NUANTUM THEORY PROJECT
FOR RESEARCH IN ATOMIC, MOLECULAR, AND SOLID STATE
_ CHEMISTRY AND PHYSICS
UNIVERSITY OF FLORIDA, GAINESVILLE, FLORIDA

LIST TECHNIQUES

PRCGRAM NOTE #13

20 August 1563

ABSTRACT

For its own purposes, LISP employs a certain kind of list
structure, Experience has shown that many other kinds of list
configurations exist and may orofitably be used in the appropriate
circumstances, Uith the operator predicates which exist in the
MBLISP processor, the LISP lanpuage may be used to govern the
formation and utilization of alternative list structures, such as
Threaded Lists, CSeveral such schemes are described, together with
their asscciated control functioms,

LISTS-1

LIST TECHNINUES

Although many computer prosrarrers vere intuitively familiar
with list techniques from the very earliest days of electronic
computers, it appears that the subject first erergec as an organized
discipline frcm the work of Newell, Simcn and Shaw in connection
with heuristic programs which would simulate human mental processes,
insofar as they were known, in attacking the solutions of problems.
Such programs would constantly generate unpredictable quantities of
intermediate results, which needed to be cross-referenced, but not
according to any particularly mathematically repular pattern. Such
haphazar¢ ceneration of data precluded fixed storage being allocated
to retain it, while not only the complexity of the cross-references,
but their continual revision and rearrangerent would have required a
continuing movement of the data, even were it possible to have reserved
adequate snaces for it.

With the recognition that large quantities of haphazard data
could be generated, and that list techniques---wherein certain cells
were set aside specifically for the purvose of indicating the interre-
lations amony themselves and the data to vhich they referred---provided
an adequate means of handling this type of data arrangement, a2 nunber
of svecialized languages were develoved to handle this type of
program. They included the IPL series, mnarticularly IPL-V, which was
substantially a battery of macro instructions oriented toward list
handling; FLPL (FORTRAN LIST PRCCESSOR), LISP, and Threaded Lists,

The last menticned lancuages concentrated on exvloiting in each
case just one particular list arrangerent, as a reans for accomplishing
the rost general nrooram definitions and calculations. Such
concentration has led to particularly simmle and elegant vrogramning
languages in each case., Althcush the vcwer of such languages is
extremely irmressive, particularly when considered in relation to their
fourdations, they also nossess characteristic drawbacks. One is
inevitably drawn:te the conclusiecn that any such language must reserve
for itself the ability to work directly with memory stores, as we now
know them, in spite of its own predilections for list structure
arrangerent. It is a tribute to 2 language such as LISP that it may
control the menory manivulation with little or no disturbance to its
own overational nrocedures. _

Before outlining tlie actuzl physical arrangement of the memory
store, we shall describe a series of routine orerations with lists
which are of a funderental nature, can be accomplished entirely within the
LISP language, and vhich recur in almost every application of LISP.
Generally, they are involved with searching a list, deleting or inserting
information, or making sirple modifications or alterations to their
arrangenents. In studying such functions it is helpful to think of a
list simply as an ordered set.

(ELEM X L) is a predicate which deterrmines whether the
elerent X, assumed to be an atom, is a member of
the list L,

(ELEM (LAMBDA (X L) (AND (NOT (NULL L))
(OR (E7 X (CAR L)) (ELEM X (CDR L))))))

LISTS-2

(SUCC X L) yields the element following X on the list
L.

(SUCC (LAMBDA (X L) (IF (EN X (CAR L))
(CACR L) (SUCC X (CDR L)))))

This definition assumes that it is known that
the element X actually belongs to the list L,
for there is no precautionary test for (NULL L).
Likewise it is assumed that X actually nossesses
a successor and that it is not the last element
of the list., To forestall such a vossibility it
would also be necessary to add a test for

(NULL (CDR L)).

{SuCC* X L) yields the element nreceding X on the list
L,

(SuCC* (LAIBDA (X L) (IF (EG X (CADR L))
(CAR L) (SUCC* X (CDP. L)))))

Again, it is assumed that the list is neither
expty nor that X is the first element,

(ASSCC X L) searches =a2lternate elerents of the list L
for the presured atom, X. If found the value
of ASSOC is the succeeding elerment; othervise
the value is X, Such a list, L = (N1 D1 N2 D2
N3 D3 ...) is useful for storing the equivalents
DI of the names NI; names zlternate with
definitions, and every other element is searched.

(ASSNC (LAMBDA (X L) (COND
((NULL L) X)

((EN (CAR L) X) (CADR L))
((AND) (ASSCC ¥ (CDDR L)))))

In this definition it is assumed that the context
of the search is known, so that nro exnlicit

check needs te be made that the list contains

an even number of elenents,

(ASSCC* X L) is used to invert the action of ASSCC;
namely an alternating search of L is made
starting with the second element; if X is found its
nredecessor is taken. Again it is assumed that
the list is of even lensoth, ‘

(ASSOC* (LAMBDA (X L) (COND
(QWULL L) X)

(CEQ (CADR L) X) (CAP L))
((AND) (ASSGC* X (CDDR L))))))

LISTS-3

(CXPUKCE Z L). All instances cf the aton for which X
stands are rerioved from the list L.

(EXPUNGE (LAMBDA (X L) (COND

((HULL L) L)

((EN (CAR L) X) (EXPUNGE X (CCR L)))

((AND) (CONS (CAR L) (EXPUNGE X (CDR L)))))))

(REMCQVE X L), The first instance of the atom X is
deleted from the list L.

(PEVOVE (LAMBDA (X L) (COND

((NULL L) L)

((E7 (CAR L) X) (CDR L))

(CAND) (COMS (CAR L) (PEMOVE X (CDR L)))))))

(SUBST X Y L). Y is presumed to be an atom.- Each
instance of Y on.the list L is replaced ty X.

(SUBST '(LAMBDA (X Y L) (COND

((NULL L) L)

((EQ (CAR L) Y) (CCNS X (SUBST X.Y (CDR L))))
((AND) (CONS (CAR L) (SUBST X Y (CDR L)))))))

(REPLACE D L), If an aton anmears on the alternating
dictionary D, it is to be replaced by its equivalent
on the list L, :

(REPLACE (LAMBDA (D L) (IF (NULL L)
L (CONS (ASSOC (CAR L) D) (PEPLACE D (COR L))
3} .

(POSSESSINC P L), An extract of the list L is made
3 L3 3 ,
consisting of those elements possessing the
nroperty P,

(POSSESSING (LAMEDA (F L) (COHD

((NULL L) L)

((P (CAR L)) (CONS (CAR L) (PCSSESSING - .
P (CDR L))))

((AND) (PNSSESSING P (CDR L))))))

(REVEPSE L) is a list of the elements appearing on the
list L, but in the onmncsite order, If the
elements are themselves lists, their order is not
affected., It is defined by the heln of an auxiliary
function.

(PEVERSE (LAMBDA (L) (FEVERSE* L (LIST))))

(REVERSE* (LAMBDA (L) (IF (NULL L) M
(REVERSE* (CDR. L) (CONS (CA™ L))))))

| LISTS-4

In the functicns which follow, let us agree that U and V will
mean the lists

(U1 U2 ... UR)
(V1 v2 ... VN).

u
vV

Then :

(APPEND U V) is the list resultineg by attaching
the list V to the enéd of the list U, If
U and V are defined as above, then
(AFPEND U V) = (U1 U2 ,,, UN V1 V2 ,,, VN)

(APPEND (LAMBDA (U V) (IF
(NULL U) V (CONS (CAR U) (APPEND
(COR 1) V)))

It is interesting to contrast the use of CCNS and LIST with
APPEND; continuing to use the same example ve would have

(cens v vy (ur w2 ,,. M) vivz .., Vi)

1}

]

(LIET U V) (ur vz ... UN) (Viv2.,. WN))

(MERGE U V). Elenents are tzken alternately from
the lists U and V, nresumed to te of the same
length, in order to form an alternating list, Thus
(MERGE U V) = (U1 VI U2V2,., UN VN),

(MERCE (LAMBDA (Y V) (IF (NULL U) U.
(CONS (CAR U) (CONS (CAR V)
(“ERGE (CDR U) (CDR V)))))))

(UNFERGE L) has as its argument a list L of even
length, and as its value a list of two lists. The
first of these contains the odd elements -of L while
the second contains the even elements, It thus
inverts the action of MERGE,

(UNMERGE (LAMBDA (L) (IF (WULL L) (LIST L L)
((LABDA (X) (LIST (COMNS (CAR L) (CAR X))

(CONS (CADR'L) (CADR X)))) (UNMERGE (CDDR L))
3}))) . ’

(PAIR U V). A list of nairs is formed, composed

of an element of U and a matching element of V,

for all the elements of the two lists, which are
presunably of the same length, In terms of our examle,
(PAIR U V) = ((U1 V1) (U2V2) ... (LN VM)

(PAIR (LA'BDA (U V) (IF (NULL U) U
(CONS (LIST (CAR U) (CAR V)) (PAIR
(cop) (CDR V))))))

LISTS-5

By continuing' to enumerate further exarmles, one could prolong
indefinitely the catalogue of possible cnerations with lists. However
the functions cited show hcw readily one may manipulate lists with the
aid of the LISP language., Logically, in fact, LISP is .all which is
logically necessary to perferm every imacinable kind of operations with
lists., Fron a practical point of view, however, the actions of LISP
can then to te quite extravagant. To understand vhy this should be so,
we have to ccnsider the actual physical irmlementation of lists,

In the formal cdefinition of LISP, a list is defined recursively
as an entity vhich cormences with a left parenthesis, terminates by a
right parenthesis, and otherwise consists of a series of entities
(separated by blanks) which are themselves either atomic syrbols or
lists. To give such a definition one‘-has to have previously agreed
that an atomic symbel is a string of characters devoid of parentheses
or blanks, However, all such concepts as narentheses, characters,
strings, blanks and-.so.on have to have their renresentation in terms
of sore memory configuration in the memory store of the ccmputer., In
fact, in this realm a list seems something entirely different.

’e recall that the memory store is composed of units called words,
each cf vhich contains a certain number of binary dipits, or bits,

The words of the mermory are numbered serially (00000 to 77777 octal, in
the IBH 709) in the sense that when one of these numbers is used as

a part of an instruction and decoded by the prover organ of the central
nrocessor, the corresponding word can be retreived from the memory store.

In many machines of commercial design, a word is large enough
to hold two of these serial numbers, or addresses, Even when it is not,
it is generally possible to treat two consecutive words as a unit,

e shall call the nscessary combination of words which holds two
addresses a BILE, or binary list element. It would in principle also
be possible to work directly with MULEs, or multiple list elements,
However, whenever one is dealing with a dynamic list structure, there
is often such a great demand for new list elements, that eventually the
merory store must be exanined to see whether there are any abandoned
words, no longer uszble by the program, which may be returned to active
use. The vacuum, or store of available words, must periodically be
replenished. Th ”he difficulty arises that if one wishes to use large
blocks of consecutive words, and if the size of the blocks vary,

there will gracdually be a degeneration of the Vacuum, in that many small
blocks will be available, but few large ones. To retain the maximum
flexibility, it seems far preferable to construct HULES from BILEs,
even with the sacrifice of additional space in the memory to link the
BILEs into IMULEs.

In describing the memory store of a computer, it is convenient
to introduce certain diagrammatic cinventions. In the figure below

Iz 1 21N
& —
C:;I! P 1 i,

N

- - l ;-,-.',s\»-!)
C——>| ! | -

we see the representation of a2 certain list configuration. The
rectangles represent BILEs, which in the IBM 709 are just words. They
are divided into two portions to indicate that they hold two addresses,
In fact the left half corresronds to the decrement, bits 3-18, while

LISTS-6

the right half corresponds to the- address nortion of the word, bits
21-35, Actually there are ¢ additional bits which are sometimes used
as flags, which are not represented.

An arrow running from either side of one word and 001nt1ng to
another, represents the fact that at the position indicated by the tail
of the arrow is stored the address of the word lying at the tip of the
arrow., These linkages serve to determine the list structure,

in terms of these diagrams, vwe can relate certain list structures
to the "lists" upon which LISP overates, Since we do not wish to
enquire how atomic symbols are revresented, nor how a prover orinted
representation of a list is eventually prc-uced, we shall agree that
a BILE of the form:

|"222Z2Z7___| |

constitutes an adequate left hand linkage to the atom ZZZZZ,
In this sense, an empty list, (), has the reoresentation

| NIL | |

The special atom, NIL, is used to terminate a list. On the other
hand we would represent the list (A B C D) by the diagram:

A
el Bl ==t

:..0.)! C ‘ -00{00:
:oco¢o>| D ! -n-oo*Qo.

L
e 0s0O00COSOSOOESS

Seex] MIL |

As another example, the list ((A) ()) would be diagrammed as:

! l 0400
S 229°%
o° 000000000000
0000000000 c00000
©0000000000000000 Seo0s l o ‘ ooooéeoo
°
So> | A I 0004 o ° ©0000000000000
o o00?°
o 0000000000000 °°°°°°°> ‘ NIL I l

ﬁoo> | §IL I !

There is a certain peculiarity in this drawing, in that the empty set
which is the second element of the list is represented physically by
the same NIL which terminates the entire list, Common subexpressions
may be represented by identical list structure, although as the second
NIL-bearing BILE shows, this is not necessarily universally the cese,
It is nevertheless one of the advantages which LISP possesses over
say the threaded list type of structure, that comron subiexnressions
may be so represented

It is readily percieved that the LISP function CONS is reacily
adapted to this type of list representation, It requires only that
a fresh BILE be extracted from the vacuum, the first argument be
written as its left linkage, and the second argument as its right
linkage,

It is actually a matter of taste whether the empty list be
assigned a unique memory address, with its decrement pointing to the
atom NIL. McCarthy's LISP so represents (), thereby slightly sirmplifying

LISTS-7

a number of operations. For instance, the test ENUAL does not have

to include as a soecial case the test vhether both arpguments are enoty -
sets, Moreover, since lists in many LISP programs tend to be fairly
short, individual emnty lists terminating each list consume a sizeable
percentape of the active memocry store.

As soon as lists are to be used by other prccessors than the
LISP processor, the considerations change, and it may be necessary
not to have an empty list uniquely represented. In particular, it
is desirable to have the assurance that every value of the function
(LIST) is distinct.

Once we have a model for the internal operation of a computer,
we may begin to find fault with the LISP mode of operation. Recalling
the definition of the function (APPEND U V): (LAMBDA (U V) (IF (NULL U)
V (CONS (CAR U) (APPEND (CDR U) V))))), we see that an entire new
copy of the list U is created, to which V is attached, sirmply for the
sake of the fact that somewhere else in the program U may be required
intact, For the recursive mode op operation this is an entirely
justified and proper assumption. Nevertheless, we may find ourselves
contemplating a list which we are sure that will be used nowhere else
in its original form, and vwondering whether the complete new copy of
U is entirely necessary. So long as we are to use comnuters as
presently constituted, this will remain a valid question., 'e noreover
suspect that this constitution is bouncd to versist.

APPEND yields only one example, btut the principle is equally
valid vhenever we are forced to revroduce the entire head of a list
for the sake of making some change at sorme distance along the list.

It is cnly necessary to adjoin two overators to the LISP language
as primitive "functions', to manipulate lists in the most general fashicn.
They are most conveniently introduced as operator predicates, so that
their cveration may be ccntrolled by the LISP functiens AND and OR.

These ovnerators are: :

(SAR E X) which causes (CA X) to beccme E, and whose
value is T.

(SDR E X) which causes (CDR X) to becocme E, and whose
value is T.

Tegether with the function of nc variables (LIST) which will

produce as its value a new cell, freshly detached fror the vacuum,
CAR of which is the (unprintable) atom NIL, these two operators allow
us to generate a BILE,and set either of its two linkages to any values
we desire, In additicn, the linkage of any already existing BILE may
be altered.

Althcupgh they are logically sufficient for all list manipulations,
there are certain of their comnisites which are very convenient in
certain circumstances, Also convenient are certain variants which take
other values than T,

Among these are:

(XAR E X) whose value is the old (CAR X)
(XD E X) whose value is the old (CDR X)

(PAR E X) whose value is X
(QDR E X) whose value is X

- LISTS-8

(RAR E X) whose vzlue is E
(PR E X) whose value is E,

In terrs of these functions we can define COMNS:
(CONS (LAMBDA (X Y) (DAR X (PDR Y (LIST))))).
Other functions are:
(DESTROY (LAMBDA (L) (SDR (CDDR L).(QAR (CADR Lj L))))

DESTROY obliterates the first element of a list

in such a fashion that any vointers to L automatically
now point to (CDR L). Jowever, if there were any
pointers to (CDR L), these still point to (CDR L)
although these two instances of (CDR L) ane no

lonper represented by the same physical list
structure. .

(DESTROY* (LAMSDA (L) (SDR (CDDR L) (CDR L))))

DESTROY* obliterates the second element in the
list L, without disturbing the remainder of the
list in any fashion. It is an omerator predicate.

(INSEPT E L) is an onerator which yields a new list
contalnlng E at the head of L. It differs from
CONS in the respect that nointers to L now all
point to the new list.

(INSERT (LAMBDA (E L) (SAR E (ODR (0AR (CAR L)
(qDR (CDR L) (LIST))) L))))

(INSERT* E L) is an onerator predicate vhich inserts E
into the list L following (CAR L). In non-LISP
terms, we may think of it as inserting the item
E into a list follewing the designated cell.

Unlike the operatcr INSERT, we assume that all the
peinters to L wish to continue to point to the
sare item of information, rather than to the first
item on the list, whatever it may be.

(INSERT* (LAMBDA (E L) ("DR (NAR E (ODR (CDR L)
(LIST))) L))) ‘

One can readily envision extensions of these operators, which
make conditional insertions inte a list at selected points. For
instance, let us suppose that we wish to build un a list whese
elements cccur in increasing order---say according to the nredicate SL
(STRICTLY LESS)., ‘e do this by commarinec the new element with each
element of the list in turn until its prover nlace in the list is found,
Ani operator accomplishing this result is FILE:

(FILE (LAMBDA (E L) (OR :
(AND (OF (NULL L) (SL E (CAR L))) (INSERT E L))
(FILE E (CDR L)))))

- A closely related operator predicate, FILECNCE, will generate
an ordered list without repetitions:

(FILEQNCE (LAVGDA (& L) (OR
(AND (OR (NULL L) (SL E (CAR L})) (INSERT E L))
(En E (CAR L))
(FILEONCE E (CDR L)))))

Given a convenient assemblage of onerators to be used in working
with lists, the next tovic to which one turns his attention is the
establishment of certain list patterns which are of basic serviceability,
and with the peculisrities of whose usage he wishes to become familiar,
As we have seen, one of the most fundamental of these, and the one
favored by LISP, is the binary tree, However, characteristically the
usage of a binary tree requires an auxiliary push down list, if cne is
to remember the rirht half of the tree while he is vorking with the
left half. The prcblem requiring this solution can be phrased in the
following terms: One wishes to pass through a binary tree in such a
fashion that after seeinpg each expression, he then sees all the sub-
expressions in sequence. ‘e may think of each node in the tree as
representing representing a subexpression, formed by all the nodes to
which it is connected, The minimal elements, in the context of LISP,
corresponc to the atomic symbols. A pushdown list (vhich may actually
be an array) has the property that new items are adjoined to its head,
and moreover whenever an item is removed, it is removed from the head,
Thus, the first itenm adjoined will be the last to be removed, while
the last adjoined will be the first removed.

If we recall that for the purvoses of LISP each tree terminates
either with a proper atom, or else the unprintazble atom NIL, and that
furthermore only the NIL terminating a list corresnonds to a point at .
which we would wish to conclude a subexpression and return to the main
expression, we see that it is rossible to incorvorate the continuation
address which we would have relegated to the pushdown list directly into
the binary tree itself, This is the basic scheme of the Threaded List
system of Perlis; each subexpression terminates with a connector to the
head of the expression. In terms -of resctangle-diagrams, the layout is
the following:

e ——

JS———

Y
~
I

s ama—

G| NI

which represents the expression (A B). As we see, each subexpression
is linked to the cell representing it in the exnression of which it
is a part. This is the form of the linkage rather than a mere
connector to the beginning of the subexpression, because it allows

us to return to the hicher level, while the other arrangeirent would
only allow us to circulate continually around the same sublevel.

We mey readily perceive the festure vwhich is one of the greatest
drawbacks of threaded lists---it is impossible to allow ccmmon
subexpressions to be represented by the same ovhysical list stiucture,
because the return linkace can point to only cne cell, 'Yeizenbaum's
Knotted Lists represent a compromise, by hanging 2 pushdown list at the
bottom of each subexpression.

. LISTS-10

If our model for LISP's lists is a binary tree, then the model
for a threaded list is a family of tangent circles, Tec illustrate this
provositicn, the two diagrams below show the two representations of the

expression (A B (C) () (DE F)):

/ Threaded List form

LISP form E >

Cormosites of CAR and CDR may be used to isolate selected items
from a threaded list just as they are in LISP, However, they would
probably be used in a slightly different manner, in that one would
probably have sequenced variables desipnating locations in the threaded
list, and the operator XEC would be used with CAR or CDR as its argument
to move them. In fact, in threaded list theory, there are three basic
sequences for list variables, Assuming that L is .a pointer to a'list,
we have:

(SENA (LAMBDA (L) (SENA* (CDR L))))

(SENA* (LAMBDA (L) (COND
((NULL L) (SE"A* (CDD® L)))
((ATOM (CAR L)} (CDR L))
((AND) (SENA* (CAR L))))))

(SEN (LAYBDA (L) (SEQ™* (CDR L))))
(SEQW* (LAMBDA (L) (IF (MULL L) (SEOM* (CDDR L)) L)))
(SEOL (LAMBDA (L) (CPR L)))

Cf these, the function SENA, or the atom seauence, yields all
the atoms of an expression from left to richt as they would appear in
the written expression, disreparding parentheses. Actually, the value
of SEQA is a list, CAR of which is the desired atom.

SEO, on the other hand vhen avnlied repeatedly will yield
every subexpression in the order written fror left to right, but each
subexpression will be followed by its own subexpressions in turn., Again
we nmust take (CAR (SEY L)).

SEOL, which also must be composed with CAR, is desismed simply
to run through the subexpressicns of ore level only.

LISTS-11

For examnle, if
L=(({(AB)CMEF))CHTI)
Then SENA would (composed with CAR) yield the sequence
ABCDEFCGHET
while SENY would yield

(((ABYC(DEF) G (HI)), ((AB) C(DEF)),
(AB), A, B,C, (DEF), D, E, F, G, (4 1I), H, I.

and SEOL would »roduce
((AB) C(PEF), 6, (HI).

In addition to questions of reading information frcm threaded
lists, cne also has to cdeal with the problem of constructing and
modifying threaded lists. Although SAR and SDR thecoretically suffice
for this vurpose, they cannot be used directly without further thought.
Another consideration is the fact that a threaded list is a very
carefully adjusted structure, and the interperate insertion of linkages
will destroy the thread. It is therefore desireable to use, insofar
as possible, nrimitive operations in the construction of threaded
lists which always leave a threaded list a threaded list after their
oneration, Three such functions seem to suffice:

(LISTHEAD (LAMBDA (L) (SDR (ODR L) (LIST)) L)))
(ISPTL (LAMBDA (E L) (SDR (DAR E (ODR (CDR L) (LIST))) L)))
(ISRTW (LAMBDA (E L) (SAR (MAR E (QDR (CAR L) (LIST))) L)))

The first of these, (LISTHEAD L) causes (CAR L) to become an
enpty list. This operator reauires snecial treatment because of the
pvarticular structure of a threaded erpty list, that the linkage following
the MIL rmust return to the main expression. ‘e assume that (LIST) has
been so designed, that thexe will always appear a MIL as CAR of the new
cell withdrawn from the vacuum, ’

The second, (ISPTL E L) causes the expression E to be inserted
into the threaded list L in such a way that it will be the next expression
delivered by the sequence mode, SEOL, That is to say in LISP, it will
become (CADR L), automatically displacing the remainder of the list one
place. (CAR L) will rerain unchanged.

The third operator, ISRTY causes the expression E tc be inserted
into the threaded list L in such a way that ir will be the next expression
delivered by the sequence mode, SEOW. That is to say in LISP, it will
become (CAAR L), automatically disnlacing the remainder of (CAR L) by one
place., (CDR L) will remzin unaffected, It is assumed for this purpose
that (CAR L) is a list (possibly empty) anc not an ator.

5/5/63
3/20/63

