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ABSTRACT 

For its o~m purposes, LISP employs a certain kind of list 
structure. ExPerience has sho~m that many other kinds of list 
configurations exist and may ~rofitably be used in the appropriate 
circumstances. l'li th the operator predicates \-Jhich exist in the 
r~LISP processor, the LISP lanpuage may be usee to govern the 
formation and utilization of alternative list structures, such as 
Threaded Lists. Several such schemes are described, together with 
their associated control functions. 
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LIST TECHN!()UES 

Although r.1~,ny COMiJuter u!'oP.'ranr.ers "Jere intuitively £amiliar 
with list techni'lues frof'1 the verY earliest days of electronic 
conputers, it ap~ears that the subject first errerge~ as an orp.anized 
discipline frCtl the 'tJorl~ of Ne\1Jell, Sirr~cn and Shall,' in connection 
".'i th heuristic programs '''hich t,!ould simulate human mental processes, 
insofar as they t'lere known, in attackinJ.r the solutions of problems. 
Such programs ~\,ould constantly generate unpredictable quantities of 
intermediate results, which needed to be cross-referenced. but not 
according to any particularly mathematically re~lar pattern. Such 
haphazard ?eneration of data precluded fixed storage being allocated 
to retain it, while not only the co~plexity of the cross-references, 
but their continual revision and rearrang~ent would have required a 
continuing movement of. the data, even were it possible to have reserved 
adequate s~aces for it. 

t'!ith the recognition that large quantities of haphazard data 
could be generated, and that list techniques---wherein certain cells 
were set aside s-pecifically for the purpose of indicating the interre­
lations amont! the~seives and the data to \~thich they l~eferred---provided 
an adequate ~eans of handling this type of data arrangement, a nunber 
of s-pecialized languages ''1ere developed- to handle this tYl?e of 
program. They included the IPL series J ,?articttl~,rly IPL-V, which ".'as 
substantially a battery of macro instructions oriented toward list 
handline'; FLPL (FOFTP'}.N LIST PROCESSOf?), LISP J ~.nd Threaded Lists. 

The last ~enti~ned laneua~es concentrated on exoloiting in each 
case just one particular list arrnn2ef1ent, as a r.eans for accom~lishing 
the 1!<ost (Teneral 1)rOlJ'ra1~ definitions ~.nd c~-Iculations. Such 
concentration has-le~ to particularly si~le and elegant ~r~gra~nine 
languages in each case. Al thoufJ,h the t'C\ller of such Ianruap'es is 
extrenely inpressive, ?articularly \'Jhen considered in relation to their 
four.elations .. they also ?ossess chara.cteristic drawbacks. One is 
inevitably ora\O.'ni to the conclusion that any such lanf!,Uftge J'l!Ust reserve 
for itself the abi Ii ty to \,!ork directly \,1i th Eemory stores, as we nOl'! 
knO\~ them, in spite of its o\·!n 'Predilections for list structure 
arrange~ent. It is a tribute to ~, language such as LISP that i t m~.y 
control the menory nnnipulation 'tIith little or no disturbance to its 
orm ~erational nrocedures. 

Before outlinin~ toe actual physical arran~ement of the memory 
store, ue shall describe a series of routine onerations with lists 
which are of a fund&r.ental nature J can be accomplished entirely \lIithin the 
LISP langua~e, and which recur in almost every application of LISP. 
Generally .. they are involved '.1ith searchine a list .. deleting 01' inserting 
inforF,ation, or ~aking sir-ple nodifications or ~lterations to their 
arrangeoents. In studying such functions it is helpful to think of a , 
list si~ply as an ordered set. 

(ELEl .. 1 X L) is a predicate which deter~ines l'lhether the 
element X, ass~ed to be an atom, is a member of 
the list L. 

(ELE~~ (LMmDA eX L) (AND (NOT (N~L L)) 
(OR (E~ X (CAR L)) (ELEP x (CDR L)) ) ))) 
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(suec x L) yields the eleTlent follO\~'ing X on the list 
L. 

(SUCC (LAf"iBDA eX L) (IF (E'1 X (CAR L» 
(CADR L) (SUeC x (CDR L) ))) 

This definition assumes that it is knmm that 
the eleT~ent X actually belongs to the list L, 
for there is no precautionary test for (NULL L). 
Likewise it is assumed that X actually ~ossesses 
a successor and that it is not the last ele~ent 
of the list. To forestall such a ~ossibility it 
would also be necessary to add a test for 
(NULL (CDR L» • 

(suec· X L) yields the element ~receding X on the list 
L. 

(SUcc· (LAr-!BDA eX L) (IF (EO X (CADR L» 
(CAP. L) (SUce· x (COP. L») »)) 

ft.gain, it is assumed that the list is neither 
enpty nor that·X is the first ele~ent. 

(ASSCC X L) searches alternate ele~ents of the list L 
for tlle ?resurr'ec! atoY", X. If found the value 
of ASSOC is the succeec.ing ele!"'ent; othenlise 
the value is X. S~lch a list J L = (Nl Dl N2 D2 
N3 D3 .... ) is useful for storing the equivalents 
01 of the names NI; na~es al tern ate l;i th 
definitions, and every other element is searched. 

(ASSf.\C (Lft!1BDA (X L) (COND 
((NULL L) X) 
((E~ (CAP L) X) (CADR L) 
(ftND) ("ssnc X (CDDP. L)) )) 

In this ,lefini tion it is assu~ed that the context 
of the search is kno\·m, so that no ex!'licit 
check needs tC" be ~ade that the list contains 
an even n~ber of elenents. 

(ASS0C* X L) is used to invert the ~ction of ASSOC; 
n~mely an alternating search of L is made 
startin~ with the second element; if. X is found its 
~redecessor is taken. Avain it is assumed that 
the list is of even len~th. 

(ASSOC· (LA!.!BDA eX L) (COND 
((NULL L) X) 
((E0 (CADF. L) X) (CAP L) 
(AND) (Assnc* X (CDOR L))) »)) 



LISTR-3 

(DXrUl·;CE x L). All inst~,nces cf the atO!1 for "lhich X 
stands ar~ renoved fTO~ the list L, 

(EX!'UNGE (L.A}~BDA (X L) (C0ND 
(HULL L) L) 
«(E~ (C.I\P L) X) (EXPUNGE X (CDR L»)) 
«AND) (CONS (CAR L) (EXrUNGE X (CDR L)))) ») 

(REr:·~OVE X L). The first inst3nce of the atom X is 
deleted from the list L. 

(~E\':()VE (LAHBDA. (X L) (COND 
«(NULL L) L) 
(CEQ (CAR L) X) (CDR L) 
«(h'!D) (COrIS (CAR L) (p~r-lOVE X (COP L»» ))) 

(SUBST X Y L). Y is presumed to be an atOm.' .Each ": 
instance of Y on. the list T.. is replaced t.y X. 

(SUBST . (L~1BDA (X Y L) (C()~!D' " 
«(NULL L) L) 
«EQ (CAR L) Y) (CeNS X (SUBST X.Y (CDn L»»' 
«AND) (C0NS (CAR L) (SUBST X Y (CDn L»))) »)) 

(REPLf\CE D L). If a.1'l atoM a~~e3.rs on the alternating 
cictionary D. it is to be replaced by its equivalent 
on the list L. 

(FE PLACE (Lftl~DA (0 L) (IF (NULL L) 
L (cnuS (ASSOC (CAR L) D) (PEPLACE D (CDR L» 
) ») 

(!'OSSES!;INC P L). An ext:ract of the list L is ~adeJ 
consisting of those elements poss~ssing the 
!'xoperty P. 

(P0SSESSING (LA~·iBDA (P L) (COND 
((NULL L) L) 
((P (CAR L) (CONS (CAR L) (PCSSESSING ' .. 

P (CDR L»))) 
((AND) (P()~SESSIHG P (CDR L)) ))) 

(RE\~P.SE L) is a list of the ele~ents appearing on the 
list L, but in the on~csite order. If the 
elenents are theMselves lists, their oreer is not 
af~ected. It is defined by the heln of an auxiliary 
function. 

(PEVFRSE (LAf/IlDft (L) (r.F.VE~SE* L (LIST)))) 

(REVERSE* (LA"·1BDA (L M) (IF (rIULL L) ~If 
(REVEnSE* (CDR L) (C0NS (CAR L) r)) ») 
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In the functicns t.yhich folIo!'!, let us a~~ree that U and V \\'ill 
mean the lists 

Then 

U = CUI U2 .... l1N) 
V = (Vi V2 ••• \TN). 

(APPEND U V) is the list resultin~ by atta.ching 
the list V to the end of the list U. If 
U ~~d V are defined ~s above, then 
(AF!'END U V) = (UI U2 ••• UN VI V2 ••• VN) 

(APPEND (LA~1BD.A. (U V) (IF 
(NULL U) V (CONS (CAR U) (AP"END 
(CDR U) V) ) )) 

It is interesting to contr~,st the use of CONS ~.nd LIST \,-1i til 
APPEND; continuinl! to use the sane exanple \'Je ,,,ould r.ave 

(CONS U V) 

(LIST U V) 

= (CUI U2 

= (CUI U2 

... 

... 
UN) VI V2 ••• \TN) 

UN) (VI V2 ••• \TN)) 

(f"iERGE U V). Elenents are teken aitenlately frOOl 
the 1 is ts U and V. presumed to be 0: the s arne 

. len~thJ in order to fOl'Ttl an alternating- list. Thus 
(t~RGE U V) = CUI VI U2 V2 ••• UN \~~). 

O'~E~GE (L.t\~IBDA (Y V) (IF (NULL U) U· 
-(CONS (C~R U) (C0NS (CAR V) 
(VEP'GE (CD~ U) (CDn V») ) ) ») 

(UNf'!ERGE L) has RS i ts ~rgUTn.ent a list L cf even 
len~th, tl.nd ~.S its value a list of t""o lists. The 
first of these contains the odd eleVients ,of L while 
the second contains the even elements. It thus 
inverts the action of. MERGE. 

(UNHERGE (LANBDA eL) (IF (NULL L) (LIST L L) 
«(LN'BDA (X) (LIST (CONS (CAR L) (CAP X» 
(CONS (CADR -L) (CADR X»))) (Um!ERGE (CDDR L» 
) ») 

(PAIR U-V); A list of nairs is formed, conposed 
of an element of U a~d a matching elenent of V, 
for all the elements of the t~o lists, which are 
presumably of the same length. In terms of our exa~le, 
(PA!R U V) ~ (CUI Vl) (U2 V2) ••• (~J VN)) 

(PAIR (LA!!BDA (U V) (IF (NULL U) U 
(CONS (LIST (CAn U) (CAR \I») (PAIR 
(COP. U) (CDR V» ) ») 
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Ily .continuinff· to enu~erate further exar.~!lles, one could prolont' 
indefini tely the catalogue of possible c,!,erntions t-:i th lists. HO\~e.ver 
the functions cited shot." hOl'! readily' one r.lay I!lanipulate lists laIith the 
aid of the LISP language. Logice.lly, in fact, LISP is .a11 \'t'hich is 
logically necessary to perfcrM every imarinable kind of operations with 
lists. ProD a practical point c:: vie\·y, hm'level', the actions of LISP 
can then to 1:e quite extrnvagant. To uno.erstand why this should be so, 
we have to ccnsider the actual physicil i~lementation of lists. 

In the fo~al definition of LISP, a list is defined recursively 
as an entity \'lhich cornences ,~ith a left parenthesis I terminates by a 
right parenthesis, and otherwise consists of a series of entities 
(separated by blanks) \\'hich are theJ'llselves either atomic s~bols or 
lists. To give such a definition one ',has to have previously agreed 
that an atomic sYDbol is a string of characters devoid of. parentheses 
or blanks. Hm1ever, all such concepts as uarentheses, characters, 
strings, blanks and·.so.on have to have their renresentation in tems 
of so~e memory conf.iguration in the meMOry store of the COMPuter. In 
fact, in this realn a list seeJ'lls something entirely different. 

lJe recall that the memory store is cOMnosed of units called words, 
each of "lhich contains a certain number of binary digits, or bits. 
The l'Jords of the memory are nUr.1bered seTi~,lly (00000 to 77777 octal J in 
the I Bf··l 709), in the sense that when one of these nu.1!lbers is used as 
a part of an instruction and decoded by the ~roper orr-an'of the central 
nrocesscr, the correspondine Nord can be retreived fro~ the ttemory store. 

In many Tllachines of commercial design, a ''lord is large enough 
to hold t\&]O of these serial numbers, or addresses. Even \-!hen it is not, 
it is ~ener2.11y possible to treat tNO consecutive words as a unit. 
We shall call the necessary combination of words \'J~ich holds t\,10 . 
addresses' a BILE, or binary list element. It would in principle also 
be possible to ''lork directly \-li th ~4JLEs, or multiple list elements. 
HO\'lever, \llhenever one is dealing with a dyneItic list Stiil"cture, there 
is often such a great demand for ne\tl list elentents, that eventually the 
memory store rnus~ be exanined to see whether there are any abandoned 
words, no longer usable by the program, \:lhich may be returned to active 
use. The vacuUl!l,' or store of available '-lords J tiust periodically be 
replenished •. The di ffi cuI ty arises that if one wishes to use large 
blocks of consecutive wcrds, and if the size of the blocks vary, 
there will 3radually be a degeneration of the vacuuM, in that r'lany small 
blocks \lIi11 be available, but fel'! large ones. To retain the l!Iaxirum 
flexibility, it seems far preferable to, construct ~·ruLEs from nILEs, 
even ,~ith the sacrifice of additional space in the memory to link the 
BILEs into I~·iULEs_. 

In describing the meMOry store of a corn~uter, it is convenient 
to introduce certain diagramnatic cinventions. In the firrure below 

.lflt:·-i~· 
~~===~=~~.~------~ ~l _______ ~;_II+_:-h 

c;../ 

we see the representation of a certain list configuration. The 
rectangles represent BILEs, vlhich in the IBH 709 are just lvords. They 
are divided into t,'lO -portions to indicate that they hold tl'10 addresses. 
In fact the left half. corresponds to the decre~nt, bits 3-18, while 
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the right half corresponds to the· address ~ortion of the word, bits 
21-35. Actually there are 6 additional bits ttJhich are sornetil!les used 
as flags, which are not represented. 

An arrO\Al r..1nnin~ from either side of one "/ord and pointing to 
another, represents the fact that at the position indicated by the tail 
of the arrow is stored the address of the word lyin~ at the tip of the 
arrow. These linkar.es serve to deterMine the list structure. 

In terrr~ of these diagrams, we can relate certain list structures 
to the "lists" upon which LISP o'Oerates. Since we do not wish to 
enquire how atomic symbols are re-presented, nor hO\'1 a !JToper '!lrinted 
representation of a list is eventually prc"uced, we shall agree that 
a BILE of the fo~: 

I zzzzz 
constitutes an adequate left hand linkage to the atom ZZZZZ. 

In this sense, an empty list, (), has the re~resentation 

I NIL 

The special atom, NIL, is used to teminate a list. On the other 
hand we would represent the list (A BCD) by the diagram: 

__ A __ I ··f·· 
••••••••••••••. t 
: •• > I B ---.-.-.-. f··: 

•••••••••••••••••• 
: •••• >\ C ------.-.-.~ •• : 

••••••••••••••••••• 
: ••••• > I_ ..... D;....-.__ ••••• t··: 

••••••••••••••• 
:"»1 NIL 

As another exmmDle, the list ((A) e)) would be diaffT~~ed as: 

__ o~o ____________ °_0_04 00 0 

0 0 
00000000000000000000000000 

00000000000000000_0 ______ _ 

0000> I 0 I 000 0 400 0 S 
go> I __ A___ 0004000 

00000000000000 ________ _ 

B~o> I NIL 1 ___ _ 

g 00000000000000 

o 000
0 I ,----0000000> NIL ----

There is a certain peculiarity in this dra".,ing, in that the empty set 
\.]hich is the second element of the list is represented 'Physically by 
the same NIL which teminates the entire list. Couu'!\on subexnressions 
may be representecl by identical list structure, although as· the second 
NIL-bearing BILE shows, this is not necessaTily universally the ctse. 
It is nevertheless one of the adv~ntages "Jhich LISP possesses over 
say the thre2ded list type of structure, that com~on subexnressions 
may be so represented. 

It is readily percieved that the LISP function CONS is reacily 
adapted to this type of list representation. It requires only that 
a fresh BILE be extracted from the vacuum, the first argu~cnt be 
wri tt.en as its left linkaee I and the second argument as its right 
linkage. 

It is actually a matter of taste t·;hether the errpty list be 
8ssiftled a unique memory address, l'li th its decrement pointing to the 
atom NIL. McCarthy's LISP so represents (), thereby slightly siMplifying 
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a number of operations. For instance, the test E0UAL does not have 
to include as a s~ecial case ~,e test vhether both argur:1ents are en'Dty . 
sets. ~·oreover ~ since lists in .many LISP pror.rar;'ls tend to be fairly 
short, individual emnty lists terminating ea.ch list conS\L~e a sizeable 
percentap,e of the active ~enory store. 

As soon as lists are to be used bv other nl"ccessors than the 
LISP'processor, the considerations change, and it ~ay be necessary 
not to have an empty list uniquely represented. In particu!ar~ it 
is desirable to have the assurance that every value of the function 
(LIST) is distinct. 

Once we have a model for the internal operation of a con~uter, 
we may begin to find fault "lith the LISP mode of operation. Recalling 
the definition o£ the function (APPEND U V): (LAr.~DA (U V) (IF (NULL U) 
V (CONS (CAR U) (APPEND (CDR U) V)) ))), we see tha.t an entire new 
copy of the list U is created, to llJhich V is attached, simply for the 
sake of the fact that somel'lhere else in the progr~u;t U may be required 
intact. For the recursive mode op operation' this is an entirely 
justified and proper assumption. Nevertheless, we may find ourselves 
contemplating a list which lIe are sure that '-lill be used not'Jhere else 
i:t:l its original form, and ,,:ondering whether the cOJ!lplete ne\tl copy o£ 
U is entirely neces~ary. So long as ,,'e are to use C01l".uuters as 
presently constituted, this 1·Jill rel!1ain a valid question. ~'.1e Moreover 
suspect that this constitvtion is bound to ~ersist. 

APPEND yield.s only one example, but the principle is equally 
valid \'lhenever ,,-,e are forced to renroduce t11e entire head of a list 
for the sake of making sone change at so~e distance alonE' the list. 

It is only necessal')' to adj oin t,vo. 0!ler~.tors to the LISP language 
as primitive "functions", to manipulate lists in the !'lost rrenera! fashion. 
They are most conveniently intl'oduced as operator predicates, so t!'i3.t 
their c".)eration may be ccntrolled by the LIS!' functions ArID and OR. 
TIlese o~erators are: 

(SAR E X) "'lhich causes (CAr! X) to beco~e E, and whose 
value is T. 

(SDR E X) Hr.ich causes (CDR X) to become E, and whose 
value is T. 

-regether with the function of no variables (LIST) \·;!l.ich Nill 
produce as its value a new cell, f.reshly detached fro~ the vacuum, 
CAR of "'hich is the (unprintable) atom NIL, these tuo operators allow 
us to generate a BILE,anc set either of its two linkazes to any values 
\;7e desire. In adclitic.n, the linka~e of any already existing BILE may 
be altered. 

Althcu~l they are lopically sufficient for all list nanipulations, 
there are certain of their cOEposi tes \~hich are very convenient in 
certain circumstances. Also convenient are certain vari~~ts which take 
other values than T. 

Among these are: 

(XAR E X) ,,"lhose value is the old (CAR X) 
(XDn E X) \I.Those value is the old (COa X) 

(QAn E X) whose v8.1ue is X 
(QDP. E X) whose value is X 



cr:.AR E X) whose value is E 
(RDR E X) !'~hos e value is E. 

In ter~s of these functions \'Je ca.."l define CONS: 
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(CONS (LAHBDA (X Y) (QAP. X (nDR Y (LIST») ). 

Other fUnctions are: 

(DESTROY (LMiBDA (L) (SDR (CDDR L) (qAR (CADR L) L» » 

DESTROY obliterates the first element of a list 
in such a fashion that any ?ointers to L automatically 
nOli point to (CDR L). JO\,Jever, if there were any 
pointers to (CDR L), these still point to (CDR L) 
although these two instances of (CDR L) ane no 
loncer represented by the same physical list 
structure. 

(DFSTROY* (LAM3DA (L) (SDR (CDDl~ L) (CDR L) ))) 

DESTROY* obliterates the second element in the 
list L ~ ,-Ii thout cisturbine the rer'1ainder of the 
list in any fashion. It is an onerator predicate. 

(INSERT E L) is an o~erator l\fhich yields a nel41 list 
containing E at the head of L. It differs from 
CONS in the respect that pointers to L now all 

. point to the new list. . 

(INSErtT (LAMBDA (E L) (SAR E «(10R (<:AR (CAR L) 
(QDR (CDR L) (LIST))) L)))) 

(INSERT* I! L) is an onerator predicate "'hich inserts E 
into trse list L follOi.~lne (CAR L).. In non-LI~P 
terms, we ~ay think of it as inserting the iteo 
E into a list follCl'!ing the designated c.ell. 
Unlike the operator INSERT J \'Je assU.'ile that all" the 
pointers to L ,,,,ish to continue to point to the 
sarne ite~ of. information, rather than to the first 
item on the list, \'lhatever it may be. 

(ITlSERT* (L~1-~BDA (E L) (0.Dn (f1AR E (QDR (COn L) 
(LIST))) L»)) 

One can readily envision extensions of these operators, which 
!\a!~e conditional insertions into a list at selected points. For 
instance, let us suppose that ~ve ,,·ish to build tn? ~ list \'lhose 
eler.tents occur in incree.sine order---say according to the uredicate SL 
(STRICTLY LESS). Pe do this by cOm:?arin~ the neN eler:1ent with each 
element of the list in turn until its oro"er "lla.ce in the list is found. 
An operator acconplishing this result is FILE: 

(FILE (LAr.:BDA (E L) (OR 
(AND «(,P. (NULL L) (SL E (CAR L))) (INSERT E L)) 
(FILE E (CDR L) ))) 



-------------- --- --------------------------------------

LISTS-9 

A closely related operator pl'edic3te, FILEONCE. will generate 
an ordered list without repetitions: 

(FILEONCE (LATt~IJDA (D L) CO? 
(AND (OR (NULL L) (SL E (CAR L))) (INSERT E L) 
(E~ F. (CAR L») 
(FILEONCE E (CDR L) »)) 

Given a convenient assembla~e of o~er2tors to be used in working 
\"ith lists, the next to~ic to ,.;bich one turns his attention is the 
establishment of certain list patterns whiCh are of basic serviceability, 
and \'1ith the peculia.rities of ~!hose usage he wishes to become familiar. 
As we have seen, one of the most fundamental of these, and the one 
favored by LISP, is the binary tree. HO"lever J characteristically the 
usage of a. binary tree requires an auxiliary push dOtm list. if cne is 
to remember the rirht half of the tree while he is \"orkin~ Nith the 
left half. The probleM requiring this solution can be phrased in the 
follo~'1ing terns: One ltTishes to pass through a binary tree in such a 
fashion that after seein~ each expression, he then sees all the sub­
expressions in seQuence. ~'Je may think of each node in the tree as 
representing representing a subexpression, fomed by all the nodes to 
which it is connected. The ~inimal ele~ents, in the context of LISP, 
corresponci to the atonic symbols-. A 'Pushdotvn list (,·!hich ~ay actually 
be an array) has the property that new items ftre ~-djoined to its head, 
and moreover '~henever an item is removed, it is removed from the head. 
Thus, the first i ter:1 adjoined lA/ill be the last to be reflloved, while 
the last adjoined will be the first removed. 

If we recall that for the 'OUI'"Ooses of. LISP each tree terminates 
ei ther \Iii th a proper atom, or else the unprinta.b Ie atoLl NIL, and -that 
furthermore only' the NIL terflinating a list corres!:londs to a point at . 
\'1hich we \'Jould t'lish to conclude a subexpression and return to the DJain 
expression, \'Ie see that it is possible to incoroorate the continuation 
address \'lhich 1,.'e liouid have relegatec! to the pushdoh'll list directly into 
the binaty tree itself. 'I11is is the basic scheme _of the Threaded List 
system of PerIis; ea.ch subexpression teminates \-li th a connector to the 
head of the expression. In terms 'of rectangle-diagrams, the layout is 
the follo\a1ing: 

which represents the expression (A B). As \"Ie see, each subexpression 
is linked to the cell representing it in the ex~ression of t![hich it 
is a part. This is the form of the linkage rather than a ~ere 
connector to the beginning of the subexpression, because it allows 
us to retuT11 to the higher level, while the other' arrangel!l.ent would 
only allow us to circulate continually around the sarne sublevel. 

We mry readi ly perceive the fes.ture \I!hich is one of the ereatest 
dra,~backs of. threaded lists---it is irn-possible to allow Ccr.lmon 
subexpressions to be represented by the s~e ~hysical list structure, 
because the return linkage can point to only one cell. l~!eizenbaum's 
Knotted Lists represent a cOf:1promise, by hang-in?, a pushdo\·m list at the 
bottom of each subexpression. 
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If our model for LISP's lists is a binary tree, then the model 
for a threaded list is a family of tangent circles. To illustrate this 
proposi tion, the two diagra.I!ls below ShOl'/ the t,·:o representations of the 
expression (A B (e) () (0 E F)): 

/ 
, / 

,. '-
/', NIt 

C " 
NILI 

LISP form 

D/~ 
F .1 

NIL 

Threaded List fo~ 

Composites of CAR and CDR may be used to isolate selected items 
from a threaded list just as they are in LISP. Hm-rever, they \'1ould 
probably be used in a slightly different manner, in that one would 
probably have sequenced variables desi~n3ting locations in the threaded 
list, ~.nd the operator XEC ,o/ould be used '-Ii th CAR or CDR as its argument 
to move them. In fact, in threaded list theory, there are three basic 
sequences for list variables. ~~sumine that L is .a pointer to a'list, 
we have: 

(SE'1A (LAl'ifBDA (L) (SE'1A* (CDR L)))) 

(SE0A* (LNnSDA (L) (COND 
((~~LL L) (SE~A* (CDD~ L))) 
«(AT~~ (CAR L) j (CDR LJ) 
(AND) (SE~A* (CAF L))) ))) 

(SEf)('; (LA~·~DA (L) (SEQ".~* (CDr L)))) 

(SEQl'l* (LA~~BDA (L) (IF (r-mLL L) (SEnt!* (CDOP.. L)) L))) 

(SE~L (LAr·'~DA (L) (con L))) 

Of these. the function SE~A, or the atom sequence, yields all 
the atoms of an expression fr~ left to right as they would appear irl 
the "lritten e~ression" t'.isrefI~_rding parentheses.. J\.ctually, the value 
of.SEQA is a list, CAR of which is the desired atoM. 

SE~r1, on the other hand \r!hen a~·~liecl reneatedly \,1ill yield 
every subexpression in the order l-lritten frol!' ieft to right, but each 
subexpression will be followed by its OhT. subexpressions in turn. Again 
we tlust t8.ke (C~~ (SE1t\' L)). 

SE~L, tlhich also FlllSt be composed \-li th C".R, is desiened sirfl,p1y 
to run through the spbexpressicns of one level only. 
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For exa.t:1,?le, if. 

L = C(A B) C (D E F)) G (~ I) 

Then SE~A would (coMPosed \\'ith CAR) yield the sequence 

ABC D E F G H I 

while SE'1!': ,,,ould yield 

(eCA B) C (0 E F)) G (H I)), C(A B) C (0 E F», 
CA B), A, n, C, (D E Fl, D, E, F, G, (M I), H, I._ 

and SEQL "lould ~roduce 

«A B) C (D E F», G, (H I). 

In addition to questions of reacing info~ation from threaded 
lists, cne also has to deal \'!i th the problem of constructing and 
mocifying threaded lists~ Although Sft~ and SDR theoretically suffice 
for this !>urpose, they cannot be ·used directly without "further thought. 
Another consideration is the fact that a threaded list is a very 
carefully adjusted structure, and the intenperate insertion of linkages 
'''ill destroy the thread. It is therefore desireable to use, insofa.r 
as possible, primitive operations in the'construction of threaded 
lists \·!hich all\'ays leave a threaded list a threaded list a~ter their 
operation. TIlree such functions seem to suffice: 

(LISTHEAD (LAr~~BDA (L) (SDR (nDR L) (LIST)) L))) 

(ISPTL (LAl1BDA (E L) (SDR (QAR E (0DR (CDR L) (LIST))) L))) 

(ISRTW (LAf·.mDA (E L) (SAR (~AR E (QDR (CP.p.. L) (LIST))) L))) 

The first of these" (LISTHEAD L) caus~s (CAR L) to becorr.e an 
empty list. This operator re~uires s~ecial treatment because of the 
particular structure of a threaded et!lpty list" that the linkage following 
the NIL nust return to the main exoression. ~~!e aSSUT!1e that (LIST) has 
been so desirned" that there ".lill always appear a l'!IL as CAR of the new 
cell l'1i thdrawn fron the vacuU!:l. 

The second, (ISPTL E L) causes tr.e expression E to be inserted 
into the threaded list L in such a ,·yay that it l'1ill be the next expression 
delivered by the sequence mode, SEQL. That is to say in LISP J it \"!ill 
become (CADIl L), automatically dis~lacing the re~ainder of the list one 
place. (CAR L) ,·.Yill reJ"ain unchanged. 

The third operator, ISRT'T causes the expression E tc be inserted 
into the threaded list L in such a way that i1: '-rill be the next expression 
delivered by the sequence ~ode, SEQl1. That is to say in LISP, it will 
become (CAAR L), auto~atic~lly dis~lacing the renainder of (CAR L) by one 
place. (CDR L) will remain unaffected. It is assu~erl for this purpose 
that (CAR L) is a list (possibly empty) anc not an ato~. 
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