The
Connection Machine
System

Supplement to the
*Lisp Reference Manual

Version 5.0
September 1988

~ Thinking Machines Corporation
Cambridge, Massachusetts

First printing, September 1988

The information in this document is subject to change without notice and should not be
construed as a commitment by Thinking Machines Corporation. Thinking Machines Cor-
poration reserves the right to make changes to any products described herein to improve
functioning or design. Although the information in this document has been reviewed and
is believed to be reliable, Thinking Machines Corporation does not assume responsibility
or liability for any errors that may appear in this document. Thinking Machines Corpora-
tion does not assume any liability arising from the application or use of any information or
product described herein.

Connection Machine is a registered trademark of Thinking Machines Corporation.
CM-1, CM-2, CM, and DataVault are trademarks of Thinking Machines Corporation.
Paris, *Lisp, C*, and CM Fortran are trademarks of Thinking Machines Corporation.
VaXx, ULTRIX, and VAXBI are trademarks of Digital Equipment Corporation.
Symbolics, Symbolics 3600, and Genera are trademarks of Symbolics, Inc.

Sun and Sun-4 are trademarks of Sun Microsystems, Inc.

UNIX is a trademark of AT&T Bell Laboratories.

Copyright © 1988 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation

245 First Street

Cambridge, Massachusetts 02142-1214
(617) 876-1111

R~

Contents

50 0 7V S P vii
CUStOMEr SUPPOIT & o v v v ittt et tianasroerooaonsnanonsansasennssns xi
Chapter 1 Complex NumberPvars it 1
1.1 Complex Pvar Type Definition, Predication, and Coercion 1

1.1.1 Rules of Complex Contagion and Canonicalization 3

1.2 Mathematical Operations on ComplexPvars 3

1.2.1 [Irrational and Transcendental Functions 4

Chapter 2 Character Pvarscciiiiiiiiiiiiinnnnn. 7
2.1 Character Pvar Type Definitionoiiiiiiiiiiiiiiiiin, 7

2.2 *Lisp Global Character Variablesc.oiviiiiiiiinn... 8

2.2.1 Setting the Global Character Variables 9

2.3 Functions Operating on Character Pvars 10

2.3.1 Faunctions to Access Character Attributes 10

2.3.2 Functions to Construct and Convert Characters............. 11

2.3.3 Character Predicate TeStScviviiinrrnnnninieennnns 13

2.4 Character Control Bit Functionso, 17
Chapter3 Array Pvarsciiitiiiiiiiiinnnnnnennnnn 19
3.1 ArrayPvar Type Definition oo, 19

32 ArrayPvar LIMits ...ttt ittt i i e 20

33 Creating Array Pvars ...ttt 21

3.3.1 Using make-array!! to Create Array Pvars 21

3.3.2 Using!!toCreate ArrayPvarscooviiiiin. 22

3.3.3 Using *let and *let* to Create Array Pvars 23

3.3.4 Using allocate!! to Create Array Pvars 24

3.3.5 Using *defvar and *proclaim to Create Array Pvars 25

iii

3.3.6 Array Pvars with Dynamically-Determined Dimensions 25

34 Creating Vector Pvars ...ttt iiiiiiiinennannnnanns 27
3.5 Operations Returning Array Pvar Information 28
3.6 Accessing ArTay EICMENtS covintiiiiiiiiiiiiiiiennninnennn. 30
3.6.1 Indirect Addressing of Array Pvar Elements 31

3.6.2 Accessing Array Pvar Elements Directly: Aliasing 32

3.6.3 Sideways Arrays: an Experimental Feature 33

3.7 Logical Operations on Bit Array Pvarso 34
3.8 Mapping Functions Over Array Pvarso, 36
39 NotesonUsing Array Pvarsciiiiiiiiiiiiienerenineeennns 37
Chapter 4 Structure Pvars i, 39
4.1 Defining Structure Pvarsttt 40
4.1.1 What *defstructDoescciiiiiiriiiiiiiinnannn. 40

4.1.2 Formal *defstruct Definitioncciieinieenenenn. 43

4.2 Structure INheritance « ... covv ittt e eneinaeenenneeneeneannananans 46
4.3 Referencing and Modifying Structure Pvarsoooun.t. 47
4.3.1 Accessing Structure Pvar Contents Directly: Aliasing 48

4.4 Miscellaneous Operationson Structure Pvarscoiiviienn .. 49
4.5 Scanning StrUCIUIES ..ottt teiiie et eennnennneonnennnnons 50
4.6 Detailed Documentationcuvuitinutnrneneennnasnenananneennens 50
4.6.1 Optionsto *defstructciiiiiiiiiiiinn.. 50

4.6.2 *defstructSlot Optionsiiiiiiiiiiinn.ty 53

4.6.3 *defstruct Options Exampleccoviiiiinennnn. 54
Chapter 5 Virtual Processor Setsciiuiinuennn. 55
5.1 Virtual Processor SetsinRelease 5.0 i, 55
5.2 How Virtual Processor Sets Work ...ttt iiieiieeiennnanns 56
5.3 Global Variables Relatedto VP Sets ..ot iiiiiiiiiiiiiinnenns 58
5.4 Operations to Create, Destroy, and Reinitialize Virtual Processor Sets.. 60
5.5 The Geometry of Virtual Processor Setsccoovviiiiiin.n, 67
5.6 Selectinga VP Set ...t i e 69
5.7 Pvars Associated with VP Sets ...ttt it iiieennnn 70
5.8 Getting Information Abouta VP Set, 73

iv

Contents

Chapter 6

6.1
6.2
6.3
6.4

6.5

6.6

Chapter 7

7.1
7.2
7.3
74
7.5
7.6
7.7
7.8
7.9
7.10
7.11

Chapter 8

8.1
8.2
8.3
8.4
8.5
8.6

N-Dimensional Interprocessor Communication 77
Global Variables Related to N-Dimensional Communication 78
Enhanced *Lisp Communication Operations 78
New *Lisp Communication Operationsc.ccviveeieenenann, 83
Communication Across Virtual Processor Setscooounn.. 87
6.4.1 Addresses Translation Across VP Sets.............. 87
6.4.2 Address Translation Examples, 90
6.4.3 Inter-VP Set Communication Operations 91
6.4.4 Inter-VP Set Communication Examples 95
Address Objects—an Experimental Addressing Feature 97
6.5.1 What Address Objects DOcovviiiiiieiinnnnn.n, 101
Obsolete *Lisp Communication Functionsot 101
Assorted New *Lisp Features 105
Generally Useful FOrmscoviieiiiiniininennnnannannnnn. 105
Type Predication Functions ...ttt 110
Type Coercion and Conversion Functions ... 111
Floating-Point Limitscoiiiiiiiiiiiiiiiinreiinnananean. 114
Logical Operationson Integer Pvarsc...ccoiiiois, 116
Arithmetic Operations on Integer Pvars o000 118
Byte Manipulation Functioncvviiiiiiiieiiiiiinn s, 119
Conversions between Integersand Gray Codecooiiiinnt. 121
The Front-End Pvar Typeo ov it iii e 122
*Lisp Error Checking . ..o vvein ittt iiiiiiiiiieienieiieennen 122
New Debugging Featuresoiiiiiieriiniiiiiiiineenanennans 125
Parallel Variable Types 129
a2 o 5 o<1 130
Mutable Pvarscviiiiii i i i i i 132
General Pvarst i i e i 132
Mutable General Pvarso.oiiiiiiiiiiiiniiiinniiennan.. 133
Type Declaration and CO€rcionoovvviiiiinninninnnnnn 135
If No Processors Are Active, No Type Coercion Happens 141

Contents

Experimental Featuresccceeeeesseccsesscsscscassncccessss. 143

A Warning About Experimental Featurescovieiiiiiiiaiiiieann.n, 144
Chapter 9 Experimental Scanning with Segment Sets 145
9.1 Operations for Segmented Scanscooiiiiiiiiiiiiiian, 145
Chapter 10 Experimental Parallel Vector Functions 149
10.1 Experimental Special-Purpose Single-Float Vector Operations 151

10.2 Serial Equivalents of the Single-Float Vector Operations 154
Chapter 11 Experimental Parallel Sequence Operations 155
11.1 Argument Conventions in Sequence Operations..................... 156

11.2 Simple Operations on Sequence Pvarscoiiiiii, 156

11.3 Mapping Predicates Over Sequence Pvarscooiinatt, 158

11.4 Operations Modifying Sequence Pvarccooiiiiiiiiiiin.... 159

11.5 Operations Searching Sequence Pvarso, 162
APPendixes i i e e et 167

Appendix A The Relationship between the

CM-2 Architecture, Paris,and *Lisp 169

Al Sprint ROUNE . oovvtivtiiiiie ittt iiiaiin e reinaneennns 169

A2 Backward Routingccoviiniiiin ittt 170

A3 Combining ROUNG ... oottt ittt iiiiiiii i iiiian e 170

A4 Indirect AGAresSIng cvivtiniiin ittt inn et enseneennas 170

A.5 Floating-Point ACCEleratorccoiiiieunininnnnennnnnnnns 171

A6 Scansand Spreads..........iiiiiiiiiiiiiii i i i 171
Appendix B Example Program 1: Text Processing 173
Appendix C Example Program 2: Determinants 179

vi

Preface

Objectives of This Manual Supplement

The Suppiement to the *Lisp Reference Manual provides reference information about new fea-
tures added to the *Lisp language for the release of Version 5.0. It does not replace the *Lisp
Reference Manual, Version 5.0.

Intended Audience

The reader is assumed to have a working knowledge of Common Lisp, as described in Cornmon
Lisp: The Language, and of *Lisp, as described in the *Lisp Reference Manual, Version 4.0. The
reader is further assumed to have a general understanding of the Connection Machine system.
The Connection Machine Front-End Subsystems manual provides the necessary background in-
formation about the Connection Machine system.

Revision Information

This supplement is new with *Lisp, Version 5.0.

Organization of This Manual

Chapter I Complex Number Pvars
The first chapter describes the definition and use of complex number
pvars

Chapter 2 Character Pvars
The second chapter describes the definition and use of character pvars.

Chapter 3 Array Pvars
The third chapter describes the definition and use of array pvars.

Chapter 4 Structure Pvars
The fourth chapter describes the definition and use of structure pvars.

vii

Preface

Chapter §

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Appendix A

Appendix B

Appendix C

Virtual Processor Sets

The fifth chapter explains the new virtual processor mechanism whereby
multiple virtual processor configurations may be employed during a single
session. Operations for defining and using virtual processor sets are de-
scribed.

N-Dimensional Interprocessor Communication

The sixth chapter explains how the new capability of defining n—dimen-
sional virtual processor configurations affects communication within the
Connection Machine. New n—dimensional communication facilities are
described.

Miscellaneous New *Lisp Operations
The seventh chapter provides reference information about a variety of
new features introduced with version 5.0.

.Parallel Variable Types
The eighth chapter describes all the valid pvar type specifiers supported by
*Lisp and explains the rules of type conversion and coercion for each type.

Scanning with Segment Sets
The ninth chapter describes an experimental feature that supports non—
contiguous segmented scan operations.

Parallel Vector Operations

The tenth chapter describes experimental operations that provide opti-
mized manipulation of parallel vectors. Serial equivalents of many of these
new operations are also described.

Parallel Sequence Operations
The eleventh chapter describes experimental parallel equivalents of the
Common Lisp sequence operations.

The Relationship between the CM-2 Architecture, Paris, and *Lisp
The first appendix describes the CM-2 hardware capabilities accessible
from *Lisp.

Example Program 1: Text Processing
The second appendix is a sample program that demonstrates the use of
several *Lisp features new with Version 5.0.

Example Program 2: Determinants
The third appendix is a sample program that demonstrates the use of sev-
eral *Lisp features new with Version 5.0.

viii

Preface

Associated Documents

The following documents should be read in the order listed before reading the Supplement to the
*Lisp Reference Manual.

@ Connection Machine Front-End Subsystems

This volume explains how to configure the Connection Machine system and how to
access it from either a Symbolics Lisp Machine or a UNIX system. It includes:

e System Front Ends Release Notes, Version 5.0
o CM User's Guide: UNIX System Front End, Version 4.0
e CM User's Guide: Lisp System Front End, Version 4.0

Those working on a UNIX system front end should read both User’s Guides; those
working on a Symbolics Lisp Machine front end need only read the second.

® Common Lisp: The Language by Guy L. Steele Jr. Burlington Mass.: Digital Press, 1984
This book defines the de facto industry standard Common Lisp.

® The *Lisp Reference Manual, Version 5.0

This manual provides a complete description of the *Lisp language through Version
4.0 and has been updated for Version 5.0. It covers the essential concepts of *Lisp and
is supplemented by the Supplement to the *Lisp Reference Manual, Version 5.0

The following related documents should be read along with the Supplement to the *Lisp Refer-
ence Manual.

® The *Lisp Release Notes, Version 5.0

These release notes supersede all previous *Lisp release notes. They provide an over-
view of all changes made to the language, to the interpreter, and to the compiler for the
release of version 5.0

e The *Lisp Compiler Guide, Version 5.0

This manual describes how to use the *Lisp compiler and provides helpful suggestions
for writing *Lisp code that will compile.

The following documents are recommended.

® Model CM-2 Technical Summary

This publication offers a succinct overview of the Connection Machine system.

® (Connection Machine Parallel Instruction Set

This volume describes Paris, the Connection Machine system assembly level program-
ming language.

ix

Preface

Notation Conventions

The notation and typograghical conventions used in this manual are reviewed below. These
conventions closely follow—but are not identical to—those used in Common Lisp: The Lan-

guage.
The symbol => indicates evaluation. The symbol -> indicates macro expansion.
Symbol names within text appear in bold modern style typeface, as in *max.

Code examples are set in typewriter style typeface, as in:
(cons abra cadabra) => (abra cadabra)

Metavariables, names that stand for pieces of code, appear in italics. For example, the names of
arguments in function or macro descriptions appear in italics, as shown in the function descrip-
tion format below.

Function descriptions are presented as show below:

function-name!! required-argl-integer-pvar required—arg2-integer—pvar [Function)]
&optional optional-arg-float-pvar optional-arg-char-pvar
&rest rest-pvars
&key :key1l :key2 :keywest
&aux aux-arg-vars

In this example, the function function-name!! takes two required pvar arguments, required-
argl-integer-pvar and required-arg2-integer-pvar. Required arguments are always shown imme-
diately after the function name in a function description. If present, optional arguments are
preceded by the appropriate lambda-list keywords: &optional, &rest, &key, and &aux.

The metavariable names used to represent arguments in function and macro descriptions indi-
cate restrictions on argument type. Argument names with the suffix pvar must be parallel vari-
ables. For example, the name integer-pvar restricts the argument to a parallel variable whose
fields in the currently selected set of processors must all contain integers.

Plural metavariable names are used to indicate multiple optional arguments of the same type.
The use of rest—pvars above demonstrates this. If restrictions on order and type exist for optional
arguments, these are reflected in the metavariable names. The metavariables optional-arg-
float-pvar and optional-arg—char-pvar above are examples.

Keyword argument names only are specified in function descriptions. Allowable keyword val-
ues are enumerated and described in the text. Italicized metavariables are often used in the text
to refer to the values of keyword arguments. For example, the value of the keyword :keywest
would be referred to as keywest, and keywest might be restricted to symbols representing months
of the year. Calling function-name!! with :keywest 'February would put you on the beach
in winter.

T—

Customer Support

Thinking Machines Customer Support encourages customers to report errors in Connection
Machine operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us identify and
correct the problem. A code example that failed to execute, a session transcript, the record of a
backtrace, or other such information can greatly reduce the time it takes Thinking Machines to
respond to the report.

To contact Thinking Machines Customer Support:

U.S. Maii: Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1214

Internet

Electronic Mail: customer-support@think.com
Usenet

Electronic Mail: harvard!think!customer-support
Telephone: (617) 876-1111

For Symbelics users only:

The Symbolics Lisp machine, when connected to the Internet network, provides a special mail
facility for automatic reporting of Connection Machine system errors. When such an error oc-

curs, simply press CTRL-M to create a report. In the mail window that appears, the To : field
should be addressed as follows:

To: bug-connection-machine@think.com

Please supplement the automatic report with any further pertinent information.

xi

mailto:customer-support@think.com
mailto:bug-connection-machine@think.com

Chapter 1

Complex Number Pvars

*Lisp version 5.0 implements pvars containing complex numbers. Parallel equivalents
of most Common Lisp operations that accept complex numbers are now available in
*Lisp. *Lisp imposes greater restrictions on some of these operations than does Com-
mon Lisp. These are fully described in the following discussion.

1.1 Complex Pvar Type Definition,
Predication, and Coercion

As in Common Lisp, the real and imaginary components of complex numbers in *Lisp
must each contain exactly the same data type. Unlike Common Lisp, complex pvars in
*Lisp are restricted to having floating-point values in their real and imaginary compo-
nents. The type declaration for a complex pvar includes, either implicitly or explicitly, a
precision specification for these floating-point values.

The following shorthand type definitions are provided to allow the definition of com-
plex pvars containing IEEE standard floating-point format components.

(pvar (complex single-float)) [Type]
(pvar (complex double-float)) [Type]

These forms specify single- and double-precision storage for both the real and imagi-
nary components of complex number pvars.

A single-precision complex pvar uses 23 bits for the significand and 8 bits for the expo-
nent of each component. A double-precision complex pvar uses 52 bits for the sig-
nificand and 11 bits for the exponent of each component.

The complex pvar type is more explicitly specified as follows:

2 Supplement to *Lisp Reference Manual

(pvar (complex (defined-float significand exponent))) [Type]

The significand and exponent specifiers determine the number of bits used to store the
significand and exponent portions of the real floating-point numbers used for both the
real and imaginary portions of a complex pvar.

Example:

(*let* (cl c2)
(declare (type (pvar (complex single-float)) cl))
(declare (type (pvar (complex (defined-flocat 30 9))) c2))
(*set cl (sqrt!! (!! #C(-1.0 0.0))))
(*set c2 (log!! (!! #C(-1.0 0.0))))

PERFORMANCE NOTE

On a CM-2 with the special floating-point accelerator,
*Lisp code that uses complex pvars of type (pvar
(complex single-float)) in numeric calculations exe-
cutes significantly faster than code that uses other
types of complex pvars.

complexp!! pvar [Function)

This predicate returns t in each processor whose value of numeric—pvar is a complex
number; it returns nil elsewhere. The argument pvar may be any pvar.

complex!! realpart-pvar &optional imagpart-pvar [Function]

This function returns a complex pvar that has, in each processor, the realpart-pvar
component as its real part and the imagpart-pvar component as its imaginary part.
Conversion according to the rule of floating-point contagion takes place as necessary.
That is, the bit field lengths of the exponent and significand components of floating-
point numbers in all active processors are guaranteed to be as large as the largest rep-
resentation of either component in any active processor.

Chapter 1. Complex Number P

The arguments realpart-pvar and imagpart-pvar must be non-complex numeric pvars.
If imagpart is not specified, then an imaginary part pvar of (!! 0) is provided.

(complex!! realpart-pvar)
<=>
(coerce!! realpart-pvar ° (pvar (complex float))

1.1.1 Rules of Complex Contagion and Canonicalization

*Lisp does adhere to the rule of complex contagion as stated in Common Lisp: The
Language. When an operation is passed a pvar that contains a mixture of non-complex
and complex number components, the non-complex components are converted to
complex numbers by providing an imaginary part of 0.0.

*Lisp does not adhere to the rule of complex canonicalization as stated in Common
Lisp: The Language. That is, if the result of an operation on a complex pvar is, in any
processor, a complex rational with a zero imaginary part that result is not converted to
a non-complex rational consisting only of the real part: the zero imaginary part is pre-
served.

In Common Lisp
(complex 0) => #C(0 0) => O

Given a complex number with a zero imaginary, Common Lisp drops the imaginary
part. In contrast, in *Lisp

(complex!! (!! 0)) => (!! #C(0.0 0.0))

Notice that *Lisp coerces both parts of the resulting complex pvar into a floating-point
representation.

1.2 Mathematical Operations on Complex Pvars

*Lisp provides parallel equivalents to most mathematical Common Lisp functions de-
fined to accept complex arguments.

4 Supplement to *Lisp Reference Manual

The following *Lisp functions accept complex arguments.

zerop!! numberp!!

=!! abs!!

1=11 phase!!

+!! signum!!

-1 conjugate!!

1 realpart!!

"t imagpart!!

1+!! exp!!

1-1! expt!!

*sum log!!

abs!! sart!!

sin!! asin!! sinh!! asinh!!
cos!! acos!! cosh!! acosh!!
tan!! tanh!! atan!! atanh!!
cis!!

Most of these behave, in each processor, exactly like their Common Lisp counterparts.
Those functions listed and underlined are not exact parallel equivalents of Common
Lisp functions. To find detailed documentation of any of these operations, consult the
Master Index.

1.2.1 Irrational and Transcendental Functions

*Lisp restricts the use of some irrational and transcendental functions with respect to
complex numbers more strictly than does Common Lisp.

Complex Results

In *Lisp, it is an error if one of the following functions would have to return a complex
number pvar when given floating-point pvar arguments:

sqrt!!

expt!! log!!
asin!! acos!!
acosh!! atanh!!

To get a complex result from sqrt!!, asin!!, acos!!, acosh!!, or atanh!!, it is necessary to
first coerce its single argument into a complex pvar. To get a complex result from expt!!
or log!!, it is necessary to first coerce only the first argument into a complex pvar. The

Chapter 1. Complex Number Pvars 5

required coercion may be achieved by using the function complex!! or the function
coerce!!.

For example:

(sqrtt!! (!t -1)) => error
(sqrt!! (complex!! (!! -1))) => (complex!! (!! 0.0) (!! 1.0))

(expt!!t (VY =1) (!t 0.5)) => error
(expt!! (complex!! (!'! =1)) (!t 0.5))
=> (complex!! (!! 0.0) (!! 1.0))

Argument Restrictions

*Lisp restricts the values of arguments supplied to these functions as described below.

sqrt!! numeric-pvar [Function]
The non-negative square root of numeric-pvar is returned.

It is an error if the argument numeric-pvar is either a floating-point pvar that contains
negative numbers or an integer pvar that contains negative numbers. The function
sqrt!! will never return a complex pvar as its result unless numeric-pvar is complex.

expt!! base-pvar power-pvar [Function]

This function computes and returns a pvar containing base-pvar raised to the power
power-pvar in each processor.

It is an error if the argument base-pvar is a negative floating-point pvar and the argu-
ment power-pvar is a floating-point pvar. Itis also an error if the argument base-pvar is
an integer pvar and argument power-pvar contains negative integers.

log!! numeric-pvar &optional base [Function)

The logarithm of numeric-pvar in base base is returned. If base is not supplied, the
natural logarithm is returned.

The argument numeric-pvar must be either a non-negative floating-point pvar or a
non-negative integer pvar. The argument base must be a positive, non-complex num-
ber pvar.

lement to *Lisp Reference Manual

asin!! numeric-pvar [Function]
acos!! numeric-pvar [Function)
atanh!! numeric-pvar [Function]

These functions compute and return the arc sine, arc cosine, and the hyperbolic arc
tangent of numeric-pvar, respectively.

It is an error if the argument numeric-pvar is a floating-point pvar or an integer pvar
containing numbers of magnitude greater than 1.0.

acosh!! numeric-pvar [Function)

These functions compute and return the hyperbolic arc cosine and the hyperbolic arc
tangent of numeric-pvar.

It is an error if the argument numeric-pvar is a floating-point pvar or an integer pvar
containing numbers less than 1.0.

Chapter 2

Character Pvars

*Lisp Version 5.0 implements pvars containing characters. Parallel equivalents of al-
most all Common Lisp operations that accept character data are now available in
*Lisp.

While arrays of characters are allowed in *Lisp, the parallel equivalent of strings is not
provided by *Lisp. This follows from the restriction that array pvars of varying lengths
in different processors are not supported in *Lisp.

2.1 Character Pvar Type Definition

There are two *Lisp pvar types that store character data. These are parallel equiva-
lents of the Common Lisp character and string-char types.

(pvar character) [Type]
(pvar string-char) [Type]
Example:

(*let (chl)
(declare (type (pvar string-char) chl))
(*if (evenp!! (self-address!!))
(*set chl (!! #\Q))
(*set chl (!! #\L))
)))

8 Supplement to *Lisp Reference Manual

2.2 *Lisp Global Character Variables

In *Lisp, as in Common Lisp, character pvars have three attributes represented by
three bit fields: the code, the bits, and the font fields. *Lisp provides variables that
define the lengths of these fields as well as variables that define the upper bounds on
the values these fields may contain.

*char-code-length [Variable]

This defines the length in bits of the code subfield of a pvar character. The default is 8
bits. Pvars of type (pvar string-char) have only a code field and are the same length as
*char-code-length.

*char-code-limit [Variable]

This is the upper exclusive bound restricting the value of the pvar character code at-
tribute. The default is 256.

*char-bits-length [Variable]

This defines the length in bits of the bits subfield of a pvar character. The default is
4 bits.

*char-bits-limit [Variable]

This is the upper exclusive bound restricting the value of the pvar character bits attrib-
ute. The default is 16.

*char-font-length [Variable]

This defines the length in bits of the font subfield of a pvar character. The default is
4 bits.

*char-font-limit [Variable]

This is the upper exclusive bound restricting the value of the pvar character font attrib-
ute. The default is 16.

Chapter 2. Character Pvars 9

*character-length [Variable]

This defines the total length in bits of a pvar of type pvar character. The default is
16 bits.

2.2.1 Setting the Global Character Variables

initialize-character &key :code :bits :font [Function]
:front-end-p :constantp

This function sets the values of the *Lisp character attributes, which are stored in
global character variables. The initialize-character function should be called before
*cold-boot is invoked.

A successful call to initialize-character returns zero values.

It is not necessary to call initialize-character unless *Lisp application code requires
global character variable values that differ from the defaults. If this is necessary, initial-
ize-character must be invoked before *cold-boot. Calling initialize-character during
a session will cause existing character data to be garbled or lost.

The keywords :code, :bits, and :font take integer values specifying how many bits will
be allocated for each attribute of any character pvar. The defaults are :code §, :bits 4,
and :font 4.

The value for :code must be greater than or equal to 7.
The value for :bits must be greater than 0.
The value for :font must be greater than or equal to 0.

The keyword :front-end-p takes either t or nil as a value and defaults to nil. If front-end
is t, the global character variables are set to match the character storage format of the
front end.

Symbolics front ends have their code, bits, and font lengths set to 16, 4, and 0, respec-
tively. Under Lucid Common Lisp, these values are are 8§, 4, and 0. Note: These front-
end character attribute lengths are independent of the character attribute lengths on
the Connection Machine system.

If code, bits, or font attributes are specified that differ in storage size from those of
front-end scalar character data, then it is impossible for some characters created on
the front end to be represented on the Connection Machine system or for some ele-

10 Supplement to *Lisp Reference Manual

ments of character pvars to be represented on the front end. For example, with a UNIX
front end running Lucid Common Lisp,

(initialize—-character :code 9)
(*defvar foo (code-char!! (!! 511)))
(pref foo 0)

is in error. Given 9 code bits, the Connection Machine *char-code-limit becomes 512.
Meanwhile, the front end has only 8 code bits and a char-code-limit of 256. Thus, the
front end cannot represent the characters stored in foo because the character code

value is too large.

The keyword :constantp takes a boolean value. This is used to specify whether or not
the sizes of character attributes are consistent across sessions. The *Lisp compiler
uses this distinction to choose between producing compiled code that uses the global
character variables and producing compiled code that substitutes hard coded values
for these variables. Therefore, code compiled with :constantp t will run reliably only in
worlds where the character attributes are the size specified at compile-time. Code
compiled with :constantp nil, need not be recompiled to move between worlds with
different character attribute sizes.

2.3 Functions Ope}ating on Character Pvars

*Lisp operations on character pvars are parallel equivalents of the Common Lisp
character operations specified in chapter 13 of Common Lisp: The Language.

2.3.1 Functions to Access Character Attributes

char-code!! character-pvar [Function]
char-bits!! character-pvar {Function]
char-font!! character-pvar {Function]

These functions each return a pvar that contains the code, bits, or font attributes of
each character element of character—pvar.

The argument character-pvar must be a character pvar, a string-char pvar, or a general
pvar containing only character or string-char elements.

Chapter 2. Character Pvars 11

By definition, the font and bits attributes of a string—char pvar are zero. It is always the
case that:

(char-bits!! string-char-pvar) => (!! 0)
(char-font!! string-char-pvar) => (!! 0)

2.3.2 Functions to Construct and Convert Characters

code-char!! code-pvar &optional bits-pvar font-pvar [Function]

This function attempts to construct a character pvar with the specified attributes. In
processors where this can be done, the resulting character is returned. In processors
where this can not be done, nil is returned.

All three arguments must be non-negative integer pvars. The optional bits—pvar argu-
ment and the optional font-pvar argument each default to (!! 0).

make-char!! character-pvar &optional bits-pvar font-pvar [Function]

This function attempts to construct a character pvar with the same code attribute as
character-pvar and with the optionally specified bits and font attributes. In processors
where this can be done, the resulting character is returned. In processors where this
can not be done, nit is returned.

The argument character-pvar must be a character pvar, a string-char pvar, or a general
pvar containing only character or string-char elements.

Both optional arguments must be non-negative integer pvars; each defaults to (!! 0).

character!! char-or-int-pvar [Function]

Type coercion is attempted on the argument char-or-int-pvar. In processors where
this is successful, the resulting character is returned. In processors where this is unsuc-
cessful, character!! returns nil.

The argument char-or-int-pvar must be a pvar of type character, string—char, integer,
or a general pvar containing only elements of these types.

12 Supplement to *Lisp Reference Manual

(character!! char-or-int-pvar)
<=>
(coerce!! char-or-int-pvar “ (pvar character))

char-upcase!! character-pvar [Function]
char-downcase!! character-pvar [Function]
char-flipcase!! character-pvar [Function]

These functions attempt to convert the case of each character element of character-
pvar. The return value of either operation is a pvar containing converted characters
where possible and intact original character values elsewhere. During these case con-
versions, the values of the bits and font attributes are not changed. Notice that only
alphabetic characters are susceptible to case conversion. Thus, characters with non-
zero bit field values will not be changed.

The argument character-pvar must be a pvar of type character or string—char, or a gen-
eral pvar containing only elements of these types.

digit-char!! weight-pvar &optional radix-pvar font-pvar [Function]

This function attempts to construct a character pvar containing, in each processor, a
character of font font-pvar such that, taken as a digit of radix radix-pvar, that character
has weight weight-pvar. In each processor where this is possible, the resulting charac-
ter is returned. In each processor where this is not possible, nil is returned.

All arguments must be non-negative integer pvars.

The function digit-char!! will never return nil in a processor where the value of font—
pvaris 0, that of radix-pvar is between 2 and 36 inclusive, and that of weight-pvar is less
than radix-pvar.

If a character having both upper and lower case representations will satisfy digit-
char!!, upper case letters are preferred. For example,

(digit—char!! (!! 14) (!! 16)) => (!! #\E)

char-int!! character-pvar [Function]

This function translates a character pvar into an integer pvar.

pe—

Chapter 2. Character Pvars 13

The return value is a non-negative integer pvar that holds the implementation-depend-
ent encoding of each character in character-pvar.

The argument character-pvar must be a pvar of type character or string-char, or a gen-
eral pvar containing only elements of these types.

The char-int!! function relies on the Connection Machine system’s encoding of char-
acters. Results obtained from this function should not be expected to conform to re-
sults obtained from the Common Lisp function char-int run on front-end machines.

int-char!! integer-pvar [Function]

This function is the converse of char-int!!. It converts an integer pvar into a character
pvar. The return value is a character pvar which, if given to char-int!!, will return inte-
ger-pvar.

The argument integer-pvar must be a non-negative integer pvar.

The int-char!! function relies on the Connection Machine system’s encoding of char-
acters. Results obtained from this function should not be expected to conform to re-
sults obtained from the Common Lisp function int-char run on front-end machines.

2.3.3 Character Predicate Tests

Each of the following functions tests its argument and returns a boolean pvar.

characterp!! pvar [Function]

This function returns t in those processors where character-pvar contains character
data and nil elsewhere.

The argument pvar may be any pvar.

string-char-p!! character-pvar [Function)

This function returns t in those processors where character-pvar contains string-char
data and nil in processors where character-pvar contains character data. To pass this
string—char type test, an element of character-pvar must have bits and font attributes
that are each of zero value.

14 Supplement to *Lisp Reference Manual

The argument character-pvar must be a character pvar, a string—char pvar, or a general
pvar containing only elements of type character or string-char.

standard-char-p!! character-pvar [Function]

This function returns t in those processors where character-pvar contains an element
of type standard-char; it returns nil elsewhere. The Commmon Lisp definition of stan-
dard-char is used. To pass this type test, the value of character-pvar’s bits and font
attributes must both be zero.

The argument character-pvar must be a character pvar, a string—char pvar, or a general
pvar containing only elements of type character or string—char.

graphic-char-p!! character-pvar [Function]

This function returns t in those processors where character-pvar contains a printing
character and nil elsewhere. On the Connection Machine, only characters with ASCII
values ranging from 32 to 127, inclusive, are considered graphic, printing characters.
Any character pvar with a bits field of non-zero value is not a graphic character pvar.

The argument character-pvar must be a character pvar, a string-char pvar, or a general
pvar containing only elements of type character or string—char.

alpha-char-p!! character-pvar [Function]

This function tests its argument for alphabetic elements. In those processors where
character-pvar contains an alphabetic element, tis returned. In those processors where
character-pvar does not contain an alphabetic element, nil is returned.

The argument character-pvar must be a character pvar, a string—char pvar, or a general
pvar containing only elements of type character or string—char.

upper-case-p!! character-pvar [Function]
lower-case-p!! character-pvar [Function]
both-case-p!! character-pvar [Function]

These predicates test the case of the character components of character-pvar.

The argument character-pvar must be a character pvar, a string—char pvar, or a general
pvar containing only elements of type character or string-char.

Chapter 2. Character Pvars 15

Where character-pvar contains characters in the range A through Z, upper-case-p!!
returns t.

Where character-pvar contains characters in the range a through z, lower-case-p!!
returns t.

Where character-pvar contains characters which, regardless of current case, may be
represented in both upper and lower case, both-case-p!! returns t.

For each function, the return value is nil in those processors containing character data
that fails to pass the test criterion.

digit-char-p!! character-pvar &optional radix-pvar [Function)
This function tests character-pvar for digits of radix radix-pvar.

In each processor containing a character-pvar element that is a digit of the specified
radix, digit-char-p!! returns a non-negative integer indicating the weight of the digit.
In those processors where the elements of character-pvar are not digits of the specified
radix, digit-char-p!! returns nil.

Notice that digit character pvars are always also graphic character pvars.

The argument character-pvar must be a character pvar, a string-char pvar, or a general
pvar containing only character or string-char elements.

The argument radix-pvar must be a positive integer pvar and defaults to (!! 10).

alphanumericp!! character-pvar [Function]
This function tests character-pvar for alphanumeric elements.

In those processors where character-pvar is either a digit (of radix 10) or an alphabetic
character, alphanumericp!! returns t. It returns nil where this test fails.

The argument character-pvar must be a character pvar, a string-char pvar, or a general
pvar containing only character or string—char elements.

(alphanumericp!! character-pvar)
<=>
(or!! (alpha-char-p!! character-pvar)
(not!! (null!! (digit-char-p!! character-pvar))))

16 Supplement to *Lisp Reference Manual

char=!! character-pvar &rest more-character-pvars [Function]
char/=!! character-pvar &rest more-character-pvars [Function]
char<!! character-pvar &rest more-character-pvars [Function]
char>!! character-pvar &rest more-character-pvars [Function]
char<=!! character-pvar &rest more—character-pvars [Function]
char>=!! character-pvar &rest more—character-pvars [Function]

These functions compare the character element of character-pvar in each processor
against the character elements of each &rest argument pvar in the same processor.

A boolean pvar is returned. It contains t in those processors where the test is true and
nil in those processors where the test is false.

The argument character-pvar and each optional &rest argument must be a character
pvar, a string—char pvar, or a general pvar containing only character or string-char
elements.

Examples:

(char<t! (!! #\A) (!! #\B) (!! #\Z)) => t!!
(char>!! (!'! #\z) (!! #\J) (!! #\a)) => t!!
(char<=!! (!! #\5) (!'! #1) (!'! #\5)) => nilt!!

The ordering of alphanumeric character pvars used by *Lisp is the ASCII ordering:
.. .0<1<2...<8<9...<A<B<C...<X<¥<Z. .<a<b<c...<x<y<z...

This ordering is the same as the total ordering produced by applying the function
char-int!! to such pvars. Notice that this ordering might not be the same as that used
by the front-end machine for the scalar equivalents of these character comparison
functions. This implementation dependency should be taken into account when char-
acter comparisons on front end scalar characters are mixed with the parallel character
comparisons described here.

For the purpose of these functions, if any two characters differ in any attribute, they
are considered different. Thus,

(char=!! (make-char!! (!! #\Q) (!'! 0) (!! 0))
(make-char!! (!! #\Q) (!'! 3) (!! 0))) => nil!!

This strictness with respect to attributes is relaxed in the following set of functions.

char-equal!! character-pvar &rest more~character-pvars [Function]

char-not-equal!! character-pvar &rest more—character-pvars [Function)]
char-lessp!! character-pvar &rest more—character-pvars [Function]
char-greaterp!! character-pvar &rest more~character-pvars [Function]
char-not-greaterp!! character-pvar &rest more-character-pvars [Function]
char-not-lessp!! character-pvar &rest more-character-pvars [Function]

These functions make case-insensitive comparisons between the character element of
character-pvar in each processor and the character elements of each &rest argument
pvar in the same processor. Differences in case, bit, and font attributes are ignored.

A boolean pvar is returned. It contains t in those processors where the test is true and
nil in those processors where the test is false.

The argument character-pvar and each optional &rest argument must be a character
pvar, a string—char pvar, or a general pvar containing only character and string-char
elements.

2.4 Character Control Bit Functions

char-bit!! character-pvar bit-name-pvar [Function]
This function tests the bit-name-pvar bit setting of character-pvar.

In those processors where character-pvar contains a character element that has the
bit-name-pvar bit set, char-bit!! returns t. It returns nil where character—pvar contains
a character element that does not have the bit~-name—pvar bit set.

The argument character-pvar must be a character pvar, a string—char pvar, or a general
pvar containing only character and string-char elements.

Unlike its Common Lisp analogue, the argument bit-name-pvar must be an integer
pvar (either an unsigned-byte or a signed-byte pvar). The following correspondence
holds between legal values for the bit-name-pvar argument and the recommended
Common Lisp control-bit constants:

18 Supplement to *Lisp Reference Manual

Common Lisp *Lisp
:control (' 0)
:meta (tt 1
:super ('t 2)
thyper (! 3)

For example:

(char-bit!! (!'! #\control-x) (!! 0)) => t!!

set-char-bit!! character-pvar bit-name-pvar newvalue-pvar [Function)]

This function constructs a copy of character—pvar with the bit-name-pvar bit set to
newvalue—pvarin each processor. It returns a pvar containing characters that resemble
those in character-pvar except that the bit-name-pvar bit is set on or off depending on
the value of the boolean pvar, newvalue-pvar.

The argument character-pvar may be a character pvar, a string—char pvar, or a general
pvar containing only character or string—char elements.

The argument bit-name-pvar must be an integer pvar in the range (! 0) through (!! 3),
inclusive. The same correspondence holds between legal values for the bit-name-pvar
argument to set—char-bit!! and the Common Lisp control-bit constants as detailed
above for char-bit!!.

For example:

(set—char-bit!! (!! #\x) (!! 0) t!!) => (!'! #\control-x)
(set—char-bit!! (!! #\control-x) (!! 0) t!!) => (!! #\control-x)
(set—char-bit!! (!! #\control-x) (!! 0) nil!!) => (!! #\X)

Chapter 3

Array Pvars

*Lisp defines array pvars as the parallel equivalent of Common Lisp arrays with the
exception that more stringent restrictions on type and size apply to array pvars than to
Common Lisp arrays. *Lisp pvar arrays are pvars containing one array per processor.
As with Common Lisp arrays, *Lisp array pvars are stored in row major order.

Whereas Common Lisp includes both general and specialized arrays, *Lisp supports
only specialized array pvars. Each element of an array pvar must be a pvar of a given
restricted type; array pvars may not contain general pvars. Also, general pvars may not
contain array pvars as elements.

Adjustable array pvars are currently not implemented in *Lisp. This means that it is
not possible to dynamically alter the dimensions of an array pvar.

Array pvars of variably sized elements are not currently implemented in *Lisp. This
means it is an error to attempt to create array pvars containing elements of non-uni-
form size.

The allowable types for array pvar elements are currently restricted to valid Common
Lisp types of fixed size. Thus, array pvar elements may not be declared mutable.

3.1 Array Pvar Type Definition

(pvar (array element-type dimension-list)) [Type]

This form defines the array pvar type. The element-type specifier may be any valid pvar
type of fixed size, including the array pvar type itself. The dimension-list specifier must
be a list of one or more non-negative integers.

19

20 Supplement to *Lisp Reference Manual

Example:

(*let (al)
(declare (type (pvar (array (unsigned-byte 32) (10 10))) al))
al

(*let (a2)
(declare (type (pvar (array (array boolean (2 2)) (10))) a2))
a2

Notice how easy it would be to forget to enclose a2’s outer dimension specifier, 10,
within a list.

IMPORTANT

The dimension specification within an array type dec-
laration must be a list. Be careful not to omit the paren-
theses when declaring a one-dimensional array.

3.2 Array Pvar Limits

Three *Lisp constants constrain the allowable dimensions of *Lisp array pvars.

*array-rank-limit [Constant]

This is the upper exclusive bound on the number of dimensions a pvar array can have.
The number of dimensions specified for a *Lisp array pvar must be less than
*array-rank-limit. *array-rank-limit is guaranteed to be greater than or equal to 8.

22 Supplement to *Lisp Reference Manual

Unlike its Common Lisp counterpart, make-array!! does not support the following
keyword parameters: :initial-contents, :adjustable, :fill-pointer, :displaced-to, and
:displaced-index-offset.

Example:

(setq new-array—-pvar
(make-array!! ‘(2 2 2) :element-type “(complex single-float)
:initial-element 5.3)

)

(aref (pref new-array-pvar 0) 0 1 0)
=> #C(5.3 0.0)

A pvar consisting of a three-dimensional array containing single-precision complex
numbers in each processor is defined and bound to the symbol new-array-pvar. The
value (!! 5.3) is *set into new-array-pvar so that, in all active processors, each array
element is initialized. An arbitrary array reference in processor 0 verifies the presence
of an initial pvar array element value.

3.3.2 Using !! to Create Array Pvars

The function !! can be used to create an array pvar allocated on the *Lisp stack.

! common-lisp~array {Function]

A call to !f with a Common Lisp array as its argument creates and returns a *Lisp
array pvar. The resulting array pvar has a copy of all the elements of common-lisp—
array in each active processor.

If common-lisp—array has a fill pointer, it is ignored; all elements of the array are cop-
ied into the CM. If common-lisp—array is adjustable, the resulting array pvar will none-
theless be of a fixed size equal to that of common-lisp—array at the time !! was invoked.
Similarly, if common-lisp—array is displaced, the elements of the array it is displaced to
will be copied into the array pvar, but the array pvar will not itself be displaced.

The type of any array pvar created with !! is determined by the types of the elements in
common-lisp-array. If common-lisp-array contains elements of various types, the
*Lisp rules of type coercion apply. These rules closely follow the rules of Common Lisp
and are detailed in chapter 8. For example, if a Common Lisp array containing both

integer and floating-point elements is supplied as an argument to !!, the resulting array
pvar has elements of type floating-point.

It is an error to call !! on a Common Lisp array containing elements that cannot, ac-
cording to the *Lisp rules of type coercion, be coerced into a single, fixed-size type. For
example, an array containing both characters and integers is not a legal argument to !!.

Nested arrays of arbitrary depth are legal arguments to !!. For instance, an array of
arrays of structures is a permissible argument to !! —if that structure was defined us-
ing *defstruct. Be aware that calling !! with these kinds of nested arrays can be a very
slow operation.

Examples:

(*let ((parallel-array (!! #(1 2 3))))
(declare (type
(pvar (array (unsigned-byte 8) (3))) parallel-array))
(do-something-to array-pvar))

A one-dimensional Common Lisp array of three elements is duplicated in all active
processors and parallel-array is bound to the result.

(*let ((points (!! #(#(2 4)#(6 12)#(7 16)#(5 20)#(2 56)))))
(declare (type
(array-pvar (vector (unsigned-byte 8) 2) (5)) points))
(do-something-to points))

A five-element Common Lisp array of two-element vectors is duplicated in all active
processors and points is bound to the result.

3.3.3 Using *let and *let* to Create Array Pvars

Array pvars can be allocated on the *Lisp stack by declaring them appropriately from
within a *let or a *let* form. Be careful: when allocating an array using *let or *let*,
don’t forget to declare the type of the pvar because undeclared pvars that have held
any other type of data cannot hold arrays.

24 Supplement to *Lisp Reference Manual

Examples:

(*let (foo)
(declare (type (pvar (array single-float (3 3))) foo))
(*setf (aref!! foo (!! 0) (!!' 1)) (!t 2.3))
(aref (pref foo 0) 0 1)
)

=> 2.3

(*let ((bar (make-array!'!'! ‘(3 3 3) :element-type ‘ (pvar boolean)
:initial-element t)

))
(declare (type (pvar (array boolean (3 3 3))) bar))
(ppp bar :end 1)
)
=>
HA((WTTTOMTTTHOTTTINTTTHO(TTDTHTTTYI((TTTI(TTT)
(TTT))

3.3.4 Using allocate!! to Create Array Pvars

Array pvars may be allocated on the *Lisp heap by using allocate!!.

Example:

(setq baruch (allocate!! (!! #(1 2 3)) nil
“(pvar (array (unsigned-byte 8) (3)))))

(ppp baruch :end 2)

=> #(1 2 3) #(1 2 3)

Chapter 3. Array Pvars 2§

3.3.5 Using *defvar and *proclaim to Create Array Pvars

Array pvars may be allocated on the *Lisp heap by using *defvar and *proclaim.

Be careful: when allocating an array pvar using *defvar, be sure to first declare the type
of pvar using *proclaim. Undeclared pvars cannot hold arrays.

Examples:

(*proclaim “ (type (pvar (array character (3 4 5))) fum))

(*defvar fum (make-array!! (3 4 5)
:element-type ° (pvar character)
:initial-element #\L))

(ppp (aref!! fum (!! 1) ('Y 2) (!!' O)) :end 10)

=> #\L #\L #\L #\L #\L #\L #\L #\L #\L #\L

(*proclaim “ (type (pvar (array (unsigned-byte 8) (3))) fee))
(*defvar fee)

(*set fee (!! #(1 2 3)))

(ppp fee :end 3)

=> #(1 2.3) #(1 2 3) #(1 2 3)

3.3.6 Array Pvars with Dynamically-Determined Dimensions

It is possible to allocate array pvars whose dimensions are known only at run time. A
properly constructed array pvar type declaration within a *let or a *let* form is used.
The dimensions specification of the declaration may be given in one of two ways:

1. Alist of dimension values, (xy z), may be given, such thatx, y, and z each evalu-
ate to integers at run time.

2. A variable may be named. Its value at run time must be a list of integers.

26 Supplement to *Lisp Reference Manual

Examples:

(defun make-2d-array-pvar (x y)
(*let (temp-array)
(declare (type (pvar (array single-float (x y))) temp-array))
temp-array))

(*proclaim “ (type (pvar (array single-float (5 5))) 5-by-5))
(*defvar 5-by-5)
(*set 5-by-5 (make-2d-array-pvar 5 5))

The formal parameters x and y are bound to specific values upon invocation of
make-2d-array. The dimensions of temp-array are then determined upon execution
of the form.

Example:

(defun good-make-array-pvar (input-scalar-array)
(let ((dims (array-dimensions input-scalar-array)))
(*let (temp)
(declare (type (pvar (array single-float dims)) temp))
temp)))

(defun bad-make-array-pvar (input-scalar-array)
(*let (temp)
(declare (type (pvar (array single-float
(array-dimensions input-scalar-array)))
temp))
temp))

Any array pvar declaration form expects a list of integers specifying array dimensions.

The bad-make-array-pvar function definition is in error because it places the form
(array-dimensions input-scalar-array) inside the declare form. The declaration
should instead contain a list of integer dimensions or a symbol bound to such a list.

The good-make-array-pvar function definition works properly because the symbol
dims is bound to a list of integers: the result of (array-dimensions input-scalar-array).
The symbol dims is then supplied to the declare form, which, when executed, finds
dims properly bound to a list of integers.

Chapter 3. Array Pvars

3.4 Creating Vector Pvars

Justas Common Lisp vectors are equivalent to one-dimensional Common Lisp arrays,
*Lisp vector pvars are equivalent to one-dimensional array pvars. Unlike Common
Lisp, which provides both typed and general vectors, *Lisp does not support vector
pvars that have elements of type t. *Lisp supports only typed vectors.

(pvar (vector element-type length)) [Pvar Type]
(vector-pvar element-type length) [Pvar Type]

These two forms may be used interchangeably in typed vector pvar declarations. The
element-type must be a Common Lisp scalar type. The length defines the number of
element—type elements contained in each active processor.

typed-vector!! component-type &rest pvars [Function]

The function typed-vector!! creates and returns a one-dimensional array pvar of type
component-type. Initial contents are copied from the supplied pvars. The nth pvar
argument is *set into the nth vector element.

The component-type argument describes the pvar type of the vector pvar’s compo-
nents—not the type of the component vectors’ elements.

Notice that,

(typed-vector!! ‘(pvar single-float) (!'! 1.0) (!'! 2.0) (!! 3.0))
<=>

(*let (temp)
(declare (type (pvar (array single-float (3))) temp))
(dotimes (Jj 3)
(*setf (aref!! temp (!! J))(!! float (1+ j)))
))

That is, a call to typed-vector!! is equivalent to a *let form that declares and then in-
itializes a one-dimensional array pvar.

Chapter 10 of this supplement describes experimental *Lisp operations that manipu-
late numeric vectors.

28 Supplement to *Lisp Reference Manual

3.5 Operations Returning Array Pvar Information

*array-element-type array-pvar [Function]

This function returns a scalar type specifier for the elements array—pvar. If no proces-
SOrs are active, *array-element-type nonetheless returns the proper element type.

*array-rank array-pvar [*Defun]

This operation returns an unsigned integer equal to the number of dimensions in
array-pvar.

array-rank!! array-pvar [Function]

This function returns a pvar containing, in each processor, an unsigned integer equal
to the number of dimensions in array-pvar.

*array-dimension array-pvar axis-scalar [*Defun]

This operation returns an unsigned integer equal to the size of the array-pvar dimen-
sion referenced by axis—scalar.

The argument axis—scalar must be an unsigned integer less than the rank of array—pvar.

array-dimension!! array-pvar axis-scalar-pvar [Function]

This function returns a pvar containing, in each processor, an unsigned integer equal
to the size of the axis—scalar-pvar dimension of array-pvar.

The argument axis—scalar-pvar must be a pvar containing, in each processor, an un-
signed integer less than the rank of array-pvar.

*array-dimensions array-pvar [*Defun]

This operation returns a list enumerating the dimensions of array—pvar. This list is of
length (*array-rank array-pvar).

Chapter 3. Array Pvars

array-dimensions!! array-pvar [Function)

This function returns a vector pvar containing, in each processor, a vector such that
the value of the nth element of the vector is the extent of the nth dimension of array—
pvar in that processor.

*array-total-size array-pvar [*Defun]

This operation returns an unsigned integer equal to the total number of array—pvar
elements contained in each processor.

Notice that the result is not the total number of array elements in all processors.
Rather. it is the number of elements in a single processor and this count is the same for
all processors.

array-total-size!! array-pvar [Function]

This function returns, in each processor, an unsigned integer equal to the total number
of array—pvar elements contained in that processor.

array-in-bounds-p!! array-pvar &rest pvar-subscripts [Function]

This function returns a boolean pvar with t in every processor where pvar-subscripts
represents a valid reference to array—pvar and nil elsewhere.

array-row-major-index!! array-pvar &rest pvar-subscripts [Function)]

This function returns an unsigned pvar identifying the row-major index represented
by pvar-subscripts in each processor.

The pvar-subscripts arguments must be valid array-pvar subscripts. Each of these
&rest arguments corresponds to a dimension of array—pvar; they must be given in or-
der, starting with dimension 0. The number of pvar-subscripts arguments must equal
the rank of array-pvar.

30 Supplement to *Lisp Reference Manual

3.6 Accessing Array Elements

aref!! array-pvar &rest subscript-pvars [Function)

This function returns a pvar on the *Lisp stack. The result pvar contains, in each proc-
essor, a copy of the array-pvar element specified by subscript-pvars. The type of the
returned pvar is the same as the element type of array-pvar.

The argument array-pvar must be a *Lisp array pvar.

One subscript-pvar argument must be given for each dimension of array-pvar. Each sub-
script-pvar must contain non-negative integers within the range of indices for that di-
mension. The number of arguments given as subscript-pvars must equal the rank of
array-pvar.

Examples:
(aref!! 2byS5-array-pvar (!! 1) (!! 4))

This returns a pvar containing, in each processor, a copy of the element (1,4) of
2by5—array-pvar found in that processor.

The function aref!! may be used in conjunction with *setf to selectively set the value of
individual array pvar elements. For example,
(*setf (aref!! 2by5-array-pvar (!! 1) (!! 4)) (!'! 2))

sets element (1,4) of 2by5-array-pvar in each processor to 2.

(*let (foo)
(declare (type (pvar (array single-float (3 3))) foo0))
(*setf (aref!! foo (!! 0) (!t 1)) (!'! 2.3))
foo)

This form declares foo to be a two-dimensional single-float array pvar, sets the first
element of the second row in each processor to 2.3, and return foo.

IMPORTANT

To modify array pvar elements, use (*setf (aref!! ...)).
This is the only way to modify an individual array pvar
element. It is an error to use the construct
(*set (aref!!l...). Using this erroneous construct only
results in modifying a copy of the array pvar element.
The original array pvar would not be changed.

3.6.1 Indirect Addressing of Array Pvar Elements

In *Lisp, the term indirect addressing is used to refer to pvar array referencing that uses
different index values in different processors.

If the subscript arguments to aref!! are textually of the form (!! integer), aref!! extracts
the values of array elements from uniform coordinates in all processors. If the sub-
script arguments to aref!! contain different values in different processors, indirect ad-
dressing is said to take place. Indirect addressing references array elements indirectly
by deriving element positions (addresses) from pvars that hold various values in differ-
ent processors.

As an illustration, suppose three pvars exist, X, Y, and C:

(ppp X :end 4) => 0110

(pPpp Y :end 4) => 0 4 1 2

(ppp C :end 4) => #\A #\B #\C #\D
(*let (letters)

(declare (type (pvar (array character (2 5))) letters))
(*setf (aref!! letters X Y) C)

In processor 0, the letters array element (0,0) is set to A. In processor 1, the letters
array element (1,4) is set to B, and so on.

32 Supplement to *Lisp Reference Manual

3.6.2 Accessing Array Pvar Elements Directly: Aliasing

The result of calling aref!! is always a copy of the contents of an array element pvar and
is always allocated on the *Lisp stack. To create a pvar referring to the same bits in
Connection Machine memory as the bits of an array element pvar, use the macro
alias!! in conjunction with aref!!.

aliast! array-reference [Macro]

This operation accesses the pvar object referenced by array-reference. The alias!! opera-
tion should be used when passing a pvar array element to a function that alters the array.

The array-reference argument to alias!! should be an aref!! call; it may not be an array
reference that uses indirect addressing. An error is signaled if an attempt is made to
use indirect addressing within an alias!! form.

Examples:

(defun modify-foo-element (pvar value) (*set pvar value))

(defun in-error ()
(*let (foo)
(declare (type (pvar (array (unsigned-byte 8) (3))) foo))
(modify-foo-element (aref!! foo (!t 0)) (!! 3))
))

(defun correct ()
(*let (foo)
(declare (type (pvar (array (unsigned-byte 8) (3))) foo))
(modify-foo-element (alias!! (aref!! foo (!! 0))) ('! 3))
))

The in-error function is in error because it tries to *set a temporary pvar on the *Lisp
stack. The form (aref!! foo (!! 0)) returns a pvar allocated on the *Lisp stack and
containing a copy of the data from the Oth element of foo in each processor. The func-
tion modify-foo-element then tries to *set this temporary pvar. If this were allowed,
the intended result would not be obtained: *set would change the data on the *Lisp
stack, not the data in the foo array pvar.

Chapter 3. Array Pvars

The correct function works because the alias!! macro returns a pvar which can be
modified: it points to the Connection Machine memory locations that contain element
(0,3) of array pvar foo in each processor.

3.6.3 Sideways Arrays: an Experimental Feature

Indirect addressing of array pvar elements is slower than array referencing that uses
index pvars containing the same values in each processor. To speed up indirect ad-
dressing, a new, experimental *Lisp function named *sideways-array is provided.

*sideways-array array-pvar [Function)

The function *sideways-array forces array—pvar to be addressed in a sideways order-
ing. Calling *sideways-array on an array that is already sideways returns it to a proces-
sorwise ordering. This function is executed for side effect; no useful value is returned.

Turning an array sideways allows special Connection Machine hardware to read array
pvar elements that are not uniformly positioned across processors. Indirect address-
ing works significantly more quickly on sideways arrays than on normal arrays.

The array-pvar argument must be an array pvar that contains elements whose lengths
are powers of 2. This restriction may be lifted in the future. The *sideways-array func-
tion is most efficient when using array elements that are 32 bits long.

/
The following restrictions apply to sideways arrays.

e A sideways array may not be *set.

e A sideways array may not be used as the pvar-expression source argument to
pref!!.
e A sideways array may be used as neither the value-pvar source nor as the dest-
. pvar destination argument to *pset.
e A sideways array may not be read out to the front end.

Before performing any of the above operations on a sideways array, the array
must be returned to its normal state by executing a second call to *sideways-
array.

e Using *sideways-array on an array that is defined as a slot of a *defstruct is
not supported.

34 Supplement to *Lisp Reference Manual

sideways-aref!! array-pvar &rest subscript-pvars [Function]

This function works just like aref!!, but it is a special accessor defined to operate on
sideways arrays only. Requiring this distinction allows the *Lisp compiler to generate
efficient code to reference sideways arrays without requiring declarations that identify
arrays as sideways.

The argumerft array-pvar must be a sideways array.

One subscript—-pvar argument must be given for each dimension of array-pvar. Each sub-
script-pvar must contain non-negative integers within the range of indices for that di-
mension. The number of arguments given as subscript-pvars must equal the rank of
array-pvar. Unless one or more subscript-pvar arguments contain non-uniform values
across processors, there is no benefit to using this function.

To obtain maximum performance when addressing an array indirectly, turn the array
sideways by using the function *sideways-array. Then, instead of using aref!! to read

3.7 Logical Operations on Bit Array Pvars

Parallel equivalents of the Common Lisp bit-wise logical operations are provided in
*Lisp to operate on bit-array pvars. An array pvar is considered a bit-array pvar if and
only if its element type is (pvar (unsigned-byte 1)).

bit-and!! bit-array-pvar-1 bit-array-pvar-2 [Function]
&optional bit-array-result-pvar

bit-ior!! bit-array-pvar-1 bit-array-pvar-2 [Function]
&optional bit-array-result-pvar

bit-xor!! bit-array-pvar-1 bit-array-pvar-2 [Function]
&optional bit-array-result-pvar

bit-eqv!! bit-array-pvar-1 bit-array-pvar-2 [Function]
&optional bit-array-result-pvar

Chapter 3. Array Pvars

bit-nand!! bit-array-pvar-1 bit-array-pvar-2 [Function)
&optional bit-array-result-pvar

bit-nor!! bit—array-pvar-1 bit-array-pvar-2 [Function]
&optional bit-array-result-pvar

bit-andc1!! bit-array-pvar-1 bit-array-pvar-2 [Function)
&optional bit-array-result-pvar

bit-andc¢2!! bit-array-pvar-1 bit-array-pvar-2 [Function)]
&optional bit-array-result-pvar

bit-orc1!! bit-array-pvar-1 bit-array-pvar-2 [Function]
&optional bit—array-result-pvar

bit-orc2!! bit-array-pvar-1 bit-array-pvar-2 [Function)
&optional bit-array-result-pvar

A helpful chart detailing the meaning and effect of each of these functions may be
found in chapter 17 of Common Lisp: The Language.

Each of these functions perform a logical bit-wise operation on the contents of the first
two arguments. The result is a bit-array pvar of the same rank and dimensions as
bit-array-pvar-1 and bit—array-pvar-2.

It is an error if both required arguments are not bit-array pvars of identical rank and
dimensionality. ‘

If supplied, the optional argument may be given as t, as nil, or as a bit-array pvar with
the same rank and dimensions as the required arguments. It defaults to nil. If nil or no
value is supplied for the optional argument, the operation returns a bit-array pvar on
the *Lisp stack. If a bit-array pvar is supplied as the value of the optional argument,
the result of the operation is destructively stored in it. If tis supplied as the value of the
optional argument, results are destructively stored in the first argument,
bit-array-pvar-1.

36 Supplement to *Lisp Reference Manual

bit-not!! bir-array-pvar [Function]
&optional bit-array-result-pvar

This function inverts all the bits in bit—array-pvar. The result is a bit-array pvar of the
same rank and dimensions as bit-array-pvar.

The optional argument bit-result-array—pvar may be used to specify where the result of
bit-not!! should be placed. If supplied, bit-result-array-pvar may be given as t, as nil,
or as a bit-array pvar with the same rank and dimensions as bir-array-pvar. It defaults
to nil, indicating that bit-not!! returns a bit-array pvar on the *Lisp stack. If a
bit-array pvar is supplied as the value of bit-result-array—pvar, the bit-not!! result is
destructively stored in it. If t is supplied as the value of bit-result-array-pvar, results
are destructively stored in the required argument, bit-array-pvar.

3.8 Mapping Functions Over Array Pvars

*map function &rest array-pvars [Function]

*map applies function repeatedly to a list composed of array element pvars, with one
element from each array-pvar supplied. The supplied function, function, is applied as
many times as there are elements in the smallest of the supplied array-pvars. Each
&rest argument is processed in row-major order. Thus, the nth call to function gets
passed an alias to the nth element of each array-pvar, where n is taken to be the row-
major ordering.

*map returns nil; it is executed for side effect.
Example:

Suppose we have two matrices and we wish to add the two matrices together element
by element, multiplying the result of the addition by a constant, and storing the overall
result back in the first matrix. The following code illustrates this:

(*proclaim “ (type (pvar (array single-float (3 3)))
matrixl matrix2))

(*defvar matrixil)

(*defvar matrix2)

(defun *map-example (single-float-constant)
(*locally
(declare (type single-float single-float-constant))

»'.uy,\.

Chapter 3. Array Pvars

(*map
#° (lambda (elementl element2)
(*locally
(declare (type single-float-pvar elementl element2))
(*set elementl (*!! (+!! elementl element2)
(!! single-float-constant)))

))

matrixl
matrix2

)))

3.9 Notes on Using Array Pvars

(1) The pref operation works on array pvars.

The constructs pref and (*setf (pref ...)) work on array-pvars in the expected manner.
For example,

(*setf (pref (aref!! a-vector-pvar (!! 0)) 0) 5)

sets the Oth element of a-vector-pvar in the Oth processor to 5.
(2) Nested arrays and structures are allowed.

It is possible to nest array and structure references to any level by using *setf. Thus,

(*setf (pref (aref!! (aref!! (structure-slot-A!'! x) (!! 2))
('t 3) (Y 4))
10) 5)

stores S in slot A of the structure x found in the second element of the vector stored in
the array element indexed by (3,4) in processor 10. (Information about structure pvars
may be found in chapter 4.)

~ (3) Remember !! makes copies.

It is true that

(*all (equalp common-lisp-array (pref (!! common-lisp-array) 0)))

but it is never true that

38 Supplement to *Lisp Reference Manual

(*all (eq common-lisp-array (pref (!! common-lisp-array) 0)))

In other words, putting a front-end array into Connection Machine processors using !!
and then reading out an instance of it using pref, will not result in the original array
(eq) but in a copy (equal) of that array.

(4) The function equalp!! can be used on array pvars to test for element-by-element
equivalence. See section 7.1 for a complete definition of equalp!!.

(5) *map gets around the restrictions on scan!! for array pvars.

The only scan operation allowed to be performed on array pvars is copy!!. In order to
apply other scan operators to array pvars, use *map in conjunction with scan!! as illus-
trated below.

(*map
#7 (lambda (dest source) (*set dest (scan!! source “+!!)))
array?2
arrayl
)

This performs an element-wise plus scan on arrayt and puts the results, element-wise,
into array2.

Chapter 4

Structure Pvars

*Lisp implements parallel equivalents of the Common Lisp structure definition capa-
bilities described in chapter 19 of Common Lisp: The Language. While Common Lisp
provides the function defstruct to create user-defined data structures, *Lisp provides
*defstruct to create user-defined structure pvars. There are a few differences between
*Lisp and Common Lisp with respect to structures. These are noted in this chapter.

As with Common Lisp structures, a structure pvar definition creates a new, named,
aggregate data type. Constructor, accessor, and assignment operations are automati-
cally defined when a structure pvar data type is defined.

*Lisp structure pvars are consistent with Common Lisp structures with respect to
nesting and layering. Structure pvars may be nested to any depth. That is, one struc-
ture pvar may contain other structures pvars, which may contain other structure pvars,
and so forth. Structure pvar definitions may also be layered: one structure definition
may include all of another structure definition. Layered definitions are restricted to
one inclusion per structure pvar. Nonetheless, there is no limit on the depth of a struc-
ture type hierarchy created with layered inclusions.

Like a Common Lisp structure definition, a *Lisp structure pvar definition automati-
cally defines slot accessor functions. Unlike Common Lisp structures, structure pvar
accessor functions do not return pointers to structure pvar contents. Instead, a copy of
the structure pvar slot contents is always returned by an accessor function. The *Lisp
function alias!! is provided to access the Connection Machine data bits representing
structure pvar contents.

*Lisp does not support *defstruct options analogous to the Common Lisp defstruct
options :type, :named, and :initial-offset.

*Lisp extends the slot options by adding the Connection Machine-specific *defstruct
slot options :cm-initial-value and :em-uninitialized-p.

39

40 *Lisp Reference Manual Supplement

4.1 Defining Structure Pvars

The macro *defstruct defines structure pvars types in *Lisp. Using a *defstruct form
has the interesting effect of defining both a Common Lisp scalar structure data type
and a Connection Machine parallel structure data type. Further, *defstruct defines
both scalar and parallel constructor, accessor, and assignment operations for the new
data types it creates. Thus, whereas most *Lisp operations behave like parallel ver-
sions of Common Lisp operations, *defstruct performs the Common Lisp defstruct
operation as well as a parallel version of that operation.

The double functionality of "defstruct allows structures to be passed back and forth
between the Connection Machine system and the front-end computer. Once a struc-
ture pvar has been defined with *defstruct, a structure pvar of that type may be allo-
cated on the Connection Machine. Given a structure pvar, an individual structure may
be extracted from a single processor using pref!! and copied to the front end. Simi-
larly, an instance of the structure may be created on the front end and broadcast to the
Connection Machine processors.

4.1.1 What *defstruct Does

A =defstruct form does the following:

e defines a new pvar type, which may be used in pvar type declarations

defines a parallel constructor function

defines pvar accessors to access the slots of the structure pvar

defines *setf methods to set the slots of the structure pvar

defines a *Lisp predicate to test whether or not a pvar contains structures of

the newly defined type

defines a front-end defstruct object corresponding to the *defstruct

e allows !!, *setf of pref, array-to-pvar, pvar-to-array, array-to-pvar-grid, and
pvar-to-array-grid to take a front-end defstruct object as the value stored in a
structure pvar of the corresponding type

Consider the following example.

(*defstruct asteroid
(diameter 1 :type (unsigned-byte 16))
(mappedp nil :type boolean)
)

This automatically defines the following defstruct.

Chapter 4. Structure Pvars

(defstruct asteroid
(diameter 1 :type (unsigned-byte 16))
(mappedp nil :type boolean)
)

The data types asteroid and (pvar asteroid) are defined by these forms. (Note: *Lisp
defines boolean as equivalent to (member t nil).)

The folldwing functions are automatically defined by the above *defstruct form:

Parallel Scalar

make-asteroid!! &key make-asteroid &key
(:diameter (!! 1) (:diameter 1)
(:mappedp nil!!) (:mappedp nil)

asteroid-diameter!! asteroid-pvar asteroid-diameter asteroid

asteroid-mappedp!! asteroid-pvar asteroid-mappedp asteroid

asteroid-p!! pvar asteroid-p symbol

copy-asteroid sore-asteroid

The scalar functions are the familiar Common Lisp constructor, accessor, and predi-
cate functions produced by defstruct. The parallel versions are described below.

The constructor function make-asteroid!! makes an asteroid structure pvar of type
(pvar asteroid). Calling this function creates, in each processor, an asteroid instance
composed of slots diameter and mappedp. The slot pvars diameter and mappedp are
initialized to the default values (!! 1) and nil!!, unless alternative values are supplied to
the keywords :diameter and :mappedp. For example,

(*proclaim “ (type (pvar asteroid) cm-wally))
(*defvar cm-wally (make-asteroid!!))

creates an asteroid structure pvar named ecm-wally. The new asteroid, em-wally, con-
sists of an asteroid structure in all processor. An equivalent method of making em-
wally is:

(*proclaim “ (type (pvar asteroid) cm-wally))
(*defvar cm-wally (!! (make-asteroid)))

42 *Lisp Reference Manual Supplement

The accessor function asteroid-diameter!! returns a pvar of type (pvar (unsigned-
byte 16)). Similarly, asteroid-mappedp!! returns a pvar of type (pvar boolean). These
return values are copies of the slot pvars they access and are allocated on the *Lisp
stack.

(*let (a-random-asteroid)
(declare (type (pvar asteroid) a-random-asteroid))
(*setf (asteroid-diameter!! a-random-asteroid) (!! 7))
a-random-asteroid)

To set the value of a structure pvar slot in a particular processor, the function *setf is
composed with pref. Be careful: when allocating a structure using *let or *let*, don’t

forget to declare the type of the pvar, because an undeclared pvar that has held any
other type of data cannot hold a structure pvar.

Given an asteroid structure pvar, cm-wally,
(*setf (pref (asteroid-diameter!! cm-wally) 25) 15)

stores the integer 15 in cm-wally’s slot, diameter, in processor 25 only.

It is also possible to create a scalar asteroid.
(setq wally (make-asteroid :diameter 66 :mappedp t))

Given wally, *setf can be used to make the em-wally asteroid structure contained in
one processor be a copy of wally:

(*setf (pref cm-wally 5) wally)
Here are some other examples of code using asteroids:

(*proclaim “ (type (pvar asteroid) another-asteroid))
(*defvar another-asteroid (make-asteroid!! :diameter (!! 5)))

(setq asteroid-in-heap
(allocate!! (make-asteroid!! :mappedp (!! t)) nil
(pvar asteroid)))

(*when (not!! (zerop!! (self-address!!)))
(*setf (pref!! cm-wally (1-!! (self-address!!))) cm-wally)

Chapter 4. Structure Pvars

When allocating a structure pvar using *defvar, be sure to first declare the type of pvar
using *proclaim. Undeclared pvars that have held any other type of value cannot hold
structures.

4.1.2 Formal *defstruct Definition

defstruct (struct-narme {options}) {slot-descriptor}+ [Macro]

This macro defines an aggregate pvar data type as well as an aggregate scalar data
type. Components of the structure, called slots, are also defined. A general call to
*defstruct has the following format.

(*defstruct (struct-name option-1 option-2 ... option—n)
documentation
slot-description-1
slot-description-2

slot~description-n)

The first argument to *defstruct is a list composed of struct-name followed by a series
of associative lists specifying *defstruct options.

The argument struct-name must be a symbol. It becomes the name of a new data type
with both scalar and parallel versions:

(pvar struct-name) : [Pvar Type]
struct-name [Scalar Type)

The new parallel *Lisp type specifier generated by *defstruct can be used in declare
forms after *let, *let*, and *defun, in the forms, in *proclaim statements, and in
allocate!! function calls.

If a call to *defstruct does not supply any options, the first argument to *defstruct is
simply the symbol struct-name and need not be enclosed in a list.

If supplied, the option-1 ... option-n arguments must be chosen from among the key-
word-value pairs described below in section 4.6.1, under the heading “Options to
*Defstruct.” Each option has the form:

(keyword &rest values)

Most of the Common Lisp defstruct options have *defstruct equivalents.

44 *Lisp Reference Manual Supplement

The documentation argument is optional. If supplied, it must be a string.

Any call to *defstruct is required to include at least one slot-description. Each slot-de-
scription is of the form:

(slot-name default-init
slot-option-name-1 slot—option-value-1
slot-option-name-2 slot-option-value-2

)

Here, slot-name is a symbol used to identify one component of the structure struct-
name. It is an error for two slots to have the same name.

The value of default-init must be a form that returns a valid scalar value conforming to
the type of the slot, as specified by the :type slot option.

The slot-option-names and slot-option-values are keyword-value pairs. (See section
4.6.2 for a complete list of slot options.) The only *defstruct slot options of general
interest are :cm-initial-value, :cm-uninitialized-p, and :type. Be aware that it is an
error to provide both a :cm-initial-value form and to specify :cm-uninitialized-p as t.
Also note that the :type slot option is mandatory: it must be given one argument, a
valid Common Lisp type specifier which, when turned into a pvar specifier by forming
(pvar valid-lisp-type), must be a valid *Lisp type specifier. The :type slot option specifier
defines the type of the pvar contained in slot slot-name.

The make-struct-name!! function takes one argument for each slot in the *defstruct.
Each of these arguments are keyword arguments called by the same name as their slot.
The make-struct-name!! function will initialize each slot of the created structure in
the following manner:

® If the keyword argument is provided, its value is copied into the slot.

® If no keyword argument is provided and there is a :em-initial-value slot op-
tion, that slot option is evaluated and the result is copied into the slot.

® If no keyword argument is provided, and no :cm-initial-value option is pro-
vided, and no :cm-unitialiazed-p option is provided, then the slot value de-
faults to the value of default-init. To accomplish this slot pvar initialization,
*defstruct replicates the value returned by the default-init form using the func-
tion !!.

® If no keyword argument is provided and the slot option :cm-uninitialized-p is
provided, then the slot remains uninitialized.

Chapter 4. Structure Pvars 45

For instance,

(*defstruct baz
(only-slot 0 :type (unsigned-byte 8))
)

(make-baz!!)

creates an instance of a baz pvar with its only-slot initialized to (!! 0).

Any type specifier given as a :type slot option must specify data of fixed, known size. It
is an error to specify a slot as a general or as a mutable pvar. Thus,

(*defstruct quidly
(fee (make-array 10 :initial-value 0)
:type {(array (unsigned-byte 16) (10))))

contains a valid type specifier of fixed, known size: 160 bits. On the other hand,

(*defstruct queezy
(bad 0 :type (unsigned-byte *)))

is in error because it attempts to specify a structure slot of type mutable
unsigned-byte, which is by definition of unknown size. It is interesting to note that

(*defstruct ok
(fine 0 :type (unsigned-byte 32)
:cm—-type (pvar (unsigned-byte some-—-expression))))

contains a legal type specifier, provided that some-expression evaluates to an integer
constant at run time.

The slot option :ecm-initial-value takes one argument: an expression that returns a
pvar. '

For instance,

(*defstruct xyz
(a 0 :type (unsigned-byte 32)
:cm-initial-value (self-address!!))

46 *Lisp Reference Manual Supplement

(*proclaim ‘ (type (pvar (structure xyz)) cm-xyz))
(*defvar cm-xyz (make-xyz!!))
(setq fe-xyz (make-xyz))

initializes slot a of cm-xyz in each processor to its processor number and initializes
slot a of fe-xyz to 0.

The slot option :em-uninitialized-p takes one argument, either t or nil and defaults to
nil. If the value is t, then, when pvars of type struct-name are created using
make-struct-name, the slot is not initialized. This means the slot value is indetermi-
nate and it is an error to access the value without first setting it. Using this option for
some or all slots in a *defstruct call makes allocation of any structure pvars of the given
type faster.

For example,

(*defstruct fos
(only-slot O :type (unsigned-byte 32) :cm-uninitialized-p t))

(*let ((no-vals (make-fos!!))
(vals (make-fos!! :only-slot (!! 5))))
(declare (type (pvar fos) no-vals vals))
)

defines no-vals as a structure pvar of type fos that does not store (!! 0) in its only-slot
pvar and vals as a fos structure pvar that stores (!! 5) in its only-slot pvar.

4.2 Structure Inheritance

The *defstruct option generally considered most interesting is the :include option.
This option allows a structure definition to subsume one other structure definition.

The *defstruct :include option takes one argument, a symbol, which must be the name
of a structure pvar definition created by a previous call to *defstruct. The specified
structure pvar definition is included at the beginning of the structure pvar being de-
fined by the current *defstruct. The resulting structure pvar definition behaves as
though all of the slots of the included structure pvar definition were specified textually
before the slots of the new structure pvar. The accessors of the included structure pvar
correctly access the slots of the new structure pvar.

NOTE: At most one :include option can be provided per *defstruct definition.

Chapter 4. Structure Pvars

For example:

(*defstruct auto
(doors 4 :type (unsigned-byte 3))
(color #\R :type character))

(*defstruct (sports—-car (:include auto))
(number-of-speeding-tickets 6 :type (unsigned-byte 4)))

Defines the *Lisp parallel structure accessors auto-doors!!, auto-color!!, and sports-
car-doors!!, sports-car-color!!, and sports-car-number-of-speeding-tickets!!. The
accessors auto-doors!! and sports-car-doors!! perform identically on a structure
pvar of type sports-car. However, a program is in error if it calls the function sports-
car-doors!! on a structure pvar of type auto. This is intuitively true: all sports-cars are
autos but not all autos are sports—cars. In other words, a child-type structure satisfies
the predicate of its parent-type and can be accessed with its parent’s accessors. How-
ever, a parent-type structure does not satisfy the predicates of its child-types, nor can
it be accessed with its children’s accessors.

4.3 Referencing and Modifying Structure Pvars

The constructs pref and *setf work on structure pvars and may be composed as:
(*setf (pref ...)).

Here is an example using nested parallel structures. Consider a parallel structure, foo,
which has a slot, a. Slot a is a parallel structure, bar. If bar has a slot, b, and b is a
one-dimensional array, then

(*setf (pref (aref!! (bar-b!! (foo-a!l! X)) (!! 0)) 0) 5)

sets the array element at index 0 within slot b of structure bar within slot a of structure
foo in processor 0 to the value 5.

48 *Lisp Reference Manual Supplement

IMPORTANT

To modify structure pvar elements, use *setf on the re-
sult of a *defstruct accessor function. This is the only
way to modify an individual structure slot. It is an error
to use the construct (*set (slot-a!! slot-pvar)...), where
slot is the name of a *defstruct. Using this erroneous
construct only results in modifying a copy of the struc-
ture slot. The original structure pvar would not be
changed.

4.3.1 Accessing Structure Pvar Contents Directly: Aliasing

The result of calling a structure pvar accessor function is always a copy of the contents
of the slot accessed. To create a pvar that refers to the same bits in Connection Ma-
chine memory as the bits of the slot, the macro atias!! must be used. This is useful if it
is desirable to pass a structure slot pvar to a function that alters a structure slot pvar.

alias!! slot-accessor [Macro]
This operation accesses the pvar object referenced by slot-accessor.

The slot—accessor argument to alias!! should be a call to a slot accessor function cre-
ated by *defstruct.

The following code illustrates how to use alias!! with structure pvars.

(*defstruct patient
(id-no 0 :type (unsigned-byte 8))
(doctor O :type (unsigned-byte 8))
(sick-p t : type boolean))

(defun in-error ()
(*let (ellen)
(declare (type (pvar patient) ellen))
(modify-patient-slot (patient-sick-p!! ellen) nil!!)
))

Chapter 4. Structure Pvars

(defun correct ()
(*let (ellen) :
(declare (type (pvar patient) ellen))
(modify-patient-slot
(alias!! (patient-sick-p!! ellen)) nilt?})
))

(defun modify-patient-slot (pvar value) (*set pvar value))

The in-error function is in error because foo-a!! returns a pvar containing a copy of
the data in foo’s slot, a. This pvar is allocated on the stack. The function modify-foo-
slot then tries to *set this temporary pvar. Since the *set affects bits on the *Lisp stack,
not bits in the foo pvar, the intended result is not obtained. Slot a of foe is never modi-
fied.

The correct function is correct because alias!! returns a pvar that points to the same
bits in the Connection Machine as foo’s slot a. This aliased pvar can be meaningfully
modified.

4.4 Miscellaneous Operations on Structure Pvars

The function equalp!! can be used on structure pvars to test for slot-by-slot equiva-
lence. See section 7.1 for a complete definition of equalp!!.

structurep!! any-pvar [Function]

This function returns a boolean pvar with the value t!! if any-pvar is a structure pvar
and nil!! if not.

t1 foo—object [Function]

Pvars of some structure type, foo-object-pvar, may be constructed using the function !!
on an object that is of Common Lisp structure type, foo-object. When this is done,
every active processor receives an equalp copy of foo—object’s slot structure.

It is true that

(*all (equalp foo-object (pref (!! foo-object) 0)))

50 *Lisp Reference Manual Supplement

but it is never true that
(*all (eq foo-object (pref (!! foo-object) 0)))

That is, replicating a front-end structure in all active processors using !! and then ref-
erencing the resultant structure pvar in any single processor, does not return the struc-
ture initially used (eq) but rather a copy (equalp) of that structure.

4.5 Scanning Structures

The only scan operation that can be used when scanning with a structure pvar is
copy!!. (For a complete description of the function scan!!, see the *Lisp Reference
Manual, chapter 6.)

4.6 Detailed Documentation

The preceding descriptions of structure pvars is all the typical user of *defstruct will
ever need to know. In what follows, further *defstruct options and slot options are
explained. These options make it possible to change the names of the *defstruct acces-
sor functions and the properties of the front-end defstruct. The options detailed here
are equivalent to those provided in Common Lisp.

4.6.1 Options to *defstruct

:conc-name

The *defstruct option :conc-name takes one optional argument, conc-name, a sym-
bol. The Connection Machine slot accessor function names are constructed by prefix-
ing each slot name with the conc-name symbol and suffixing it with ‘!!I". The conc-
name defaults to the name of the structure pvar suffixed with ‘~’. If :conc-name is
specified as nil, then no conc-name is prepended to form the symbol name.

The :conc-name argument is also passed to the front-end defstruct as the option
:conc-name.

Chapter 4. Structure Pvars 51

Examples :
(*defstruct (foo) (slot 0.0 :type single-float))
defines the Connection Machine accessor foo-siot!!

(*defstruct (foo (:conc-name bar-))
(slot 0.0 :type single-float))

defines the Connection Machine accessor bar-slot!!

(*defstruct (foo (:conc-name nil))
(slot 0.0 :type single-float))

defines the Connection Machine accessor slot!!

(*defstruct (foo (:conc-name))
(slot 0.0 :type single-float))

defines the Connection Machine accessor foo-slot!!

:ecm-=constructor

If specified, :cm-constructor takes one argument, cm—constructor, a symbol. The cm—
constructor symbol specifies the name of a function that creates Connection Machine
parallel structures of type (pvar struct-name). If not specified, the Connection Ma-
chine constructor is formed by prepending ‘make-’ and appending ‘!!’ to the structure
pvar name.

Examples :

(*defstruct (foo)
(slot 0.0 :type single-float))

defines the make-foo!! constructor

(*defstruct (foo (:cm-constructor make-boa!!))
(slot 0.0 :type single-float))

defines the make-boa!! constructor

52 *Lisp Reference Manual Supplement

(*defstruct (foo (:cm-constructor))
(slot 0.0 :type single-float))

defines the constructor make-foo!!

(*defstruct (foo (:ecm-constructor nil))
(slot 0.0 :type single-float))

does not define a constructor.

:constructor

If specified, :constructor takes one argument, constructor, a symbol. The constructor
symbol specifies the name of a function that creates front-end instances of the struc-
ture struct-name. It is passed to the front-end defstruct as the :constructor option.

:copier

If specified, :copier is passed to the front-end defstruct as the :copier option. It takes
one argument, a symbol.

:parallel-cm-predicate
:predicate

If specified, each of these takes one argument, a symbol.

The :parallel-cm-predicate option specifies the name of the predicate function de-
fined by *defstruct for the structure pvar type. If no :parallel-cm-predicate option is
specified, *defstruct defines a predicate with a default name, formed by appending
“~p!!” to the name of the structure pvar type.

The :predicate option, if specified, is passed to defstruct as the Common Lisp
:predicate option. It takes one argument, a symbol. If no : predicate option is specified,
defstruct defines a predicate with the default name, formed by appending “~p” to the
name of the front-end structure.

rinclude

If specified, the :include option takes one argument, a symbol. This symbol must be
the name of a structure pvar type definition created by a previous invocation of
*defstruct. The specified structure pvar type definition is included at the beginning of

Chapter 4. Structure Pvars 53

the structure pvar type being defined by the current *defstruct. The resulting structure
pvar type definition behaves as though all the slots of the included structure pvar type
definition were specified textually before the slots of the new structure pvar. The acces-
sors of the included structure pvar type correctly access the slots of structure pvars of
the the new type. (See the more detailed description of this option is section 4.2, above.)

:print-function

This option is passed to defstruct as the :print-function option. The argument to
:print-function, which must be a function name, is used to print the front-end struc-
tures.

:em-uninitialized-p

This option is equivalent to providing the slot option :em-uninitialized-p to every slot
of the structure pvar type being defined.

4.6.2 *defstruct Slot Options

itype

This option is not optional. See the more detailed discussion in section 4.1.2, above for
further information.

cm-type

This option takes one argument, a valid *Lisp type specifier. It is an error if the *Lisp
type specifier provided is not compatible with the :type option Lisp specifier. For in-
stance, (pvar boolean) and (unsigned-byte 16) are not compatible, whereas (pvar
(unsigned-byte 16)) and (member 0 1 2 3) are.

em-initial-value

See the description of this option, in section 4.1.2, above.

:em-uninitialized-p

See the description of this option, in section 4.1.2, above.

54 *Lisp Reference Manual Supplement

4.6.3 *defstruct Options Example

The code below defines two parallel structure types and illustrates the proper syntaxto
use for *defstruct options and slot options.

(*defstruct (foo)
(a 3 :type (unsigned-byte 8))
(b 0.0 :type single~float)
)

This defines a structure pvar type foo with two slots, a and b, which may hold data of
type (unsigned-byte 8) and single-float, respectively. Here is an example using the
foo structure pvar type:

(*let ((my-foo (make-foo!! :a (!! 8) :b (!! 5.0))))
(declare (type (pvar foo) my-foo0))
(frob my-foo))

A foo structure named my-foo is created and its slot values are initialized to values
other than the the default initialization values.

The code below creates a pvar structure definition for xyzzy, illustrating the use of most
of the *defstruct options and slot options.

(*defstruct (xyzzy

(:conc-name plugh-)
:copier duplicate-xyzzy)
:cm—constructor create-xyzzy!!)
:constructor create-xyzzy)
:parallel-cm-predicate is-it-an-xyzzy?!!)
:predicate is-it-an-xyzzy?)
:print~function print-the-magic-word)
:include foo0)

i N T e T B S

(c 3 :type (member 3 5) :cm-type (pvar (unsigned-byte 12))
:cm-initial-value (random!! 10))

(d nil :type boolean :cm-uninitialized-p t)

)

Chapter 5

Virtual Processor Sets

The notion of virtual processors is unrelated to any construct or concept in Common
Lisp. All operations and variables documented in this chapter are extensions to Com-
mon Lisp, designed to add power and flexibility to programs run on the Connection
Machine system (CM).

The term virtual processors is used to indicate how many processors the CM logically
operates, regardless of how many physical processors are contained in the machine.
The number of virtual processors (VP’s) in use at any given time is expressed in terms
of dimensions, analogous to the dimensions of an array. The product of a series of
virtual processor dimensions indicates how many virtual processors are operating
when those dimensions are in effect. For instance, dimensions of (128 16 4) specify a
machine configuration of 8192 VP’s.

5.1 Virtual Processor Sets in Release 5.0

Version 5.0 provides a more efficient and flexible implementation of virtual processors
than did previous releases. A new abstraction, termed virtual processor sets, allows the
use of multiple sets virtual processor dimensions during a single session. At any given
time after *cold-boot has been invoked, there is exactly one VP set active. The cur-
rently active VP set is known as the current VP set.

Prior to Version 5.0, it was possible to employ only one set of VP dimensions during
any session. The dimensions argument to the *cold-boot function determined the
number of virtual processors simulated by the CM until the next *cold-boot. This
scheme proved inefficient when the processor requirements of program data varied.
Users were forced to use the maximum number of virtual processors required by any
data set a program used and to leave portions of the CM idle when smaller data sets
were processed.

55

56 *Lisp Reference Manual Supplement

With Version 5.0, it is possible to specify a number of different virtual processor sets
(VP sets), each defined by separate VP dimensions. Further, each VP set may have
distinct pvars associated with it. Thus, data may be assigned to VP sets that are appro-
priately dimensioned. Previous to Version 5.0, only two-dimensional virtual processor
grids were allowed. This restriction has been lifted: n-dimensional VP sets have been
implemented.

Memory management of virtual processors has been improved with the introduction
of virtual processor sets. Previously, the memory of each CM processor was divided
into as many fixed-size segments as there were virtual processors. This scheme se-
verely limited the amount of memory available, especially when large VP dimensions
were used. The new scheme allows memory in both the *Lisp heap and the *Lisp stack
to be allocated on an as-needed basis. (See the Paris documentation for a more de-
tailed discussion of the changes to Connection Machine memory management intro-
duced with Version 5.0.)

5.2 How Virtual Processor Sets Work

The default virtual processor set is defined at *cold-boot time. An argument to *cold-
boot, called initial-dimensions, is a list of integers that define the number of virtual
processors initially simulated by the CM.The product of the initial-dimensions integers
is the number of virtual processors operated during the session by the Connection Ma-
chine