
The
Connection Machine
System

*Lisp Release Notes

Version 5.0
September 1988

These release notes
replace all previous
*Lisp release notes

Thinking Machines Corporation
Cambridge, Massachusetts

First Printing, September 1988

The information in this document is subject to change without notice and should not be
construed as a commitment by Thinking Machines Corporation. Thinking Machines Cor­
poration reserves the right to make changes to any products described herein to improve
functioning or design. Although the information in this document has been reviewed and
is believed to be reliable, Thinking Machines Corporation does not assume responsibility
or liability for any errors that may appear in this document. Thinking Machines Corpora­
tion does not assume any liability arising from the application or use of any information or
product described herein.

Connection Machine is a registered trademark of Thinking Machines Corporation.
CM -l, CM-2, CM, and Data Vault are trademarks of Thinking Machines Corporation.
Paris, ’Lisp, C*, and CM Fortran are trademarks of Thinking Machines Corporation.
VAX, ULTRIX, and VAXBI are trademarks of Digital Equipment Corporation.
Symbolics, Symbolics 3600, and Genera are trademarks of Symbolics, Inc.
Sun and Sun-4 are trademarks of Sun Microsystems, Inc.
UNIX is a trademark of AT&T Bell Laboratories.

Copyright © 1988 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 First Street
Cambridge, Massachusetts 02142-1214
(617) 876-1111

Contents

1 About Version 5.0 1
1.1 Components of *Lisp, Version 5 .0 2
1.2 *Lisp Documentation... 2
1.3 Organization of Release Notes .. 3

2 Porting Code to Version 5.0 ... 4
2.1 Syntax of *pset Changed... 4
2.2 Arguments to and Semantics of pref!! Changed.. 5
2.3 Obsolete Language Features... 6

2.3.1 Communication Operations ... 6
2.3.2 *Lisp-Paris Transition Macros ... 7
2.3.3 ^proclaim Replaces proclaim in *Lisp C ode.. 7
2.3.4 *setf Replaces setf in *Lisp Code ... 8

2.4 Meaning of the float-pvar Type Specifier Changed.. 8
2.5 How to Force Version-Specific Execution.. 8

3 Enhancements to the ♦Lisp Language.. 10
3.1 N-Dimensional NEWS and Virtual Processor S e ts ... 10
3.2 New Pvar Types... 11

3.2.1 Array Pvars ... 11
3.2.2 Structure Pvars... 12
3.2.3 Complex Pvars... 13
3.2.4 Character Pvars ... 13

3.3 Experimental Features.. 13
3.3.1 Enhanced Scanning Operations.. 14
3.3.2 Parallel Vector Operations... 14
3.3.3 Parallel Sequence Operations .. 15
3.3.4 Address Objects... 15

iii

Contents

4 The *Lisp Interpreter ... 16
4.1 Interpreter Enhancements.. 16
4.2 Interpreter Restrictions.. 17

5 The *Lisp Compiler.. 18
5.1 Compiler Enhancements .. 18

5.1.1 Compiler Now ON by D efau lt... 18
5.1.2 Compiler Menu Option Changes... 19
5.1.3 Configurable Compiler Type Checking... 20
5.1.4 *Lisp Operations that Compile ... 20

5.2 Compiler Restrictions... 21
5.2.1 Forms Not Yet Compiled... 22
5.2.2 Forms Compiled with Restrictions... 23
5.2.3 Restrictions on Compiler O ptions... 25

5.3 Notes on Compiler Use ... 25

6 The *Lisp Simulator ... 26
6.1 Simulator V ersion... 26
6.2 Simulator Restrictions .. 27
6.3 Simulator Correction: a Patch to *p s e t .. 28
6.4 Notes on Simulator U s e .. 30

6.4.1 Conditional Simulator Execution... 30
6.4.2 'proclaim .. 30

7 Floating-Point Hardware Problem.. 31

8 New Operations Not Yet Documented ... 32

iv

Customer Support

Thinking Machines Customer Support encourages customers to report errors in Connection
Machine operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us identify and
correct the problem. A code example that failed to execute, a session transcript, the record of a
backtrace, or other such information can greatly reduce the time it takes Thinking Machines to
respond to the report.

To contact Thinking Machines Customer Support:

U.S. Mai!: Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1214

Internet
Electronic Mail: customer-support@think.com

Usenet
Electronic Mail: harvard! think! customer-support

Telephone: (617) 876-1111

For Symbolics users only:

The Symbolics Lisp machine, when connected to the Internet network, provides a special mail
facility for automatic reporting of Connection Machine system errors. When such an error oc­
curs, simply press CTRL-M to create a report. In the mail window that appears, the To : field
should be addressed as follows:

To: bug-connection-m achine@ think.com

Please supplement the automatic report with any further pertinent information.

v

mailto:customer-support@think.com
mailto:bug-connection-machine@think.com

1 About Version 5.0

*Lisp is an extension of Common Lisp for data parallel programming on the Connec­
tion Machine. Programs using *Lisp typically include both Common Lisp and *Lisp
constructs.

Version 5.0 is a major *Lisp release; it includes substantial additions and enhance­
ments to previous versions. *Lisp Version 5.0 offers significant improvements in per­
formance along with new programming features, enhanced error checking, and nu­
merous corrections of previous implementation errors.

With this version, two significant new language features become available: n-dimen-
sional NEWS communications and virtual processor sets. These new capabilities allow
the address space for Connection Machine processors to be defined as multiple, rc-di-
mensional coordinate systems. Thus, many limitations previously placed on inter-
processor communication and on the use of virtual processors have been lifted. Also
new in this version is support for numerous new pvars types including complex num­
ber pvars, array pvars, and user-defined structure pvars. Furthermore, experimental
parallel vector and parallel sequence operations are provided with *Lisp Version 5.0.

More completely than previous versions, this version of *Lisp harnesses the power and
versatility of the new Connection Machine hardware, the CM-2. For a detailed descrip­
tion of the relationship between *Lisp, Paris, and the CM-2, see Appendix A of the
Supplement to the *Lisp Reference Manual.

1

2 *Lisp Release Notes

1.1 Components of *Lisp, Version 5.0

Thinking Machines Corporation’s implementation of *Lisp includes:

• The *Lisp interpreter, which executes *Lisp code on the full Connection Ma­
chine system

• The *Lisp compiler, which translates *Lisp code into Lisp/Paris for execution
on the full Connection Machine system (or on the Paris simulator)

• The *Lisp simulator, which executes *Lisp code on a serial front-end computer
alone, simulating the semantics of *Lisp

The *Lisp interpreter, simulator, and compiler can be used from within a Common
Lisp environment on any Connection Machine (CM) front end. The CM front ends
currently supported are the Symbolics Lisp machine, the VAX running the ULTRIX
system, and the Sun-4 workstation running UNIX.

1.2 *Lisp Documentation

The documentation currently provided with *Lisp is listed below in the recommended
reading sequence.

• The *Lisp Reference Manual, Version 5.0, revised October 1988

• The *Lisp Release Notes, Version 5.0, October 1988

• The Supplement to the *Lisp Reference Manual, Version 5.0, October 1988

• The *Lisp Compiler Guide, Version 5.0, October 1988

The *Lisp Reference Manual, Version 5.0, is the primary source of information on the
essential concepts and constructs of the *Lisp language. It is a revision of the *Lisp
Reference Manual, Version 4.0, updated to correct information presented in that publica­
tion and to account for the implementation *Lisp Version 5.0.

The *Lisp Release Notes, Version 5.0, describe the enhancements, corrections, and re­
strictions to *Lisp since the publication of the *Lisp Reference Manual, Version 4.0.
Detailed information about *Lisp features new with this release is presented in the
Supplement to the *Lisp Reference Manual, Version 5.0, and in the *Lisp Compiler
Guide, Version 5.0.

Version 5.0 3

NOTE

Earlier *Lisp release notes—for V4.0, V4.1, V4.2, and
V4.3—should be discarded. Earlier information that is
still relevant to Version 5.0 is reproduced either in the
present release notes or in the Supplement to the *Lisp
Reference Manual.

The *Lisp Reference Manual, Version 4.0 should be
discarded; it is replaced by the *Lisp Reference Man­
ual, Version 5.0.

The *Lisp Compiler Guide, Version 4.2A Field Test,
should be discarded; it is replaced by the *Lisp Com­
piler Guide, Version 5.0.

1.3 Organization of Release Notes

These release notes are divided into six sections as described below.

1 About Version 5.0
This section introduces the major new features of this version and de­
scribes the documentation provided with *Lisp, Version 5.0.

2 Porting Code to Version 5.0
The next section contains instructions for porting existing code to Version
5.0.

3 Enhancements to the *Lisp Language
The third section provides an overview of new *Lisp features, documented
for the first time with Version 5.0.

4 The *Lisp Interpreter
The fourth section explains that the *Lisp interpreter has been completely
reimplemented for the release of Version 5.0. Remaining restrictions are
described.

4 *Lisp Release Notes

5 The *Lisp Compiler
The fifth section focuses on the compiler, describing the enhancements
and corrections made for the current version. Current restrictions are also
detailed.

6 The *Lisp Simulator
The sixth section describes the current version of the *Lisp simulator.

2 Porting Code to Version 5.0

*Lisp Version 5.0 requires Connection Machine System Software Version 5.0. *Lisp
programs compiled under previous versions should be recompiled to run under Ver­
sion 5.0. That is, *Lisp programs compiled under versions V4.0, V4.0-1, V4.1, V4.2,
and V4.3 should be recompiled to run on Version 5.0.

*Lisp Version 5.0 is not entirely backward-compatible with previous versions. The few
incompatibilities are listed below along with instructions for modifying existing *Lisp
code to run under Version 5.0. Before recompiling existing code, read this section com­
pletely and make all the necessary modifications.

2.1 Syntax of *pset Changed

The arguments to *pset have changed. The new syntax for *pset is:

*pset combiner value-pvar dest-pvar cube-address-pvar \M acro\
&key :notify :coliision-mode :vp-set

The required arguments have not changed from previous versions. The optional notify
and collision-mode arguments to *pset now require keyword specification.The
:vp-set keyword argument has been added.

Code written according to the syntax of earlier versions will, in most cases, still work
under Version 5.0. If this is attempted, however, a warning is issued at compile-time. It
is planned that future versions of *Lisp will signal an error if the new syntax is not used.
Therefore, users are strongly encouraged to modify existing code to conform to the
new syntax.

Version 5.0 5

Existing code that uses *pset forms with the old notify-pvar and collision-mode op­
tional arguments should be modified to run under Version 5.0. The values of these
optional arguments need not be changed, but they should be preceded by the : notify
and :collision-mode keywords, respectively.

The new :vp-set keyword argument may be used to specify the VP set to which dest-
pvar belongs.

The concept of VP sets is explained in chapter 7 of the Supplement to the *Lisp Refer­
ence Manual. A detailed description of the *pset operation appears in chapter 8 of that
volume.

2.2 Arguments to and Semantics of pref!! Changed

The arguments to pref!! have changed. The new syntax for pref!! is:

pref!! pvar-expression cube-address-pvar [Macro]
&key :collision-mode :vp-set

The required arguments have not changed from previous versions. The optional
collision-mode argument to pref!! now requires keyword specification, :collision-
mode, and the default collision-mode value has changed. The :vp-set keyword argu­
ment has been added.

Code written according to the syntax of earlier versions will, in most cases, still work
under Version 5.0. If this is attempted, however, a warning is issued at compile-time. It
is planned that future versions of *Lisp will signal an error if the new syntax is not used.
Therefore, users are strongly encouraged to modify existing code to conform to the
new syntax.

The default collision-mode value has changed from :collisions-allowed to nil. Existing
code that specified no collision-mode argument and thereby relied on the old collision­
mode default, will now get the new default. Due to this change in the semantics of
pref!!, collision-mode specification should be reconsidered.

The new default, :collision-mode nil, invokes a Paris instruction (cm:get-IL), which
uses the CM-2 backward routing hardware. As the number of collisions increases, this
tends to be faster than :collisions-allowed and :many-collisions, but it uses much
more temporary memory.

6 *Lisp Release Notes

If a pref!! form causes no collisions, specify: collision-mode as: no-collisions. If there
are/ew collisions, specify :collisions-allowed or use the default, nil. If there are many
collisions, specify :many-collisions or use the default, nil. These last choices must be
made heuristically. While the collision-mode default, nil, is faster than
:collisions-allowed or :many-collisions when there are many collisions, it uses more
memory. Try using the default. If the program runs out of memory, change the colli-
sion-mode for the offending pref!! form(s) to :many-collisions or :collisions-allowed.

The new :vp-set keyword argument is used to specify the VP set to which pvar-expres-
sion belongs. Specifying vp-set is mandatory if pvar-expression is an expression and if
this expression should be evaluated in a VP set other than the current VP set. Otherwise,
vp-set is optional.

The concept of VP sets is explained in chapter 7 of the Supplement to the *Lisp Refer­
ence Manual. A detailed description of the pref!! operation appears in chapter 8 of
that volume.

2.3 Obsolete Language Features

An obsolete *Lisp language feature is one that should no longer appear in *Lisp code.
If used, features rendered obsolete by Version 5.0 will generally signal a warning at
compile-time. In the next release (probably Version 5.1) use of any one of these fea­
tures will cause an error to be signaled at compile-time. It is therefore strongly recom­
mended that existing *Lisp code using any of the following obsolete features be rewrit­
ten to use new, alternative constructs.

The discussion below covers how to replace each of these features.

2.3.1 Communication Operations

With the introduction of n-dimensional NEWS communications, the following con­
structs are rendered obsolete.

with-*lisp-from-paris
(setf (pref!! ...))

scan-grid!!
pref-grid!!
*pset-grid

pref-grid
pref-grid-relative!!
*pset-grid-relative
with-paris-from-*lisp
(setf (pref ...))

Version 5.0 1

scan-grid!! pvar scan-operator
&key :direction :dimension :segment-pvar :include-self

[Function]

pref-grid pvar &rest indices
pref—grid!! pvar x-pvar y-pvar &key :border-pvar :collision-mode
pref-grid-relative!! pvar &rest index-pvars &key :border-pvar

[Macro]
[Macro]
[Macro]

*pset-grid combiner value-pvar dest-pvar x-pvar y-pvar
&optionaf notify-pvar collision-mode

*pset-grid-relative combiner source-pvar dest-pvar &rest index-pvars

[Macro]

[Macro]

Failure to convert existing code to use new *Lisp constructs can result in significant
loss of performance, both interpreted and compiled. This is especially true in the case
of pref-grid-relative!!, which should be replaced by news!! or news-border!!.

For examples showing how to rewrite existing code that uses the above constructs, see
the last few pages cf chapter 8 in the Supplement to the *Lisp Reference Manual.

2.3.2 *Lisp-Paris Transition Macros

•Lisp Version 5.0, renders the following macro forms obsolete.

with-*lisp-from-paris (&body body) [Macro]
with-paris-from-'lisp (&body body) [Macro]

In previous versions, the use of these forms was required prior to calling Paris from
•Lisp and prior to calling *Lisp from Paris, respectively.

•Lisp used to maintain a stack discipline different from the Paris stack discipline.
With Version 5.0, ‘Lisp uses the Paris stack directly. Therefore, whereas these opera­
tions were previously needed to set up the appropriate stack discipline for the lan­
guage in use, this is no longer necessary.

2.3.3 •proclaim Replaces proclaim in *Lisp Code

To make global pvar type declarations, 'proclaim should now be used instead of
proclaim. Previous releases of *Lisp redefined the Common Lisp proclaim construct
to allow both the *Lisp interpreter and compiler to attend to proclaim forms. With the
release of Version 5.0, this redefinition is being phased out. In future versions, *Lisp
will not attend to proclaim forms at all; the only way to make global type declarations

and to set *Lisp compiler options will be by using 'proclaim. It is strongly advised,
therefore, that all uses of proclaim be replaced by 'proclaim in *Lisp code.

8 *Lisp Release Notes

2.3.4 *setf Replaces setf in *Lisp Code

Previous releases of *Lisp redefined the Common Lisp setf construct to allow both the
*Lisp interpreter and compiler to attend to setf forms. With the release of Version 5.0,
this redefinition is being phased out. In future versions, *Lisp will not attend to setf
forms at all. It is strongly advised, therefore, that all uses of setf be replaced by 'setf in
*Lisp code. Note that this does not apply to uses of setf in Common Lisp forms.

2.4 Meaning of the fioat-pvar Type Specifier Changed

Whereas the type specifier f loat-pvar was, in previous versions, defined as equivalent
to the type specifier single-float-pvar, it is now defined as equivalent to (pvar float).
More specifically, float-pvar used to be equivalent to (pvar (defined-float 23 8)), it is
now equivalent to (pvar (defined-float * *). This change brings the names of floating­
point type specifiers into congruence with those of other pvar types. Existing code that
relies on the old meaning of the float-pvar type specifier should substitute the single-
float-pvar specifier for the float-pvar specifier throughout. For a detailed description
of *Lisp type specifiers, see chapter 1 of the Supplement to the *Lisp Reference Manual.

2.5 How to Force Version-Specific Execution

It is possible to have both Version 5.0 and Version 4.3 available on CM front-end com­
puters. For instructions on setting up such an environment, see the System Front End
Release Notes, V5.0 in the volume entitled Connection Machine Front End Subsystems.
If both Version 5.0 and Version 4.3 are in use, it may be necessary to conditionalize
code for appropriate execution under each version.

To force the Lisp reader to conditionally read a form depending on which version of
the Connection Machine System Software (including *Lisp) is loaded, use the Com­
mon Lisp #+ and #- reader macros with the feature symbol CM-5.0. Thus,

#+CM-5.0 form

reads form only if Version 5.0 of the Connection Machine System Software is loaded.

Version 5.0 9

#-CM -5.0 form

reads form only if Version 5.0 of the Connection Machine System Software is not
loaded.

Inserting these switches in existing code allows line-specific modifications that accom­
modate the few syntax changes introduced with Version 5.0 while allowing that code to
continue to execute under Version 4.3.

Examples:

#+CM-5.0 (*pset :max from-pvar to-pvar address-pvar
inotify whogot-pvar :collision-mode :many-collisions
:vp-set to-vp)

#—CM—5.0 (*pset :max from-pvar to-pvar address-pvar
whogot-pvar :many-collisions)

In the code above, a *pset form with keyword arguments, including a destination VP
set, is read if Version 5.0 is loaded and a *pset form without keyword arguments is
read if an earlier version is loaded.

(*set destination
#+CM—5.0 (pref!! source-pvar address-pvar

:collision-mode :no-collisions :vp-set from-vp)
#-CM-5.0 (pref!! source-pvar address-pvar :no-collisions)
)

Here, a pref!! form with keyword arguments, including a source V P set, is read if Ver­
sion 5.0 is loaded and a pref!! form without keyword arguments is read if an earlier
version is loaded.

NOTE

Code using such reader macros must be recompiled
when moving between versions.

10 *Lisp Release Notes

3 Enhancements to the *Lisp Language

This section provides a brief overview of all the changes and additions made to the
*Lisp language with Version 5.0. It does not attempt to describe these in detail. Formal
definitions of all new language features are given in the Supplement to the *Lisp Refer­
ence Manual, Version 5.0. The supplement also contains code examples and program­
ming hints helpful in making proper use of the new features.

The following major enhancements to the *Lisp language are introduced with *Lisp
Version 5.0:

• Support for multiple, n-dimensional virtual processor sets (VP sets)

• Support for n-dimensional interprocessor communication (N-D NEWS)

• Support fox the following new types of parallel variables (pvars):

• array pvars

• structure pvars

• complex number pvars

• character pvars

• Support for more flexible scan operations using segment sets

• Experimental parallel vector operations

• A complete set of efficient trigonometric and transcendental function for both
floating point pvars and complex number pvars.

3.1 A/-Dimensional NEWS and Virtual Processor Sets

Previous versions of *Lisp restricted the assignment of Connection Machine virtual
processors to a two-dimensional grid pattern. This assignment could only be made
once during a session: at the start, with the *cold-boot command. When the proces­
sor requirements of program data varied, users were forced to use the maximum num­
ber of virtual processors required by any data a program used. When smaller data
were processed, portions of the machine had to be left idle.

Version 5.0 11

*Lisp Version 5.0 introduces support for an n-dimensional configuration of Connec­
tion Machine processors, where n is any positive integer. The definition of an n-dimen-
sional processor pattern results in an object known as a virtual processor set (or VP set).
Multiple VP sets may be defined, each with separate data. Numerous new operations
are provided to create, deallocate, and assign pvars to virtual processor sets.

The introduction of VP sets enables more efficient utilization of the Connection Ma­
chine system. First, assigning data to appropriately-dimensioned virtual processor
sets avoids the problem of idle processors. Second, the implementation of virtual proc­
essor memory management has been improved with this version of the Connection
Machine System Software.

Near neighbor communication between processors, termed NEWS communication,
has been extended to n-dimensions. Also, several new operations are provided to sup­
port communication between virtual processor sets.

A detailed discussion of virtual processor sets and formal definitions of VP set opera­
tions may be found in the chapter entitled “Virtual Processor Sets” in the Supplement
to the *Lisp Reference Manual, Version 5.0

A detailed discussion of N-D NEWS and formal definitions of N-B NEWS operations
may be found in the chapter entitled ‘W-Dimensional Interprocessor Communica­
tion” in the Supplement to the *Lisp Reference Manual, Version 5.0.

3.2 New Pvar Types

*Lisp Version 5.0 adds four new parallel variables types to *Lisp: array pvars, struc­
ture pvars, complex pvars, and character pvars. The introduction of these data types
adds flexibility to data representation on the CM and allows front-end data to be more
easily broadcast to the CM processors.

3.2.1 Array Pvars

Prior to the release of Version 5.0, array pvars were not implemented. *Lisp users
could create arrays of pvars on the front end and thus simulate the array pvar data
structure. This is no longer necessary.

*Lisp defines array pvars as the parallel equivalent of Common Lisp arrays: one array
is stored in each processor. Numerous functions are provided to create and manipu-

late array pvars. The new *Lisp operations specific to array pvars fall into the following
categories:

• Creating and copying array pvars

• Describing and testing array pvars

• Storing and accessing array pvar contents

• Mapping functions over array pvars

• Performing logical bitwise operations on array pvars with single bit elements

• Fast indirect addressing using sideways arrays

For a detailed discussion of array pvars and for formal definitions of operations on
array pvars, see the chapter entitled “Array Pvars,” in the Supplement to the *Lisp Ref­
erence Manual, Version 5.0.

12 *Lisp Release Notes

3.2.2 Structure Pvars

Prior to the release of Version 5.0, an experimental version of structure pvars was im­
plemented. Structure pvars have been reimplemented with substantial changes in syn­
tax and semantics.

*Lisp defines structure pvars as the parallel equivalent of Common Lisp structures. A
structure pvar is a user-defined aggregate parallel data type. Evaluation of a pvar
structure definition creates constructor, accessor, and assignment operations for that
structure pvar. In addition, a structure pvar definition defines a front-end scalar struc­
ture and front-end operations on that structure. Creating a structure pvar means stor­
ing one instance of a defined structure in each active processor.

Several operations are provided to create and manipulate structure pvars. The follow­
ing categories of new *Lisp operations specific to structure pvars have been imple­
mented for Version 5.0:

• Defining and creating structure pvars

• Testing structure pvars

• Storing and accessing data in structure pvars

Inheritance among *Lisp structure pvar definitions may be employed to any depth.
However, inheritance is limited to one ancestor per definition.

Version 5.0 13

For a detailed discussion of structure pvars and for formal definitions of operations on
structure pvars, see the chapter entitled “Structure Pvars,” in the Supplement to the
*Lisp Reference Manual, Version 5.0.

3.2.3 Complex Pvars

Prior to the release of Version 5.0, pvars could not contain complex numbers.

*Lisp defines complex pvars as the parallel equivalent of Common Lisp complex num­
bers: one complex number is stored in each active processor.

Parallel equivalents of all Common Lisp operations on complex numbers are provided
with Version 5.0. Some functions that can return complex pvars bear argument restric­
tions more stringent than those placed on their Common Lisp analogues.

For a detailed discussion of complex pvars and for formal definitions of operations on
complex pvars, see the chapter entitled “Complex Number Pvars,” in the Supplement
to the *Lisp Reference Manual, Version 5.0.

3.2.4 Character Pvars

Prior to the release of Version 5.0, pvars could not contain characters.

*Lisp defines character pvars as the parallel equivalent of Common Lisp characters:
one character is stored in each active processor. Both the character pvar type and its
string-char sub-type are supported by *Lisp.

Parallel equivalents of almost all Common Lisp operations on characters are provided
with Version 5.0.

For a detailed discussion of character pvars and for formal definitions of operations
on character pvars, see the chapter entitled “Character Pvars,” in the Supplement to
the *Lisp Reference Manual, Version 5.0.

3.3 Experimental Features

An experimental feature is one for which neither the design nor the implementation can
be considered stable. Be aware that these features are less thoroughly tested than non-
experimental features and are therefore more error-prone. Customers using these fa-

14 *Lisp Release Notes
MMwmMSMmmmmmmwzmmmmmmmfmmmMmmmmmmmmwimmmmmmmmmmmmmmmmMim

cilities are encouraged to offer suggestions and criticism. If well received, experimental
features can become standard features. Otherwise, they may be removed from the lan­
guage.

*Lisp Version 5.0 offers the following experimental features:

• segment sets for segmented scans

• parallel vector operations

• parallel sequence operations

• address objects for N-D NEWS communications

An overview of each experimental feature is provided below.

3.3.1 Enhanced Scanning Operations

The *Lisp facilities for segmented scan operations are now enhanced by the introduc­
tion of segment sets. A segment set is a group of potentially non-adjacent sequences of
Connection Machine processors. When segment sets are used, the designated proces­
sors are selected—independent of the currently selected set—for the duration of the
scan operation. New *Lisp operations are provided to create segment sets and to use
them in parallel scans.

For a detailed discussion of segmented scans using segment sets, see the chapter enti­
tled “Scanning with Segment Sets” in the Supplement to the *Lisp Reference Manual,
Version 5.0.

3.3.2 Parallel Vector Operations

Experimental, parallel versions of standard operations on vectors are provided with
*Lisp, Version 5.0. For instance, vector addition and dot product may be performed
on vectors pvars containing numeric data. Experimental, optimized versions of vector
operations are provided for vector pvars containing single-precision floating-point
numbers. Also provided are experimental, serial equivalents of *Lisp vector functions
for which no Common Lisp analogues exist.

For a detailed discussion of *Lisp vector operations, see the chapter entitled “Parallel
Vector Operations” in the Supplement to the *Lisp Reference Manual, Version 5.0.

3.3.3 Parallel Sequence Operations

*Lisp defines a parallel sequence as a pvar containing a one-dimensional array in each
processor. Experimental parallel equivalents of a subset of Common Lisp sequence
operations are provided in *Lisp, Version 5.0. The following general categories of par­
allel sequence operations are now available in *Lisp:

• simple operations such as element subselection, copying, and reversing
• modifying parallel sequences
• searching parallel sequences
• mapping predicates over sequences in each processor

More stringent restrictions are placed on *Lisp sequence pvars than on Common Lisp
sequences:

• Sequence pvars are one dimensional array pvars; list pvars are not supported.

• Sequence pvars must be composed of sequences that are—in each active proc­
essor—of fixed, uniform size.

A variety of restrictions are also placed on the arguments to individual parallel se­
quence operations.

For a detailed discussion of *Lisp parallel sequence operations, see the chapter enti­
tled “Parallel Sequence Operations” in the Supplement to the *Lisp Reference Manual,
Version 5.0.

Version 5.0 15

3.3.4 Address Objects

A new approach to grid addressing is introduced with a feature known as address ob­
jects. Address objects simplify and generalize grid addressing across VP sets.

*Lisp provides functions for creating and manipulating address objects. Address ob­
jects are structures defined with *defstruct and containing grid coordinates. They are
easier to use than other methods of translating between addresses.

For a detailed discussion of address objects, see the chapter entitled ‘W-Dimensional
Interprocessor Communication” in the Supplement to the *Lisp Reference Manual,
Version 5.0.

16 *Lisp Release Notes

4 The *Lisp Interpreter

4.1 Interpreter Enhancements

The *Lisp interpreter runs on top of either Lucid Common Lisp or Symbolics Com­
mon Lisp and executes *Lisp code on the Connection Machine in an interpretive man­
ner.

The *Lisp interpreter has been completely reimplemented for Version 5.0. This has
resulted in the following improvements.

• New language features are supported.
All the new language features mentioned in these release notes and detailed in
the Supplement to the *Lisp Reference Manual, Version 5.0, are supported by
the *Lisp interpreter.

• Performance is improved.
*Lisp now makes better use of the CM-2 capabilities, thus offering perform­
ance gains over previous versions. For a discussion of the relevant features, see
Appendix A of the Supplement to the *Lisp Reference Manual.

• Error handling is improved.
More consistent error handling and reporting is now provided by *Lisp. This
enhancement affects execution of nearly every *Lisp construct and is treated in
chapter 7 of the Supplement to the *Lisp Reference Manual.

• Interpreter safety is available.
It is now possible to choose between different levels of interpreter safety. This
debugging aid is discussed in chapter 7 of the Supplement to the *Lisp Refer­
ence Manual.

IMPORTANT

The efficient execution of interpreted codes is highly
dependent upon the value of * interpreter-saf ety*. The
user is strongly advised to become familiar with the
proper method of setting different safety levels.

Version 5.0 17

4.2 Interpreter Restrictions

The following restrictions, which existed in *Lisp Version 4.3, still apply to *Lisp Ver­
sion 5.0.

• The Common Lisp functions proclaim and setf are still redefined by *Lisp.
This has caused problems in a *Lisp environment on a Symbolics Lisp ma­
chine with compilation of Lisp files that are independent of *Lisp and that
have been subsequently loaded into an environment without *Lisp. In a future
release, proclaim and setf will no longer be redefined by *Lisp and this prob­
lem will no longer exist.

• Several functions that take integer arguments are restricted in that the argu­
ments may not exceed the length of cm: *maximum-integer-length*. These
functions are isqrt!!, float!!, *!!, floor!!, truncate!!, ceiling!!, round!!, mod!!,
and rem!!. This problem occurs in both the interpreter and the compiler; it
reflects Paris restrictions.

• For segmented scans, as for non-segmented scans, the floating-point numbers
scanned are normalized with respect to the maximum value in the entire pvar,
across all segments. They are not normalized with respect to the maximum
value within a segment only. As a result, the values for scans computed for
certain segments—those with values of a much smaller order of magnitude
than the maximum—may be lost entirely. Only segments containing values of
the same order of magnitude as the maximum value across all segments will
have meaningful results.

5 The *Lisp Compiler

The *Lisp compiler is compatible with and executes as part of the Common Lisp com­
piler. Not all *Lisp operations can be compiled; those that cannot be compiled run
interpreted. For *Lisp operations that are compiled, the *Lisp compiler generates
Lisp/Paris object code that runs more efficiently than interpreted *Lisp.

This section lists enhancements, corrections, and restrictions to the *Lisp compiler.
The information in this section is new. It summarizes changes made to the compiler
since publication of the *Lisp Compiler Guide, Version 4.2A Field Test, in October
1987 and the *Lisp Release Notes, Version 4.3, in January 1988. For a detailed descrip­
tion of the *Lisp compiler, see the newly-revised *Lisp Compiler Guide, Version 5.0.

18 *Lisp Release Notes

5.1 Compiler Enhancements

The *Lisp compiler, Version 5.0, contains the following enhancements.

• The compiler is now, by default, on.

• The compiler menu options have changed.

• The degree of type checking performed by the compiler is now configurable.

• Some *Lisp operations that did not previously compile now do.

Detailed descriptions of these enhancements may be found in the *Lisp Compiler
Guide, Version 5.0. A summary is given below.

5.1.1 Compiler Now ON by Default

Previously, the *Lisp Compiler had to be explicitly enabled from the options menu.
The *Lisp compiler is now on by default. The *Lisp compiler can translate most but
not all *Lisp statements into Lisp/Paris. Any *Lisp statement that cannot be trans­
lated is interpreted by the *Lisp interpreter.

Version 5.0 19

5.1.2 Compiler Menu Option Changes

The following compiler options have been added to the full options menu.

Add Declares
Use Undocumented Paris
Verify Type Declarations
Constant Fold Expressions
Speed
Compilation Speed
Space
Immediate Error if Location
Optimize Check Stack Expression
Generate Comments with Paris Code

While the functionality of most of these options is not new, it is now possible to more
finely adjust compiler operation by changing the value of one or more of these options.
In most cases this is not necessary.

The default values for the following compiler options have changed.

Compile Expressions
Warning Level
Optimize Bindings
Peephole Optimize Paris
Machine Type

The Compile Expressions default was No, it is now Yes; the *Lisp compiler is now on
by default.

The Warning Level default was High, it is now Normal. This means that, by default, the
’Lisp compiler does not report failure every time it is unable to process a ’Lisp state­
ment that it attempts to ’compile.

The Optimize Bindings and Peephole Optimize Paris compiler options both now de­
fault to Cspeed<3, a value which varies the degree of optimization based on the value
of the compilation speed variable *compilation-speed*.

The Machine Type compiler option default has been changed from Compatible to
Current. This means that, by default, the compiler now generates code specific to the
type of Connection Machine system currently in use. Previously it generated code com­
patible across Connection Machine systems.

20 * Lisp Release Notes

The following compiler options have been removed from the default menu. While
these options are still available on the complete menu, they seldom need to be given
settings other than their defaults.

Optimize Bindings
Peephole Optimize
Machine Type

The Machine Type option value of CM1 no longer works; the *Lisp compiler will not
generate code that works on the CM-1.

The Use Paris Macros *Lisp compiler option has been disabled; it is no longer avail­
able.

5.1.3 Configurable Compiler Type Checking

By setting the value of the new Verify Type Declarations compiler option, it is now
possible to vary the amount of type checking performed by the compiler. By default,
the level of type checking varies with the value of the compilation safety variable
safety.

5.1.4 *Lisp Operations that Compile

Most of the *Lisp operations introduced with Version 5.0 can be compiled. As with
previous version of the *Lisp compiler, *Lisp expressions that can be compiled are
compiled only if they are enclosed in forms that allow the compiler to “see” them. (See
the *Lisp Compiler Guide, Version 5.0, for information on which forms the compiler
can “see”)

The following *Lisp operations that did not previously compile now do.

Several of the restrictions previously placed on the functions load-byte!! and ldb!! in
order to allow compilation have now been relaxed. The syntactic formats for
load-byte!! and ldb!! are:

sin!! cos!! log!!

load-byte!! source-pvar position-pvar size-pvar
ldb!! bytespec-pvar source-pvar

[Function]
[Function]

These two functions are equivalent in the following way.

Version 5.0 21
*:?®S5:s5:K::®5:::S5iK:;5&SSS®SS^^

(lo a d -b y te ! ! source-pvar position-pvar size-pvar)
<=>
(l d b ! ! (byte ! ! size-pvar position-pvar) source-pvar)

Previously, source-pvar had to be of a known integer length or the expression would not
compile. The length of the source-pvar argument can now be indefinite, known only at
run time.

The position-pvar argument no longer must be of the form (!! integer-constant). Now it
may be either (!! integer-expression) or a pvar containing different values in each
processor.

The size-pvar argument no longer must be of the form (!! integer-constant). It may now
be of the form (!! integer-expression). However, size-pvar may not be a pvar containing
different values in different processors.

Example:

(l o a d - b y t e ! ! u8 (!! 5) (! ! 3))

(lo a d - b y t e ! ! u-cube u4 (! ! j))

Here, u8 is of type (unsigned-byte 8), u-cube is and unsigned integer pvar whose
length varies with the the cube address length, u4 is of type (unsigned-byte 4), and j is
any integer. The first of the above expressions would previously compile whereas the
second would not. Now both forms will compile.

5.2 Compiler Restrictions

The current version of the *Lisp compiler does not yet compile all *Lisp functions.
Anything that is not compiled is handled by the interpreter. If the Warning Level com­
piler option is set to High, the compiler prints a warning whenever an operation is vis­
ible but not compiled. (See the *Lisp Compiler Guide for the definition of operations
visible to the *Lisp compiler.)

22 *Lisp Release Notes

5.2.1 Forms Not Yet Compiled

Arguments to user-defined functions are currently not compiled. In addition, the
*Lisp operations listed below are currently not compiled by the *Lisp compiler.

char-bit!! set-char-bit!!
digit—char!!

These operations on character pvars are described in chapter 2 of the Supplement to
the *Lisp Reference Manual.

array-in-bounds-p!!
array-rank!!
array-dimensions!!
array-dimension!!
*array-total-size
array-row-major-index!!
•sideways-array
•map

These operations on parallel arrays are described in chapter 3 of the Supplement to the
*Lisp Reference Manual.

(!! CL-structure) (*setf (pref parallel-structure)
parallel-structure-p\\ structurep!!

Where CL-structure is a Common Lisp structure and parallel-structure is defined by
*def struct. Operations on parallel structures are described in chapter 4 of the Supple­
ment to the *Lisp Reference Manual.

grid!!
•news
address-nth!!
address-pius-nth!!
array-to-pvar
pvar-to-array
• pset-grid-relative

These addressing and communications operations are described in chapter 6 of the
Supplement to the *Lisp Reference Manual.

grid-relative!!
news-border!!
address-plus!!
address-rank!!
array-to-pvar-grid
pvar-to-array-grid

make-array!!
•array-rank
•array-dimensions
•array-eiement-type
array-total-size!!
typed-vector!!
sideways-aref!!

Version 5.0 23
mzwmmmmmmrsmmmmmmmmwmmwimmswMmmmmgmtmmMmmmismmmS’mi&gm-sstMm

byte!! ppp-address-object
byte-size!! byte-position!!
rot!! sort!!
equalp!! dpb!!
ppp!! pppdbg

These miscellaneous operations are described in chapter 7 of the Supplement to the
*Lisp Reference Manual.

In addition, none of the experimental parallel sequence operations and none of the
exprimental parallel vector operations can be compiled. These new, experimental op­
erations are described in chapters 10 and 11 of the Supplement to the *Lisp Reference
Manual.

5.2.2 Forms Compiled with Restrictions

The following functions compile only if the restrictions noted below are observed,

arefi!

The subsript-pvar arguments hold different values from each other, but within
each subscript-pvar argument identical values must be stored across all proc­
essors. That is, each must be of the form (!! integer).

pref

Thepvar-expression argument may not be a parallel array of arrays nor a paral­
lel array of structures.

pref!!
pref-grid!!

The argument pvar-expression must be a simple expression, such as a variable,

pref-grid-relative!!

The arguments relative-address-pvars must be constants such as (!! x) where x
may be a variable or an integer.

24

•pset
•pset-grid

The combiner argument may not have the value: default, and the optional colli­
sion-mode argument may not have the value :many-collisions.

load-byte!!

The size-pvar argument must be constants such as (!! x), where x must be an
integer.

•when
•unless

Only the predicate is compiled; the body is not.

•let
•let*

Only the initial values are compiled; the body is not.

deposit-byte!!

The value and into-value arguments must be unsigned-byte pvars of definite
length. The position and size arguments must be textually !! forms.

*Lisp Release Notes

bit-and!! bit—ior!! bit-xor!!
bit-eqv!! bit-nand!! bit-nor!!
bit-andc1!! bit-andc2!! bit—o rc l!!
bit-orc2!! bit—not!!

If the Aoptional bit-array-result-pvar is provided, none of these functions com­
pile.

code-char!! make-char!! character!!
digit-char!! int-char!!

The result may not be used as the source pvar in a *set form.

Version 5.0 25

5.2.3 Restrictions on Compiler Options

Several *Lisp compiler options have attenuated functionality in the current version.

Pull Out Common Address Expressions

This option is not yet fully implemented and should therefore not be used
in most cases.

Compilation Speed

Except as a constraint on peephole and binding optimization, the Compilation
Speed option is not currently considered by the compiler.

Space

The compiler does not consider this option currently.

Use Always Instructions

This option is not fully implemented and may generate undocumented Paris
instructions.

Speed

The execution speed level setting is not used.

5.3 Notes on Compiler Use

Unless the *Lisp compiler Warning Level is explicitly set to High, the *Lisp compiler
will not emit warning messages to the effect that it could not translate certain *Lisp
statements into Lisp/Paris. Thus, using the default Warning Level, it is not possible to
know which portions of code have been translated into Lisp/Paris and which have not.

Do not confuse the compiler Warning Level with the Safety Level. The Warning Level
determines how completely the compiler reports compile-time problems. The Safety
Level determines the degree to which compiled code reports run-time errors.

IMPORTANT

The efficient execution of compiled code depends
highly on the compiler Safety Level. The user is
strongly advised to become familiar with the proper
setting of different safety levels.

26 *Lisp Release Notes

6 The *Lisp Simulator

The *Lisp simulator runs on top of Common Lisp and allows users to execute *Lisp
code without using a Connection Machine system. The *Lisp simulator is known to
run on the following implementations of Common Lisp:

Symbolics Lisp on a Symbolics Lisp Machine
Sun Common Lisp on a Sun-4 workstation
Lucid Common Lisp on a VAX running ULTRIX

In the past, the *Lisp simulator has run on the following systems:
Sun Common Lisp on a Sun-3 workstation
Lucid Common Lisp on a VAX running VMS

Lucid Common Lisp on an Apollo workstation
Coral Common Lisp on a Macintosh
Kyoto Common Lisp on various machines

The *Lisp simulator can be made to run on any full implementation of Common Lisp
with minimal porting effort.

6.1 Simulator Version

The Version 5.0 *Lisp simulator is not yet available. Instead, users wishing to simulate
*Lisp on a computer not connected to a Connection Machine system must continue to
use the *Lisp simulator, Version 4.3. It is anticipated that an updated version of the
simulator will be made available with the next minor version release.

Version 5.0 27

Most of the items in this section have been reported with previous releases.

6.2 Simulator Restrictions

The *Lisp simulator supports only general pvars; it does not support any of the other
pvar types.

The *Lisp simulator still bears the Version 4.3 interpreter's restriction on naming us­
er-defined *Lisp functions. Because such functions circumvent the Common Lisp
package system, they must all have unique names. (Note that this restriction no longer
applies to the *Lisp interpreter.)

Prior to Version 4.3, declarations of the form (type (pvar. . .)) were not accepted. Any
type declaration with pvar as its first symbol is now accepted, although in certain cir­
cumstances the simulator may issue a warning.

The twenty-two operations added to the *Lisp interpreter and compiler for Version 4.3
are not yet available in the *Lisp simulator. A list of these operations appears below.
For definitions, see chapter 7 of the Supplement to the *Lisp Reference Manual

lognand!! integer-pvarl integer-pvar2
lognor!! integer-pvarl integer-pvar2
logandcU! integer-pvarl integer-pvar2
logandc2!! integer-pvarl integer-pvar2
logorcl!! integer-pvarl integer-pvar2
logorc2!! integer-pvarl integer-pvar2
boole!! op-pvar integer-pvarl integer-pvar2
logbitp!! index-pvar integer-pvar
logtest!! integer-pvarl integer-pvar2
logcount!! integer-pvar
integer-length!! integer-pvar
gcd!! &rest integer-pvars
Icm!! integer-pvar &rest integer-pvars
mask-field!! bytespec-pvar integer-pvar
ffloor!! number-pvar &optional divisor-pvar
fceiling!! number-pvar &optional divisor-pvar
ftruncate!! number-pvar &optional divisor-pvar
fround!! number-pvar &optional divisor-pvar
scale-floatl! float-pvar integer-pvar

28 * Lisp Release Notes

float-sign!! float-pvarl ^optional float-pvar2
integer-from-gray-code!! integer-pvar
gray-code-from-integer!! integer-pvar

6.3 Simulator Correction: a Patch to *pset

To correct an error in the simulator’s implementation of *pset, a patch should be in­
stalled. This patch may be found in the file

/cm/starlisp/interpreter/f5005/starlisp-simulator-patch.lisp

Ask your systems administrator or your applications engineer to direct you to the loca­
tion of this file at your installation.

A copy of this file is included below as a backup.

;;; REPLACE THE FUNCTION *PSET-1 IN THE FILE ADDRESSING.LISP
;;; WITH THIS VERSION OF THE FUNCTION. THEN RECOMPILE THE
;;; *LISP SIMULATOR.
(defun *pset-l

(function combinator source-pvar dest-pvar address-pvar
^optional (notify-pvar nil)

(collision-mode :collisions-allowed))
(pvar-check address-pvar)
(pvar-check source-pvar)
(pvar-check-lvalue dest-pvar function)
(when notify-pvar (pvar-check-lvalue notify-pvar function))
(when collision-mode

(check-collision-mode collision-mode function))
(when (or (not (keywordp combinator))

(null (setq combinator
(get combinator 'pset-function))))

(error "~S a valid combinator: ~S" function combinator))
(if (or (null *pset-collision-array*)

(not (eq (array-dimension *pset-collision-array* 0)
number-of-processors-limit)))

(setq *pset-collision-array*
(make-array *user-number-of-processors*

:element-type 'null)))

Version 5.0 29

(when (eq dest-pvar notify-pvar)
(error 11 ~S dest-pvar and the notify-pvar are identical.
This makes no sense." function))

;; If there is any overlap anywhere, make copies of the
;; destination and notify pvars, just in case.
(if (or (eq source-pvar dest-pvar)

(eq source-pvar address-pvar)
(eq source-pvar notify-pvar)
(eq dest-pvar address-pvar)
(eq address-pvar notify-pvar)
)

(♦let ((temp-source-pvar source-pvar)
(temp-dest-pvar dest-pvar)
(temp-address-pvar address-pvar)
(temp-notify-pvar (if notify-pvar notify-pvar nil!!))
)

(♦all (♦set temp-dest-pvar dest-pvar))
(♦all (if notify-pvar (♦set temp-notify-pvar notify-pvar)))
(♦pset-internal
combinator
(pvar-array temp-source-pvar)
(pvar-array temp-dest-pvar)
(pvar-array temp-address-pvar)
(if notify-pvar (pvar-array temp-notify-pvar) nil)
♦pset-collision-array#
)

(♦all (♦set dest-pvar temp-dest-pvar))
(♦all (if notify-pvar (#set notify-pvar temp-notify-pvar)))

)
(♦pset-internal

combinator
(pvar-array source-pvar)
(pvar-array dest-pvar)
(pvar-array address-pvar)
(if notify-pvar (pvar-array notify-pvar) nil)
♦pset-collision-array#
)

30 *Lisp Release Notes

6.4 Notes on Simulator Use

6.4.1 Conditional Simulator Execution

It is sometimes desirable to write *Lisp code in one fashion to execute on a Connection
Machine system and in another fashion to execute with the *Lisp simulator. This is
especially helpful in situations like the present one, where code intended for the simu­
lator must conform to Version 4.3 while code intended to execute on the Connection
Machine hardware will likely use new constructs introduced with Version 5.0.

To force the Lisp reader to conditionally read a form depending on whether or not the
simulator is loaded, use the Common Lisp #+ reader macro with the feature symbols
* LISP-SIMULATOR and * LISP-HARD WARE. Thus,

#+*LISP-SIMULATOR form

reads fo rm only if the *Lisp simulator is loaded.

#+* LISP-HARD WARE form

reads fo rm only if *Lisp is loaded and a Connection Machine system is attached to the
executing front end computer. For examples that use similar reader macros, see sec­
tion 2.5 of these release notes.

6.4.2 ‘ proclaim

The *Lisp simulator requires that the operation ‘ proclaim be used to make global dec­
larations. This behavior is now more compatible with the *Lisp interpreter. Whereas
previous versions of the interpreter have relied on a redefinition of the Common Lisp
proclaim operation to allow ’Lisp to attend to global declarations, with the release of
Version 5.0, the *Lisp interpreter makes the use of proclaim forms in *Lisp statements
obsolete.

Version 5.0 31

7 Floating-Point Hardware Problem

The 32-bit floating-point accelerator is an option available with the CM-2. This section
applies only to CM-2 machines with the floating-point accelerator option. Early ver­
sion of these chips have a hardware error that causes a slight loss in precision in some
floating-point multiply results. New versions of the chips do not have this problem.
The affected *Lisp functions are:

*!! /!! sqrt!!
truncate!! floor!! ceiling!!
round!! mod!! rem!!
sin!! cos!! log!!

This problem affects *Lisp statements running either interpreted or compiled. The
nature of this problem is documented in detail in the System Front Ends Release Notes,
Version 5.0, which are in the binder labeled Connection Machine Front-End Subsys­
tems. The interested reader is urged to consult that document.

To avoid getting precision errors, use the with-f pu macro located in the cmi package.

cmi::with-fpu &key :mode :form [Macro]

The value of the :form argument may be any *Lisp form.This macro evaluates form. If
:mode is : off, the floating-point accelerator is turned off for the duration of the evalu­
ation of form. If :mode is :on, the floating-point accelerator is turned on for the dura­
tion of the evaluation of form. For example

(cmi::with-fpu :mode :off :form (*!! pvarl pvar2))

turns off the floating-point accelerator while executing (*!! pvarl pvar2).

32 *Lisp Release Notes

8 New Operations Not Yet Documented

What follows is simply a list of new *Lisp operations which—with Version 5.0—have
yet to be fully documented.

unproclaim
Idb-testl!
deposit-field!!
Idb!!
dpb!!
byte!!
byte-size!!
byte-position!!
case!!
*case
ecase!!
*ecase
deallocate-vp-sets
sideways-array-p
*incf
*decf

