
•

•

•

TNS/II (sub)Standard LISP (15dec83Djfb02) 15mar85

**
* *
* This document and the software described herein are only for use *
* within Tandem Computers Inc. Any outside use or distribution of *
* these materials is expressly prohibited without the express *

'* written permission of Tandem Computers Inc. *
* * This software is not a supported product and represents no
* committment by Tandem Computers Inc. to support such software
* at any future time.
*

*
*
*
*
*

* Tandem, NonStop II, NonStop TXP and GUARDIAN are trademarks of *
* Tandem Computers Incorporated. *
*
*
*

Joel Bartlett
*
*
*

**

Abstract.

This document describes an implementation of Standard LISP which runs
on Tandem Computers Inc. NonStop II and NonStop TXP systems. It is
intended to be a reference document to be used in conjunction with the
"Standard Lisp Report", Marti et aI, SIGPLAN Notices, Volume 14,
Number 10, October 1979 (here after refered to as the Standard) •

The document is organized into two sections. The first section
contains information about features which are specific to this
implementation. The second section is a glossary of LISP objects
which provides a cross~reference between this document and the
Standard.

Differences from the Previous Release

Assign's and Param's are now supported by LISP. They are to be found
in the globals *ASSIGNS and *PARAMS, and are automatically passed to a
new process as needed. User programs may modify these lists at will.

The optional heap size and swap file information are now passed to
LISP using ASSIGN's and PARAM's.

A generalized file logging capability via the function IOECHO has been
added.

Better control over break during interactive sessions is now possible
using the function OLDBREAK.

A list of all file handles for open files is returned by OPENFILES.

An alternative way to access bytes in strings is available via GETBYTE
and PUTBYTE.

G~rbage collection may be quietly invoked by GCQ.

Copyright (C) Tandem Computers Inc., 1985 - 1

•

•

•

TNS/II (sub)Standard LISP (15dec83Djfb02)

NonStop programming is now supported by FORK and BACKUPOPEN •

PSETQ and LAST have been added from Common LISP.

SETQ has been generalized as defined in Common LISP.

The LISP library functions are now documented here as they are
normally bundled with the interpreter.

Introduction.

15mar85

Why LISP? Why not! It is as an excellent tool for investigating
algorithms, control structures, and data structures. It also allows
rapid prototyping and interactive program development. Finally,
compiled LISP programs have quite respectable performance. However,
it is a language (like APL) that one is not neutral to. One either
accepts its quirks and sees it as a powerful tool, or points to it's
quirks as good reasons not to use it.

Given that one is tempted to at least look at it, the best book to
read is "LISP" by Winston & Horn. Notes are provided within this
document for using it with this LISP system. An alternative, which
also is an introduction to A.I., is "Artificial Intelligence" by
Winston. If this seems like too much work, then there is a
non-traditional introduction to LISP in "The Little LISPer" by
Friedman. For the dedicated, there are gory details about internals
of LISP in "Anatomy of LISP" by Allen.

AS there are some differences between LISP dialects, one should
consult the glossary in this document to discern them as one reads
these materials.

A major problem in implementing LISP is choosing a dialect. Unfor­
tunately, there are no readily accepted standards in this area. This
in turn tends to impede program and documentation interchange. There
are currently several exotic LISP's such as INTERLISP or MACLISP which
would be very nice to use. However, it is not clear that one wishes
to undertake the implementation of same. There is also the original
LISP 1.5 (defined in 1965) which is a more manageable implementation
project, but lacks facilities such as arrays, floating point numbers,
or file i/o.

Luckily, a nice compromise dialect is available, Standard LISP, which
provides a dialect of LISP based upon LISP 1.5, but with some nice
additions based upon experience over the last 10 to 15 years. This
dialect, less a few features related to compiled functions and
floating point numbers has been chosen as the implementation base •

Copyright (C) Tandem Computers Inc., 1985 - 2

•

•

•

TNS/II (sub)Standard LISP (15dec83Djfb02) 15mar85

Running LISP •

The interpreter is started on a NonStop II system by the command:

:[RUN] LISP [/ [IN <in file>] [,OUT <out file>] /] [<command string>]

The <in file> will be read into the basic interpreter. If the <in
file> is not the same as the <out file>, then input records will be
echoed on the <out file>. In either or both files are not specified,
then the command interpreter defaults will be used. LISP will prompt
terminals with the prompt "<digit>-" where <digit> is the current
number of unmatched left parentheses.

The LISP interpreter is terminated when an end-of-file condition is
detected on the initial <in file> at the top level of the interpreter.

If a command string is present in the RUN command, then it is
interpreted by the LISP interpreter, or the user's top-level function
(see SAVECODE).

The default swap file for the LISP node space is a temporary file
created on the default volume. An alternative volume or file may be
specified by the assign:

:ASSIGN LISPSWAP,{ <volume> I <file> }

The default heap size is 100 pages. If some other value in the range
50 <= X <= 10000 is desired, then it may be set by:

:PARAM LISPHEAP <heap size>

The current configured heap size will be printed by LISP on each start
up.

"LISP" Chapter Notes.

The following page notes are for the first nine chapters of "LISP", by
Winston and Horn, the first edition. They point out the basic
differences between MACLISP and Standard LISP.

pg 10: Functions are defined using DE rather then DEFUN.

pg 14: SET will print a warning message the first time a variable is
assigned a value.

The "fc" command may be used to correct lines.

Define NEWFRIEND using DE rather than DEFUN as follows:

(DE NEWFRIEND (NAME)
(SET 'ENEMIES (DELETE NAME FRIENDS»
(SET 'FRIENDS (CONS NAME FRIENDS»)

Copyright (C) Tandem Computers Inc., 1985 - 3

•

•

•

TNS/II (sub)Standard LISP (15dec83Djfb02) 15mar85

pg 16: SQRT and EXPT are not supported •

pg 18: This LISP system supports one type of number, a decimal value
with up to 13 digits to the left of the decimal point and 6
digits to the right of the decimal point. As a result, one
does not need the functions FIX and FLOAT.

pg 24: APPEND allows only two (2) arguments. To append three lists
one would use: (APPEND L1 (APPEND L2 L3»

pg 33: Functions are defined using DE:

(DE <function name>
«parameter 1> <parameter 2> ••• <parameter n»
«process description»

Rather than typing functions directly into the LISP
interpreter, one should use the function (EDIT <file» to
enter a function into a file using EDIT. When editing is
complete, exit using the E command to return to LISP. The
file may then be read by typing (0 <file». LISP considers
all characters on a line after a "%" to be comments.

pg 38: BOUNDP is not supported.

pg 48: FUNCALL is not supported, so use: (APPLY f (LIST p1 p2»
instead of (FUNCALL f p1 p2).

pg 64:

pg 65:

MAPCAR expects only two (2) arguments and in the opposite
order. The correct expression is (MAPCAR '(1 2 3) 'ADD1).

PLUS cannot be used with APPLY as shown in COUNTATOMS.
Instead one could use EVAL as follows:

(DE COUNTATOMS (S)
(COND «NULL S) 0)

«ATOM S) 1)
(T (EVAL (CONS 'PLUS (MAPCAR S 'COUNTATOMS»»»

DEPTH must be solved in a similar manner as MAX cannot be used
with APPLY.

pg 72: PUT is used instead of PUTPROP and the parameters are in a
different order:

(PUT <atom name> <property name> <property value».

pg 75: Arrays are called vectors and may have only one-dimension.
See sections 3.9 and 2.1 of the Standard LISP Report.

pg 84: MAP CAN expects only two (2) arguments and in the opposite
order. The correct expression is (MAPCAN GROCERIES 'FRUITP).

Copyright (C) Tandem Computers Inc., 1985 - 4

•

•

•

TNS/II (sub)Standard LISP (15dec83Djfb02) 15mar85

pg 90: A "I" is used to indicate that the following character is to
lose any special properties on input. The use of "I" is not
supported.

pg 91: IMPLODE must be defined by the user as:

(DE IMPLODE (X) (INTERN (COMPRESS X»)

P9 92: PRIN2 is used instead of PRINC.

pg 97: FEXPR's are defined:

(DF <function name> «single parameter» <body»

pg 99: MACRO's are defined:

(DM <function name> «single parameter» <body»

pg 100: LEXPR's are not supported.

pg 114: DELETE is not a destructive operation.

The second edition of LISP by Winston and Horn uses Common LISP. The
following set of notes for the first 12 chapters will help one get
started:

pg 15: Use PLUS instead of "+".

pg 16: SETQ will print a warning message the first time a variable is
assigned a value.

The "fc" command may be used to correct lines.

Define NEWFRIEND using DE rather than DEFUN and DELETE rather
than REMOVE as follows:

(DE NEWFRIEND (NAME)
(SETQ ENEMIES (DELETE NAME FRIENDS»
(SETQ FRIENDS (CONS NAME FRIENDS»)

pg 18: Use TIMES for "*", QUOTIENT for "/". SQRT and EXPT are not
supported.

The characer "!" indicates that the following character gets
special treatment.

pg 19: A unary "-" is the function MINUS, and subtraction is done
using the function DIFFERENCE.

pg 21: This LISP system supports one type of number; a decimal value
with up to 13 digits to the left of the decimal point and 6
digits to the right of the decimal point. As a result, one
does not need the functions FIX and FLOAT.

Copyright (C) Tandem Computers Inc., 1985 - 5

•
TNS/II (sub)Standard LISP (15dec83Djfb02)

pg 22: TRUNCATE is not implemented, but can be defined by:

(DE TRUNCATE (x) (QUOTIENT xl»

The remainder function is REMAINDER.

15mar85

pg 30: APPEND allows only two (2) arguments. To append three lists
one would use: (APPEND L1 (APPEND L2 L3»

pg 39: Functions are defined using DE:

(DE <function name>
«parameter 1> <parameter 2> ••• <parameter n»
«process description»

Rather than typing functions directly into the LISP
interpreter, one should use the function (EDIT <file» to
enter a function into a file using EDIT. When editing is
complete, exit using the E command to return to LISP. The
file may then be read by typing (0 <file». LISP considers
all characters on a line after a "%" to be comments.

pg 45: LISTP is not implemented, but can be defined as:

(DE LISTP (x) (or (null x) (pairp x».

• pg 46: Use EQN instead of "=" to compare two numbers.

pg 48: Use LESSP for ,,<It and GREATERP for It>".

•

pg 49: EVENP is not implemented, but can be defined as:

(DE EVENP (x) (ZEROP (REMAINDER x 2»)

pg 54: (sub)Standard LISP uses dynamic scoping.

pg 56: FUNCALL is not supported, so use: (APPLY f (LIST p1 p2»
instead of (FUNCALL f p1 p2).

pg 57: LET and LET* are defined in the LISP library.

pg 79: MAPCAR expects only two (2) arguments and in the opposite
order. The correct expression is (MAPCAR '(1 2 3) 'OODP),
where one must define ODDP as:

pg 81:

(DE ODDP (x) (ONEP (REMAINDER x 2»)

PLUS cannot be used with APPLY as shown in COUNTATOMS.
Instead one could use EVAL as follows:

(DE COUNTATOMS (L)
(COND «NULL L) 0)

«ATOM L) 1)
(T (EVAL (CONS 'PLUS (MAPCAR L 'COUNTATOMS»»»

Copyright (C) Tandem Computers Inc., 1985 - 6

• pg 83:

pg 84:

pg 96:

TNS/II (sub)Standard LISP (15dec83Djfb02) 15mar85

DEPTH must be solved in a similar manner as MAX cannot be used
with APPLY.

MAPCAN takes two arguments which are in the opposite order.

DO and 00* are defined in the LISP library.

SETF is not defined in (sub)Standard LISP. Use (PUT <symbol>
<property name> <value» to put an item onto the property
list.

pg 100: DEFSTRUCT is not supported, nor are keyword arguments.

pg 104: The #' shorthand for FUNCTION is not supported.

pg 114: Use "1" to preceed a special character that you want to treat
as a letter in an identifier.

pg 115: Use (PRIN2 " ") to print a string. This is a good time to
examine the Standard and Notes to the Standard concerning I/O
as every LISP system is different.

pg 121: (sub)Standard LISP does not have optional parameters or a
backquote facility. However it does have macros so you should
not ignore this chapter.

• pg 131: DELETE is not a destructive operation.

•

pg 142: This discussion of EQL and EQUAL only applies to Common LISP.
See the Standard for a similar discussion of EQ, EQN, and
EQUAL.

pg 143: (sub)Standard LISP does not have keywords.

pg 151: Arrays in (sub)Standard LISP may have only one dimension and
are accessed in a different manner. You best study the
Standard before trying to read this chapter.

pg 173: Use a different name for EXPAND as it is already defined •

Copyright (C) Tandem Computers Inc., 1985 - 7

•

•

•

TNS/II (sub)Standard LISP (15dec83Djfb02) 15mar85
Notes on the Standard

A - Primitive data types •

Primitive data types are as described in the Standard with a few
exceptions. First, the interpreter supports only one type of number,
namely decimal, with a maximum of 13 decimal places to the left and 6
places to the right of the decimal point. This provides some level of
decimal numbers, allows the interpreter to run without the floating
point option, and removes a whole lot of headaches for the
implementer.

Second, since no compilation of functions is being done, the concept
of LOCAL binding and the type function-pointer do not exist.

Identifiers longer than 24 characters and strings longer than 80
characters will be supported. However, they must fit in one input and
output record.

The notation "stringid" is used to denote a value which may be either
a string or an ide If an id is provided, then it's print name will be
used as a character string.

The notation "stringNIL" is used to denote a value which may be either
a string or NIL.

The notation "numberNIL" is used to denote a value which may be either
a number or NIL •

A "subr" is an EXPR which is internal to the LISP interpreter.

A "fsubr" is a FEXPR which is internal to the LISP interpreter.

A "msubr" is a MACRO which is internal to the LISP interpreter.

B - Structures.

A more liberal (similar to LISP 1.6) version of the cond-form is
allowed:

(SO [Sn])

where Sn is zero or more S-expression's. Similarly, the body of a
lambda expression may contain more than one S-expression. The value
of the final S-expression is the value that will be returned.

C - Error and Warning Messages.

The interpreter has a somewhat simplistic view of error recovery.
When an error is detected, a message will be printed on the initial
output file and an upexit made to the top level of the interpreter.
Any files that have been opened will be closed with any partial
outputs written to the file. This mechanism may be overridden by
using CATCH or CATCHALL

Copyright (C) Tandem Computers Inc., 1985 - 8

•

•

•

TNS/II (sub)Standard LISP (15dec83Djfb02) 15mar85
Notes on the Standard

All error messages are preceeded by "*****". At the user's option,
the current stack of functions may be dumped. This is enabled by
(DUMPSTACK T) and disabled by (DUMPSTACK NIL) which is the default.
The function returns the current setting of the stack dump.

If these actions are not desired, then the user should read the
following section which describes the -facilities for dynamic uplevel
exits.

D - Dynamic Non-local Exits.

A mechanism for allowing arbitrary function exits is provided by the
"catch" and "throw" mechanisms from Common LISP. In general terms, a
"catch" defines a place for a "throw" to return a value. The function

(THROW <tag> <result»

is used to throw the value of <result> to the value of <tag>, which is
expected to be an ide

The simplist form of a "catch" is:

(CATCH <tag> [<any>])

where <tag> is first evaluated to produce the id which names the
catch. The optional <any>'s are then evaluated as an implicit PROGN
and the result of the last <any> is returned unless a throw occurs to
the <tag> which names the catch. In that case, the value of the
function is the result which was thrown.

A more general "catch" is:

(CATCHALL <function> [<any>])

which catches any throw. The value of <function> is expected to be a
function of two arguments. The optional <any>'s are then evaluated as
previously described. If no throw occurs during the evaluation of the
optional <any>'s, then it acts just like CATCH, returning the value of
the last <any>. Any throw which is not caught by an inner CATCH or
CATCHALL will cause the function to be evaluated with the thrown <tag>
and <result> as it's arguments and it's result will be the value of
the CATCHALL. Note that it is possible to relay the throw during the
execution of the catch function.

An almost identical function is:

(UNWINDALL <function> [<any>])

which is just like CATCHALL except that the <function> will always be
called. If there was no throw, then the value of the thrown <tag>
will be NIL •

A program can assure that cleanup code is always run by using the
form:

Copyright (C) Tandem Computers Inc., 1985 - 9

•

•

•

TNS/II (sub)Standard LISP (15dec83Djfb02) 15mar85
Notes on the Standard

(UNWINDPROTECT <protected-any> [<cleanup-any>])

which will cause <protected-any> to be evaluated and then evaluate the
optional <cleanup-any>'s and discard their values. The value returned
will be that obtained in evaluating the <protected-any>. The
<cleanup-any>'s will always be evaluated even if the evaluation of
<protected-any> is aborted by a throw of any kind.

Errors generated by the LISP interpreter are reported by "throwing"
them. Any error will cause a "throw" with a tag of *LISPERROR* and
the result equal to the error message string. A break interrupt from
a terminal will cause a "throw" with a tag of *BREAK* and a result of
"* BREAK *". It is important to note that either of these "throws"
may be caught, examined, and then relayed in a transparent manner.

Needless to say, some examples are in order:

(catch 'a (catch 'b 1»
1

(catch 'a (catch 'b (throw 'a 1»)
1

(catch 'a (catch 'b (unwindprotect 1 (print 'protected»»
PROTECTED
1

(catch 'a (catch 'b (unwindprotect (throw 'a 1) (print 'protected»»
PROTECTED
1

(catchall '(lambda (tag value) (print (list tag value» value) 1)
1

(catchall
'(lambda (tag value) (print (list tag value» value)
(throw 'a 1»

(A 1)
1

(catchall
'(lambda (tag value) (print (list tag value» value)
(car»

(*LISPERROR* "***** CAR Wrong number of parameters")
"***** CAR Wrong number of parameters"

(unwindall '(lambda (tag value) (print (list tag value» value) 1)
(NIL 1)
1

Copyright (C) Tandem Computers Inc., 1985 - 10

•

•

•

TNS/II (sub)Standard LISP (15dec83Djfb02) 15mar85
Notes on the Standard

(unwindall
'(lambda (tag value) (print (list tag value» value)
(throw 'a 1»

(A 1)
1

The Standard LISP functions ERROR and ERRORSET can be implemented as
follows:

(de ERROR (x) (throw '*LISPERROR* x»

(dm ERRORSET (x)
(subst
(cadr x)
'<code>
, (progn

(put 'emsg* 'value nil)
(catchall

'(lambda (f v) (put 'emsg* 'value v) nil)
(list <code»»»

E - Functions on Dotted-Pairs.

Taking a queue from other LISP systems, CAR, CDR and their composites
return NIL rather than causing an error when applied to an atom •

Additional functions for generating lists have been introduced so as
to be compatible with the Standard LISP compiler. Their definitions
are as follows:

(de NCONS (x) (cons x nit»

(de LIST2 (v w) (list v w»

(de LIST3 (v w x) (list v w x»

(de LIST4 (v w x y) (list v w x y»
(de LIST5 (v w x y z) (list v w x y z»

(de XCONS (x y) (cons y x»

F - GENSYM Print Names.

The print names for id's produced by GENSYM will be of the form Gxxxx
where xxx x is a 4 digit number •

Copyright (C) Tandem Computers Inc., 1985 - 11

•

•

•

TNS/II (sub)Standard LISP (15dec83Djfb02) 15mar85
Notes on the Standard

G - Property List Operations •

GET has been extended to return the whole property list by using:

(GET <id> T).

Function definitions are on the property list, but the functions GETD,
PUTD, and REMD are supplied so as to be compatible with the standard.
Flags are not implemented.

H - Variables and Bindings.

All variables are fluid. If the variable is not found on the ALIST,
then its value is on the variable's property list with the indicator
"VALUE". An assignment to a variable which is neither on the ALIST
nor has the indicator "VALUE" will cause the value to be placed on the
property list with the indicator "VALUE" and a warning message will be
issued.

The function (FLUID id-list) is defined as follows:

(DE FLUID (idlist) T)

It is included so that it may be used to note fluid variables within
functions which may be either interpreted or compiled •

The form SETQ has been extended to allow multiple identifier/
expression pairs. The expressions are evaluated and assigned in a
left-to-right order. The value returned will be the value of the
right most expression. A degenerate form (SETQ) is allowed whose
value is NIL.

A form PSETQ has been added from Common LISP. It's form is identical
to SETQ, but all expressions are evaluated before any assignments are
made and the value of the form is always NIL. For example, the values
of three identifiers could be rotated by:

(PSETQ a b b c c a)

I - WHILE.

A "while" construct is provided of the form:

(WHILE <p> [<any>])

<p> is evaluated and if it is equal to NIL then NIL is returned.
Otherwise, the optional <any>'s are evaluated as an implied PROGN and
then the test on <p> is repeated •

Copyright (C) Tandem Computers Inc., 1985 - 12

•

•

•

TNS/II (sub)Standard LISP (15dec83Djfb02) 15mar85
Notes on the Standard

J - The Interpreter •

The function FUNCTION will result in the current A-list being bound
with the function and a FUNARG will be formed. That A-list will then
be used when the function is evaluated. The mechanics of this are
exactly as defined for LISP 1.5 in the "LISP 1.5 Programmer's Manual",
McCarthy et ale

K - Input / Output.

The Standard LISP "stream" input and output is decidedly lacking in
more general file access capabilities. To help correct this
deficiency, additional file open options are supported. The OPEN
macro is generalized to allow a list of open options:

(OPEN <filename> <qualifier> [<qualifier>])

where <filename> is as defined in the Standard, or a crtpid, and the
<qualifier>'s are selected from the following list:

INPUT

OUTPUT

read access (implies read-only shared access).

write access (implies exclusive access).

EXCLUSIVE exclusive access (overrides implied access) •

SHARED

OLD

NEW

SEXPR

UPDATE

ECHO

PADTEXT

shared access (overrides implied access).

file must exist.

create file if it does not exist, or purgedata if it
does. If SEXPR is not specified, then an EDIT file
will be created.

the file contains arbitrary length S-expressions stored
in multiple records using "hidden keys".

records which already exist may be overwritten.

records which are read are to be echoed on the current
output file. This is the same as (IOECHO file T).

short records will be blank padded.

The result of this operation is a filehandle which is used with RDS,
WRS, EXPANDFNAME, and CLOSE.

To ease the linkage with compiled code, OPEN is defined as a macro of
the form:

(dm OPEN (x) (list 'OPENLIS (cons 'list (cdr x»»

and a function OPENLIS is defined which accepts as it's argument a
list of open options.

Copyright (C) Tandem Computers Inc., 1985 - 13

•

•

•

TNS/II (sub)Standard LISP (15dec83Djfb02) 15mar85
Notes on the Standard

The current input and output files are selected and positioned by the
functions RDS (for input) and WRS (for output) respectively. In all
cases, the value of the function is the previous file handle. The
first case simply designates the file and no positioning is done:

(RDS <filehandle»

(WRS <filehandle»

Additional positioning options are defined in the following sections
which describe disc file positioning and $RECEIVE handling.

As with OPEN, WRS and RDS are defined as macros of the form:

(dm RDS (x) (list 'RDSLIS (cons 'list (cdr x»»

(dm WRS (x) (list 'WRSLIS (cons 'list (cdr x»»

and the functions RDSLIS and WRSLIS are defined which accept a list of
arguments as their argument.

- File Input Operations.

READ has been extended to allow special characters to appear in id's
which allows easier input of GUARDIAN file names. The syntax for the
scanner is now the following grammar.

<scan token> ::= space <scan token>
::= EOL <scan token>
::= <comment> <scan token>
::= EOF
::= <string>
::= <number>
::= <magic char>
::= <id>

<comment> ::= % <comment body>

<comment body> ::= EOL

<string>

<characters>

<number>

<number1>

::= <any character> <comment body>

::= " <characters> "

::= >=0 <anycharacter>'s with" represented by""

::= <number1>
::= <sign> <number1>

::= • <integer>
::= <integer> • <integer>
::= <integer> •

Copyright (C) Tandem Computers Inc., 1985 - 14

•

•

•

TNS/II (sub)Standard LISP (15dec83Djfb02) 15mar85

<sign>

<integer>

<magic char>

<id>

<start id>

<rest ids>

<rest id>

Notes on the Standard

: : = +
: : = -

· .-· .- <digit>
: : = <digit> <integer>

.. -· .- any character in the string "(.)[,]'%"

: : = · .­.. -
· .-· .-
: : =
: : =

: : =
: : =

: : =
: : =

<start id>
<start id> <restids>

! <any character>
any alphabetic character
any special character which is not a <magic char>

<restid>
<restid> <restids>

<start id>

::= <any character> not a space or <magic char>

<any character> ::= any character except EOL or EOF

An ESC character may be entered on input from the terminal which will
result in an upexit as though break were pressed while the interpreter
was running.

The "FC" command is supported if and only if it is entered as the
first two characters of the input line.

The next character in the input stream may be examined without
advancing the scanner by:

(PEEKCH)

It returns the same values as (READCH).

The function:

(READRECORD)

is provided to read an entire record as a string. It will return
either a string representing the record or EOF.

The input record size may be changed or checked by the function:

(READLENGTH <length»

If the parameter is a number, then it sets a new input record length
and returns the old input record length as it's value. A NIL
parameter allows the current length to be queried.

Copyright (C) Tandem Computers Inc. r 1985 - 15

•

•

•

TNS/II (sub)Standard LISP (15dec83Djfb02) 15mar85
Notes on the Standard

The character position for the next character in the input record is
returned by:

(RPOSN)

The default input prompt for terminal and process I/O may be changed
by setting the fluid variable *PROMPT to a stringid. Those characters
as printed by PRIN2 will then be used to prompt input. The default
prompt will occur when *PROMPT is equal to NIL.

- Misc. I/O Operations.

The current default volume and subvol may be obtained by:

(DEFAULTVSV nil)

It may be set to a new value by:

(DEFAULTVSV <string»

where the <string> is of the form: "[\<system>.]$<volume>.<subvol>".

A fully expanded file name may be obtained by:

(EXPANDFNAME <stringid»

where the <stringid> is a file na~e or process' crtpid. The fully
expanded file name of an open file may be obtained:

(EXPANDFNAME <filehandle»

A list of the file handles for all open files is returned by the
function:

(OPENFILES)

A file may be purged by:

(PURGE <stringid»

where the stringid is a file name. The function returns T if the file
was purged or NIL if the file did not exist.

A GUARDIAN CONTROL operation may be performed on a file by:

(IOCONTROL <filehandle> <number> <number»

The value returned by this function will be the GUARDIAN error number.

Logging or echoing of one file on another can be controlled by:

(IOECHO <filehandle1> <option»

Copyright (C) Tandem Computers Inc., 1985 - 16

•

•

•

TNS/II (sub)Standard LISP (15dec83Djfb02) 15mar85
Notes on the Standard

If <option> is equal to T, then all records read and written to
<filehandlel> will be written to the current output file. If <option>
is equal to <filehandle2>, then all records read and written to
<filehandlel> will also be written to <filehandle2>. Finally, if
<option> is NIL, then no file logging will be done. The value of the
function is the previous logging option.

A GUARDIAN SETMODE operation may be performed on a file by:

(IOSETMODE <filehandle> <number> <number> <number»

The value returned by this function will be a list of three numbers:
the GUARDIAN error number, oldvalue[O], and oldvalue[l]. See the
GUARDIAN manual for more information on the parameter values for these
two functions.

If the standard input file is a terminal, then break will be held
during execution, but returned to the previous owner when the terminal
is being read. The previous break owner may be queried and set by:

(OLDBREAK <value»

where <value> is expected to be either NIL to check the current value,
or a list of two integers which will the two parameters supplied to
SETMODE when break is returned during input. One can disable break
during terminal input by:

(OLDBREAK '(0 0»

or one can have LISP keep break by:

(OLDBREAK
'«plus

(times 256 (getbyte $myprocess$ 6»
(getbyte $myprocess$ 7»

0»

The value of the function is always a list of two integers which is
the previous value of OLDBREAK. The user of this function is expected
to be familar with GUARDIAN's break handling.

- Disc File Positioning.

For disc files, a GUARDIAN POSITION operation to be done along with
the file selection:

(RDS <file handle> <record specifier»

(WRS <file handle> <record specifier»

where <file handle> is as previously defined and <record specifier> is
a numeric value.

Copyright (C) Tandem Computers Inc., 1985 - 17

•

•

•

TNS/II (sub)Standard LISP (15dec83Djfb02) 15mar85
Notes on the Standard

Another option for disc files causes the GUARDIAN KEYPOSITION
operation to be performed along with the file selection. It is done
by:

(RDS <file handle> <key> <key specifier> <mode»

(WRS <file handle> <key> <key specifier> <mode»

The <file handle> is as previously defined and the <key> is either a
stringid or an integer (which will be considered to be a 4-byte key).
For files which have not been designated SEXPR at OPEN time, the <key
specifier> designates which key is to be used and it expected to be
either a numeric value or a one or two character string or ide
Finally, the mode is expected to be: APPROXIMATE, GENERIC, or EXACT.
For APPROXIMATE and GENERIC searches, the length of the <key> is
passed to KEYPOSITION as the <compare length> and <key length>. For
an EXACT position, <key> is be padded with nulls to the length of the
key.

It should be realized that when a file is open for both INPUT and
OUTPUT that the RDS and WRS positioning modes interact as only one
GUARDIAN open is done by the LISP interpreter.

The standard LISP I/O functions are then used to read and write
records. Under most circumstances, it is the user's responsibility to
put the keys in the right places and worry about record lengths. The
exception is files designated SEXPR when they are opened. This type
of file provides an analog of property lists which resides on disc.
It allows the storage and retrieval of arbitrary S-expressions by key
without having to concern oneself with record sizes.

Files of this type are key-sequenced files with one key which starts
in the first byte of the record. Following the key will be a record
which makes up all or part of the S-expression. S-expressions may be
read from this type of file by the following mechanism. First,
indicate and position the file by doing a:

(RDS <file handle> <key> 0 'GENERIC)

This results in the key being padded by nulls until it is the key
length-2 of the file. A generic KEYPOSITION is then be done. As each
record is read from this type of file, the key is be stepped over
before the S-expression is scanned. As many records as needed to
complete the S-expression are read. Note that if the key does not
exist, then an end-of-file indication is returned.

S-expressions are written to this type of file by first selecting the
file and defining the <key> by:

(WRS <file handle> <key> 0 'EXACT)

This results in the <key> being null padded to its defined length and
the placed into the output buffer for the file. As each record making
up the s-expression is written, the last two bytes of the key are

Copyright (C) Tandem Computers Inc., 1985 - 18

•

•

•

TNS/II (sub)Standard LISP (15dec83Djfb02) 15mar85
Notes on the Standard

incremented. Thus, the S-expression may occupy up to 2**16 records in
the file.

A record in an S-expression file may be deleted by following the WRS
wi th a TERPRI.

- $RECEIVE Handling.

$RECEIVE may be accessed using the LISP I/O system. If it is opened
for INPUT, then it may only be used to pick up messages. However, if
it is opened for OUTPUT as well, then one may write to the file which
will result in a REPLY to the sending process.

When $RECEIVE is currently selected by RDS, the information concerning
the last read message is available via the function:

(RMESSAGETAG)

It will return a messagetag which is a three element list of:

message flag:

sender's id:

reply flag:

NIL ; user message
T = system message

a string which is the GUARDIAN crtpid of the
sender process

NIL = message needs no reply
<> NIL = message needs a reply

If it is called when $RECEIVE is not the current file, then its value
is NIL.

A process may check to see if any messages-are queued on $RECEIVE by:

(WAITFORRECEIVE <timeout»

where <timeout> is either a -1 indicating wait indefinitely, or
<timeout>/100 is the number of seconds to wait until something shows
up. The function returns T if there are messages waiting, in which
case it may not have waited for the whole timeout, or NIL if it timed
out without any messages being queued.

Normally messages are replied to in arrival order. Thus, when:

(WRS <$receive handle»

is used, the program will be replying to the last message. It is
possible to reply to messages out of order. This is done by:

(WRS <$receive handle> <messagetag»

where <messagetag> was returned by (RMESSAGETAG) when the message was
read. Finally, a program may reply to a message with an error by:

Copyright (C) Tandem Computers Inc., 1985 - 19

•

•

•

TNS/II (sub)Standard LISP (15dec83Djfb02) 15mar85
Notes on the Standard

(WRS <$receive handle> <messagetag> <error number»

The following function is an example of how one can drive a process
with a command string using $RECEIVE:

(de PROMPT (crtpid command recvhandle)
(prog (r ords owrs)
(setq ords (rds recvhandle»
LOOP
(setq r (readrecord»
(or (checkprocess crtpid) (return nil»
(or (equal (cadr (rmessagetag» crtpid) (return nil»
(or (car (rmessagetag» (prin2 r»
(cond «null (caddr (rmessagetag») (terpri) (go loop»)
(prin2 command)
(terpri)
(setq owrs (wrs recvhandle (rmessagetag»)
(prin2 command)
(terpri)
(rds ords)
(wrs owrs)
(return t»)

The final facility related to $RECEIVE is that one may attach a
"demon" function which will be automatically invoked whenever the LISP
system reads a message from $RECEIVE. The function is set by:

(ONRECEIVE <function»

where:

<function>: NIL: remove any current demon
form: demon function

The function will be APPLYed with the following four arguments:

message:

message flag:

sender's id:

reply flag:

a LISP string holding the message

NIL = user message
T = system message

a string which is the GUARDIAN crtpid of the
sender process

NIL = message needs no reply
<> NIL = message needs a reply

The function returns T if the message is to be queued for later
reading, or NIL if the message is to be flushed. The function may
also use THROW to cause an upexit on a break message or other
appropriate message. If "reply flag" is T and a THROW is done, the
demon function must first reply to the message via WRS.

Copyright (C) Tandem Computers Inc., 1985 - 20

•

•

•

TNS/II (sub)Standard LISP (15dec83Djfb02) 15mar85
Notes on the Standard

L - String Primitives •

A number may be converted to a one-character string which is its ASCII
equivilant by:

(INTTOCHAR <number»

and a one-character stringid may be converted to a number by:

(CHARTOINT <stringid»

The length of a stringid is returned by:

(LENGTHSTR <stringid»

A new string can be formed by:

(MAKESTR <length> <stringid»

which will make a string of <length> bytes which will be initialized
to <stringid>. If <stringid> is the null string, then the new string
will be blank filled. Otherwise it will be copied as many times as
needed to fill the new string.

Two strings may be joined to form a new string by the function:

(APPENDSTR2 <stringid> <stringid»

and more than two may be joined by the macro:

(APPENDSTR <stringid> <stringid> [<stringid>])

The final set of operations work on a subset of string. It is
designated by the stringid, a numeric offset into the string where 0
is the first character of the string, and a character count. A string
can be copied by:

(COPYSTR <stringid> <offset> <count»

Two strings can be compared by the boolean predicates:

(EQUALSTR <stringid> <offset> <stringid> <offset> <count»

(GREATERPSTR <stringid> <offset> <stringid> <offset> <count»

(LESSPSTR <stringid> <offset> <stringid> <offset> <count»

Finally, characters in a string may be destructively replaced by:

(PUTSTR <string> <offset> <stringid> <offset <count»

Note that the destination must be a string as one is not allowed to
overwrite an id's print name.

Copyright (C) Tandem Computers Inc., 1985 - 21

•

•

•

TNS/II (sub)Standard LISP (15dec83Djfb02) 15mar85
Notes on the Standard

A byte within a string may be accessed as a number by:

(GETBYTE <stringid> <offset»

and a byte in a string may be destructively replaced by:

(PUTBYTE <string> <offset> <number»

M - Function and Variable Tracing.

A trace facility is provided which will trace the input parameters and
values returned for selected functions or the values assigned to
identifiers by SET or SETQ. It expects one or more id's as its
arguments which are the names of functions or identifiers to be
traced:

(TRACE [id])

All functions will be traced by:

(TRACE T)

and tracing will be turned off by:

(TRACE)

The value returned by TRACE is list supplied on the previous call to
TRACE. The trace records will always be written to LISP's standard
output file, rather than to the current output file.

N - Process Creation Functions.

A process is created by the function:

(CREATEPROCESS <program> <pri> <cpu> <name> <in> <out> <command»

where the operands are:

<program>: stringid name of the program file

<pri>: NIL: use LISP's priority
number: relative priority to LISP's priority

<cpu>: NIL: use LISP's processor
number: processor number

<name>: NIL: process is to be unnamed
stringid: process name

<in>: NIL: use LISP's standard in file
stringid: in file name

Copyright (C) Tandem Computers Inc., 1985 - 22

•

•

•

TNS/II (sub)Standard LISP (15dec83Djfb02) 15mar85
Notes on the Standard

<out>: NIL: use LISP's standard out file
stringid: out file name

<command>: NIL: no command string
stringid: command string

The value returned is an a-character string which is the GUARDIAN
CRTPID of the process. This value may be used as a file name for any
functions requiring one, as well as with the functions CHECKPROCESS
and STOPPROCESS.

A program may check to see if a process still exists by the boolean:

(CHECKPROCESS <crtpid»

which returns T if it does, or NIL if it does not.

A process may be stopped by the following function which always
returns NIL.

(STOPPROCESS <crtpid»

The crtpid for the LISP process is available as the value of the
global variable $MYPROCESS$.

A list of assigns is maintained in *ASSIGN and is composed of elements
of the form:

({ <progam unit name> NIL }
<logical file name>

{ <tandem file name> NIL }
{ <primary extent size> NIL }
{ <secondary extent size> NIL }
{ <file code> NIL }
{ <exclusion spec> NIL }
{ <access spec> NIL }
{ <record size> NIL }
{ <block size> NIL })

where the first three items are either strings or NIL and the rest are
either integers or NIL.

A similar mechanism exists to support params. They are kept on the
list *PARAMS which is composed of elements of the form:

(<parameter name> <parameter value>)

where <parameter name> and <parameter value> are strings.

*ASSIGNS and *PARAMS initially contain any assigns and params passed
to LISP when it started. Their contents will be used to generate
messages that will be sent to processes created by CREATEPROCESS.
LISP programs may modify these lists as desired, but they must contain
valid elements when CREATEPROCESS is called. Additional information

Copyright (C) Tandem Computers Inc., 1985 - 23

•

•

•

TNS/II (sub)Standard LISP (15dec83Djfb02) 15mar85
Notes on the Standard

on assigns and params is to be found in the GUARDIAN Operating System
Programming Manual.

The LISP system supports a form of process creation analogous to a
UNIX "fork" which may be used to build multi-process LISP systems, or
NonStop LISP process-pairs. A LISP process forks by calling:

(FORK <form> <processor> <swap file»

where the operands are:

<form>: S-expression to evaluate in the forked process

<processor>: NIL: use LISP's processor
number: processor number

<swap file>: NIL: put heap on LISP's program file volume
volume: put heap on that volume
file: put heap in that file

The function will return the crtpid of the fork process. The fork
process will have a copy of the LISP space of the original process,
but it will not have a copy of the stack, nor will it have opened any
files. File opens and checkpoints must be handled by the form that
was passed to the fork process •

A process may have it's fork perform a backup open on a file by
evaluating:

(BACKUPOPEN <file handle»

in its process and then checkpointing the resultant form to the fork
who will then evaluate it. Needless to say this is a very concise
explanation of these functions. Users are strongly encouraged to
examine the library functions CREATEBACKUP, CHECKPOINT, and
MONITORPRIMARY to see how they may be used.

o - OBLIST.

The OBLIST in this LISP system is organized as an array of hash
buckets which hold lists of interned id's. It is visible via the
global id *OBLIST*. In addition, one may change the oblist by setting
OBLIST to some different array. This could allow one to have
multiple name spaces in the LISP system.

The hash function used to intern an id is:

(SXHASH <any»

which will return a number which is the hash value of the LISP object •
One use of this is to combine it with the vector primitives to provide
hashed arrays.

Copyright (C) Tandem Computers Inc., 1985 - 24

•

•

•

TNS/II (sub)Standard LISP (15dec83Djfb02) 15mar85
Notes on the Standard

P - Misc. Additions •

A special form, EDIT, has been added which allows access to the
editor. It may be used as:

(EDIT [<stringid>])

Another special form provides an obey file capability. It is used:

(0 <filename»

It has a "quiet" form which does not echo the input on the current
output device:

(OQ <filename»

An edit of a file followed by an obey of it is provided by the form:

(EO <filename»

The function:

(GC)

will run the garbage collector and cause the garbage collector message
to be printed. Garbage collection may also be invoked and no message
printed by the function:

(GCQ)

The function:

(LISPVERSION)

will return the version string for LISP interpreter. The version
string is currently "15dec83Djfb".

The last dotted-pair of any expression is returned by the function:

(LAST any)

For example: (last' (a b c» = (c) (last '(a. b» = (a • b)

The function:

(REVERSIP <any-list»

will reverse in place any list. It's LISP definition is as follows:

(de REVERSIP (u)
(prog (x y)

(while u (setq x (cdr u» (setq y (rplacd u y» (setq u x»
(return y»)

Copyright (C) Tandem Computers Inc., 1985 - 25

•

•

•

TNS/II (sub)Standard LISP (15dec83Djfb02) 15mar85
Notes on the Standard

The function:

(TIMEOFDAY)

will return a seven-item list which is the values returned by the
GUARDIAN procedure TIME.

One may save the current state of the interpreter in a program file
via the function:

(SAVECODE <filename> <function»

When <filename> is run, the function <function> will be evaluated and
then the program will stop without printing the results of the
function. This allows one to build handy utility programs with LISP
that may be given to others who know nothing about LISP.

If the value of <function> is equal to NIL, then the normal top-level
processing loop will be used. This allows one to save the LISP system
between working sessions.

A sorted copy of a list may be created by the function:

(SORT <list> <function»

where <list> is any list (including NIL) and <function> is a boolean
with two parameters which returns T if the first item should be before
the second. The actual sort is done using GUARDIAN's procedure
HEAPSORT.

Q - The LISP Library.

The LISP library consists of a number of functions written in LISP
which enhance the basic LISP system. As they are usually included,
they are defined in this document.

Additional functions extend the function definition and editting
facilities. When a function is defined, the file containing it's
definition will be saved on the function name's property list under
the indicator *SOURCEFILE. The function definition may then be
editted and the file reloaded by the functions:

(EO <function name»

(EOQ <function name»

where the later form "quietly" reloading the file. If no function
with that name is found, then EO and EOQ will assume that the name is
the name of a file. One can avoid the function check by supplying the
file name as a string. One can easily redefine EO and EOQ to use
alternatives to EDIT •

A list of all functions defined in a file can be obtained by:

Copyright (C) Tandem Computers Inc., 1985 - 26

•

•

•

TNS/II (sub)Standard LISP (15dec83Djfb02) 15mar85
Notes on the Standard

(DEFINEDIN file)

The library also provides protection against the redefinition of a
function. The default is to only allow the function to be redefined
by a definition coming from the same file as the original definition.
Any attempt at an illegal redefinition will result in a warning
message and the new definition will be ignored.

One can enable function redefinition by setting the global variable
*REDEFINE to either a list of all function names that one wishes to
redefine, or T in which case any function may be redefined.

A minimal debug package is provided by the functions SBPT, CBPT, and
BREAK. A breakpoint is set at the start and the return of a function
by:

(SBPT <function> [<condition>])

where the <condition> is an optional boolean expression which provides
a conditional breakpoint capability. A breakpoint can be removed from
a function by:

(CBPT <function»

When a breakpoint is hit, the function name is printed and then the
user is prompted for input. If #R is entered, then execution will
continue. If #QUIT is entered, then an upexit to the top level of
the interpreter will occur. Any other input will be evaluated and the
value will be printed. The value of the function is in #RESULT. It
may be changed via SETQ to return a different value. #RESULT will
have the value "#CALL" when the function is called. Finally,
breakpoints may be explicitly placed within a function definition by:

(BREAK <any»

which will result in the message <any> being printed and then normal
breakpoint processing will commence.

Large LISP systems often want to have several programs within them,
yet still avoid conflicts on identifier names. For this reason a
"multiple oblist" package is provided. The first set of functions
provide analogs to the property list functions which allow access into
another oblist.

(GETXO <oblist> <identifier> <indicator»

(GETDXO <oblist> <identifier»

(PUTXO <oblist> <identifier> <indicator> <value»

(PUTDXO <oblist> <identifier> <indicator> <value»

(REMPROPXO <oblist> <identifier> <indicator»

Copyright (C) Tandem Computers Inc., 1985 - 27

•

•

•

TNS/II (sub)Standard LISP (15dec83Djfb02) 15mar85
Notes on the Standard

(REMDXO <oblist> <identifier»

The following function will add an ID (or list of ID's) and it's
(their) property list(s) to the current oblist. In doing so, the id
WILL BE REMOB'ed from the current oblist. The result will be that the
id in one space will be EQ the id in the other space and thus shared
between the spaces.

(INTERNXO <oblist> <identifier»

The current value of *OBLIST* may be saved on *OBLIST* under the
indicator PDL (push down list) and *OBLIST* set to either a copy of
it, or a previously saved oblist by the following function:

(PUSHXO [<existing oblist>])

The *OBLIST* is "popped" and optionally saved in an ID by the
following function:

(POPXO [<oblist name>])

An example of the use of this package can be seen in the LISP compiler
documentation where it is used to "hide" the compiler from the user's
program.

Functions may be pretty-printed by:

(PPFUN [<function> •••] ["<list file>"])

which will print each definition in a form that can be read by READ.
If a string defining the list file is supplied, then the definitions
will be appended to that file.

Any expression may be pretty-printed on the current output file by the
function:

(PPRINT <any»

whose value is always NIL.

Formatted output can be produced by the macro PRINTUSING. Each
argument will be examined and processed from left-to-right as follows.
A "I" will cause a new line to be started. TAB will skip to the
column equal to the value of the following argument. All others
arguments will be evaluated and then printed using PRIN2. The
function will normally terminate the print line unless the last
argument is a "\".

Text files containing LISP definitions can be TGAL'ed in a pleasing
manner by the form:

(TGAL [<file name> •••] <output file»

A copy of any S-expression may be made by:

Copyright (C) Tandem Computers Inc., 1985 - 28

•

•

•

TNS/II (sub)Standard LISP (15dec83Djfb02) 15mar85
Notes on the Standard

(COPYSEXPR <any s-expression»

The decimal fraction of two integers is the value of:

(QUOTIENTF <integer 1> <integer 2»

A string comparison function suitable for use with SORT is:

(SORTSTRINGP <stringid 1> <stringid 2»

The library contains the following functions from Common LISP:

(LIST* [<arguments>])

which constructs a list like LIST except that the last cons of the
constructed list is "dotted". That is: (list* a b c) => (a b • c).

Local variables can be created and optionally assigned values (the
default is NIL) by:

(LET ({ <identifier> I (<identifier> <value>) }) form)

(LET* ({ <identifier> I (<identifier> <value>) }) form)

LET will assign all values in parallel, whereas LET* will do left-to­
right sequential assignment •

Short hand forms of COND are provided:

(IF <test> <then> <else» => (cond «test> <then» (T <else»)

(WHEN <test> <form» => (cond «test> <form» (T NIL»

(UNLESS <test> <form» => (cond «not <test» <form» (T NIL»

Good iteration forms are provided by:

(DO ({var[init[step]]} •••) (end-test result •••) statement .••)

(DO* ({var[init[step]]} •••) (end-test result •••) statement •••)

where DO will do assignments in parallel and DO* will do assignments
sequentially. Either "LISP" or "Common LISP: The Language" should be
consulted for the definitions.

Two functions are provided to support NonStop process-pairs. A
process creates a backup by:

(CREATEBACKUP <on takeover> <cpu> <swap»

where <on takeover> is to be evaluated when the process takes over,
<cpu> is the processor to run the backup in, and <swap> is the swap
file as defined in FORK. The result of this function is a two element
list consisting of the crtpid and the file handle for the backup

Copyright (C) Tandem Computers Inc., 1985 - 29

•
TNS/II (sub)Standard LISP (15dec83Djfb02) 15mar85

Notes on the Standard

process. The backup will have opened all files currently open by the
primary.

Checkpointing is done by sending an s-expression to the backup where
it will be evaluated. The function:

(CHECKPOINT <createbackup result> <any»

which will return T if the checkpoint was successful, or NIL if it was
not.

User SUBR's and FSUBR's.

All subrs, fsubrs, and msubrs (compiled macros) are denoted by tags on
the procedure name. The tags are of the form:

AF indicates a FSUBR
AM indicates a MSUBR
ASnn indicates a SUBR where "nn" is the number of arguments

that the function expects.

A set of 15 "registers" are defined which are used to pass arguements
into a function. All functions return their value in REG1. The
register save protocol is that the caller must save all needed values
before calling other routines UNLESS that routine is defined as not

• destroying the register values.

•

The functions are added to the interpreter by binding them into a
copy of it. The interpreter supports mUlti-space object files so
extensive additions can be made.

N.B. Any user who uses this facility will be expected to find their
own problems! It is not recommended that one supply such code unless
one has a good understanding of the interpreter •

Copyright (C> Tandem Computers Inc., 1985 - 30

•

•

•

TNS/II (sub)Standard LISP (15dec83Djfb02) 15mar85

LISP OBJECT

(ABS number)
(ADD1 number)
(AND any)
(APPEND list list)
(APPENDSTR stringid •••)
(APPENDSTR2 stringid

stringid)
(APPLY function list)
APPROXIMATE
*ASSIGNS
(ASSOC any alist)
(ATOM any)

(BACKUPOPEN filehandle)
(BREAK any)
BREAK

(CAAAAR any)
(CAAADR any)
(CAAAR any)
(CAADAR any)
(CAADDR any)
(CAADR any)
(CAAR any)
(CADAAR any)
(CADADR any)
(CADAR any)
(CADDAR any)
(CADDR any)
(CADDDR any)
(CADR any)
(CAR any)

(CATCH id any)
(CATCHALL func any)
(CBPT function)

(CDAAAR any)
(CDAADR any)
(CDADAR any)
(CDADDR any)
(CnnAAR any)
(CDDADR any)
(CDDDAR any)
(CDDDDR any)
(CDAAR any)
(CDADR any)
(CDAR any)
(CODAR any)
(CODOR any)
(CODR any)

Glossary of LISP Objects

TYPE

subr => number
subr => number
fsubr => extra-boolean
subr => list
macro => string
subr => string

subr => any
id
id
subr => {pair, NIL}
subr => boolean

subr
subr
id

subr
subr
subr
subr
subr
subr
subr
subr
subr
subr
subr
subr
subr
subr
subr

=> list
=> any

=> any
=> any
=> any
=> any
=> any
=> any
=> any
=> any
=> any
=> any
=> any
=> any
=> any
=> any
=> any

fsubr => any
fsubr => any
fsubr => any

subr
subr
subr
subr
subr
subr
subr
subr
subr
subr
subr
subr
subr
subr

=> any
=> any
=> any
=> any
=> any
=> any
=> any
=> any
=> any
=> any
=> any
=> any
=> any
=> any

STANDARD (sub)
LISP STANDARD

3.11
3.11
3.10
3.13

3.14

3.13
3.1

3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2

3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2

L
L

K
N

N
Q
D

E
E
E
E
E
E
E
E
E
E
E
E
E
E
E

D
D
Q

E
E
E
E
E
E
E
E
E
E
E
E
E
E

Copyright (C) Tandem Computers Inc., 1985 - 31

TNS/II (sub)Standard LISP (15dec83Djfb02) 15mar85
Glossary of LISP Objects

• (CDR any) subr => any 3.2 E

(CHARTOINT stringid) subr => num L
(CHECKPOINT any <any» subr => boolean Q
(CHECKPROCESS crtpid) subr => boolean N
(CLOSE filehandle) subr => filehandle 3.15
(CODEP . . . 3.1
*COMP 4. A
(COMPRESS id-list) subr => atom 3.3
(COND cond-form) fsubr => extra-boolean 3.10 B
(CONS any any) subr => pair 3.2
(CONSTANTP any) subr => boolean 3.1
(COPYSEXPR any) subr => any Q
(COPYSTR string subr => string L

offset
count)

(CREATEBACKUP any cpu swap) subr => list Q
(CREATEPROCESS programfile subr => crtpid N

relpriority
processor
processname
infile
outfile
commandstring)

(DE id id-list any) fsubr => id 3.5 • (DEFAULTVSV stringNIL) subr => string K
(DEFINEDIN stringid) subr => list Q
(DELETE any list) subr => list 3.13
(DEFLIST dlist id) subr => list 3.13
(DF id id-list any) fsubr => id 3.5
(DIFFERENCE number number) subr => number 3.11
(DIVIDE number number) subr => pair 3.11
(DIGIT any) subr => boolean 3.13
(DM id id-list any) fsubr => id 3.5
(DO ({var[init[step]]} •••) msubr => any Q

(end-test [result])
[statement])

(DO* ({var[init[step]]} •••) msubr => any Q
(end-test [result])
[statement])

(DUMPSTACK any) subr => boolean C

ECHO id K
(EDIT stringid) fsbur => NIL P
(EO stringid) macro => NIL P Q
(EOQ stringid) macro => NIL Q
EOF uid 4.
EOF id = EOF 4.
EOL uid 4.
EOL id = EOL 4. • (EJECT) subr => NIL 3.15
(ERROR ••• 3.8 C D
(ERRORSET . . . 3.8 C D

Copyright (C) Tandem Computers Inc. , 1985 - 32

TNS/II (sub)Standard LISP (15dec83Djfb02) 15mar85
Glossary of LISP Objects

• (EQ any any) subr => boolean 3.1
(EQN any any) subr => boolean 3.1
(EQUAL any any) subr => boolean 3.1
(EQUALSTR string subr => boolean L

offset
string
offset
count)

(EXPT . . . 3.11 A
(EVAL any) subr => any 3.14
(EVLIS any-list) subr => any-list 3.14
EXACT id K
EXCLUSIVE id K
(EXPAND list function) subr => list 3.14
(EXPANDFNAME stringid) subr => string K
(EXPANDFNAME filehandle) subr => string K
(EXPLODE atom) subr => id-list 3.3
EXPR id 2.2

FEXPR id 2.2
(FIX • • • 3.11 A
(FIXP . . . 3.1 A
(FLAG ••• 3.4 G
(FLAGP . . . 3.4 G
(FLOAT . . . 3.11 A
(FLOATP · .. 3.1 A • (FLUID idlist) subr => T 3.6 H
(FLUIDP · .. 3.6 H
(FORK any cpu swapfile) subr => crtpid N
FSUBR id A
FUNARG id J
(FUNCTION function) fsubr => funarg 3.14 J

*GC id := NIL 4.
(GC) subr => NIL P
(GCQ) subr => NIL P
GENERIC id K
(GENSYM) subr => uid 3.3 F
(GET any any) subr => any 3.4 G
(GETXO oblist any any) subr => any Q
(GETBYTE string offset) subr => number L
(GETD id) subr => any 3.5 G
(GETDXO oblist id) subr => any Q
(GETV vector offset) subr => any 3.9
(GLOBAL · .. 3.6 H
(GLOBALP ... 3.6 H
(GO id) fsubr 3.7
(GREATERP number number) subr => boolean 3.11
(GREATERPSTR string subr => boolean L

offset

• string
offset
count)

Copyright (C) Tandem Computers Inc., 1985 - 33

•

•

•

TNS/II (sub)Standard LISP (lSdec83Djfb02) lSmar8S

(IDP any)
(IF test then else)
INPUT
(INTERN stringid)
(INTERNXO list/id id)
(INTTOCHAR number)
(IOCONTROL filehandle

number
number)

(IOECHO filehandle any)
(IOSETMODE filehandle

number

LAMBDA
(LAST any)

number
number)

(LENGTH any)
(LENGTHSTR stringid)
(LESSP number number)
(LESSPSTR string

offset
string
offset
count)

(LET ({ i d I (ide xp r) })
[any])

(LET* ({ i d I (i d exp r) })
[any])

(LlNELENGTH numberNIL)
LISPERROR
(LISPVERSION)
(LIST [any])
(LIST* [any])
(LIST2 any any)
(LIST3 any any any)
(LIST4 any any any any)
(LISTS any any any any any)
(LITER any)
(LPOSN)

MACRO
(MAKESTR number stringid)
(MAP list function)
(MAPC list function)
(MAPCAN list function)
(MAPCAR list function)
(MAPCON list function)
(MAPLIST list function)
(MAX number-list)
(MAX2 number number)
(MEMBER any list)
(MEMQ any list)
(MIN number-list)

Glossary of LISP Objects

subr
msubr
id
subr
subr
subr
subr

subr
subr

id

=> boolean
=> any

=> id
=> list/id
=> string
=> number

=> any
=> number-list

subr => any
subr => number
subr => number
subr => boolean
subr => boolean

macro => any

subr
id

=> number

subr => string
fsubr => any-list
macro
subr
subr
subr
subr
subr
subr

=> any-list
=> any-list
=> any-list
=> any-list
=> any-list
=> boolean
=> number

=> string
=> any
=> any
=> any
=> any
=> any

id
subr
subr
subr
subr
subr
subr
subr => any
macro => number
subr => number
subr => extra-boolean
subr => extra-boolean
macro => number

3.1

3.15
3.3

2.3

3.13

3.11

3.15

3.2

3.13
3.15

2.2

3.12
3.12
3.12
3.12
3.12
3.12
3.11
3.11
3.13
3.13
3.11

Q
K

Q
L
K

K
K

B
P

L

L

Q

Q

D
P

Q
E
E
E
E

L

Copyright (C) Tandem Computers Inc., 1985 - 34

TNS/II (sub)Standard LISP (15dec83Djfb02) 15mar85
Glossary of LISP Objects

• (MIN2 number number) subr => number 3.11
(MINUS number) subr => number 3.11
(MINUSP any) subr => boolean 3.1
(MKVECT number) subr => vector 3.9
$MYPROCESS~ id = LISP's crtpid N

(NCONC list list) subr => list 3.13
(NCONS any any) subr => pair E
NEW id K

NIL id = NIL 4
(NOT any) subr => boolean 3.10
(NULL any) subr => boolean 3.1
(NUMBERP any) subr => boolean 3.1

(0 stringid) fsubr => NIL P
OBLIST id := oblist array 2.1 0

OLD id K

(OLDBREAK any) subr => list K

(ONEP any) subr => boolean 3.1
(ONRECEIVE function) subr => boolean K

OUTPUT id 3.15 K

(OR any-list) fsubr => extra-boolean 3.10
(OPEN stringid id [id]) macro => filehandle 3.15 K
(OPENLIS id-list) subr => filehandle K

(OPENFILES) subr => filehandle list K

(OQ stringid) fsubr => stringid P • PADTEXT id K

(PAGELENGTH numberNIL) subr => number 3.15
(PAIR list list) subr => alist 3.13
(PAIRP any) subr => boolean 3.1
*PARAMS id N
(PEEKCH) subr => id K

(PLUS number-list) macro => number 3.11
(PLUS2 number number) subr => number 3.11
(POPXO [oblist-name]) fsubr => id Q
(POSN) subr => number 3.15
(PPFUN [<func>] ["<list>"]) fsubr => NIL Q
(PPRINT any) subr => NIL Q
(PRIN1 any) subr => any 3.15
(PRIN2 any) subr => any 3.15
(PRINe onechar-id) subr => onechar-id 3.15
(PRINT any) subr => any 3.15
(PRINTUSING [any]) macro => any Q
(PROG id-list any) fsubr => any 3.7
(PROG2 any any) subr => any 3.7
(PROGN [any]) subr => any 3.7
* PROMPT id := NIL K

(PSETQ [id any]) fsubr => NIL H
(PURGE stringid) subr => boolean K

(PUSHXO [existing-oblist]) fsubr => any Q • (PUT id id any) subr => any 3.4
(PUTXO oblist id id any) subr => any Q

Copyright (C) Tandem Computers Inc., 1985 - 35

TNS/II (sub)Standard LISP (15dec83Djfb02) 15mar85
Glossary of LISP Objects

• (PUTBYTE string subr => string L
offset
number)

(PUTD id id any) subr => any 3.5 G
(PUTDXO oblist id id any) subr => any Q
(PUTSTR deststring subr => string L

offset
sourcestringid
offset
count)

(PUTV vector offset any) subr => any 3.9

(QUIT) subr => 3.16
(QUOTE any) fsubr => any 3.14
(QUOTIENT number number) subr => number 3.11
(QUOTIENTF integer interger) subr => number Q

*RAISE id . -.- T 4
(RDS filehandle [any]) macro => filehandle 3.15 K
(RDSLIS any-list) subr => filehandle K
(READ) subr => any 3.15 K
(READCH) subr => id 3.15
(READLENGTH numberNIL) subr => number K
(READRECORD) subr => string or EOF K
(REMAINDER number number) subr => number 3.11
(REMD id) subr => any 3.5 G • (REMDXO oblist id) subr => any Q
(REMFLAG ••• 3.4 G
(REMOB id) subr => id 3.3
(REMPROP any any) subr => any 3.4
(REMPROPXO oblist any any) subr => any Q
(RETURN any) fsubr => 3.7
(REVERSE list) subr => any 3.13
(REVERSIP list) subr => any P
(RMESSAGETAG) subr => list K
(RPLACA pair any) subr => pair 3.2
(RPLACD pair any) subr => pair 3.2
(RPOSN) subr => number K

(SASSOC any list function) subr => any 3.13
(SAVECODE file function) subr => stringid P
(SBPT function [condition]) fsubr => any Q
(SET id any) subr => any 3.6 H
(SETQ rid any]) fsubr => any 3.6 H
SEXPR id K
SHARED id K
(SORT list function) subr => list P
(SORTSTRINGP stringid subr => boolean Q

stringid)
(STOPPROCESS crtpid) subr => NIL N
(STRINGP any) subr => boolean 3.1 • (SUB1 number) subr => number 3.11
(SUBLIS alist any) subr => any 3.13
SUBR id A

Copyright (C) Tandem Computers Inc. , 1985 - 36

•

•

•

TNS/II (sub)Standard LISP (15dec83Djfb02) 15mar85
Glossary of LISP Objects

(SUBST X forY inZ) subr => any 3.13
(SXHASH any) subr => number 0

T id = T 4
(TERPRI) subr => NIL 3.15
(TGAL [<file>] <output» fsubr => NIL Q
(THROW id any) fsubr => D
(TIMEOFDAY) subr => number-list P
(TIMES number-list) macro => number 3.11
(TIMES2 number number) subr => number 3.11
(TRACE id •••) fsubr => id-list M

(UNFLUID ••• 3.6 H
(UNLESS test form) msubr => any Q
(UNWINDALL function [any]) fsubr => any D
(UNWINDPROTECT [any]) fsubr => any D
(UPBV vector) subr => number 3.9
UPDATE id K

VALUE id H
(VECTORP any) subr => boolean 3.1

(WAITFORRECEIVE number) subr => boolean K
(WHEN test form) macro => any Q
(WHILE any-list) fsubr => NIL I
(WRS filehandle [any]) macro => filehandle 3.15 K
(WRSLIS any-list) subr => filehandle K

(XCONS any any) subr => pair E

(ZEROP any) subr => boolean 3.1

Copyright (C) Tandem Computers Inc., 1985 - 37
G· ~

