by functions defineo through the LISP
function tamds (as opposed to using fungctign and lambga)., The
rurpose of this is to see to it that the function being cefined
is always run uJsing the association List that was present when
the function was detined, not the one present when it is
executed, This entry point simply makes sure that the otlg
association list s substitutec for the current one and then it
jumps to apply.

BeZsc3s Establish a Trap Point - Trap

This is the routine which 1is used to declare error
contingenciess It is called (ike so0:

Lid XLytrap

anc expects A2 to point at either an s-expression such as is
given as the second argument to the agtempt function (that is, a
tist of n-tuples each of which has as its c¢car an Jintecer ango
which has as its cgr a list of s-expressions to be evaluated in
oraer should an error contingency be processed with their number)
or a trap chainy a construct more suited to the assembler user,
A trap chain is Dpasically a linked list of n«word structures.
The first word of each structure ccntains the trap number (de.,
error code) din HY ana O or 3 tink to the rest of the trap chain
in H2. This word should be followed by a number of 1instructions
which process the contingency, possibly registering a new one
themselvess LISP will jump to the first instruction after the
trep numper/chain Link worg i#f that numbered contingency is
processecs The user need not worry if LISP sticks a jump
jnstruction after the first woro of such a trap chain structure,
because it LISP jumps to that word, it will De correctly routed
to the location of the actual routines An example of a trap call
ang its associated trap chain would be as follows:

dgoit s © =

Lyl AZytrapch « trap chain in A2

LMJ XLytrap « process the trap

J continue « tontinue processing

form pty 18,18 « half words
trapch + pfllyerrid)d « error code 1

J gfal ¢« just return pil in this case
badcase + pf(13,syserr} . uniucky case

LU A4, O « fake an (error O)

J unwind » sSee section on unwind
erri1d + pf{l4ypadcase) .

LMJ XLyrecover e user-defined routine

14 Jul 1978 Maryland LISP Reference Manual 222

k! coit '« try agsin (carefully?),
syserr + pf(=-3,M . system-defined error num
ER errd « really crap out

recover . s s
4 O,XL ¢ return from recovery

continue . s »

The trap routine ogoes not <¢nange the value of any scratch
reyister, The section on the unwind entry point aiscusses the
mechanics of the processing ot an error contingencye

5.3+244 Disconnect a Trap Point - Untrag

This entry point has the effect of undoinmg all the traps
that have been set through trap in this function frame. It is
catled Like so:

LMl XLyuntrap
5«3+25« Trace Path Back Down Stack = Unuwind

The unwing entry point is the routine which processes an
error contingency, as through the function error. If entry is at
unwind, AL should <contain the numper of the error. LISP has
reserved meanings for various of the non-positive efrror numbers,
but the wuser is free to work with the positive ones, as well as
unwinding on a non-positive number from an assembled program.

The call is just a simple jump to unwind:
J unwind .

If entry is at unwina+l, the register Az should contain the
length of any oprinted backtrace ({ is no backtrace, A777776 is
full backtrace, and anywhere in between specifies the number of
stack Levels to be gdescribed on ocutputs

what the unwind routine does 1is to foltow a <chain of
pointers oown the two stacks, lcoking for traps that have been
set through entry point trap. W®hen it fings an s-expression trap
chain cefined through attempt, it loocks through the various trap
numbers wuntil it finds the numper it is tooking for. If it is
foundy, the associated s—expressions are retrieved, the traps are
removea, and the s-expressions are hanaed to the do function.
The result ot that evatuation is returned as the value of the
function in whose function frame the traps were declared. 1If
unwind finas an assembled trap chain, on the other hand, it
foitlows the c¢hain looking fur the error number in H1 of one of
the chain words. 1f 'none 1% found,: the unwinding process
continues. If a matching numcer is tounoc, LISP just jumps to the

14 Jul 1978 Mmaryland LISP Reference Manual 223

first word after the trap <chain entry that matched (after
removing aill traps at that tevell, and the assembled code there

processes the contingency,y possibly re-establishing some traps or
re~calling unwind.

5¢2+26s The Current Gensym Number - Genno

This entry point 3s & pointer to a single memory location
where the lLast integer that was used in creating a gengymmed atom
is located. These atoms are implemented bty having a print name
thet 35 an integer, and by being linked in the hash table just
before the atom they are nameg after,

5¢3e¢77+ C(reate @ hNew Special Form or Macro - Defspm

Defspm is a routine in LISP which allows the user to define
special forms without j50ing through gefsgecs It shoulao pe calleo
as ¢ routine (entry point entryr or macro %$calir) with three
aryuments on the stack: 1) the atom to which the special form s
13 w©e bound; 2) the speciat form expansion routine, sexpana (or
the wmacro expanstion routine;, mexpand, to define a macro); and 2}
a pointer &t t he normal lLinker node which would have beer
returned oy lambgg during a normal definition through cefspec or
cefwac o Registers XWw (X8), A2, and A5 sre trashed by the
routine, which returns the atom”s address in AZ.

s>eclds Temporary for Preg Result Storaye - Pvsave

This one-word cell is the locastion useo by the prog feature
to store temporary results, especially go labels and returned

- e e W S -

values. The gog and return functions are implemented by
processing an error contingency which causes the stack to unwing
to the most recent proy call (actually the most recent -1 and -2
cooce traps), which then retrieves the object pbeing referrea to
from the pvsave word and, in the case of the return call, returns
jt as the value of the progy and in the case of the go call,
searches through the proga”s arguments for the proper labkel,
resuming evaluation at tnat point. The wuser of the assembler
miyht want to use this entry point to intercept go and return
calls to inspect and/or alter their results. More information on
error contingencies any traps may pe ifound in the discussions of

the traepy untraps and unwind entry pointse
5¢3.29. Make a String out of the Neme Buffer - Makstr
The purpose of makstr 135 to make & string out of the

contents of the name buffer (entry point 32) and return it in
regsister A2. The calling seguence is:

LM AC,makstr

14 Jul 1978 Maryland LISP Reference Manual 224
It changes the values of the following registers: AD, A1, AZ, A3,
and Ab.

5.3430. Copy String into Name Euffer - Getnama

This ¥s 2 routine which takes a string in A0 and transtates
it into sequential form in the buffer name (entry point 32)., The
catling sequence is:

LMmJ XLygetnama

If A2 points at an atom, its print name can be translated by
entering at getnama—-1:

LM XLygetnama~1

In either case, reyisters AD, A1, anc A4 are changed by the
routine.

5¢63+¢31s Blank-FillL Rest of Name Buffer - Blanks
After one has done a getnama call, the remainger of the name
buffer may be tuil of unpredictaoie "trash®. To change these all
to bilanksy one uses the blanks routine, It is called by:
LMy XLyblanks
ang it changes registers AQ, A1, A3, anc A4.
5.3.32. Seqgquential String Putfer - Name

Tne name puffer is used by routines L(ike makstry, getnama,
and blanks for translating strings from seguential to LISP format

ang vice versa., Its first word contains a pointer (absolute
adaress, not reltative) to the Last wora peing used imn the name
buffer. The next 23 woros are the buffer area itselt., It is

generatly not safe to store material in the name buffer between
function calls because many routines and functions wuse it.
Anything which must be saved can be bplock«transfered out to a
user”s own bufter area.

Sebse Argument Hancling

Once a function has been successfully set up using the LISP
assembier, it can be wusea just Llike any other of LISP”s
functionsa. gne thiny this means is that a user of the new
function <can supply it with wvarious arguments. This section
describes how the function can hancle these arguments,

14 Jul 1973 Maryland L1SP Reference Manual 225
Sed4els Arguments to Regular Functions

2 new assembler function {say fogbap) is defined wusing
csetg Like so:

L[5

"

[Lo

s]
O
e B

(cserg foobar (assemble proaram <opts>))

then it is & regular function, that is, LISP will evaluate its
arszuments for it Wwhat the Llatter statement means to the

dssempler user is that if & regular function is called (say) Like
S0

(foopar 3 “ASCDEFGY" “(a . b))

- e

then the three numbers on the stack are: 1) the address of a
location 1in integer space which contains the number 3, 2} the
ssuress of the tirst word in string space of the string
“ABCDEFG", ano 2} the address of & cons node whose Left pointer
ijs tne acdress of the atom a and whose right rpointer 1is the
adaress of the atom B. The number % will not appear on the stack
because nothina meaningful resioces at location 3. So when the
first argument is Loasded into, say, Az, A will contain the
acaress of a wore containinc 3 and not the number 3 itseif. To
get this number, index otf of A2 like so:

LA A2, 04 A2 .

Wwhen such a function is entered, the statk s arrangea as
shown 1n the section on the stack entry points. AlLL the
arsuments which were supplied to the function will have been
evaluatea, ana their values placed on the stacks The arguments
can ne picked off the stack by indexing off the stack wusing the
XF ingex register, For example, to loac the third argusent in
Ay o

L,HZ Alt,stack*B,XF
anc to load the Last argument in AG, do:
L.HE AC;StaCk+1,xT N
Rememcer that the value stack yrows down.

A macro, $ioady s available with the assembler which

A2, whicnh is the standard register for such things. For example,
to Loaog the first argument into A2, do

($igad 1)

- -

which will generate the instruction

LyH2 A2ystack=T,XF

14 Jul 1978 Maryland LISP Reference Manual 226

0f course, Loaging into AZ is not mancatory, if the user wishes
to load an argument into ancther registery an instruction akin to
the 1last one can ve written cut. The argument to load may be an
expression involving EQU"ec symbols and so forth, Since Sload is
a special form, its argument will not be evaluated, so if some of
the symbols are undefined when the macro is expanded, the
expression will we passed on tg the generated instruction. For
example,

{3load (myf \i7n))

will return

Often, the stack is used tor more than receiving aroguments.
It is a good ptace to store temporary values, set up for wvarious
entry points and other routines, and provide special capabilities
to the user of the functiony such as optional arguments and
indeterminate numbers of arguments. The mechanics of the first
can be gotten from the discussions apove of how the stack is laid
out. Examples of the second are explained in the section on the
entry points intoe the LISP interpreter. The third capability
will pe explainec here,

Suppose one wants to define an assembler function which has
cne meaning when a second argumert is provided, and another
meaning otherwise (such a real-tife function is fiopen). 1f no
second argument is specifieac by a catling function, only one
entry will rest on the top of the stack. One way to see how many
arguments are on the stack is to compute (XF)=(XT)-1. An easier
way s this: put an extra "zero' argument on the stack by doing:

sz stack,®*X%7T

and then load the second argument by doing:

LyH2 AZ,stack-2,XF

If A2 then contains zero,y, then no second argument was specifiede.
The "gummy™ zero on the stack can then be removea if desired by
incrementing the stack top pointer Like so:

AX,U XT,y1 « remember .stack grows down

The macro 3$pop of no arguments will generate this single
instruction.

Many (especially arithmetic) functions allow the wuser to
specify as many arguments as he wishes. When such a function is
entered, atl the arguments which were specified are on the stacke.
To process them atl, the function can assiyn an index register
with (XF)=-1 1in the doditier porticon® angd =1 in the increment
pertion and use autoincrementation to move through the arguments

14 Jutl 1978 Maryland LISP Reference Manual 227

untit the moaifier 1is one greater than the contents of the
mouifier of the stack top register (XT). Another way is to wuse
the tistem eéntry point to put all the arguments in a list ang
then ¢cdr down the list, processing each member of the Llist. As
it happensy; the List function just uses tistem and returns.

S.4.Z. Arguments for Speciat forms

It a function is defined using deifspec insteac of cserg.
then 1t is & speciat form and its arguments are not evaluated.
The erzuments to such functions are handled differently from
those of regular functions in that when the function”s code is
enterev, the stack has a single *®argument® cn it which is a list
of atl the arguments which were specified on the functicn cail.
If the user wants to have these arguments arranged on the stack
one at 4 time Like a regular function’s arguments, the list can
be loaced, $pop“eocy and the elements of the list can be put on
the stack usiny the stakem entry point, all this tefore normal
precessing begins. Ofteny though, it is useful fer a special
form 1o have its arguments on & List rather than on a stack
pecause many functions (such as ang and gr) Like to cdr down tne
list of asarguments until something of interest is foung, possioly
evaluating as they go. To evalutate an expression which {is an
arjument to an assembled special form, the user can call eval

using the method descrivped in the section on calling LISP
functiuns,

E
o

i

» Returning o value

when an assemuleo function returns to LISP by Jjumping to
entry point exity the value 0f the tunttion is taken to be the
contents of register Az, Note that if the result is, say, 3, AZ

should not contain 2 out a pointer t¢ an integer node containing

3.

~

5.8+ CLalling LISP Functions

Often an assembler function may require the services of
another LISP function, whether user-defined, system-detined, or
createag through the assempbler. There are four steps involved in
such a call: 1) initializing the stack for a call, 2) putrtting the
arguments on thne stacky 32y calling the function, and &)
retrieving the value. These are covereao in roughly that orger
here.

To inttialize the stack for the call, use the flets macro,
whose argument should be either 2 label which has been EQUated
(directly or through gexp or fpames) to the aadress of the
desirea tunction. For exampley, tc set up for a call to fiteg,
one can go:

14 Jul 1978 Mmaryland LISP Reference Manual 228

fnames fitoc . somewhere in the program
$lets fitoc » read tet’s fitoc"!

This sets up the control stack angd assigns new values to the
function frame and stack top pointers (XF and XT)y as well as
settinyg up a new function frame. The mechanics of the Slets
macro are rather complicateg and will not be explained here,
However, the expancged instructions wili appear in any Llisting,
and a clever assembler user can decode them if he wishes. As a
general rule, though, one should do one”s stack manipulating
through macros and not attempt "cptimizing™ variations on them,

To place values on the stack, wuse the $store macro. It
generates this instruetion:

SA AZystack,*XxT

which puts the contents of A2 on top of the stack ang bumps the
stack top pointer, 0f course, Oother registers can be used by
writing out this instruction with other a fietds,

The actual call en the function can be mace in either of two

waysy depending on how the result is to be returned, s¢ we will
discuss the catl and the retrieval of the value together.

I1f the result of the function catl is to be placed on the
top of the stack Like an extra arcument to the calling function,
the call shoulad be done throuch the macro $gall of no arguments
which generates & single instruction,

LMmJ XiLyentry

as we will demonstrate in an example,

Example: To add 1 to the integer node AZ points at:

frames add1 « get the address of addl
fitets add1 _ e macro to set up stack
$store ’) . macro to push A2 on stack
$call « generates LMY to entry
LyH2 A2,stack+1,XT . get top thing on stack
tpop « pop that result

in reality, it would probably have heen easier to do the

adding without catling a2ddle A further explanation of the macros
used here will have to await 3 future section.

If the call is made through the $callr macro, on the other
hand, the result will be returned 1in AZ2. Technically, the
function is being called as a "routine"”. This method of <c¢alling
is wuseful when the wvalue is gotng to De immediately used in
computations, or when the function ¥s being called just for its
effect rather than for its value., The %gallr macro generates the
single instruction g :

1¢ Jul 1975 Marylanoc LISP Reference Manual 229

LM XLyentryr

as the example will cemonstrate. We will use the same example as
betore, adding 1 to the integer nooe which A2 points at.

Examplees Audd 1 to the object A2 points at.

fnames add1 » get the address of adcl
flets adogt « Gt Stack ready

$store « put A2 on stack

Scallr » do it, result dis in AZ

A couple of notes should be made concerning the calling of
LI3F functions from assembleac cooes First, the called function
will usuelly use a numper of registers to co its work, ancd if the
called furnction is a2 Llambga expression or compiled function,
there 1is wusually no telliny which of the index and "scratch”
re,tsters widl be trashed. fFor this reason, some saving of
re,isters may wve helpful anag necessary when catling functions.,
Second, it 75 usually not a gooo icea to be <calling many LISP
functions from assembled code pvecause of the overhead in terms of
time, instructions, and <c¢onfusion. Usuatly, a2 Lot of function
calline can be avoidec by designing assembler functions to work
as helpers of larger functions wcefined through lambdas The
purpose of each assembler function should be restricteo enough so
that any calling of other LISP functions can be cone through the
main function rather than through the assembled function., Of
course, all this goes out the window 1in Llarge, costly LISP
proorams in which efficiency of time and memory use is at a
premiume.

¢

.7+ Macros for Interfacing with LISF

Several macros are provided with the assembler for the wuse
of interfacing with LISP which are LISP versions of assemoler
procs uses by the LISP interpreter”s source cooe. These macros
arc thuse prefixed by « cgottar sign ("$"), Several of these were
gescricec in the various sections above where they were relevant,
These were $load, $store, $move, %$call, Scallry Sreturn, Smark,
$iets, Syetypey, and Spop. The rest are more general-purpose and
are included for the convenience of the programmer.

Se7ets Get (ar of a Wora - Supper

The Supper macro takes one argument, the name of a register,
ana yzenerates an instruction to toad the magnituce of the
{(sign-extended) ugper 18 bits of the word AZ points at into that
register, This is useful for working with cons nodes, atoms, and
the Like, Ffor example,

(Supper AS)

generates

14 Jul 1978 Maryland LISP Reterence Manual 230

(L AS O A2 WD) . o .

B5e7e2e Get Cdr of a Word - $lLower

The Slower macro is similar to the 3Supper macro, only it

loads the lower 18 bits of the word AZ points at in a

sign-extended magnitude fashicn into the desired register. For
example,

{$lower AS)

generates
(L A3 O A2 H2)

5.7a3, Follow a Chatin of Pointers - $chain

Often an assembler function wili need to follow an arbitrary
sequence of pointers to find a desired object, The $chain macro
will help do this. 1t takes an artitrary number of arguments,
each hopefully H1 or HZ, and gyenerates an idnstruction for each
loading that part of the word AZ points at (sign-extended
magnitude, in ctase the pointer happens to be negated) into A2,
for example,

(Echajp H1 HZ H1T HZ2 H2)

generates five instructions as fol lows:

Ly H1 AZ,0,A2
LoH2 A2,0,A2
LyH1 A2, 0,A2
LyH2 AZ,04A2
LyHZ AZ,0,.,A2

which will take the cddagar ot uhétever,AZ points at., Of tourse,
if the opject A2 points at does not have a codadar, 8 guard mode
viotation will most Likely occur.

SeTehte Allocate LISP Object hNodes - 3ncocge

A common purpose of a L1ISP function is to create a LISP
ocbject such as a string, s—-expression, or integer node, and
return it or an s-expression dinvolving it as its value. The
macro $nede can be used to allocate & single node of the desired
type for this purpose. This macro takes a single argument which
ijs either the number of the type (eg., O=conseg node and
Bzstring) or a symobol whose symbol table value is the number of
the type {egs.y ctonsed, integer, or Linker). The macro generates

a single instruction

e Sy,

14 Jul 1678 Maryland LISP Reference Manual 231

LMJ XLySstorit(<type>)

whose etffect s to allocate a node of the desired type,
initialize ity and return its agdress 1in A2. Although the
information to be stored in the noce need not be specitied in
sadvance, the wvalues in the various fields of the new nocdes will
pe inittalized as tollows: For cons nodes, A2 should contain the
car and A3 the cdr. For string nodes, A2 should contain the
three characters which are to pve in the new noge and A3 shoula
contain the adaress of the next string node in the chain if its
tocation is knownas For all numeric types (integers, octals, ano
reals), A3 shoula <contain the number to be stored in the node.
fFor Linker nodes, A2 should contain whatever 1is to pe in the
second word of the node and AZ shoulc contain the adaress to be
out in H2 of the first word {(apply, sexpand, etc.). The <details
of attouceting cocde nodes and atomic symbols are much more complex
ana can oe gotten from a real LISP hacker. Nc initialization is
necessary for puffer pages, ana it makes no sense to allocate a
type 4 (unallotatec node page or system code) node.

Iin addition to the fact that the allocation routines return
their results in A2, several other registers have their values
trashza vy the routines as follows: Allocation of integers,
octals, and realts trashes A6, allccation of cons nodes, string
noagesy and buffers trashes A3 ang Ab, allocation of compiled code
nodes trashes AN, ano atiocation of Linker nodes anc atomic
symbols trashes Xw (X®), A3, and Ab.

14 Jul 1978 Maryland LISP Reference Manual 232

6. Programming Advice and Notes . N

6.1« Concerning Large Integers

1f an assempled program is to be dumped, the u field of most
every instruction is treated as a pointer at some LISP objects
Any such pointer is subject to mocification when the function is
Loaded into LISP after being dumpea. Numbers which happen to be
the locations of unallocated nodes or system code (system-cdefined
functionsy, entry points, low acdressesy e€tc¢e.) are treated as
non-re locatable. The trouble occurs when an integer in the wu
field of some instruction happens to be the tocation of some
(possibly huge) LISP ouvject such as an s-~expression. An example
woula be:

Lyl A3,516030 . or its integer equivalent

at 3 time when the object residing at Location octal 051603 is a
tremencously Llarge s-expression f{or even worse, part of the
available nodes Linked List for some node typelo When the
function containing that dinstruction is dumped, the number is
relocatec ano the object i1t points at is dupped also. Then when
the function s re-lLoaded, not only will the instruction be
different, but a numper of atoms may have 1tneir values changed
and other bad things may happen. The sotution to this problem is
to use address to (effectively) allocate an octal node for the

P

number Like so:
L A3yaadress(5160%4)

1f it is done this way, what will ve dumped witl be an octal word
contatning 51603G., Its adoress will be relocated, but the
jnstruction will work the same as before dumping.

6.2. More Load/bDump Side-Effects

when dump is used to topy out 2an assembler program, atl
atomic symbols which the program”s coae points at are also
dumped, atong with their values &anc property Listse Thus, when
the program is lLoaded, the ola values anc property Llists of these
atoms are restored, erasing any values which may have been
current before the lgags For this reason, the user should make
sure that all such atoms have the desired values at the time
dumping occurs so as to avoid both "rchantom side effects™ and the
hauling arouna of (possibly large) unwanted s-expressions,

6230 Space Restrictions

Since a UNIVAC 1100 series machine ¥nstruction has only 16
bits in its aodress field (in general), onty 2716 or 0200000

14 Jul 1978 Maryland LISP Reference Manual 233

octal woras may be adoaressed by the instructions. For tnis
reasony no ¥nstruction may point at any address above this upper
limit. The assembler has two ways to protect itself from the
possibility of this Limit being viclated. Ffirst, before any code
s generatea, it coes a (grow) to see how much core is availaple
te it. If the maximum address returned 1is at or above this
C2303CC mark, it aborts and requests that the user not take up so
much core. Also, when dnstructions are being generated, the
adoresses at which the new instructions are being created at
theckec 2agzainst the maximum and a warning message is printed if
the adcress is too high.

Godra Support Routines

Saidrels The LISP Dynamic Dumper

This is a set of functions originatlly dgesigned to aid in
deoudginy assemblec programse. They atlow the user to selectively
print out {(in any format) the contents of chunks of core (ang
mouify themy too}, and allow non-standard type conversions. They

are described in a document whose name corresponds to the name of
this sectione.

Sabacas Asm-excise

The sheer, size of the assembler will often cause problems
tor the wuser. Eecause of this there is a function, asm-excise,
ot no.erguments which removes all trace of the assembler from
core. It is recommended that this be done before any dumping of
newl{y-assembleac tunctions i5 attempted <(why this should be

necessary has yet to be determined),

Estale Asm=prettiyp

There is a4 function Lloadea with the assembier callieg
asmoprettyp which takes as its single argument an assembier
program (list of directives, macro calls, idnstructions, and
lacels) and procuces a formatted listing without attempting any
interpretation or processing (eg.y macro calls are not expanded),
This is much faster than getting a Llisting from the @&ssembler
itseif.

14 Jul 1978 Marytand LISP Reference Manual 234

Appendices

14 Jul 1978 Maryland LISP Reference Manual 235

Contents
1+ Virtusi{ Memory Option i 236
1¢1¢ Using Virtual Memory ¢36
Te2s Altocation Scheme £3€

2e Character Sets . 237

14 Jul 1978 Maryiand LISP Reference Manuatl 236

1 Virtual Memory Option _ . N

Wnen the V option is specified on the call to Maryland LISP
on the UNIVAL 1100/40 at the University of Maryland, LISP will
use a form of wvirtual memeory which is the subjiect of this
appendix. A useful reference for this discussion is [UNni7813,
especially Volume 2, pace 3-21.

1.1« Using Virtual Memory

When LISP is loaded, it extends ditself to 22K words of
memory, of which approximately 20K is dats area. LISP s core map
is broken into several 16X areas known as banks, where the n-th
bank starts at lLocation 16K x (n+1), the zeroeth bank 1is about
9k, and the -1st banrky containing LISP s static instruction and
data areas, as well as compileo code and other atomic items,
occupies the first 23K (approximately).,

To allow more banks to be wused as data areay the GROW
function 1is callea with an argument equal to the number of banks
to be added. Up to six total vanks may ve added in the course of
a rune The banks are automaticatly swappeo in when they are
referenced by the user program or by the LISP system, in the same
way that a paging system workSs The swapping algorithm requires
approximately 300 instructions of UNIVACL wmicrocode to perform
each swap. Therefore, sinte an averace run requiring more than
32%x might execute one million swacs, the virtual memory cption is
only convenient during light {oad hours such as evenings and
weekenas. (The memory time wused by @& program using virtual
memory is greater than one not using it by a factor of between
15 and %.) The number of bank swaps executed so far in the LISP
session is returned by 3 call on (SWAPS}. This is wuseful for
keeping statistics of the form swaps per seconag of run time.

1s2s Allocation Scheme

When extra banks have heen acced to LISP, the storage
allocation mechanism tries to place cons nodes in the dynamic
(swapped) areas, and atoms in the static (-1 bank) area.
Compiled code must go in the static area, and the :CO0DE directive
s used to reservye space for it, The atgorithm also is biased in
favor of the tow=numbered banksy, always trying to allocate
storage in bank n-1 before bank n. This serves to keep the
average density of used nodes in the tower banks higher and thus
to keep the banks packed.

A compactifying garbage collector and 3 scheme to trigger a
garbage coliection before trying to allocate from a new bank
woule be useful and are planned, but have not vyet been
implemented, B :

14 Jul 1978 Maryland LISP Reference Manual 237
2+ Character Sets

This is a table of UNIVAC”s FIELDATA character set. This
character set has no lower-case Letters or control codes. ALl
these characters translate into the ' same <characters in ASCII.
The character codes in this table are octal numbers.

e a 13 ¢ 26 a 41 - 54 -2 66 6
01 14 6 27 R 42 + 55 1 67 7
92 3 15 W 30 S 43 < 56 70 8
nz # 16 1 31 1 44 = 57\ 71 9
N4 " 17 32 U 45 > 60 0 72 -
0s 20« 33y 46 & 61 1 72 ;
06 A 21 L LYY 47 s 62 2 74/
07 B 22 M 315 x S0 63 2 75 .
10 ¢ 23 N 36 Y 51 ¢ 64 4 76
11 26 0 37 12 52 X% 65 5 77 _
12 € 25 P 40) 53

This is the ASCII character set, which is used by the AXMIT,
AXMIT1, end AREAD functions, and by many other processors on the
UNIVAC system. The codes 000 throuygh (37 are control codes, the
meanings of which are usually device-dependent.

063 NUL 03z suB 064 4 116 W 147 g
001 SOH 033 EsC 065 5 117 © 150 b
o2 STX . U334 FS 266 6 120 P 151 i
J03 ETX 035 &S 067 7 121 @ 152§
a6 EOT J36 RS crg & 122 R 152 &
J05 EN@ U337 us 071 9 123 S 154
036 ACK J40 £&72 ¢ 126 T 155 m
007 BEL 041 ¢ £73 125 U 15¢ n
213 8BS é2 » 74 < 126 v 157 o
c11 HT 043 # 075 = 127 W 160 p
012 LF 044 s c76 > 130 X 161 q
013 vt 045 X cz7 2 1323 v 162 r
014 FF o466 B 100 a 132 1 163 s
J15 CR 047 -~ 101 A 133 I 164 t
916 s0O 05¢ « 102 B 134 165 w
017 s1 051 103 ¢ 135 3 166 v
220 oLE 052 = 104 o 126 °© 167 w
021 oci J53 ¢+ 105 € 137 _ 170 x
022 pC2 gs54 1ue F 140 7 171y
022 0C3 Js5s5 -~ 107 ¢ 141 a 172 2
026 0C4 56 . 11C H 142 b 173 (
025 NAK Y 111 1 142 ¢ 174 |
Nzé& SYN geu 0 iz J 144 o 175)
D27 ETB g61 1 113 K 145 e 176 ~©
C30 cCaN g6z 2 114 L 146 f 177 DEL
731 EM 0863 3 115 n

