
,....

r

l"""I

TM
T L C - L I S P D O C U M E N T A T I O N

Pri■er, Metaphysics,

and

Reference Manual

Copyright (C) 1984, 1985

The LISP Co■pany
POB 487

Redwood Bstates, CA 95044

(408) 354-3668

TLC is a trade■ark of The LISP Co■pany

Table of Contents

Preface

Part I -- General Discussion of Lisp-like Ideas

Introduction to Lisp 1
Data Objects 9

Dotted Pairs 9
Constructors 11
Recognizers 12
Selectors . 15

Lists ... 17
Constructors 18
Selectors .. 20
Recognizers 21

Names, Values, Objects, and Aliases 22
Comparison of Lists and Dotted Pairs 25
Graphical Languages. 27
Program as Data 27
Use, Mention, Object, and Value 28
First Class Objects 29
More Data Objects

Vectors .. 31
Constructors 32
Selectors .. 33
Recognizers 35

Strings .. 36
Updaters and Mutation 41
Explicit Control 46
Functions ... 49
Parameter Specifications 54
Functional Objects 57

Environments 60
Closures .. 61
Property Lists 63

Data Driven Programming 64
Classes ... 68

Dotted Pairs 71
Turtle Graphics 73

Catch and Throw. 76
Evaluation ... 79
How Lisp Works . 89
Lisp as a Systems Language 94
Bibliography 97

Table of Contents

Part II -- System Interaction

Getting Started . 1
What's on the disk and what to do with it.

Examples . 3
Some simple examples of interaction and TLC-LISP.

The Edi tor .. •.. 9
A quick tour through the Editor's commands.

Debugging . 15
Snaring of bugs and the disposition thereof.

Tutorial . 17
A blow-by-blow critique of "LISP" by Tourtezky

and its relationship to TLC-LISP.

Large Examples 31

Command Line Options 36
How to partition memory, specify options, and

override default settings.

Part III -- The TLC-Lisp Reference Manual

Conventions 1

Object Types. 4

Defining Functions 8
Functions, Special Forms, and Macros
Displacing Macros
Tail Recursion Elimination

Evaluation .. 16
Eval and friends

Functions to Manipulate Functions ... ~ 20
Apply, Mappers, and Closures

Flow of Control . 25
Explicit Control Structures

Recognizers and Predicates 34
Type Determination and Equality

Arithmetic ... 39
Fixed, Floating, and 8087 Support
Trigonometric Functions

Table of Contents

Boolean ... 45

Lists and Dotted Pairs 46
Selectors for Pairs
Selectors for Lists
Constructors for Pairs
Constructors for Lists
List and Pair Modifiers
General Functions

Strings .. 57
String Selectors
String Constructors
String Modifiers
General Functions

Vectors .. 63
Vector Selectors
Vector Constructors
Vector Modifiers
General Functions

Environments and State Modifiers 67
State Modifiers
Environment Objects

Property Lists 69

Symbols and Packages -..... 71
Introduction
Removal of Symbols
Package Functions

The Class System 77
Constructors
Examples
Selectors for Classes

Errors and Debugging
Stack Frames
Stack Functions
Debugging Functions
Errors and Recovery

Table of Contents

83

Input aod Output •·••••••••••···••·•••• 92
The LOAD function
File Na■ea
1/0 Strea■a
Diak File Functions
Read Functions
Print Functions
Console Functions
Altering Read Behavior

Read Macro■ and Backquote
Altering Print Behavior

Operating Sy■te■ Specific Function■ •··•····•··•••• 111
For MSDOS
For CPM

Autoloading Functions and Value■ 114

Mi■cellaoeous Utility Functions 114

Library Functions in SYS.LSP 119

Advanced runctiona 123

The Editor .. 126

Turtle Graphic■ ...•................................ 129

IBM Personal Co■puter Functions 135

Fuoctioo Index

Appendix I -- The Pseudo Code Module

Appendix II -- The Native Code Module

Appendix III -- The Bditor Custo■ization Ritual

Bod User License Agree■ent

Table of Contents

TLC-LISP Documentation Part I

PREFACE

This document is a much revised version of our original
documentation done in 1979. In fact the current TLC-LISP system
is a much revised version of the original system, also done in
1979. Furthermore, the field of LISP appreciation is a much
revised version of the state of the world in 1979. In short, much
has happened in the last five years.

Locally, TLC-LISP and its associated documentation have been
revised to include vector objects, packages, a class system, and
new input/output protocols including turtle graphics if
appropriate hardware is available.

Globally, the world has become aware of artificial
intelligence and as a result has become aware of LISP. Combined
with this has been a near hysterical fascination with the
language Logo, a LISP dialect with a graphics interface. This
preface is here to add a bit of perspective on what is happening
to LISP-ish things. "Caveat Empty" -- beware of the vacuous.

The high-end energy was focused by the Japanese announcement
of their Fifth-Generation Project. Suddenly, people who the week
before couldn't spell AI were now becoming experts; programs
that did form-filling for the generation of BASIC programs were
suddenly "AI based"; P. T. Barnum had arrived. Not to be outdone,
the educational community ingested strange turtle-shaped
mushrooms and swept Logo into their classrooms as the panacea to
"(re)vitalize American education".

Yet beneath all the hype and hysteria lies some substance.
Many educators are well-aware that the superficial gloss of
turtle graphics has to be reinforced with some substance -- some
directed mind-training. Many researchers are aware that the world
of expert systems is still at the research level, and that if
real progress is to be made, we need to develop new talents that
understand the pitfalls of the past. It is with this hopeful note
in mind that we continue to develop products and documentation,
so that those talents may develop.

In that light we have expanded the functionality of our
language; in particular, we have added a class system much like
that found in Smalltalk-BO and have added a package system like
that found in LISP Machine LISP. This gives the TLC-LISP user the
ability to experiment with an elegant descriptive programming
tool without having to purchase an exceedingly expensive machine.

Preface -- 1

TLC-LISP Documentation Part I

Futhermore, we have strengthened the general-purpose base of
TLC-LISP, adding vectors as first-class data objects. Besides
being a valuable tool for structuring data, vectors are a potent
way to demonstrate the importance of first-class data to those
who have become accustomed to the weaker notions in other
lanuages.

Also, since the quality of hardware has improved in the
intervening years, we now include a display-based text editor in
the TLC-LISP package.

We view this LISP as a good tool for bridging the gap
between traditional programming languages and Fifth Generation
languages that will be based on "purer notions" of functional or
relational languages. For though the kernel of LISP is
functional, several concessions have been made to make LISP more
effective on traditional machines (and traditional minds). As
sophistication grows, both in the architectures and in the user
community, fewer of those concessions are necessary. In TLC-LISP
we have retracted some of those compromises, replacing them with
new concepts for exploring some of the modern ideas in computing.
However, a language is just a tool; as such, it must be used in
a context of a set of ideas. Books, support materials, and
experience are all sources for those ideas. Our Logo work has
much to say about this; the book "Thinking About TLC-Logo"
coupled with our TLC-Logo documentation supplies much of the
background on LISP-ish ideas. And our (as yet uncompleted) LISP
book will place those ideas directly in the TLC-LISP world. Until
that work is completed, we will have to depend on other LISP
books and this documentation.

* * *

This manual is organized to satisfy the needs of a wide
class of readers, ranging from the novice who wants to know that
LISP is an acronym for LISt Processing, to the experienced LISP
user who only wants to know how this LISP differs from other
LISPs.

The table of contents gives a reasonably accurate picture of
what each section covers. Since this LISP dialect -- as all other
LISP dialects -- presents its own idiosyncracies, it is
imperative that all prospective users read Part I, ~n
Introduction to TLC-LISP.

Though this manual does have a collection of examples and
catalog of the LISP library, it is not organized as a cook book
that can stamp out LISP programmers like chocolate chip cookies.
It is unfortunate that no suitable TLC-LISP primer exists yet,
though we do plan to provide a self--contained instructional
primer for TLC-LISP. In the meantime we will emphasize style and

Preface -- 2

TLC-LISP Documentation Part I

elegance in this manual, leaving your skill with the language
to come from your exposure to existing LISP texts and the result
of practice with the LISP tools.

On what might seem to be a tangential topic, we reference
our Logo book, Thinking about TLC-Logo; that book discusses the
applications and philosophy behind our version of Logo. The other
TLC reference is the TLC-Logo Primer, which contains a blow-by
blow, step-by-step introduction to the contents and style of TLC
Logo. That document is a prototype of the document that will
accompany this LISP. That language shares a large cultural base
with our LISPs. The distinction between our two languages is
concentrated in:

(1) the graphics that Logo tends to thrive upon -- though we
make our Logo available without graphics and make our LISP
available with graphics.

(2) the syntax wherein Logo replaces the need for
parentheses for grouping with the need for visual acuity and
stronger human memory to provide accurate grouping in
complex expressions. TLC-LOGO is a good introduction to
(not a replacement for) TLC-LISP.

This close coupling between our LISP and Logo products stems
from the ancestry of the languages. LISP began life in the late
195Os. Logo spun off from LISP in the mid 196Os. At that time,
the LISP community was moving from their initial abode on the
IBM7O4 to a new home on the DEC PDP-6. To celebrate their new
residence, the MIT LISP folks wrote a new LISP, called MacLISP,
that ran on their own operating system, called ITS. When Stanford
received their PDP-6, MacLISP was converted to run under the DEC
operating system. Several modifications and embellishments were
performed and this LISP became LISP 1.6, also known as Stanford
LISP.

Stanford LISP was exported to the Irvine campus of the
University of California and evolved into UCI LISP. At Irvine it
was further modified and enhanced, receiving the editing and
debugging packages of a different LISP strain called BBN LISP.
BBN LISP soon became known as InterLISP. From UCI LISP we get the
LISP variant that appears in "Artificial Intelligence
Programming" book. All of these transformations span about ten
years.

Meanwhile, the MIT people rewrote MacLISP. The LISP-based
tasks at MIT were becoming quite large and the issues of
efficient execution could not be ignored. The new implementation,
known as BIBOP (Big Bag Of Pages), consolidated about five years
experience with the old MacLISP. In this same time span, an MIT
group was designing a LISP-like language, called Muddle. It was
to be the implementation vehicle for an AI language called

Preface -- 3

TLC-LISP Documentation Part I

Planner. As it turned out, Muddle became an elegant language in
its own right. It has been released and documented as MDL. It
contains a consolidation of many ideas that extend the LISP
design. Both MDL and the BIBOP version of MacLISP influenced The
LISP Company LISP.

Another major influence is the MIT LISP Machine experience.
The problems of efficient execution were being compounded by a
growing concern with space; LISP-based tasks were swamping the
address-space of the PDP-10. So in the mid 1970s, a group at MIT
began the design of a "LISP Machine". In conjunction with this
hardware effort, the design team developed a refinement of
MacLISP called LISP Machine LISP. That language has grown to
include generalizations of several of the notions present in
Smalltalk -- intellectually, a generalized class system, and
cosmetically, a window system of substantial visual flexibility.
That machine and its LISP dialect is again a consolidation: this
time including architectural considerations in the equation.
Progeny of this MIT LISP Machine architecture are now being sold
commercially.

Commercialization (and militarization) of AI-related tools
has raised the specter of LISP standards. While such efforts make
good sense from a commercial ·and applications perspective,
standards have a checkered history at best. They tend to be
based on either a lowest common denominator mentality or an ill
chosen technological quirk. Suffice it to say that there are
several contenders for a LISP standard and of the■, TLC-LISP is
most closely allied to the Common LISP camp. Regardless, anyone
who understands one dialect of LISP should have no trouble moving
from one faction to any other.

This TLC-LISP is a preview of things to come. It represents
the initial strand in a sequence of powerful LISP dialects for
the next generation of microcomputers. We have consolidated some
of the twenty-years experience with LISP 1.5, and later with MDL,
Conniver, MacLISP, and the MIT LISP machine, to present a capable
and expandable .dialect which will allow non-trivial LISP
experimentation within the confines of the current processor,
while preparing for the more hospitable and lively environment of
the new processors. Thus we have avoided many of those
fe~tures of preceding LISP's which represent anachronisms.
Furthermore, the future LISP machine will be a personal general
purpose computing environment. Therefore, we have included a full
complement of arithmetic features as well as including the
character, string, and vector data types with their associated
operations.

We have retained the "dotted-pair" as the basic structured
data type of LISP. The major practical benefit of dotted pairs
over lists is one of slight storage efficiency. Newer techniques
for representing LISP lists have all but erased that advantage.

Preface -- 4

TLC-LISP Documentation Part I

The benefits of smoother notation, coupled with the easing of
storage requirements, combine to suggest lists as the basic data
type for LISP.

Even with lists and list operations, LISP's free and open
nature is susceptible to abuse. Don't write code like

(CONS (CADDAR X) (CDDADR Y))

when you mean

(PUTON (THUMB X) (FOREHEAD Y))

This CADDA ... R style of LISP programming is the equivalent
of hexadecimal hacking on traditional computers. This style of
programming is hard to read, hard to maintain, and downright
anti-social. Invent names for the structure-manipulating
operations that reflect the semantics of the programming task.
For further elaboration of this view see "An Overview of LISP"
in the August 1979 BYTE, or see the books, Anatomy of LISP or
Artificial Intelligence Programming.

This abstract approach to LISP programming is gracefully
supported by LISP macros. Macros, added to LISP around 1963,
represent an elegant exploitation of the program-data duality of
LISP. A similar, but not identical, feature called read macros
was invented still later. Both of these features are included in
TLC-LISP.

TLC-LISP also acknowledges the progress made in the last
twenty years of language design by including more structured
forms of iteration than those supplied by LISP 1.5. We have
included an extended version of the MACLISP DO for structured
iteration, and the CATCH-THROW pair for non-structured program
control. We have also included a version of the ancient LISP
SELECT-expression, rediscovered by the Algol folks, and called
CASE. These explicit control constructs, coupled with LISP's
implicit control (call-by-value and recursion) give the
programmer a powerful set of tools for structuring solutions to
complex problems.

We have supplied a basic stock of operating system hooks,
plus a very general class system from which more complex I/O
configurations can be defined. The design of input and output
systems seems to have a sufficiently rich, but concrete, context
that one can build an appreciation for the ideas of classes,
instances, and inheritance. This understanding can be nourished
by building on experience with another TLC-LISP feature, property
lists. The combination of approaches aids in recognizing class
like situations in more abstract settings.

Preface -- 5

TLC-LISP Documentation Part I

A
address
included

final technical remark: in anticipation of very large
spaces (and therefore very large projects) we have

separate
technique

the LISP machine-like package system that supports
name spaces in a monolithic address space. This
will become of substantial use as the size and number

LISP applications expands. of embedded

And a final philospophical note: there are two reasons for
studying a computer language--first, to apply that language to
solve a set of problems, and second, to study that language as a
notation in its own right. The former case is most typical; much
like an engineer applies mathematics to solve physical problems,
a programmer will gravitate to a particular language because of
the kinds of problems that language tends to address. A
scientific problem may suggest FORTRAN, while a business
application may suggest COBOL. Many applications programmers will
go no further with a language than this, except to perhaps curse
a particular idiosyncrasy of the language. But such doubting is a
hopeful sign; for it may lead one to the deeper, second issue of
a (programming) language--a notation for thought.

Fortunately, mathematics predated FORTRAN; otherwise the
road to abstract mathematics would have been more difficult than
it otherwise was. But, just as one can look at FORTRAN as a
corruption of a mathematical notation, it is important to
question whether there is a comparable degree of abstraction
lurking beneath the surface of computational languages--a
mathematical theory of computation. And yet we don't want to
simply reverse the path (from FORTRAN back.to mathematics, say);
we should expect some new insights based on the unique
perspective of computation. This is where LISP comes in; its
origins are mathematical, but not traditional numerical
mathematics; its areas of application are themselves related to
thought, and thus the structures that LISP grew up on--lists,
symbolic expressions, and objects--offer potentially different
paths to abstraction.

It is this second light--the study of notation itself--that
we tend to emphasize in our LISP work. Given the choice between
the elegance of an idea and compatibility with a "standard", we
gravitate toward elegance. For the important points to us at TLC
involve the growth of LISP-ish ideas; not the creation of armies
of LISP programmers. Thus it is with some "fear and trembling"
that we view the rising popularity of LISP, its standardization,
and its commercial applications.

The preceding paragraphs should give both the novice and the
expert some food for thought. Now it's time to add some substance
to our metaphysics. So, dear reader, understand the past, enjoy
the present, and anticipate the future!

The LISP Company (T . (L . C))

Preface -- 6

TLC-LISP Documentation Part I

Part I: Introduction

LISP is the second oldest higher level programming language,
predated only by FORTRAN. The initial implementation effort began
in 1958 under the direction of John McCarthy, currently of
Stanford University, but at that time of MIT. McCarthy had just
become co-founder, with Marvin Minsky, of the MIT Artificial
Intelligence Project. One of McCarthy's concerns was the need for
a precise notation for expressing problems of Artificial
Intelligence. These problems differed from the traditional
computational concerns in that they emphasized structural
interrelationships, rather than simple numeric quantities. Of
course, any non-numeric problem can be reduced to an "equivalent"
numeric one; however much of the naturalness of a problem
statement and its solution can be lost in the transformation.
McCarthy recognized that the representation and manipulation of
objects must be handled at a more abstract and primary level. An
example will help to put this discussion in perspective.

An early test-bed for these ideas involved the design of
algorithms for the manipulation of algebraic expressions; for
example, a simplifier might rewrite 2*(x+6*y)+x as 3*(x+4*y).
The design of such algorithms involves the solution of two
problems:

(1) A representation for algebraic expressions, and

(2) The specification of algorithms to manipulate expressions in
that that representation.

!h~ ReEresentation Problem: How do we encode objects in a
notation so that the properties that are important to our study
are most easily accessed? When dealing with the symbolic
manipulation of algebraic expressions the properties most
valuable to us are those involving the recognition of the sub
expressions of an expression.

In a traditional language like FORTRAN, we could assign
numbers to each component of the expression and then encode the
expression as a vector of those numbers. We could, for example,
encode the components in ASCII (or more likely BCD in 1959), and
then express something like 2*(x+6*y)+x as:

[50 42 40 88 43 54 42 89 41 43 88],

that is, the ASCII form of a vector of characters:

[2 * X + 6 * Y + X]

Introduction -- 1

TLC-LISP Documentation Part I

We would soon discover that our algorithm spends most of
its time trying to recover the components of the expressions: "in
2*(x+6y)+x, what is the second operand of*• please?"

Clearly, this problem requires a representation that makes
the interrelationships more apparent. That is one of the
strengths of LISP's notion of Symbolic Expressions. We will
discuss Symbolic Expressions and their representations in more
detail later. For now, we will confine our attention to their
application.

We choose to represent algebraic expressions as a special
kind of Symbolic Expression called a "list". A list contains zero
or more elements. An element of a list ■ay also be a list, or it
may be an atomic element. For the purposes of this example, an
atom is either a number, as in most other programming languages,
or may be an object called a "literal atom" or "symbol". Such
atomic objects are built out of letters and digits (and perhaps
special characters) such that the first character in the symbol
is a letter. For example,

X y ROCKET Pierre MUL-T-2-ED A23

Given symbols and numbers, LISP creates lists by selecting
some atomic elements and surrounding them with parentheses. Thus

(X Y 2)

is a list as is

(X 2 Y)

However, these are different lists because the elements appear in
a different order. List aren't sets of elements, but are finite
sequences of elements.

As we mentioned above,
lists. Thus:

elements of a list may themselves be

(X 2 (Y))

is a LISP list. As with the previous two examples, this list also
has three elements, but in this case the third element is itself
a list. This list is also not the same as (X 2 (Y)), because
structure (as well as order) are used in determining equality of
lists.

Introduction -- 2

TLC--LISP Documentation Part I

We can continue to build up complex collections of lists by
applying the simple rules to build new elements. Thus:

(ROCKET (Pierre MUL) (X 2 Y))

is a list of three elements,
lists.

whose last two elements are also

There is a mathematics of Symbolic Expressions having
theoretical properties comparable to those of the natural
numbers, and yet these same objects have a natural and efficient
representation on traditional computers. This elegant blend of
cultures -- the practical and the theoretical -- is one of the
unique features of LISP. However, our main concern now is their
effective exploitation in the solution of complex problems.

How can we use these list objects to represent algebraic
expressions? For example, we could represent the expression 6*y
as a list (MUL 6 Y) where we write MUL and Y as the
representation of* and y, respectively. This representation
chooses to make the first element of the list represent the
operation (multiplication) and the remainder of the list
represents the operands. Continuing the encoding process, the
expression x+6*y would be represented as

(ADD X (MUL 6 Y))

Note that
operations
our example,

the notation still makes clear which components are
and which are operands. Applying these techniques to

2*(x+6*y)+x, we can represent it as:

(ADD (MUL 2 (ADD X (MUL 6 Y)) X)

The notation is simplicity itself. The first element of each
list always represents an operation. The elements in the
remainder of the list are either lists themselves, in which case
they represent complex subexpressions, or they are numbers or
identifiers, in which case they represent either numbers or
variables of the original expression. Given this representation,
it makes sense to ask questions like:

* "Is the expression a product?" Yes, if the first element of the
list is the symbol MUL.

* "What is the first operand of the expression?
element of the list.

It's the second

So we proceed to our algorithm.

Q~~ :leg'!:! '!'h~
objects, how
phenomenon we

Introduction

Algorithm: Given a representation for the
do we write an algorithm that encodes the

wish to examine. The notion of algorithm

3

TLC-LISP Documentation Part I

transcends any specific programming language. That is, we should
conceive our algorithm in an atmosphere that is as free as
possible from syntactic and implementation considerations. At
this level our thoughts should not be constrained by the
stylistic anachronisms of a particular language. As our problem
domains become more complex, this freedom becomes even more
critical.

Speaking abstractly, an algorithm consists of two separate
components: the logic which embodies the interrelationships
between the elements in the problem, and the control component
which specifies how the elements are used. Put another way, the
logic component encodes the knowledge, while the control
component contains the techniques for applying that knowledge.

The control structures tend to complement the data
structures since the flow of control is often based on the
structure of the data. The LISP control constructs that we need
for our algebraic simplification problem are: the conditional
expression and recursion.

The LISP conditional expression is analogous to the "if
then-else" construct of other languages, and is used similarly in
LISP to indicate appropriate alternatives depending on the
structure of an object. Returning to the current example, we can
expect the terms of a polynomial to be either a variable, a
constant, or a product of variables and constants. A constant or
a variable is already in its most simplified form; but certain
kinds of products can be simplified. In particular, the product
of anything and O is 0. So we'd have to check:

"If a term is a product and either of its operands is O, then we
can simplify it to O."

We could express this in TLC-LISP as:

(COND ((and (is-product term)
(or (= (first-operand term) 0))

(= (second-operand term) 0))) 0))

With a little persistence (and a few leaps of faith) this
notation can be recognized as a stylized translation of our
statement about products. Notice too that the form of the LISP
code is similar to that we selected for algebraic expressions:
the operation preceding the operands. Thus, instead of

X = y

we write

(: X y),

Introduction -- 4

TLC- LISP Documentation Part I

So LISP's code looks like LISP's lists. This takes a bit of
getting used to, but we'll see that this regularity will pay
handsome dividends. Indeed, there's a regularity and simplicity
within LISP that can encourage elegance. One testimonial to that
is the conditional expression, itself. Many non-numeric problems
involve a sequence of tests on an object and, finding one that is
successful, we perform a particular computation. Most if-then
else operations expect the user to express this condition as a
nested construction:

if variant-!? then expression-I
else if variant-2? then expression-2

else if

If the number of variations gets large, the nesting of if
expressions becomes quite deep and results in obscure code. The
form that if-then-else takes may stem from its origins in
numerical problems where the number of choices tends to be small
(0, positive, or negative, for example). LISP, on the other
hand, grew up expecting to deal with richly structured data. Thus
a comparable LISP conditional is the following:

(COND
(variant-I? expression-I)
(variant-2? expression-2)

(variant-n? expression·-n)

where expression-i will be evaluated just in the case that
variant-i? is true and no variant-j? is true for j less than i.
This is a much more pleasing format for complex situations.

This conditional expression is LISP's mainstay for explicit
control of computations. LISP uses two implicit control
operations as well: recursion and call-by-value. We will address
the issue of call-by-value as we proceed.

An application of recursion is appropriate when the
solution to the original problem can be expressed in terms of a
similar solution to subproblems. For example "the simplified form
of an expression, e + 0, is the simplified form of the expression
e". Here, the process involves the application of algebraic rules
in the context of the informal notion of "simplification".

The algorithm will involve the manipulation of lists that
represent algebraic expressions. For example, the simplification
rule that expresses the property that x+O or O+x is x, for any x
can be described informally as:

"if either summand is zero then the sum is equal to the other
summand."

Introduction -- 5

TLC-LISP Documentation Part I

In LISP we could test for the occurrence of a sum by

(IS-SUM TERM)

and write the above simplification rule as:

(cond ((is-zero (first-operand term)) (second-operand term))
((is-zero (second-operand term)) (first-operand term))
(T term)))

where T represents true and is used here as an "otherwise" or
"else" condition.

Of course, before we can run any such program fragments we
must construct definitions for all these sub-functions and we
must give definitions of the data structures in terms of the
LISP list structure. LISP does not supply any built-in data
definition facilities, neither does LISP impose a "type
structure" a la Pascal, with the corresponding declarations and
assorted accoutrements. LISP leaves such discipline to the
intellect of the user. Such a course places a certain burden on
the conscientiousness of the LISP programmer. One should view
LISP as an assembly language on which users may impose their own
idiosyncratic systems. Therefore only minimal constraints are to
be found within LISP.

Operations like IS-SUM and FIRST-OPERAND (called recognizers
and selectors respectively) are a part of the specification
(logic) of the data type "algebraic expression". In general, a
data type specification contains at least three types of
operations: the recognizers are used to test for the occurrence
of an element of the type; the selectors are used to select
components of an appropriate type, and a constructor is used to
make a new element of the desired type. Data type specifications
in LISP are handled through these constructors, selectors, and
recognizers.

In LISP, data items have an associated type, while variables
are type-free, meaning a variable may have values of any type,
associated with it in a totally dynamic way. This means, for
example, that a variable may have an integer value associated
with it al one moment, and later in the same program that
variable might be used to name a list value or even a function
value.

One of the most distinctive features of LISP is its
representation of programs as data items. For example, if we had
values 3 and 2 associated with X and Y, respectively, we could
evaluate the list (ADD X (MUL 6 Y)) receiving the value 15. This
duality of program and data is more than an historical anomaly;
it is more than an expediency based on the lack of available
character sets to support an Algol-like syntax for LISP. It is an

Introduction -- 6

TLC-LISP Documentation Par·l I

important ingredient in any application that expects to
manipulate existing programs or construct new programs. Such
applications include editors, debuggers, program transformation
systems, as well as symbolic mathematics systems and Artificial
Intelligence applications (a system that learns must be expected
to change its behavior).

We'll not get into a discussion of the merits or feasibility
of AI; rather, we stay in the (slightly) less emotionally charged
area of interactive systems design. The critical ingredient here
is how to handle debugging and modification of a program "on-the
fly". That is, we cannot afford to stop the program, rebuild
parts of it and restart the computation. The system may be
running a real-time or life-threatening system, or it may be that
the intermediate computation has taken a substantial time to
develop and the changes that are desired will invalidate only a
small segment of that computation. The point here is to envision
a situation where the traditional edit, re-compile, link and load
model will not suffice. In such a case we have to modify existing
programs and data. In such a situation we need to have access to
a form of the program that we can manipulate not as instructions,
but as data. Those who have had experience with traditional
machine-level debugging will recognize this type of situation.
LISP is one of the few other "machines" that will support such
"on-the-fly" modification.

We can build what are called "structure editors" that will
let us examine and modify the list-structure representation of
the programs. We can build LISP debuggers that can interact with
such structure editors to do the necessary detective work to
isolate problems. This latter situation involves more than just
having programs available as data, it involves having the dynamic
state of the "LISP machine" available for exploration and
modification. Such situations border on the introspective.

There are other, less dramatic, situations where an
"intelligent" form of programs is useful. Even in the more
traditional situation of editing a textual form (rather than
structural form) of program, we should be able to recover the
source form. Compare this with the typical compiler-based
situation wherein there is a wide gap between the running code
and the user's source; this situation is exacerbated by
optimizing compilers that widen that chasm beyond recovery.

In contrast, even those LISP's that do not deal directly
with the structure will allow recovery of the source from the
running code. The simplest tactic is to print the list
representation into an edit buffer, edit that text, and then pass
the new text through the LISP reader. A more substantial task
involves the partial compilation of the source into an
intermediate code, which is "reversible" in the sense that it can
be de-compiled into the user's code. These latter two solutions

Introduction -- 7

TLC-LISP Documentation Part I

are partial implementations of the more comprehensive solution of
making the program and the dynamic state of the computation
(called the control structure) directly available as data objects
in the language.

Program transformation systems are another example of
treating program as data. Such systems span the spectrum from
traditional compilers to source-to·-source program improving
systems. In its general form, a compiler expects a program as
input and produces a program for another machine as output.
Again, if the language supports programs as data objects, this
compiler can be expressed in the language. Most other languages
obscure the problem by describing the compiler as a program which
takes a string as input, converts the string to an internal non
executable form, and produces another string as output. This is a
very localized view of the world of computing. A healthier
approach views compilation as the last phase of the program
construction process where the compiler is to transform a correct
program into one that will execute more rapidly. Earlier phases
of the programming process are responsible for the construction,
debugging, and modification of the program. The unifying
perspective of a program as a data structure cleanses the
intellectual palate.

We will also see another program transformation technique in
a few sections hence: LISP macros. Macros in LISP function
similarly to macros in assembly language, allowing us to
abbreviate sequences of code that the language processor can
expand for us automatically. In assembly language the macros are
expanded when the source code is transformed into machine code.
LISP tends to operate in a slightly different manner, expanding
the macro to new LISP code dynamically, and then executing that
code. In compiler-based LISPs the analogy to assembly language is
exact: the code gets expanded once, and compiled; even without a
compiler, we can indicate that we want the macros "displaced",
meaning that they expand once and the expanded code actually
replaces the application of the macro.

In summary, LISP is best thought of as a "high level
assembly language for complex programming". It contains a library
of operations, including the system-level components like symbol
tables, scanners, parsers, and unparsers, with a processing unit
to evaluate the combinations of these ingredients. Yet it imposes
little structure on the programming process, believing that
discipline is best left to the intelligence of the programmer.
LISP is a tool, no better or worse than its user. One goal of
this documentation is to develop and reinforce an appreciation
for self-discipline as well as reveal the elegance and beauty of
LISP.

Introduction -- 8

TLC-LISP Documentation Part I

Data Objects in TLC-LISP

Introduction

This section begins a more thorough and detailed treatment
of LISP data. As we have seen, LISP data comes in at least two
flavors: atomic objects and composite objects. Atomic objects are
further divisible into numeric and non-numeric objects. The most
interesting non-numeric atomic object in TLC-LISP is called a
symbol or literal atom. Symbols are a versatile naming structure
for LISP. They are used as non-numeric constants of the
programming language (T and NIL), as primitive data objects (MUL,
ADD, and the variable names in the previously discussed algebraic
examples), and as references for all the programming language
constructs (as in COND, EQ, and IS-ZERO). Furthermore, as we
will see momentarily, symbols can also be used to capture
collections of data using a symbol like a name in a dictionary.

Many LISP implementations (including TLC-LISP) supply
character and string data types. This allows the manipulation of
character sequences and, with conversion programs, allows the
dynamic generation of new symbols just as numeric operators can
introduce new numbers into the programming environment. This
dynamic creation of data objects is a hallmark of LISP's attitude
toward data objects. The idea, called "first class treatment of
objects", stems from a desire to free the programming notation
from the details of its implementation. We will dedicate a
section to the implications of "first-class-ness" after we have
had some experience with the specifics. The size of objects and
the duration of their "lifetime" (their creation and deletion)
are two such specifics. In elementary mathematics, we deal with
integers and "create new ones from old ones" by the successor
operation (from n, generate n+l). Programming languages will
usually restrict the implementation of the successor operation to
those integers that will fit some hardware notion of "largest
integer". Strings and vectors are typically constrained in a
comparably arbitrary fashion. Not so in LISP. LISP's most general
"first class" object type is also its first and most unique data
object--the dotted pair.

Dotted Pairs

One characteristic of LISP is its ability to take two
existing objects and build a new composite structure from them.
Thus given the symbols ROCKET and PIERRE we can create two new
structures

(ROCKET. PIERRE) and (PIERRE . ROCKET)

Dotted Pairs -- 9

TLC-LISP Documentation Part I

Since this construction operation can
applied to pre-existing objects, we can define
structured objects, as for example:

be repeatedly
quite complex

((ROCKET

The
parts,
enclosed

PIERRE) (1 (V. X)))

objects created in this way always have exactly two
and those parts are separated by a dot (.) and are

in parentheses. Such objects are called "dotted pairs."

It is sometimes helpful to visualize these dotted pairs
graphically. We can view this dot notation as a linear
representation for a stylized tree-like structure that always has
exactly two branches. Pictorially, it represents a tree with
left and right branches br-1 and br-r respectively, as

(br-1 . br-r)

We can use this graphical representation to
arbitrarily complex dotted-pairs. For example:

h
A B C

(A (B . C)) (A • (B . (C NIL)))

display

The most general form of these binary trees are called
Symbolic Expressions, S-expressions, or S-exprs for short.
Though we'll add more kinds of objects in a few moments, we've
now been exposed to the fundamental notions of LISP's original
set of data: numbers, symbols, and dotted pairs.

What we have so far, however, is just a representation for
constants. Before we have anything resembling a language we need
operations that will let us build new objects, test them and
manipulate them in various ways, similar to the ways that
traditional languages let us make new numbers (using+, *• etc.)
and test them (is a number equal to 0?). We'll assume we have
arithmetic operations, so that we can build new numbers. Later
we'll show how to build new symbols, but now we want to introduce
ways of building new dotted pairs.

Dotted Pairs -- 10

TLC LISP Documentation Part I

Constructors

Our primary constructor for dotted pairs is called CONS. It
expects two objects as arguments (and is therefore called a
binary function) it constructs a new dotted pair that, if
interpreted as a binary tree, has the first argument of CONS as
the left branch and the second argument as the right branch:

(CoNS c§ 139) 9
where the symbol => means "evaluates to" or "simplifies to".

Besides the graphical form, we need
representation.
earlier, we' 11
writing it as
whose succeeding

Following the tradition we've
indicate the application of a LISP
a list whose first element is the
elements are the arguments. Thus:

(CONS 1 2) -=> (1 . 2)

a textual
established

function by
function and

We can build up such function applications using functional
composition. Thus:

(CONS (CONS 1 2) 3) => ((1 . 2) . 3)

and

(CONS 1 (CONS 2 3)) => (1. (2. 3))

LISP's functional composition is a powerful programming
technique, directly derived from the mathematical notion of the
same name that we experienced in high school algebra. There are
two distinctions: one deep and one superficial. Superficially, in
algebra we write x+y and thus might expect to write x CONS y,
rather than (CONS x y). More substantially, we will tend to think
of LISP's expressions as computational requests rather than as
abstract functional expressions. However one very important
benefit of LISP's functional basis is the ability to intuit
expressions computationally, and simultaneously view them as
denoting an object in the sense of a functional mathematics. It
is this latter sense that opens new doors for multi-processor,
parallel architectures for LISP evaluation. For viewed
functionally, a LISP expression imposes few constraints on how a
computation must be performed. A few explicit constraints appear
as control structures (DO, FOR, etc.), but implicit constraints
(like composition) are subject to re-interpretation (evaluate
both arguments to CONS simultaneously, for example). We'll
explore several of these topics throughout this first Part.

Dotted Pairs -- 11

TLC-LISP Documentation Part J

Recognizers

Besides the constructors,
recognize the occurrence of
Currently, we've only introduced
pairs, but soon a whole flood of

we also need the ability to
different types of objects.
numbers, symbols, and dotted
types will appear.

These operations are called recognizers and, in the case of
S-expressions, require that we be able to tell an atom from a
non-atom. Thus:

(ATOM 1) => T

where the LISP symbol Tis an indication of truth.

(ATOM T) => T

False,
NIL. So:

the other truth-value, is represented by the symbol

(ATOM (CONS 1 2)) => NIL

since the result of (CONS 1 2) is a non-atomic object.

This last example also
functions (called predicates)
functions. So:

(CONS 1 (ATOM 1)) => (1 . T)

shows that these
can be composed

truth-valued
with other

Given that we have an atomic quantity, we need to discover
what kind of atomic object it is.

(SYMBOLP 1) => NIL

(NUMBERP 23) => T

Of course we have to represent tests like:

"Is the atom A a symbol?" Answer: T

We might try writing (SYMBOLP A)

but we'd discover that

(SYMBOLP A) => Error, Unbound-atom A

Dotted Pairs -- 12

TLC-LISP Documentation Part I

We have to look more closely at the process that LISP
performs in evaluating these expressions. Clearly, LISP knows how
to recognize constants. If you ask the value of 1, or NIL, for
example, the system will respond with 1, or NIL. But what is the
value of SYMBOLP (or A)? SYMBOLP's value is a primitive function,
and A's value? Well unless we give it one, A has no value. Before
we do that, we need to introduce a way of saying:

"Don't look for a value, but take this symbol as it stands"

Natural languages have such a device,
example, we can say:

called quoting. So for

"Chicago is a city, but 'Chicago' is a seven-letter word."

LISP has a similar solution for the similar problem. When we want
to talk about a specific symbol, we quote it by writing

'A, for example.

So we can now express "Is the atom A a symbol?" as:

(SYMBOLP 'A) => T

The reason for quoting in LISP is to stop evaluation. We
must be able to specify the use of a symbol and also the mention
of a symbol, and we have to-have unambiguous ways of designating
these two uses. So we can say

(SYMBOLP 'SYMBOLP) => T

and know that the first reference is to the function SYMBOLP (a
use) and the second reference is to the symbol SYMBOLP (a
mention). You might think about what (SYMBOLP SYMBOLP) means.

This problem of quoting does not occur in traditional
computing languages because the distinction between data elements
(numbers, strings, etc.) and components of the language
(symbols--known as identifiers in traditional languages) is
enforced by the language.

Since there is no ambiguous use of numbers in LISP, we don't
quote them; and since T and NIL are used as Boolean constants, we
don't have to quote them. But quoting must be done in any
situation that requires that the symbol be taken literally.

(CONS 'CONS 'CONS) => (CONS . CONS)

Dotted Pairs -- 13

TLC-LISP Documenlation Part I

Furthermore, in preparation for things to come, we require that
dotted pairs be quoted even though the syntax makes it clear that
the pair is a data object. Thus:

(ATOM '(A

(CONS '{l

B)) =-> NIL

3) 2) => ((1 . 3) . 2)

If we neglected the quote-mark and wrote

(ATOM (A . B))

any LISP evaluator would respond with an
will try to evaluate the pair (A. B) as
by some arguments. If A has no function
will complain here; if A does have a
evaluator will complain when it sees B,
look like an expression.

error message since it
a function (A) followed
definition, the system
definition, then the

since (A • B) does not

One final point about quoting(') needs to be made: we
advertised that every expression in LISP had to be a list, but

'<expression>

does not seem to follow the rule. In actuality, the quote-mark is
an abbreviation for a LISP-style list of the form

(QUOTE <expression>)

So

'(1234) is really (QUOTE (1 2 3 4))

We will soon see what this regularity of notation gains us.

Dotted Pairs -·· 14

TLC LISP Documentation Part I

Selectors

Besides being able to construct new objects, we must also be
able to examine the components of such constructed objects.
Recall that we assumed the existence of such "decomposition"
operations in our algebraic simplification example (FIRST-OPERAND
and SECOND-OPERAND, in particular). Operations that allow such
examination of components are called selector functions.

Since dotted pairs have exactly two components, we have two
selectors for S-·expressions: one to select the left branch of a
tree, called CAR, and one to select the right branch, called CDR.

Given that an object is a non-atomic S-expression, we then
know it is safe to operate on it with CAR and/or CDR. Conversely
it is not safe to operate on (most) atoms with these selectors.

(CAR 1) => error, list-expected.

(SYMBOLP (CAR '(A. B))) => T

since

(CAR '(A B)) => A, and A is a symbol.

So for example:

(CAR '(l . 2)) => 1

(CDR '(CONS . 2)) => 2

(CDR (CONS 1 (ADD 1 2))) => 3

the
This

An historical note: the names CAR and CDR are derived from
machine representation of the first implementation of LISP.

was done on an IBM704. That machine --a micro in terms of

Dotted Pairs -- 15

TLC-LISP Documentation Part I

the capabilities of today's hardware-- had its 36-bit
divided into several subfields. Two of those field were
"address field (15 bits) and the "decrement" field (also
bits); those fields were used to encode the CAR-branch and
CDR-branch, respectively.

word
the

15
the

So to summarize the current situation, we now have a simple
TLC-LISP calculator at our disposal. It can do arithmetic
operations--type in an expression and get its value, as in

(ADD 4 5) => 9

It's therefore a functional calculator in the
basic building blocks are functions, which
arguments, and produce values. Thus:

sense that the
are applied to

* Every expression has a value;
"procedure" that has no value.

there is no such thing as a

* Operations can be "cascaded" using the notion of functional
co■position--the result of one operation can be fed directly into
another operation, as in:

(ADD (MUL 2 4) (SUBl 5)) => 12

now have Symbolic Expressions that have a
own, and have a set of calculator
select, and test these objects we call

Furthermore, we
mathematics all their
primitives to construct,
S-exprs.

Finally, we're still not at the level of a programming
language, only a fancy calculator. For though we can test
results, we have not yet shown how to express conditional actions
or decision-making in the notation. Before we do that, we want
to introduce some other data objects of TLC-LISP.

Dotted Pairs -- 16

TLC-LISP Documentation Part I

Lists

Now that we have the basic set of LISP data and operations
under our belt, it's time to look at some further data objects
and some more operations on those data. Recalling our earlier
discussion of programs that manipulate programs, and noticing
that LISP programs are represented as lists, it seems only fair
to explore the possibilities of developing the same kinds of
functions for lists as we just did for dotted pairs. In
particular, constructors, selectors, and recognizers will be most
appropriate.

Before doing that, we should make a slightly more formal
disclosure of what it means to be a list.

* The empty list, designated by empty parentheses ().

*anon-empty list, having elements that may themselves be lists,
or may be symbols, numbers, or perhaps dotted pairs. Such a list
is simply designated by writing down the elements in the desired
order, separating each with space if ambiguity would arise
otherwise, and finally decorating the collection front and back
with parentheses. Thus, the following are lists:

(1 2 3)

(1 2)

(1 2 (2 3) A)

(CAR 1 2)

(CONS (CAR (QUOTE (AB))) 2)

A few remarks: the first, fourth, and fifth examples each contain
three elements, while the second contains two, and the third
contains four. The second example, (1 2), should not be confused
with (1 . 2). The fourth example (CAR l 2) is a list of three
elements that just happens to look like a LISP expression. The
final example again is a list that looks like an expression, but
in this context is just a list of three elements, whose second
element is also a complex list.

A special note to those who have prior traditional
programming experience: as we introduce the list-operations in
the next sections, relate them (and lists) to operations you've
seen. For example, how to lists compare with vectors or arrays?
Could you implement lists as vectors or strings? Could you get
the notions of functional composition to operate with your
implementation?

Lists -- 17

TLC-LISP Documentation Part I

Constructors for Lists

CONCAT is the primary constructor for building up lists.
CONCAT, like CONS for S-expressions, is a binary function;
however CONCAT expects its second argument to be a list. CONCAT
will construct a new list whose first element is CONCAT's first
argument, and the remainder of the list is CONCAT's second
argument. Thus:

(CONCAT 1 ()) => (1)

As with previous LISP operations, we can compose the results
of CONCAT:

(CONCAT 1 (CONCAT 'ROCKET (CONCAT 'PIERRE ()))) => (1 ROCKET PIERRE)

We'd also like to explicity represent, for example, the
creation of the list (1 ROCKET PIERRE) by using CONCAT with l as
first argument and the list (ROCKET PIERRE) as its second
argument. The graphical interpretation is clear,

CONCAT

---> (1 ROCKET PIERRE)

(ROCKET PIERRE)

but the textual form is more problematic. For if we try:

(CONCAT 1 (ROCKET PIERRE))

then, following our convention that an expression is represented
as a list whose first element is the function~ the previous line
must be interpreted as saying:

"Apply the function CONCAT to the arguments 1, and the result of
applying the function ROCKET to PIERRE."

But that's not what we had in mind.

Since we can have lists that represent function application,
mixed in with lists that represent data objects, we need to have
some way of distinguishing between the two. Our quoting problem
has returned; but the same solution will hold in this case.

(CONCAT 1 '(ROCKET PIERRE)) => (1 ROCKET PIERRE)

Lists -- 18

TLC-LISP Documentation Part I

For a more complex situation to highlight the quoting
distinction, compare the following two expressions:

(CONCAT l (CONCAT l '(2))) and (CONCAT l '(CONCAT 1 '(2)))

The first one yields (1 1 2)

since
passed

the
to

inner
the

CONCAT creates the list (1 2) that is what
outer CONCAT.

gets

The second situation is quite different. Recall that it is
an abbreviation for

(CONCAT 1 (QUOTE (CONCAT 1 (QUOTE (2)))))

Because of the QUOTE, the second argument to the CONCAT is a
constant--the list,

(CONCAT 1 (QUOTE (2)))

So the value of the second example is the list:

(1 CONCAT 1 (QUOTE (2)))

Another important constructor for lists is LIST. This
function will take an arbitrary number of objects as arguments
and build a list with those objects as elements. Thus:

(LIST (ADDI 2) (ADD 3 5) (CONS l 2) (CONCAT l '(3 A)))

=> (3 8 (1 . 2) (1 3 A))

The final constructor we'll highlight here is APPEND. It
takes two arguments, both lists, and builds a new list with the
elements of the first list pasted onto the second list. Thus:

(APPEND '(l 2 3) '(AS D F)) => (1 2 3 AS D F)

In the Functions section, we'll derive the TLC-LISP function for
APPEND.

Each of these constructors (CONCAT, LIST, and APPEND) will
prove useful; each performs a (sometimes subtly) different
function. So, continuing the latest example:

(CONCAT '(l 2 3) '(AS D F)) => ((1 2 3) AS D F)

(LIST '(l 2 3) '(AS D F)) => ((1 2 3) (AS D F))

Lists -- 19

TLC-LISP Documentation Part I

1i~1 Selectors

As with dotted pairs, lists also have their own set of
selector functions. The basic selectors are called FIRST and
REST, and select (respectively) the first element of a list and
all of a list but the first element.

Thus:

(FIRST '(AS D F)) => A

(REST '(AS D F)) => (SD F)

REST actually can
argument is supplied,
should go. Thus:

be used more generally:
it indicates how far down

(REST '(ABC DEF) 2) => (CD E F)

if
the

a second
list we

So (REST '(AS D F)) is the same as (REST '(AS D F) 1)

We'll see several other TLC-LISP functions that have this
ability to take a variable number of arguments, called "optional
parameters". Later we'll show how user-defined functions can
also capitalize on this feature.

TLC-LISP also supplies a generalization based on FIRST,
called NTH.

(NTH '(Q WE AS D) 3) => E,

showing that NTH gets the element of the list specified by the
index. So we could have defined

(FIRST <list>) to be the same as (NTH <list> 1)

or we could have defined FIRST as we did REST, to take an
optional argument. But we didn't; we leave that as an exercise.

As with the list constructors, there are several other
selector-type functions available in TLC-LISP; see the Reference
Manual for details.

Lists -- 20

TLC-LISP Documentation Part I

In a fashion
pairs, we must have
a list-type object.
that.

(LISTP 1) => NIL

(LISTP 'A) => NIL

(LISTP '(ABC)) =>

(LISTP . ()) => T

T

Recognizers

analogous to the situation involving dotted
predicates that will tell us the condition of

Is a given object a list? LISTP will tell us

As with S-expressions and their selectors, we need some way
to tell if a list is non-empty and therefore has a FIRST-part and
a REST-part. NULL will do that for us:

(NULL '(AS D)) => NIL

(NULL (REST '(A))) => T

These few functions represent only the tip of TLC-LISP's
built-in iceberg. Examine the Reference Manual and the examples
on the files accompanying the LISP and you find many more list
■anipulating functions. The major point of this section is to
introduce you to the basic operations and the general style that
we wish to exercise while writing TLC-LISP programs. In
particular, now when we think about the programming task, we
should view the data as a collection of rather concrete objects-
numbers, dotted pairs, and lists, for example. Each type of
object has its own collection of operations for creation,
testing, and selection. This triad of operations is more
recognizable with lists and pairs than with numbers, but is there
nevertheless. Later, this technique will come into stronger play
when we build abstract objects out of these concrete objects;
when we create algorithms to manipulate real world objects, we'll
still use constructors, selectors, and recognizers, but now over
chairs, and trees, and even mental structures.

Given these operations on objects, we can then conceive of
our programs with some sense of abstraction and implementation
independence. We deal with the objects through this interface,
passing objects between functions using the functional
composition pipeline, the result of one computation feeding
directly into the next. Unfortunately, the computational
environment is not very robust; all we have to work with are the
primitive functions and constant data objects. We need to expand
this simple but elegant view of computation, retaining the
functional flow, while adding an ability to define new functions
and name objects. Fortunately, these tasks are related.

Lists -- 21

TLC-LISP Documentation Part I

Na■es, Values, Objects, and Aliases

So far we have steadfastly adhered to the calculator motif:
an expression is constructed, then evaluated and so yields an
immediate result. There's been no sense of memory and no sense of
permanence other than the implication that the primitive
functions are somehow known to the LISP calculator. This is a
mixed blessing: the language is incredibly simple, but it is also
quite limited in power since all we can refer to are constants
(numbers, S-expressions, lists, and primitive functions). Two key
ingredients are missing:

* we have to add programs to the memory of the LISP machine,
increasing its capabilites.

* we have to be able to name (or somehow save) partial results
so that we can refer to them in a later calculation.

Both of these problems are
that of giving names to objects
them later. In the first case,
case, we name data.

symptoms of the same phenomenon-
so that the language may refer to

we name functions, in the second

Names and naming conventions are as problematic in computing
languages as they have been in natural languages. Though we can
pass these concerns off in everyday life as irrelevant musings of
philosophical overachievers, we must address the issues in
computational languages. The specific computational (and
philosophical) problem involves equality: when are two objects
equal, and in fact, what does equality mean? This involves the
issues of indentical versus indistinguishable objects. We can
talk about two objects being indistinguishable: if every test on
one yields identical results on the other, but to talk about
"identicalness" involves talking about names for objects. This is
the issue of synonymity: are two names referring to (or aliases
for) the same object?

To put this discussion in more concrete terms, we will
introduce a technique for associating a name with an object in
LISP. Given an object, say the list (AB), we can associate it
with the symbol A using the operation SETQ. Thus:

(SETQ A ' (A B))

All traditional languages have a similar kind of operation
called an "assignment statement". A LISPish FORTRAN might say:

A = '(A B)

while a LISPish ALGOL or Pascal might phrase it as:

A:='(AB)

Names --- 22

TLC-LISP Documentation Part I

The major distinction between a LISP SETQ and another language's
assignment statement is that the SETQ is an eXEression, meaning
that it has a value (besides accomplishing the assignment). The
value of the SETQ is the value assigned to the variable. Thus:

(SETQ A '(AB)) => (AB)

Later we will see ways of exploiting this value, and soon we
will see more elegant ways of associating objects with names, but
for now let's exploit the situation. Given the ability to name
objects, what added perspectives on modern computation can we
illustrate? The critical issue is that of "object versus value".
And the pathway to understanding that distinction leads through
the shades of meaning around the word, "equality".

We have two predicates to deal with equality, EQ and EQUAL:

* EQ -- a predicate that compares two references to objects and
will tell if they are referring to the same object.

For example, assuming that X names an object, then

(EQ XX) => T regardless of the object associated with X.

* EQUAL -- a predicate that compares two references and tells if
the objects are indistinguishable. So

(EQUAL XX) => T

because any object is indistinguishable from itself. Of course,
this discussion is totally vacuous until we explain how we
differentiate between identical and indistinguishable objects.

So let's complicate matters. Assume that we have a function
(which we do) called COPY that will take an object and "clone"
it. That is, make a new object that is a carbon copy of the
original. But like any copy, at some level there is a distinction
between the copy and the original; EQUAL is unable to make the
distinction, but EQ can. To be more concrete:

(SETQ X '(A . B)) and (SETQ Y (COPY X))

Now (EQUAL X Y) still gives T since the objects are
indistinguishable. However (EQ X Y) gives NIL since X and Y are
not references to the same object.

This may still appear to be a non-problem for computation;
if objects and their clones are indistinguishable why bother with
EQ? The practical problem involves objects that change (called
"mutable" objects). We say "practical" because in object-based
languages like LISP, objects can change.

Names -- 23

TLC-LISP Documentation Part I

In contrast, languages like mathematics are "value-based"
since objects in these languages, once created, cannot change.
Such non-changeable objects are called "immutable" objects. We'll
talk later about the actual mechanisms in TLC-LISP that allow us
to modify objects, but now we want to emphasize what change does
to our language.

Practically, the possibility of change (or mutation) says
that we cannot "cheat" on the implementation of operations like
COPY by simply sharing a reference to the object, because changes
to the original (copy) would be reflected in the copy (original).
Notationally, the possibility for change is more fundamental. It
makes us think more carefully about the notions of object versus
value and begins to separate the static mathematical languages
(value-based) from the dynamic languages of computation that are
object-based. We will return to this topic several times since it
represents an important perspective in modern LISP.

So, in summary, names in LISP should be thought of as naming
objects, not as naming values. Some objects act like values in
the sense that they are immutable. In particular, numbers are
immutable; we won't find 1 suddenly turning into 2. Symbols are
also immutable in LISP. But general objects (like dotted pairs
and lists) can change, just like the city of Chicago changes-
unpredictably, and often.

This ability to modify objects introduces a new category of
data functions: besides the constructors, selectors, and
recognizers, we also have "updater" functions. Dotted pairs,
lists, and in a moment vectors and strings, have updater fuctions
available to them. Before we do that we'll consolidate our
discussions on lists and dotted pairs.

Names -- 24

TLC-LISP Documentation Part I

Co■pariaon of Lista and Dotted Pairs

As things stand, we have a small intersection between LISP
data and LISP programs; namely symbols are able to migrate across
that boundary. So far, that situation seems to be more trouble
than it's worth. This section will dispel! that opinion by
closing the gap between data and program. We will show how to
represent lists as dotted pairs, thus mapping all LISP programs
and data onto one uniform structure. This is much like
traditional machines map program and data onto linear collections
of locations that contain either a O or a I. Here we map
everything onto binary trees whose tip nodes are atoms (numbers
or symbols). We'll exploit this machine analogy further in the
Evaluation section. Here we'll concentrate on the details of the
mapping.

Recall a list was either empty --denoted by ()-- or was of
the form (el, ... en) where each ei was either an atom or a list
itself.

We may represent list notation as an S-expression by the
following rules:

1. Map() onto the symbol NIL

2. Map (el e2 ... en) onto
(el . (e2 . (... (en . NIL) ...)))

(el e2 e3 e4)

So a list maps onto an S-expression whose right-most (or
deepest) node is the symbol NIL. Indeed, within the TLC-LISP
system NIL and() are synonyms.

Comparison -- 25

TLC-LISP Documentation Part I

Several other synonyms also appear in LISP courtesy of this
mapping. In almost every implementation of LISP, FIRST, REST, and
CONCAT are identical to CAR, CDR, and CONS.

However it is good style to program at the dotted pair
level using operations based on CAR, CDR, and CONS, and program
at the list level using FIRST, REST, and CONCAT.

(CONS 1 2) => (1 2)
(CAR (CONS 1 2)) => 1

(CONCAT 1 (CONCAT 2 NIL)) => (1 2)
(FIRST (CONCAT 1 (CONCAT 2 NIL))) => 1

This sheltering
separating it from the
mere sleight-of-hand.
programming".

of the dotted pair representation,
list-related functions, is much more than
It is our first example of "abstract

By "abstract programming" we mean that we wish to encourage
a style of programming that uses data-manipulating operations,
without consideration for how these operations are implemented in
terms of lower-level constructs. The connection between
operations and their implementations is made by simple
"interface" specifications, done in terms of the implementation
of the ubiquitous constructors, selectors, recognizers, and
updaters.

There are several benefits to this programming style: first,
programs tend to become small, modular units. This improves
readability and maintenance. Second, separation of conception
from implementation gives one the freedom to vary the
implementation without as much danger of destroying the
correctness of the program. All one need do is modify the
interface specifications when the lower-level representation is
changed. The algorithms above this specification "firewall" need
not be changed. This kind of modularity and freedom from
implementation is becoming more popular as the complexity and
sophistication of programs increases. The idea appears in the
guise of "information hiding" and "abstract data structures."
Some languages try to enforce these ideas with "strong type
structure"; LISP, on the other hand, supplies the tool~ that a
self-disciplined person may use to build such abstractions, but
leaves the ultimate responsibility in the hands of the user.

Let's step back a bit from the pecularities of the data
representation for a moment, and see what other general lessons
we can learn.

Comparison -- 26

TLC-LISP Documentation Part I

GraEhical Languages

First, the rather arcane syntax of LISP data--the reams of
delicately balanced parentheses--have a method to their madness.
They allow us to give a linear representation to a complex tree
structure. This notation was born of historical necessity, since
display technology is only now becoming sufficiently proficient
at representing graphical information. The thing to remember when
viewing LISP's parentheses is that they represent tree-like
information, and soon we'll be able to express LISP-like
information on display screens in a form more indicative of their
true graphical nature.

The deeper lessons of LISP's notation involve its
anticipation of more visual, two-dimensional, and pictorial ways
of presenting data and programs. Character-at-a-time input of
programs and data need not persist now that we have cost
effective means for manipulating graphical information. However,
the practical problems of representation, and the theoretical
problems of semantics of such languages, are both open issues.

Program as Data

No discussion of LISP data would be complete without a
mention of LISP's famous property of "program as data." We've
seen that function calls in LISP are represented as lists, whose
first element represents a function and whose remaining elements
represent actual parameters to the function. We've seen that
conditional expressions are represented as lists whose first
element is COND and whose remaining elements represent lists of
expressions--tests to be made followed by actions to be carried
out. Similarly, we'll soon represent function definitions as
lists whose leading element indicates that the remaining elements
represent name, formal parameters, and body. So all components of
our language can be represented as lists. And what does this buy
us? It allows us to construct programs that manipulate programs.

A LISP program can access another piece of LISP code to
analyse, transform, or even execute it. This is not just a "cute
hack". It is a practical advantage born of theoretical beauty.
For, editors, debuggers, and compilers are all exa·mples of
program manipulation systems. All of these tools are easily
written in LISP.

Comparison -- 27

TLC-LISP Documentation Part I

One slightly more philosophical point is exemplified in this
program-as-data situation; that is the old problem of use versus
mention. Whenever a language (natural or otherwise) is strong
enough to talk about its own components (words), then precise
distinctions need to be made between the use of a name (like the
city named Chicago) and the mention of a name (like 'Chicago' has
seven letters). Most programming languages don't have to deal
with this issue because of the clear division between the
programming language and the items that the language manipulates.
We don't have that luxury of ignorance in LISP; and QUOTE (or its
abbreviation of') handles that problem.

Another problem that other formal languages (including
programming languages and mathematics) have been able to side
step is the issue of value versus object. In mathematics, values
cannot change; in programming languages numerical values cannot
change, but items like arrays are expected to change in the sense
that their components can be modified. Unfortunately there is a
conspiracy of confusion in the programming domain that makes it
difficult to realize that arrays are examples of what we will
call mutable objects. Much of this stems from a fuzzy notion of
what programming languages actually deal with--are they talking
about values or are they talking about objects? Unfortunately,
when languages try to talk about objects, they do so in a
particularly weak, implementation-oriented way, rather than in a
notationally elegant fashion. A fashion that has been called
"first-class".

Comparison -- 28

TLC-LISP Documentation Part I

First-Class Objects

One further liberating idea has yet
appreciated: the notion of first-class objects.
statements of this notion appeared in thw
Popplestone, the originator of POP-2. In 1968 he

to be fully
One of the first
writings of R.
wrote:

" this brings us to the subject of items. Anything which can
be the value of a variable is an item. All items have certain
fundamental rights.

1. All items can be the actual parameters of functions.

2. All items can be returned as the results of functions.

3. All items can be the subject of assignment statements.

4. All items can be tested for equality. "

Several of these ideas were percolating around, and implied
in the earlier LISP work, but this is one of the first explicit
mentions of the notion of first-class objects. And yet sixteen
years later, how well do languages live-up to that charter?

Even in the world of "abstract data", many modern languages
make very concrete demands on the behavior of data objects. Those
demands typically mean that each object be predefined and
specified before a computation is begun. Think about Pascal, or
BASIC, or FORTRAN for example. Can you pass in an array as a
parameter to a function? Can you even talk about a function, or
is everything a "procedure"? Can you assign an array as value to
a variable? Can you create an array as the value of a function?
No. The only kind of data objects that have this flexibility in
these languages are numbers. Yet even here, constraints are
placed on the sizes of integers and floating-point numbers. These
constraints have nothing to do with the mathematics of the
situation. They are imposed because of hardware limitations in
the machine.

In a similar manner, limitations are imposed on data objects
like arrays, strings, or functions -- because of difficulties

in implementation. So for example, to use an operation like CONS
in a traditional language we would have to pre-allocate space for
CONS-like objects; or we would not be able to return a CONS
object as the value of a function; or we would not be able to
pass a CONS-object as an actual parameter to a function; or we
would have to explicitly "erase" a CONS-object when we were
finished with it.

Comparison -- 29

TLC-LISP Documentation Part I

This kind of implementation-driven language design goes
against the grain of using a language as a tool for expressing
thought. What if we required that a natural language
conversation begin with a definition of all words to be used in
the conversation? Or if we required that all words be less than
two syllables? The world would become very quiet. No, we use
natural language in a very interactive "unstructured" fashion,
defining words as needed, guiding the depth of the discussion by
the level of understanding of the listener. We are definitely not
advocating that natural language be used for computation. We are
asking that the level of computational language be raised so that
we can use the notation to describe our problems.

So just as natural languages are judged on their flexibility
and level of expressiveness, we should expect no less from our
computing languages. The notions of abstraction, information
hiding, and particularly first-class objects, exemplify partial
solutions to these concerns.

We're now going back to the less philosophical aspects of
TLC-LISP to introduce more data types. However it will be useful
to keep this discussion of first-class-ness in mind as we
introduce new notions. In particular, those of you who have had
experience with languages that support vectors (or arrays) should
your vectors with TLC-LISP vectors.

Comparison -- 30

TLC-LISP Documentation Part I

Vectors

TLC-LISP includes two important classes of data objects
commonly considered in discussions of general purpose languages.
These are vectors and strings. The notion of vector is a special
case of a list structure, being of fixed (rather than variable)
length. We will also see in the next section that strings are in
turn special cases of vectors, where each element is required to
be a character. In either case, these objects represent finite
sequence of elements. As such, vectors are venerable mathematical
structures; and thought of in the historical scheme of modern
computing, they were the next structure after numbers to be
supported in hardware. The index registers that we all know and
love support the rapid accessing of elements of a vector.

However, we prefer to think of vectors in the abstract
mathematical sense and as such, we should be free to say
"consider a finite sequence of n elements " at any time
during our problem-solving task. This flexibility of discussion
translates into the notion of first-class data objects when we
move to programming languages. We mentioned that idea in the
discussion of lists, but it bears repeating in the context of
LISP's treatment of "typical data structures". In particular,
the standard languages demand that vectors be "declared", meaning
that before any program begins execution each vector must
specify its intentions -- typically by specifying its name, its
size, and the type of each of its elements. Such behavior is an
anathema to those who wish to develop programs interactively. How
often do we introduce new notions "on the fly" while we're
problem-solving; why should programming languages be any less
flexible?

Of course, our informal flexibility does not stop with the
i11troduction of the new idea or terminology. We feel free to use
that notion as the problem-solving continues. Translating this
flexibility into the programming realm implies that we are free
to pass our dynamically created vectors around throughout our
computational conversation. It's the notion of first-class data
again. And such is the behavior of vectors in TLC-LISP. Our
vectors can be created dynamically, passed as values to
functions, and returned as values for functions. They share with
standard "general purpose" languages, the ability to access and
set components. As notation and implementation, they represent a
tradeoff when compared with lists. Vectors are less flexible,
being of fixed size when created. However they are more natural
to use in contexts that utilize a regular, predictable
structuring between elements. For example, when describing a two
dimensional game situation, it is easier to visualize positioning
and strategies in terms of a vector of vectors rather than a list

Vectors -- 31

TLC-LISP Documentation Part I

of lists. The computation to move between rows and columns is
easily described in terms of vector indices; the notion is highly
unnatural when expressed as list operations.

In more detail, we express constant vectors in TLC-LISP as:

[<obJl> <obJ2> ... <objn>J

where the <obji>'s can be any LISP object including a vector. So:

[l 2 3 4 5) is a vector of length 5.

[[l 2 3 4) [AS DE]] is a vector of length 2, each of whose
elements is a vector of length 4.

Constructors

As with the previous data types, we also need ways of
creating new vectors from a collection of elements. We supply two
basic building blocks: VECTOR and NEWVECTOR.

First, with:

(VECTOR <obJl> <obJn>)

we can create a vector with the <obJ>s as elements. For example,

(VECTOR 1 (ADDl 5) (CAR '(A. B)) (REST '(l 2 3)))

=> [l 6 A (2 3))

We also support

(NEWVECTOR n init)

where the init expression is evaluated afresh for each element
of the vector being created. Thus, if the current value of Xis 0
then

(NEWVECTOR 6 (SETQ X (ADDl X))) => [l 2 3 4 5 6)

The result of these constructors can be used as components
for any other LISP computation, as in:

(LIST (VECTOR 1 2 3) l 2) => ([1 2 3) 1 2)

Of course, such simple examples are pretty vacuous, but the
point is that vectors, like lists, can be created dynamically

Vectors -- 32

TLC-LISP Documentation Part I

within the course of a computation and then used for further
computation. There is no sense of predetermining the size, or
name, or type of components that may appear in a vector object.
Furthermore, when we introduce user-defined functions we'll see
that this spontaniety of vector creation carries over here too.
Vectors can be passed as parameters, and can be created within a
function to then be returned as a result--two characteristics of
first-class objects.

Selectors

We select a component of a vector by:

(VI) or equivalently (VREF VI)

so

(VREF [AS D F] 2) => S

The syntactic schizophrenia derives from two views of
vectors. In the first view, a vector is a finite function (from
integers to objects); as such, the vector is an applicable object
and thus the act of applying an index to it "selects" the
corresponding object. The second technique (using VREF) is the
■ore common LISPish practice; it makes it obvious that the object
we're dealing with is a vector (and not a function) and it helps
a compiler generate code. This last reason is totally irrelevant
to the notational issues, and is better handled as a compiler
directive anyway; we'll let experience determine the preferred
notation.

Vectors and arrays are the first object-type to support the
notion of mutation; ever since the days of FORTRAN, we have
changed such objects by "storing" new elements at positions
within the object.

We update a vector in TLC-LISP using the STORE operation:

(STORE <vector> <number> <object>)

replaces the indicated element of the vector with the designated
element.

Vectors -- 33

TLC-LISP Documentation Part I

For example, executing;

(SETQ VEC-OBJ [AS D FE WJ) =>

then:

(AS D FE WJ

(STORE VEC-OBJ 3 1) => [A S 1 F E WJ

Two comments about the STORE updater should be made. First,
since LISP evaluates each argument to STORE, we can see that
STORE expects a vector-object as its first argument, not the name
of such an object. That means we could write something (rather
meaningless) like:

(STORE [AS DJ 2 22)

and have it evaluate, getting a modified vector [A 22 DJ.

The second comment deals with the STORE-notation itself.
STORE is the updating counterpart to VREF. What is the analogous
notation for vectors-as-functions? Certainly

(<vector> <number> <object>)

suggests itself. Of course, that also looks like a function call
with two arguments--which it isn't, thus now confusing the reader
as well ~s the compiler. At least three options ~re open to us:
(1) since such a "function application" will have either one or
two arguments, we can make the convention that one argument means
"selection" and two arguments mean "mutation"; this could even
generalize to multi-dimensional vectors. (2) we could re
interpret the application of vectors to mean message-passing;
we'll discuss this option later, and (3) we could stick with the
STORE operation, pleading that neither of the other options
offers a truly convincing case for adoption. We bow to this
latter argument, with two suggestions; first, that TLC-LISP can
be extended to support either of the other options (see AP, EAP,
and the discussions of the Class System), and second, that we
support this more regular selection and updating mechanism with
environment objects (see the discussion a few sections hence). We
do so there because the context in which environments tend to be
used makes it clear that the update operation is something other
than function application. Now, let's go back to a less
problematic level.

Vectors -- 34

TLC-LISP Documentation Part I

Recognizers ~ng Q!h~r Functions

We can check the type of an object to insure that it is a
vector using VECTORP.

(VECTORP [l 2 3 4]) => T

(VECTORP 3) => NIL

We may determine the length of the vector by using LENGTH

(LENGTH [A X 1 2 4]) = > 5

Furthermore, we can use EQUAL and EQ to test the quality of
two vectors. As always, EQ checks for identical objects, and
EQUAL tests for indistinguishability. Thus:

(EQUAL [1 2 3 4] (VECTOR 1 (ADDI 1) (ADD 1 2) 4)) => T

Be aware that STORE is an updater, and thus
represented by the vector is modified when the
performed. So two (distinct) vectors that were EQUAL
may not be EQUAL at another instant. For example:

(SETQ X [1 2 3 4 5 J) => [l 2 3 4 5]

(SETQ y (COPY X)) => [l 2 3 4 5]

(EQUAL X Y) => T (EQ X Y) => NIL

(STORE X 1 'A) => (A 2 3 4 5]

and now

(EQUAL X Y) => NIL

the object
STORE is

at one time

So to summarize: when compared with lists, vectors represent
a more structured, and therefore less flexible technique for
storing information. Once specified, a vector may not change its
length, whereas lists may grow and shrink dynamically. • However,
both lists and vectors allow mutation (though we have not
demonstrated this facility for lists yet), Both lists and vectors
allow their elements to be arbitrary LISP objects. The next
structuring unit restricts that flexibility.

Vectors -- 35

TLC-LISP Documentation Part I

Strings

Strings are a special case of vectors. A string is simply a
vector of characters. Thus the string "aBcl2" could be
represented as [\a \B \c \1 \2] -- an accurate, but hardly
pleasing countenance. Since user convenience is no small issue,
we introduce strings as a separate type of object. A major point
here is the attention to the input and output portion of a data
structure definition; these considerations should be included
with the constructors, selectors, and recognizers that we've
already identified as being critical to abstract programming. In
later sections we'll address the problems of extending the input
and output facilities of TLC-LISP to accommodate new printed
representations.

As with
construction and

vectors, string objects have
selection operators. We have:

* STRING to create a new string, thus

(STRING "As D" \c) => "As De"

* SUBSTRING to select a substring,

a supply of

(SUBSTRING "A s De" 1 3) => "As" selects a string of length
three, beginning at the first character position

* STRINGP to tell if an object is a string.

(STRINGP "AAA") => T

and finally, LENGTH, EQ, and EQUAL to determine the length of
the string object or its equality to another object.

The Reference Manual contains many more examples of string
based functions, and so we'll let you experiment with the TLC
LISP calculator using that document. Here we'd like to dig deeper
into so■e of the issues involving object versus values. We will
couch the discussion in very concrete, implementation-level,
details, not because that's the cause of the problem but rather
it's an effect. But the concrete discussion may help clarify the
abstract ideas.

Vectors and strings in TLC-Logo share a common
implementation technique called a descriptor-based object. The
idea is that the descriptor carries information that will allow
an external request to decode the internal representation of the
object. One always refers to the object via the descriptor and
thus the actual implementation of the object is hidden from the
user. The system might, for example, move the object
representation around in memory; but since the object references

Strings -- 36

TLC-LISP Documentation Part I

always pass through the descriptor, the user program will be
unaware of any system reorganization. Of course, such discussion
and insight involves the deep implementation level of TLC-LISP,
and most LISP code will never get that far into the
subsconscious.

Below is the TLC representation of the string "abc". It
consists of two parts: (1) the descriptor, giving the type, size
and location of the characters of the string; and (2) the actual
characters.

• • •

A String "abc"

In our i■plementation, we represent substring operations by
building an appropriate new descriptor and share the actual
characters. Thus:

• J

= • :;:, a I 1, I c I d/ e I f l •
s s f
~~--=..-►l __/

• •

(SETQ S "abcdef") (SETQ SS (SUBSTRING S 2 4))

Strings -- 37

TLC-LISP Documentation Part I

Vectors are handled in a similar manner: a descriptor and a
collection of object references (rather than characters). Thus:

l z.)

[(1 . 2) NIL 100]

Now
Consider:

let's look at the vector constructor NEWVECTOR.

(NEWVECTOR 4 (CONS 1 2))

Since NEWVECTOR evaluates the second expression· each time it
needs an element, and since CONS generates a new element each
time it is called, we generate the following structure.

Strings -- 38

f [2)
~[tli]

[I I iJ
-\ I ?J

(NEWVECTOR 4 (CONS 1 2))

TLC-LISP Documentation Part I

In contrast, consider the following:

(NEWVECTOR 4 '(l . 2))

In this case, there's only one instance of the dotted pair, and
so we build the following:

1 1 t 21

(NEWVECTOR 4 '(l. 2))

Of course

(EQUAL (NEWVECTOR 4 '(l . 2)) (NEWVECTOR 4 (CONS 1 2))) => T,

but the effect of updating an element is quite different; in one
case, all elements are affected, and in the other ~ase only the
indicated element changes.

OOPS oeps

[I r z J
(I l 2.1

I 2 l

Two versions of (STORE <vector> 1 'oops)

Strings --- 39

TLC-LISP Documentation Part I

Since applications that involve vectors are expected to
perform many STORE operations (mutations), a "non-shared" element
structure is preferred.

There are several issues involved here, but of particular
interest for implementers is the "copy versus share" decision.
Why !h2y!g CONS copy? Why shouldn't it automatically share a
single instance of any dotted pair? Indeed, some versions of LISP
have been built this way (called "hashed LISP" because the
techniques employed to assure uniqueness of representation tend
to involve "hash coding" all references to pairs--more about this
in the next section). However, as the previous example indicates,
such sharing can have very unforseen consequences.

This real issue is not one of implementation, but a question
of what it is that is being represented in the language. If the
language is value-oriented then, since values don't change,
hashing implementations make good sense (for example, in a
totally hashed system, EQ and EQUAL can become one). In contrast,
an object-oriented language should expect to encounter changeable
objects and so gratuitous copying and/or sharing cannot be
tolerated. We believe that the emphasis should be on the notion
of object, rather than value, and have tried to make the language
reflect that concern.

Even after all that, in most of LISP, the copy-versus-share
arguments are irrelevant. Only when we venture into the "updating
swamp" do we find this level of detail important.

Strings -- 40

TLC-LISP Documentation Part I

Updatera and Mutation

The issue of value versus object comes into sharper
when we allow our data items to change. We introduced
problem in the context of vectors as objects, and continued
discussion in EQ versus EQUAL. We now want to extend
treatment to S-expre.ssions and list-based objects.

focus
that
the

this

To begin, let's highlight some of the differences between
vector and S-expressions. A reasonable visual model of a vector
is a (linear, fixed-length) sequence of elements. We may change
the elements in the sequence, but not the length of the sequence.
In contrast, one graphical representation of the S-expressions
(and indirectly, of lists) is a binary tree whose tip-nodes are
atomic quantities. We say "one representation", because there are
others. In particular, the issue of value-versus-object and copy
versus-share have strong impact on the graphical model we'll
consider.

For example, consider the expression (CONS XX). If we think
of X as designating an object, then a binary tree representation
does not faithfully describe our intention. For a binary tree, by
definition, has no intersecting branches, and an object
interpretation of (CONS XX) says we have two references to the
aa■e object. What we really want here is called a "graph", rather
than a tree, because graph structures can have intersecting
branches. The following picture illustrates the two options:

Graph Representation Tree Representation

The
CONSing.
throughout

issue
It
the

expression:

(CONS XX)

of copy-versus-share can go deeper than simple
can involve issues of unique representation

system. For example, examine the following

(CONS '(l . (2 . 3)) '((2 . 3) . 5))

Updaters -- 41

TLC-LISP Documentation Part I

Notice that there are "common sub-expressions" in the arguments
to CONS; (2 . 3) appears in both arguments. As a result, there
are two ways to interpret the resulting CONS:

Copy Versus Share

The first implementation is what's traditionally done; simply
grabbing a node and stuffing the components into the CAR- and
CDR-portions. The second is more difficult, sharing all possible
substructure when adding dotted pairs via CONS-type operations.
Actually, the sharing described in this example would have
occurred during the parsing operations that built up the internal
form of the CONS-expression. Whenever any CONS operation is
performed, the system would be required to examine its stock of
existing nodes to determine if the desired dotted pair already
existed. This latter behavior is a feature of "hashed-LISPs".
Which interpretation do we want; naive or hashed? To some extent,
we want neither.

We want to think of lists and dotted pairs as the
hexadecimal level of object management; as such, the gratuitous
sharing can be quite problematic because that represents the
assumption that surface similarities imply deep identity. So we'd
rather not think of objects as lists or dotted pairs, but as
abstract objects whose implementation just happens to fit into a
LISP-style structure. If structure is to be shared, then that is
a result of a deeper analysis that we have imposed on the
representation.

Of course, all this concern for copy-versus-share, EQ
versus-EQUAL, and value-versus-object may seem like a tempest
in-a-teapot. Indeed, much of the discussion is academic until we
consider data items that can change--what we've called objects

Updaters -- 42

TLC-LISP Documentation Part I

(as compared to values). In the presence of change, all these
issues come to bear. With this in mind, we'll introduce the two
updaters--not as modifiers of dotted pairs (or lists) but as
modifiers of representations of objects.

What does it mean to update an object? It means that the
constituents of the object (actually its representatation) may be
modified. We've seen this issue with vector objects; the
components of a vector are its elements, not its length. Thus we
could modify the vector elements, but not the topology of the
vector (i.e. its length). To date S-expressions have been treated
like they were values: we have techinques for creating new ones
but no way to change existing ones. We now want to introduce
operations to modify the components of dotted pairs.

Since pairs are created by combining two existing objects,
it's appropriate to think of the updaters as changing these
object-references. So, we have two operations--one to modify the
CAR-component of a dotted pair, and one to modify the CDR-part.
With their introduction, the object-versus-value distinction
cannot be denied.

S-expressions are not values in LISP; they are objects. As
such, they have two updater functions. RPLACA (standing for
RePLAce the CAr-part of a pair), and RPLACD (standing for RePLAce
the CDr-part of a pair). Below is a diagrammatic representation
of RPLACA (RPLACD is totally analogous).

The Effect of RPLACA

With these two functions in place, we can now open up the
distinctions between vectors and lists (as represented by dotted
pairs).

Updaters -- 43

TLC-LISP Documentation Part I

We can think of the elements in a list as being similar to
children's "pop-beads"; using CONS and RPLACD, we can add new
elements in between any two existing elements:

i~l ~ ,JJI ➔ [e.:s l ~ e, t:a l • l •••
I '- ,

(e, '->l ~.&' •-t'' ez e-g)

-=-=> (e, e-, .. ~ ~3)

Insertion of an Element in a List

Using just RPLACD, we can remove an element from a list.

- - -.,,.. -1--4:ea,
~

I ~1 , I eL l • I -"j(ce-3 I ~ ~
(e, ez e, >

==) (e, e-'")
Deletion of an Element from a List

As with vectors, it is possible to make an element of a list
be that list, itself; this requires RPLACA:

-•-]--,., ~

A List with Itself as an Element

However we can also work further down in the topology of the
list or dotted pair; we can modify the successor relationship,
even to the point of making circular lists:

A Circular List

Updaters -- 44

TLC-LISP Documentation Part I

The point of such exercises is not obscurantism, but that
objects in the real world and their models in our minds--both
things that Artificial Intelligence wishes to study--don't
necessarily have the simple modular structure that vectors or
lists supply. Rather, the interrelationships are more spaghetti
like, with inter-object references not just established at the
time the object is created, but relationships that expand and
contract dynamically as situations change and as our
understanding of them change. Any language that expects to deal
with, or model, reality must supply "mind altering" operations of
the power of RPLACA and RPLACD.

However, what ~~ must bear in mind is the appropriate
context in which to apply these operations. Not as ways of
hacking at arbitrary S-expressions, but as surgical tools for
modifying components of objects represented by S-expressions.

These ideas about data give aµ adequate picture of TLC
LISP's attitude toward data so that we can safely begin to reveal
the structure of LISP programs. The essential notion to keep in
mind is "resist compromise". Keep the notation expressive and
implementation independent; we'll see that this slogan leads to
the notion of "first-class" functions to complement our "first
class" data.

The two components we need to introduce are the ideas of
control structure--how to describe decisions, or more accurately,
prescribe actions; and second, how to enlarge the vocabulary of
TLC-LISP by adding new functions. The next two sections cover
these points.

Updaters -- 45

TLC-LISP Documentation Part I

Explicit Control

What distinguishes a calculator from a computer? Though any
distinctions are rapidly fading, one historical difference has
been that calculators were restricted to sequences of straight
line instructions, while computers contained instructions that
allowed the conditional execution of instructions, based on the
outcome of some test; one result implied the execution of one set
of instructions, and a different outcome implied that a different
calculation would occur.

These explicit indications of conditional computation have
appeared in all traditional programming languages--including
LISP. In this section we'll indicate a few of these constructs,
and in the next section (on functions) apply them to the
construction of user-defined functions.

The simplest form of conditional computation in TLC-LISP is
the IF expression:

(IF <predicate> <true-expression> <false-expression>)

as in

(IF (ATOM X) (CONS 1 X) (CAR X))

Actually there is a simpler form:

(IF (predicate> <true-expression>)

that will compute NIL if the <predicate> is not true. And there
is a more complex form:

(IF <predicate> <true--expression> <false-exp-1> ... <false-exp-n>)

meaning that the false part may contain a whole sequence of
expressions. Note that there may only be one <true-expression).
To carry out a sequence of computations in the true case, use
PROGN (a grouping and sequencing operation--See the Manual for
more details)

(IF <predicate> (PROGN <exp-1> ... <exp-n>) <false-part, ..).

Explicit Control -- 46

TLC-LISP Documentation Part I

As we illustrated in the introduction, use of the IF
expression has a tendency to infect LISP with a kind of "Mouse's
Tale" appearance. To subdue this effect, LISP supports the COND
expression:

(COND (<predicate> <exp-11>
(<predicate> <exp-21>

<exp-ln>)
<exp-2m>)

)

stopping with where the predicates are evaluated sequentially,
the first one that evaluated to a non-NIL value.
predicate, we then evaluate the corresponding
left-to-right) and the value of the COND is the
The COND expression will linearize and clarify

Finding such a
expressions (from
last such value.
many instances of

conditional computation.

Further clarification can be catered to when the conditional
behavior is based on the particular value of a single expression.
In other languages, this is expressed as a CASE statement[sic];
in LISP, such an expression [sic] first appeared in 1958 as the
SELECT, and in deference to history we retain this notation. In
particular, TLC-LISP supports:

(SELECTQ <exp> (<pattern> <exp-11>
(<pattern> <exp-21>

<exp-ln>)
<exp-2m>) ...)

where the value of <exp> is compared against the <pattern>s in a
first-to-last manner. The <pattern>s are BQ1 evaluated, but are
used directly. For specific details, see the Reference Manual.
The point here is that we supply several different control
operations, each of which is patterned after a specific (and
common) pattern in symbolic data. For example, SELECTQ acts like
a "dispatch table", and will seem natural in situations where
there are several alternative sub-types of a class of objects; in
contrast, DO is more natural in situations where the data object
is homogeneous, but has several components. The DO is an iterator
or generalized looping construct; see the Reference Manual for
details.

In a more program-control (as compared to data-control)
situation, we offer CATCH, THROW, and UNWIND-PROTECT to "bullet
proof" computations. See the Reference Manual for examples of
these non-structured control operations.

As a final, general note, about control structures and
predicates, TLC-LISP follows traditonal LISP usage by allowing
any non-NIL value to be treated as "true". This frequently has
application in situations where we wish to test for the existence
of an object and if such an object exists, do something with it;
if there is no such object, we do something else. "non-NIL=true"
allows us compute a reference to the object, use it as "true" and
then use the object itself.

Explicit Control -- 47

TLC-LISP Documentation Part I

One constant theme has been present throughout this section:
the control operation is explict in the sense that there is a
"reserved word" that signals the occurrence of a control
operation. Notice, first, that control operations are not the
same kind of creature as function invocation. The "arguments" to
these control operations are expressions or lists of expressions,
and their execution (or lack of execution) is dependent on
evaluation of other components in the "argument list". In
contrast, functions like CAR, and LIST always utilize all of
their arguments, and all of their arguments denote data objects,
whereas the arguments (such as they are) to DO, IF, and friends,
denote LISP expressions. The difference is more than cosmetic.

However, LISP functions are not without their own
idiosyncrasies in the control area. Though pure LISP functions
denote mathematical functions, the programming language LISP
encodes some substantial decisions about how values for functions
are discovered. We will go into these areas in the section called
Evaluation, but we must mention here that those decisions also
impose some notions of control on LISP expressions. The effect of
these decisions is more subtle (and perhaps more pernicious)
since they do not appear in the notation, but are embedded in the
evaluation mechanism. They are called "implicit control"
structures; call-by-value and left-to-right evaluation of
expressions are two examples of such control. Before we delve
into this area we need to explore the computational
interpretation of function more deeply.

Explicit Control -- 48

TLC-LISP Documentation Part I

function•

Functional Objects in LISP serve the
procedure• serve in other languages: they express
think of as the active part of the co■putation.
level languages, one expects to describe these
by:

purposes that
what we tend to

In most high
active objects

1. a na■e -- a way of referring to the object.

2. for■al para■eters -- a way of passing information to the
object.

3. a body of executable for■s -- the actual co■putational
co■ponent of the object.

for example, in an Algol/Pascal-like language, the active
unit is the "procedure", a name is required, for■al para■etere
must declare the expected type of the arguments passed to the
procedure, and the executable for■• are statements. Finally, if
we expect the eubprogra■ to return a value then we must suitably
decorate the interior of the progra■ with an indication that a
value is to be returned, and we must declare in the prolog to the
definition that the value i• of a specific type. Even then,
severe restrictions are placed on the kind of result that may be
returned, and li■its are placed on the way we can use the
"function eubprogra■s".

In contrast, in LISP the active unit is the "function", a
functional unit (being first-class) need not be na■ed, the formal
parameters need not be declared, and the executable forms are
expressions (rather than etatemente). Let's analyze these points
in detail:

* Procedure versus Function
* Na■ea versus first-class value•
* Typed names versus typed objects
* State■enta versus expressions

together they express the different "state of ■ind" that is
present in LISP and other ■odern languages.

1. Procedure versus function. The essential notion of a
procedure is that of process or side-effect. One performs a
computation to effect change. It is a highly state-oriented
notion; the result of a co■putation is placed in some location,
and those who wish to apply the result must know how to find that
location. In opposition, we find the notion of function --one
perfor■s a co■putation to supply values for a function. Function
ie a ■athematical notion, independent of ti■e, order, or state.
Thus a LISP function is expected to compute a value, that ■ay be
co■posed with other functional units to build up a complex

Functions -- 49

TLC-LISP Documentation Part I

notational description of a pheno■enon. On the other hand, since
procedures do not return values, the notion of co■poaition makes
no sense. Procedural computation consists of a sequence of
procedure invocations, whose results are stored in the ■achine
state; any sense of co■■unication of results to future elements
in the sequence must be accomplished by opaque use of non-local
variables.

2. Names versus first-class values. Names are convenient
■oat of the time. They are the stuff out of which we are able to
build algebra, for example. Instead of having to deal with
specific values we can say "We know that x has value 2*z", for
example. In this context, "x" and "z" are variables, and it's
quite useful to use these variables as abbreviations. On the
other hand, it is equally convenient to use constants like "2" in
this algebraic conversation. It would be awkward to require that
we write "We know that x has value two times the value of z",
even if we could discover that "two" names the nuaeral 2. The
point is that constants -- pure values, in other words -- are of
equal i■portance for notational clarity. We allow constants in
■oat progra■■ing languages --2, (AB), [l 2], "Abe", for
nu■erals, lists, vectors, and strings, for exa■ple -- why not
allow constants for functions? Most languages answer "why would
anyone want a thint like that?" and pro■ptly dis■iss the idea.
LISP is ■ore reasonable. LISP functions are first-class, and
thus are available as ■anifest constants (like 2, rather than
"two"). We will demonstrate these ideas after we dispense with
the next two points.

3. Typed names versus typed objects. Moat languages require
that the na■es for the formal para■etera to a procedure or
function be categorized with respect to the type of object that
will be accepted as an actual para■eter. Thia require■ent has
some merit. The notation makes clear what is expected, and thus
simplifies the reader's proble■ in understanding the progra■s. It
also ■akea the job of the co■piler writer easier; knowing what
types of argu■enta are expected, the imple■entor can generate
optimized code. In this scheme of things then, the na■ea of
objects contain the infor■ation that deter■ines the type of an
object. In LISP, on the other hand, it is the object itself, that
carries this type infor■ation. Given LISP's insistence on first
class objects, it ■akea sense that objects contain their own type
information. But the issue goes deeper. •

In the ancient days (thirty years ago) typed na■ea ■ay have
■ade sense. They helped the co■piler writer generate better code
--execution ti■e was a scarce resource. Typed na■ea also helped
the progra■mer control error propagation --progra■■er ti■e was
relatively inexpensive with respect to machine ti■e. Also, in
those days, progra■a were co■plex and data was si■ple--integers,
arrays, and strings.

functions -- 50

TLC-LISP Documentation Part I

Times have changed. The emphasis is on interactive program
development now, in an attempt to minimize programmer time.
Programmers are now expensive, relative to the cost of hardware.
More importantly, the programming task has become much more
complex. No longer are we just doing numerical calculations;
we're computing with complex objects --with the emphasis being on
the interractions between these objects. Message-passing, data
driven programming, object-oriented notions, ... all reflect this
change of perspective from code to data. Objects are created
dynamically, new types of objects are constructed, relationships
between objects are modified. The emphasis is on change, on run
time variability, and neither of these notions fits the old model
of typed names.

4. statements versus expressions. Finally, there is the
issue of what constitutes the body of the procedure/function. In
the procedural world, these elements are statements -- units that
change the state of the computation (like an assigment statement
for example). In the functional world, the elements are
expressions -- gentle souls that compute a value and graciously
offer that value to whomever wishes to accept it.

It should be clear where our allegiances lie -- procedures,
names, and declarations are voices from the past. Functionality,
first-class values, and self-governing objects are some of the
voices of the future computing generations.

t t

Given this spirited introduction to functional objects,
exactly what constitutes a description of a LISP function? Well,
we'll at least need the following:

i. An indication that the object being described is a
function. We do this by wrapping the functional components
in a list prefixed with LAMBDA. Thus:

(LAMBDA

ii. The list of formal parameters is the next component of a
definition. Thus:

(LAMBDA (X Y) .••

designates a function with two formal parameters, X and Y.

iii. Finally, we must specify the body of the function. For
example:

(LAMBDA (X Y)
(SUB (MUL XX)

(MUL Y Y))

Functions -- 51

TLC-LISP Documentation Part I

This collection of notation describes a function of two
arguments that squares both argu■ents, and then subtracts
the second square fro■ the first. In this case, there is
only one expression in the body of the function. In the
general case, there ■any be a sequence of expressions. Thus:

(LAMBDA <para■eters> <exp-1> <exp-2> ... <exp-n>)

Notice that the functionality is completely contained in the
representation; that is, the LAMBDA-construct denotes a function
constant. We ■ight be tempted to name the function in the last
exa■ple DIFFERENCE-OF-SQUARES, but we ■ay apply this functional
LAMBDA-expression anonymously (without giving it a name). Thus:

((LAMBDA (X Y)
(SUB (MUL XX) (MUL Y Y))

3 2)

will evaluate to 5.

We perfor■ this evaluation like any other: first evaluating
actual para■eters--in this case, both are constants (3 and
then we associate these values with the formal parameters (3
X, and 2 with Y), and evaluate the body of the function.

the
2);

with

We want to concentrate on the ability to define new LISP
functions. This is at the heart of the LISP system, since it
allows the user to interactively enlarge the vocabulary of words
that are recognized by the LISP machine. For a mahine is what we
have: the evaluation process that we've been talking about
represents part of the "basic cycle" of the processor--the CALL
instruction if you wish. You may think of the primitive
operations (CAR, CDR, etc.) as the instructions of a machine and
the forms of the conditional expression are the JUMP
instructions. We will talk about how these operations are
executed in the section titled Evaluation. Here, we will first
build up so■e familarity with LISP's notion of function, and then
explore a few of the potentially problematic areas of functional
computation.

refer to un-na■ed (or anonymous)
is most usual to supply names and

names. For example we could define a
square of its argu■ent by:

First, though we can
functional quantities, it
refer to the functions via
function that co■putes the

(DE SQUARE {X) (MUL XX))

Functions -- 52

TLC-LISP Documentation Part I

or we could naae our last example function by:

(DE DIFFERENCE-OF-SQUARES (X Y)
(SUB (MOL X X) (MOL Y Y)))

where it's not too difficult to see that

(DE naae (variables) body)

is an abbreviation for: "■ake naae synonymous with the function
(LAMBDA (variables) body)". Thus DE "assigns" the function to
the name as value.

This ability to define functions and pass paraaeters is the
heart and soul of any LISP-like language. With these facilities,
we need not worry about iteration and "goto" and all the other
trappings of a so-called traditional language. However, just like
any "natural" language, a powerful language must be able to
introduce abbreviations to improve expressibility. So too with
TLC-LISP. In particular, we have included some of the more
succinct notations for controlling parameter-passing derived
fro■ MDL, Conniver, and the MIT LISP Machine.

Most prograaming languages require that there be a one-to
one correspondence between the actual parameters and the foraal
parameters before binding those parameters and evaluating the
function body. Several LISP dialects have relaxed that
restriction. However, that freedom is usually purchased at the
cost of some very helpful parameter-checking information. In
these other schemes, if too many arguments are supplied, their
values are discarded. If too few are supplied, the missing
parameters are gratuitously bound to NIL. Such behavior is hard
to predict or debug, and therefore hard to condone.

However, some relaxation of parameter passing is desirable;
in particular, the ability to supply an arbitrary (therefore
variable) number of arguments. For example we would rather write

(ADD X Y (ADDl Z)) than (ADD X (ADDY (ADDl Z))).

Many instances of this variadic call can be accomplished by macro
expansion (a technique we'll introduce in a succeeding section),
yet the problem begs for a general solution.

Finally, a common application of the "FROG-feature"
those of you who have LISP experience) is the declaration
immediate initialization of "FROG-variables". These variables
to be used locally and discarded upon function exit.

(for
and
are

We can accomplish all of these desirable features with
variations on a small set of conventions.

Functions -- 53

TLC-LISP Documentation Part I

Parameter Specifications

The traditional list of formal parameters in
definition will be called required parameters a
correspondence between actual parameters and required
must be fulfilled or an error is signalled. We
parameter syntax using the reserved words:

&OPT (or equivalently, &OPTIONAL)
&REST
&AUX

a LAMBDA
one-to-one
parameters

extend the

with the ■ost general formal parameter description as follows:

(<required> &OPT <optionals> &REST <rest> &AUX <auxs>)

In the usual case, some of these groups ■ay be absent.

Now let's see what these conventions ■ean.

<Required> is a sequence of zero or ■ore symbol names.

<Optionals> and <auxs> are non-empty sequences of either ato■s or
lists whose first elements are symbols. In this second case (a
list), the remainder of the list is to be interpreted as a value
to be assigned to the variable represented by the ·first element
of the list. For example:

(<required> &OPT (X (ADDY N)))

would mean
parameter is

"assign the su■ of Y and N to X
not supplied."

<Rest> must be a single symbol.

if the optional

To put the process in ■ost general terms: first, we evaluate
all of the actual parameters; then we apply the following
algorithm for matching this extended for■ of parameter passing:

1. First, the required parameters must be matched. If these
requirements cannot be satisfied, an error is signalled.

(X Y Z) will ■atch (1 2 3), but not (1 2) or (1 2 3 4)

2. If (evaluated) actual parameters still remain and <optionals>
were provided for, then we continue binding actuals to the
optionals. If we exhaust the actual parameters in this process
then any remaining optionals are bound to their default value or
to the distinguished object UNBOUND if no default value was
supplied.

Functions -- 54

For

but

TLC-LISP Documentation Part I

example,

(X y Z &OPT U (V 2)) will match

(1 2 3), (X gets 1, Y gets 2, z gets 3, U gets UNBOUND, V gets 2)
(1 2 3 4) and (as above, but u gets 4)
(1 2 3 4 5), (as above, but V gets 5)

not

(1 2 3 4 5 6) or (1 2)

3. If after step 2, actual parameters still re■ain and a
&REST parameter was declared, then we create a list of the
remaining parameters and bound it to the <rest> variable. If
no REST parameter was supplied then a TOO-MANY-ARGS error
will be signalled.

(X Y &REST Z) will ■atch (1 2 3 4), binding Z to (3 4).

(X Y &OPT U &REST Z) will ■atch (1 2 3), binding Z to
UNBOUND ; it will ■atch (1 2 3 4 5), binding Z to (4 5). In
both cases U is bound to 3.

4. Finally, the auxiliary parameters declared by &AUX are
processed. If initial values were specifi~d, they are used.
Otherwise the parameter is initialized to UNBOUND.

All of these various binding styles are governed by the
LAMBDA-binding ■echanism; that is, the old bindings of these
variables are saved on entry to the function. After the body of
the definition is evaluated the old bindings of these LAMBDA
variables are restored.

The combinations of
programmer a clear, concise,
to control the passing of
examples using these ideas.

these various options gives the
predictable, and powerful ■echanis■
parameters. Wow let's do a few

Earlier we advertised a function named APPEND that took
arguments, both of which were lists, and created a new list
the elements of the first list tacked onto the front· of
second list. For exa■ple:

(APPEND '(1 2 3) '(AS W)) => (1 2 3 AS W)

(APPEND() '(AS D)) => (AS D)

Functions -- 55

two
with

the

Here's APPBND:

(DB APPBND (X Y)
(IF (NULL X) Y

TLC-LISP Docu■entation

(CONCAT (FIRST X)
(APPBND (RBST X) Y))))

Part I

This function has only required parameters.

We can use optional parameters to let a single function play
double duty; first, to initialize parameters, then on successive
recursive calls, to update those parameters. For exa■ple, a
co■■on definition of a function to reverse a list is:

(DB RBVBRSB (X) (RBVl X ()))

(DB RBVl (X Y)
(IF (NULL X) Y

(RBVl (RBST X)
(CONCAT (FIRST X) Y))))

With optional arguments we can combine these two functions as:

(DB RBVBRSB (X &OPT (Y ())
(IF (NULL X) Y

(RBVERSB (RBST X) (CONCAT (FIRST X) Y))))

We can use mulitple optionals as well. For example, we could
define a function to compute the su■ of the elements in a vector
by:

(DB VECTOR-SUM (V &OPT (I (LBNGTH V))
(SUM 0))

(IF (ZBROP I)
SUM
(VECTOR-SUM V (SUBl I) (ADD (VI) SUM))))

then for example (VECTOR-SUM [l 2 3)) gives 6.

Auxiliary parameters are used as local variables. For
example, several sections ago we mentioned the use of the NIL,
non-NIL representatations for false and true. The ideas was that
if a predicate returned a non-NIL ele■ent, then that ele■ent
could be used as an indication of success (true) and then could
be used (as an object) in further computation. An auxiliary
para■eter is a good receptacle for such an element. Thus:

(DE TESTER (X &AUX (Z (LOCATE-FACT-ABOUT X)))
(IF Z

(DO-SOMETHING-WITH Z)
(DO-SOMETRING-BLSE-WITR X)))

Functions -- 56

TLC-LISP Documentation Part I

identical to the "add l" example, but with a different function
applied to each element, we should be able to abstract out that
specific operation and describe it as a formal parameter.

And so we arrive at:

(DE MAP (FL)
(IF (NULL L)

()
(CONCAT (F (FIRST L))

(MAP F (REST L)))))

with MAP-ADDI defined as:

(DE MAP-ADDI (L) (MAP ADDI L))

and MAP-SUBl as:

(DE MAP-SUBl (L) (MAP SUBl L))

What could be simpler? The notation certainly is elegant. It is,
however, an extension of what most programming languages allow;
namely the first argument to MAP is a function, not a data object
as we usually think of data objects.

We
as their
ADDI and
Then:

could also envision functions that create new functions
values. Assume, for example, that we wanted to define
we had the binary addition function ADD at our disposal.

(DE ADDI (N) (ADD N 1))

But now, what if we decided to generalize ADDI, ADD2,
ADDn as we decided to generalize the mapping functions? We might
soon wish for a function-generating function. Something like:

(DE ADDN (L)
(LAMBDA (M) (ADD M L)))

that would create a function as value -- (LAMBDA (M) (ADD ML))
with a specific value associated with L. So for example we might
try to define ADDI using (ADDN 1) as:

(DE ADDI! (X) ((ADDN 1) X))

where the value of (ADDN 1) appears in the function position
within the body of ADDI!. This may seem a bit surprising, but the
value of (ADDI! 1) i! (or tries to be) a function. We'll try to
call this function in the usual way as

(ADDI! 3),

Functions -- 58

TLC-LISP Documentation Part I

and we'll find that ADDI! has not re■embered that L should have
the value 1.

This problem arises on most LISP systems that try to use
functions as first-class objects. The issue is the correct
tracking of variables like L, above--called non-local variables.
Historically, LISP implementations have been inadequate. What is
really called for as the functional value of (ADDN 1) is the
function

(LAMBDA (M) (ADD M 2))

where we have explicitly replaced every (in this case, one)
occurrence of Lin (LAMBDA (M) (ADD ML)) with 2.

Unfortunately, explicit substitution is time-consuming and
difficult to specify accurately when that substitution is being
made into expressions, not simple lists. For example, it is easy
to write a function to do substitution into arbitrary S
expressions (and therefore into lists):

(DB SUBST (X Y Z)
(IF (ATOM Z) (IF (BQ Y Z) X Z)

(CONS (SUBST X Y (CAR Z)) (SUBST X Y (CDR Z)))))

This function creates a list with the same structure as Z but
wherever Y appears in z, X appears in the new S-expr.

However, the story is quite different if the substitution is
"semantic". Consider applying SUBST to the following list:

(LAMBDA (M &AUX (N 3)) ... (SBTQ N (ADDI N)) ...)

replacing N with 2. The result is nonsense.

This doesn't mean that we cannot specify a correct LISP
function for that kind of substitution; indeed we can. However,
the scheme is complex but ■ore importantly as we shall see later,
explicity substituti~g values for variables will destroy some
very interesting computational possibilities.

Computer science has cooked up an alternative to real
substitution: we simulate substitution. Instead of substituting
values for variables, we keep notes that associate values with
variables. Then, when we come across a variable during the
evaluation of an expression, we take a look at our notes; we
supply the value for the variable, and continue.

This mechanism that encapsulates the note-taking is called a
"symbol table" or an "environment". A few sections hence we will
give a detailed description of how to use environments to solve
the functional object problem. Now we want to describe what
environments are.

Functions -- 59

TLC-LISP Documentation Part I

Bnviron■ents

An environment (or symbol table) is a collection of symbols
and associated values; they are first-class objects in TLC-LISP.

An environment is built from an alternating sequence of
sy■bols and expressions:

(ENV 'A 1 'B (ADDl 5)) => (ENV 'A 1 'B 6)

where the first occurrence of ENV represents a call to the
environment constructor, and the second occurrence indicates the
printed representation of an object of type environment.

Besides acting as a (passive) symbol table for a function
(the application that prompted their creation), an environment
object can also act as a (active) finite unary function. If an
environment appears in the function position of an application,
and is followed by one of the variable names, then the current
value of that variable is returned.

((ENV ' A 2 ' B 6) ' A) = > 2

We may also update the environment by supplying two
arguments: a variable name (in that environment) and an object.

((ENV 'A 2 'B 6) 'A '(AB)) => (ENV 'A '(A B) 'B 6)

Another interpretation of this application of environments
is to look at it as "message-passing" When we send the single
message of a symbol name, the environment "knows" that we want to
extract the value; when we send the pair--symbol and object--the
environment knows that we want to update the state. Compare this
treatment of environments with our discussion of vectors, VREF,
and STORE.

Environments are our first indication of a duality between
functions and data; sometimes they're data, sometimes they're
functions. We'll see more of this mixing of behaviors in the
class system when we represent dotted pairs as functions, and
their constructors, selectors, and recognizers as data. The key
ingredient in this investigation is a firm understanding of
functional objects that have local state. These are called
"closures" in TLC-LISP.

Environments -- 60

TLC-LISP Documentation Part I

Cloaurea

Given the symbol table or environment structures, we can
return to the problem of characterizing functional objects.

Recall that our attempts to specify a LISP function that
returned a function as value drove us to a position of either

(1) making explicit substitutions of objects for variables in
expressions, or

(2) simulating the substitution by using a symbol table.

We opted for the second, but the scheme requires that we view a
functional object as a complex of information:

(a) the program text

(b) an environment -- or sy■bol table -- of names and values.

In our particular example we had to associate the number
1 with the variable Lin any the application of the function

(LAMBDA (M) (ADD ML))

The particular construct in TLC-LISP that supports this
notion of functional object is called a "closure object". A
Closure object makes explicit reference to the two above
mentioned components: the function text, and the environment.
Thus, a closure is: •

(CLOSURE function-description environment)

where the environment is a representation of a sy■bol table of
names and values.

So we could define ADDN as the following closure:

(DB ADDN (L)
(CLOSURE (LAMBDA (M) (ADD ML))

(BNV 'LL)))

Thus the value of (ADDN 1) is

(CLOSURE (LAMBDA (M) (ADD ML)) (BNV 'L 1))

Closures -- 61

TLC-LISP Documentation Part I

Whenever a Closure object is applied, as in (ADDl! 3), or
equivalently

((CLOSURE (LAMBDA (M) (ADD ML)) (ENV 'L 1)) 3)

the local environment takes precedence over any other name-value
associations that might be in effect before the function
application.

So:

((CLOSURE (LAMBDA (X) (ADD X N)) (ENV 'N 2)) 3)

=> (ADD 3 2) => 5

We will discuss the evaluation of expressions involving
closure objects in more detail later.

The symbol table, or local environment, captures a local
world for the function to manipulate. So any changes to values of
variables that appear in the environment will be duly recorded
when we leave the context of the closure. So,

((CLOSURE (LAMBDA (X) (SETQ Z (ADD Z X))) (ENV 'Z 3)) 2)

will have the effect of setting the value of Z to 5 within the
environment of that closure object; the value of Z outside the
closure is not changed. This notion of a local environment first
appeared in non-LISP languages as "own variables" in Algol-60.

The requirements for first-class functions make demands on
the implementation of a language. Thus many languages completely
prohibit dynamic functional objects; some allow a subset of
functional arguments; others allow the free discussion of
functions, but restrict the class of functionals that may be
discussed dynamically.

Though these closure objects may seem complex, arcane, and
perhaps even useless, we assure you that they are of substantial
practical value, and not just a language exercise to force
everything in a language to be first-class. Closure-objects are
the "stuff" out of which one can understand the ideas within
class systems and their implementation.

We're seeing a further clouding of the distiction between
functions and data; we had functions appearing as arguments to
other functions, and being returned as values; we had the dual
use of environments as symbol tables and as finite functions; in
the next section we'll continue that trend, introducing a
powerful data structuring idea that can be used to drive data
into execution.

Closures -- 62

TLC-LISP Documentation Part I

Property Liata

A property list, also known as a "p-list", is a data
structure consisting of a collection of pairs: one element of the
pair is called a property name or "attribute". The other ele■ent
is called a property value. Perhaps something like:

((COLOR RED) (DIAMETER 6.5) (WEIGHT 123))

Such a description will be associated with a LISP object--in this
case, perhaps a particular heavy, red ball. Property-lists are
not first-class objects in TLC-LISP (and ■oat other LISPs as
well). Rather, a p-list is associated with the~!~~ of an object;
so we might find the properties associated with a sy■bol like
BALL-1.

Typically one accesses the property list using a property
name, and extracts a property value or changes that value. Thus,
for example:

(GETPROP 'BALL-1 'COLOR) => RED

(PUTPROP 'BALL-1 'WEIGHT (ADD (GETPROP 'BALL-1 'WEIGHT) 2))

In this regard, a property list is similar to a ■ore

traditional record structure. However LISP p-lists differ in
several important ways. First, they are dynamic. They may grow
and shrink while the program is running. This makes them an
extremely flexible storage mechanism, since their storage need
not be declared ahead of time. So their natural storage
representation is ■ore list-like than vector-like.

A property-list is also much like an environ■ent. However,
property-lists and environments differ in several important ways.
Environments are first-class objects, p-lists are not. Property
lists are expected to grow and shrink, environments are not. We
expect to see an object of type ENV in the context of a function
object; we expect to see a property-list in the context of the
attributes of a (named) data object.

Yet property-lists and environments are a pivotal point
between the notions of data and the notions of function. For
example, the flexibility of property-lists combines beautifully
with LISP's program-data duality, giving rise to a technique
called data driven programming. The basic idea is to place
functions in the value positions of a p-list, and use the
attribute as a "symbolic index" to select the appropriate
function. In a data-driven situation, that symbolic index will be
supplied by the data and will be used to dispatch to the
appropriate function. Let's look at an example.

Property Lists -- 63

TLC-LISP Documentation Part I

Data Driven Programming

Recall our sketch of algebraic simplification. There we
organized the program as a large conditional expression, each
branch testing for a type of term -- variable, constant, sum, or
product. That type of organization can be characterized as a
monolithic algorithm that teats and decomposes its input, taking
actions according to some property of the actual parameter.

But what if we were building a system incrementally and
wanted to be adding new types of objects as we went along? The
current scheme would require that we modify the code, adding a
new recognizer and associated code for each new case. This can
become quite a sizeable undertaking if several pieces of code
utilize this kind of type dispatch.

In particular, let's assume that we what to add a simplification
rule for "squares", simplifying

(SQUARE <nu■ber>) => <number>* <number>

(SQUARE <sy■bol>) => (MUL <symbol> <symbol>)

We would have to add a new clause to the si■plifier to check for
the new list whose first element is SQUARE, and also add the
appropriate si■plification code.

We can organize this kind of proble■ in an orthogonal
■anner, viewing the fragments of the algorithm which pertain to
specific types as, in fact, properties of the type itself. We can
bring property-lists to bear here by placing the specific
si■plification routines on the property-list of the symbol
SIMPLIFY, using the various operators (MUL, ADD, SQUARE ..) as
attributes, Then, given an expression like (SQUARE 4), we'd look
up the sy■bol SQUARE (the FIRST of the list), extract a function
and pass the object (SQUARE 4) to that function, which would then
extract the argu■ent (which is the SECOND of the list) and
proceed. For exa■ple, a property-list pair ■ight look something
like:

((SQUARE (LAMBDA (OBJ &AUX (X (SECOND OBJ)))
(COND ((NUMBERP X) (MUL XX))

((SYMBOLP X) ...))

Of course, it now looks like we're falling into the sa■e
trap: what happens, for example, if we decide to add co■plex
numbers to our ayste■? We'd expect to apply SQUARE to the■, so
another clause would go into the function associated with SQUARE?
Surely not; in this case, we'll perform the same data-driven
trick, but now the dispatch will be on implicit information--the
type of the object--rather than on explicit infor■ation--the
prefix of the data being the symbol SQUARE.

Property Lists -- 64

TLC-LISP Documentation Part I

In ■ore detail, all integers can be said to co■pute their
"square" in the sa■e fashion: multiply themselves by themselves.
Similarly, all co■plex nu■bers will use the sa■e algorithm (or
will they? So■e may be cartesian, some may be polar.) And so in
general, the class of all objects of a specific type can utilize
the same algorithm for performing a specified task.

Using LISP property lists, we could, for example, i■ple■ent
the notion of "squaring" by placing a "square" property na■e on
the property list of the class "integer", and associated with
that name, a LISP function to multiply an integer by itself.
Then, given a request for the square of an object, like:

(SQUARE 4)

the system would recognize 4 as an integer; it would look on the
property-list of the symbol INTEGER for the attribute SQUARE, and
finding it there, would apply the associated function to the
integer 4. This would only require that we decorate the type
symbol (INTEGER, COMPLEX, etc ..) with a property name of SQUARE,
and add the appropriate function as property value.

((SQUARE MUL) ...)

Such a programming technique is at least provocative; can it
be i■ple■ented? Surely it can. Assume we're given an action (like
SIMPLIFY or EVALUATE (which is a subset of simplification)), and
we're given a specific object to act upon; we have to extract the
"type indicator" fro■ the object. If it's explicit in the data,
like (SQUARE 4) then a simple selector will do the job; if it's
implicit (as is the information that 4 is an integer) then we
have to make it manifest (as in (TYPE 4)). Given that
information, then the rest is straightforward: go to the
property-list associated with the action; get the function
defined for the category of the given object; and apply that
function to the object. Thus:

(DE DISPATCH (ACTION OBJ &AUX (CATEGORY (EXTRACT OBJ))
(PROP (GETPROP ACTION CATEGORY)))

(IF (NULL PROP)
(ERROR (STRING "No Action for" OBJ))
(PROP OBJ)))

where we could have written the ■easier

&AUX (PROP (GETPROP ACTION (EXTRACT OBJ)))

but chose to spread the computation, and use the sequential
evaluation of &AUX variables. Notice too, the occurrence of the
(PROP OBJ) in the last line; it represents the function
application. Of course, within that action-function we may
encounter a situation that will require yet another DISPATCH.

Property Lists -- 65

TLC-LISP Documentation Part I

So the implementation is feasible; it opens some interesting
possibilities, since we can add new types of objects and new
actions without recoding massive parts of existing programs.

Of course the syntax is messier since we have replaced

(ACTION OBJ) with

(DISPATCH ACTION OBJ)

but the benefits are non-trivial: we have "decoupled" the
functional object from its application by using DISPATCH to
discover the actual function. It would be nicer not to see the
physical call on DISPATCH. We could cover it up by writing
something like

{ACTION OBJ}

instead, letting the system translate the brackets into the call
on DISPATCH; later we'll show how TLC-LISP read-macros can do
this for us.

But it would be nicer still to generalize this idea, letting
the system do more that just fondle property lists. We'd rather
see the syste■ handle much ■ore of the decision-making about
which function(s) are appropriate. Notice that the places we
apply our technique are those that involve ·a conditional
expression--LISP's decision-making operation. Let's continue with
an example from the world of simplification, this time using
lists and a reformulation of our earlier definition of APPEND:

(DE APPEND (X Y)
(IF (NULL X)

y
(CONCAT (FIRST X) (APPEND (REST X) Y))))

We can look at this definition as a specification of two
simplification rules:

(APPEND () Y) simplifies to Y

(APPEND (X Y) Z) simplifies to (CONCAT X (APPEND Y Z)))

which could be incorporated into our p-list scheme (with a small
act of faith) as the following properties of SIMPLIFY:

SIMPLIFY
((APPEND-NULL (LAMBDA (OBJ) (THIRD OBJ)))
((APPEND-XY (LAMBDA (OBJ)

(CONCAT (FIRST (SECOND OBJ))

Property Lists -- 66

{SIMPLIFY '(APPEND ,(REST (SECOND OBJ))
,(THIRD OBJ))}))

TLC-LISP Documentation Part I

where DISPATCH has to be clever enough to extract APPEND-NULL
from (APPEND () ...) and extract APPEND-XV from any other
(APPEND ...) list; more about this in a ■o■ent.

The other mystery is the incantation inside {SIMPLIFY ... };
it is meant to build up a new (APPEND ...)-object.

So {SIMPLIFY (APPEND '(AB) '(C)) goes to

(CONCAT 'A {SIMPLIFY (APPEND '(B) '(C))})

This second issue is easily handled by read-macros. The
appearance of the names APPEND-NULL and -XY really indicates that
we're reaching the limit of the p-list representation. We don't
really want names; what we really need instead of DISPATCH is a
general pattern-matcher, that can recognize, decompose, and
dispatch to routines. This brings us into the real■ of

* Pattern-directed invocation of functions

* Data bases of simplification (or reduction) rules that are
accessed by pattern matching

* A potentially "reversible" control structure mechanism, since
several rules may present themselves as matching the pattern.

Such are the possibilities that spring from our
generalization of property-lists. Such are the techniques that
drive the implementations of languages like PROLOG, like
CONNIVER, and like the precursor of both--PLANNER. We'll not go
into these areas here; they're a topic in their own right. We
simply want you to be aware of the ideas that make such languages
possible. Now we want to drive the data-driven techniques in
(what seems to be) a different direction--Class Syste■s.

Examination of the previous examples reveals a deep
similarity: the operation for a specific object is performed by
extracting a function that works for any object that shares
appropriate similarities with the individual. The similarity may
be as general as "it's an integer" or as specific as "it's a non
empty list". Regardless, we can think of these similarities as
partitioning our objects into classes, and then individuals (as a
result of being a member of a particular class) has access to the
functions defined for that class. When these ideas of class and
class membership are formalized and generalized, we enter the
realm of Class Systems.

Such a Class System exists in TLC-LISP and is the subject of
our next section.

Property Lists -- 67

TLC-LISP Documentation Part I

Classes

We have mentioned that property-lists are not first-class
objects in TLC-LISP (or in most other LISPs). That is, a
property-list cannot be referenced without naming the symbol that
"owns" the p-list. This impurity is an historical accident, since
property-lists were initially built as part of the implementation
structure of the LISP system. In the intervening period,
property-lists have become useful in their own right as we saw in
the last section.

The major distinctions between class-based systems and p
list baaed ayate■a is the degree of structure and regularity that
can be brought to bear on the situation. A class system
encapsulates ■uch that would have to be built up explicitly if we
used the p-list approach. Thus (with some fear and loathing) we
left p-lists in their un-washed state and, rather than making
them first-class, added a (first-class) class system to TLC
LISP.

One application of a class system is an extension of the
data-driven notions that we introduced in the property-list
section. It builds upon both the data object and functional
object perspectives that appear in TLC-LISP. Thus it is a blend
of program and data objects. But let's begin at the beginning
with the notion of class as an abstract idea.

The notion of "a class of objects" is an ancient one.
Basically, the human penchant for categorization (or
classification) drives us to find similarities among the objects
of the real world. These similarities encapsulate the properties
that all elements of that specific class share -- your typical
dog has four legs, two eyes, hair, and barks. Yet each individual
in a class has its own unique characteristics -- no two dogs are
identical. They have different names, hair color, weight, and so
forth. Furthermore, classes of objects share similarities just
as individuals do -- there is a relationship between dogs and
horses: both are mammals, have four legs, and hair. The class of
dogs and the class of horses are both subclasses of the class of
four-legged-■a■■als.

So within a classification we have several situations:

1. Individuals -- each is unique, but probably shares
properties with other individuals in the classification

2. Classes -- a grouping of individuals according to some of
the properties that they have in common.

3. Sub-classes a refinement of classes, allowing the
description of some subset of individuals of a class as a
class itself.

Classes -- 68

TLC-LISP Documentation Part I

All these notions have been well-known in the arts and
sciences for a very long time -- even before the invention of the
IBM704. However, the application of these ideas to programming
has been a reasonably recent event. Simula first, and later
several AI languages and Smalltalk have employed class ideas to
simplify the programming process.

Class systems lead to a very "descriptive" programming
style. Basically, we can use such systems to define data objects
and the operations that are to be performed on them. In
Smalltalk and TLC-LISP parlance, these operations are named by
"message selectors", the operations themselves are called
"methods" and the act we perform to apply one of these methods is
called "sending a message." A message consists of a sequence
whose first element is a message selector and whose remaining
elements are passed to the instance to be used as actual
parameters to the method.

For example, if Wis an instance of a class of
windows then we might expect that: (W ':NEXTLINE) would
cursor to the next line in the window, and (W ':GOTO 2
move the cursor to the second column, third row of W.
represent such a pair of message receivers thus:

:NEXTLINE (LAMBDA()

display
move W's
3) would

We might

(SETQ YPOS (ADDl YPOS)) ; after boundary check
(SCREEN-GOTO XPOS YOPOS))

:GOTO (LAMBDA (X Y)
(SETQ XPOS X)
(SETQ YPOS Y)
(SCREEN-GOTO XPOS YPOS))

where the actual implementation of the methods :NEXTLINE and
:GOTO are invisible to the user; and further the variables XPOS
and YPOS may also be hidden from view. This hiding may be
accomplished by making XPOS and YPOS "instance variables". Thus

(INST class instance-variables)

is a construct to create a unique object that is an instance of
the specified class and that has several local variables that
are its own private domain.

For example:

(INST WINDOW-CLASS '(XPOS O YPOS 0))

will make an instance of the class WINDOW-CLASS with XPOS and
YPOS initialized to O. (INST will "coerce" the list that appears
as its second argument, into an object of type ENV.)

Classes -- 69

TLC-LISP Documentation Part I

Besides being a good vehicle for hiding i■plementation
details, the Class system can be used to share information.
Sharing can occur in two ways. First, when we define a subclass
of a class we are able to share the methods defined in the super
class. Thus the simplest TLC class definition is:

(CLASS superclass local-methods NIL NIL)

Thus, when a message selector co■es into an instance, the
local method environment is examined for a matching method na■e.
If found, that method is used; if none is found the search
continues with the superclass.

Of course we are also free to over-ride any of the methods
that we wish. The TLC Class concept also gives prov1s1ons for
sharing information between instances of a class. These
variables, called class variables, are available for
communication between instances of a specific class; in contrast,
instance variables bold values that are visible only to each
specific instance. Thus the most general for■ of a class
definition is:

(CLASS superclass
local-methods
class-variables
instance-variables

where the methods and variables are lists of alternative
and values, The instance variables are included here to
specification of their initial values. We may override
initialization when we create an instance, however.

names
allow

the

One important aid to understanding classes is to recognize
the role played by closure objects in the intellectual history as
well as the implementation of Class systems. In particular, the
handling of instance variables is exactly the problem that is
solved by closure variables: making values available in a local
context, and hiding their values from the external world.

To help tie the notions of Class to the notions of Closure,
we'll derive a class representation for dotted pairs, from a
Closure-based implementation. That's pretty strange in itself!

(DE PAIR (X Y)
(CLOSURE (LAMBDA (MSG)

(SELECTQ MSG
(CAR X)
(CDR Y)))

(ENV 'X X 'Y Y)))

Classes -- 70

TLC-LISP Documentation Part I

Now to build a pair we say:

(SETQ XX (PAIR 1 2)), and to get the CAR or CDR part we say:

(XX 'CAR) => 1 or

(XX 'CDR) => 2

With this example we have completely reversed the roles of
function and data--the dotted pair is now a functional object,
and the selector functions have become message names. We could
continue this reversal, showing that even operations like RPLACA
and RPLACD could be represented in this scheme; in particular,
they would become message names (like CAR and CDR), but their
action would be to set the appropriate closure variable (X or Y)
to the new value. Rather than continue this line, we want to
apply these basic ideas to the construction of a Class-based
version of PAIR.

We want to define a class representation for dotted pairs.
Each pair will create an instance of the class. Such instances
will have two instance variables: one to hold X (called HEAD),
one to hold Y (called TAIL).

(SETQ DOTTED-PAIR (CLASS NIL
<methods for the class>
'(HEAD NIL TAIL NIL)))

The important ideas are contained in the following dotted
pair operations:

(PAIR X Y) -- construct a new object.

defined as:

(DE PAIR (X Y)
(INST DOTTED-PAIR (ENV 'HEAD X 'TAIL Y))))

Coming "right out of
totally mysterious; but
CLosure-style definition,
previous PAIR.

Classes -- 71

the blue", such a definition might seem
viewed from our experience with the
this PAIR is just a restatement of the

TLC-LISP Documentation Part I

Now what about the selector functions?

(CAR DTPR) -- select the first component of a dotted pair.
Select the value associated with DTPR's HEAD instance variable.

We will do this by sending the message CAR to the instance. Thus:

(DE CAR (DTPR)
(DTPR 'CAR)

and so one ■essage-■ethod pair in the class DOTTED-PAIR should
be:

CAR (LAMBDA() HEAD)

CDR would be done similarly. So we could describe our class by:

(SETQ DOTTED-PAIR (CLASS NIL
(ENV 'CAR (LAMBDA () HEAD)

'CDR (LAMBDA () TAIL)
)

NIL
(ENV 'HEAD NIL 'TAIL NIL))

A ■ore interesting operation is one to update components
within a dotted-pair object. Consider:

(RPLACA DTPR Y) -- replace the first element of DTPR with Y.

How can we implement this? Within the instance
DTPR we have two local variables, HEAD and TAIL.
operation need simply replace the value of the local
Thus:

(SETQ DOTTED-PAIR (CLASS NIL

representing
The RPLACA
HEAD with Y.

(ENV 'CAR (LAMBDA() HEAD)
'CDR (LAMBDA() TAIL)
'RPLACA (LAMBDA (Y) (SETQ HEADY)) . . .)

NIL
(ENV 'HEAD NIL 'TAIL NIL)))

and define RPLACA by:

(DE RPLACA (DTPR OBJ)
(DPTR 'RPLACA OBJ)

Notice that the locality of the values associated with HEAD
and TAIL is absolutely crutial for the proper implementation of
dotted pairs as class instances. If the values for HEAD or TAIL
were shared between instances the implementation would not work.

Classes -- 72

TLC-LISP Documentation Part I

Further food for thought: notice that we have introduced a
rather dynamic quality to the creation of dotted pair objects. We
introduced these objects as data structures --typically thought
of as static storage quantities. With the class description, we
have shown an alternative interpretation wherein the dotted pairs
have become functional objects based on the notions of closures.
The line between data objects and functional objects is indeed
fine.

We now move on to another Class example that will show
several alternatives of representation.

An ExamEle of Turtle GraEhics as a Class

A LISP dialect that is getting a lot of attention lately is
Logo. In this section we show how to define a class of Logo-like
turtles, based on the ideas in TLC-Logo.

Assume that we have a single dot-drawing, turning turtle,
that has is contrtolled by the following graphics primitives:

(PENCOLOR <color>) Sets the color of the pen to the integer
<color>.

(PENUP) and (PENDOWN) Raise and lower the turtle's pen.

(MOVE <dist>) Moves the turtle forward <dist> units. <dist>
must be non-negative.

(MOVETO <x> <y>) Moves the turtle in a straightline to the
point <x> <y>.

(TURN <angle>) Turns the turtle counter-clockwise <angle>
degrees.

(TURNTO <angle>) Turns the turtle to <angle> degrees, where
0 is straight up.

We'll have to simulate the multi-turtle behavior using the
single "hardware" turtle. Thus, every time we want to manipulate
a turtle we'll have to make sure that the hardware turtle is
mapped onto that turtle. The mapping is accomplished by setting

Classes -- 73

TLC-LISP Documentation Part I

the heading, position, color, and pen state of the hardware
turtle to the desired values. We must recall that movement will
leave a trail when the pen is down, and thus a function

(DE SETURT (XPOS YPOS COLOR HEAD PEN)
(PENUP)
(MOVETO XPOS YPOS)
(PENCOLOR COLOR)
(TURNTO HEAD)
(IF (EQ PEN 1)

(PENDOWN))

will set the turtle.

We can do the actual mapping in several ways:

1. Always map the hardware turtle to the desired turtle.
This means that every operation on a turtle will be prefaced
by a call on SETTURT. This will slow down every turtle
operation.

2. Check to see if the last operation was on the saae
turtle. This would be a good place to use a class variable.

3. The final variety we'll consider is potentially the most
efficient and in some ways the least satisfying of _the
bunch. Na■ely, always assume that the hardware turtle is in
the right place. Therefore, require an operation that
explicitly changes from one turtle to another, and that
operation will be responsible for keeping ■ulti-turtle

information current.

In this scheme, there is only Q~~ turtle that we can address
at any time. We don't need (TUR 'FD 10); (FD 10) will suffice
where FD moves the hardware turtle. (TUR 'FD 10) can be factored
into (ASK TUR) followed by (FD 10), and all turtle commands will
be interpreted by TUR until another ASK is given. In the section
How LISP Works we will see that this scheme is si■ilar to an
implementation technique called shallow-binding that always keeps
a special cell (called the value cell) loaded with the current
value of each variable.

We can implement a turtle as a vector of values, i■ple■ent
the hardware turtle's state as a vector, implement the turtle
functions as operations on that distinguished vector, and
implement ASK as a "vector swapping" function.

Classes -- 74

TLC-LISP Documentation Part I

For example, let CURRENT-TURTLE be the name of the current
turtle. Then:

(DE ASK (TUR &AUX (CUR CURRENT-TURTLE))
(SETQ CURRENT-TURTLE TUR)

keep a reference

CUR)

where we save the current value as we switch to the new turtle,
returning it as value so that whoever called ASK can save that
prior value.

Batching a new turtle is like cloning, except we give the
new turtle its own name. It retains all other properties of the
current turtle.

(DE HATCH (TUR &AUX (X (COPY CURRENT-TURTLE)))
(STORE X NAME TUR))

Finally, to de■onstrate a turtle motion, FD (for ForwarD)
should update the position of the current turtle and then
exercise the graphics code to move the screen representation:

(DE FD (DIST)
(STORE CURRENT-TURTLE XPOS

(ADD (CURRENT-TURTLE XPOS)
(* DIST (SIN (CURRENT-TURTLE RD)))))

(STORE CURRENT-TURTLE YPOS
(ADD (CURRENT-TURTLE YPOS)

(* DIST (COS (CURRENT-TURTLE HD))))}
(MOVE DIST) }

These examples are by no means complete or exhaustive; they
only indicate the kind of abstract programming that Class Systems
lets us explore. For further information see the Class sistem
section of the Reference Manual, and for ■any more details see
the TLC-Logo books and documentation.

This third case is the representation that we chose for TLC
Logo. The earlier representations are in keeping with the
message-passing style of Smalltalk.

Classes are a powerful idea, supplying a descriptive and
modular way of dealing with data objects. In fact, th~ type of
system we have described here bas been criticized for being too
modular; each class has a single super-class, and thus can
inherit methods only from classes above it in the hierarchy. At
times this can be inconvenient, and extensions of the simple
class system, allowing multiple inheritance have been proposed,
designed, and implemented. Only experience will show how much
of this generality is really effective.

Classes -- 75

TLC-LISP Documentation Part I

Catch and Throw

Just as the kernel ideas of functional objects are being
applied in wondrous new ways for building descriptive data
progra■■ing, so too can functional ideas be used to build high
level control structures, like multi-processing, co-routines, and
cooperating process descriptions.

The two most famous features of LISP are:

* Its parentheses

* Its use of data as programs.

We know all about parentheses, now -- LISP is a graphical
language trapped in linear format.

We know some of the benefits of having executable data, or
more accurately, the ability to represent programs as data.

The feature we wish to highlight here is the use of control
infor■ation as data. Control information is the co■putational
stuff that allows the LISP evaluator to find its way through the
function-call/function-return jungle. The evaluator has to be
conscious of several things while computing (f al a2 ... an):

* where to put values of the actual parameters as they are
co■puted.

* when all values are present, combine them so that the
function na■ed f ■ay get to the■.

* re■e■ber how to get back fro■ the evaluation of the body
off, for someone is waiting for that value,

On the surface, it seems that this detail is only of
interest to the evaluator and the user has no business with any
of it. But consider the role of a debugging program; we realize
that it has use for the program-as-data facility so that the
user may modify errant programs. And how does the user discover
the problem? First, one ■ust discover which function was active
when the error occurred, what arguments we passed to it, and what
function called the misfortunate function. All this is control
information. Therefore, a choice must be ■ade: write the debugger
in a lower-level language that has access to this information, or
lift control-information primitives into the surface language.
LISP-like languages tend to opt for the latter course, since this
is just another exa■ple of our representation proble■: represent
the objects, and define functions to operate on them.

Catch and Throw -- 76

TLC-LISP Documentation Part I

In TLC-LISP, we have primitives to supply representations
for the state of the internal "LISP machine"--what were the
arguments, what were the functions, etc.--the kind of thing a
debugger needs.

Now let's think about the functions that will control a
debugger; since it is unrealistic to suppose that we can predict
the occurrence of a bug, we need a different kind of control
function--so■ething other languages call an "exception
condition". We need a construct that will say "go evaluate this
expression and let me know if some specified anomaly occurs". If
nothing untoward happens then the exception handler passes the
result on wihtout comment; if the specified exception does occur
then the handler is made aware of it, and can taken appropriate
action. This notion of exception handling has been generalized in
LISP and appears in several dialects (including TLC-LISP) under
the function named CATCH.

A CATCH call appears as

(CATCH label expr expr},

where the label is a symbol that names the particular "exception"
that this expression will handle. The simplest invocation is of
the form

(CATCH ERROR expr ... expr)

because the system will generate exceptions named ERROR whenever
it encounters an error condition. So if any of the expressions in
the body of this CATCH-expression generate an error, the
evaluation will stop immediately, and the value returned for the
CATCH will be some indication of the specific error.

This type of behavior has been in LISP systems since the
early 196Os under the name of ERRSET. In fact, these early
systems also allowed the programmer to explicitly cause errors by
calling a function named ERR; This pair of functions, ERRSET/ERR,
soon became overworked; too much time was spent in decoding what
kind of "error" was occurring--was it a real one, or one
generated by the programmer? Thus CATCH with a specifiable label
was born; and in conjunction with it, the function THROW replaced
ERR. So both CATCH and THROW expect a symbol as their first
argument, and they work as a pair to loosen the function
call/function-return regime of the pure functional languages. In
their most general form, they can be used to describe multi
processing operations in a very clean, high-level fashion. See
the Abelson&Sussman book or Wand's paper for details. However, as
with functional objects, most LISP implementations do not
implement the full power of these control objects. TLC-LISP is no
exception; it does, however, implement a very useful, and
efficiently implemented subset of the ideas.

Catch and Throw -- 77

TLC-LISP Documentation Part I

Now let's see what that implementation has to perform. As
part of the invocation of CATCH, the system makes note of the
occurrence of label before beginning the evaluation of the expr's
in the body. If no THROW expression is encountered in that
process, the value of the CATCH is the value of the last expr.
However if we encounter a (THROW label expr-1 ... expr-n), then
the system retreats to the CATCH, and returns with the value of
last expr, exp-n.

This CATCH-THROW pair is much like
except that the returning THROW may bypass
function calls. This is the level of
supported in the current TLC-LISP.

a call-return pair,
several intervening

CATCH-THROW that is

Given the ability to manipulate control objects as first
class object, we can describe debuggers in this high-level
notation. That's an immediate practical benefit, just like
program-as-data makes the description of editors ■ore manageable.
At a higher level, such tools open the door to introspective
systems--those that are able to analyze their own behavior, and
perhaps modify it. Part of the analytic power is the ability to
grasp the components of execution; the other part requires that
the system have some model of its own behavior. A particular
example of this is the InterLISP DWIM package.

DWIM--standing for "Do What I Mean"--co■es into play when an
InterLISP program has discovered an error. The explict control
objects allow DWIM to examine the function-calling history, the
current state of the evaluated arguments, and the expression
under consideration when the error was discovered. Using this
information, and some built-in knowledge about LISP programs and
common LISP errors, DWIM proceeds to analyze the situation. For
example, on most keyboards the parenthesis keys are upper-case;
often, a LISPer will miss a shift and get the lower-case
character instead, therby throwing off the nesting of the LISP
expression. Often DWIM can detect this kind of situation,
reconstitute the errant symbol after removing the parenthesis,
and re-parse the expression.

Often, the computation can be backed up to a prior point and
continued without having to lose valuable time and effort. This
is a simple example of a DWIM-type correction. As the importance
of control objects becomes ■ore widely understood, this·type of
introspective system will flourish.

The important point to remember is that "control-as-data" is
distinct from "program-as-data".

Catch and Throw -- 78

TLC-LISP Documentation Part I

Evaluation

With the previous sections as background, we can present a
more detailed description of the LISP evaluation process.

The family of LISP expressions consists of the following:

CONSTANTS: 1 T '(l 2 3) car (or CAR) "xyz" [1 2 3J

These are constants of the classes: number, truth-value,
list, function, string, and vector respectively (in an
implementation, "constants" like CAR may not really be
"constants" they may actually be implemented as
variables, and therefore subject to redefinition by the
user. Of course such user actions are discouraged when
attempted on very primitive LISP operations but, in keeping
with the open nature of LISP, such actions are seldom
explicitly prohibited.)

VARIABLES: X FACT

These are variables which might be found naming simple
values and functions respectively (recall that variables are
type-free, but objects are typed)

COMBINATIONS: (CONCAT 'A (FIRST L))

This combination represents the application of the function
constant CONCAT to two arguments: a constant, and another
combination.

CONDITIONALS: (IF X (CONS XL) NIL)

This conditional expression returns the value of combination
(CONS XL) if the value of Xis non-NIL. Otherwise NIL is
the value of the expression.

Elegant simplicity!! As a result of LISP's simple syntax,
the evaluation process is equally uncluttered. An even more
pleasing property results from LISP's inclusion of program
elements as data items: we can write the evaluation process in
LISP itself. We won't carry out this last step here; it is an
exercise which every LISP programmer should perform. Here we will
only sketch the process and highlight the non-trivial spots.

1. The evaluation of constants: Any constant simply
evaluates to itself. A certain amount of care needs to be
taken: though strings, vectors, and numbers are recognizable
as constants from their appearance, we also need to be able
to differentiate between constant S-expressions and S-

Evaluation -- 79

TLC-LISP Documentation Part I

expressions which are representing elements of the LISP
language. This problem is the origin of the QUOTE operator.

Note that besides simple constants like S-expressions,
numbers, vectors, and strings, LISP also has "functional
constants" like CAR and COND. The term "constant" simply means
predefined; all these predefined functions may be re-defined,
though of course flagrant refedinition of LISP primitives will
lead to obscure programs at best, and system destruction at
worst. On the other hand, tasteful redefinition can be useful.
For exa■ple,

(LET ((PRINT NEW-PRINT)) ... (PRINT ...) ...)))

will use NEW-PRINT instead of the system-defined PRINT within
the body of the LET-expression. This could be helpful in
redirecting output for other purposes. This redefinition of
system-level functions is a special instance of "dynamic scoping"
--LISP's default strategy for evaluation of variables.

2. The evaluation of a variable: LISP variables are "type
free" meaning that a variable is free to take on any type of
value --number, string, list, vector, or even a class or
function. It is the value which carries the type
information; and it is the context in which a value is used
which determines whether or not a "type restriction" is
satisfied. For example, an error is signalled if one
attempts to apply a string as a function. This means that
the evaluation process for variables is reasonably
straightforward: using the variable name, extract its value
from the current environment.

Of course things are not quite all that simple; The
conceptual issue raised by LISP is when to find the values; a few
sections from now we will discuss the "how" of the programming
techniques used in implementing LISP's variable binding, but here
we restrict ourselves to conceptual questions. The issue is one
of scoping rules. Scoping rules come into play when one adds
function definitions to our system; in particular, the question
involves free variables: variables which are not formal
parameters of the definition.

Algol-like languages (including Pascal and ADA) use a
static scoping rule: locate values of free variables at the time
a function definition is installed in the system. This rule
relates well to those languages with a penchant for compilation,
since a compiler ■ust be able to generate code from static text.

LISP defaults to a rule called dynamic scoping which says
locate the values of free variables at the time the function is
applied. This rule fits in well with LISP's interactive style of
program development, since in LISP programming one frequently

Evaluation -- 80

TLC-LISP Docu■entation Part I

begins executing program frag■ents before all
defined. This programming style is called
co■pared to "top-down" or "bottom-up".

components are
"■iddle-out" as

Unfortunately, the issues of scoping rules are clouded. From
a theoretical perspective, the correct rule is static scoping,
and dynamic scoping is a bug; actually, in practical settings
dynamic scoping ia a bug as soon aa we deal with functional
objects in the context of argu■ents to, and values from, LISP
functions, or in the implementation of Classes. Yet in the
interactive develop■ent of progra■s --like the NEW-PRINT
exa■ple-- dyna■ic scoping is definitely useful. The last word on
scoping rules has not been said (or at least heard).

3. Co■binationa: A combination, also called a function
application, is evaluated in a call-by-value fashion. That
ia, the function position is evaluated, assuring that a
functional object is available there; then each of the
actual parameters ia evaluated in a left-to-right order
before the function is applied. Note that this description
of evaluation is recursive: the evaluation of a combination
involves evaluation of all of the co■ponents of the
combination. Typically, that process will terminate with
values to continue the computation. If the called function
ia a pri■itive, then these values are passed to that
function.

For example, consider: (CDR (CAR '((A
unabbreviated form (CDR (CAR (QUOTE ((A B)

B) . C))) or its
C)))).

The evaluator would come upon the form (CDR ...) first.
Evaluation of CDR yields a functional object; however the operand
of CDR requires further evaluation. It itself is a combination:
(CAR ...). The evaluation of CAR yields a functional object. Now
consider the evaluation of the argument to CAR; this time we
encounter QUOTE. QUOTE is handled specially (aee 4, below); QUOTE
always returns its argument unevaluated; this time it is the
constant ((A. B) . C). We apply CAR, getting (A. B). This value
is finally passed to the outer CDR, resulting in B.

This example is typical of what happens in calling primitive
functions. If the called function is a user-defined function,
then added care ■ust be taken.

A user-defined function has the
structure:

following

(LAMBDA (<param-1> ... <param-n>) <body>)

internal

where (<param-1> <param-n>) are called formal parameters and
the <body> is a sequence of LISP expressions. The complete unit

Evaluation -- 81

is called
indicating
function.

TLC-LISP Documentation Part I

a lambda
that the

expression. LAMBDA is a
material which follows it

reserved word
represents a

Once the values of the actual parameters are computed, the
current values of the formal parameters of the called function
are saved, and the evaluated parameters are then associated
with the formal parameters; this process is called lambda
binding. After the lambda binding is completed, the evaluation of
<body> is performed. Upon completion of that evaluation the
values of the formal parameters are restored to the values which
were current when the function was entered. For example assume
the variable X has value 5 and consider:

((LAMBDA (X Y) (CONCAT X Y)) 'A '(1 2)) => (A 1 2)

(ADDI X) => 6

To evaluate the first line we save the values of X and Y;
bind X to the atom A and Y to the list (1 2); note that besides
getting a new value, X also gets a new type. We evaluate the
CONCAT expression, returning (A 1 2), and we restore X and Y.
The evaluating of the ADDI expression yields 6.

Of course all of this description is highly oriented towards
some mechanism to carry out the computation. There is a very
non-process interpretation of functionality as well. This model
is based on the notions in Church's lambda calculus, and hinges
on the idea of substitution--replacing objects by objects so
that meaning is preserved.

However as we've seen in the previous sections, a
characterization substitution is difficult, and as we've seen in
the closure and class sections, simulation (rather than explicit
substitution) has distinct advantages.

4. Closures. Closures are a generalization of the previous
case of combinations. There are two conditions to discuss
here: '

a. The evaluation of a

(CLOSURE function-text environment) object.

b. The evaluation of a combination that has a closure
object in its function slot.

The first condition is reasonably straightforward; the
system simply builds an internal structure to carry the text and
the environment.

Evaluation -- 82

TLC-LISP Documentation Part I

When a closure is to be applied as a functional object, the
names and values of the closure environment take precedence
within the evaluation of the body of the closure. For example,

((CLOSURE (LAMBDA (X) (ADD X Y)) '(Y 3)) 5)

will associate X with 5, then add the information that Y has
value 3, and proceed, then, to evaluate (ADD X Y), getting 8.
As we leave the closure combination, we restore whatever binding
X and Y had.

For a more complex example, consider:

((CLOSURE (LAMBDA (X) (SETQ Y X)) '(Y 3)) 5).

This case proceeds as above until we execute (SETQ Y X).
Here, we assign a new value to Y, and as we leave the combination
we restore Y and X. But note here that the closure environment
has been modified; the next time we apply the closure, Y will
have value 5. This sense of locality that the closure environment
grants us is at the heart of the notions that implement class
systems. We will examine class-related evaluation a couple of
paragraphs hence.

5. Special Forms. Special forms have the appearance of
combinations: e.g., lists with a function-like object in the
function-position. However, special forms are not
combinations in the sense of 3. Combinations evaluate their
arguments; whereas special forms pass their arguments as
unevaluated data structures, and it is up to the special
form to process the arguments. If FOO is defined as a
special form, then the call

(FOO (CONS 2 (ADDl 4)))

would result in passing the list

((CONS 2 (ADDl 4)))

--not the value (2 . 4)-- to FOO for processing.

If
called

evaluation is desired,
explicitly.

then the LISP evaluator must be

There is a popular misconception that special forms are
"call-by-name" functions. They are not the same. Primitive
special forms of TLC-LISP include the COND, QUOTE, and IF
constructs. IF and COND evaluate only a selected subset of their
"arguments", while the purpose of QUOTE is to stop evaluation
altogether.

Evaluation -- 83

TLC-LISP Documentation Part I

Again, the description of IF and COND, given in the body of
the TLC-LISP manual, will transform into simple LISP algorithms
that we can add to the evaluation routine.

The above cases represent the basic evaluation algorithm of
a LISP implementation.

It is most strongly recommended that the reader specify such
an algorithm. The subtle point to contemplate in such an endeavor
is LISP's treatment of functional objects. The interplay between
such objects and the scoping rules is most interesting and worthy
of a serious reader's time.

These LISP evaluators give an operational semantics, or
meaning, to the programming language constructs. Put another way,
the four steps compose the central processor of a simple LISP
machine. There are two missing ingredients in the machine:
first, the machine instructions; these include the data
manipulating and testing instructions --CAR, CDR, CONS, ATOM,
and EQ-- as well as the control instructions --QUOTE and COND.
All other LISP operations can be defined in terms of these
operations. The second missing component of the machine is the
"microcode" to run the CPU: that is the business of the section
"How LISP works".

Around this kernel called "pure LISP" is built a powerful,
pragmatic programming tool. The next few sections, and the
remainder of this section discuss some of those features.

The LISP we have discussed so far differs substantially from
the traditional view of programming: there are no assignment
statements or iterative constructs. More generally there is no
concept of "state" or "side-effect".

Every "non-toy" LISP, including TLC-LISP, has included a
healthy portion of traditional programming techniques. We will
leave the details of these artifacts to the manual and will
restrict our attention to some of the difficulties they cause in
language design and implementation.

First, the concept of "state". The most common
manifestation of "state" in programming languages involves the
assignment statement. That construct views the world of variables
as a collection of slots, each of which can contain a value (or
if its a truly enlightened language, an object). We move through
the computation, extracting values from the slots, modifying
them, and placing them back in slots. This is a very
"undisciplined" view of variables as compared with the
"structured" access of variables present in pure LISP. The
binding mechanism of LISP matches variable accesses with the
control flow of function entry and exit; in contrast,
assignments are often allowed to occur in a totally arbitrary

Evaluation -- 84

TLC-LISP Documentation Part I

way. This has detrimental effects at the theoretical end of the
spectru■, in language implementation considerations (see "How
LISP Works"), and even impacts on "sociological" issues of
progra■ming style.

The most well-known attribute of an assignment state■ent is
its ability to cause a side-effect, meaning that it will affect
the state of the computation outside of the current environment.
For exa■ple, if a side-effect occurs, one cannot guarantee that
two executions of the same piece of code will give the same
result since the state has been modified. "Impure" LISP bas both
assignment statements to modify the state, and operations to
■odify data structures. These are related, but not identical
ideas. For example, in a language like FORTRAN we can allocate an
array such that the same array is referenced by two different
variables, IX and IY, then changing an array element through IX
changes a value in IY. This is a problem of sharing values
called aliasing. Sharing of values is not problematic provided
one cannot ■odify values.

Of course, we now know that one should not think about
quantities that get ■odified as being values; it is better to
think of them as objects--in fact mutable objects. In this way it
becomes more natural to think of constructor operations as
producing objects and later those objects may be mutated by
applying an updater. Thus the CONS operation makes a new cell and
copies the arguments into the CAR and CDR-parts (for more details
see "HOW LISP works").

Modification operations introduce large impurities into LISP
(or any language); but we realize that change and state must be
considered in a "real world" language. Our concern takes two
for■s: first that the user understands the scope and power of
operations that can change existing structures, and applies them
in a "self-controlled" fashion. Second, we wish to explore
language features that, while not imposing fascist regimentation,
will encourage a localization of side-effects and state change.
In this light we find the Class and Closure ideas most promising.

Classes, Closures, and applications contain an interesting
combination of the functional view with the side-effect view. We
have hinted at this combination in the evaluation of closures.
We'll now be more explicit. A class definition simply builds a
structure that contains all of the information about the super
class link, the local methods, the defaults for instance
variables and a potpourri of the class variables that have been
specified for this class or its super-classes. Instancing simply
spins off a closure-like object, except that the function slot
indicates the class, and therefore an implicit function, rather
than the explicit function we would find in a closure object.

Evaluation -- 85

TLC-LISP Documentation Part I

The real work occurs when a message is sent to an instance.
This is handled like a combination: the parameters are evaluated
in the current context; then the message name is used to index
into the method table, resorting to super-classes if the method
is not found locally. Assuming that a matching name is found, the
class variables for that class are installed, and then the
instance variables are overlayed. The method body is evaluated,
and then the instance and class variables are saved away. This
process is identical to that performed for closure invocation.
That's not surprising since the message-passing metaphor can be
described directly as an application of closures.

Macros and Backguote

We will close this section on a milder note, discussing some
added styles of evaluation. Besides the two basic styles of
application (call-by-value combinations, and special forms),
many LISP's include a macro facility. Since we consider LISP an
assembly-level language, it is only fitting that it have a macro
capability similar to that enjoyed by many other assemblers. A
traditional assembler utilizes macros as an abbreviational device
such that the macro is "expanded" at the time the text is
assembled. LISP doesn't really assemble, but interpretively
executes the internal form of the list structure; therefore LISP
macro expansion occurs at run-time. When a macro call is
recognized, the instructions in the body of the macro are carried
out; these instructions transform the call into another piece of
LISP code, and then the evaluator executes this new code. LISP
macros are a very powerful programming technique, passing
programming details off to the machine.

For example, though in LISP we have the CONS operation to
construct new S-expressions, we most usually wish to deal with
lists. In that regard, we have a function named LIST whose
purpose is to take an arbitrary number of objects and build a
list from them. Though LIST is already defined in TLC-LISP,
let's proceed as if it weren't. One solution we've already seen
is to utilize our extended parameter syntax, and define LIST as:

(de LIST (&REST 1) 1)

But assuming we'd like a different (or more explicit)
solution, we might recall that a list can be constructed by a
sequence of CONSes. Thus:

(CONS 1 (CONS 2 (CONS 3 ()))) = (LIST l 2 3)

This kind of "textual equivalence" has long been exploited
at the assembly language level. In the early 1960's T. Hart
introduced this powerful macro facility to LISP. The essential

Evaluation -- 86

TLC-LISP Documentation Part I

idea involves LISP's program/data duality: the
representation of the actual function call is
function as its parameter.

data-structure
passed to the

In the above example, the call (LIST 1 2 3) would pass the
list (LIST 1 2 3) to the LIST macro. The list structure will be
decomposed, reconstituted into (CONS 1 (LIST 2 3)) and returned
for further evaluation. The evaluator can process ((CONS 1 ...)
but will call the LIST macro again for (LIST 2 3), resulting in
(CONS 1 (LIST 3)).

Finally (LIST 3) will decompose into (CONS 3 ()), and the
process will terminate after evaluating

(CONS 1 (CONS 2 (CONS 3 ()))

Notice that the macro expansion process involves substantial
use of the program/data duality and it is all carried out without
user intervention.

Of course the critical ingredient is missing: what does a
macro definition look like, and how does the evaluator process
it? First, the definition: we've already said that what gets
passed to the macro is the actual call in list-form, so the
definition should not look too foreign.

(dm LIST (1)
(if (null 1)

()
(concat 'cons (concat (second 1)

(concat (concat 'list (rest 1 2))
())))))

The LISP evaluator also has to cooperate, recognizing that
the value returned by a macro must be evaluated again. This is
a straightforward expansion of the repertoire of function-types
that the evaluator handles.

Since the body of a macro has a tendency to be messy, in
tearing down one expression and building up an expanded form, an
abbreviated syntax has been developed. This notation, called
"back-quote" (') works as an "anti-quote" so that unquoted
structures within its scope are assumed to be constants, and
when we want expressions within its scope evaluated, we have to
indicate that desire; one particular way is to decorate an
expression with a comma prefix (,). So compare the following
definition of LIST with the non-backquote version.

(dm LIST (1)
(if (null 1)

nil
'(cons ,(second 1) ,(concat 'list ,(rest 1 2)))))

Evaluation -- 87

TLC-LISP Documentation Part I

That looks better, but still there's some explicit list
construction that clutters up the appearance. In particular the
application of CONCAT within the co■ma-ed expression is only
there to indicate that we want to combine the elements of the
REST-expression with the symbol LIST. We couldn't get this effect
by writing

(list ,(rest l 2))

since that would give list of two elements--first one LIST and
the second, the result of REST. For exa■ple we'd get

(LIST (1 2 3)) not (LIST l 2 3)

So we extend the ■aero notion a bit further, adding an at-sign
(@) which is used in conjunction with comma to mean "splice in"
rather than "cons in". So we can finally write LIST as:

(d■ LIST (l)
(if (null l)

nil
'(cons ,(second l) (list ,@(rest l 2)))))

The actual definition of backquote and its
functions are located in the system file "LISP.SYS".

auxiliary

A related idea is called read ■acros. The read ■aero is
applied at the input phase of LISP programming. A function can be
associated with a character; when this character is recognized in
the input stream, the function is activated. That function may
perform arbitrary LISP co■putations, including further reading of
the input. The result of the read ■aero is passed to the input
stream as if it were the original input. For example the single
quote, •, is a read ■aero.

(DMC-' () (LIST (QUOTE QUOTE) (READ)))

is effectively the definition of the read-macro. Note that we
can't write

(DMC-' () (LIST 'QUOTE (READ)))

because that would invoke the read ■aero before it was defined.

Evaluation -- 88

TLC-LISP Documentation Part I

Bow LISP Work•

This section is not a description of the implementation of
any particular LISP, Rather, it is an overview of several
techniques that occur in LISP i■ple■entations. Since ■uch of
this information is both useful and somewhat difficult to obtain
in a cohesive form, it ia included here. Its assimilation will
i■prove one's underatanding both of LISP and the relationships
between the practical techniques of syste■s implementation and
language design.

A LISP machine is best thought of as a calculator: one
prepares an input expression, presents it for evaluation, and
receives an answer, That input may have a side effect --for
exa■ple, the definition of a function--, but one always receives
an answer. This "top level" of LISP ia called the read-eval-print
loop, because RBAD, BVAL, and PRINT are the names of the
functions that accept input, evaluate expressions, and prepare
output respectively. In the following three paragraphs we will
discuas some of the more interesting features of these
algorith■s.

RBAD: The LISP reader (also called a parser) has the
overall responsibility to transform the external linear list
notation into the internal tree-structured representation. Of
course the TLC-LISP reader has more to do --nu■bers ■ust be
internalized to a form compatible with the arithmetic unit of the
machine; strings are stored in a more efficient non-list for■-
but we restrict attention to the primeval reader. Functionally,
there are two components to the reader; the most primitive piece
is the LISP scanner called SCAN. This routine will recognize the
characters special to LISP: for example, space, (, and). SCAN
also is responsible for building the internal for■ of an atom, be
it number or sy■bol.

LISP sy■bols play a role similar to that of words in a
natural language dictionary; in fact since property lists are
■oat usually associated with symbols, the analogy is exact. The
property name is a "part of speech"; the property value is the
corresponding meaning. A dictionary entry contains all the
information about that particular entry, including pointers to
other words in the dictionary. The organization of the dictionary
is such that we need only look in one place for the meaning of a
particular word; without such assurance a dictionary would be
useless.

How LISP Works -- 89

TLC-LISP Documentation Part I

To insure similar organizational benefits in LISP, we
require that SCAN make every reference to a particular symbol
point to the same dictionary entry. This is accomplished at the
time a symbol is created; that is, when the character sequence is
to be transformed into a symbol. Given a sequence od characters
that represents the na■e of a symbol, the LISP syste■ will
compare this string with strings it has already converted into
symbols. This co■parison employs some efficient search technique
so that not every symbol is compared. Typically, LISP syste■s
seem to prefere a "hash algorithm", though history has as much to
to with this decision as anything else. Regardless of the
technique, a unique representation for each symbol reference is
guaranteed. Thus, for (A. A) we'd have something like:

1-"A-Lu

P- L.l~T~----4.

fl.NAM £ i----l [?.
A Representation of (A. A)

t ,,
···IA)···

where the "print name" structure is a string that contains the
actual characters that ■ake up the symbol na■e. It is called the
print-na■e (or P-name) since it's what get printed for the
symbol. (Advanced point: This scheme is a bit more complex when
packages are involved, but not much.)

EVAL: The previous section on evaluation discusses the
"what" of evaluation; this note describes some of the "how."

There are metaphysical issues and imple■entation issues that
must be addressed in the i■ple■entation of a LISP dialect. The
deeper concern is that of scoping: traditonal LISP uses dy■anic
scoping which, as we've seen, can severly damage the power of
functional objects. The alternative of lexical (or static)
scoping requires a ■ore delicate band so that power can be
dispensed in a fashion that will not damage efficiency.
Regardless of the choice of scoping rules, similar decisions face
the implementor when we come to the intricacies of v·ariable
binding and access.

There are two common strategies: deep binding and shallow
binding; they correspond closely to the distinctions between
standard programming and data-driven programming. In a deep
binding-implementation the search algorithm is given a variable
name and a table of names and values; it will search for a match
in the name column and return the corresponding value as the
value of the variable.

How LISP Works -- 90

TLC-LISP Documentation Part I

4
• 0.

X2
Fl [, I 2 I

Deep Binding tl

In this scheme, each block corresponds to binding of a set of
formal parameters ot a set of actual parameters. If the values
are not found in the current block, the previous block is
searched. Note: this search strategy will work for either lexical
or dynamic scoping; the difference occurs only in the way the
blocks are chained together.

With shallow binding, we position the value of the variable
with the symbol that represents the variable. In this case the
search routine need only examine the designated slot in the
symbol. The "value property" is always found in the value cell
of the variable; no search is required.

'5YH'6o L
FoR

X

1 I 2]

Shallow Binding

How LISP Works -- 91

TLC-LISP Documentation Part I

Aa with ■oat things, there ia "no free lunch". The
ai■plicity of the shallow-bound search is offset by
corresponding complexity in the maintenance of the bindings. Aa
one might suppose, the maintenance proble■ in deep binding ia
ai■pler. Recall our discussion of LAMBDA and the binding
properties (called "shadowing") that made old values of the
for■al parameters invisible. The straightforward i■ple■entation
of deep binding can acco■pliah this behavior by structuring the
table aa a list, and encoding the binding rule to add pairs to
the front of the list.

The i■plementation of shallow binding involves a destructive
store into the appropriate value cell after saving the old value.
The corresponding "unbinding" operations are of comparable
complexity. For a coaplete discussion of LISP iaple■entationa see
Anatom1 of LISP.

Regardless of the binding strategy, a major concern in the
evaluator involves what to do with the value that finally gets
extracted. The problem ia particularly involved in the case of a
combination (or function application). First, the function
position ia exa■ined; if that object represents a call-by-value
function, then the arguments (if any) are evaluated in left-to
right order; if the function object ia a special for■, then no
argument evaluation ia involved. The next phase involves the
para■eter passing operation; in moat LISP implementations
(including this version of TLC-LISP), this involves aiaple
stack, or push-down list, operations. However, the moat general
LISP ■ust be prepared to do ■ore. LISP'a unrestrained use of
functions aa data objects can force a tree-like, rather than
stack-like, behavior on the parameter passing i■ple■entation. The
quest for adequate implementations of this general difficulty
ia called the "funarg problem", or "functional argument problem".
In TLC-LISP we have avoided the most general situation and
i■ple■ented the functional subset called closures. See ~~~!2~I 2f
1!§f for details of the i■ple■entation of functional objects.

A final note related to binding should be discussed here:
regardless of the scoping rules or binding strategy, the
imple■entation is such that when we leave a scope the
appropriately saved bindings are restored. That is, these
bindings follow function entry/exit protocols. Thus, these are
distinguished from the bindings which we encounter with
assignment statements. These later bindings --called "destructive
bindings"-- cut through program structure as surely as the
beleaguered "goto" cuts through control regimes.

An assignaent-like binding, called SETQ, exists in LISP.
Both assignments and gotos are useful programming constructs, but
should be used in moderation. Contemporary program■ing has two
legs: the applicative li■b, containing recursive programming and
the related non-destructive binding and the imperative limb

How LISP Works -- 92

TLC-LISP Documentation Part I

containing iteration and destructive binding.
effectively we need both legs.

To program

PRINT: Print is the least co■plex of this trio, converting
an internal for■ to a readable external for■. So■e of the ■ore
interesting print routines do "pretty-printing". That is, they
for■at the output using conventions based on the structural
nesting of the expressions.

Me■ory Manage■ent: The final topic of this section is the
LISP ■e■ory ■anageaent system. LISP views data as a very dyna■ic
and volatile co■modity. Objects are created and destroyed freely
and constantly in a LISP program. The ■ajor ■echanis■ for
creation is the CONS function, that creates a new node in a list
structure. The ■e■ory ■anage■ent syste■ ■aintains a data
structure called a free-space list. Requests fro■ CONS extract
pristine nodes fro■ this list. When that list is exhausted, a
storage reclai■er or garbage collector, is called to recover
nodes that have been discarded. These recyclable nodes are
discovered by scrutinizing the current state of the computation,
■arking all the data items which are still being used. This
process is called the ■ark phase. It follows the topology of the
LISP list structure. The next phase, the sweep phase, follows the
topology of ■e■ory, visiting every node --both marked, and
un■arked. It collects the unmarked nodes into a new free list,
being assured that any un■arked node was inaccessible and
therefore "garbage". Ar■ed with this new supply of nodes, the
■anager can now fill the CONS request. For ■ore co■plete
discussions of garbage collection see Anato■y of LISP or Knuth's
volu■e.

Row LISP Works -- 93

TLC-LISP Documentation Part I

LISP•• a Sy■ te■■ Language

The traditional vehicle for systems implementation has been
assembly language. Given our perspective of LISP as an asse■bly
language (including ■acros), it is natural to investigate the
viability of LISP as a syste■s development tool. The compulsion
becomes stronger when we consider that artificial intelligence
programming tends to be among the most complex of tasks and LISP
is that field's primary progra■ming language.

What does LISP provide for a syste■■ designer? There is
a built-in collection of primitive data structures along with
appropriate functions to manipulate those ite■s and build
co■plex objects fro■ components. In a ■odern LISP~ these data
objects include: numbers, strings, identifiers, and arrays.
Arbitrary precision numbers (bignums) are not included in this
version of TLC-LISP. These pri■itive notions are augmented by
operations for constructing new data objects. One may construct
new strings and arrays at run-ti■e, co■bine existing structures
into new objects using CONS, and construct record-like structures
using the property-list operations. •

The details of creation and management of LISP objects is
the province of the language and not the concern of the program
designer. The creation of objects is totally dynamic. One does
not have to declare space allocation■ for strings, records, or
arrays before beginning to program. Storage management is
handled by the system using a "garbage collector" and is totally
transparent to the user.

* LISP is interactive. There is an evaluator which will execute
expressions and produce the result without co■plex conventions
and declarations. This calculator-like behavior allows one to
design, program, and debug in an incremental fashion. S■all
subcomponents can be designed and tested, then set aside, later
to be composed with other s■all pieces to ■ake a larger
component. One does not write large monolithic LISP programs very
often.

* LISP is a debugging language. A major problem in designing a
complex system is the debugging and modification of ideas. One
does not begin such a project with a precisely sepcified
algorithm. One begins with ideas, and uses the machine to test
those ideas. Therefore, a major ■ode of operation is
"modification and testing". Modification in LISP is easy. The
whole of LISP's environment is open to change. We will say more
about this below under "extensibility". Testing in LISP is also
simplified. LISP is a machine language, and as such, the
debugging devices present and receive their information in LISP.
One debugs LISP programs in LISP. There are built-in functions to
handle errors, suspending the computation and allowing the user

LISP as a Systems Language -- 94

TLC-LISP Documentation Part I

to examine or modify the suspended state. These
course, can be replaced by the user, and much
monitoring programs can be built --all in LISP.

functions, of
more complex

* LISP is a tool box. There are built-in "tools" --parsers,
scanners, output formatters, and table maintenance programs-
which relieve the designer of many lower level implementation
details.

* LISP is extensible. The implementation is open to modification.
Few decisions in the implementation are irreversible. One can
change the LISP library, the evaluator, the parser, and the
scanner to the extent of even defining a new language.

This last point, extensibility, is worth expanding upon.
Every function name in the LISP environment has a piece of
program associated with it. That association can be broken,
either temporarily using a lambda binding, or permanently using
an assignment. This will allow us to redefine the LISP library.
Extensibility requires more: we must be able to define new
control structures. This means we must be able to modify the
evaluation process. This can be done in LISP in at least two
ways. We can install a new version of the LISP evaluator. This is
simple because the evaluator is expressible in LISP. An
alternative is to introduce new control operations by adding a
new special form and carrying out the evaluation ourselves.

These techniques allow modification of the semantics of the
language. What about syntax? Suppose we wish to define an Algol
like language --a language with substantially different syntax.
Here we need do more than just replace the parser. We need to
modify LISP's conception of what is a well-formed expression.
Most LISP input systems (including TLC-LISP) are implemented in a
table-driven fashion. By this we mean that all of the information
about what is a legal construct is stored in a table, rather than
being "hard-wired" into an algorithm. To change the the language
one changes the table. For example, in TLC-LISP each character
has an associated attribute, describing how it can participate in
the input: it's a digit, it's a letter, it's a delimiter, it's a
comment character, etc. That table is user-modifiable. To design
a new input syntax one changes that table and supplies a new
routine to collect the input tokens. The new routine will build
a LISP-representation of the input. That representation can be
executed by LISP's evaluator and the results can be displayed.

A production-quality version of LISP is a fluid collection
of tools which can be used to build as varied a collection of
applications as any other language. Therefore arguments that LISP
is "special purpose" do not hold. Arguments that LISP need be
inefficient are also fallacious. It has been demonstrated that

LISP as a Systems Language -- 95

TLC-LISP Documentation Part I

one may
FORTRAN
FORTRAN
domain.

construct a LISP compiler which is as efficient as a
compiler when dealing in the numerical domain. Clearly
cannot begin to compete with LISP in the non-numerical

It's interesting
have now been shifted
they're inefficient,
remain the same.

to note that the arguments against LISP
over to the Logic Programming Languages-

The more things change, the more they

The power of LISP is truly astounding. There is not one
single feature which is the source of this power. It is a blend
of several aspects. In combination, these ingredients give a most
powerful, but controllable programming language.

LISP as a Systems Language -- 96

TLC-LISP Documentation Part I

BibliograehI

Abelson, H, & Sussman, G, The Structure and Intereretation of
g2~1:'!Y!~r ~r2gr!~!, McGraw-Hill Book Co, New York, 1984.

Allen, J. Anatomi of LISP, McGraw-Hill Book Co., New York, 1978.

Allen, J. Don't Overlook LISP, Guest Editorial, BYTE, March 1979,
p.6 ff.

Allen. J., Davis, R., Johnson, J, Ih!~k!~g !~2Y! ILg=L2g2, Holt
Rinehart Winston, New York, 1983.

Aiello, L. et. al., Adding Classes to LISP, lnstituto di
Elaborazione Della Informazione, B76-13, Pisa, 1976.

BYTE Magazine, Special Issue on LISP, August 1979.

BYTE Magazine, Special Issue on Smalltalk, August 1981.

BYTE Magazine, Special Issue on Logo, August 1982.

Charniak, E., Riesbeck, C., & McDermott, D., Artificial
Intelligence Programming, Lawrence Erlbaum Associates,
Publishers, Hillsdale, New Jersey, 1979.

Kowlaski, R., Algorithm=Logic+Control, Communications of the ACM,
Vol 22, No 7, pp. 424-436.

Knuth, D., The Art of Comeuter Programming, Vol. 1, Addison
Wesley, 1968.

Pirsig, R., ~~~ !~~ !h~ !r! 2f Motorcicle Maintenance, Bantam
Books, New York, 1974.

Sandewall, E., Programming in an Interactive Environment: The
LISP Experience, Computing Surveys, Vol 10, No.I, March 1978, pp
33-71.

Steele, G, and Sussman G., The Art of the Interpreter, or, the
Modularity Complex, MIT AI Memo No.453, Cambridge, May 1978.

Teitelman, W., A Display-Oriented Programmer's Assistant,
Xerox Palo Alto Research Center, CSL-77-3, 1977.

Winograd, T., Beyond Programming Languages, Communications of the
ACM, Vol 22, No 7, pp391-401.

1980 LISP Conference Proceedings
Particularly:

Wand, M. Continuation-based Multi-processing pp. 19-28

Bibliography -- 97

TLC-LISP Documentation Part II

Bow To Get Started with TLC-LISP

In the following section we include a sample session
the system that will give you an indication of bow we use
system ourselves.

with
the

First, to the preliminaries. Before doing anything,
copies of the disk and store the original disk in a safe
Once that's done, you might want to examine the directory
disk:

make
place.
of the

The executable TLC-LISP86 interpreter is named LISP.EXE or
LISP.CMD, depending on your operating system's expectations. The
executable forms of the LISP utilities (editor, system
extensions, file utilities, ...) have an extension of "P",
meaning that they contain P-code, the byte-level instructions of
a stack-like LISP pseudo machine. These files are not printable,
being a self-contained compact form of binary op-codes and symbol
tables. Most of these files are loaded automatically at syste■

initialization time. The file LISP.SYS controls the
initialization.

The file LISP.SYS is printable, and the curious user may
wish to look at it. You will see a sequence of commands to load
the P-files and initialize various system variables. The system
always performs a (load "LISP.SYS") when it begins. So as you
develop your applications you might want to add specific
initialization rituals to this file.

The files of the form ??HELP.LSP are used by the editor when
help is requested. They are loaded automatically during a help
dialog.

The file TOURETZKY.LSP is a package of functions to help
make TLC-LISP act like the LISP practiced in "LISP: A Gentle
Introduction to Symbolic Computation", written by David S.
Touretzky, and published by Harper&Row. The Section titled
"Tutorial" that appears later in this Part (Part II) utilizes
this book.

**** Again, we strongly suggest that you take no actions ****
**** until you copy the TLC-supplied disks. ****

Getting Started -- 1

TLC-LISP Documentation Part II

Bow To Load TLC-LISP86

Once the copies have been made, place a copy of your disk in
the currently selected drive, and type

lisp <return>

where <return> means the return/enter key on your keyboard. In
the future we will write RBT to indicate that key. Meanwhile,
back to the loading of LISP.

The operating system will load the executable LISP file from
the disk and pass control to the LISP interpreter. The
interpreter will allocate memory for the various LISP spaces.

There are two major spaces: Lisp apace and Byte apace. Lisp
apace contains the true LISP objects (lists, symbols, numbers,
and descriptions of strings, vectors, and P-code, for example},
while Byte apace contains portions of the internal
representations of these objects (internal structures of.strings,
vectors, and P-code, for example}

You will see an indication of LISP'a allocation flash by on
the screen. For example, on one particular day we saw:

Lisp apace at aegment(s} 1D07, 29D3, 369F length CCOO
Byte apace at 436B:07CB length F820
Byte apace at 5368:0481 length 94BO
Byte apace at 087C:0070 length occo
Byte apace at 130C:0113 length 2120

TLC-LISP Vl.46
Copyright (c} 1982, 1983, 1984 The LISP Company

Of course, that actual numbers will vary from machine to machine.

Thia information may be useful in advanced applications. The
section, "Command Line Options" at the end of this Part (II} of
the TLC-LISP documentation describes how to modify the default
settings, either to redistribute the LISP spaces or to reserve
portions of memory for other tasks.

After the initial allocation is completed, TLC-LISP loads
several support files. This system load is controlled by the file
LISP.SYS. That file contains directives to load the actual code.
Later you may find it useful to modify or replace LISP.SYS with
you own initialization file.

Once the loading is completed, you will see the prompt:

>>>
and now TLC-LISP is ready to receive input.

Getting Started -- 2

TLC-LISP Documentation Part II

lx-ple■ of TLC-LISP

The information iu the remainder this section can be skimmed
by the knowledgeable LISP afficionados to familarize the■selves
with TLC-LISP, or these individuals may prefer to skip to the
next section on the TLC-LISP editor.

Those new to LISP can use the examples in the next
paragraphs in conjunction with the catalog of functions in Part
III and then perhaps uae the system with Tourtezky's "Gentle
Introduction" in baud and our Touretzky tutorial tto develop a
more through understanding of LISP.

Like learning to drive, the best way to learn a programming
language is to do it -- experi■eut. Of course competency in
driving does not qualify one for either the design or the repair
of au auto■obile. Similarly, the ■ost sterling of progra■■ing
skills need not imply co■petency in computer science.

LISP is a calculator. The default listen loop will invoke
the evaluator on each well-formed expression it is supplied (of
course this behavior ■ay be changed by the user (see TOPLEV). If
the expression is atomic, then its value is returned. If the
expression is a function call (au application), then the
activation will recursively call the evaluator on the components.
This description is getting pretty abstract, so let's bring it
back to reality with a few si■ple examples.

You may now use the system as a LISP calculator, typing
expressions, striking the return key, and receiving answers.

So for example:

>>> t
t

remember to press "return" or "enter"

>>> nil
nil

>>> (+ 2 3)
5

ditto

RET

>>> (cons 1 2) RET
(1 . 2)

>>> (reverse '(ab c)) RET
(b ca)

recall RET indicates return/enter

Since every request to the system must be followed by a
return-key, we will refrain fro■ RET decoration unless an
explicit reference would add clarification.

Examples -- 3

TLC-LISP Documentation Part II

Continuing with the calculator mode, we can get more
ambitious and define new functions. For example:

» > (de add5 (x) (add x 5))
add5

> » (add5 1 7)
22
» > (de add6 (y) (add 6 y))
add6
>>> (add6 (add5 4))
15
»>

Besides defining new functions, we also have a traditional
assignment operator. This operation is called SETQ. For example,
assume we wish to assign the value of the sum of 5 and 6 to X,
and then perform (CONS X NIL), assigning that value to Y:

>» (cons nil t)
(nil . t)
>>> (setq x (add 5 6))
11
))) X

11
>>> (setq y (cons x nil))
(11)
»> (CAR Y)
11
»> (cdr y)
nil

the value of the assignment is 11
let's check it

note this is (11 . nil)
note "case" is ignored

Let's move to some more complex examples.

We will illustrate several styles of function definition
using the factorial function. This is usually written "n!" and is
defined as follows

n! 1 if n=O
n! = n*(n-1) ! if n greater than 0

The first LISP version of factorial is:

>>> (de FACTl (n)
(cond

((zerop n) 1)
(t (mul n (factl (subl n))))))

factl

FACT! corresponds closely with the mathematical description
of "n!". We first test if N is zero; if so, we exit with value 1.

Examples -- 4

TLC-LISP Documentation Part II

Otherwise we perfor■ the multiplication using the value of N and
the result of computing FACTl with the value of N minus one.

We use COND to represent the two cases. The first list
within COND covers the situation when n is zero. The second list
within COND covers the "otherwise case" --when n is non-zero. The
use of "t" as the first ■ember of that list represents the truth
value, true.

Just to assure yourself that factl is accurate (at least for
one value), we can try:

>» (factl 3)
6

Since factorial is really a case analysis, we can also write
it that way:

and

>>> (de FACT2 (n)
(selectq n

(0 1)
(otherwise (mul n (fact2 (subl n))))))

fact2

>» (fact2 3)
6

One might consider FACT2 somewhat closer to the mathematical
ideal since it is a simple "case"-expression, co■paring the value
of N against O or OTHERWISE, where OTHERWISE is guaranteed to
match. Both FACTl and FACT2 are straightforward recursive
computations, based on the complexity of the argument, N.

Now here's a ■ore complex factorial definition:

>>> (de FACT3 (n)
(fact3* n 1))

fact3

where:

>>> (de FACT3* (nm)
(if (zerop n)

•
(fact3* (subl n) (mul nm)))))

fact3*

but still:

>» (fact3 3)
6

Examples -- 5

TLC-LISP Documentation Part II

Definition FACT3 is a bit more involved, relying of an
"auxiliary" function FACT3* to carry the burden of the
co■putation. FACT3 is used only to initialize the variables which
FACT3* needs. FACT3* operates by counting the first argument down
to zero as it builds up the factorial value in its second
argu■ent. Though FACT3* is recursive, calling itself if N is non
zero, it has a so■ewhat different behavior than that of FACTl or
FACT2. In particular, when FACT3* has counted N down to zero, it
is all ready to return the desired value, M. However when either
FACTl or FACT2 have counted their argument down, there is still a
nest of (MUL N (MUL (SUBl N) ... 1) to be computed before the
value of the factorial is available. Somehow FACT3 is ■ore
"iterative" than "recursive"; this idea can be made precise if
necessary. For our purposes, however, we simply note the
difference is recursive style; for so■e proble■s the FACT3-style
is more natural; for so■e the FACT1-FACT2-style is ■ost
applicable.

The aggravating feature of FACT3-FACT3* is not recursion
versus-iteration, but that FACT3* is really a sub-function of
FACT, existing only to serve the needs of FACT3. So why clutter
up our na■e space with these unwanted sy■bols? Well we can solve
the problem a couple of ways. First, we may use an extended
para■eter description syntax to dispense with the subsidiary
function altogether:

»> (de FACT3! (n &OPT (m 1))
(if (zerop n)

)
fact3!

II
(fact3 ! (subl n) (mul n 11)))

>» (fact3! 3)
6

where FACT3! will supply a value of 1 for M when FACT3! is called
initially. In this case we use the "optional para■eter" ■, where
the syntax &OPT (11 1) means that FACT3 may be called with either
one or two para■eters and, if only one paramter is supplied, then
the second paramter defaults to 1. Optional paramters are an
elegant feature of modern LISP systems.

Examples -- 6

TLC-LISP Documentation Part II

We cannot always expect such auxiliary functions to be so
docile when we attempt to obliterate them. But we can limit the
scope of their names by using yet another parameter mechanism
called "auxiliary" (or local) variables. Thus:

>>> (de FACT3 (n &AUX (fact3*
(lambda (nm)

(if (zerop n)
m

(fact3* (subl n) (mul nm))))))

(fact3* n 1))
fact3

where in this case the name FACT3* is local to FACT3, meaning the
na■e FACT3* only has that function definition during the
execution of FACT3. But let's pull back from the brink of
obfuscation to a ■ore co■■on style of programming -- iteration.

One could also recognize an iterative representation for
factorial and write:

>>> (de FACT4 (n)
(do ((m 1 (mul n ■))

fact4

and still:

(n n (subl n)))
((zerop n) m))))

>>> (fact4 3)
6

Definition FACT4 exploits the iterative DO-expression. The
first list argument in the DO is a description of how to
maintain the local variables N and M. The notation means
"initialize M to 1 and on every iteration of the loop set M to
the product of the current value of Mand the current value of
N." Similarly for N, we initialize a new variable N to the value
associated with the original N and, on every iteration of the
loop, decre■ent N's value.

There are several important facts to note about these DO
variables. First, these names Mand N are introduced as lambda
bindings, receiving the values 1 and the external value of N.
Second, in the iterate phase Mand N are used as traditional
variables for assignments; one simply replaces the old values
with those computed by the iterator expressions. Third, these
iterator assignments must be done simultaneously. If, for
example we reversed the order, performing N's computation before
M's, we would not get the appropriate factorial computation.

Examples -- 7

TLC-LISP Documentation Part II

Rather than insisting that an order be imposed, DO is defined
such that parallel assignments are the rule. Similarly the DO is
defined so that the initializations are also done in parallel; it
makes no difference in FACT4, but may in general.

To continue our discussion of FACT4, we pass to the next
list in the DO. This list contains the "exit clauses". In this
case there is only one: "if N is zero, exit the DO with the value
of M." In the general case there can be several exit tests and
several computations to perform if a test is satisfied. If none
of the tests are satisfied, the "body" of the DO is executed. In
this case the body is empty, so we pass immediately to iterate M
and N. In its general formulation, the DO is a most expressive
programming construct.

TLC-LISP also offers more restrictive forms of iteration. In
particular the factorial function surrenders its secrets to FOR
rather nicely:

>>> (de FACT5 (n &AUX (m 1))

fact5
>>>

(for I (1 n) (setq m (*mi)))
m))

and we'll leave it for you to discover the value of (fact5 3).

Several of these factorial definitions are sufficiently
complex that typing errors (particularly parentheses errors))
will arise, and one soon tires of this calculator mode, desiring
to change or save function definitions. This brings us to the
editor.

Examples -- 8

TLC-LISP Documentation Part II

Uain• The TLC-LISP86 lditor

The editor is configured in the style of WordStar. The
basic text editing operations have been augmented by a suite of
LISP-oriented commands.See page 126 and 127, Part III, of the
TLC-LISP documentation for a summary of commands. You might wish
to glance at that material now.

To begin the session, let's assume we want to save the two
definitions, add5 and add6 on a disk file. First, we load the
editor, initializing it with the definition of add5 by:

>>> (edit add5)

If the editor is not in memory, the system will display

Loading Editor

while it loads the program.

Since we've called the editor with a symbol name, the editor
will also invoke the pretty-printing program to present the
definition of add5 in a fashion that illuminates the structure of
the definition. When all this is finished, you will see the
screen set up with a banner on the first line.

Since we also want add6's definition in the editor, we must
load it using AKA. The notation AK indicates that the K-key
should be struck while the control-key is depressed. In response
to AKA, the editor will request a symbol name. Type

add6 RET

and you will see the definition of ADD6 appear on the screen.

If there are other functions that you want to place on the
initial file, continue to use AKA until they are all in the edit
buffer. Now we're ready to save the buffer.

Notice first that the banner line says "editing
because we entered the editor by loading it with a
value, not a file.

NO file"
symbol's

To save the buffer as a file, the simplest option is to type
AKX. This editor command pair will update the currently selected
file and exit back to LISP. Since there was no currently
selected file, the system will prompt for a file name.

Type a file name (or file name and extension) For example,
try:

example RET

The Editor -- 9

TLC-LISP Documentation Part II

The banner will be updated, and a copy of the editor buffer
will be copied to the file EXAMPLE.LSP.

A na■e without an extension is suffixed with LSP, but if a
file extension is given it would be used. A file without an
extension would be indicated by a trailing dot (.).

If the file already existed, the old file contents would be
saved with a BAK extension.

After writing the file, the editor will display:

tlc-lisp
>»

and you're back in LISP.

The definitions are still active in TLC-LISP's memory, so:

»> (add5 7)
12

If we decide to edit the functions, or add new functions to
this session, it now ■akes ■ore sense to go back to the editor.
Thus:

>>> (edit "example")

where the string reference indicates that a file is desired. If
there is no such file, the editor would create a new one. However
in this case, EXAMPLE.LSP exists and the editor will reactivate
using the saved file.

At this ti■e we can add more definitions or modify existing
ones. The questions then are how to get the new information saved
on the disk and how to get the new information installed in the
LISP ■e■ory.

There are two options to save the file.

* We can overwrite the previous version by typing AKS

The Editor -- 10

TLC-LISP Documentation Part II

* We can also save the new version under a
this case we must use a sequence of commands.
the whole buffer.

1. Go to the beginning of the buffer with
2. Place the beginning mark with
3. Now go to the end of the buffer with
4. Mark the end of the buffer with

different name. In
First we must mark

and

Now type AKW. As AKW is executed you will see the banner prompt
for a file name. Type one of your choice. The edit buffer will
now be written out into the new file, and you will be left in the
original file name.

To summarize, a typical way to use the system involves
building new functions in the editor buffer. We can do this by
calling EDIT with an unused file name and then begin writing
functions. Once we have a sufficiently interesting collection in
the buffer, we use AKS to save our work and then read the text
into the TLC-LISP workspace. That's the next topic.

Bow To Get The Text Into The TLC-LISP Workspace

Given that we can save text on files,
to read that text into LISP's workspace.
available here too.

we must also be able
Several options are

* We may read the whole edit buffer into memory. This is
accomplished by AKJ. As this command is executed, you will see
the results displayed in the banner. If an error is discovered
during this operation, the system will "beep" and the cursor will
be positioned at the location of the error. After identifying and
correcting the error, you may wish to execute another AKJ, or you
might wish to execute a sequence of our next operation, AJJ.

* We may read in an expression-at-a-time by AJJ, AJJ will
evaluate the expression following the cursor, and move the cursor
past the end of that expression. In particular, if the cursor is
at the beginning of an expression like:

(de foo {x)

...)
then AJJ will install foo's definition and move the cursor past
the right parenthesis that completes foo's definition. This means
that a sequence of AJJ's will incrementally execute the contents
of the edit buffer.

The Editor -- 11

TLC-LISP Documentation Part II

Soae Trick• For Finding Your Way Around In The lditor.

* The AJP coa■and will find a matching right-parenthesis. Put the
cursor ata left paren and type AJP.

error is
of right
we we're

* The right-parenthesis fence trick. One common syntax
unbalanced parentheses. We tend to place a collection
parentheses at the end of each definition. This
guantanteed at least that the definition will
so■ething--it may not be correct, but at least the
stop at the fence and not continue gobbling text.

parse to
parser will

* Once the text buffer has been read successfully, then AJP can
be used to analyze the finer parenthesis structure of definitions
that don't seem to be acting as expected.

What To Do Now That The Definition• Are Installed.

Now that the definitions have been turned into TLC-LISP
code, we'd like to exercise the■. We could do this by writing
expression-like text in the buffer and then use AJJ. The results
of the evaluation will appear in the banner line. This strategy
is only useful for small test cases. More usually, we will leave
the editor, passing control to the interpreter. As with other
editor operations, we have several options here too. The ■ost
usually sche■e is to press the "escape" key (in the future, we
will write "type ESC" to mean "press the escape key"). Type BSC
to suspend the editor (rather than exit from it) and return to
the interpreter's screen format.

Whenever you wish to return to the editor press the "escape"
key--this time followed by a carriage-return, and you'll return
to the editor (in the furute, we will refer to the "escape,
carriage-return" sequence as simply ESC-RBT). Try this entry-exit
protocol a few ti■es, ending up in the editor.

The BSC/ESC-RBT toggle is an effective ■ethod for progra■
development. It can be used with AKS and AKW to keep the external
files consistent with the internal working code.

It
session
options:

is also possible to terminate (rather than suspend) a
with the editor. This can be done by a series of AK-

AKX leaves editor after writing the latest version of the file.

AKQ leaves the editor, after giving the user a chance to update a
file if the buffer has been modified.

The Editor -- 12

TLC-LISP Documentation Part II

An Advanced Feature--The IDIT Stack.

The editor ■ay be called recursively, allowing you to
suspend one edit while editing another file. If you suspend an
editing session with the ESC option, then a subsequent call on
EDIT will invoke a new copy of the editor and it in turn can be
suspended. The result is a stack of suspended edits. To pop
elements off the stack, exit with AKX or AKQX and the previous
edit will be uncovered.

So■e lxa■ples Of The lditor In Action.

Below is a reproduction of a file START.LSP. It contains
several errors--so■e syntactic, some semantic.

; The file START.LSP

(de foo (x)
(if (zerpo x) l (* x (foo subl x)))))))

(de bar (x y) (cons x y)

(de baz (x) (car x))))))))))

end of the file

Assume we read this file into the TLC-LISP system by:

(edit "start")

Note that we'll get start.lsp because of the implied .lsp
file extension.

Once in the editor we can execute the file with AKJ.

To check that the definitions are installed, type ESC to
suspend the editor and return to the TLC-LISP interpreter.

Typing foo (followed by a return) displays the definition of
foo. But typing bar gets us something we may not have expected.
We see that the definition of baz got included within bar. A
moment's reflection reveals the problem--an insufficient
collection of right parentheses at the end of bar's definition.

The Editor -- 13

TLC-LISP Documentation Part II

Type ESC-RET to return to the editor. Position the cursor at
the end of bar's definition and add some right parentheses. In
this case, we can see that one will suffice, but the parenthesis
fence trick is a good habit to develop. Now go to the beginning
of the bar definition and type two AJJ sequences. The first one
will install bar; the second AJJ will install baz.

Just to be safe, we can do a AKS to save the file, and then
type ESC to return to the interpreter.

Now, at least the low-level syntax problems have been
licked. Let's try to run some of these examples.

The Editor -- 14

TLC-LISP Documentation Part II

Debugging: Finding and Fixing Se■antic Errors.

If we tried

(baz '(l 2)) or

(bar 2 3)

we'd get the results we should. However

(foo 0) gives an error:

unbound-symbol zerpo

The proble■, of course, is a misspelling--we meant to write
zerop. The simplest solution in this case is to return to the
editor and change the text (in situations in which a substantial
computational investment has been made, such a restart would not
be appropriate).

To reenter the editor type ESC-RET and move to the offending
zerpo symbol and correct it. If this were a large file, we could
use AQF and AL to find the symbol.

Now go to the beginning of the definition and execute a AJJ
sequence, and then ESC to the interpreter. We'll now find that:

>>> (foo 0)
1

For a more comprehensive test we'll try

(foo 5)

Alas, this supplies us with another error message:

too-many-arguments

To discover the offender, we use the back-trace function,
bt.

>>> (bt)

Debugging -- 15

TLC-LISP Documentation Part II

You will see a sequence of frames on your screen. These
frames contain indications of the dynamic state of the ■achine at
the time of the error. The first frame indicates the latest
state--the error frame, and the next one (frame 2) indicates the
context in which the error occurred.

That frame looks like:

+--- FRAME 2
Fen: foo
Arg: (subl x)

The Arg-slot indicates the expressions that were to be
evaluated as arguments to the function described in the Fen-slot.
Since Arg is a list of two elements, it says we passed to
arguments to foo. Therein lies our problem: foo expects a single
argument, but we've given it two argu■ents--subl and x. The
problem is a set of missing parentheses, so we return to the
editor using ESC-RET.

So we edit foo, replacing

(foo subl x)

(foo (subl x))

with

Now move to the beginning of the definition;· do a AJJ; then
a AKS; then ESC. Finally we can try

>» (foo 5)
120

This is a simple introduction to TLC-LISP, to the editor,
and to debugging. But it is a productive path through the
complexity. As you gain confidence with your command of the
language or as you gain frustration with the limits of these
techniques, examine the documentation for other options.

Debugging -- 16

TLC-LISP Documentation Part II

How to Use TLC-LISP86
with

"LISP: A Gentle Introduction to Symbolic Computation"
by David S. Touretzky

As with any language, one's competence and skill increases
with exposure and practice. The TLC system comes with several
examples of LISP source code that show bow to use the language
in practice. These examples should prove valuable later. But
first we need a bridge between them and the one-line code of the
previous sections. That bridge ■ust serve two purposes. First, it
should expose the beginner to the ■ecbanics of the language--its
primitive words and the techniques for combining those words to
make meaningful phrases. Equally important, the bridge must
introduce the components of the language in a way that develops a
sense of style and elegance in the new user.

It is particularly important for a LISP novice to understand
issues of style--LISP is a sharp tool, a tool that contains few
built-in stylistic restrictions. As such, LISP is succeptible to
misuse. Furthermore LISP is a twenty-year old tool. As such, it
still contains some artifacts of ancient coding style (progs and
gos), LISP shares these horrific features with its general
purpose bretheren of that age.

LISP also still contains some rather muddled notions in its
own right. It was the first practical functional programming
language and though it tried mightily, it contains several
confused notions. In particular traditional LISPs (including
Common LISP) have confused the notions of name versus object.
These confusions in LISP make it difficult to build a clean,
modern treatment of functional programming techniques in a
traditional LISP. We believe that TLC-LISP86 offers a reasonable
compromize between historical LISP (LISPl.5) and future LISP-like
languages (Scheme). We believe that Touretzky's book offers a
good vehicle for understanding LISP in general and, provided that
a few precautions are taken, provides a good tutorial for TLC
LISP. We therefore have developed a package of TLC-LISP code that
will emulate the LISP as described in Touretzky's book except in
those places where we believe a compromise cannot be made.

In the poem entitled "i sing of olaf", e.
with the question of compromise. Before moving
mode, we will outline a few areas we find
beyond compromise.

Tutorial -- 17

e. cu■mings deals
into the tutorial
indigestible and

TLC-LISP Documentation Part II

Irreconcilable Differences

Though all the differences between TLC-LISP86
Touretzky's book could be washed away with a compatibility
we believe that a few differences are so important that
cannot be compromised. Specifically:

* Function name versus function object*

and
file,

they

In traditional LISP a functional parameter will be quoted,
as in

(APPLY 'PLUS '(2 3)) Touretzky, page 92.

but 'PLUS references a sy■bol--the na■e of a function, not a
function. Si■ilarly, in:

(APPLY '(LAMBDA (X) (CONS X NIL)) '(A))

'(LAMBDA (X) (CONS X NIL)) references a list, not a function.

The resultant confusion between name and object has muddled
LISP for decades. LISP got away with the confusion because the
■ajority of LISP program■ing activity has steered away from
functional parameters--for good reason. However as an
appreciation for the power of functional programming techniques
grew, the proble■s with LISP' ■ confused notion of function became
undeniable. In the long run, the rule will be lexically scoped
languages with first-class functional objects. In the interim, we
build a compromise in TLC-LISP.:

TLC-LISP enforces the distinction between a function and its
name. Thus, in TLC-LISP APPLY expects its first argument to be a
functional object, not to be something that names a functional
object. So in TLC-LISP we write

(APPLY PLUS '(2 3))) rather than (APPLY 'PLUS '(2 3))

Likewise '(LAMBDA (X)(CONS X NIL))) is only a list;

while (LAMBDA (X)(CONS X NIL))) a functional reference.

Viewed in terms of Touretzky's functional "box notation", a
function that expects a functional argument would have to have a
"box", not a list on one of its inputs.

We believe that this distinciton between object and
representation is important. That is why TLC-LISP is built the
way it is. That distinction is sufficiently important that we did
not include code to make TLC-LISP compatible with Touretzky's
LISP regarding "functional" parameters.

Tutorial -- 18

TLC-LISP Documentation Part II

* LISP 1.5 PROGs versus &AUX, DO, REP, FOR, CATCH, and THROW*

The early LISP implementations introduced iteration in a
fashion consistent with those times--1958. The resulting
structure, called the FROG-feature, remains even in modern LISPs
though many cogent arguments have been given for its demise.
Well, TLC-LISP killed the PROG and its assorted paraphernalia
many years ago and is not about ready to resurrect it.

TLC-LISP offers several options in place of the FROG-feature:

For local names (PROG variables), we supply &AUX variables.

So replace (DE FOO (U)
(PROG (X Y Z)

(SETQ X x-init) (SETQ Y y-init)
)

with (DE FOO (U &AUX (X x-init) (Y y-init) Z) . .)

-- For controlled iteration use DO, FOR, or REP.

Replace LOOP

with

(AND (ZEROP N) (RETURN X))
(SETQ X (CDR X)) (SETQ N (SUBl N))

(GO LOOP)))))

(DO ((X X (CDR X))
(N N (SUBl N)))

(((ZEROP N) X))
)

-- For a more simple iteration, FOR is appropriate:

(FOR (I 1 20) (PRINT I))

-- For the simplest of loops, REP may suffice:

(DE DELAY (N) (REP N ()))

-- For non-structured control operations, use CATCH, THROW, and
UNWIND-PROTECT. These are sufficiently advanced that we'll pass
on their discussion for now.

With these few caveats in mind, we feel comfortable in
offering Touretzky's book as a "Gentle Introduction to Symbolic
Computation."

You may find it rewarding to examine TOURETZKY.LSP. Type

(edit "touretzky") and browse around.

Tutorial -- 19

TLC-LISP Documentation Part II

Bow to Use the Tutorial

First, don't turn on the machine. Read the first two
chapters of "Gentle" just to get a feel for the ideas. Then turn
on the machine, load TLC-LISP and after the initialization ritual
is finished, type:

(load "touretzky") RTN

When the prompt appears, type

(enter-dt) RTN

and you will be transported to the Touretzky package named dt.
You may verify this by examining the value of the symbol named
package:

>>> package RTN

dt:

When you wish to leave the dt-package, type

(leave-dt) RTN

Now, however, we want to explore the book. At this point you
may begin working through Chapter three of the Touretzky book. We
suspect that you'll find it worthwhile to bring the editor into
the loop early.

For example, simple things like

(PLUS 2 2)

can be done within the editor by:

* Load the editor
* Type the expression
* Move the cursor in from of it.
* Type AJJ.
*Seethe result in the banner window.

As computations get more complex, you'll soon find need for
the editor. Perhaps try:

(edit "session")

to load up the editor with a new file, and then use the AKS-AKJ
ESC/ESC-RTN sequence to move between the editor file and the
interpreter.

Tutorial -- 20

TLC-LISP Documentation Part II

Re■arks by Section

This section is a running commentary to be read in
conjunction with "A Gentle Introduction". It contains comments
that came to mind in reading the book and comparing it with TLC's
ideas.

Chapter 1.

The "box notation" for functions is a good idea to
cultivate, both intellectually and in terms of programming style.
Though LISP will support the arbitrary use of global variables
and ill-structured code, such behavior is not reco■mended. So if
you think about programs as implementations of such boxes, you'll
develop a functional style of LISP programming.

Chapter 2: Lists

Section 5. (page 38) The introduction of list
implementation seems premature. Addresses, numbers, and pointers
are irrelevant to a discussion of lists and list operations.
Think of lists as abstract objects, not addresses in a machine.

Chapter 3: Eval Notation

Introduction. The comment "In Lisp, functions are data" is
not quite accurate in Touretzky's LISP (and many others). These
LISP's confuse the notion of function with their representation.
See the section "Irreconcilable Differences", particularly the
comments about functional "box notation". You might consider how
to extend his box notion to support REAL functional objects.

Section 5. (page 70) The "quoting" issue is another instance
of object-versus-reference or use-versus-mention. You might think
about a LISP-like language (whatever that means) that has only
numbers and strings for data objects. Quoting would not come up
here, because we would not be able to refer to components of the
language (symbols or identifiers) as data objects. This is
typically the case in other general purpose languages, and such
languages do not need quotes. Furthermore, if we took ~hat same
LISP-like language and only added functional arguments and values
(REAL functional objects, that is) we would still not need
quoting. We'd be able to refer to functional objects by their
names as we do in TLC-LISP:

(foo 3 bar)

For example, the occurrence of foo means function application,
and the occurrence of bar indicates a functional parameter.

Tutorial -- 21

TLC-LISP Documentation Part II

Quoting only becomes an issue when we allow components of the
language to become objects of the language; that is, when we can
talk about the language within that same language. That's a
separate issue from that of functional objects.

Section 8. {pa•e 74) Touretzky follows traditional MacLISP
in using DEFUN a·• the sinl(le ■echanis■ for function definitions.
In the early chapters, DEFUN is used in the form

(DEFUN <na■e> <formal parameters> <body>)

which is equivalent to TLC-LISP's

(DE <name> <formal parameters> <body>)

We have included this version of DEFUN in the compatibility
package.

However DEFUN a'la Touretzky can also be used to define
other function-types, specifically special forms as described on
page 260 of "Gentle". There he writes:

(DEFUN GARBLE FEXPR (X)
(CONS 'SAY (REVERSE X)))

The compatibility package does not support this extended DEFUN,
believing that overloading the operation is not productive.
Rather, we support DF for special forms, DM for macros, and DMC
for character (read) ■acros. For example,

(DF GARBLE (X)
(CONS 'SAY (REVERSE X))))

A ■ajor point to notice about special forms like DEFUN is
that they do not follow the "function-followed-by-arguments-to
be-evaluated" ritual. When we write

(DEFUN SUB2 (X) (SUBl (SUBl X)))

we do not expect each component of the expression to be evaluates
as we would if presented with following list of similar
syntactic appearance:

(LIST SUBl (LIST) (SUBl (SUBl X)))

Namely, LIST will evaluate all three of its arguments, finding a
primitive routine as the value of SUBl, the empty list for the
val;ue of (LIST), and will complain if it cannot find a value for
x.

Tutorial -- 22

TLC-LISP Documentation Part II

However, DEFUN will not evaluate any of its arguments, but
rather act like an assignment, associating its second and third
arguments with the symbol that it finds in its first argu■ent
slot.

Operators like DEFUN are callled Special Forms because the
handle their arguments in special idiosyncratic fashions. Other
special for■s we' 11 see are IF, COND, .FOR, and CATCH, for
exa■ple.

Section 10. (page 77) The question of variable bindings is a
very important one--one which LISP has tended to muddle.
Specifically, consider the following example from "Gentle":

(DEFUN SQUARE (N) (TIMES N N))

Traditional LISP treats SQUARE and TIMES differently from N,
not just that the for■er are functional references and the
latter are nu■eric (in this case); but it is possible for the
three sy■bols to have both functional and simple values
simultaneously. This leads to the following kinds of scummy code:

(DEFUN SQUARE (TIMES) (TIMES TIMES TIMES))

and the LISP interpreter is required to discover which value of
TIMES is ■eant to be used in each context. Unfortunately, such
LISP interpreteres are not always able to guess the correct
binding.

In contrast, we believe that SQUARE, TIMES, and N are all of
the same general category--symbols that play the role of
variables. TIMES and SQUARE are names of functions, while N names
a nu■eric value. We believe that such role-playing sy■bols can
carry but a single value at any one time; sometimes the value can
be functional (TIMES and SQUARE) and sometimes the value can be a
si■ple object (N). But at ■oat one such value, please. That seems
self-evident from a mathematical perspective, and is the way TLC
LISP handles variables and their bindings.

We believe that the "double value" hack is without
integrity; it only maintains its usefulness because of LISP's
deeper problem with dynamic scoping. For consider the last SQUARE
exa■ple. If TIMBS can only take on a single value, all three
occurrences of TIMES in expression

(TIMBS TIMBS TIMBS)

reference the sa■e value. Such pathologies can be spotted easily,
but they are indicative of a deeper proble■. Namely that in a
dynamically scoped LISP, any formal parameter has the potential
of hiding (or shadowing) any na■e that will be accessed within
the dynamic scope of that formal parameter.

Tutorial -- 23

TLC-LISP Documentation Part II

So if we write

(DE FOO (N X LIST) <function body>)

then any attempt within the execution of <function body> to
reference the system's LIST function will fail; such a reference
will get the value of FOO's third parameter. (In fact, we can get
around this problem by using the package system, placing FOO's
LIST symbol in a different package, and referencing the system's
LIST as :LIST -- ugh).

While the dual function-value hack will stop many of these
problems, it doesn't solve the problem. The solution is lexical
scoping. Modern LISP's are moving toward that position. In the
interim, TLC-LISP would rather anticipate the future than
perpetuate the past.

Meet the Computer (page 80). Experimentation and observation
is appropriate here. There are some differences between TLC and
MacLisp error messages. Our prompt indicator is>>> rather than
asterisk (*), and our "grinder" is called PP, not GRINDEF.
Rather than sugar-coat the differences, we have left them. You
should learn to accommodate slight differences in systems.

Advanced Topics 3

1. A Note on Lambda Notation. (page 86) Touretzky remarks
that "LAMBDA is not a function, it is a marker treated specially
by EVAL." Ugly. In TLC-LISP, LAMBDA is not treated specially by
EVAL, rather it is a Special For■ that manufactures a function
type object from the components found in the body of the LAMBDA.

typing

TEST

2. Functions of No Arguments. (page 87) A simple comment:

will retrieve the function definition in TLC-LISP.

3. Dynamic Scoping. (page 87). This section indicates the
roots of many of LISP's problems. The dual function/value hack
allowed LISP to prosper over its first twenty years of activity
because people tended to write rather traditional code, staying
away fro■ the problematic areas of scoping--namely functional
objects. As the power of functional programming became more
widely appreciated, the weaknesses in LISP's implementation of
scoping became more obvious.

Tutorial -- 24

TLC-LISP Documentation Part II

5. EVAL and APPLY (page 92). With the appearance of APPLY,
the distinction between the name of a function (Touretzky) and a
function (TLC) is made explicit. Where Tourtezky writes:

(APPLY 'PLYS '(2 3))

we write

(APPLY PLUS '(2 3))

Chapter 4: Conditional•

General Comment: TLC-LISP also supports a type of CASE
expression, named SELECTQ. See the TLC-LISP documentation.

Chapter 5: Global Variable• and Side-Bffecta

General Comment: Why introduce this here! If you want to be
conservative, introduce iteration here; if you want to be
liberal, the applicative operators or recursion would be
appropriate; but this is down-right reactionary.

Specific comment: Notice the two SETQ's on the bottom of
page 120, giving values to FIRST and REST. These assignments
could destroy the functionsof the same name in TLC-LISP. If you
examine TOURETZKY.LSP you'll se how we solved that problem.

Chapter 6: List Data Structures

Section 4. Lists As Sets. You might want to compare our
implementation of the set functions (in touretzky.lsp) with those
on page 286 of "Gentle". We have combined a lot of common code to
highlight the similarities in the set algorithms.

Advanced Topics 6. (page 155) EQ versus EQUAL. Compare this
with the discussion in the TLC-LISP documentation on identity
versus indistinguishability, and object versus value (pages 22-24
of Section I). There's a lot more to EQ and EQUAL than pointers
and addresses.

Another facet of equality involves a practical issue. When
are two numbers equal? An integer 1 and a floating-point 1 are
equal in some measure, but what about comparison of two floating
point numbers that differ in a barely perceptible way?

Tutorial -- 25

TLC-LISP Documentation Part II

Chapter 7: Applicative Operators

Thia is a very nice touch. It starts to bring the functional
power of LISP-like languages into play. We would rather have seen
Chapters 7 and 8 (recursion) where Chapter 5 (side effects) was,
but ...

Section 2. The APPLY-TO-ALL Operator. (page 165) The version
we supply in touretzky.lsp expects a function, not a function
na■e as argument. Thus we write

(APPLY-TO-ALL SQUARE '(l 2 3 4 5))

where Touretzky writes

(APPLY-TO-ALL 'SQUARE '(l 2 3 4 5))

We will insist on maintaining this difference throughout:

Section 3 La■bda Expressions
(lambda (x) (times xx)) is a function

'(lambda (x) (times xx)) is a list.

Section 4 The FIND-IF Operator
oddp is a function
'oddp ia a symbol

Similarly for Section 5 and 6.

Section 7. The REDUCE Operator (page 176). As far as we
know, REDUCE-like operators were introduced into LISP-like
languages with the birth of the LIT operator (standing for List
Iterator) by Strachey and Barron (1966). See Anatomy of LISP page
196.

The LIT operator took three arguments: the function the
argu■ent list and the ter■inating value. Thus for example APPEND
could be defined as:

(DB APPEND (X Y) (LIT CONS X Y)) ; note CONS, not 'CONS

Now what about REDUCE? It makes more sense to us to have the
terminating value manifest in the notation than hidden on the
property list. Thus our version of REDUCE expects three
arguments. Furthermore the "Gentle" REDUCE contains too many
unrelated special cases. As a result, we've supplied LIT-style
reduction operators for REDUCE, LEFT-REDUCE and RIGHT-reduce. You
will have to modify Tourtezky's exa■ples accordingly.

Tutorial -- 26

TLC-LISP Documentation Part II

Chapter 8: Recursion.

Chapter 8? A strange place for a key facet of functional
progra■■ing. This should have come earlier. Be that as it may,
recursion is an elegant way to build complex computations with a
few lines.

Tail recursion is subject of importance both for the style
of progra■ming that it develops, but fro■ a practical efficiency
driven, perspective. Specifically, the interpreter can take
liberties with the (recursive) execution model and execute many
instances of tail recursive computations without consuming stack
space.

A technical remark: when a tail-recursive instance is
recognized, the interpreter can reuse the existing stack frame,
replacing the values in the frame and re-executing the code body,
effectively translating something like (Touretzky, page 223.):

(DEFUN TR-REVl (X Y)
(COND ((NULL X) Y)

(T (TR-REVl (CDR X) (CONS (CAR X) Y)))))

into:

(DEFUN TR-REVl (X Y)
(PROG NIL

LABEL (COND ((NULL X) (RETURN Y)))
(SETQ Y (CONS (CAR X) Y))
(SETQ X (CDR X))
(GO LABEL))))))

Two points:

* Minor note: the ancient LISP compilers (circa 1965) used to do
this kind of transformation before interpreters were constructed
to do it (circa 1975, Greussay),

* Major point: if compilers and interpreters can unwind such
recursions into efficient iterative code, why persist with the
PROG-GO hack?

Tutorial -- 27

TLC-LISP Documentation Part II

Co■ing of Age in LISP

By this time you should be reasonably comfortable with
Touretzky's book, with TLC-LISP, and with LISP in general. You
should also become reasonably immune to local distinctions and
quirks of specific LISP dialects. So now we'll change gears and
accentuate the differences rather than the similarities. A good
place to start is to load touretsky.lsp into the editor, and just
compare it with Appendix C (page 279).

Chapter 9: lle■entary Input/Output

Elementary Input and Output is never "elementary". This area
is always the ■ost idiosyncratic portion of a language. Rather
than attempt to reconcile Touretzky to TLC we'll highlight the
advanced features of TLC-LISP input/output.

All of the primitive 1/0 operations advertized in
Touretzky's book are supported in TLC-LISP. The function MSG is
also supplied in the compatibility file. The interesting portion
of the TLC 1/0 system involves the "source" and "sink"
possibilities for input and output respectively.

All TLC 1/0 functions will accept an optional final argument
that specifies the origin of the input character stream (source)
or the target for output characters (sink). At system
initialization the I/0 objects are set up to interact with the
console and keyboard. A LOAD operation will redirect input to
specified file, for example. Or we could define a stream to drive
a printer by;

(setq lpt-stream (stream lpr)) and then

(print <expression> lpt-stream) will print the expression on the
device.

As this last example indicates, in the most general setting,
the sink/source object is a stream that contains a piece of LISP
code that specifies what to do with, or where to get, the
characters.

File 1/0 in TLC-LISP is again as robust as that expected by
Touretzky (page 241), but again it differs in specifics.

This is all the bad news about 1/0. The good news is that
for most application you can ignore it. The default reader and
printer supplied by the system offers clean communication paths.
The saving and restoring of files is well-handled by editor
interaction. And the initialization of applications packages is
made painless by the varieties of LOAD.

Tutorial -- 28

TLC-LISP Documentation Part II

Chapter 10: Iteration.

Section 2, "The PROG Special Form" should not be read. PROG
is an artifact of 1960 LISP and, as such, we believe that there
is no reason for it to persist. The effect of PROG variables is
much better served by &AUX-variables. Gos and their associated
labels are better served either by DO or by CATCH-THROW pairs. So
go directly to Section 3, "The LET Special For■",

One remark should be made about Section 4, "The DO Special
Form". Specifically, the TLC version of this construct is more
general than that supported by Zeta LISP (the DO described in
"Gentle"). In their DO there is a single end-test condition; in
TLC-LISP there are multiple tests. Thus where page 252 says

(condition action-1 ... action-n)

TLC-LISP expects

((condition-1 actionl-1 ... actionl-n) . . .)

Advanced Topics 10.

Section 3: Defining Macros (page 260). Remember that TLC
LISP uses DM to define a macro.

Section 4: Functions with Arbitrary Numbers of Inputs. {page
261) TLC-LISP uses the &REST-mechanis■ rather than LEXPRs. So
we'd rather write POLY-PLUS as:

(de poly-plus (&rest 1) (reduce+ 1 0)))

Why be more obscure than necessary?

Chapter 11: Property Lists

Before getting into the pros and cons of property-lists, we
make one religious comment about the book's functions:

(GET symbol propname)

(PUTPROP symbol propvalue propname)

The irregularity in the first two argument positions of
these functiions has always annoyed us.

Tutorial -- 29

TLC-LISP Documentation

So in TLC-LISP we write:

(GETPROP symbol propname)

(PUTPROP symbol propnaae propvalue)

Part II

We certainly believe that property-lists are useful,
otherweise we would not have implemented them in TLC-LISP.
Historically, p-lists were a breeding ground for data-driven
programming techniques--a precursor of classes, instances, and
message-passing, made famous by Smalltalk.

One annoying feature of the usual implementation of
property-lists is their dependence on a specific symbol name.
There is no notion of an anonymous p-list. This is unfortunate
since it spoils the notion of p-lists as first-class objects. If
property-lists were to hold a more prominent position in future
Lisp programming techniques, then we'd consider extending them.
However, the notions embodied in the TLC-LISP86 class system
appear to offer a superset of the p-list features, and the class
concepts are first-class in TLC-LISP86. Thus we leave p-lists in
their historical state. For a ■ore detailed discussion of the
applications of p-lists, classes, and data-driven programming
techniques see the TLC-LISP documentation.

Advanced Topics 11

This section of the book is out of date. MacLisp has not
used the property-list technique for functions and values for at
least ten years. The preferred technique stores functions and
values in special slots within the structure that implements a
symbol. In fact, the treatment attributed to Franz LISP (on page
274) was taken fro■ MacLisp. TLC-LISP also follows this
tradition, though as we noted before there is a single Value Cell
here. Properties other than the function/simple value of a symbol
are stored on the p-list and accessed via the PLIST function.

Suaaary

As you've seen, we have some problems with both the LISP and
the programming style advertized in Touretzky's book, but in
general it is a good introduction to the topic.

Tutorial -- 30

TLC-LISP Documentation Part II

When learning a
a reasonably large
particularly useful
scope is as broad as

new language, it is always useful to examine
program written in that language. This is

when learning a language whose power and
that of LISP.

One complaint about LISP is its syntax; while other
languages expend a great deal of effort on complex notation, LISP
uses simple variations on the single theme --(<operator>
<operand-1> ... <operand-n>). The simplified notation has several
benefits, as we have seen. A benefit that we wish to exploit in
this section is the simplicity of the parser; the parser is the
algorithm to translate the external list notation into the
internal tree representation. In a moment we will write a LISP
parser in about a half-dozen lines of LISP. Through a series of
simple tansformations, we will use the power of LISP and its
notational simplicity to write a parser that will camouflage the
LISP syntax under an Algol-like notational blanket. The final
parser will be user-modifiable and table-driven; it will exploit
LISP's property lists to maintain the tables. Those tables will
contain both data and parsing programs, exploiting the
program/data duality to give us a flexible, compact and
understandable parser. It is ironic: to quiet the complaints of
the non-LISP community who believe LISP's syntax and the
above-■entioned programming features are obscure and difficult,
we depend on those very attributes to develop a flexible and
highly readable parser for those people. It would be a non
trivial exercise to encode this parsing scheme in another
language without sacrificing flexibility or clarity.

By the time we have constructed the last Algol-like parser
you aay feel that the power of the undecorated LISP is
sufficiently seductive that the notational "convenience" which we
constucted will go unused.

The example of this section requires some concentration; the
problem is non-trivial and LISP may be new to you. However, the
major difficulty is unlearning old programming habits and
restriction, and learning how to use the power of LISP to
describe complex problems which could not be succinctly described
and designed with other tools. Let us begin.

We discuss a sequence of parsers, leading
algorithm that mirrors LISP's list-structure
generalized parser that is capable of supporting
pre-processor for LISP. All these algorithms will
basic scanner named SCAN. SCAN processes an
looking for basic objects --symbols, numbers, and
delimiters; it will construct the basic objects,
representations as values, and will return

Large Examples -- 31

from a simple
reader, to a
an Algol-like
use TLC-LISP's
input stream,
strings-- and

returning their
a character

TLC-LISP Documentation Part II

representation of the delimiter; in TLC-LISP, a character
constant is represented as \<char>. The scanner is also able to
recognize comment strings and strip them out of the input. All of
SCAN's knowledge about what is a symbol, number, string,
delimiter, or comment, is stored in a user-modifiable table; see
TYPECH for a description of the tabular information. Initially,
we will use the default LISP settings; later parsers will modify
that table, allowing us to describe a totally new syntax.

Our first parser is a simple version of TLC-LISP's READ; it
only recognizes list-notation, not dotted pairs.

(de READER (&AUX obj)
(selectq (setq obj (scan))

(\((read-rest))
(ow obj)))

(de READ-REST (&AUX obj)
(selectq (setq obj (scan))

(\((concat (read-rest) (read-rest)))
(\) nil)
(ow (concat obj (read-rest))))

The actual parser in TLC-LISP is more complex. It performs
error checking and in fact is a non-recursive implementation
based on an algorithm described in Anatomy of LISP; however, the
conceptual essence of a LISP parser is cogently and concisely
described in READER and READ-REST.

Clearly, this READER will understand nothing but LISP; our
search for generality must begin by removing this unilateral
view. The key is to note that READ-REST terminates when it sees a
\); that is, READ-REST is a special instance of an algorithm we
might call READ-UNTIL, which reads the input stream until is sees
a designated character; in the case of READ-REST, the designated
character is a right parenthesis. That is:

(de READ-REST ()
(read-until\)))

Our intention here is to move all of the language-specific
information out of the parsing technique, and install that
knowledge in tables which a general parser can refer to. We have
seen something like this already: read macros are table-driven
procedures which are invoked when a special character is seen in
the input stream; this is the second notion we need for effective
generalization.

The general scheme that we are about to elaborate --Top
Down Operator Precedence-- is due to Vaughan Pratt (see the
Parser Bibliography at the end of this section). The essential

Large Examples -- 32

TLC-LISP Documentation Part II

problem in parsing is to discover the structure of the text
being input to the system. To discover structure in a string of
input means to determine the entities of the language, and to
determine the interrelationships between them. A scanner finds
the entities; the parser detemines the interrelationships. We
were all probably introduced to the formal notion of parsing
through the same problem: "how do you group (or parse) x+y*z?"
The solution was to associate the "y" with the "z", effectively
giving x+(y*z) instead of (x+y)*z• We say that the operator *
"takes precedence over", or "binds more tightly than" +. This
idea of "operator precedence" was formalized by R. Floyd (see the
Bibliography). The Pratt parsers use an extended precedence
relation, which associates "left and right binding powers" with
operators. For example, given operators 01 and 02, and a segment
of text:

... 01 ... 02 ...

if the right binding power of 01 is greeter than the left binding
power of 02, then the (parsed) text between 01 and 02 is
associated with 01.

In the implementation, adapted from one written by Martin
Griss, the left- and right- binding power of an operator is
stored as a dotted pair of numbers on the property list of the
operator under an indicator named INFIX. For example:

(putprop '+ 'infix '(10 10))
(putprop '- 'infix '(10 10))
(putprop '* 'infix '(12 12))
(putprop '= 'infix '(5 . 5))
(putprop '? 'infix '(-2 . -2))

where= will be used for an assignment operator, and? will be
used to indicate the end of an expression.

The parser is given a binding power end an initial token,
and parses from left-to-right until it finds an operator with
left binding power greater then the given binding power. When it
comes upon en operator with a lower left binding power it
applies the parse algorithm recursively. For example, the
phrase:

Z = X + y * Z ? would parse es (= Z (+ X (* Y z)))

Given this internalized form of the input,
translate it into a list which can be evaluated
definition of PARSE follows:

Large Examples -- 33

we can further
by LISP. The

TLC-LISP Documentation Part II

(de PARSE (rbp exp &AUX (ex2 (getprop obj 'prefix)))
(if ex2

(setq exp (list exp (parse ex2 (scanit))))
; else
(scanit))

(do ((ex2 (getprop obj 'infix) (getprop obj 'infix)))
(((or (null ex2)

(ge rbp (car ex2))) exp))
(setq exp (list obj

ex2
(parse (cdr ex2) (scanit))))))

(de SCANIT ()
(setq obj (scan))

This is all there is to the parser! The parse behavior is
controlled by the information stored on the property list of the
operators. Operators have INFIX or PREFIX properties; all other
atoms are operands.

The next embellishment would be to allow an operator to
control the parse locally. For that, we could store a program on
the property list. This program could contain arbitrary
computations, including code to parse more of the input stream.

Large Examples -- 34

TLC-LISP Documentation Part II

Floyd, R., Syntactic Analysis and Operator Precedence, Journal of
the ACM, Vol. 10, pp 316-333, 1963.

Pratt, v., Top Down Operator Precedence, Proceedings of the ACM
Symposium on Principles of Programming, pp.41-51, 1973.

Pratt, V., CGOL - An Alternative External Representation for LISP
Users, MIT AI Lab, Working Paper No. 89, 1976.

Large Examples -- 35

TLC-LISP Documentation Part II

Co■■and Line Options

The following options may appear in the command line that
you type to the operating system to invoke LISP.

@<filename> instructs LISP to use the file <filename> instead of
the file LISP.SYS for automatic loading after startup.
Recall that the default extension is ".LSP" if none is
supplied.

P<num> instructs LISP to use <num> percent of allocated memory
for Lisp space, the rest for byte space. Lisp space is that
area containing CONS-nodes; byte space is the area
containing descriptor-based object, like strings, vectors,
and P-code. The default is sixty resulting in a 60/40 split.

M<hexadecimal number> sets the maximum number of paragraphs (one
paragraph is sixteen bytes) that Lisp will attempt to
allocate from the operating system. The default is OFFFFH
(one megabyte) This option is useful for Concurrent CP/M
systems to prevent Lisp from grabbing all available memory,
It is also useful for MSDOS version 2 to allow use of the
EXEC function to invoke a second copy of the MSDOS command
interpreter.

The defaults are equivalent to a command line like:

LISP @LISP.SYS P60 MFFFF

Command Line Options -- 36

TLC-LISP Documentation Part III

Part III -- TLC-LISP Manual

This section is a co■plete catalog of the primitives,
library functions, and constants in TLC-LISP. Bach function and
constant is listed in the index at the end of this manual. All
functions include a short description and an exa■ple of their
application.

Convention■

In the next sections we use the following conventions:

1. A word surrounded by angle bracket■ represents an element in
the category named by the word. For exa■ple <object> repre■ents
the category of objects. This category contains all of the data
objects that LISP may ■anipulate.

2. {<object>} represents zero or more instances (not necessarily
identical) of ele■ents in <object>.

3. Frequently we will wish to specify that an <object> be a
member of a specific class of !X~!~£!!£ LISP objects.

<atom> is anything that is not a dotted-pair (or a list).
That includes symbols, vectors, classes, and numbers for
example.

<symbol> is comparable to an "identifier". in other
languages; the first character is alphabetic and succeeding
characters are either alphabetic, numeric, or selected
special characters. Bxa■ples: A, Al23, AGA-MEM-NON, but not
lDERFUL.

<num> is expected to be nu■eric (fix, integer, or float) For
exa■ple, 123 (fix), 32456 (integer, base 10), t[2]10ll
(integer, base 2).

<flt> is expected to be a floating point number. For
exa■ple, 1.23 and 2.718B-4 but not 1 or "l" or A.

<str> is expected to be a string. For example, "abcABC"
and "123ASD" but not A or \A or 100.

<char> is expected to be a character object. For example, \A
and \1 but not A or "A".

<sexpr> is any well-formed LISP symbolic expression, atomic
or composite. For example, T, (A. B), and (ABC D) but
not (A,).

TLC-LISP Reference Manual-1

TLC-LISP Documentation Part III

<list> is expected to be an empty or non-empty list object.
For example, (ABC D} but not (A. B) or A. E■pty matching
parentheses (), and the atom NIL both represent the empty

~list.

<vector> represents a vector object. For example [ABC DJ
is a non-e■pty vector. [] is the empty vector.

Special characters (like [,], ., and") and particular
symbols (like numerals) are used to identify occurrences of
constant objects. A vector named RBAD-TABLB contains the
information that defines how characters are interpreted by TLC
Lisp--which characters are delimiters; which can appear in an
ato■, nu■ber, or string, for example. For some advanced
applications it ■ay be useful to change this table. See the
section on !B2Y! ~Bg QY!2Y! for more details.

4, It is also convenient to specify that an <object> be a ■ember
of a !!~~~!!2 LISP class.

<var> is a symbol that can be used as a variable. Therefore
numbers are disallowed as are the LISP reserved words: T and
NIL. This ■eans, for example that the names of TLC-LISP's
built-in functions are available as variable na■es. Of
course, the redefinition of built-in functions ■ust be done
with great care. Appropriate use of packages offers a better
solution than blatant redefinition.

<env> is an object of type environment, and is a collection
of alternating <var>s and <object>s. Such objects are used
in closures to represent the local state information, and
are used to represent ■ethods, instance variables, and class
variables in class-related objects.

<fen> is a LISP function; for example, <fen> may be a
primitive function object, a LAMBDA expression, or a closure.

<pred> is a LISP for■ that is expected to be
predicate; that is, its evaluation yields a
value, NIL for false, or non-NIL for true.

used as a
LISP truth-

<for■> is a LISP expression that meets LISP's syntactic
requirements for being an executable element. For example,
(A B) is a <form> since it represents the application of a
function named A to the actual parameter B; however (A. B)
does not represent any application. <form> ■akes no claims
about the evaluation; it could produce a value, cause an
error, or fail to terminate.

<stream> is an object that can be used as a sink or source
for LISP input and output. These are either constructed from
files or fro■ LISP functions.

TLC-LISP Reference Manual-2

TLC-LISP Documentation Part III

5. =>\ is to be read "evaluates to". This notation is used in
conjunct't!n with many of the examples in the following sections.

6. Finally ao■e general notes. The typical pattern we use for a
definitional description will be:

where <name> is the na■e of the function being discussed.
<Argu■ents> are the co■ponenta expected in an application of
<na■e>, and <type> describes the "calling style" of <na■e>. The
■oat co■■on instances of <type> are SUBR --a built-in, call-by
value function, and FSUBR --a special for■. See Part I for a
co■plete discussion of calling styles.

A few built-in functions are of type LSUBR, meaning they are
call-by-value, but will take an arbitrary number of argu■ents.
Some functions are defined in LISP --IXPR, FEXPR (special form)
and MACRO are interpreted for■s, PCODE, FPCODE (special for■) and
MPCODI (■aero) are compiled forms.

With these calling-style considerations, {<argu■enta>} will
be interpreted in two basically different ways:

a. As
nu■ber
LSUBRs.

the types of the values passed to <name> with a specific
required for SUBRs and a variable number allowed for

For exa■ple given:

(100 <ato■> <n1111ber> <sexpr>) SUBR or IIPR or PCODB

then a call (FOO (FIRST X) (ADDl 22) 'A) would fit the
constraints provided that (FIRST X) evaluated to an atomic object
since the value of (ADDl 22) is a nu■ber and the value of 'A is a
symbolic expression; the body of FOO would receive these three
values.

b. In the case of FSUBRs, as a pattern to be matched against the
textual form of the argument, since the actual para■eter is
treated as a list, rather than an expression. For example,

(BAR <ato■> <n1111ber> <aexpr>) JSUBR or JBIPR or FPCODB

could be called like (BAR X 22 'A). The body of BAR would see a
single argu■ent (X 22 (QUOTE A)) Note: Xis an atom, 22 is a
number, and the list (QUOTE A) is a symbolic expression.

TLC-LISP Reference Manual-3

TLC-LISP Documentation Part III

Object Types in TLC-LISP

The following
supplied in TLC-LISP.
following sections.

SYMBOL

is a brief description of the
More detailed descriptions appear in

types
the

Symbols are similar to identifiers in other programming
languages. They have three attributes: the print name, the value
and the property list. The print name is a string of characters.
The value can be any LISP object. The property list is a list of
properties (or attributes) and values.

FLOAT

An IEEE standard format single prec1s1on floating point
number. The 8087 numerics co-processor is supported.

INTBGIR

A thirty-two bit signed binary integer.

FIX

A ten bit binary integer that (unlike integer objects)
consumes no storage.

DOTTED PAIRS

The traditional LISP object, consisting of two other LISP
objects. The constituent objects are historically referred to as
the CAR and the CDR. Lists are a special case of dotted-pairs.

STRING

A vector of eight-bit characters; up to 63520 characters may
appear.

CHAR

A single eight bit ASCII character, stored more efficiently
than a one character string.

TLC-LISP Reference Manual-4

TLC-LISP Documentation Part III

VECTOR

A one dimensional array of arbitrary LISP objects, up to
31760 long.

STREAM

The object for input and output, consisting of source or
sink (which can be an arbitrary function) for characters and
storage for a lookahead (next) character.

FILE

An object representing a disk file consisting of a name
string, an access mode, a buffer and some operating syste■
specific data structures. Files are not usually accessed
directly, but are found in the source/sink field of a strea■ .

SUBR

A built-in call-by-value function.

FSUBR

A built-in function that does not evaluate its argu■ents.

LSUBR

A built-in call-by-value function with an arbitrary number
of arguments.

EXPR

A user defined call-by-value function.

FEXPR

A user defined function that does not evaluate its
arguments.

MACRO

A user defined function that constructs a list that is then
evaluated a second time.

TLC-LISP Reference Manual-5

TLC-LISP Documentation Part III

CLOSURI

An object consisting of a functional object and an environ
■ent of variables and associated values. When the closure is
applied, the closure's environ■ent overrides the current
environ■ent for references to those specific variables; it is of
particular importance to note that assigment-type operations can
affect the environ■ent, and thus any changes to the closure's
environ■ent will be saved when the closure co■pletes its
co■putation.

IRV

An environ■ent; a collection of variables and
values. It can be used as "local state" for closures,
applied as a finite function.

PKG

associated
or can be

A package; a collection of symbols and accessing rules,
useful for preventing na■e conflicts.

PCODI

User defined pseudo-machine code.

FPCODI

User defined pseudo-■achine code that does not evaluate its
argu■ents.

MPCODI

User defined pseudo-machine code that functions as a macro.

TURTLI

A graphics-oriented object possessing properties
position, shape, color, pen state, and heading.

CLASS

like

A class object has four attributes: the superclass, the
class variables (shared storage), the collection of messages and
their associated methods, and the collection of instance variab
les that beco■e part of any instance of this class.

TLC-LISP Reference Manual-6

TLC-LISP Documentation Part III

INST

An instance of a class consisting of the instance variables
(local storage) and the superclass.

UNBOUND

A special object indicating that an ato■ has no value.

NONI

A special type used internally.

ILLIOAL

A special type used internally.

ALOAD

The type for "virtual objects"; this type contains a string
representing a file na■e, and a representation of a position in
that file where we can find the Lisp text that defines that
object. See the section on Autoloading for ■ore details.

TLC-LISP Reference Manual-7

TLC-LISP Documentation Part III

Defining runctiona

There are three fundamental types of functions in TLC-LISP:
call-by-value functions, special for■s, and ■acros. In the
Evaluation section we discussed these basic strategies. Here we
introduce techniques for adding new functions to the LISP
library. Such user-defined call-by-value functions are called
EXPRs; new special forms are called FEXPRs.

The following built-in functions are used to add new
definitions to the LISP library.

(DI <var> <para■etera> {<for■>}) rsUBR

creates a call-by-value function from the parameters and the
for■s, and then it installs that definition as the value of the
<var>. The <parameters> ■ay contain the special indicators &OPT
(or &OPTIONAL), &AUX and &RIST. The value returned by DB is the
symbol <var>. When <var> is invoked, <parameters> are bound to
the appropriate actual parameters; then the <for■>• are evaluated
sequentially, from left to right.

The ■akeup of (parameters> is sufficiently involved to
de■and its own discussion. For a detailed treatment, see the
section, Introduction !2 I12=1!§~ in Part I. B·owever, a few
simple examples follow:

(de FACT (x &OPT (n l)}
(if (zerop x)

n
(fact (subl x}(mul x n}} })

(rACT 5) => 120

This is a definition of the venerable factorial function.
the next is just a toy.

(de WHIZ (x &OPT (y (cons 5 x)}}
y)

(whiz 2 7) => 7, and (whiz "ab"} => (5 . "ab")

TLC-LISP Reference Manual-8

While

TLC-LISP Documentation Part III

(DF <var> (<para■> {&AUX {<para■■ >}}) {<for■ >}) FSUBR

DF is similar to DE, but for special forms. Note the single
<param>. When the special form <var> is applied, it looks just
like an ordinary call (as in (fl 1 (addl 2) 3)), but an FEXPR
binds a list of the unevaluated para■eters (i.e. (1 (addl 2) 3))
to <param>.

For example assume the definition for fl is:

(df fl (x) (first x))

then

(fl (addl 42) 4 3) => (addl 42)

since the list ((addl 42) 4 3) is bound to x. Be clear that the
value is the list (addl 42) and not the value 43.

Though a DF must have exactly one required parameter, and no
&OPT or &REST parameters, it ■ay specify a set of local (&AUX)
variables to be allocated on entry to the special for■.

For further information see the discussion in Part I.

The usual LISP definition is a "DE", with special for■•
invoked only if the user wishes to control the parameter
evaluation in a special way. Such evaluation will involve
explicit calls on the evaluator using EVAL to execute pieces of
the text. Many applications that have traditionally been done
with such DF's are, in fact, better handled by macros. So we
suggest that careful consideration be given to situations that
appear to demand new Special Forms. There ■ay be better ways to
address the problem.

TLC-LISP Reference Manual-9

TLC-LISP Docu■entation Part III

The final ■e■ber of the function-defining trio is used to
introduce ■aero definitions. LISP macros exploit the program-data
duality of LISP even ■ore than special for■s do.

A LISP ■aero definition has the appearance of a definition
with only one para■eter.

Associates the ■aero definition, represented in

(<para■> {&AUX {<para■a>}}) {<for■>}),

with the name <var>. As with Dr, a DM baa only one formal
parameter, and ■ay also specify auxiliary para■eters. As with
other styles of invocation, a ■aero call looks like an ordinary
function call. In contrast to FBXPRS, the entire call is bound
to that single parameter. For example: given a ■aero definition
of the for■:

(d■ teat (1) ...)

the call

(teat (first x) 4 'now)

will bind variable l to the list

(test (first x) 4 (quote now)).

The body of the ■aero definition is free to ■anipulate that
text with all the power of LISP. So far, the effect is similar to
that of a special for■. However, the value computed within the
■aero is expected to be a new expression; then, as we leave the
■aero call, that expression is evaluated by the interpreter (a
second evaluation) and the resulting value is the final value of
the macro call. Before we give an example, we summarize the
transfor■ationa: the original call (program) is passed to the
■aero (data) where it is ■anipulated (data) and finally
reevaluated (program). Let's examine an example now:

(DM NCONCAT (L) (LIST 'CONCAT (CADR L) NIL))

Consider a call (NCONCAT 6).

The list (NCONCAT 6) gets bound to L; then the evaluation of
the body gives a list (CONCAT 6 NIL). Finally, that list gets
evaluated and (NCONCAT 6) returns (6) as value.

TLC-LISP Reference Manual-10

TLC-LISP Documentation Part III

One of the traditional applications of special forms that
can be better handled by macros is the description of functions
with an arbitrary number of arguments (like+) by writing them as
macro-expansions of a function with a fixed number of arguments.

(+ 1 2 (subl 3))) =macro-expander=> (add 1 (add 2 (subl 3)))

(dm + (1)
(if (eq (length 1) 3)

'(add ,(second 1) ,(third 1))
'(add ,(second 1) (+ ,@(rest 1 2)))))

a somewhat cryptic, but fool-proof way of translating the form
using macros and backquoting.

The alternative of defining such functions as Special Forms
leaves us the job of explicitly evaluating the parameters
ourselves, as in:

(df + (1) (+expand (1))

(de +expand (1)
(if (null 1)

0
(add (eval (first 1)) (+expand (rest 1)))))

But such explicit calls on the evaluator open the door to scoping
proble■s--what happens when the expression (FIRST L) involves the
name L? Macros dispense with a lot of this grief. See the
Evaluation section in Part I for a discussion of macros, scoping,
and "backquote" (a technique to simplify the syntax of macro
definitions).

Macros are able to express a complex behavior in terms of
simple transformations that can be carried out on the program
text; thus macros can be used to obscure many implementation
details. They are an exceptionally powerful technique for
"information hiding".

Dis~lacing Macros

If the value of the atom SMASH is non-NIL then all macros
are 'self-destructive' or 'displacing' macros. If the value of
SMASH is NIL then macros are evaluated each time they occur in an
expression.

For example, if we wanted to define (IS-DOG X) to be equivalent
to (EQ (FIRST X) 'DOG), we could write:

(de IS-DOG (x)
(eq (first x) 'dog))

TLC-LISP Reference Manual-II

TLC-LISP Documentation Part III

We would rather define IS-DOG as a ■aero:

(dm IS-DOG (x &AUX (arg (second x)))
(list 'eq (list 'first arg) ''dog))

or equivalently using the back-quote facility:

(dm IS-DOG (x &AUX (arg (second x)))
•(eq (first ,arg) 'dog))

Notice the similarity in style between the DE-form and the
backquote-for■.

Regardless of how we define IS-DOG, we can use it (in the
sa■e way) as in the following definition:

(de TEST (n ■)
(if (and (is-dog n)

(is-dog m)
'co■patible
'no-way))

Assume IS-DOG is not a displacing-macro. Then
execute TEST, the IS-DOG ■aero creates a new list
evaluated and thrown away. However if we execute:

each ti■e we
which gets

(SETQ SMASH T)

and execute TEST once, then the definition of TEST will change to
reflect the expansion of the IS-DOG ■aero, thus:

TEST=> (la■bda (n ■)
(if (and (eq (first n) 'dog)

(eq (first ■) 'dog) }
'compatible
'no-way)

The advantage of 'displacing' ■acros (value of SMASH non
NIL) is execution speed. The (eq ...) inside TEST executes faster
than the equivalent expr IS-DOG and faster still than the non
displacing macro IS-DOG. The disadvantage is poor readability. If
during debugging you come across the displaced version of TEST
you may not recognize (or understand} it. The (eq (first ... }}
construct appearing inside TEST obscures the purpose of TEST with
unnecessary i■ple■entation details -- the original definition
with its self-documenting IS-DOG construct is ■uch more readable.

Note that since SMASH is an ato■ it ■ay be used as
variable, allowing macros to be displacing inside
functions and non-displacing otherwise. The editor EDIT
pretty printer PP make use of this feature.

TLC-LISP Reference Manual-12

an &AUX
debugged
and the

TLC-LISP Documentation Part III

[Yn£!i~n Constructors

The functions DE, DF, and DM are used typically at the "top
level" of LISP to make permanent definitions. They destroy the
current contents of the value cell associated with the function
name. However there are also two operations, LAMBDA and FLAMBDA,
that are used to make ■ore temporary function definitions.

(LAMBDA <par-etera> {<fora>}) JSUBR

are
Creates a functional object (expr) whose formal
<parameters> and whose body is the sequence

parameters
{<for■>}.

This functional object, called a lambda expression, can be
used anywhere a call-by-value function is expected. This means
that functions need not be associated with a name before they can
be used; such lambda expressions are therefore often called
anonymous functions. For example:

((LAMBDA (X Y) (ADD X Y)) 3 5) will evaluate to 8.

We bind X to 3 and Y to 5, and then evaluate (ADD X Y),

These functional objects can be passed around freely in TLC
LISP, even to the point of using them as argum~nts to functions
and returning them as values of functions.

Currently, TLC-LISP supports only a subset of the full power
of functional objects. Complete functional objects would be able
to remember the entire state of the system (values of all
existing atoms) in effect at the time of their creation. We
supply CLOSURES which require the user to specify the subset of
the system state desired. See the section Function Mani2ulating
Functions.

(FLAMBDA (<var> {&AUX {<para■a>}}) {<for■>}) FSUBR

FLAMBDA is similar to LAMBDA, but constructs an anonymous
special form (fexpr).

The system uses lambda expressions within the
implementation of DE. This operation has two purposes: to define
a functional object, and to associate that object with a name.

TLC-LISP Reference Manual-13

TLC-LISP Documentation Part III

Since we expect the na■e association to be rather permanent we
use a destructive binder named SET--a form of the assignment
state■ent. Then we can define DE as:

(dm DE (1)
(list 'set (second 1) (concat 'la■bda (rest 1 2))))

or

(dm DE (1)
'(set ,(second 1) (lambda ,@(rest 1 2))))

Of course, DF and DM can be defined in a similar fashion,
and in that context, the system also supplies an MLAMBDA
construct. However, MLAMBDA may not be used anonymously, but only
in the context of defining a named macro. Recall that part of the
■aero call is the name of the macro.

I~i! Recursion Elimination

The TLC-LISP interpreter eliminates many cases of tail
recursion, In particular, it is eli■ inated in exprs whenever the
last expression in the expr body is an application of the expr
itself or when the last executable expression is one of the subrs
IF, COND, SELECTQ, PROGN and the last expression in the subr
expression is an application of the expr. Thus the following
functions will never run out of stack space regardless of the
value of the argument:

(de TESTl (n)
(prinO n)
(testl (addl n)))

(de TEST2 (n)
(if (not (zerop n))

(test2 (subl n))
(print "end of the line")))

However, the following function is not tail-recursive:

(de FACT (n)
(if (zerop n)

1
(* n (fact (subl n)))))

since the interior call on fact is not the last expression.

TLC-LISP Reference Manual-14

TLC-LISP Documentation Part III

Simply because one formulation is not tail-recursive it does
not mean that the function has no tail-recursive formulations.
For example:

(de factl (n &opt (m 1))
(if (zerop n)

m
(factl (subl n) (*nm))))

Note that either clause of an IF expression may be tail
recursive. The same situation holds for COND:

(de Tl!ST3 (n)
(cond

((eq n 100000)
'big)
(eq n 300000)
'bigger)
t
(prin0 n)
(test3 (addl n))))

and the tail-recursion on Tl!ST3 will be recognized and reomved.

TLC-LISP Reference Manual-15

TLC-LISP Documentation Part III

Evaluation

The interpretation process supplies (and imposes) a default
evaluation for the constituents of LISP expressions. The "top
level" of LISP is a "calculator mode" in which the user types an
expression, LISP evaluates it, prints the result and prompts for
another expression. This top-level loop is called the READ-EVAL
PRINT loop. This gratuitous evaluation often suffices, but
sometimes it is convenient to impose other evaluation regimes.

One also needs to evaluate lists that have the appearance of
expressions, and thus exploit the program-data duality of LISP.
This is accomplished with EVAL, which explicitly calls the
evaluator, allowing the dynamic evaluation of expressions which
have been constructed by the data manipulating operations of the
language.

(BYAL <for■>) SUBR

This is the call on the LISP evaluator. The argument is a
data structure that is expected to conform to the syntactic rules
for LISP programs. The value computed by EVAL is the value of
<form>. Note that EVAL is a SUBR, and therefore the argument to
EVAL will be evaluated before EVAL is called.

(EVAL 3) => 3

(SETQ X 'A)
(SETQ A 4)
(EVAL 'X) => A

since the actual parameter passed to EVAL is the atom X.

(EVAL X) => 4

since the actual parameter passed to EVAL is the atom A.

(EVAL '(FIRST '(1 2 3))) => 1

(EVAL (LIST 'CAR (LIST 'CONS X 'X))) => 4

since the value passed to EVAL is the list (CAR (CONS AX)).

TLC-LISP Reference Manual-16

TLC-LISP Documentation Part III

(BVLIS ({<for■>})) SUBR

EVLIS creates a list of the evaluated <form>'s. Its
effective definition is:

(DE BVLIS (L)
(IF (NULL L)

; then; ()
;else; (CONCAT (EVAL (FIRST L))

(EVLIS (REST L)))))

Note: we have used our comment conventions to
structure of the IF control primitive.

emphasize the

(BVLIS (LIST 3 '(ADDI 2) '(FIRST (LIST '(ADDI 2) 3))))
=> (3 3 (ADDI 2))

since EVLIS will be passed the list

(3 (ADDI 2) (FIRST (LIST (QUOTE (ADDI 2)) 3)))

Or using the bindings of X and A given above with EVAL,

(EVLIS (LIST X 'X A)) => (4 A 4),

(PROGi {<for■>}) FSUBR

Performs left-to-right evaluation of the <form>'s, returning
the value of the first <form>.

(PROGi (CONS 1 3) 4) => (1 . 3)

(PROGl) => NIL

(PROGN {<for■>}) FSUBR

Similar to PROGl, but returns the value of the LAST <for■ >.

(PROGN (CONS 1 3) 4) => 4

(PROGN 1 2 (ADDI 1) (CAR '(A. B))) => A

(QUOTE <sexpr>) FSUBR

QUOTE is the LISP primitive to stop evaluation.
commonly abbreviated by the read-macro single-quote
effective definition is:

(DF QUOTE (L) (FIRST L))

TLC-LISP Reference Manual-17

It is most
('). The

TLC-LISP Docu■entation Part III

(TOPLIV) SUBR

TOPLEV is the na■e of the function that controls the user
interface. It is initially defined to be approxi■ately:

(de TOPLEV ()
(do() (nil)

(prinO '>>>)
(print (eval (read)))))

forever

The user ■ay supply a different TOPLEV --si■ply redefine
TOPLEV. A certain a■ount of caution should be exercised, however;
bugs in a new TOPLEV ■ay destroy the syste■. (see TAPPLY and
RESTART in the section on Errors and Debugging.).

Inter2reter Modifiers

TLC-LISP supplies two functions to modify the behavior of
the interpreter.

(AP <type> •OPT <fen> or NIL) SUB&

Returns or sets the apply behavior of objects of
<type>. The apply behavior is invoked when an expression
(APPLY <obj> <arglist>) is evaluated. The <fen> would receive
two argu■enta <obj> and <arglist>. If <fen> is NIL, the
property is reset. See also EAP.

type
like

the
AP-

As an exa■ple of AP, the default apply-behavior of vectors
could be defined as follows:

Thus:

(de APVECTOR (vect 1 &AUX (index (first 1)))
(vref vect index))

(ap 'vector apvector)

(setq vl [ab c])
(apply vl '(2)) => b

TLC-LISP Reference Manual-18

TLC-LISP Documentation Part III

(IAP <type> &OPT <fen> or NIL) SUBR

Returns or sets the eval-apply behavior of objects of type
<type>. The eval-apply behavior is invoked when an expression
like (<type> {<args>}) is evaluated. The <fen> would receive the
two arguments, the evaluated function position <type> and the
unevaluated complete expression (<type> {<args> ... }). If <fen> is
NIL, the EAP property is effectively removed. See also AP.

For example, the eval-apply behavior of packages could be
defined as follows:

(de BAPPKG (p 1 &AUX (package p))
(apply progn (rest 1)))

(eap 'pkg eappkg)

Then if we evaluate:

(pp: (load "pp.lap"))

EAPPKG is
complete
locally

invoked with the package pp: bound to
expression (pp: (load "pp.lap")) bound to

binds PACKAGE to pp: then evaluates

(progn (load "pp.lap"))

P and the
L, BAPPKG

thus insuring that the file is read into the desired package.

TLC-LISP Reference Manual-19

TLC-LISP Docu■entation Part III

function■ to Manipulate function■

The functions in this section operate with one or ■ore
parameters that are expected to be functional objects.

(GITfN <fen>) SUBR

(PUTfN <fen> <li ■ t>) SUBR

These functions allow us to manipulate the text of a user
defined interpreted function. GETfN extracts a list representing
the body of the function <fen> if it is a user-defined function.
PUTFN is used to re-install <list> as a function definition of
<fen>. <list> must be of the correct form to represent a
functional object.

(de FOO (x y)
(cons x y))

(GETFN FOO) => ((x y) (cons x y))

Note that:

(TYPE FOO) => expr

but

(TYPE (GBTFN FOO)) => list

GBTFN can be useful when debugging a ■aero. We can use it to
examine the value returned by a macro before the second
evaluation, thus:

(de MAC (1 &aux (macro (eval (first 1))))
returns result of ■aero before second evaluation
(apply (apply lambda (getfn macro))

(list 1)))

(MAC '(FOR (I 1 10) (PRINO I)))

=> (do ((i 1 (addl i)))
(((gt i 10) nil))
(prinO i))

TLC-LISP Reference Manual-20

TLC-LISP Documentation Part III

(APPLY <fen> <list>) SUBR

Apply the function <fen> to the list of arguments represented
in <list>. The arguments in <list> are not evaluated.

(APPLY ADD (LIST (ADDI 5) (MUL 4 5))) => 26

Since APPLY is a call-by-value function, its parameters are
evaluated; therefore it gets passed the (primitive) functional
object for ADD and the list (6 20).

(APPLY CONS (LIST 'A 'B)) => (A. B)

since APPLY gets the functional object associated with CONS and
the list (AB).

(APPLY (LAMBDA (X Y) (LIST X "is" Y)) '(LISP NEAT))

=> (LISP "is" NEAT)

(SETQ X 4)

(APPLY CAR (LIST (CONS X 'X))) => 4

APPLY, like EVAL, seldom needs to be explicitly applied.
APPLY can be used with SUBRs and EXPRs, but may not be used with
a special form or macro in the <fen> position.

(FUNCALL <fen> {<arg>}) LSUBR

FUNCALL is like APPLY except that the arguments are not in
list form. That is, FUNCALL applies its first argument to the
rest of its arguments.

(FUNCALL ADD 1 2 3) => 6

(FUNCALL CONCAT (LIST 1 2) '(3 4 5)) => ((1 2) 3 4 5)

TLC-LISP Reference Manual-21

TLC-LISP Documentation Part III

{MAP <fen> <liat>) SUBR

Apply the function <fen> succesaively to <list> and its
tails. The value returned is NIL. MAP is equivalent to:

{DE MAP (FN L)
(IF (NULL L)

()
(FN L)
(MAP FN (REST L)))))

Note the implicit application of FN to L.

Here's a simple example:

(MAP PRINT '(A (BC) D))
=> (A (B C) D)

((BC) D)
(D)
NIL

where the final NIL is the value returned.

{NAPLIST <fen> <liat>) SUBR

Apply the function <fen> successively to <list> and its
tails. MAPLIST returns the list of these results. Its definition
can be given as:

(DE MAPLIST (FN L)
(IF (NULL L)

()
(CONCAT (FN L) (MAPLIST FN (REST L)))))

We could define EVLIS as:

(DE EVLIS (L)
(MAPLIST {LAMBDA (X) (EVAL (FIRST X))) L))

(MAPVIC <fen> <vector> &OPT <vectorl>) SUBR

Apply the function <fen> to each element of <vector> or, if
<fen> is binary and <vectorl> is present, to consecutive elements
of both vectors, building a new vector.

(MAPVEC ADDI (1 2 3)) => (2 3 4]

(MAPVIC ADD [1 2 3) [3 2 1)) => [4 4 4)

TLC-LISP Reference Manual-22

TLC-LISP Documentation Part III

(CLOSURE <fen> <list or env>) SUBR

If the second argument of the closure is a list, it must be
of the for■ of alternating <var>s and <object>s. In this case,
the system creates an object of type <env> from these elements.
In either case, the <env> is associated with the functional
object <fen> in such a way that the <vars> and their associated
values will be established as the current bindings whenever the
closure object is applied as a function. Also, changes made to
these <var>s while the closure is being applied will be
"remembered" for the next application of the closure. Closures
are i ■plemented using the equivalent of UNWIND-PROTECT so that
throwing out of a closure will guarantee that the closure's local
variables are updated.

(DE YLIST (X)
(LIST X Y))

(SETQ F (CLOSURE YLIST '(Y 2))

(SETQ Y 'A)

(FY) => (A 2)

F executes YLIST in an environment where Y has the value 2,
whereas:

(YLIST Y) => (A A)

YLIST is executed in the global environment where Y has the value
A.

A ■ore realistic example is the LINE-EDITED-STREAM function
fro■ the file SYS.LSP:

(de LINE-EDITED-STREAM (source echo)
(stream (closure linebuffer

(env 'source source
'echo echo
'buffer (newstr 100 *eof*)
'index O))))))

where the second argument to the closure becomes an environment
that contains the four variables and their values. We want them
to be local variables because we want to have several streams in
the syste■ , and each must have its own buffers, indices, and
functions. Within the context of a closure we're assured that
this will be the case, and are thus able to specify the following
definition for linebuffer:

TLC-LISP Reference Manual-23

TLC-LISP Documentation Part III

(de LINEBUFFER (&aux (c (nth buffer (setq index (addl index))))
if buffer not empty, return next char else refill buffer
(cond

((eq c *eof*)
(setq index 0)
(get line)
(linebuffer))
t C)))))

(de GETLINE (&aux (c (source)))
at end of buffer, refill, handle carriage return, ctl-x and backspace
(cond

((eq c *er*)
(echo *er*)
(putchar buffer (addl index) *er*)
(putchar buffer (add 2 index) *eof*)
(setq index O))
(eq c ~x)
(rep index (backone))
(setq index 0)
(getline))
(or (eq c *backspace*)

{eq c *rub*))
(if (zerop index)

(getline)
; else
(backone)
(setq index (subl index))
(getline)))

((lt (ascii c) 32) ; ignore other control characters
(getline))

{ t (echo c)
(putchar buffer (setq index (addl index)) c)
(get line))))))

(de BACKONE ()
(echo *backspace*)
(echo *space*)
(echo *backspace*))))

TLC-LISP Reference Manual-24

TLC-LISP Documentation Part III

Flow of Control

Call-by-value, recursion, and the parameter evaluation
mechanism impose an order of execution on LISP computations.
These are examples of implicit control. A traditional programming
language also contains explicit control structures in the form
notations that specify which of a set of alternative computations
are to be executed.

Control structures depend on the existence of predicates:
LISP functions whose values are interpreted as the truth values
"true" and "false". In LISP we take NIL as the representation of
false, and any non-NIL value is taken as truth. See the
discussion preceding MEMQ for more details.

The primary explicit control structure in any LISP is the
conditional expression. TLC-LISP supplies two for■s:

(IF <pred>
<for■l>
{<for■2>}) FSUBR

The
value
value of
sequence
value of

expression <pred> is evaluated first; if it returns
other than NIL then <pred> is considered true and

the IF-expression is the value of <form·l>. Otherwise
{<form2>} is evaluated and the value of the IF is

the last <form2>.

(IF (FIRST X) l 2)

gives value l if (FIRST X) is non-NIL, and gives 2 otherwise.

a
the
the
the

Think of the IF as reading "if <pred> then <forml> else
{<form2>}".

Note that there is exactly one <forml>, but there can be a
sequence of actions specified as {<form2>}.

The second form of conditional expression is the COND:

(COND
(<predl> {<for■l>})

(<predn> {<for■n>})) FSUBR

Each construct of the form (<predi> {<formi>}) is called a
clause. The evaluation of a COND-expression is as follows. The
predicate, <predl>, of the first clause is evaluated. If it
yields a non-NIL value then the elements of {<forml>} are
evaluated and the value of the COND is the value of the last

TLC-LISP Reference Manual-25

TLC-LISP Documentation Part III

element in {<forml>}. If NIL was returned by the
the <forml>s are not evaluated, but the process
looking at the next clause and repeating the above

<predl>,
continues
process.

then
by

If none of the <predi>s give non-NIL, then the value of the
COND is NIL. However, it is good programming practice to make the
last predicate, <predn> be the constant predicate T. This way the
<formn>'s are able to handle all exception cases. Such usage acts
as an "otherwise" clause.

A useful degenerate case occurs when a clause is a single
expression, (<pred>); that is, the collection {<for■>} is empty.
In this case, if <pred> evaluates to a non-NIL quantity then the
value of the conditional expression is just that value. Used with
the NIL/non-NIL truth-values of LISP, this abbreviation can be
particularly convenient. For example, if the value of <pred> is
either expensive to compute or causes a side-effect, then a
conditional like:

(COND
(<pred> <pred>) . . .)

is inappropriate since <pred> will be evaluated twice. The effect
is better described by:

(COND
(<pred>) . . .)

(OR {<for■>}) FSUBR

!valuate the sequence of <form>s from left-to-right,
terminating that process if one returns a non-NIL value. That
value is the value of the OR-expression. If no <form> gives a
non-NIL value, then the value of the OR is NIL.

(OR (ATOM '(AB))
(CONS 1 2)
(CAR 1)) => (1 . 2)

TLC-LISP Reference Manual-26

TLC-LISP Documentation Part III

Note that the value of (CONS 1 2) is an acceptable representation
for "true" (being non-NIL). Further note that the expression

(CAR 1)

which would yield an error never gets evaluated.

(OR {<for■>}) is equivalent to:

(COND
(<form-1>)
(<form-2>)

(<form-n>))

(AND {<for■>}) rsUBR

AND evaluate the <form>s from left-to-right, stopping the
evaluation and returning NIL as soon as one of the <form>s gives
a NIL value. If no <form> gives NIL, return the value of the
last <for■ > as the value of the AND-expression.

(AND (CONS 1 2)
NIL
(CAR 1)) => NIL

(AND (CONS 1 2)
T
4
(ADDl 2) => 3

(AND {<for■>}) is equivalent to:

(COND
((NOT <form-1>) NIL)
((NOT <form-2>) NIL)

(<form-n>))

(NOT <for■>) SUBR

Returns NIL if <form> is non-NIL, and T otherwise.

(NOT T) => NIL

(NOT NIL) => T

(NOT 1) => NIL

TLC-LISP Reference Manual-27

TLC-LISP Documentation Part III

(SILICTQ <for■> {(<objecti> {<for■i>})}) FSUBR

The value of <form> is compared successively against each
<objecti>; the <objecti>s are not evaluated (the Q in SELECTQ
stands for QUOTE). The type of match is determined by the
structure of <object>. If the <objecti> is a list, then the match
uses MEMQ on <objecti>. If <objecti> is not the symbol T, the
match uses the predicate EQ; if the <objecti> is one of the atoms
T, OTHERWISE, or OW then the match succeeds automatically.

If a comparison is successful the match process halts and
the corresponding <formi>s are evaluated. The value of the
SELECTQ is the last <formi>. If no comparison is successful,
then the value of the SELECTQ is NIL.

(SELECTQ (SENSE X)
(LOOK ...)
((SMELL TOUCH HEAR) ...)
(OW (LOSE X)))

is equivalent to:

(LET ((TEMP (SENSE X)))
(COND

((EQ TEMP 'LOOK) ...)
((MEMQ TEMP '(SMELL TOUCH HEAR)) ...)
(T (LOSE X))))

where we have to assign the value of (SENSE X) to
variable to keep from computing (SENSE X) more than

a temporary
once.

Variations of SELECTQ appear in Pascal-like languages under
the guise of CASE statements. Unfortunately since Pascal treats
them as statements, much of their power is wasted.

(LABEL {<for■>}) LSUBR

LABEL evaluates {<form>} in the context of the last
(dynamically) surrounding lambda expression. This is a
generalization of the LISPl.5 LABEL operator, that allowed
recursive definitions without explicit naming. For example:

(LAMBDA (N) (IF (ZEROP N)
1
(MUL N

(LABEL (SUBl N)))))

is a definition of the factorial function.

TLC-LISP Reference Manual-28

TLC-LISP Documentation

(CATCH <sy■bol> {<for■>}) FSUBR

(THROW <ay■bol> {<for■>}) FSUBR

Part III

This pair of functions operates together to supply a non
structured type of function exit. When a CATCH expression is
entered, the <symbol> is noted and the body, {<form>}, is
evaluated as a sequence of expressions. If, during that
evaluation, an expression of the form (THROW <symbol> {<formi>})
is encountered, then the {<formi>} are evaluated and the value of
the last <formi> is returned as the value of the CATCH
expression. If no such form is encountered, the value of the
CATCH expression is the value of the last <form> in the body of
the CATCH.

(CATCH EXIT
(MAP (LAMBDA (X)

(AND (NUMBERP (FIRST X))
(THROW EXIT (LIST 'YES (FIRST X)))))

'(AB 2 C))
'NO => (YES 2)

In order for a program to determine whether a CATCH
terminates with or without throwing, the following technique is
useful. Make the last expression in the body of the CATCH be NIL.
Insure that any THROW always throws a non-NIL value, you can then
test the result of the CATCH expression, if NIL then no THROW
occurred otherwise the value is the value of the THROW. Thus:

(if (catch label

(if something (throw label something-non-NIL))

nil)
(print "threw")
(print "Did not throw")

Only in the case where the catch body returns nil do we know that
no matching throws have occurred since any throw will cause the
catch to return a non-nil value.

If a THROW expression is encountered which does not have a
dynamically surrounding CATCH expression with a matching
<symbol>, then a CATCH-NOT-FOUND error is generated.

The CATCH-THROW pair is particularly useful for effecting an
immediate return from a sub-computation without requiring
the program to explicitly exit through all the intervening levels
of functions that have been called but not yet exited. This
strategy would require all functions involved to include explicit
tests for exit conditions and corresponding function-exit
clauses.

TLC-LISP Reference Manual-29

TLC-LISP Documentation Part III

(UNWIND-PROTECT <for■ l> {<for■2>}) FSUBR

UNWIND-PROTECT is a "super" catcher to guard against THROWs
that might otherwise throw too far, too fast.

<Forml> is evaluated then {<form2>} is evaluated. The value
returned is the value of the last expression in {<form2>}. This
effect is equivalent to:

(progn <forml> {<form2>})

However, if during the evaluation of <forml> we attempt to
throw to a catch label outside the unwind-protect then {<form2>}
is guaranteed to be evaluated before the catch is completed. For
exa■ple:

(de TEST ()
(catch error (try this))
(try that))

(de TRY (a)
(turn-on-faucet)
(unwind-protect (play-around)

(turn-off-faucet)
(print-results))

(de PLAY-AROUND ()

(if (bad-things) (throw error 'bad))
)

The UNWIND-PROTECT in TRY guarantees that the faucet will be
turned off before the (try that) form is evaluated even if bad
things happen in play-around.

Unwind-protect will also work when using RETFRAME.

TLC-LISP Reference Manual-30

TLC-LISP Documentation Part I II

(DO ({(<var> <init> <iter>)})
({(<exitp> {<exitval>})})
{<for■>}) FSUBR

DO is the TLC-LISP iteration function. We will discuss the
most general form of DO first, and follow that with an analysis
of several useful subcases. There are four basic parts to the
semantics of the DO expression:

1. The initialize phase. When the DO is entered, the <init>
forms are evaluated and lambda-bound in parallel to their
corresponding <var>s. This means: a) that the <var>s act as local
variables within the scope of the DO, and b) that all of the
initializations are performed in the environment that surrounds
the DO.

2. The exit tests. Next, we test the <exitp>s in a fashion
analogous to the semantics of a conditional expression. If we
find a true exit-condition, we evaluate the associatea ,ex1tva1>s
and exit the DO, unbinding any local DO-variables. The value of
the DO is the value of the last <exitval>. If none of the exit
conditions is true we move to phase 3, entering the body phase.

3. The body phase. The body of the DO, consisting of the
<form>s, is evaluated in left-to-right order.

4. The iterate phase. Following the body phase, we evaluate the
<iter> forms; again, this is done in parallel. Only now, we
assign the new values to their corresponding <var> rather than
lambda-bind them (this is analogous to the way tail-recursion
elimination is implemented). After all the iterators are
evaluated, we loop to phase 2 and check the end conditions.

This constitutes the basic loop of the DO. Here are some
useful special cases:

(DO () ...)

If there are
variables. The
and the body.

no var-init-iter triples, we have no local
execution of the DO involves only the exit-tests

(DO ((varl) (var2 init) ...) ...)

If a var has neither an initial value nor an iterator, then
it is initialized to UNBOUND. If a variable is followed by only
one form, that form is taken to be an initialization value;
that value is lambda-bound to the variable, but the variable is
ignored in the iterate phase (of course the value can be modified
within the DO by a SETQ).

TLC-LISP Reference Manual-31

TLC-LISP Documentation Part III

(DO (...) (NIL) ...)

In this case the predicate will never be true, and so the DO
will continue without end (unless it contains a THROW form.)

(DO (...) () ...)

In this case the body is executed only once.

(DO (...) (...))

If no body is present then we pass directly to the iterate phase.

Here are several other control structures expressed as
equivalent DO formulations:

(LET ({(var init)}) body) is (DO ({(var init)}) () body)

(WHILE pred body) could be defined as (DO() (((NOT pred))) body)

We could define a membership predicate as:

(DE MEMBER (XL)
(DO ((L L (REST L)))
(((NULL L) NIL)

((EQUAL (FIRST L) X) T)))))

where the body segment is empty. Here are some useful macros that
could be defined using DO:

(REPEAT <count> {<forms>}) is:

(dm REPEAT (1 &aux (body (rest 1 2))
(count (second 1))
(var (gensym)))

'(do ((,var O (addl ,var)))
(((ge ,var ,count) nil))

,@body))

TLC-LISP Reference Manual-32

TLC-LISP Documentation Part III

(FOR (<var> <initial> <final> &OPT (<incre■ent> 1))
{<for■>}) is:

(dm FOR (1 &aux (var-list (second 1))
(body (rest 1 2))
(var (first var-list))
(init (second var-list))
(final (third var-list))
(incr (selectq (length var-list)

(3 '(addl ,var)) ; default
(4 '(add ,(fourth var-list) ,var))
(ow (error 1)))))

'(do ((,var ,init ,incr))
(((gt ,var ,final) nil))

,@body))

(FORIVIR {<for■>}) is:

(d■ FOREVER (1)
'(do() (()) ,@(rest 1)))

(LIT ({(<var> <for■-1>)}) {<for■-2>}) FSUBR

This function is equivalent to:

((LAMBDA ({<var>}) {<form-2>}) {<form-1>})

The "LET-style" is attractive since it places the <var>s in
closer proximity to their binding forms, <form-l>s, thereby
increasing readability.

(RIP <nu■> {<for■■ >}) FSUBR

Evaluates {<forms>} <num> times. REP's advantage over DO is
that it will allocate only one integer object per invocation
whereas the equivalent DO could allocate one integer per
iteration if <num> is sufficiently large.

TLC-LISP Reference Manual-33

TLC-LISP Docu■entation Part III

Recognizers and Predicates

A recognizer is a special predicate which tests the 'type'
of its argument. Though LISP variables are type-free, meaning
that a variable can contain any legal LISP object, each LISP
object has a distinguishable type. The LISP recognizers are
predicates that the progra■mer can use to determine the type of a
value.

(ATOM <object>) SUBR

ATOM returns T if <object> is not a list or dotted pair. It
returns NIL otherwise. Symbols, strings, and numbers are atomic
quantities, for example.

(ATOM 3) => T

(ATOM "AB"} => T

(ATOM (ATOM '(3 "ABC"))} => T

(ATOM 'CONS} => T

(ATOM CONS) => T

(ATOM (1 2 3]} => T

The value of CONS is a SUBR

Compare the behavior of ATOM with that of SYMBOLP.

(LISTP <object>) SUBR

This recognizer returns T if its argument is a composite
object. Co■posite objects are lists and dotted pairs.

(LISTP 4) => NIL

(LISTP (CONS 1 'A)} =>T

(LISTP (LIST 1 'A)} => T

(LISTP NIL} => T ; Since NIL represents the empty list.

TLC-LISP Reference Manual-34

TLC-LISP Documentation

(SYNBOLP <object>) SUBR

(NUNBIRP <object>) SUBR

(lIIP <object>) SUBR

(INTIGIRP <object>) SUBR

(FLOATP <object>) SUBR

(CBARP <object>) SUBR

(VICTORP <object>) SUBR

(STRINGP <object>) SUBR

(PKGP <object>) SUBR

(INVP <object>) SUBR

(CLASSP <object>) SUBR

(INSTP <object>) SUBR

Part III

These recognizers check for the occurrence of a specific
type,

(SYMBOLP 4) => NIL
(SYMBOLP "BAC") => NIL
(SYMBOLP 'A) => T

(NUMBBRP 4) => T
(NUMBBRP 3.3E4) => T
(NUMBBRP 'A) => NIL

(FIXP 3) => T
(FIXP 1,2) => NIL

(CHARP \A) =>T
(CHARP "A") => NIL
(CHARP 'A) => NIL

(STRINGP \A) => NIL
(STRINGP "ABC") => T
(STRINGP 'ABC) => NIL

TLC-LISP Reference Manual-35

TLC-LISP Documentation Part III

(PROCP <object>) SUBR

This recognizer returns T if <object> is a functional object.
Functional objects are of type SUBR, LSUBR, FSUBR, EXPR, FEXPR,
CLOSURE, MACRO, PCODE, FPCODE or MPCODE. If you need to have more
detailed type information, TYPE will provide it. If <object> is
not a functional object, NIL is returned.

(PROCP PROCP) => T

(PROCP COND) => T

(BOUNDP <ay■bol>) SUBR

Returns T if <symbol> has a value other than UNBOUND
otherwise returns NIL.

(BOUNDP 'CONS) => T

(UNBIND 'A)
(BOUNDP 'A) => NIL

(NULL <object>) SUBR

NULL returns T just
list.

(NULL •(A)) => NIL

(NULL (REST • (A))) =>

(NULL (NULL '(A))) =>

(NULL 3) => NIL

(IMPTY <object>) SUBR

in the case that <object> is the e■pty

T

T

EMPTY returns T in the case that <object> is the empty
string, vector or list.

(EMPTY "ABC") => NIL

(EMPTY '(TRASH. CAN)) => NIL

(EMPTY"") => T

TLC-LISP Reference Manual-36

TLC-LISP Documentation Part III

(TYPE <object>) SUBR

This is a general type-extraction function, returning an
ato■ that describes the type of the argument <object>.

(TYPE 'TYPE) => SYMBOL

(TYPE TYPE) => SUBR

(TYPE (CONS 1 2)) => LIST ; the type of dotted pairs

(TYPE (CONCAT 1 '(2))) => LIST

(TYPE (LAMBDA (X) 1)) => EXPR

(TYPE '(LAMBDA (X) 1)) => LIST

and the type of lists

Also see NUMTYPE and .TYPENUM in the Advanced Section.

(EQ <objectl> <object2>) SUBR

If the <object> are not numbers then EQ tests <objectl> and
<object2> to see if they are the same object. Since atomic
objects are stored uniquely, (EQ A A) is always T. If the
<object>s are numbers then EQ returns T if they have the same
value AND the same type, Sometimes two floating point numbers can
have the same printed representation but not be EQ. This is due
to conversion errors that occur when a binary mantissa is printed
in decimal notation. Composite objects satisfy EQ if <objectl>
and <-0bject2> are references to the same object.

(EQ l 1.0) => NIL

(EQ 'A 'A) => T.

(EQ 'A • B) => NIL

(EQ "AB" "AB") => NIL

(EQ [A BJ [A BJ) => NIL

Note that

(EQ '(AB) '(AB)) => NIL

because these are different objects, but

(SETQ L '(A B)) (SETQ M L)

(EQ ML) => T

since Mand Lare references to the same object.

TLC-LISP Reference Manual-37

TLC-LISP Documentation

(EQUAL <objectl> <object2>) SUBR

This is the general equality
returning T just in the case that:

Part III

predicate in TLC-LISP,

1, The objects are <sexpr>s, and <objectl> and <object2> have the
sa■e tree-structure, and the tip-nodes of those trees contain
identical atoms in identical places.

2, The objects are vectors and all components are equal

3. The objects are strings, and they are identical in each
character position.

The definition of EQUAL for S-exprs is equivalent to:

(DE EQUAL (X Y)
(OR (EQ X Y)

(AND (EQUAL (CAR X) (CAR Y))
(EQUAL (CDR X) (CDR Y)))))

(EQUAL 'A 'A) => T

(EQUAL '(AB) '(A B)) => T

(EQUAL "ABC" "ABC") => T

(EQUAL [AB "AB"] [AB "AB"]) => T

TLC-LISP Reference Manual-38

TLC-LISP Documentation Part III

Arith■etic

TLC-LISP supports both fixed point and floating point
arithmetic. The arithmetic functions use the convention that if
any argu■ent is a floating point number, then the result will be
floating point number.

The representation for floating point numbers is in
accordance with IEEE K-C-S single prec1s1on floating point
standard. Floating point numbers ■ay range from l.2E-38 to 3.4E38
(positive or negative) with 24 bit mantissa prec1s1on. Accuracy
is within one least significant bit for arithmetic functions and
within the two least significant bits for transcendental
functions (except for tangent near its discontinuous points and
logarithms near 1)

Overflow, underflow and invalid operations are detected and
generate the appropriate error.

(FLOAT87 &OPT <flag>) SUBR

If <flag> is absent then the current FLOAT87 state is
returned. If <flag> is NIL then the floating point routines will
use software to compute floating point functions. If <flag> is
non-NIL then 8087 instructions are used to compute floating point
functions. The default is equivalent to (FLOAT87 NIL).

Arithmetic Functions

(ADDI <nu■>) SUBR

Returns <num> plus 1.

(ADDl 4) => 5

(ADDI -1) => 0

(SUBl <nu■>) SUBR

Returns <num> minus 1.

(SUBl 4) => 3

(SUBl 0) => -1

TLC-LISP Reference Manual-39

TLC-LISP Documentation Part III

(ABS <nu■>) SUBR

(ADD

(SUB

Returns the absolute value of <num>.

(ABS -1) => 1

(ABS 3.4) => 3.4

{<n->}) LSUBR

Return the au■ of the arguments.

(ADD 3 4) => 7

(ADD 1.2 4 4) => 9.2

(ADD) => 0

{<n->}) LSUBR

With one argument, this function returns the nu■ber's
negation. With ■ore than one argument, it returns the first
argument minus the rest of the arguments.

(SUB 4) => -4

(SUB 1 2) => -1

(SUB 1 2 3) => -4

(MUL {<nu■>}) LSUBR

Returns the product of the arguments.

(MUL 2.0 3 4) => 24.0

(MUL 2 (ADDI 5)) => 12

TLC-LISP Reference Manual-40

TLC-LISP Documentation Part III

(DIV {<nu■>}) LSUBR

DIV returns its first argument successively divided by the
rest of its arguments. If only one argument is given, the
reciprocal is returned.

(DIV 4.0 2) => 2.0

(DIV 4 2) => 2

(DIV 5.0) => 0.2

(DIV 24 4 6) => 1

(RIM <nu■l> <nu■2>) SUBR

Form the remainder upon division of <nu■l> by

(REM -5 2) => -1

(REM 64 8) => 0

Two type conversion functions are provided:

(FIX <nu■ >) SUBR

(FLOAT <nu■>) SUBR

(FLOAT 4) => 4.0

(FIX (ADDI 7.4)) => 8

A collection of arithmetic predicates is also
TLC-LISP. These predicates return NIL if the test
return a non-NIL value otherwise.

(ZIROP <nu■ >) SUBR

<nu■2>.

included in
fails, and

Returns NIL if <num> is non-zero otherwise returns <num>.

TLC-LISP Reference Manual-41

TLC-LISP Documentation

(GI <nu■l> <nu■2>) SUBR

(GT <nu■l> <nu■2>) SUBR

(LI <nu■l> <nu■2>) SUBR

(LT <nu■l> <nu■2>) SUBR

Part III

Returns <numl> if the comparison is true, returns NIL
otherwise. These functions also work for strings.

(GI l 2) => NIL

(LT 2.2 300) => 2.2

(MINUSP <nu■>) SUBR

Returns <nu■> if <nu■> is a negative number otherwise
returns NIL.

(MINUSP -1) => -1

(MINUSP 1.1) => NIL

A collection of trigonometric and transcendental functions
is provided. Bach of these functions returns a floating point
nu■ber.

(RAD <nu■>) SUBR

<Nu■> is converted fro■ degrees to radians.

(DIG <nu■>) SUBR

<Nu■> is converted from radians to degrees.

(LN <nu■>) SUBR

The natural (base e) logarithm.

(LN 2) => 0.6931472

(LN 1.1) => 9.531022e-02

(LN -1) => error ; invalid floating point operation

TLC-LISP Reference Manual-42

TLC-LISP Documentation Part III

(BXP <nu■>) SUBR

The transcental number e to the power <num>.

(EXP 1) => 2.718282

(EXP -1.1) => 0.3328711

(LOGl0 <nu■>) SUBR

The common (base 10) logarithm.

(LOGlO 100) => 2.

(LOGlO -1.1) => error

(LOGlO 0) => error

(SIN <nu■>) SUBR

invalid floating point operation

floating point overflow

The sine of the angle <num> in radians.

(SIN PI) => 0.

(SIN (RAD 90)) => 1.

(COS <nu■>) SUBR

The cosine of the angle <num> in radians.

(COS PI) => -1.

(COS (RAD 90)) => O.

(TAN <nu■>) SUBR

The tangent of the angle <num> in radians.

(TAN (RAD 45)) => 1.

(TAN 0.5) => 0.5463024

TLC-LISP Reference Manual-43

TLC-LISP Documentation Part III

(ATAN <nua>) SUBR

The angle in radians whose tangent is <num>.

(ATAN 0.5) => 0.4636476

(ATAN 0) => 0.

(12Y <nuax> <nu■y>) SUBR

<nu■x> raised to the power <nu■y>. <nu■y> is first converted
to an integer if necessary.

(X2Y 2 10) => 1024.

(RN <nu■>) SUBR

Create a random number between O and <num>. If <num> is a
floating-point number, it must be convertible into the range of
fixed-point numbers.

(RN 33) => 26

(RN 34.5) => 22

TLC-LISP Reference Manual-44

TLC-LISP Documentation Part III

Boolean Functions

The functions in this section perform bit-wise logical
operations. Their <nu■> parameters are restricted to be <integer>
or <fix> quantities.

(LOOAND <nual> <nua2>) SUBR

Perfor■ the logical 'and' between <nu■ l> and <nu■2>

(LOGAND 6 5) => 4

(LOGOR <nual> <nu■2>) SUBR

Perform the inclusive or between <nu■ l> and <nu■2>

(LOGOR 6 5) => 7

(LOGXOR <nual> <nua2>) SUBR

LOGXOR gives the exclusive or between <nu■l> and <nu■2>.

(LOGXOR 6 5) => 3

(LOGNOT <nua>) SUBR

Form the co■ple■ent of <nu■>.

(LOGNOT -1) => 0

TLC-LISP Reference Manual-45

TLC-LISP Documentation Part III

Lista and Dotted Pairs

As the name suggests, selector functions select components,
It is good style to preface a selection operation with an
appropriate type test, assuring that the object meets the
requirements of the selector. Such tests are built into TLC-LISP
for the primitive data types -- for example CAR and CDR of
strings is disallowed-- however, consistent with LISP's open
nature, it is generally the programmer's responsibility to
control the tool.

(CAR <aexpr>) SUBR

This function selects the first component of the dotted pair
represented in <sexpr>.

(CAR NIL) => NIL

(CAR ' (A , B)) = > A

(CAR '(AB)) => A

Although the representation of (A B) is (A . (B . NIL)), it
is better style to use the list selector FIRST when manipulating
lists.

(CDR <aexpr>) SUBR

This function selects the second component of the dotted
pair represented in <sexpr>.

(CDR NIL) => NIL

(CDR '(A. (B . C))) => (B . C)

(CDR '(A)) => NIL

TLC-LISP Reference Manual-46

TLC-LISP Documentation Part III

{C ... R <sexpr>) SUBR

These (twelve) functions give the usual CAR-CDR chains
LISP selection operations. Thus (CADDR <sexpr>)
the cDr of the cDr of <sexpr>.

(CADR • ((1 2) (3 4))) => 3 CAR of

{CDAR • ((1 2) (3 4))) => 2 CDR of

(CDDR • ((1 2) (3 4))) => 4 CDR of

(CAAR • ((1 2) (3 4))) => 1 CAR of

(CAAR NIL) => NIL NIL is

and so on. Note that:

(CDAR '(NIL . 3)) => NIL

because it is equivalent to

(CDR (CAR '(NIL . 3))) => (CDR NIL) => NIL

but that:

(COAR '(l . 3)) => error

because it is equivalent to:

(CDR (CAR '(l . 2))) => (CDR 1) => error

TLC-LISP Reference Manual-47

means the cAr

the CDR

the CAR

the CDR

the CAR

special

of
of

TLC-LISP Documentation Part III

To help reinforce the conceptual distinction between dotted
pairs and lists, we have included selector functions that are
supposed to be applied only to lists.

As a programming convenience, selector functions applied to
NIL will return NIL. Also selecting the <nu■>-th element of a
list of length less than <num> will return NIL.

(FIRST <list>) SUBR

(SBCOND <list>) SUBR

(THIRD <list>) SUBR

(FOURTH <list>) SUBR

(FIFTH <list>) SUBR

(SIXTH <list>) SUBR

These functions select the appropriate element from <list>.

(FIRST '(l 2 3)) => 1

(FIFTH '(ABC DEF)) => E

(SECOND NIL) => NIL

(FOURTH '(1 2)) => NIL

(RIST <list> &OPT (<nu■> 1)) SUBR

<List> is a non-empty list. <Num> is greater than or equal
to one. REST returns the remainder of <list> after the <num>-th
element. If <num> is greater than or equal to the length of
<list> then NIL is returned.

(REST '(ABC D)) => (BCD)

(REST '(ABC D) 3) => (D)

(REST '(A)) => NIL

(REST NIL) => NIL Note

(REST '(l 2 3) 8) => NIL

TLC-LISP Reference Manual-48

TLC-LISP Documentation Part III

(NTH <liat> <nu■>) SUBR

NTH returns <nu■>-th element of <list>. If there are less
than <num> elements in the list then NIL is returned. NTH also
works on strings and vectors.

(NTH '(ABC D) 2) => B

(NTH '(ABC) 9} => NIL

(NTH NIL 2} => NIL

(NTH '(ABC) -1} => error

NTH for lists is equivalent to:

(de NTH (1 n}
(cond

((or (minusp n}(zerop n)) (error)}
((eq n 1} (first 1}}
(t (nth (rest 1) (subl n}) } })

TLC-LISP Reference Manual-49

TLC-LISP Documentation Part III

Besides being able to test the type of an object and select
components of a composite structure, we must be able to
construct new objects of specified types. The generic name for
such a function is a constructor.

(CONS <objectl> <object2>) SUBR

This constructor makes a new dotted pair whose CAR-branch is
<objectl> and whose CDR-branch is <object2>.

(CONS ' A ' B) = > (A . B)

(CONS "A" '(A . B)) => ("A" A . B) which is ("A" . (A. B))

(CONS (1 2 3 4] 1) => ((1 2 3 4] . 1)

Recall that the printer attempts to print any <object> in list
notation. Thus (A . (B . NIL)) prints as (A B).

(CONS (ATOM 'A) (ATOM '(A))) => (T) which is (T. NIL)

(SUBST <objectl> <object2> <aexpr>) SUBR

SUBST substitutes <objectl> for every occurrence of <object2>
in a copy of <sexpr>.

(SUBST 'C 'A '((1 . A) (AB) C)) => ((1 . C) (CB) C)

SUBST uses EQUAL internally, thus:

(SUBST "def" "abc" '(A B "abc")) => (A B "def")

even though the two strings "abc" are not EQ. SUBST is equivalent
to:

(de SUBST (x y z)
(if (atom z)

(if (equal y z)
X

z)
(cons (subst x y (car z))

(subst x y (cdr z)))))

TLC-LISP Reference Manual-50

TLC-LISP Documentation Part III

(COPY <aexpr>) SUBR

This function returns a copy of <sexpr>.

(EQ X (COPY X)) => T if Xis a number or symbol
=> NIL otherwise

but (EQUAL X (COPY X)) => T, always.

(COPY '((A. B) . C)) => ((A. B) . C)

(SETQ L '(ABC))
(EQ LL}=> T
(IQ L (COPY L)} => NIL
(EQUAL L (COPY L}} => T

(EQ 'A (COPY 'A)} => T

COPY for lists is equivalent to:

(de COPY (1)
(if (atom 1)

1

identical
not identical
but of identical form

atomic

(cons (copy (car 1))
(copy (cdr 1)) }}}

COPY also works for other types of objects. The COPY of a
vector is a new vector that shares all the components of the
original vector. The COPY of a string is a new descriptor (see
Part I of the documentation) that shares the characters. See the
Sections on constructors of vectors and strings for details.

TLC-LISP Reference Manual-51

TLC-LISP Documentation Part III

Constructors fQr 1i~1~

(CONCAT <object> <list>) SUBR

This constructor expects a list in its second argument
position. It makes a new list object with <object> as its FIRST
element, and has <list> as its REST-component. In terms of the
traditional implementation of LISP, CONCAT and CONS are
equivalent. However, good programming style dictates that one use
CONS when constructing dotted pairs and use CONCAT when
constructing lists.

(CONCAT 'A '(SD F)) => (AS D F)

(CONCAT 'A NIL) => (A)

(CONCAT '(AS D) '(ABC)) => ((AS D) ABC)

(LIST {<object>}) LSUBR

This constructor makes a list out of its arguments.

(LIST (CONS 1 2) (CAR '(A. B)) (REST '(AB)))
=> ((1. 2) A (B))

(APPEND <liatl> <list2>) SUBR

Creates a new list whose initial segment consists
elements of <listl> and whose final segment is the list
APPEND will copy the elements of <listl>. Thus

of the
<list2>.

(APPEND <list> NIL) has the effect of copying <list>.

(DE APPEND (Ll L2)
(IF (NULL 11)

12
(CONCAT (FIRST Ll) (APPEND (REST Ll) L2))))

(APPEND '(l 2 3) (REST '(ABC))) => (1 2 3 BC)

TLC-LISP Reference Manual-52

TLC-LISP Documentation Part III

(RBVBRSB <list>) SUBR

REVERSE ■akes a new list whose elements are the elements of
<list> in reverse order:

(DE REVERSE (L)
(REVl L NIL))

(DE REVl (Ll L2)
(IF (NULL Ll)

L2
(REVl (REST Ll) (CONCAT (FIRST Ll) 12))))

(REVERSE '(ABC DE)) => (ED CB A)

List and Dotted Pair Modifiers

The LISP functions of the preceding section perform their
computations by constructing new objects. The functions of this
section allow the programmer to modify existing objects. These
operations are powerful and therefore must be used with great
care.

For example, the
circular list-structure,
list-printer.

list-modifying operations can create
which can cause difficulty for a si■ple

A more subtle difficulty can arise in the "alias problem"
wherein lists, strings and vectors that share objects, can all be
effected when one of the shared components is modified.

Modifiers are not always to be thought of as pernicious
predators, though. In particular, vector objects are
historically manipulated by such modification operations.

(RPLACA <sexpr> <object>) SUBR

RPLACA, from 'RePLAce the CAr of', expects <sexpr> to be a
dotted-pair or a non-empty list. It replaces the CAR part of
<sexpr> with <object>. The value returned is the modified
<sexpr>.

(RPLACA '(AB) 'C) => (CB)

(SETQ X '(AB)) => (AB)
(SETQ Y X) => (AB)
(RPLACA X 'C) => (CB)

Now X => (CB) as expected, but note also Y => (CB) which may
not have been anticipated.

TLC-LISP Reference Manual-53

TLC-LISP Documentation Part III

(RPLACD <sexpr> <object>} SUBR

Replaces the CDR-part of <sexpr) with <object>. As with
RPLACA, RPLACD expects <sexpr> to be a dotted pair or non-empty
list.

(RPLACD '(A B} 'C} => (A C)

(RPLACD '(A B C) 1) => (A 1)

since (A B C) is represented as (A . (B . (C . NIL)))

(RPLACB <sexprl> < ■expr2>} SUBR

Replaces the CAR-part of <sexprl> with the CAR-part of
<sexpr2>, and the CDR-part of <sexprl> is replaced with the CDR
part of <sexpr2>. <sexprl> and <sexpr2> must both be non-empty
lists or dotted pairs.

(DE RPLACB (X Y)
(RPLACA X (CARY))
(RPLACD X (CDR Y))

(NCONC <liatl> <liat2>) SUBR

This function has an effect similar to that of APPEND,
except NCONC does not copy its first argument; rather, it
replaces the NIL which terminates the list <listl> with <list2>.
The value returned by NCONC is the value of the modified list.

(DE NCONC (Ll L2)
(IF (NULL Ll)

L2
(IF (REST Ll)

; then
(NCONC (REST Ll) L2)
; else
(RPLACD Ll 12)
Ll)))

(NCONC '(ABC) '(DEF))=> (ABC DEF)

(SETQ X '(ABC)) => (ABC)
(SETQ Y '(DEF))=> (DEF)
(NCONC X Y) => (ABC DEF)

and Y => (DEF), but beware, X => (ABC DEF)

TLC-LISP Reference Manual-54

TLC-LISP Documentation Part III

(FRIVIRSI <liat>) SUBR

This is a destructive version of REVERSE, using no CONSes.

(DE FREVERSE (Ll &OPTIONAL (L2 ()))
(IF (NULL Ll)

L2
(FREVERSE (REST Ll) (RPLACD Ll L2))))

again, application of FREVERSE ■ust be done carefully:

(SETQ X '(ABC))
(SETQ Y (REST X))

=> (ABC)
=> (BC)

now (FREVERSE Y) => (CB) and Y => (B), but X => (AB)

g~~~rg! List Functions

As we mentioned in the Control section, all LISP functions
can be. used as predicates; TLC-LISP (and most other LISP
imple■entations) map non-NIL and NIL to true and false,
respectively. This is more than 'just a programming trick'; it is
a very useful programming technique. For example, we often need
to compute an expression like 'find the first element which
satisfies a condition, if one exists'. Instead of using a
predicate to test for existence, followed by a selection function
to extract the value if one exists, we use a 'pseudo predicate'
which will return NIL (false) if none is found, but will return
some representation of the ele■ent (testable as 'true') if one is
found. In fact, since the search usually involves the traversal
of a list, it is good practice to return the list-segment whose
first element satisfies the test; then, if that element fails to
satisfy other criteria, we can continue the search with the
remainder of the list. A good example of this programming style
is ASSOC.

(ASSOC <ato■> ({(<ato■i> . <objecti>)})) SUBR

ASSOC searches the list ({<atomi> . <objecti>}) for a match
of <ato■>. If one is found, the remainder of the list beginning
with the pair containing the ■atch is returned. If no match is
found, NIL is the value of the ASSOC. (see the note after MEMQ).

(DE ASSOC (XL)
(COND

((NULL L) NIL)
((EQ X (CAR (FIRST L))) L)
(T (ASSOC X (REST L)))))

(ASSOC 'TLC '((FOO LOSE) (TLC
=> ((TLC . WIN) (NERD . LOSE))

WIN) (NERD . LOSE)))

TLC-LISP Reference Manual-55

TLC-LISP Documentation Part III

(MEMQ <ato■l> ({<ato■2>})) SUBR

MEMQ is another 'pseudo predicate', returning either NIL if
the first argument, <atoml>, is not found in the 1 ist
({<atom2>}). MEMQ returns the remainder of the list beginning at
the match if a match is found. MEMQ's definition follows:

(DE MEMQ (AL)
(IF (OR (NULL L) (EQ (FIRST L) A))

L
(MEMQ A (REST L)}))

(MEMQ 'A '(1 2 3 ABC)) => (ABC)

Note: Though ASSOC and MEMQ are defined in terms of <atom>s,
they may be applied with expressions in those positions. Both
functions use EQ. Care must be exercised since (EQ '(A) '(A))
will give NIL; if you don't understand this, don't use
expressions in the <atom> positions.

(LENGTH <object>) SUBR

Returns the length of the <object>, which may be a string,
vector, or list.

(LENGTH '(1 2 3 4)) => 4

(LENGTH '("xx" [l 2] 4)) => 3

(LENGTH NIL) => 0

LENGTH for lists could be defined as:

(de LENGTH (1 &OPT (n 0))
(if (null 1)

n
(length (rest 1) (addl n))))

or as:

(de LENGTH (1)
(do ((n O (addl n))

(1 1 (rest 1)))
(((null 1) n))))

TLC-LISP Reference Manual-56

TLC-LISP Documentation Part III

Strings and Characters

Strings
string may
surrounding
directly by

are ordered collections of eight bit characters. A
be 63520 characters long. Strings print with
double quotes (") and literal strings may be entered

enclosing them in double quotes, i.e "A string".

As a convenience for editor programs, the character AZ

(ASCII 26) will be treated as the end of the string by the
printer. Thus the string created by (STRING "abc" AZ "def") will
print as "abc".

Characters will be treated by many functions as if they were
strings of length 1. Thus (LENGTH \a) => 1, (NTH \a 1) => \a,

§~!~£!Qr Functions for Strings

Though strings can be thought of, indeed implemented as
lists of characters, there are some inherent distinctions between
the data types, string and list. These distinctions are
reinforced in the actions of the string selector function.

(SUBSTRING <str> &OPT <nu■l> <nu■2>) SUBR

Creates a new string EQUAL to the substring of <str>
beginning with the <numl>-th character and containing the next
<num2>-th characters. If <numl> and <nu■2> are missing, all of
<str> is returned; if <num2> is missing it defaults to the length
required to specify the tail of the string.

(SUBSTRING "abcdef" 4) => "def"

(SUBSTRING "abcdefg" 4 2) => "de"

(SUBSTRING "abc" 2 0) => "" the empty string

(SUBSTRING "abc" 0 2) => error index zero is illegal

Note that:

(SUBSTRING "abc" 4 0) => error

even though the length requested is zero, the position specified
is illegal.

TLC-LISP Reference Manual-57

TLC-LISP Documentation Part III

Note that the string returned by SUBSTRING actually shares all or
part of the body of <str>. Thus altering the body of one string
will have the side effect of altering the body of the other
string. If you want a copy then use (STRING (SUBSTRING ...)).

(SETQ Sl "abcdefghi")

(SETQ S2 (SUBSTRING Sl 3 4)) => "cdef"

(STRING-REPLACE-CHAR Sl 5 \-) => "abcd-fghi"

but now:

S2 => "cd-f"

Although the body of a string and its substring can be at the
sa■e ■e■ory location the string descriptors are not the same,
thus:

(SETQ Sl "abc" S2 (SUBSTRING Sl))
(EQUAL Sl S2) => T
(EQ Sl S2) => NIL
(EQ (POINTER Sl) (POINTER S2)) => T

.(NTB < ■tr> <nu■>) SUBR

Selects the <nu■ >-th character fro■ <str>. NTH also works on
lists and vectors.

(NTH "abc" 2) => \b

(NTH "abc" 0) => error

(NTH "abc" 4) => error

index zero is illegal

index out of range

(STRING-SIARCB <■tr> <char or ■ tring> &OPT (<nu■> 1)) SUBR

Return the index of the first occurrence of <char or str> in
<str>, beginning the search at index <nu■>. If the <char or str>
does not occur in <str> then return NIL.

(STRING-SEARCH "abcdefg" "cd") => 3

(STRING-SEARCH "abcdefg" "ABC") => NIL

(STRING-SEARCH "abcdefg" \b) => 2

(STRING-SEARCH "abcabcabc" \b 6) => 8

(STRING-SEARCH "abc" "ab" 6) => error index out of range

TLC-LISP Reference Manual-58

TLC-LISP Documentation Part III

Constructors fQr ~!r1~g~

(STRING {<atr> or <char>}) LSUBR

STRING takes an arbitrary number of strings and characters
as arguments and builds a new string.

(STRING "ABC" \D \E) => "ABCDE"

(STRING "AB" (SUBSTRING "ABCDEF" 4)) => "ABDEF"

(COPY <str>) SUBR

COPY is equivalent to (STRING <str>). It also works on lists
and vectors.

(NBWSTRING <nua> {<for■>}) FSUBR

Returns a string of length <num> whose characters are the
result of evaluating <form>. <Num> is evaluated once. <Form> is
evaluated once for each character of the new string. The
evaluation of <form> must return a character or an error is
generated.

(NEWSTRING 5 \a) => "aaaaa"

(SETQ X (ASCII \a))
(NEWSTRING 5 (ASCII (SETQ X (ADDI X)))) => "bcdef"

(NEWSTRING 10 0) => error ; char expected

TLC-LISP Reference Manual-59

TLC-LISP Documentation Part III

§!r!~i Modifiers

The following functions alter their string argument as
opposed to manufacturing a copy. They should be used with care.
If you do not desire this side effect on the original string,
then use (COPY <str>). •

(STBING-INSBRT-CBAB <str> <nua> <char>) SUBB

Insert <char> at position <nu■> in <str>, ■oving the
character currently at position <num> (and those following) one
position towards the end of the string. Returns the character
that falls off the end. Note that this function operates on <str>
and not on a copy of <str>.

(SBTQ FOO "abcdef")
(STRING-INSBRT-CHAR FOO 3 \Q) => \f
FOO=> "abQcde"

(STRING-INSBRT-CHAR "abc" 4 \Q) => error

(STBING-DBLBTB-CBAB <str> <nu■> <char>) SUBB

index out
of range

Delete the character at position <nu■ > of <str>, moving the
characters following it towards the beginning of the string.
Insert <char> at the end of the string. Return the character
deleted. Note that this function operates on <str> and not on a
copy of <str>.

(SBTQ FOO "abcdef")
(STRING-DELETE-CHAR FOO 3 \Q) => \c
FOO=> "abdefQ"

(STRING-DELETE-CHAR "abc" 4 \Q) => error

(STBING-RBPLACB-CBAB <atr> <nu■> <char>) SUBB

index out
of range

The <num>-th position of <str> is set to <char>.

Replace the selected character with the new character. This
function operates directly on <str>,· not a copy of it.

(STRING-REPLACE-CHAR "abc" 2 \B) => "aBc"

TLC-LISP Reference Manual-60

TLC-LISP Documentation Part III

(UPPER <str or char>) SUBR

For characters, UPPER returns an uppercase version of the
character. For strings, converts all lowercase letters to
uppercase. Note that UPPER operates on the string argument itself
and not on a copy.

(SETQ S "abcl23")
(UPPERS) => "ABC123"
S => "ABC123"

(UPPER "123") => "123"

(UPPER"") => ""

(LOWER <str or char>) SUBR

For characters returns an lowercase version of the
character. For strings, converts all uppercase letters to
lowercase. Note that LOWER operates on the string argument itself
and not on a copy. If you do not desire this side effect then use
(LOWER (COPY <str>)).

(SETQ S "ABC123")
(LOWERS) => "abcl23"
S => "abcl23"

(LOWER "123") => "123"

(LOWER"") => ""

Miscellaneous ~!r!~g ~~g Character Functions

(ASCII <arg>) SUBR

If <arg> is number,
code is that number.
character string, then
returned. Any other type

(ASCII \C) => 67

(ASCII 67) => \C

(ASCII 'A) => error

(ASCII "a") => 97

ASCII returns the character whose asc11
If <arg> is a character or a single
the ascii code for that character is

of argument is an error.

number expected

TLC-LISP Reference Manual-61

TLC-LISP Documentation

(GT <strl> <str2>) SUBR

(GB < ■ trl> < ■ tr2>) SUBR

(LT < ■trl> < ■tr2>) SUBR

(LB <strl> < ■ tr2>) SUBR

Part I II

These functions allow lexicographical comparison of the two
strings, returning <strl> if the comparison is true, NIL if the
comparison is false. This quartet also works on numbers.

(GT "AB" "A") => "AB"

(LT "A" "B") => "A"

(LT "a" "B") => NIL since all lowercase letters are
greater than all uppercase ones.

(BASH < ■tr>) SUBR

Returns a number based on characters of <str>. Identical to
the hash function used by the system when INSERTing atoms into
packages.

(HASH "abed") => 19380

(LBNGTB < ■ tr>) SUBR

Returns the number of characters in <str>. LENGTH also works
on lists and vectors.

(LENGTH "ABCD") => 4

(LENGTH (SUBSTRING "abcdef" 4)) => 3

(LENGTH "") => 0

TLC-LISP Reference Manual-62

TLC-LISP Documentation Part III

Vectors

Vectors ■ay be thought of as finite functions. Therefore,
for a vector V, we may refer to the I-th component by (VI). The
identical result is returned by (VREF VI). Literal vectors are
designated by surrounding the elements with square brackets, as
in:

[l 2 3 4]

The ele■ents in a vector ■ay be arbitrary LISP objects, including
vectors the■selves. In this way we can generate arbitrary (even
"ragged") arrays.

(VRBr <vector> <nua>) SUBR

Returns the <num>-th element of <vector>.

(VREF [ab c] 2) => b

(VREF [ab c] 0) => error

(VREF [ab c] 4) => error

(VICTOR {<object> or <vector>}) LSUBR

index zero illegal

index out of range

VECTOR is similar in function to STRING. Given <object>s,
VECTOR will ■ake them ele■ents of a new vector. Given <vector>s,
VECTOR will "flatten" the■ into elements for the new vector.

(VECTOR 1 2 (ADDI 3)) => [1 2 4]

(VECTOR 1 2 [3 4]) => [1 2 3 4]

arguments that are vectors will only be "flattened" one level,
thus:

(VECTOR [[1 2] 3] 4 5) => [[1 2] 3 4 5]

The first argument [(1 2] 3] is a vector of two elements and
thus contributes two elements to the new vector.

TLC-LISP Reference Manual-63

TLC-LISP Documentation Part III

(COPY <vector>) SUBR

Is equivalent to (VECTOR <vector>). COPY also works for
strings and lists.

COPY builds a new "receptacle" for the vector eleaents, but
shares rather than copies those elements. Thus:

(SETQ XX [l 2 (AB) 3]) => [1 2 (AB) 3]

(SETQ YY (COPY XX)) => [l 2 (AB) 3]

(RPLACA (VREF YY 3) 2) => (2 B)

YY => [l 2 (2 B) 3]

XX=> [l 2 (2 B) 3]

(NBWVBCTOR <nu■> {<fora>}) FSUBR

NEWVECTOR will construct a new vector of <nu■ > elements.
<num> is evaluated once. Each element will be the result of
consecutive evaluations of {<form>}.

(NEWVECTOR 3 NIL) => [NIL NIL NIL]

(NEWVECTOR O 100) => []

(SETQ X 2)
(NEWVECTOR 4 (SETQ X (ADDI X))) => [3 4 5 6]

Vector Modifiers

These functions destructively modify their vector argument.
They should be used with care.

(STORE <vector> <nu■> <object>) SUBR

Replace the <num>-th element of <vector> with <object>.
STORE operates on its argument and not on a copy. It returns the
modified vector.

(SETQ V [l A 3])

(STORE V 2 [l 2 3]) => [l [1 2 3] 3]

(STORE [l 2 3] 4 4) => error index out of range

TLC-LISP Reference Manual-64

TLC-LISP Documentation Part III

(VICTOR-DILITI-ILIMINT <vector> <nu■> &OPT (VAL nil)) SUBR

Modifies <vector> by deleting the element at position
<num>, moving the remaining elements one position towards the
beginning of the vector and setting the last element position to
VAL. This function returns the deleted element. Note that this
function operates on <vector> itself and not on a copy.

(SITQ V [ab c])

(VICTOR-DELETE-ELEMENT V 2) => b
V => [a c nil]

(VECTOR-DELETE-ELEMENT V 1 "foo") => a
V => [c nil "foo"]

(VECTOR-DELETE-ELEMENT V 4) => error ; index out of range

(VICTOR-INSIRT-ILIMINT <vector> <nu■> <obj>) SUBR

Modifies <vector> by inserting <obj> at position <num>,
moving the remaining elements one position toward the end of the
vector and discarding the last element. It returns the discarded
element. Note that this function operates on <vector> itself and
not on a copy.

(SETQ V [ab c])

(VICTOR-INSERT-ELEMENT V 2 nil) => c
V => [a nil b]

(VECTOR-INSERT-ELEMENT V l "foo") => b
V => ["foo" a nil]

(VECTOR-INSERT-ELEMENT V 4 "a") => error

TLC-LISP Reference Manual-65

index out of range

TLC-LISP Documentation Part III

General Vector Functions

(MBMVBC <object> <vector>) SUBR

If <object> is EQUAL to an element in <vector>, MEMVEC
returns the first such index, otherwise it returns NIL.

(MEMVEC (AB) (1 2 (AB) 3 T (AB)] => 3

(LBNGTR <vector>) SUBR

Returns the number of elements in the vector. LENGTH also
works on lists and strings.

(LENGTH]) => 0

(LENGTH (1 2 3]) => 3

(LENGTH (NEWVECTOR 10 0)) => 10

TLC-LISP Reference Manual-66

TLC-LISP Documentation Part III

lnviron■ents and State Modifiers

§!~!~ Modifiers

Except for the function-defining functions DE, DF, and DM,
the bindings of variables to values has been a 'non-destructive'
kind in the sense that when we leave the context of a LAMBDA
expression (or LET or DO) the previous bindings of local
variables are restored. The next functions involve 'destructive'
assignment to variables, they are LISP's formulation of the
assignment statement. As with all LISP forms, they are
expressions (rather than a statement) and therefore return a
value.

(SITQ {<var> <for■>}) FSUBR

Each <var> is bound to the value of its
<for■ >. The evaluation proceeds sequentially, from
(rather than in parallel as in the DO-expression).
the SETQ is the value of the last <form>.

(SETQ X 4 Y 'A) => A
X => 4
y => A

corresponding
left to right

The value of

(SETQ X 6 Y (CONS X Y)) => (6 . A)
X => 6

not (4 . A)

Y => (6 A)

(SIT <var> <object>) SUBR

The symbol <var> is assigned <object> as value.

(SET (QUOTE X) <form>) is the same as (SETQ X <form>)

(SET 'X '(AB)) => (AB)
X => (AB)
(SET (FIRST X) (CONS X 1)) => ((AB) . 1)
A=> ((AB) . 1)
X => (AB)

Most common applications involve SETQ, not SET.

TLC-LISP Reference Manual-67

TLC-LISP Documentation Part III

(UNBIND <var>) SUBR

This function sets <var> to the distinguished state UNBOUND.
Subsequent attempts to evaluate <var> (before it is bound via
SET, SETQ or as a formal parameter or local variable during
function application) will result in an 'unbound-atom' error.

(SETQ A 1) => 1
A=> 1
(UNBIND 'A)=> A
A=> error unbound atom

Environment Objects

In addition to modifying the global state, we supply an
object to contain local state -- the environ■ent object. Environ
■ent objects ■ay be used as argu■ents to CLOSURE to allow several
different functions to share the same state. The environ■ent
constructor is ENV.

(ENV {{<var> <object>} or <env>}) LSUBR

ENV returns an environment object with the indicated
variables and values. If an argument in the <var> position is an
environment instead of a <var>, then that environment is merged
into the new environment. Thus:

(SETQ El (ENV 'A 1 'B 2))
(SETQ E2 (ENV El 'C 3)) => (ENV 'A 1 'B 2 'C 3)

Environments ■ay also be used as functions, interpreting
them as finite functions.

((ENV 'A 10 'B 20) 'A) => 10

Environments may also be updated by supplying two arguments,
a variable name and an object. The effect is to upda_te the
environment.

((ENV 'A 10 'B 20) 'A 11) => (ENV 'A 11 'B 20)

TLC-LISP Reference Manual-68

TLC-LISP Documentation Part III

Property Lists

LISP property lists are a powerful tool for constructing
data bases. A property list consists of a set of attribute-value
(or indicator-property) pairs. In TLC-LISP a property list is
only associated with a symbol. Therefore a natural model for such
property lists is the interpretation of the symbol as a
'dictionary entry' and the attribute-value pairs as that entry's
different possible meanings. See the section on "Property Lists"
in Part I and compare the features of Property Lists with those
of Environments.

(PUTPROP <var> <ato■> <object>) SUBR

The <object> is placed on the property list of <var>
the attribute <atom>. Any previous value associated with
is destroyed. The value returned is <object>.

(PUTPROP 'WALDO 'AGE 47) => 47

(GBTPROP <var> <ato■>) SUBR

under
<atom>

The property list of <var> is searched for the indicator
<atom>; if found, the corresponding value entry is returned. If
no match is found NIL is returned. Care must be exercised to
distinguish between a 'false' indication and the return of a
value NIL. Continuing the previous example:

(GETPROP 'WALDO 'AGE) => 47

(PUTPROP 'WALDO 'CHILDREN NIL) => NIL

(GETPROP 'WALDO 'MARRIED) => NIL

(GETPROP 'WALDO 'CHILDREN) => NIL

(RBMPROP <var> <atom>) SUBR

This function removes from the p-list of <var>, the latest
attribute-value pair with attribute <atom>; if none existed, NIL
is returned otherwise the value of REMPROP is the removed value.
If ADDPROP has been used with indicator <atom>, the next-latest
<atom>-<object> pair is made current.

(REMPROP 'WALDO 'AGE) => 47

(GETPROP 'WALDO 'AGE) => NIL

TLC-LISP Reference Manual-69

TLC-LISP Documentation Part III

(ADDPROP <var> <ato■> <object>) SUBR

Similar to PUTPROP, except a previous value associated with
the attribute <atom> is saved.

(PUTPROP 'WALDO 'CHILDREN '(LOUIE SAM)) => (LOUIE SAM)

(ADDPROP 'WALDO 'CHILDREN '(NERD)) => (NERD)

(GETPROP 'WALDO 'CHILDREN) => (NERD)

(REMPROP 'WALDO 'CHILDREN) => (NERD)

(GETPROP 'WALDO 'CHILDREN) => (LOUIE SAM)

(PLIST <var>) SUBR

PLIST returns a representation of the property-list
associated with <var>. Note that the actual p-list is not
returned.

(PLIST 'WALDO) => (CHILDREN (LOUIE SAM))

(PUTPROP 'WALDO 'FOO '7) => 7

(PLIST 'WALDO) => (FOO 7 CHILDREN (LOUIE SAM))

TLC-LISP Reference Manual-70

TLC-LISP Documentation Part III

Syabols and Packages

Packages are collections of symbols. Packages are arranged
in a tree, each package except the root package having a
superpackage. The root package is named SYS:. The superpackage of
the root package is NIL. One package is always the "current
package". The current package is defined as the value of the
symbol PACKAGE. The initial current package is SYS:. Executing
(PKG "foo" SYS:), (PKG "bar" SYS:) and (PKG "baz" FOO:) results
in the creation of the following package hierarchy:

SYS:

+-----+---+

BAR:
FOO:

BAZ:

Packages are active at read time. The reader recognizes a
symbol as a non-numeric "normal" character followed by zero or
more "normal" characters followed by a delimiter (see the s~ction
on In2ut and Out2ut about "normal" characters). For the purposes
of this section, a delimiter is any non-normal character, thus
comment characters, parenthesis, etc. are all delimiters for
symbols and package names. A, AlOO and ABCDEF are valid symbols.
When a symbol is scanned, the reader searches the current package
for a symbol with the same print name. If a matching symbol is
found then the reader returns the symbol as the value of the
read. If no matching symbol can be found then the superpackage is
searched. This process continues until a matching symbol is found
or until the root package is searched. If a match was found it is
returned. If no match was found in the current package or any
super package then a symbol is created in the current package and
that symbol is returned.

The reader also recognizes package names. A package name
looks the same as a symbol except it ends in a colon character
":.. Thus A:, AlOO: and ABCDBF: are valid package nam.es. If the
reader scans a package name followed by a delimiter then the
package whose print name matches the name scanned is returned.
Unlike symbols, packages are not automatically created by the

TLC-LISP Reference Manual-71

TLC-LISP Documentation Part I II

reader. If a package name is scanned and no existing package's
print name matches then a NO-SUCH-PKG error is generated. Print
names for packages must be unique. There is no way to have two
different packages with the same print name.

When a package name is followed immediately by a symbol
instead of a delimiter then the reader returns the ■etching

symbol in the specified package, creating it if necessary. No
superpackages are searched nor is the current package (unless it
happens to be the same as the specified package). Thus A:FOO
returns the symbol FOO in the package A:.

The reader also supports an abbreviation (:) for the
package SYS:. A colon preceded by a delimiter returns the
package and the symbols :FOO, :BAR and :BAZ are all in the
package.

root
SYS:
SYS:

Packages are useful for preventing name conflict. Name
conflict occurs when two programs attempt to use the same symbol
name for two different purposes. For example an editor program
might have a function PUTCHAR to store a character into its
buffer while a pretty printer program may have a function PUTCHAR
to display characters on the screen. Loading both of these
programs would result in one of them using the wrong PUTCHAR.
This problem could be solved by loading each program into its own
package. Assume the existence of packages PP: and EDIT: both with
superpackage SYS:. We make PP: the current package and load the
pretty printer. When the symbol PUTCHAR is scanned the reader
searches PP: then SYS:, finds no matching symbol so it creates
one in PP:. The next PUTCHAR scanned will return the symbol in
PP:. We then make EDIT: the current package and load the editor
program. When the symbol PUTCHAR is scanned, the reader searches
EDIT: then SYS:, finds no match and creates the symbol PUTCHAR in
EDIT:. PP: was not searched because it is not in EDIT:'s
superpackage chain (not an ancestor of EDIT:). Thus a PUTCHAR
symbol exists in two different packages and the conflict is
resolved.

For the purposes of printing, the package prefix of a symbol
is handled similar to string and character delimiters. If the
package of a symbol is not the same as the current package then
the functions PRIN0, PRINl and PRINT will print the symbol with
its package prefix. If the current package is the same as that of
the symbol, then no prefix is printed. The functions PRIN2 and
PRIN3 never print the package prefix regardless of the value of
the current package. See the section on In2ut and Out2ut for more
details.

TLC-LISP Reference Manual-72

TLC-LISP Documentation Part III

A common error when using packages involves the attempt to
reference a function by name before it has been defined (called a
forward reference) and getting two symbols when only one was
desired. For example, assume the following code is loaded into
the package UTIL:

(de :FOO (n)
(barn)
(baz n))

(de BAZ (n)
(mumble n))

(de :BAR (n)
(baz n))

Note that FOO and BAR are specified to be interned in the
SYS: package, However a reference is made to BAR in the
definition of FOO. Since no symbol is found in either UTIL: or
SYS: when this first reference is scanned, the symbol BAR is
(incorrectly) created in UTIL:. The subsequent definition of :BAR
creates a second symbol in SYS:. Executing FOO results in an
UNBOUND-ATOM UTIL:BAR error. Two solutions are possible. The
order of definitions could be changed (to BAZ, BAR, FOO) so that
there are no forward references or the reference to BAR in FOO
could use a package prefix, SYS:BAR (or :BAR),

Automatic Removal of S~mbols

The TLC-LISP garbage collector automatically removes any
symbol that meets all the following criteria:

Thus:

1. The symbol is not built-in (e.g. CONS)

2. The symbol has no value, i.e (BOUNDP <symbol>) is NIL.

3. The symbol is not referenced directly or indirectly by
any other symbol or system data structure. The package that
the symbol belongs to does not count as a reference.

(SETQ FOO '(BAZ BAR))

prevents BAZ and BAR from being removed because they are
referenced by FOO, and prevents FOO from being removed because it
has a value, the list (BAZ BAR). Sometimes a symbol that looks
like it should be removable will persist because it is referenced
by the system through the run-time stack. (RETFRAME) will remove
these references.

TLC-LISP Reference Manual-73

TLC-LISP Documentation Part III

(INSBRT < ■tr> &OPT <pk.>) SUBR

Find a sy■bol with print name <str> and return that symbol
as value or, if no such symbol exists, construct a new symbol
with that print name and return it. If <pkg> is not supplied then
the package hierarchy starting with the current package (PACKAGE)
is searched. If <pkg> is supplied then only <pkg> is searched.
Assu■ing the existence of the empty packages FOO:, BAR: and BAZ:.
FOO: and BAR: are sub-packages of SYS:, BAZ: is a sub-package of
FOO:. Then:

(SETQ PACKAGE BAZ:) ; Set the current package

Note; when the current package is something other than SYS: then
the syste■ prompt will be prefaced with colon as in:>>>.

(INSERT "te■p") => TEMP ; no prefix so in package BAZ:
(INSERT "temp" SYS:)=> :temp
(INSERT "te■p" BAR:) => bar:temp
(SYMBOL-PKG 'TEMP) => baz:
(SBTQ PACKAGE FOO:)
'TEMP => : TEMP searches FOO:, then SYS:

(LOOKUP < ■ tr> &OPTIONAL <pkg>) SUBR

Like INSERT, except returns NIL if the
in the symbol table; in this case a
constructed. If <pkg> is not supplied then
■ tarting with the current package (PACKAGE)
is supplied then only <pkg> is searched.

(LOOKUP "ABC") => NIL

(INSERT "ABC"} => ABC

(LOOKUP "ABC") => ABC

Continuing the exa■ple from INSERT above:

(LOOKUP "temp" FOO:} => NIL
(LOOKUP "temp") => BAR:TEMP

desired symbol is not
new symbol is not

the package hierarchy
is searched. If <pkg>

TLC-LISP Reference Manual-74

TLC-LISP Documentation Part III

(PNAMB <ayabol>) SUBR

Return a string that represents the print name of <symbol>.
PNAME does not return the actual print name, but a copy. Note
that the package prefix is not part of the print name.

(PNAMB 'ABC) => "abc"

(PNAME 'FOO:BAZ) => "baz"

(OBLIST) SUBR

OBLIST (Object-list) returns a list of all the symbols in
the current package. The list is ■anufactured each time OBLIST is
invoked and may be destructively modified without risk.

(PF) SUBR

PF (Package family) returns a list of all existing packages.
The list returned is the actual data structure used by the system
and not a copy. Destructive modification of the list will corrupt
the system.

(PF) => (sys: util: edit: pp:)

(PKG <atr> &OPT (<pkg> PACKAGE) (<nu■> 128)) SUBR

If a package exists with print name <str> then that package
is returned. Otherwise, PKG creates a package with print name
<str>:, superpackage <pkg> and size <num>. <num> is the number of
unique hash values for the symbols of the package and is not the
number of symbols that may be inserted in the package.

(PKG "FOO" SYS:) => FOO:

(PKG "SYS" SYS:) => SYS:

(SYMBOL-PKG <ayabol>) SUBR

Returns the first package in the ancestry of the current
package that contains <symbol>.

(SYMBOL-PKG 'CONS)=> sys:

(INSERT "te■p" FOO:)
(INSERT "temp" BAR:)
(SYMBOL-PKG 'FOO:TEMP) => foo:
(SYMBOL-PKG 'BAR:TEMP) => bar:

TLC-LISP Reference Manual-75

TLC-LISP Documentation Part III

(SUPER-PKG <pkg>) SUBR

Returns the superpackage of the specified package.

Continuing the example from the first part of this section,

(SUPER-PKG BAZ:) => FOO:

(SUPER-PKG BAR:) => SYS:

(SUPER-PKG (SUPER-PKG)) => SYS:

(SUPER-PKG SYS:) => NIL

(LOOKUP-PKG <str>) SUBR

Gets the package whose name is <str> if one exists, or
returns NIL if no such package exists.

(LOOKUP-PKG "SYS") => SYS:

(GENSYM &OPTIONAL (<str> "G")) SUBR

Generates a "pseudo symbol" --an object that acts like a
symbol, but is not installed on an oblist. Such created symbols
are useful within macro creation or other program-manipulating
applications. The string <str> is used as a prefix, and a counter
is generated to be used as a suffix. Thus:

(GENSYM) => Gl

(GENSYM "Local-") => LOCAL-5

TLC-LISP Reference Manual-76

TLC-LISP Documentation Part II I

The Class Syste■

The general notions of class systems were discussed in the
Introduction (Part I), so this section will concentrate on the
specific operations in TLC-LISP.

Constructors

Classes are created using the CLASS function, specifying
(1) a superclass,
(2) messages and their associated methods,
(3) class variables that will allow shared information between

instances of a class, and finally
(4) instance variables that allow each instance some private

information.

(CLASS <class>
({<var-i> <fcn-i>})
({<var-j> <object-j>})
({<var-k> <object-k>})) SUBR

creates a class object with superclass <class>, messages <var-i>
and associated method functions <fcn-i>, class variables <var-j>
and their initial values <object-j> and finally, instance
variables <var-k> and their default values <object-k>. If no
superclass is desired then NIL is used.

For an introductory example, we define a class called BANK
ACCOUNT, with two messages-method pairs--one to deposit, and one
to withdraw. Each instance of a bank account should, of course,
have its own private amount. Thus:

(SETO BANK-ACCOUNT
(CLASS ()

(ENV ':W (LAMBDA (AMT)

()

(IF (LE AMT ACCOUNT)
(SETQ ACCOUNT (SUB ACCOUNT AMT))))

':D (LAMBDA (AMT)
(SETQ ACCOUNT (ADD ACCOUNT AMT))))

'(ACCOUNT 0)))

Notice that we have prefixed the messages (Wand D) with the
package prefix (:); this will force the message names into the
SYS package so that we'll be assured that instances that send
messages (:W and :D) will find matches. There is a single
instance variable, named ACCOUNT, that is initialized to zero.

TLC-LISP Reference Manual - 77

TLC-LISP Documentation Part III

Instances are created using the INST function, specifying
the class, and optionally overriding some of the instance
variable initializations (how much is initially placed in the
particular account) and so we have:

(INST <cla■■ > &OPT <env> or ({<var> <object>})) SUBR

returns an instance of class <class> with instance variables
<var> initialized to <object>. Instance variables not specified
are initialized to the default values defined in the class.

(SETQ MINE (INST BANK-ACCOUNT '(ACCOUNT 22)))

For co■parison, we also could have written:

(SETQ MINE (INST BANK-ACCOUNT))
(MINE ':D 22)

When a message is passed to an instance that instance's
class is first searched for a match. If no ■atch is found the
superclass of the class is searched, and so on until a match is
found or we reach the root. In this case we generate an UNKNOWN
MESSAGE error.

When a method is applied, the instance variables of the
instance and the class variables of the class become the current
values similar to the environment of a closure. Any changes made
by the method are "remembered" by the individual instance (or
class in the case of class variables).

When a message is passed to an instance, the atom SELF is
(effectively) bound to the instance. A method may recursively
send messages to an instance by sending messages to SELF.

An extended example will serve to illustrate these points as
well as set the stage for some others. In particular, we'll
explore the issues of making some types of "turtle graphics"
first-class in the sense that they will be objects rather than
just pictures. These objects can be asked, for example, to grow,
shrink, and move. We'll define a class called rectangle, and
define some messages that will allow us to manipulate the
graphical representation. See the section on turtle graphics at
the end of this manual for details of the graphics commands.

TLC-LISP Reference Manual - 78

TLC-LISP Documentation Part III

(SETQ OBJECT (CLASS ()
(ENV ':P (LAMBDA() POSITION)

':SETP (LAMBDA (POS) (SETQ POSITION POS)))
()
'(POSITION (LIST O 0))))

This gives us a simple class (with no superclass) that can
respond to two messages--one to set a value (:SETP) and one to
get a value (:P). The single instance variable POSITION will
carry some representation of the spatial location of any
instance. Thus:

(SETQ BLOB (INST OBJECT '(POSITION '(30 40))))

defines BLOB and locates it at the specified position.

We'll now define a subclass of the class OBJECT, called
RECTANGLE, that will serve as our running example. RECTANGLE's
instances will respond to requests to grow, shrink, hide and
show, and finally, move.

(SETQ RECTANGLE (CLASS OBJECT
(ENV ':GW (LAMBDA (INC)

(SELF ':E)

()

(SETQ WIDTH (ADD WIDTH INC))
(SELF ':S))

':GL (LAMBDA (INC)
(SELF ':E)
(SETQ LENGTH (ADD LENGTH INC))
(SELF ':S))

' : E (LAMBDA ()
(PEN 0)
(POS (SELF ': P))
(PEN 2) (HD 0)
(REP 2 (FD WIDTH) (TR 90)

(FD LENGTH) (TR 90)))

' : S (LAMBDA ()
(PEN 0)
(POS (SELF ':P))
(PEN 1) (HD 0)
(REP 2 (FD WIDTH) (TR 90)

(FD LENGTH) (TR 90)))

':M (LAMBDA (POS)
(SELF ': E)
(SELF 'SETP POS)
(SELF ':S)))

'(WIDTH O LENGTH 0)))

TLC-LISP Reference Manual - 79

TLC-LISP Documentation Part III

The occurrence of SELF within the methods indicates the
operation of sending ■essages to an instance from within that
same instance. So, for example, to show the ■ovement of a
rectangle, we erase the existing picture, change coordinates as
specified, and then redisplay the object.

Now we can define a specific rectangle:

(SETQ RECTl (INST RECTANGLE '(WIDTH 200 LENGTH 200)))

We can show it by:

(RECTl ':S)

and we can shrink it by:

(RECTl ':GW -20)

or move it by:

(RECTl ':M '(50 50))

Of course, this all depends on accurate updating of the
"local state" of each instance, so method application is
performed with the equivalent of closure object running within an
UNWIND-PROTECT to insure the class and instance· variables are
updated if a THROW or RETFRAME occurs.

Since Lisp program■ing tends to occur in a dynamic,
exploratory setting, it is important to be able to experiment
with programming techniques and ■odify parts and pieces without
resorting to the archaic paradigm of edit-compile-run-debug
edit ... and iterate. That is, we need have the freedom to modify
decisions "on-the-fly". In the next section (Errors and
~~~Y&&iBi) we'll illustrate the TLC primitives that will let us 
build forgiving debuggers--the kind that will let us modify 
programs that are under execution, let us supply values for 
undefined functions and then continue, or let us gracefully 
retreat from a computation that we no longer wish to pursue. 

In this section we wish to demonstrate similar kinds of 
tools for the (somewhat less) dynamic task of class construction 
and exploration. As with interactive debugging, such tools expect 
that their user be cognizant of the power they possess. 

So let's assume we want to extend the world of RECTANGLEs to 
recognize rotation. We need a message-method pair obviously. We 
also need to expand the position information of the class OBJECT, 
perhaps, or we could assume that orientation in the plane is only 
of interest to RECTANGLE. We assume the latter, so all 
modifications will be made to the subclass RECTANGLE. We need a 

TLC-LISP Reference Manual - 80 



TLC-LISP Documentation Part III 

new instance variable (HEAD) and need to modify the methods in 
the class to set the heading to HEAD, rather than O. And of 
course we need to be careful; any instances of RECTANGLE that 
existed before the proposed modifications, are no longer 
accurate. Finally, we need operations to access and modify 
components of existing classes. That is the topic of the next 
section. 

Selectors for Q!~!!~! 

Class objects respond to four messages that allow the 
to examine or change the internal state of such an object. 
techniques are only supplied for debugging; they are 
designed for everyday use. 

:SUPERCLASS MESSAGE 

user 
These 

not 

Returns the superclass of a class. Setting of the superclass 
requires care since it could create inconsistencies between prior 
and subsequent subclasses and instances that rely on this class. 

(OBJECT ':SUPERCLASS) => nil 
(WHO (RECTANGLE ':SUPERCLASS)) => (OBJECT) 

where we use WHO to locate a name for the structure that 
represents the super-class. 

:MSG-METHOD MESSAGE 

Return 
Setting of 
editor. 

or set the message-method environment of a 
message-method environments is useful for a 

class. 
class 

(RECTANGLE ':MSG-METHOD) 
=> (ENV ':GW 

Now 
reflect 
methods 
example: 

': GL . ) 

we'll add new messages to objects of type RECTANGLE 
their orientation in the plane. This will involve 
that will access the new instance variable, HEAD. 

(RECTANGLE ':MSG-METHOD 
(ENV (RECTANGLE ':MSG-METHOD) 

':BEADING (LAMBDA (&OPT HD) 

to 
new 
For 

(IF (BOUNDP HD) (SETQ HEAD HD)) 
HEAD))) 

TLC-LISP Reference Manual - 81 



TLC-LISP Documentation Part III 

Now we need to add the instance variables. 

:INST-VARS MESSAGE 

This message allows manipulation of the instance variable 
component of either a class or an instance. For either type of 
object, we can return the instance variables and their values; in 
the case of a class object, we get the default values, and for an 
instance, we get its actual instance values. A class object is 
allowed to change the the number of instance variables and any 
default settings. An instance may only change values, not the 
number of instance variables, since this latter property is a 
class-property, not an instance property. Even with these 
caveats, such surgery requires care; for example, prior and 
subsequent instances may not be consistent. 

We can add a new instance variable to RECTANGLE by: 

(RECTANGLE ':INST-VARS 
(ENV (RECTANGLE ':INST-VARS) 

'HEADING 0)))) 

and now: (RECTANGLE ':INST-VARS) => (ENV 'HEADING 0) 

(RECTl ':INST-VARS) => (ENV) but 

As with the message names, we have to be sure that package 
communication is maintained, here assuring that the reference to 
HEADING that appears in the updated messsage-method environment 
is the same symbol that appears in the updated instance 
variables. 

:CLASS-VARS MESSAGE 

Returns or sets the class variables of a class object. The 
class variables are implemented as an environment object. If the 
argument is not an environment then it is coerced into one. 

:CLASS MESSAGE 

Returns the class of a instance. 

:PRINT MESSAGE 

When an object of type INSTANCE is to be printed, a :PRINT 
message is sent to it. By defining a :PRINT message-method the 
print behavior of any class of instances can be redefined. 

TLC-LISP Reference Manual - 82 



TLC-LISP Documentation Part III 

Errors and Debugging 

TLC-LISP supplies a collection of functions to examine the 
state of the LISP machine. These are useful for debugging as well 
as building more general control-related programs. 

Whenever a function is applied, the TLC-LISP interpreter 
constructs a "stack frame". A function can be applied in several 
ways: 

1. Direct call to APPLY, i.e. (APPLY ADD '(l 2 3)) 

2. Evaluating a list and applying the evaluated first element to 
the rest of the evaluated elements, i.e. (ADD 1 2 3). 

3. Sending a message to an instance, the appropriate method is 
applied to the arguments, i.e. (MY-CAR ':SPEED 55) 

4. Named 
function 

call, a compiled version of method 2 above where 
name has been preserved. 

the 

This stack fra■e contains information about the state of the 
interpreter when the function is applied. Specifically, it 
contains information about which variables are temporarily bound 
inside this function application and, where possible, the 
functional value and the arguments to the function. 

Several functions are supplied to examine stack frames. 
Examples of their use follow. 

(TYPEFRAME <nu■>) SUBR 

Returns the frame type of the level <num>-th frame as an 
atom. The following values are possible: 

NORMAL 
fsubrs, 
frames. 

-- frames 
lsubrs, 

erected by the interpreter for subrs, 
exprs, fexprs and macros are called NORMAL 

NAMED-CALL -- the function name of an named-call frame is 
available but the argument list has been compiled out. 

SYSTEM a frame erected 
processing of CATCH and 
information may be extracted. 

by the interpreter 
UNWIND-PROTECT. No 

TLC-LISP Reference Manual - 83 

during 
useful 



TLC-LISP Documentation Part III 

END -- the original frame erected at system initialization 
time. Attempts to access frames with level numbers greater 
than the END frame generate a NUMBER-OUT-OF-RANGE error. 

{ARGSFRAMB <nu■>) SUBR 

This function returns a list of the arguments passed to the 
<num>-th pending function invocation. ARGSFRAME should not be 
used on a NAMED-CALL type frame. See BINDFRAME for exa■ples. 

{FCNFRAMB <nu■>) SUBR 

This function returns the function applied in the <num>-th 
previous pending function invocation. See BINDFRAME for examples. 

{BINDFRAMB <nu■> &OPT <var>) SUBR 

If only <nu■> is supplied then return a list of the for■ 
({<var> <object>}) which represents the variables whose values 
have been saved between the erection of frame <num> and the 
erection of frame <num> minus one. Each <object> represents the 
saved value, not the value current to the variable in frame 
<num>. If <var> is supplied BINDFRAME returns the current value 
of <var> in frame <num>. 

(de FOO (a) 
(let ( (n 20) ) 

(mul 2 (add 4 n 'a)))) 

(SETQ N 10) 
(FOO -7) results in a NUMBER-EXPECTED error 
(FCNFRAME 1) => error 
(FCNFRAME 2) => add 
(FCNFRAME 3) => mul 
(FCNFRAME 4) => let 

(ARGSFRAME 4) => (((n 20))(mul 2 (add 4 n (quote a)))) 

(BINDFRAME 4) => (n 10) 
(BINDFRAME 4 'N) => 20 

(FCNFRAME 5) 

saved value 
actual value 

=> (lambda (a) (let ((n 20)) (mul 2 (add 4 n (quote a)))) 

(BINDFRAME 5) => (a UNBOUND) Since A was unbound when 
FOO was activated. 

TLC-LISP Reference Manual - 84 



TLC-LISP Documentation Part III 

These functions can be used to define a backtrace: 

(de BACKTRACE (&OPT (count 3) 
(start 1) 

print a backtrace of pending function applications 
if COUNT is negative, prints all existing frames 
(if (or (eq (typeframe start) 'end) 

(zerop count) ) 
nil 
; else 
(print-frame start) 
(backtrace (subl count) (addl start)))))) 

(de PRINT-FRAME (n) 
( terpri) 
(prin3 "+--FRAME") 
(print n) 
(if (neq (typeframe n) 'normal)) 

(print (typeframe n)) 
; else 
(prin3 "Fen: ") 
(print (fcnframe n)) 
(prin3 "Arg: ") 
(print (argsframe n))))) 

Continuing with the example in BINDFRAME: 

(BACKTRACE 5) => 

+-- FRAME 1 
Fen: error 
Arg: (number-expected a) 

+-- FRAME 2 
Fen: add 
Arg: (4 n (quote a)) 

+-- FRAME 3 
Fen: mul 
Arg: (2 (add 4 n (quote a))) 

+-- FRAME 4 
Fen: let 
Arg: (((n 20)) (mul 2 (add 4 n (quote a)))) 

+-- FRAME 5 
Fen: (lambda (a) (let ((n 20)) (mul 2 (add 4 n 'a)))) 
Arg: (-7) 

+-- FRAME 6 
Fen: toplev 
Arg: nil 

TLC-LISP Reference Manual - 85 



TLC-LISP Documentation Part III 

(WHO <object>) SUBR 

Searches all symbols in all packages and returns a list of 
those symbols whose value is EQ to <object>. This function can be 
used to find the name of a function returned by FCNFRAME. 

Continuing with the previous example: 

(FCNFRAME 5) 
=> (lambda (a) (let ((n 20)) (mul 2 (add 4 n 'a)))) 

If we have forgotten what function this is then: 

(WHO (FCNFRAME 5)) => (foo) 

(RITFRAMI &OPT <nua> (<object> NIL)) SUBR 

RETFRAME returns from the <num>-th pending invocation, using 
<object> as the returned value. If only the level number (<num>) 
is supplied then it uses NIL. If no arguments are supplied then 
it returns from all pending function applications, flushes the 
stack, and performs all necessary unbinding of variables. 
Protected forms are evaluated as the stack is unwound (see 
UNWIND-PROTECT). 

Continuing with the previous example: 

(RETFRAME 2 17) => 34 

will return fro■ the ADD (frame 2) with the value 17, so MUL 
(frame 3) can contine, multiplying the 17 by 2 and returning 34 
to LET (frame 4), which unbinds N and returns the value 34 to FOO 
(frame 5), which unbinds A and returns the value 34 to TOPLEV. 

(RISTART-FRAMI <nua>) SUBR 

This is logically equivalent to 

(APPLY (FCNFRAME <num>) (ARGSFRAME <num>)) 

TLC-LISP Reference Manual - 86 



TLC-LISP Documentation Part III 

Notice that the stack frame display functions do not display 
their own frames. These functions consider the "top" of the stack 
for their purposes (frame zero) to be the last application of the 
function TAPPLY. 

(TAPPLY <fen> <list>) SUBR 

TAPPLY is identical to apply except that it binds the symbol 
&TOP to a value that the system can use to begin examination of 
stack frames. Essentially it defines frame number zero. The 
definition is equivalent to: 

(de TAPPLY (fen arglist &AUX (&top ;special value ... ;)) 
(apply fen arglist)) 

In the previous examples, the ERROR function (frame 1) executes a 
(TAPPLY TOPLEV NIL). This binds &TOP and prevents the display of 
the current TOPLEV frame or any more recent frames (BACKTRACE, 
FCNFRAME, etc.). 

Debugger Functions 

TLC-LISP includes a primitive to allow single-stepping of 
the evaluator to aid in the creation of debugging programs. The 
evaluator checks the value of the symbol EVALF before each 
evaluation. If EVALF is non-NIL then especial case occurs. This 
is illustrated by: 

(de EVAL (obj) 
(if evalf 

(let ( (evalfn evalf) (evalf nil) 
(apply evalfn (list obj)) 

; else 
... evaluate obj normally)) 

Note that if EVALF bas a non-NIL value, then it must be a 
function. That function is then applied in an environment where 
EVALF is bound to NIL, thus preventing infinite recursion. 

EVALF is not usually referenced explicitly by user programs. 
Instead the EVALF feature is exploited by using our next 
function, EVALHOOK. 

TLC-LISP Reference Manual - 87 



TLC-LISP Documentation Part III 

(BVALBOOK <for■> <fen>) SUBR 

EVALHOOK binds EVALF to <fen> and then evaluates <form>. The 
check in the evaluator for EVALF is bypassed when evaluating 
<form> itself but not in any subsidiary evaluations. 

(de HOOK (obj) 
(print obj) 
(eval obj)) 

(EVALBOOK '(ADD 1 2 3) HOOK) 

prints: ADD 
1 
2 
3 

=> 6 

The evaluation of the list (ADD 1 2 3) is not hooked but the 
subsequent argument evaluations are hooked. 

(EVALBOOK '(ADD (ADDl 10) 20) BOOK) 

prints: ADD. 

=> 31 

(ADDl 10) 
20 

A more elaborate tracer is: 

(de BOOK2 (obj &AUX (val (eval obj))) 
(prinO obj) 
(prin3 "evaluates to") 
(print val)) 

(BVALBOOK '(ADD (ADDl 10) 20) BOOK2) 

prints: add evaluates to add 

=> 31 

(addl 10) evaluates to 11 
20 evaluates to 20 

TLC-LISP Reference Manual - 88 



TLC-LISP Documentation Part III 

HOOK2 displays the object and the result of its evaluation. Note 
that since the evaluator temporarily binds EVALF to NIL when 
applying HOOK we only trace one level "deep". We can change this 
by using EVALHOOK recursively in HOOK3: 

(de HOOK3 (obj &AUX (val (evalhook obj hook3))) 
(prinO obj) 
(prin3 "evaluates to") 
(print val)) 

(EVALHOOK '(ADD (ADDI 10) 20)) 

prints: addl evaluates to addl 
10 evaluates to 10 

=> 31 

(addl 10) evaluates to 11 
20 evaluates to 20 

We could, for example, improve the hook function by 
abbreviating the message when printing constants. 

Any LISP function may be executed within the hook function. 
By making the hook function interactive (using READ) we can 
create a very subtle debugger. 

(ERROR {<object>}) LSUBR 

ERROR prints the list of arguments and invokes 
current state of the system is preserved. As with 
system supplied ERROR function can be replaced by 
ERROR. The default definition of ERROR is equivalent 

(de ERROR (&REST l 

TOPLEV. The 
TOPLEV, the 
re-defining 

to: 

&AUX (current-sink <original console-out>) 
(current-source (stream buffered-console-in)) 
(package sys:) ) 

(terpri) 
(prinO '**ERROR**) 
(mapcar prinO 1) 
(terpri) 
(do() (nil) (tapply toplev nil)))) ; infinite l~op 

Note input/output is temporarily reassigned to the console. Note 
also that ERROR uses TAPPLY rather than using APPLY or evaluating 
(TOPLEV) directly. This enables the stack frame functions to work 
correctly (see the section TAPPLY and &TOP above). If you write a 
custom ERROR function that invokes TOPLEV it should also use 
TAPPLY. 

TLC-LISP Reference Manual - 89 



TLC-LISP Documentation Part III 

(RESTART) SUBR 

When RESTART is activated it prompts with: 

**RESTART** 
Unwind stack (y/n)? 

If "N" is typed then the stack pointer is reset to its initial 
position, losing all pending stack-frame information. If "Y" is 
typed then variable bindings are restored and unwind-protected 
forms are evaluated before the stack pointer is reset. Normally 
you would respond "Y". 

RESTART also sets the symbols CURRENT-SOURCE, CURRENT-SINK, 
READ-TABLE, TOPLEV and ERROR, to their original values. RESTART 
should be used only as a last resort. It is useful when you have 
created buggy versions of TOPLEV and/or ERROR and cannot 
otherwise regain control of the system. See the reset character 
type in the section on Input below). 

Important note: RESTART will bind READ-TABLE to the vector 
that was created when the system was first initialized. If you 
have destructively modified READ-TABLE (via DMC or TYPECH) then 
you may be unable to regain control of the system. Always do 
READ-TABLE experiments on a copy of the existing READ-TABLE. 

The TLC-LISP system constantly checks itself for internal 
consistency. Such things as pointers into memory areas that were 
never initialized or internal data structures containing objects 
of the wrong type can generate a "fatal error". Exhausting free 
storage is also considered fatal. Misuse of the functions in the 
Advanced Functions section can generate fatal errors. Fatal error 
messages are listed in the lrr~r! Appendix. 

When an inconsistency occurs that the system may not be able 
to recover from, a fatal error is generated. The system prints 
information about its internal state and then prints 

Press C to (ERROR 'CONTINUE), R to (RESTART), 
E to (EXIT), A to Abort 

"C" will execute (ERROR 'CONTINUE). Always try this first. 

"R" will execute (RESTART). When you run out of free space 
this response will often free enough memory for you to 
resume development. 

TLC-LISP Reference Manual - 90 



,.... 

TLC-LISP Documentation Part III 

"E" will execute (EXIT), open files are closed and the stack 
is unwound before control is returned to the operating 
system. 

"A" will i■mediately return control to the operating system. 
This is a last resort. The stack is not unwound and open 
files are not closed thus some data may be lost. 

It is also possible that a fatal error will occur due to a 
problem with the interpreter itself. Write down all of the 
displayed state information along with a description of what you 
were running prior to the fatal error, then contact The LISP 
Co■pany. 

TLC-LISP Reference Manual - 91 

I 



TLC-LISP Documentation Part III 

Input and Output 

Though LISP was created in the era of batch-processing, it 
is most definitely an interactive language. Its exploratory and 
incremental programming style thrives on a calculator-like 
immediacy. An expanding part of LISP's interactive nature is its 
input and output. In this version of TLC-LISP we support several 
different sytles of I/0 behavior, from traditional disk files to 
generalized stream operations described by arbitrary LISP 
functions. 

We 
behavior 
LISP. 

also allow the user to redefine the reading and printing 
of LISP, thereby redefining the outward appearance of 

We'll begin with the most mundane and move towards the 
exotic. The simplest way to get information into the machine 
(other than the console) is to use the LOAD function. In fact, 
the system invokes LOAD auto■atically at start-up. It looks for 
the file LISP.SYS, and if present, reads from it as if it 
contained keystrokes from the keyboard. The effect, then, is to 
r~ad and evaluate that input. 

(LOAD <atr> &OPT (flag NIL)) SUBR 

LOAD executes a READ-EVAL loop using the file named <str>. 
If flag is non-NIL then the value of each expression read fro■ 
the file is printed. 

LOAD is equivalent to: 

(de LOAD (name &OPT (flag NIL) 
&AUX (file (open name 'read)) 

last-exp) 
(unwind-protect 

(setq last-exp (loadl nil)) 
(close current-source) 

last-exp} 

(de LOADl (last-exp &AUX (exp (read file)) ) 
(if (eq exp 'end-of-file) 

last-exp 
(loadl (let ((val (eval exp})) 

(if flag (print val)) 
val)))) 

The remainder of this section will be taken up with a discussion 
of many of the components that make up LOAD's definition. We'll 
begin with file names. 

TLC-LISP Reference Manual - 92 

I 



TLC-LISP Documentation Part I II 

In the following file name descriptions, [xxx) (square 
brackets) means that xxx is optional, it may occur zero times or 
once. {xxx} (curly brackets) means that xxx may occur zero or 
more times. Finally, TLC-LISP appends a .LSP extension to all 
file name strings that do not designate an extension. 

A file name in the CP/M-86 version of TLC-LISP is a string 
in the following format: 

where: 

[n/) [d:] name (.ext] 

n is the optional user number specifier (0 to 15) 

dis the optional drive specifier (A to P) 

name is the file name, 1 to 8 characters 

ext is the optional extension, 0 to 3 characters 

The following are legal CP/M-86 file specification strings: 

"FOO" 
"FOO.LSP" 
"FOO." 
"B: FOO" 
"2/b:FOO" 
"3/FOO.DAT" 

foo.lsp, current drive and user 
foo.lsp, current drive and user 
foo, current drive and user 
b:foo.lsp, current user 
b:foo.lsp, user 2 
foo.dat, user 3, current drive 

A file name in the MSDOS Vl.x version of TLC-LISP is a 
string of the following format: 

where: 

(d:) name [.ext] 

dis the optional drive specifier (A to P) 

name is the file name, 1 to 8 characters 

ext is the optional extension, 0 to 3 characters 

TLC-LISP Reference Manual - 93 



TLC-LISP Documentation Part III 

The following are legal MSDOS Vl.x file specification 
strings: 

"FOO" 
"FOO.LSP" 
"FOO." 
"B:FOO" 

foo.lsp, current drive 
foo.lsp, current drive 
foo, current drive 
b:foo.lsp 

A file name in the MSDOS V2.x version of TLC-LISP is a 
string of the following format: 

[d:] [\] {dir\} name [.ext] 

where: 
dis the optional drive specifier (A to P) 

\ before the directory name indicates the path; search 
begins with the root directory. If it is absent then 
the search begins with the current directory. 

dir\ is an existing directory name followed 
backslash. A double dot indicates the 
directory of the current directory. 

name is the file name, 1 to 8 characters 

ext is the extension, 0 to 3 characters 

by a 
parent 

The following are legal MSDOS V2.x file specification 
strings: 

"FOO" 
"FOO.LSP" 
"FOO." 
"B:FOO" 
"\FOO" 
"A:\LISP\FOO" 

"B: .. \ .. \FOO" 

foo.lsp, current directory and drive 
foo.lsp, current directory and drive 
foo, current directory and drive 
b:foo.lsp, current directory 
foo.lsp in the root directory, current drive 
a:foo.lsp in the sub-directory LISP of the 
root directory 
b:foo.lsp two directories "up" from the 
current directory 

Finally, file name specifications may also include "wild-cards"; 
these extensions are handled in the specific utility packages 
written in TLC-LISP for each operating system. See files CPM.LSP, 
MSDOS.LSP, MSDOSVl.LSP, and MSDOSV2.LSP. 

TLC-LISP Reference Manual - 94 



-
TLC-LISP Documentation Part III 

How To Build Streams 

With knowledge of file names in hand, we can begin to build 
the LISP objects that will let us connect readers and printers to 
sources and sinks. The LISP objects that perform these services 
are called !!r~~m!• 

A stream is made up of: 

1. A look-ahead character, accessed when the stream is used 
for input. 

2. A character source (file or applicable object capable of 
returning characters) if the stream is used for input, or a 
character sink (file or applicable object capable of accepting 
characters) if the stream is used for output. 

We can build a stream either by opening a file or by 
explicitly constructing a stream object from a LISP function that 
will supply or absorb characters. Thus: 

(OPBN <atr> <■ode> &OPT 'RANDOM) SUBR 

<Str> designates a file name as described above. <Mode> is 
the symbol READ, WRITE or UPDATE. The value returned is a stream 
object, suitable as an argument to READ or PRINT. If <mode> is 
WRITE then the file is deleted if it exists. If a file with the 
same file name is already open (determined by its existence on 
FILE-LIST) the a FILE-ALREADY-OPEN error is generated unless all 
the references are of type READ. The stream returned by OPEN is 
added to the list FILE-LIST. 

For example, if the file TEMP.LSP exists, then: 

FILE-LIST=> nil 
(SETQ F (OPEN "temp" 'READ)) => <A:\TEMP.LSP> 
FILE-LIST=> (<A:\TEMP.LSP>) 

MSDOS 

A stream object may also be explicitly created, using a LISP 
function as the originator of, or depositary for, characters. 
Thus: 

(STREAM <fen>) SUBR 

Creates a stream object. The <fen> must be a function of no 
arguments for streams that will be read, a function of exactly 
one argument for streams that will be written, or a function with 
no required arguments and one optional argument for streams that 
will be read and written. 

TLC-LISP Reference Manual - 95 



TLC-LISP Documentation Part III 

For example, (STREAM BUFFERED-CONSOLE-IN) 

returns a stream that is equivalent to the initial value of 
CURRENT-SOURCE. 

The TLC-LISP Read and Print functions use the values of 
CURRENT-SOURCE and CURRENT-SINK respectively, as their default 
targets for input and output. All input/output functions will 
accept an optional stream object as an argument. As we'll see 
shortly, OPEN or STREAM can return an object suitable for the 
following kinds of input operations: 

(READ F) => first object in the stream For 
(READCHAR F) => first byte in For 
(READLINE F) => first line in Fas a string 

Given a stream, we may locate the sink or source in a 
specific portion of that stream, or we may close it to indicate 
that we have completed our operations on it. Thus: 

(CLOSE <atrea■>) SUBR 

<Stream> is closed. Input and/or output are no longer 
permitted, and the operating system records any changes (if 
written or updated). <stream> is removed from FILE-LIST (and so 
must have been created by a call to OPEN). Continuing the 
previous example: 

(CLOSE F) 
FILE-LIST=> nil 
(READ F) => error 

(SIIK <strea■> &OPT <nu■>) SUBR 

cannot read 

If <num> is absent, then SEEK returns an integer 
representing the position of the next character in the file (the 
first character in the file being at position one). If <num> is 
supplied and the file was opened for random access, then SEEK 
sets the internal pointer of the file <stream> to the· <num> 
position. Subsequent reads or writes occur fro■ the new position. 

TLC-LISP Reference Manual - 96 

I 



TLC-LISP Documentation Part III 

~!!~ Ei!~ Functions 

(FILI-ACCESS <strea■ or file>) SUBR 

Returns the current access code for the file. Values are as 
follows: 

Bit 

0 
1 
2 
3 

4-7 

Meaning 

Read access 
Write access 
Closed 
Random access 
Used internally or reserved 

(FILI-NAMI <str or stre->) SUBR 

If the argument is a stream, then the filename is returned. 
If the argument is a string, then the string is used in the 
current disk context (current drive, current directory, current 
user number) and a string that would unambiguously represent the 
file is returned. (FILE-NAME <str>) is used internally when files 
are opened to prevent confusion when the disk context is changed 
during a file's lifeti■e. 

(FILE-NAME "foo") => "0/B:FOO.LSP" 

(FILE-NAME "foo") => B:\DIRl\FOO.LSP" 

CP/M 

MSDOS 

The functions in the remainder of this section are EXPRS 
that can be found in the followJng operating system-specific 
files: CPM.LSP, MSDOS.LSP, MSDOSVl.LSP, and MSDOSV2.LSP. 

(DIR &OPT (<str> "*.LSP")) IIPR 

Return a list of strings representing the files whose names 
match <str>. 

(DIR "foo.*") 
=> ("0/A:FOO.LSP" "0/A:FOO.BAK" "0/A:FOO.BAR") 

TLC-LISP Reference Manual - 97 



TLC-LISP Documentation Part III 

(FILB-IRASB < ■tr>) BIPR 

Delete the file(s) that match <str>. If the file is open 
then a FILE-OPEN error is generated. 

(DIR "foo") => ("0/A:FOO.LSP") 
(FILE-ERASE "foo") 
(DIR "foo") => nil 

(FILB-RBNAMB <new> <old>) BXPR 

CP/M 

Rename the file <old> to <new>. If file <new> exists then a 
FILE-EXISTS error is generated. 

(RENAME "foo" "baz") 

causes BAZ.LSP to be renamed to FOO.LSP. 

(FILB-BIISTS < ■tr>) BXPR 

Return T if a file that matches <str> exists in the 
directory else return NIL. 

(FILE-EXISTS "foo") => t 
(FILE-EXISTS "bar") => nil 

(FILI-SIZB < ■tr>) EIPR 

Return the size of the specified file in bytes. 

(FILE-SIZE "foo") => 8192 

TLC-LISP Reference Manual - 98 



TLC-LISP Documentation Part III 

Read Functions 

Now that we have files and streams well in-hand, let's apply 
them to input and output operations. Care ■ust be taken when 
these strea■ operations involve a user-defined function (rather 
than a file). User-defined functions that occur in a stream may 
not recursively invoke read or make use of the syste■ buffer 
while a token has been partially read. This is because the token 
read routines (like the routines that read atoms or strings) ■ake 
use of the system buffer and are thus not reentrant. Invoking 
read or using the buffer between the reading of tokens is 
allowed. 

(RIAD &OPT <atre->) SUBR 

If the optional parameter is supplied, it must be a strea■ 
object. READ is the ■ain LISP parsing routine. It reads the next 
well-for■ed expression from the current input source defined by 
CURRENT-SOURCE, and returns that expression as value after 
establishing its internal form. 

(RIADCRAR &OPT <atre->) SUBR 

The next byte from the source <stream> is returned as a 
character. The NEXT field of the strea■ is used if it is non-NIL 
(a character). The READ-TABLE is ignored. 

(NIXT <atre-> &OPT <cbr>) SUBR 

If <chr> is present, 
otherwise the current 
changed). If there is 
returned. For example if 
of text: 

123(a b c)"foo"456 

Then: 

the look-ahead character is set to it, 
look-ahead char is returned (but not 
no lookahead character then NIL is 

a file named TEMP.LSP contained the line 

(SETQ F (OPEN "temp" 'READ)) 
(NEXT F) => NIL 

Nothing has yet been read from the file. 

TLC-LISP Reference Manual - 99 

I 



TLC-LISP Documentation 

(READ F) => 123 
(NEXT F) => \( 

Part III 

The scanner had to examine the next character to be sure 
that the character 3 was the last digit in the number. 

(READ F) => (ABC) 
(NEXT F) => NIL 

The list ended with the right parenthesis, so the double-
quote (") was not read. 

(READ F) => "foo" 
(NEXT F) => \4 

The character after the trailing double quote had to be 
examined to insure that this wasn't an embedded double quote like 
"foo""". 

Now, let's change the lookahead character. 

(NEXT F \9) 
(READ F) => 956 

The character 4 is lost. 

(ASCII (NEXT F)) => 13 

The carriage return character at the end of the line. 

(READ F) => END-OF-FILE 

The attempt to read another object fails. The distinguished 
atom END-OF-FILE is returned. 

(HEADLINE &OPT <strea■>) 

Returns a string of all the characters up to the next 
carriage return. The carriage return is not included. Returns the 
atom END-OF-FILE if a character of type eof (AZ) is encountered. 
A function to print the contents of files could be written as: 

(de TYPEFILE (name &AUX (file {open na■e 'read)) 
(unwind-protect 

(do ( (line (readline file) (readline file)) 
( ((eq line 'end-of-file) nil) ) 
{print3 line) ) 

(close file) )) 

TLC-LISP Reference Manual - 100 

I 



TLC-LISP Documentation Part III 

(ED-READLINE &OPT <streaa>) 

This is a special version of HEADLINE for the editor. It is 
identical to HEADLINE except that it expands tabs (AI) by 
replacing them with spaces upto the next column that is a 
multiple of eight. The string that is created by this process is 
terminated by an eof (AZ) character. ED-HEADLINE could be 
substituted for HEADLINE in the above TYPEFILE example to 
correctly print files with embedded tab characters. 

Print Functions 

The print functions can also take an optional stream 
argument. The default stream is the value of CURRENT-SINK. 

(PRINO <object> &OPT <stream>) 

Print the (representation of) <object> to the 
followed by a space. Strings and characters print with 
delimiters (""and\) and symbols print with their package 
if their package is not the current package. 

(PRINO (ADDl 10)) prints ll<space> 

stream 
their 

prefix 

(PRINO ':FOO) prints foo<space> if PACKAGE is SYS: 
prints :foo<space> if PACKAGE is not SYS: 

(PRINl <object> &OPT <stream>) 

Print the <object> to the stream. Strings and characters 
print with their delimiters, symbols with their package prefix if 
their package is not the current package. 

(PRINl "foo") prints "foo" => "foo" 

(PROGN (PRINl "foo")(PRINl 43)) prints "foo"43 => 43 

(PRIN2 <object> &OPT <stream>) 

Print the <object> to the stream followed by a space. 
Strings and characters print without their delimiters, symbols 
print without their package prefixes. 

(PRIN2 "foo") prints foo<space> 

(PRIN2 ':FOO) prints foo<space> 

TLC-LISP Reference Manual - 101 



TLC-LISP Documentation Part III 

(PRIN3 <object> &OPT <atrea■>) 

Print the <object> to the stream. Strings and characters 
print without their deli■ iters, symbols print without their 
package prefixes. No trailing space is printed. 

(PRIN3 "foo") prints foo 

(PRIN3 ':FOO) prints foo 

(TIRPRI &OPTIONAL <atre->) SUBR 

Print a carriage return, followed by a line feed. 

(PRINT <object> &OPTIONAL <atrea■>) 

Prints the <object> followed by a carriage return and line 
feed. Packages, characters, and strings print with their prefixes 
or deli■iters. 

This function is equivalent to: 

(PROGl (PRINO <object> <sink>) (TERPRI <sink>)) 

Though the keyboard and screen are just input/output 
devices, their require■ents are sufficiently unique to warrant a 
separate section. The functions of this section deal with the 
rapid response to interactive input and output. 

(TYS) SUBR 

Checks the status of the keyboard. If a key has been struck, 
T is returned, otherwise NIL is returned. Does not affect the 
input stream. This function is used in situations where we wish 
to interrupt a computation if there is keyboard input. 

(CONSOLI-IN) SUBR 

Returns a character from the console without echoing. If you 
want an input stream that "fires" as soon as parentheses balance 
you can use CONSOLE-IN combined with echoing; something like: 

(SETQ CURRENT-SOURCE 
(STREAM (LAMBDA() (PRIN3 (CONSOLE-IN)))) 

TLC-LISP Reference Manual - 102 



TLC-LISP Documentation Part III 

(BUFFERED-CONSOLE-IN) SUBR 

Returns a character from the line buffer. The buffer 
management routine accepts the backspace characters AH and RUB 
and the line erase character AX. The line may be edited using 
these characters until RETURN (AM) is entered. Once RETURN is 
entered the characters in the buffer are returned to the caller 
of BUFFERED-CONSOLE-IN until exhausted, in which case the buffer 
manager refills the buffer using CONSOLE-IN (echoing to CONSOLE
OUT) and the process repeats. The default value for CURRENT
SOURCE is equivalent to: 

(STREAM BUFFERED-CONSOLE-IN) 

(CONSOLE-RESET) SUBR 

This function flushes the CONSOLE-INPUT typeahead buffer and 
the BUFFERED-CONSOLE-IN line buffer. Causes subsequent calls to 
TYS to return NIL until a character is typed. Useful for error 
handlers. 

(CONSOLE-OUT <char>) 

(CONSOLE-OUT <str> &OPT <nu■l> <nu■2>) SUBR 

If only one argument is supplied then the character or the 
characters of the string are sent to the terminal. 

If three arguments are supplied then CONSOLE-OUT begins 
sending from index <numl> or from the first character in the 
string if <numl> is absent, and continues sending characters 
until a AZ is reached, then sends spaces until <num2> characters 
have been sent. If <str> is exhausted before <num2> characters 
have been sent, CONSOLE-OUT sends spaces until <num2> characters 
have been sent. If a tab (AI) character is reached then spaces 
are sent until the cursor position is a multiple of eight (the 
beginning of the string is assumed to be at column one for the 
purpose of expanding tabs.) 

CONSOLE-OUT with the optional arguments is useful for fast 
screen update in editor programs. 

(CONSOLE-OUT \a) prints a 

(CONSOLE-OUT "foo") prints foo 

(CONSOLE-OUT "foo" 1 2) prints fo 

(CONSOLE-OUT "foo" 2 10) prints oo followed by 8 spaces 

TLC-LISP Reference Manual - 103 



TLC-LISP Documentation Part III 

Altering Read Behavior 

The LISP reader recognizes various special character types. 
These types are stored in a vector READ-TABLE. The type for a 
character C is stored at index (ADDl (ASCII C)) in READ-TABLE. 
READ-TABLE may be changed or temporarily bound like any other 
variable. Later we will describe how to modify and extend these 
character types, but now we will discuss the default settings of 
standard TLC-LISP. 

These characters include: 

() 

[ ] 

j 

\ 
# 

the list delimiter characters 
the quote character 
the control character prefix 
the vector delimiter characters 
the backquote character 
the backquote escape character 
the dot character 
the string delimiter characters 
the comment character 
the character character 
the number-base prefix character 
the package character 
the abort character 
the reset character 
the pause printing character 
the resume printing character 

A description of each follows: 

The list delimiters () delimit literal lists and dotted 
pairs. 

The quote character'. Instead of requiring the user to type 
(QUOTE <exp>), TLC-LISP supports the abbreviation '<exp>. This is 
implemented as a built-in read macro. 

'(AB) is the same as (QUOTE (AB)) 

''(AB) is the same as (QUOTE (QUOTE (AB))) 

The control character prefix A• To simplify the input of 
non-printable asc11 characters, the abbreviation A<char> is 
supported. This is implemented as a read macro and loaded from 
the file LISP.LSP. 

AA and Aa are equivalent to (ASCII 1) 

TLC-LISP Reference Manual - 104 



-
TLC-LISP Documentation Part III 

The vector deli■iter characters []. The reader treats 
objects between opening and closing square brackets as the 
elements of a literal vector. The elements between the brackets 
are not evaluated. This is implemented as a read macro and loaded 
from the file LISP.LSP. 

[1 2 AB] is equivalent to (VECTOR 1 2 'A 'B) 

The backquote •. To simplify and improve the readability of 
macro definitions the backquote is supported. A backquoted list 
is treated like a quoted list except that objects preceded by a 
comma are evaluated, objects not preceded by a comma are quoted. 
This is implemented as a read macro and loaded from the file 
LISP.LSP. 

'(do ( (,var 1 (addl ,var))) (((eq ,var ,end) nil) )) 

is equivalent to 

(list 'do (list (list var 1 (list 'addl var))) (list 
(list (list 'eq var end) nil))) 

The dot character. is used in the representation of dotted 
pairs. 

(A. B) is equivalent to (CONS AB) 

The string deli■iter "• String literals are presented to 
TLC-LISP as arbitrary character sequences bracketed by a pair of 
double quote characters. Thus "ABCD" is a string as is "(foO". To 
include the character" in a string use a two consecutive double 
quotes, thus the string: 

"a single"" mark" 

contains one double quote character. 

TLC-LISP Reference Manual - 105 



TLC-LISP Documentation Part III 

The com■ent character , . A comment begins with";" and ends 
either with another";" or an end-of-line indication. Thus: 

(DE MAGIC (N ;an integer; L ;a non-empty list;) 
(COND 

( (ZEROP N) ; in this case M must be 4 
(CHECK M) ) 
(NULL (REST L)) 
... ) another comment 

) ) 

contains four comments. 

The character character \. This character is used to 
designate a single character literal. Note that the string "A" 
is not the same as the character \A just as the list (A) is not 
the same as the symbol A. 

\a is equivalent to (ASCII 96) 

The nu■ber-base character#. This character can be used in 
two different ways. If the character following the# is a left 
square bracket then the number inside the square brackets is 
taken as the base of the number following the brackets. The 
number inside the brackets is always interpreted as a decimal 
number. This is implemented as a read macro and loaded from the 
file LISP.LSP. 

#(2]1101 is the base two representation of decimal 13 
#[16]AO is the hexadecimal representation of decimal 160 

If the# is followed by a alphanumeric character then the base 
defaults to the value of INPUT-BASE which may take values from 2 
through 36. Thus if INPUT-BASE is sixteen then: 

#10 is decimal 16 and #lOA is decimal 266 

The digits of floating point numbers are always printed in 
decimal. The output behavior of fixnums and integers is 
determined by the value of OUTPUT-BASE. If OUTPUT-BASE is ten, 
then the undecorated form is printed; otherwise the prefix #[<n>] 
is used where <n> is the current value of OUTPUT-BASE in decimal. 

12 
#[4)23 

(output-base is ten) 
(output-base is four) 

Note that the input behavior for numbers may be changed by 
redefining the\# character macro. The output behavior may be 
changed via the PR function. 

TLC-LISP Reference Manual - 106 



-
TLC-LISP Documentation 

The package character 
f~£~~,~§• 

Part III 

The abort character AG. If this character is typed at the 
console, the system executes an (ERROR 'USER-ABORT). The console 
does not have to be explicitly read for this action to occur, 
anytime a character is typed and inserted into the typeahead 
buffer the READ-TABLE value is checked. 

The reset character AK. If this character is typed at the 
console the the system executes the fatal error routine (see 
the Fatal Errors section) The console does not have to be 
explicitly read for this action to occur, anytime a character is 
typed and inserted into the typeahead buffer the READ-TABLE value 
is checked. See the cautions under RESTART in the Error Section. 
This feature can save you when a user defined version of ERROR or 
TOPLEV has bugs in it but always try the abort character (AG) 
first. 

The pause printing character AS. If this character is typed 
at the console then subsequent print attempts will cause the 
system to wait for a resume printing character. 

The resu■e printing character AQ. Resumes printed output 
after a pause print (AS) is typed. 

Besides these default special characters, TLC-LISP also 
provides the the ability to define read macros. These macros 
have single-character names and take effect when that single 
character is recognized in the input stream. For example, the 
special quote-character, ', is a built-in read macro. 

TLC-LISP Reference Manual - 107 



TLC-LISP Documentation Part III 

(DMC <char> <list> {<exp>}) FSUBR 

<Char> is the name of the character macro; <list> designates 
the local variables (initialized to NIL) which will be used 
during the evaluation of the macro body, {<exp>}. The value 
returned from the DMC declaration is <char>; the value returned 
(to the LISP reader) when the macro is activated is the value of 
the last <exp>. For example, we could declare the' macro by: 

(DMC \' () 
(LIST (QUOTE QUOTE) (READ)) ) 

The macro declaration is accomplished by two actions: first, 
the body of the definition is treated as a DE; then, the entry in 
READ-TABLE for <char> is modified to reflect its new position as 
a macro. 

(TYPECB <char> &OPTIONAL <nu■ > or <fen>) SUBR 

If the second argument is missing, TYPECH gives the current 
READ-TABLE value for <char). If the second argument is <num>, 
TYPECH sets the READ-TABLE value for <char> to <num>. If the 
second argument is a function then the <char> becomes a read 
macro. With TYPECH the user can redefine the syntax accepted by 
the reader at a very low level. 

Acceptable values for <num> are the following: 

0: totally ignore the character 

1: the character is like the dot (.) in "dot-notation". 

2: the character begins a comment; ignore all input until a 
comment-end character is seen. (e.g. ; ) 

3: the character ends a comment. (e.g. ; and <er>) 

4: the character is a separator (e.g. space and tab) 

5: not used 

6: the character is a string delimiter, (e.g. ") 

7: these are digit characters (e.g. 0 thru 9) 

8: these are normal characters, (e.g A thru Z) 

9: the character-characters. e.g. \ 

10: the left parenthesis character, 

11: the right parenthesis character, ) 

TLC-LISP Reference Manual - 108 



TLC-LISP Documentation Part III 

12: 

13: not used 

14: the end-of-file character, "Z 

15: the package prefix character, 

16: the abort character, "G 

17: the reset character, "K 

18: the print resume character, "Q 

19: the print pause character, "S 

IND-or-nLE SYMBOL 

When a character with a read table value of 14 (end of file) 
is scanned, the reader and the scanner will return the sy■bol 

END-OF-FILE. 

If this character is detected by the reader while parsing a list 
( this can occur when loading a file with an· unmatched left 
parenthesis) then an UNEXPECTED-END-OF-FILI error is generated. 

Altering Print Behavior 

Print routines for any object type may be supplied by the 
user. To supply your own print function or redefine one already 
supplied the PR function is used. 

(PR <type> &OPT <fen>) SUBR 

Returns or sets the print behavior of objects of type 
<type>, The print behavior is invoked when an object is printed. 
For example, the print behavior for vectors could be defined as 
follows: 

(de PRVECTOR (v) 
(prin3 \[) 
(prvectorl v 1) 
{prin3 \])) 

where PRVECTORl is responsible for printing the interior portions 
of the vector. 

TLC-LISP Reference Manual - 109 



TLC-LISP Documentation Part III 

(de PRVECTORl (vi &AUX (len (length v))) 
(cond 

( (gt i len) ; end 
( (eq i len) ; no trailing space on last element 

(prinl (vref vi)) ) 
t (prinO (vref vi)) 

(prvectorl v (addl i)) ))) 

The routine is installed by: 

(pr 'vector prvector) 

Always test custom print routines before installing them 
with PR. Bugs in such routines can cause you to lose control of 
the system. See RESET and RESTART for techniques and options on 
recovery. 

TLC-LISP Reference Manual - 110 



TLC-LISP Documentation Part III 

Operatinc Sy•te■ Specific Junctions 

Bach operating system has its own set of special features. 
This section covers the specific operations that TLC-LISP 
supports for the two versions of MSDOS, and CPM/86. 

The following functions are supplied in MSDOS versions of 
TLC-LISP, 

(AXO <char>) SUBR 

Send <char> to the auxiliary output device. 

(AXI) SUBR 

Get a character from the auxiliary input device. 

(LPR <char>) SUBR 

Send <char> to the lineprinter device. 

Utilit~ Junctions Su22lied in !h~ f!!~ MSDOS.LSP 

lor the ti■e functions, <time> is a four ele■ent list of the 
following format: 

(hours minutes seconds hundredths) 

(TOD) BXPR 

Return or set the time of day clock. 

(SUBTIMB <ti■el> <ti■e2>) BXPR 

Return the difference between the two times. 

(TIMI {<for■>}) lBXPR 

Prints the amount of time consumed in evaluating {<form>}. 

TLC-LISP Reference Manual - 111 



TLC-LISP Documentation Part III 

(MKDIR <str>) EXPR 

Create a sub-directory named <str>, <str> may contain both 
drive and pathnames. 

(RMDIR <str>) EXPR 

Remove the directory specified by the drive and pathname in 
<str>. 

(CBDIR &OPT <str>) EXPR 

Return or set the current directory to the pathname 
specified in <str>. 

(EXEC &OPT <str>) EXPR 

If no argument is supplied, then this function invokes a 
second copy of the MSDOS command interpreter. If <str> is 
supplied, then the program and arguments specified by <str> is 
executed. Sufficient memory for the program's ~eeds must be 
available; thus the M command line option must be used when LISP 
is invoked (see Part II). If no extension is supplied on the 
program name then ".COM" is assumed. 

(EXEC "sort <foo.lsp>bar.lsp") 

runs SORT on input, FOO.LSP, with output directed to BAR.LSP. 

Control 
either 
process. 

is 
by 

returned to LISP whenever the process 
a programatic exit or by typing EXIT to 

TLC-LISP Reference Manual - 112 

terminates, 
the MSDOS 



TLC-LISP Docu■entation Part III 

The following functions are supplied in CP/M-86 versions of 
TLC-LISP. 

(AXO <char>) SUBR 

Send <char> to the paper tape punch (AXO:) device. 

(LPR <char>) SUBR 

Send <char> to the lineprinter (LST:) device. 

(All) SUBR 

Get a character from the paper tape reader (AXI:) device. 

(USIR &OPT <nu■>) IXPR 

Return or set the current user number. 

(USER) => 0 
(USER 1) 
(USER) => 1 

TLC-LISP Reference Manual - 113 



TLC-LISP Documentation Part III 

Autoloading Functions and Values 

The major constraint on TLC-LISP is the size of available 
memory. Sophisticated applications can soon exhaust all of the 
free space, even in a full 8086 environment. One way to forestall 
this difficulty is to "virtualize" large programs that may only 
be needed for short durations. Rather than explicitly expunging 
functions to reclaim their space, TLC-LISP contains a "virtual" 
type called ALOAD. Objects of type ALOAD are described by a file 
name (string) and a relative position in that file. Whenever an 
attempt is made to access an object of type ALOAD, the TLC-LISP 
evaluator retrieves the actual value from the file. 

A typical autoload file consists of two parts: a directory 
file that contains calls on ALOAD, and the text file that 
contains the actual Lisp code. Use LOAD to install the directory 
file, and then subsequent references to any ALOAD objects will 
access the text portion of the Autoload pair, performing a READ
EYAL pair on the text it finds. 

The directory of an ALOAD file can be constructed by reading 
an existing file, writing out its contents onto a file, while 
using SEEK to discover the actual position of that information, 
and finally recording that position information on a directory 
file. See ALOAD.LSP for details. 

Two types of aut~loading are available: "smash" and "no
smash". A "smash" object is loaded in and replaces the ALOAD 
object; subsequent references to that symbol will retrieve the 
value without accessing the disk. This type of loading is useful 
for functions and values that expect to be re-used. The system 
also saves the autoload information so that the value may be 
"unsmashed" when the object is no longer needed. This is done by 
UNSMASH, a function defined on the file ALOAD.LSP. 

A "no-smash" value is ethereal. Every access to it will 
cause a seek to the disk. Such values are useful for "one-shot" 
evaluations, like initialization code. 

All of the autoloading system is written in LISP except for 
the primitive to create objects of type ALOAD: 

(ALOAD <str> <pos>) SUBR 

An object of type aload is created, 
name, and using <pos> as the position 
determines the begining of the object. 

using <str> as the file 
in that file which 

TLC-LISP Reference Manual - 114 



TLC-LISP Documentation Part III 

(AUTO <filenaae> <sy■bol> {<var>}) FBXPR 

The indicator <symbol> is either SMASH or NO-SMASH, <var>s 
are the symbols that will beco■e aload objects that will access 
file <filena■e> when evaluated. 

Miacellaneou■ Utility Function■ 

This function makes an explicit call on 
collector. If <flag> is supplied then a list of 
objects marked for each type (of the form ({<type> 
returned for all non-zero <counts>. 

GCBBBP ATOM 

the garbage 
the number of 
<count>}) ) is 

When GCBEEP is non-NIL, LISP will execute a (CONSOLE-OUT AG) 
before every garbage collect. 

(EXIT) SUBR 

This function returns control to the operating system. 
First, the stack is unwound and all protected forms are 
evaluated; then any files remaining on FILE-LIST are closed. 
Finally LISP relinquishes control to the operating system. 

(FRIE &OPT (<type>)) SUBR 

If <type> is absent, return a list ({<type> <num>}) <num> 
being the length of the freelist of type <type>. Lengths of zero 
are not returned. If <type> is present, return the length of the 
associated freelist as a number. In addition to objects, FREE 
also computes the space remaining on the stack, the number of 
pages in object apace that are currently unallocated and the 
number of bytes in byte space that are unallocated. 

(FREE) => (symbol 7 list 19 expr 91 fexpr 188 macro 180 
float 183 integer 160 stream 181 subr 152 file 88 string 
12 vect~r 92 pkg 92 stack 16226 bytes 115543 pages 411) 

(FREE 'STREAM) => 181 
(FREE 'STACK) => 16266 

To get an accurate reading of the free space in the system, 
preface the call to FREE with a call to the garbage collector. 

TLC-LISP Reference Manual - 115 



TLC-LISP Documentation Part III 

(BUFFER &OPT <nu■>) SUBR 

If <num> is absent, return the current size of the system 
buffer in bytes, else set the buffer to size <num>. The size of 
the buffer limits the size of new strings, vectors and 
environments -- strings require one buffer byte per character, 
vectors, environments, for example, require two buffer bytes per 
element. If the buffer is too small for an attempted operation, a 
BUFFER-OVERFLOW error occurs. 

(BUFFER 100) 
(NEWSTRING 110 \a) generates a BUFFER-OVERFLOW error 
(BUFFER 1000) 
(NEWSTRING 110 \a) => returns the string 

(STACK &OPT <nu■>) SUBR 

Return or set the total size of the stack in bytes. The 
number is coerced into the nearest "good" size. The current stack 
is first unwound thus the current state (stack frames and 
bindings) is lost. The stack is allocated fro■ Byte space. If a 
block of sufficient size is not available a BYTE-SPACE-EXHAUSTED 
error is generated. If (STACK <num>) used in a file that is being 
loaded, the load will terminate due to the unwinding of the 
stack. 

(STACK) => 4092 
(STACK 60000) => 59996 

(INBYTE <nu■>) SUBR 

(INWORD <nu■>) SUBR 

Return an 8 or 16 bit number from I/0 port <num>. 

(OUTBYTE <nu■l> <nu■2>) SUBR 

(OUTWORD <nu■l> <nu■2>) SUBR 

Sends an 8 or 16 bit number <nu■2> to I/0 port <numl>. 

(EXAMINE <nu■>) SUBR 

(EXAMINE-WORD <nu■>) SUBR 

Return the byte or word at memory location <num> as an 
unsigned number. 

TLC-LISP Reference Manual - 116 



TLC-LISP Documentation 

(DEPOSIT <nu■l> <nu■2>) SUBR 

(DEPOSIT-WORD <nu■l> <nu■2>} SUBR 

Part III 

Memory location <numl> is set to the byte or word <num2>. 
These functions both return <num2> as their value. 

(INTERRUPT <nu■ > &OPT (<vectl> NIL) (<vect2> NIL)} SUBR 

Generates an 8086 software interrupt at level <num>. 
<Vectl>, if supplied, is a vector with exactly ten elements. The 
elements correspond to the 8086 CPU registers as follows: 

Element 

l 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Register 

AX 
BX 
ex 
DX 
DI 
SI 
BP 
ES 
DS 
FLAGS 

Each element of <vectl> must be a number or NIL. If an 
element is a number, then the corresponding register is set to 
that value before the interrupt is generated. If the element is 
NIL, then the register value is unknown. If <vectl> is not 
supplied or is NIL, then no registers are set. 

After the interrupt, <vect2> is examined. If <vect2> is NIL 
or was not supplied then INTERRUPT returns NIL. Otherwise <vect2> 
must be a vector with exactly ten elements, each element being 
either NIL or non-NIL. If an element is non-NIL then that element 
is set to the value of the corresponding register after the 
interrupt. <Vect2> is returned as the value of INTERRUPT. 
Omitting either vector (if that makes sense for the interrupt) 
results in faster execution. Also, the more elements of either 
vector that are NIL, the faster the execution. 

For example, in CPM-86 

(INTERRUPT 224 [NIL NIL 32 2 NIL NIL NIL NIL NIL NIL]) 

invokes the CP/M-86 set user number function call, setting the 
current user to 2. The command (32) is passed in register CL and 
the value (2) is passed in register DL. 

TLC-LISP Reference Manual - 117 



TLC-LISP Documentation Part III 

For example, on an MSDOS machine, we can invoke the read 
console buffer as follows: 

(SETQ STR (STRING (ASCII 80) (NEWSTR 80 \ ))) 

(INTERRUPT 33 [tAOO NIL NIL (OFFSET STR) NIL 
NIL NIL NIL (SEGMENT STR) NIL] ) 

or equivalently using the INT ■aero 

(INT 33 :ax #AOO :dx (offset str) :ds (segment str)) 

invokes the MSDOS read console 
the buffer. The function code (10) 
buffer location is passed in DS:DX. 
is expected to be the length. 

buffer function using STR as 
is passed in register AH. The 

The first byte of the buffer 

See the INT macro in the section on the file ~!~~~~f 

TLC-LISP Reference Manual - 118 



TLC-LISP Documentation Part III 

Functions Defined in the File SYS.LSP 

For more information on the following functions the file 
SYS.LSP may be examined for the commented source code. 

(NBQ <objectl> <object2>) MACRO 

Expands to (NOT (EQ <objectl> <object2>)), 

(?STRING <object>) EXPR 

Convert arg to string if not already. 

(IFTRUB <pred> {<for■>}) MACRO 

Expands to (IF <pred> (PROGN {<form>})). 

(MIN <objectl> <object2>) BXPR 

Return lesser arg. 

(MAX <objectl> <object2>) EXPR 

Return greater arg. 

(MEMBER <object> <struc>) EXPR 

Return <object> position in <struc> or NIL. 

(?RPLACB <sexpl> <sexp2>) MACRO 

If second arg NIL then (RPLACD <sexpl> NIL) else 
(RPLACB <sexpl> <sexp2>). 

(?SETQ <var> <object>) EXPR 

SETQ <var> only if it is currently unbound. 

(FOREVER {<for■s>}) MACRO 

Expands to (DO () (NIL) {<forms>}). 

TLC-LISP Reference Manual - 119 



TLC-LISP Documentation Part III 

(FOR (<var> <init> <final> &OPT <incr>) {<for■s>}) MACRO 

Expands to: 

(DO ( (<var> <init> (ADD <var> <incr>)) 
{ ((GT <var> <final>) NIL) ) 
{<forms>} ) 

(MAPCAR <fen> <list>) EXPR 

Applies <fen> to elements of <list> sucessively, returns a 
list of th~ results. 

(MAPC <fen> <list>) EIPR 

Like MAPCAR, but no list of results is built. 

(MAPCARF <fen> <list>) EIPR 

A version of MAPCAR that works for special forms. 

(PLO &REST {<for■s>}) EXPR 

PRIN3s each of the argu■ents. 

(PL &REST {<for■s>}) EXPR 

Equivalent to (PROGN (PLO {<forms>}) (TERPRI)). 

(EPRINO <object>) EXPR 

Equivalent to (PRIMO <object> CURRENT-ERR). 

(APPEND+ {<for■s>}) MACRO 

Expands to (APPEND <form-1> (APPEND <form-2> ... <form-n>)))). 

(CONCAT+ {<for■s>}) MACRO 

Expands to (CONCAT <form-1> (CONCAT <form-2> ... <form-n>)))). 

TLC-LISP Reference Manual - 120 



TLC-LISP Documentation Part III 

(RIMOVI <object> <list>) IXPR 

Destructively removes the first element of <list> that is IQ 
to <object>. Returns the modified list. 

(LIT* ( {(<var> <object>)} ) {<for■s>}) MACRO 

Form of LET that binds <var>s sequentially rather than in 
parallel. Expands to: 

(LIT ( {(<var> NIL)} ) 
{ (SETQ <var> <object>) } 
{<forms>}) ) 

(IHC <var>) MACRO 

Expands to (SETQ <var> (ADDI <var>)). 

(DBC <var>) MACRO 

Expands to (SETQ <var> (SUBl <var>)). 

(TRROW-BRROR (&RIST <list>}) BXP_R 

Error handler that throws to label ERROR without printing 
error messages, 

(PRINT-TBROW-BRROR (&RIST <list>)) BXPR 

Error handler that prints error message(s) to CURRENT-ERR 
then throws to label ERROR. 

(LIHE-IDITBD-STRBAM <source-fen> <echo-fen>) IXPR 

Returns a stream suitable for reading that handles 
editing characters AX and backspace. <Echo-fen> must 
cursor left motion when sent a backspace (AH) character. 
fen> is expected to be non-echoing. The built-in 
BUFFERED-CONSOLE-IN is equivalent to: 

(LINE-EDITED-STREAM CONSOLE-IN CONSOLE-OUT) 

TLC-LISP Reference Manual - 121 

the line 
support 

• <Source
function 



TLC-LISP Documentation Part III 

(MAC <for■>) IXPR 

Return the <form> (which is assumed to be a macro) before 
the second evaluation. Useful for debugging macros. 

(MAC '(INC FOO)) => (SITQ FOO (ADDl FOO)) 

(RICORD <na■e> (<for■■ >}) FIIPR 

Evaluates {<forms>} such that printed output is written to 
the file <name> as well as to the console. 

(RECORD "obl" (MAPC PRINT (OBLIST))) 

Prints the symbols of the oblist on the screen and to the file 
OBL.LSP. 

(INT <nu■> { <keyword> <for■>}) MACRO 

More elegant way to invoke the INTERRUPT function. 
<Keywords> are any of: AX BX CX DX DI SI BP ES DS FLAGS RETURN. 

(INT 21 :ax 10 

expands to 

:bx (offset str) 
:ds (segment str) 
:return (add ax bx) 

{let ( (int-arg [O O nil nil nil nil nil nil O nil]) 
(int-ans [O O nil nil nil nil nil nil nil nil]) 

(store int-arg 1 10) 
{store int-arg 2 (offset str)) 
(store int-arg 9 (segment str)) 
(interrupt 21 int-arg int-ans) 
(add (int-ans 1) (int-ans 2)) ) 

TLC-LISP Reference Manual - 122 



TLC-LISP Documentation Part III 

These functions 
imple■entation. Most 
of the functions in 
co■pleteness and for 
low level. 

(OBJADR <object>) SUBR 

Advanced Functions 

deal with the LISP system itself and 
users will not and should not ever use 
this section. They are included here 
users writing extensions to LISP at a 

its 
any 
for 

very 

Returns a number representing the physical location of 
<object>. Note that for strings and vectors the location returned 
is that of the descriptor and not the body (see POINTER). Since 
the internal representation of objects is subject to change in 
subsequent versions of TLC-LISP, this function should be used 
with extreme caution. OBJADRs of fixnums and characters are not 
allowed since these objects are not pointers and have no 
location. 

(OBJADR 'FOO) => 345610 or something 

(POINTER <object>) BXPR 

Returns a number representing the location of the body of 
<object>, suitable for EXAMINE/DEPOSIT. This function only works 
on objects that have bodies in byte space (i.e. strings, vectors, 
etc.). Be aware that the co■paction performed by the garbage 
collector will ■ove bytes and change pointers. You should not 
rely on a pointer being valid after any operation that may invoke 
the GC. 

(ASCII (EXAMINE (POINTER "abc"))) => \a 

(SBGMBNT <object>) SUBR 

Returns the 8086 segment part of the body of a descriptor 
based object (string, vector, etc.). 

(OFFSBT <object>) SUBR 

Returns the 8086 offset part of the body of a descriptor 
based object (string, vector, etc.), 

TLC-LISP Reference Manual - 123 



TLC-LISP Documentation Part III 

(ALLOCATE <symbol>) SUBR 

<symbol> is a symbol representing a type. ALLOCATE allocates 
an object of that type. For example, we could define CONS as: 

(DE CONS (X Y &AUX (Z (ALLOCATE 'LIST))) 
(RPLACA Z X) (RPLACD Z Y)) 

(PUT-OBJ <objectl> <nu■ > <object2>) SUBR 

<object2> replaces the <num>-th entry in <objectl>. <num> is 
a (base 0) byte-index into the structure. So CONS could also be 
defined as: 

(DE CONS (X Y &AUX (Z (ALLOCATE 'LIST))) 
(PUT-OBJ Z OX) (PUT-OBJ Z 2 Y)) 

(GET-OBJ <object> <nu■>) SUBR 

Get the object that is defined at the <num>-th entry in 
<object>. <num> is the same kind of index that we saw in PUT-OBJ. 

(NUMTYPB <nu■>) SUBR) 

<num> is the numeric representation of a .TLC-LISP type. 
NUMTYPE returns the symbolic type corresponding to that number. 

(NUMTYPE 3) => fexpr 

(TYPBNUM <sy■bol>) SUBR 

<symbol> is the name of a LISP type. TYPENUM returns the 
internal number corresponding to that type. Useful for 
dispatching on the type of an objects. 

(WHAT <nu■>) SUBR 

Return the object represented by the 16 bit number <num>. 
Inverse of WHERE. 

(WHAT O) => NIL 

TLC-LISP Reference Manual - 124 



TLC-LISP Documentation Part III 

(WHIRi <object>) SUBR 

Return the internal representation of <object> as a 16 bit 
number. Inverse of WHAT. 

(WBIRE NIL) => 0 

(BYTES &OPT FLAG) SUBR 

Return a list of the length of all the blocks in byte space 
that are currently unallocated. If FLAG is supplied, prints the 
locations of the blocks. 

(BSPACI &OPT FLAG) SUBR 

Return list of lengths of blocks of bytes known 
(allocated or unallocated). If FLAG supplied, prints 
locations of blocks. 

TLC-LISP Reference Manual - 125 

to LISP 
physical 



TLC-LISP Documentation Part III 

The Editor 

TLC-LISP includes a screen-oriented editor that acts like a 
subset of WordStar (trademark of MicroPro International Inc.) 
This appearance may be altered by changing EDIT.LSP, so those who 
prefer EMACS-like editors are welcome to customize the code. 

The editor is best mastered by using it. We sketch the 
commands and their more subtle effects below. 

For a quick introduction to the editor see the section "The 
Editor" in Part II of this manual. 

Cursor commands: 

"S left 
"D right 
"E up 
"X down 
"A left word 
"F right word 

Scroll commands: 

"Z scroll up 
"W scroll down 

Page commands: 

"C next page 
"R previous page 

Jump commands: 

"QR jump to beginning of buffer 
"QC jump to end of buffer 
"QS jump to left margin 
"QD jump to right margin 
"QB jump to block start 
"QK jump to block end 

TLC-LISP Reference Manual - 126 



TLC-LISP Documentation Part III 

Deletion commands: 

"G -- delete current character 
"H, backspace, rub -- delete previous character 
"Y -- delete current line 
"QY -- delete rest of line 

File commands: 

"KS save buffer contents and return to editor 
"KR read a text file into the buffer 
"KA read an atom's value into the buffer 
"KF change the name of the current file 

Block Commands: 

"KB mark block start 
"KK mark block end 
"KH make block visible or invisible 
"KC copy block to cursor 
"KV move block to cursor 
"KY delete the block 
"KW write the block to a disk file 

Escape command: 

<esc> -- clear screen but preserve buffer. 
eval-print until (THROW ESC {<form>}) is 
resume editing. 

Termination commands: 

update current file and exit editor. 
quit editing without updating file 

Execute read
evaluated then 

"KX 
"KQ 
"KD 
file. 

update current file, erase buffer, and prompt for new 

Evaluation commands: 

"JJ evaluate one expression from cursor 
"KJ evaluate buffer, read buffer into system 

TLC-LISP Reference Manual - 127 



TLC-LISP Documentation Part III 

Editor-related Functions 

(EDIT {<var or str>}) FEXPR 

<Str>s are assumed to be filenames. The specified file(s) 
are read into the edit buffer. <var>s are assumed to be existing 
functions or data, the specified values are pretty-printed into 
the edit buffer. If only one file is specified then it becomes 
the current file and is updated before the editor is exited. If 
more than one file is specified then the editor will prompt for a 
new file name before updating the file. EDIT is protected by 
UNWIND-PROTECT to insure that changed files are updated. The 
editor expands tabs to the next column eight multiple when files 
are read and compresses spaces to tabs where possible when files 
are written (see the following functions). 

(ED-READLINE &OPT <streaa>) SUBR 

A special case of HEADLINE, described in the section on R~~~ 
Functions. 

(ED-PRINTLINE <str> &OPT <stream>) SUBR 

Print <str> as a line of text to <stream> followed by 
carriage return and linefeed. Spaces outside literal strings are 
compressed to tabs when possible. The algorithm stops compressing 
when a double quote(") is reached and resumes at the next double 
quote. Spaces and double quotes immediately following the literal 
character character (\) are ignored. ED-PRINTLINE cannot handle 
an odd number of double quotes (not counting literal characters) 
in a string and will generate a STRING-FORMAT error if an 
unmatched double quote occurs. ED-PRINTLINE is not smart enough 
to recognize comments, thus an error will be generated by a line 
like the string: 

" . 
' this is a double quote(") " 

ED-PRINTLINE uses the system buffer to build the compressed 
string before printing to <stream>. <Streams> with user defined 
functions must be used with great caution here because they might 
use the system buffer (see BUFFER), thus corrupting the printed 
string. ED-PRINTLINE is guaranteed to work with streams that use 
subrs and files. 

If this behavior is incompatible with your particular 
application then you may replace the occurrences of ED-PRINTLINE 
in the file EDIT.LSP with PRINT3. This will prevent space to tab 
compression and will result in files increasing in size by 10 to 
20 percent (typically). 

TLC-LISP Reference Manual - 128 



TLC-LISP Documentation Part III 

Turtle Graphics 

Turtle graphics similar to TLC-Logo are supported by TLC
LISP. The hardware supported so far includes the IBM PC and the 
SCION Microangelo. Many of these functions operate on the 
"current turtle". The current turtle is defined to be the value 
of the symbol TURTLE. 

A turtle object contains the following properties, most of 
which may be examined or changed by the functions described in 
the following sections. 

Name 
Horizontal Position 
Vertical Position 
Heading 
Pen State 
Ink Color 
Turtle Shape 
Visibility State 
Local Storage 

About Turtle ShaEes 

Turtle shapes are implemented as strings, 
the string are interpreted as unsigned eight 
string must be of the following format: 

Char Meaning 

the characters of 
bit numbers. The 

1 
2 

number of bytes (not pixels) in X direction 
number of bytes in Y direction 

3 thru N actual bytes to put in display memory 

See the file TURTLE.LSP for examples. 

World coordinates reflect the maximum values that the 
turtle's horizontal and vertical position may take. We currently 
implement positions as 16 bit signed integers so that the range 
is +/- 32767. Since turtles use 16 bit signed arithmetic 
internally, the maximum distance a turtle may move during the 
execution of a single command is 32767 units even though the 
world coordinate system spans 65536 units. Distances greater than 
32767 units will result in a NUMBER-OUT-OF-RANGE error. 

TLC-LISP Reference Manual - 129 



TLC-LISP Documentation Part III 

Screen coordinates refer to the visible pixels on the screen 
measured from the lower left corner (0, 0). The range of screen 
coordinates is hardware dependent. The mapping of world 
coordinates to screen coordinates is affected by the viewport 
(VP) function, described below. 

In either coordinate system the X coordinate increases left 
to right and the Y coordinate increases bottom to top. 

SEecial Simbol Values 

The turtle graphics system expects the following symbols to 
have certain values: 

TURTLE 

The current turtle is defined to be the value of this 
symbol. 

TURTLE-DEFAULTS 

Vector of turtle shapes to use when (SHAPE nil) is in 
effect. The length may range from 2 to 255. 

TURTLE-SHAPES 

Vector of turtle shapes to use when (SHAPE <num>) is in 
effect. The shape used is the <num>-th element of TURTLE-SHAPES 
which is expected to be a string (see About Turtle ShaEes above). 

IYr!!~ Functions 

(BATCH <var>) SUBR 

Creates a new turtle identical to the current turtle except 
that its name is <var>. 

(TINIT) SUBR 

Performs internal initialization for the turtle system. 
Initializes the turtle family list and hatches the initial turtle 
named STUDS. Destroys any existing turtles, but preserves the 
values of TURTLE-SHAPES and TURTLE-DEFAULTS. May perform hardware 
initialization. 

TLC-LISP Reference Manual - 130 



TLC-LISP Documentation Part III 

(SHAPE &OPT nil or <nu■> or <str>) SUBR 

Return or set the shape of the current turtle. See ~QQYi 
Turtle Sha~es above. The following arguments are accepted: 

(SHAPE nil) uses the vector of strings TURTLE-DEFAULTS. If 
the turtle's heading is between O and 30 degrees then the 
shape at index one is used, 30 to 60 uses the shape at index 
2, and so on for twelve (possibly) different shapes. 

(SHAPE <num>) uses the number as an index into the vector 
TURTLE-SHAPES. The shape is independent of heading. 

(SHAPE <string>) uses the string as a shape. 

(POS &OPT <nu■l> <nu■2>) SUBR 

Return or set the position of the current turtle. 

(POS) => (0 0) 
(YPOS 100) 
(POS) => (0 100) 
(POS 10 20) 
(YPOS) => 20 

(VP &OPT <nu■l> <nu■2>) SUBR 

Return or set the viewport. The viewport defines the 
world coordinates of the center of the screen. The world 
coordinates range from -32K to 32K in both axis. 

(VP O 0) puts the origin at the center of the screen. On the 
IBM PC this results in visible world coordinates of -170 to 
170 horizontal and 100 to -100 vertical. 

(VP 170 100) puts the origin at the lower left corner of the 
screen. On the IBM PC this results in visible world 
coordinates of Oto 340 horizontal and Oto 200 vertical. 

(XPOS &OPT <nu■>) SUBR 

Return or set the X coordinate of the current turtle. 

(POS) => (100 100) 
(XPOS) => 100 
(XPOS 150) 
(POS) => (150 100) 

turtle moves 

TLC-LISP Reference Manual - 131 



TLC-LISP Documentation Part III 

(YPOS &OPT <num>) SUBR 

Return or set the Y coordinate of the current turtle. 

(POS) => (100 100) 
(YPOS) => 100 
(YPOS 150) 
(POS) => (100 150) 

(HD &OPT <num>) SUBR 

turtle moves 

Return 
in degrees. 

or set the heading (direction) of the current turtle 
<Num> is reduced to the range Oto 359 degrees. 

turtle is facing "up" (HD) => 90 
(HD 180) turtle rotates 90 degrees counter-clockwise 

now faces "left" 
(HD) => 180 

(FD <nu■>) SUBR 

Move the current turtle forward <num> pixels, maintaining 
the current heading. 

(POS O 0) move to center 
(HD 45) 
(FD 100) 
(POS) => (170 170) 

(VIS &OPT <num>) SUBR 

Return or set the visibility status of the current turtle. 

(VIS 0) means the turtle shape is not displayed. 

(VIS 
shape 

1) means the turtle shape is displayed. 
is determined by the SHAPE function. 

(INK &OPT <num>) SUBR 

The 

Return or set the ink color of the current turtle. 

(PAPER &OPT <num>) SUBR 

Return or set the paper (background) color. 

TLC-LISP Reference Manual - 132 

actual 



TLC-LISP Documentation Part III 

(PEN &OPT <nu■>) SUBR 

Return or set the state of the current turtle's pen. Three 
values for <num> are valid: 

0 The pen is up. 

1 The pen is down, and movement will draw a line in the 
current ink color. 

2 The pen will erase. Turtle motion will draw a line using 
the current background color. 

(TM &OPT <nu■>) SUBR 

Return or set the turtle mode. The following values are 
accepted: 

(TM 0) is window mode, turtles can range over the entire 
range of world coordinates (+/- 32K). If the turtle is on a 
visible portion of the screen (see VP) then it is displayed. 

(TM 1) is fence mode. Turtles that attempt to move off the 
visible screen will be stopped at the edge. 

(TM 2) is fence error mode, similar to mode 1 except a 
STOPPED-AT-FENCE error is also generated when the turtle 
hits the fence. This mode can be used in conjunction with 
CATCH to define behaviors like "wrap" or "rebound". 

(TILE &OPT nil or <nu■> or <str>) SUBR 

Return or set the drawing mode of the current turtle. The 
following values are accepted: 

(TILE NIL) the turtle will draw lines as it moves if the pen 
is down. 

(TILE <num>) the turtle will leave "tiles" as it moves (if 
the pen is down). The tile shape is from the <num>-th 
element of the vector TURTLE-SHAPES. 

(TILE <str>) the turtle will leave "tiles" as it moves (if 
the pen is down). The tile shape is the <str> (see ~~Q~1 
Turtle Shaees above). 

TLC-LISP Reference Manual - 133 



TLC-LISP Documentation Part III 

(MY &OPT <object>) SUBR 

Return or set the local data field of the current turtle. 
The MY slot is available for use by application programs. 

TF (Turtle Family) returns the list of turtles known to the 
system. 

(CS) SUBR 

CS (Clear 
Visible turtle 
redisplayed. 

Screen) clears the screen of turtle tracks. 
shapes within the bounds of the screen are 

TLC-LISP Reference Manual - 134 



TLC-LISP Documentation Part III 

IBM Personal Co■puter Functions 

These functions are specific to the IBM PC hardware. MSDOS 
users please note: MSDOS version 2 and ANSI.SYS are recommended 
for proper operation of the editor and the split screen turtle 
graphics functions due to the use of escape sequences to change 
colors and screen modes. 

Editor Sueeort 

These functions make use of variables defined in the editor 
code found in the file EDIT,LSP 

(IBM-UPDATE-LINE <n-> &OPT <str>) SUBR 

If <str> is not supplied then the element of ED-BUFFER at 
index, (ADD YOFFSET <num>) is used. If the vector element is a 
string then this function moves the string to screen display 
memory, line <num>. XOFFSET characters are skipped at the 
beginning of the string. If the string is shorter than the 
screen-width, then space characters are used for the remaining 
locations in screen memory's line. If the vector element is a 
character, then a blank line is displayed. See ED-INIT and 
ATTRIBUTE. 

(IBM-UPDATI-SCRIIN) SUBR 

Move the strings from elements YOFFSET to (ADD YOFFSET 23) 
from the vector ED-BUFFER to screen display memory. Similar to 
IBM-UPDATE-LINE. 

(ID-FAST <tor nil>) SUBR 

If the argument is NIL then ED-FAST only allows the editor 
support subrs IBM-UPDATE-SCREEN and IBM-UPDATE-LINE to alter 
display memory during vertical retrace; this results in a cleaner 
(but slower) screen update. If the argument is non-NIL then 
display is updated faster but with interference. The default 
value is equivalent to (ED-FAST NIL). 

TLC-LISP Reference Manual - 135 



TLC-LISP Documentation Part III 

(ED-INIT &OPT <nu■ > <sy■bol>) SUBR 

Initialize internal variables for the editor support subrs 
IBM-UPDATE-SCREEN and IBM-UPDATE-LINE. <Num> is the line width in 
characters (either 40 or 80). <Mode> is either the symbol BW or 
COLOR. BW selects the IBM Monochrome Display and Printer Adapter, 
6845 CRT controller at ports 03BOH through 03BFH and display 
memory at OBOOOH. COLOR selects the IBM Color/Graphics Monitor 
Adapter, 6845 at ports 03D08 through 03DFH and display memory at 
OB800H. If no arguments are supplied then ED-INIT uses the 
equipment interrupt (llH) to determine the initial display 
configuration as determined by the switch settings on the main 
circuit board. Failure to execute ED-INIT before using the editor 
support subrs results in an ED-INIT error. 

(ATTRIBUTE &OPT <nu■>) SUBR 

Return or set the attribute value of the characters 
displayed by IBM-UPDATE-SCREEN and IBM-UPDATE-LINE. The default 
value is 70H. The eight bit number has the following definition: 

Color Display 

Bit 

7 
6 
5 
4 
3 
2 
1 
0 

Affects 

Blinking characters 
Red background 
Green background 
Blue background 
Character intensity 
Red character 
Green character 
Blue character 

Thus the value 00011111B (lFH, 31 decimal) produces high 
intensity white characters on a blue background. The default 
setting 01110000B (70H, 112 decimal) produces black characters on 
a white background. 

Monochrome Display 

Bits Affect 

7 Blinking characters 
6-4 All set for white background, all reset for black 

3 Character intensity 
2-0 All set for white characters, all reset for black 

Thus the default value 01110000B produces black characters 
on a white background. 

TLC-LISP Reference Manual - 136 



TLC-LISP Documentation Part III 

(GRBASB &OPT <nu■>) SUBR 

Return or set the beginning of graphics memory. 
segment part of an 8086 double word address. The 
OB800H for the IBM Color/Graphics Display Adapter. 

(V-WINDOW &OPT <nu■>) SUBR 

<Num> is the 
default is 

Return or set the size of the text window (in character 
lines) below the graphics display area. Allows the line clipping 
routines to clip lines that would appear in the text area. Also 
prevents CS (clearscreen) from erasing the text area. Use zero if 
no text window is desired. This function is only used to set up 
internal limits for the graphics routines, it does not create 
windows. Most users will use the SS function (described below) 
which calls V-WINDOW internally. 

(V-MODB &OPT <nu■>) SUBR 

Return or set the video display mode which determines the 
density (high or low resolution) and the type (~ext or graphics) 
of the display. Allows line drawing routines to correctly clip 
lines that are partially visible. Most users will use the SS and 
TS functions (described below) which call V-MODE internally. 
Acceptable values for <num> are as follows: 

Value Meaning 

0 40x25 black and white text 
1 40x25 color text 
2 80x25 black and white text 
3 80x25 color text 
4 320x200 color graphics 
5 320x200 black and white graphics 
6 640x200 black and white graphics 

When setting the video mode, BIOS interrupt lOH and command 
0 is used. When reading the mode, the last value set is assumed 
to be valid. This may not be the case if the operating system has 
used interrupt lOH internally. For CP/M, you must send the proper 
escape sequence to the console when changing the video mode to 
insure that TLC-LISP and CP/M agree on the video mode. A related 
problem occurs when using V-MODE to select a graphics mode; in 
this case, the time-of-day clock will continue to be updated at 

TLC-LISP Reference Manual - 137 



TLC-LISP Documentation Part III 

the bottom of the screen unless you invoke a graphics mode escape 
sequence, making CP/M shut off the clock. See the code in WIN.LSP 
for examples. 

(V-CURSOR &OPT <nu■l> <nu■2> <nu■3>) SUBR 

This function uses the IBM ROM BIOS interrupt routine 
(interrupt lOH commands 2 and 3) and may confuse the operating 
system as to the screen cursor location. Use with care. The 
following argument combinations are accepted: 

(V-CURSOR) returns the cursor position on video page zero as 
a list of numbers (column row). 

(V-CURSOR <numl>) returns the cursor position on page 
<numl>. 

(V-CURSOR <numl> <num2>) sets the cursor on page zero to 
column <numl> row <num2>. 

(V-CURSOR <numl> <num2> <num3>) sets the cursor on page 
<num3> to column <numl> row <num2>. 

(V-PAGE &OPT <nu■>) SUBR 

Return or set the current video page. Uses the IBM ROM BIOS 
interrupt 10 command 5 to set the page, Uses an internal copy of 
the last (V-PAGE <num>) call to return the current page, thus the 
return value may be incorrect if this interrupt is used directly 
by the operating system. The initial page is assumed to be zero. 

(V-PUTCBAR <char> <nu■l> <num2> <num3>) SUBR 

Put <char> at column <numl> row <num2> with attribute <num3> 
on the last page selected by V-PAGE. Internally calls (V-CURSOR 
<numl> <num2>). Uses the IBM ROM BIOS interrupt (interrupt lOH 
command 9). May confuse the operating system as to the current 
location of the cursor. Use with care. 

(V-PALETTE <nu■l> <nu■2>) SUBR 

Sets the 
<num2>. Uses 
11). 

color value of color palette <numl> to 
the IBM ROM BIOS interrupt (interrupt lOH 

TLC-LISP Reference Manual - 138 

color 
command 



TLC-LISP Documentation Part III 

(V-SCROLL-UP <nu■l> <nu■2> <nu■3> <nu■4> <nu■5> <nu■6>) LSUBR 

(V-SCROLL-DOWN <nu■l> <nu■2> <nu■3> <nu■4> <nu■5> <nu■6>) LSUBR 

Scroll a screen area beginning at column <numl> row <num2> 
(upper left corner) and ending at column <num3> row <num4> (lower 
right corner) by <num5> lines using the fill character <nu■6>. A 
count (<num5>) of zero will erase the window. Uses ROM interrupt 
lOH commands 6 or 7. 

(V-INSBRTCBAR <char> <nu■l> <nu■2>) SUBR 

Inserts <char> at column <numl> row <num2> in 
■emory. Moves the remaining characters in the line one 
to the right. The last character in the line is lost. 
manipulates graphics memory using GRBASE and the 
dimensions set by V-MODE. Useful for editors. 

Qr!2Q!£! Functions 

(TS) BXPR 

Text screen mode, 80 by 24 lines of text. 

(SS &OPT <nu■> ) BXPR 

graphics 
position 
Directly 

screen 

Split screen, graphics and <num> lines of 40 column text 
display. If <num> is absent, the last value given to SS is used. 

(BG <nu■ >) BXPR 

Set background color, <num> from Oto 15. 

(FG <nu■>) BXPR 

■ode 
used. 

Set foreground color, <num> from Oto 15. In split screen 
only 4 foreground colors are possible and <num> modulo 4 is 

TLC-LISP Reference Manual - 139 





Function Index for Reference Manual 

abs 40 
add 40 
addl 39 
addprop 70 
allocate 124 
aload 114 
and 27 
ap 18 
append 52 
append➔ 120 
apply 21 
argsframe 84 
ascii 61 
assoc 55 
atan 44 
atom 34 
attribute 136 
auto 114 
axi 111, 113 
axo 111, 113 

bg 139 
bindframe 84 
boundp 36 
bspace 125 
buffered-console-in 103 
buffer 116 
bytes 125 

c ... r 47 
car 46 
catch 29 
cdr 46 
charp 35 
chdir 112 
class 77 
classp 35 
close 96 
closure 23 
concat 52 
concat+ 120 
cond 25 
cons 50 
console-in 102 
console-out 103 
console-reset 103 
copy 51, 59, 64 
cos 43 
cs 134 

de 8 
dee 121 
deg 42 

Function Index -- 1 



deposit 117 
deposit-word 117 
df 9 
dir 97 
div 41 
dm 10 
dmc 108 
do 31 

eap 19 
ed-fast 135 
ed-init 136 
ed-printline 128 
ed-readline 128 
edit 128 
empty 36 
env 68 
envp 35 
eprinO 120 
eq 37 
equal 38 
error 89 
eval 16 
evalhook 88 
evlis 17 
examine-word 116 
examine 116 
exec 112 
exit 115 
exp 42 

fcnframe 84 
fd 132 
fg 139 
fifth 48 
file-access 97 
file-erase 98 
file-exists 98 
file-name 97 
file-rename 98 
file--size 98 
first 48 
fix 41 
fixp 35 
flambda 13 
float 41 
float87 39 
floatp 35 
for 33 
forever 119 
fourth 48 
freverse 55 
free 115 
funcall 21 

Function Index -- 2 



gc 115 
ge 42, 62 
gensym 76 
getfn 20 
getprop 69 
get-obj 124 
grbase 137 
gt 42, 62 

hash 62 
hatch 130 
hd 132 

ibm-update-line 135 
ibm-update-screen 135 
if 25 
iftrue 119 
inbyte 116 
inc 121 
ink 133 
insert 74 
inst 78 
instp 35 
int 122 
integerp 35 
interrupt 117 
inword 116 

label 28 
lambda 13 
le 42, 62 
length 49, 56, 66 
leU 121 
let 33 
line-edited-stream 121 
list 52 
listp 34 
ln 42 
load 92 
logl0 43 
logand 45 
lognot 45 
logor 45 
logxor 45 
lookup 74 
lookup-pkg 76 
lower 61 
lpr 111, 113 
lt 42, 62 

mac 122 
map 22 
mapcar 20 
maplist 22 
11apvec 22 

Function Index -- 3 



max 119 
member 119 
memq 56 
memvec 66 
min 119 
minusp 42 
mkdir 112 
mlambda 13 
mul 40 
my 134 

nconc 54 
neq 119 
newstring 59 
newvector 64 
next 99 
not 27 
nth 49, 58 
null 36 
numberp 35 
numtype 123 

ob.iadr 123 
oblist 75 
offset 123 
open 95 
or 26 
outbyte 116 
outward 116 

paper 132 
pen 133 
pf 75 
pkg 75 
pkgp 35 
pl 120 
pl0 120 
plist 70 
pname 75 
pointer 123 
pos 131 
pr 109 
prin0 101 
prinl 101 
prin2 101 
prin3 102 
print 102 
print-throw-error 121 
procp 36 
progl 17 
progn 17 
putfn 20 
putprop 69 
put-obj 124 

Function Index -- 4 



quote 17 

rad 42 
read 99 
readchar 99 
readline 100 
record 122 
rem 41 
remove 121 
remprop 69 
rep 33 
rest 48 
restart 90 
restart-frame 
retframe 86 
reverse 53 
rmdir 112 
rn 44 
rplaca 53 
rplacb 54 
rplacd 54 

second 48 
seek 96 
segment 123 
selectq 28 
set 67 
setq 67 
shape 131 
sin 43 
sixth 48 
SB 139 
stack 116 
store 64 
stream 96 

86 

string 59 
string-delete-char 60 
string-insert-char 60 
string-replace-char 60 
string-search 59 
stringp 35 
sub 40 
subl 39 
subst 50 
substring 57 
subtime 111 
super-pkg 76 
symbolp 35 
symbol-pkg 75 

tan 43 
tapply 87 
terpri 102 
tf 134 
third 48 

Function Index -- 5 



throw 29 
throw-error 121 
tile 133 
time 111 
tinit 131 
t■ 133 
tod 111 
toplev 18 
ts 139 
type 37 
typech 108 
typeframe 83 
typenum 124 
tys 102 

unbind 68 
unwind-protect 30 
upper 60 
user 113 

v-cursor 138 
v-insertchar 139 
v-mode 137 
v-page 138 
v-palette 138 
v-putchar 138 
v-scroll-down 139 
v-scroll-up 139 
v-window 137 
vector 63 
vector-delete-element 65 
vector-insert-element 65 
vectorp 35 
vis 132 
vp 131 
vref 63 

what 124 
where 125 
who 86 

x-pos 132 

y-pos 132 

zerop 41 

Function Index -- 6 







TLC-LISP Documentation P-Code Module 

The P-code Module: Co■piler, Aeee■bler, and Di••••e■bler 

This ■odule contains the compiled 
(*.LSP) for the TLC-LISP compiler, 
Please respect the copyright of the 
description of the contents of each 

COMPDECL.LSP 

files (*.P) and source files 
assembler and disasse■bler. 

information. Below is a short 
source file: 

Collection of declarations used throughout the co■piler 

COMPMACS.LSP 
Collection of ■aero definitions used si■ilarly. 

COMP.LSP 
The top-level compiler drivers. 

COMPARGS.LSP 
The formal para■eter processor. 

COMPDO.LSP 
The Do-compiler. 

COMP2.LSP 
The code generators. 

COMPFILE.LSP 
Thie file handling portion--where to put the code. 

OPT.LSP 
A simple code optimizer--not very clever, but effective. 

LAP.LSP 
The assembler to generate runnable code. 

DISPCODE.LSP 
The disassembler so you can see what the co■piler did to you. 

P-code versions of these files are in the *·P counterparts. 

To install the P-code Module in your system see the file named 

INSTALL.CMP 

on your P-code Module Disk. 

P-Code Module -- 1 



TLC-LISP Documentation P-Code Module 

General Note• On the TLC P-■achine 

The P-■achine is a straightforward stack-oriented architecture 
with pri■itive operations based on the require■enta of LISP-like 
languages. These operations include arithmetic and basic list
processing. Of ■ore interest are the operations that ■ake p-code 
functions co■patible with interpreted TLC-LISP, allowing the 
■ixture of interpreted, P-code, and pri■ itive functions. These 
operations involve the access and updating of variables, either 
through the interpreter's value-cells, or locally through slots 
in stack-fra■es. 

A aubr is the application of a built in function, usually with 
the aa■e na■e as the opcode. A binary aubr pops two objects fro■ 
the stack and pushes one result. A unary subr pops one argument 
object fro■ the stack and pushes one result. 

The best way to get a feeling for the ■achine is to examine the 
co■piler output. Thia can be done in two ways: 

* Use DIS to diaasse■ble p-code in ■e■ory. For example 

(DIS 11apcar) 

2 0 2 0 
fget2 
nil 
faetO 
dupl 
faetl 
not 
iffl 09F6 
fgetO 

■ight give 

17AB: 09E4 
17AB:09E8 
17AB:09E9 
17AB:09EA 
17AB:09BB 
17AB: 09EC 
17AB:09ED 
17AB: 09H 
17AB:09Fl 
17AB:09F2 
17AB:09F5 
17AB:09F6 
l7AB: 09F7 
17AB:09F8 
17AB: 09F9 
17AB: 09FB 
17AB:09FC 
17AB:09FD 
17AB:09FE 
17AB:09FF 
17AB:OAOO 
17AB:OA01 
17AB:OA02 
17AB:OA03 

ncl freverae 
ret 
fget3 
fgetl 
car 
funcall 2 
fgetO 
cons 
dupl 
fsetO 
disc 
fgetl 
cdr 
fgetO 
jmpl 09EA 

all of which is pretty meaningless without knowing the Op-codes. 

P-Machine -- 2 



TLC-LISP Docu■entation P-Code Module 

* You can also use the LIST option in the co■piler to examine 
co■piled code in source for■. 

For exa■ple, (COMPILE <source> (LIST <file na■e>} will deposit 
a LAP (Lisp Assembly Progr-) for■ of the co■piled code on the 
designated file. 

Note on Ter■inology 

TOS ■eana the object at the top of the stack. TOS-1 ■eana the 
next object after TOS on the stack. 

General Caution 

The current P-■achine instruction set is arbitrary, 
and non-opti■al. A new ■achine will be forthco■ing, 
the necessary conversion programs. 

Opcodes 

ADD 

irre1ular, 
along with 

Binary aubr, replacing TOS with the au■ of TOS and TOS-1. 

ADDl 
Unary aubr. TOS gets TOS+l 

APPBND 
Binary aubr. TOS gets (append TOS-1 TOS) 

ARG <ayabol> 
Ar1u■ent bind. TOS is popped and shallow bound to <ay■bol>. 

Thia handles the co■pilation of non-local variables in a 
dyna■ically scoped LISP. But see FFGBT and FFSBT. 

ASRT <type> 
Assert. Generate ar1-wrong-type error if TOS is not <type>. 

Does not pop TOS. Thia is a static type-check op-code. 

ASSOC 
Binary aubr. TOS-1 is used as an index into the list found 

in TOS, and an ASSOC is perfor■ed. An historical artifact of 
li■ited utility. 

BIND <ayabol> 
Save the current binding of <sy■bol> in the shallow binding 

stack. 

CAR 
Unary subr. TOS gets (CAR TOS). 

P-Machine -- 3 



TLC-LISP Docu■entation P-Code Module 

CARCDR 
TOS is popped. The cdr is pushed then the car is pushed. 

CATCH <syabol> <word> 
Brect a catch fra■e. The appropriate throw will cause 

execution to resume at relative offset <word>. 

CDR 
Unary subr. 

CONS 
Binary subr. TOS gets (CONS TOS-1 TOS) 

CONST <object> 
Constant. Push the <object>. 

DISC 
Discard. Pop TOS. 

DIV 
Binary subr. (DIV TOS-1 TOS) 

DUPL 
Duplicate the top of the stack, i.e push TOS. 

IQ 
Binary aubr. 

BBC 
Bacape to ■achine code. 8086 code is expected to follow. 

IXCB 
Exchange. Swap TOS and TOS-1. 

llGBT <fra■e> <nu.a> 
Push the <num>-th local object fro■ the <frame>-th previous 

fra■e on the stack. This instruction (and its partner FFSBT) are 
of particular importance for a language like Scheme, that depends 
on lexical scoping. The current TLC-LISP86 co■piler does not use 
these instructions, but depends on &SPBCIAL to co■pile references 
through ARG, etc. See FFSBT. 

rGBT <nu.a> 
Push the <nu■>-th local object. If <num> is fro■ 0 to 7 then 

a special one byte form of the opcode may be used instead of the 
two byte form. The current co■piler suffers from a design error, 
mapping the single byte for■s onto their complement. For exa■ple, 
in a ternary function (FGBT 0) maps onto (FGBT3) and (FGBT 1) 
maps onto (FGBT2). The syste■ is internally consistent so that 
the correct thing happens. This idiocy will be fixed in a revised 
P-machine. See FSBT. 

P-Machine -- 4 



TLC-LISP Documentation P-Code Module 

rix <D1111> 
Push the fixnum <num> which is embedded in the opcode and 

may range fro■ 0 to 7. 

rLUSB <nua> 
Pop TOS. Remove the next <num> objects from the stack. 

Restore TOS. 

rrSBT <fr-e> <nua> 
Pop the stack into the <nu■>-th local object fro■ the 

<frame>-th previous frame. See rFGET. 

FSIT <nua> 
Pop the TOS into the <num>-th local object slot on the 

stack. If <num> is from Oto 7 then a special one byte form of 
the opcode may be used instead of the two byte form. See the 
remark in the description of FGET. 

GE 
Binary subr. TOS gets (GE TOS-1 TOS). 

GT 
Binary subr. TOS gets (GT TOS-1 TOS). 

nr <word> 
Irrs <byte> 
IFFL <dword> 

If false. Pop TOS and jump relative if nil. 

IFFN <word> 
11NL <dword> 
IFNS <byte> 

If false no pop. Pop TOS. If nil then jump relative else 
push it back. 

IFT <word> 
IFTL <dword> 
IFTS <byte> 

If true. Pop TOS and jump if not nil. 

INT 
Pseudo-machine breakpoint. Evaluates the form (apply pm

break pc sp) where pc is the p-machine program counter and sp is 
the stack pointer. The arguments pc and spare passed as number 
objects suitable for examine/deposit. The function pm-break is 
supplied by the user. 

P-Machine -- 5 



TLC-LISP Docu■entation P-Code Module 

JBOUND 
Ju■p if bound. Pop TOS. Don't jump if unbound else push it 

back and ju■p. This is used to compile code for optional 
argu■ents. If the corresponding actual para■eter is unbound, then 
we know that a value was not supplied and the optional value 
should apply for the position. 

JNPL <dword> 
JNPS <byte> 
JNP <word> 

Unconditional relative jump. 

JTYPB <type> <word> 
If type of TOS is <type> then ju■p. TOS is preserved. 

LB 
Binary subr. (LB TOS-1 TOS). 

LBNGTB 
Unary aubr. (LENGTH TOS). 

LIST <count> 
Applies the list subr to the <count> argu■ents on the 

stack, popping these arguments and pushing the resulting list 
object. The arity <count> is e■bedded in the opcode and may range 
fro■ 1 to 8. 

LT 
Binary subr. (LT TOS-1 TOS). 

NARK 
Save the current name stack pointer. The value pushed is not 

a valid Lisp object. See UNMARK. 

NINUSP 
Unary subr. (MINUSP TOS). 

Binary subr. (MUL TOS-1 TOS). 

NC <arity> <ayabol> 
Na■ed call. Pop the arguments and apply the value of <symbol>. 

Equivalent to (apply <ay■bol> (list <args ... >)) but no list is 
allocated. A short for■ of the opcode with embedded arity may be 
used if the arity is less than 8. 

NCONC 
Binary subr. (NCONC TOS-1 TOS). 

NIL 
Push the NIL object. 

P-Machine -- 6 



TLC-LISP Documentation P-Code Module 

NOT 
Unary subr. (NOT TOS). 

NTAIL <arity> <sy■bol> 
Named pcode tail recursion elimination. For symbols that are 

pcode only. Reuse the current stack frame. 

NTH 
Binary subr. 

PC <arity> <word> 
Pcode call. <Word> is relative. A short form of the opcode 

with e■bedded arity may be used if the arity is less than 8. 

POPVAL <syabol> 
Setq <symbol> to TOS. Pop TOS. 

POPW <offset> 
Pop word. Pop the TOS into the specified <offset> in the 

interpreters data segment. Ugly instruction. 

PTAIL <arity> <word> 
Pcode tail recursion elimination. Reuse the current stack 

fra■e. 

PUSBVAL <syabol> 
Push the current value of <symbol>. 

PUSBW <offset> 
Push word. Push the object at the specified <offset> in the 

interpreter data segment. 

RBPINIT <label> 
Check the numeric object on the top of stack and jump to 

label with TOS NIL if zero or negative. If the value is greater 
than zero, then a 32 bit integer representation replaces the 
object on the stack. Used to compile REP. 

RBPJUMP <label> 
Remove the value on the top of the stack, decrement the 32 

bit integer now on TOS and jump to label if the result is non
zero. Otherwise replace the 32 bit integer with the old TOS value 
and fall through. 

For example, 

(PUSHVAL n) 
(REPINIT end) 

loop (NCO foo) 
(REPJUMP loop) 

end 

P-Machine -- 7 

(rep n (foo)) compiles to: 



TLC-LISP Documentation P-Code Module 

RBT 
Return to the caller of the pcode function, using TOS as the 

returned value. 

RFIILD <offset> 
Read Field. Extract the object located <offset> bytes into 

the object on the top of the stack. The new object replaces the 
original object on the stack. 

RPLACA 
Binary subr implementing (RPLACA TOS-1 TOS) 

RPLACD 
Binary subr. (RPLACD TOS-1 TOS) 

SBT 
Binary subr. (SET TOS-1 TOS) 

SOT <byte> 
Smash the <byte>-th location down the stack with TOS. Pop 

TOS. SOTO is equivalent to DISC. 

STRING <count> 
Applies the string subr to the <count> arguments on the 

stack, popping these arguments and pushing the resulting string 
object. The arity <count> is embedded in the opcode and may range 
from 1 to 8. 

SUB 
Binary subr. 

SUBl 
Unary subr. 

THROW <syabol> 
Equivalent to (throw <symbol> TOS). 

TOS <byte> 
Push the <byte>-th object down the stack. 

equivalent to DUPL. 

TYPE 
Unary subr. 

UNBIND 
Unary subr. 

UNBOUND 
Push the special object UNBOUND. 

P-Machine -- 8 

TOS O is 



TLC-LISP Docu■entation P-Code Module 

UNCATCB 
Pop TOS. Re■ove the catch fra■e erected by CATCH. Restore 

TOS. 

UNMARK 
Restore the na■e stack pointer 

VRII' 
Binary subr. TOS gets (VRBF TOS-1 TOS) 

VSBT 
Three argu■ent subr. TOS gets (STORE TOS-2 TOS-1 TOS) 

Wl'IILD <offset> 
S■ash the object located <offset> bytes into the object at 

TOS-1 with TOS. The stack i ■ popped once. 

ZIROP 
Unary subr. TOS gets (ZIROP TOS) 

P-Machine -- 9 



TLC-LISP Documentation P-Code Module 

What Is A Compiler? 

We will not attempt to give a whole course on compiler 
construction here, We will ignore the syntactic problems of 
parsing, symbol table construction, and internal code 
representation; those issues are already solved for us by LISP. 
Rather, we'll concentrate on the semantic issues: the general 
definition of a compiler, the issue of code generation, and 
finally the issue of optimization and performance. For a deeper 
discussion of all these issues see "Anatomy of LISP", or 
"Structure and Interpretation of Computer Programs". 

In a phrase, a compiler translates a program in one language into 
a program in a second language such that the execution of the 
second program has the same effect as the execution of the first 
program. To make the problem non-trivial, we assume that the 
second language is not the same as the first. Specifically, we 
will transform TLC-LISP86 code into TLC-LISP P-code. So that: 

(EVAL <expression>) = (P-run (COMPEXP <expression>)) 

where P-run represents the (internal) execution device to 
sequence through and execute the compiled P-code. COMPEXP is an 
(internal) piece of the Compiler. 

We must also reconcile the result of the P-machine with the 
expectation of EVAL, defining the value of a P-code computation 
to be the object located on the top of the stack after the 
sequence of instructions has been completed. 

The task of the compiler is thus to translate each TLC-LISP 
expression into such a seqeunce. We'll begin with a simple but 
representative set of LISP constructs-- constants, function 
applications, conditional expressions, and variable references. 

constants l, 'A, (1 2 4] 

function calls -- (fool 2 3) 

control constructs 

variable references 

The Compiler -- 10 

(if (foo 1 2 3) 4 5) 

(de foo (x y z) (cons x y) ... ) 



TLC-LISP Documentation P-Code Module 

A quick examination of the P-machine shows that: 

* constants are easy 
constant 1. 

(CONST 1) will fill the bill for the 

* function calls are easy -- (CONST 1) ; push 1 
(CONST 2) ; push 2 
(CONST 3) ; push 3 
(NCALL 3 foo) ; call foo 

will handle (FOO 1 2 3) 

So more generally, (COMPEXP (<function> <argl> ... <argn>) is 

(APPEND+ (COMPEXP <argl>) 
(COMPEXP <arg2> 

(COMPEXP <argn>) 
(LIST (LIST 'NCALL n <function>) )) 

* control constructs are easy --

xxl 
xx2 

(CONST 1) 
(CONST 2) 
(CONST 3) 
(NCALL 3 foo) 
(IFF xxl) 
(CONST 4) 
(JMP xx2) 
(CONST 5) 

will compile (IF (FOO 1 2 3) 4 5) 

So (COMPEXP (IF <pred> <a> <b>)) is 

(APPEND+ (COMPEXP <pred>) 
(LIST (LIST 'IFF <label-1>)) 
(COMPBXP <a>) 
(LIST (LIST 'JMP <label-2>)) 

(LIST <label-1>) 
(COMPEXP <b>) 

(LIST <label-2>) 

* Variable references are interesting -- Since the most 
interesting variable references involve access to actual 
parameters within a function, we need to know that the TLC-LISP86 
interpreter builds a frame that contains the actual parameters 
before it enters the P-code translation of the function. 
Therefore a reference to an actual parameter is indicated by a 
zero-based reference to a slot in the latest frame. 

The Compiler -- 11 



TLC-LISP Documentation P-Code Module 

Thus recalling the P-Code FGET, we see: 

(FGET 0) gets the first para■eter, (FGBT 1), the second. So 

(DE FOO (X Y Z) (BAR (CONS X Y))) co■piles as; 

(DBFPCODB FOO (X Y Z) 
3 0 0 0 arity info-~checked on entry 
(FGET 0) X 
(ARG X) update X's symbol 
(FGBT 1) y 
(ARGY) 
(FGBT 2) z 
(ARG Z) 
(PUSHVAL X) X 
(PUSHVAL Y) y 
(CONS) A primitive op-code, result to TOS 
(NCALL 1 BAR) general (na■ed) call to BAR 
(RBT)))) Return to caller 

After these symbolic descriptions are translated by LAP into 
bytes and installed as the definition of FOO, anyone can call 
FOO, and BAR can be arbitrary executable TLC-LISP86 code. 

We can now sketch the extensions for the compilation of a 
definition: 

(COMPILE '(DB <name> <formals> <body>)) is something like: 

(CONCAT 'DEFPCODE 
(CONCAT <name> 

(APPEND (ARITY-LIST <formals>) 
(COMPILE-EXP <body> <for■als>)))) 

where we assume ARITY-LIST can generate appropriate entries for 
the prolog, and COMPILE-EXP can compile the <body> to reference 
the appropriate values of formal parameters. COMPILE-EXP is a 
generalized for■ of COMPEXP. 

Since variable references can occur within arbitrary sub
expressions in the body of the compiler, COMPILE-EXP must pass 
the formal parameter information, so that a variable reference to 
the i-th formal parameter beco■es an (FGBT/FSET i). For example, 
to generate the appropriate index we might use: 

(de make-ref (name formal-list &OPT (count 0)) 
(cond ((null formal-list)) (error "non-local reference")) 

((eq name (first formal-list)) count) 
(t (make-ref name (rest formal-list) (addl count))))) 

The Compiler -- 12 



TLC-LISP Documentation P-Code Module 

See■s simple enough, The only complexity involves the error 
condition "non-local reference", This corresponds to LISP's use 
of dynamic scoping. For exa■ple, if BAR uses X, Y, or Z free 
within its call on FOO, then we ■ust be sure that the binding 
made on entrance to FOO is available to BAR, Since the frame
mechanism (called "deep binding") is not used by the TLC-LISP 
interpreter (it uses "shallow binding"), we included the ARG
operation in the P-■achine to force the para■eter into BAR's view 
(or into the view of anyone called by BAR), 

The use of ARG makes the compiled code have the same 
functionality as its interpreted precursor, That's the good news. 
On the other hand, it takes time to update the value-cells. 
So if no one cares about those values, we can ■aintain the values 
strictly within the P-■achine's do■ain by using the stack fra■e 
and the FGBT's as the repository of the values. So if no one 
needed X, Y, or Z, we co■pile as: 

(DBFPCODB FOO (X Y Z) 
3 0 0 0 
(FGBT 0) 
(FGET 1) 
(CONS) 
(NCALL l BAR) 
(RET)))) 

arity info--checked on entry 
X 
y 
A primitive op-code, result to TOS 
general (named) call to BAR 
Return to caller 

The co■pro■ise position--that so■e para■eters are 
dynamically and some not--is handled by declaring the 
variables as "special". Thus: 

needed 
dynamic 

(DE FOO (X Y Z &SPL Z) (BAR (CONS X Y))) compiles as; 

(DEFPCODE FOO (X Y Z) 
3 0 0 0 
(FGET 3) 
(ARG Z) 
(FGBT 0) 
(FGET 1) 
(CONS) 
(NCALL 1 BAR) 
(RET) ) 

arity info 

stuff the value-cell 
X 
y 
A primitive op-code, reslut to TOS 
general (named) call to BAR 
Return to caller 

and the correct value of Z will be available within BAR. X 
and Y will be inaccurate if BAR tries to access non-local 
versions of them. 

This mixture of fra■e-based and value-cell-based parameter 
maintenance allows us to muddle the boundary between the two 
machines--the inner P-■achine, and the outer LISP-machine. This 
"muddling" is useful for efficiency reasons only, It is important 
to keep a clear understanding of the issues at the boundaries 
between each of the TLC machines. 

The Compiler -- 13 



TLC-LISP Documentation P-Code Module 

So■e General co-enta About Co■pilation 

Of course the full compiler is ■ore complex, 
is an accurate picture of the kernel ideas. 
about compilers in the traditional computer 
world? 

but the last section 
So why all the fuss 

science view of the 

It is our belief that compilers have held 
the pecking order of Computer Science. 
illustrates, they can best be understood 
grasp of the semantics of the source 
understanding is much more easily developed 
interpreter as the operational ■odel of the 

too high a position in 
As the last section 
after one has a good 

language, and that 
and debugged using an 
semantics. 

Co■pilers explain nothing; they only make what exists execute 
faster by translating the expressions in the source language into 
instructions in another language called the target language. 
Another interpreter still has to execute the resulting 
translation, or perhaps the code can again be (micro) compiled 
into yet a more detailed machine. At each stage the next level of 
■achine gets ■ore specific and ■ore complex, making the linkage 
between the final executable code and the initial high-level 
expression tenuous at best. 

In many ways, compilers just make the programming problem harder. 
At the semantic level, the detailed dissection that compilation 
implies gives little insight into the intended meaning of the 
original expression. From the practical side of things, the 
compiler model of computation implies thst high-level expression 
be completely specified before execution can begin (for otherwise 
compilation could not proceed). Particularly when learning a 
language, this requirement for static oompleteness becomes 
bothersome. When this requirement for completeness couples with a 
static type structure, then interactive programming becomes 
nearly impossible. But of course, advocates of compiler-based, 
strongly typed languages see interactive programming as a tool of 
the devil anyway. 

The LISP tradition dictates that the operational semantics of a 
language be given by a meta-circular interpreter--one written in 
the language in question, and which manipulates encodings of 
programs written in that language. This is an old trick of 
computation theory, demonstrating the universality of a notation 
by displaying a program that can simulate any program in the 
language. Two constructs are required: first, the demonstration 
of a mapping that takes any program into a data structure of that 
language. This is LISP's famous "program-as-data" trick. Second, 
one must demonstrate a program that will manipulate instances of 
that representation, simulating the execution of the pre-image of 
the encoding. That program is the EVAL function of LISP. 

The Compiler -- 14 



TLC-LISP Documentation P-Code Module 

One can control the detail of the simulation by tuning the level 
of the i■plementation structures that are utilized. For example, 
the si■plest of si■ulations tends to be a recursive description, 
leaving the implementation of recursion beyond the pale. However, 
one can also ■ade the details of recursion explicit, thereby 
de■onstrating a non-recursive simulation. The structures involved 
in such a ■odel are ■ore like the ■achine-level details of the 
compiler ■odel, but the expressions are still those of the high
level language, not so■e target language. 

The real contribution of compiler technology is to tradeoff 
generality of expression and flexibility of execution, for speed 
of execution. Regardless of the speed, the overriding requirement 
on co■piler technology is that the semantics of any valid progra■ 
■ust be preserved: interpreted results ■ust agree with compiled 
resulta. 

That ■eana, whatever the target machine ■ight be, 
executing (interpreting) th~ original progra■ must 
the reaponae we get when executing the compiled 
target ■achine. 

the result of 
be the sa■e as 

code on the 

The situation beco■es more complex when, as is the case for TLC
LISP, we have several target ■achines, and we wish to be able to 
pass back and forth between co■piled code and interpreted oode. 

In TLC-LISP, there are three choices for target language. 

* P-code Pseudo-code 
software defined ■achine. 
for the compiler. 

for a TLC-designed stack-oriented 
The P-machine is the default target 

* Code -- a "■aero-expanded" versions of P-code, replacing P
■achine instructions with sequences of 8086 instructions. Peep
hole optimizations are performed, subject to the idiosyncracies 
of the 8086. 

* As■ -- raw 8086 code. All bets are off 
■aintains se■antic compatibility with the 
calling routine. As■ objects are used for 
aenaitive or hardware-dependent applications. 

unless 
desires 

the most 

the user 
of the 
speed-

Currently P-code and Code objects are the target 
the co■piler, but all three types of code are 
handled by the interpreter. 

languages 
recognized 

for 
and 

We think of each of these levels as representing a ■achine, 
nested within its i ■■ediately surrounding machine with LISP at 
the outer level. The code from the previous layer is passed to 
the inner layer for execution. As we go down in layers, we get 
closer to the 8086-based hardware machine (which, of course, is 
also interpreting instructions). 

The Co■piler -- 15 



TLC-LISP Documentation P-Code Module 

There are space/speed trade-offs between these different levels. 
At each level, certain compatibility conventions must be adhered 
to so that information may flow cleanly between machines. 
Specifically: 

* Between interpreted LISP and P-code. We must solve the 
parameter-passing and value-return problem. This involves 
knowledge of the structures that TLC-LISP86 employs between 
function calls and returns. Specifically, parameters are passed 
through a LISP frame and controlled by the P-machine in its 
local control structure, the P-stack. 

Of course we must describe a complete translation of TLC-LISP 
code into a collection of P-code. No modification are made to 
TLC-LISP data--The P-machine still deals with LISP objects. 

* Between P-code and Code. The parameter-passing situation is 
that of P-code, because we are able to map P-machine's stack 
onto the hardware stack of the 8086 architecture. We can still 
communicate with the LISP frame information, but now we must 
know the hardware layout of the frame and use 8086 instructions 
to access those fields. Furthermore, at the Code Level we must 
transform LISP data objects into physical addresses of the 
8086; the 8086 doesn't understand LISP's notion of objects, it 
only recognizes bits, bytes, and words. Even things as simple 
as integers have a different representation in TLC-LISP than 
that supported by the hardware. This is the Object-to-address 
problem. 

* Between Code and Asm. Here we dispense with the niceties of 
TLC-LISP's frame structure and deal directly with 8086 
registers for passing paramters and values. Specific register 
conventions are given for passing arguments, and a specific 
register is designated as the repository the object computed by 
the function. 

All this care is required because we must be able to intermix 
interpreted LISP, P-code, Code, and Asm objects --not just 
statically, but dynamically. This means that we must be able to 
compile and install functions on the fly, again with no change in 
program semantics. These are reasonably agressive requirements. 

The strategy adopted by TLC involved the design of an 
intermediate code machine --the P-machine-- and in parallel the 
design and implementation of a compiler that would take TLC-LISP 
constructs into sequences of P-code. The resulting code is then 
executed by the P-machine. The P-code is more compact and 
executes more rapidly than the direct interpretation of TLC-LISP. 
This initial system was designed on (and for) the Z-80 version of 
TLC-LISP. Later we used the P-code output to generate several 
versions of TLC-Logo, as well as aid in the development of LISP 

The Compiler -- 16 



TLC-LISP Documentation P-Code Module 

itself. More recently, we have added transformation and code 
optimiz~tion phases to translate the P-code into reasonably 
efficient 8086 native code. 

Before going into the lower levels we'll 
realistic example of compilation. 

; A TLC-LISP implementation of rplacb. 

' (de xrplacb (11 12) 
(rplaca 11 (car 12)) 
(rplacd 11 (cdr 12)) 
11) 

The compiled output looks like: 

{defpcode xrplacb (11 12) 
2 0 0 0 

{fget 0) 
(fget 1) 
(car) 
(rplaca) 
(fget 0) 
( fget 1) 
(cdr) 
(rplacd) 
(fget 0) 
{ ret)) 

push 11 
push 12 
{car 12) 
(rplaca 11 
push 11 
push 12 
(cdr 12) 
(rplacd 11 
11 

(car 12)) 

(cdr 12)) 

look at a ■ore 

At first blush, the compiler see■s to have been overly stupid: 

* The result of the rplaca is left on the stack, and 
* the result of the rplacd is left on the stack. 

Both of these results are stripped off by the (ret), but still ... 

A moment's reflection ■akes us recall that the value of rplaca/d 
is its first argument, and thus the (fgetl)'s that follow the 
(rplaca/d)'s are redundant. This leads us to the following 
si■pler P-code: 

(defpcode xrplacb 
2 0 0 0 

(fget 0) 
(fget 1) 
(car) 
(rplaca) 
( fget 1) 
(cdr) 
(rplacd) 
(ret)) 

The Compiler -- 17 

(11 12) 

push 11 
push 12 
(car 12) 
(rplaca 11 
push 12 
(cdr 12) 
(rplacd 11 

(car 12) 

(cdr 12)) 



TLC-LISP Documentation P-Code Module 

But further reflection convinces us that these optimizations are 
in fact available at the source level: 

(de xrplacb (11 12) 
(rplacd (rplaca 11 (car 12)) (cdr 12))) 

and so P-code optimization doesn't help here. 

This is not to say that the compiler always puts out optimal 
code, but in the majority of cases, hand-optimization of P-code 
is not productive. P-code is most useful in cases where the 
compiler will not/cannot recognize that certain P-codes are 
applicable. 

In the case of xrplacb, further speed increases must come from 
Code- or Asm-objects. 

The Compiler -- 18 



TLC-LISP Documentation P-Code Module 

Bow to u■ e the TLC-LISP Co■piler 

The interactive loop between the editor and the interpreter ■akes 
for a rapid progra■ development cycle. Once so■e portion of the 
program has been dee■ed debugged, it is often useful to co■pile 
it, thereby gaining ■o■e ■peed of execution. The ■ i■plest 
technique i ■ to u■ e the compiler within the editor. In this ■ode 
we place the cursor at the beginning of a function definition and 
instead of typing AJJ, we type AJC. This com■and tuple co■piles 
the indicated definition into ■e■ory. 

Once the conventions are understood (and perhaps so■e delarations 
are ■ade) The edit-co■pile-run loop ■akes an effective co■panion 
to the edit-interpret loop. Even after compiling a ■et of 
function■, you can return to their LISP for■ using the editor. 
Siaply return to the editor, position the cursor in front of the 
definition and execute AJJ. The P-code version will be discarded, 
and the LISP version will re-appear. Don't forget an occasional 
AKS or AKW to keep the external files current. 

The coapiler can also be invoked explicitly using the Special 
Fora COMPILE, in several different ways. The si■plest cases 
generate P-code that is compatible with interpreted code: 

1. (co■pile <sy■bol>) compiles the definition associated with 
<sy■bol>, saving the current definition on the p-list of <sy■bol> 
where DECOMPILE can retrieve it. The editor will recognize AJC 
and co■pile functions within the editor (currently the compiler 
■ust be resident to execute this com■and). 

2. (coapile <filename>) compiles the file <filename> into the 
■yste■ without generating a P-code file. 

3. (compile <filenaael> <filena■e2>) compiles the definitions on 
file <filenamel>, generating a P-code file named <filename2>. 

The co■pile-function will also accept 
arguaents: 

several additional 

{special ... ) 

(code ... ) 

compile, assuming designated variables non-local. 
(special) makes all parameter references local. 

compile functions to 8086 code, rather than P-code. 
Requires the Native Module. 

(list <file name>) -- build a source form of the compiled code on 
the designated file. 

Compiler Invocation -- 19 



TLC-LISP Documentation P-Code Module 

Co■piler-related Functions 

DECOMPILE -- expr (pcode) 

(decompile <symbol>) restores the original definition if 
<symbol> has been compiled using (compile <symbol>) 

PLOAD -- subr 

(pload <filename>) loads a P-code, Code, or Asm file named 
<filename>. 

DIS -- expr (pcode) 

(dis <code object>) disassembles the code into a 
readable representation. DIS knows about Pcode and if the Native 
Module is installed, will disassemble Code, and Asm objects. 

REMOVE-MACROS 

(remove-macros) is used in conjunction with the loading of 
p-code files. It causes all macros that appear in a p-code file 
to be thrown away during a pload. This technique will save memory 
(without harm) when those macros are only used within that p-code 
file. (remove-macros) cannot be used if macros are embedded in 
any of the following forms: 

catch, throw, unwind-protect, and all Fexprs. 

Compiler Invocation -- 20 



TLC-LISP Documentation P-Code Module 

Convention• and Declaration■ 

The default compilation mode for TLC-LISP gives code that is 
totally compatible with interpreted code. Specifically, all 
references to variables are made through "value-cells"--the 
storage locations known to the interpreter. 

For example: 

(de foo (x y) (bar x y) ... ) 

would compile as: 
(2 0 0 0 

get 
; save 

; get 

(fget 0) 
(arg x) 
(fget 1) 
(arg y) ; 
(pushval x) 
(pushval y) 
(nc2 bar) 

save 

the first actual parameter 
-it as x's value 
the second actual parameter 
it as y's value 
push x's value 
pushy'• value 
call the function 

where the 
required 

2 0 0 0 preamble explains that foo 
parameters and no optional parameters. 

expects two 

The meat of the code follows the preamble and explains that the 
actual values passed to foo will be bound to x and y, 
respectively. However, if bar doesn't reference x or y, (and no 
one within bar wants these variables either) then this careful 
maintenance of the variables is for naught. The values from the 
environment surrounding foo will be restored. 

In the case where values are only used locally, we can compile 
■ore rapid and compact code: 

(fget 0) 
(fget 1) 
(nc2 bar) 

But as we said earlier, anyone who accesses x or y within bar 
will not see the right values. 

Once this problem is understood, we can proceed with some 
optimizations that will be effective in files that are to be 
compiled. Specifically, we have supplied a declaration for the 
compiler's benefit: 

(declare (SPECIAL {<symbol>}) 

Compiler Invocation -- 21 



indicates 
<sy■bol>s 

TLC-LISP Documentation P-Code Module 

to the compiler that code to 
must reference the <symbol>'s 

reference 
value-cell. 

these 

Further■ore, any variables not so listed will be assumed local 
and compiled as stack-relative references. So for example: 

(declare (special y)) 

preceding the definition of foo will result in the following code: 

i get 
; save 

get 

(fget 1) 
(argy) 
(fget 0) 
(pushval y) 
(nc2 bar) 

the second actual para■eter 
it as y's value 
the first actual parameter 
push y's value 
call the function 

and in this case y's value will be accurate within the execution 
of bar. 

This use of declare at the beginning of a file will insure that 
all occurrences of the designated variables will be compiled non
locally. 

Since a large majority of TLC-LISP programs tend to use variables 
locally, it is common to preface a file with: 

(declare) 

meaning that all variables are to be co■piled locally, and then 
target specific variables in spacific functions to be 
non-locally by using a key-word prefix, &special (or 

we can 
handled 
&spl) in 
variables. 

(declare) 

the for■al parameter list to indicate those non-local 
Thus the previous example could have been handled by 

(de foo (x y &spl y) (bar x y) ... ) 

FOR NOW: any non-local variables that are referenced inside 
catch, throw, unwind-protect, or any Fexpr must be declared 
special. See the *-LSP files for examples of special 
declarations. 

Another compiler opti■ization allows us to specify sy■bols that 
are to be treated as constants. Thus: 

(constant *buffer-size* pi) 

Co■piler Invocation -- 22 



TLC-LISP Documentation P-Code Module 

This declaration will allow the compiler to replace code like: 

(pushval *buffer-size*) 

with (const <*buffer-size*>) 

where <*buffer-size*> is the compile-time value for *buffer-size* 

Compiler Invocation -- 23 



TLC-LISP Documentation P-Code Module 

An Overview of LAP--the LISP Aaae■bler 

The actual output from the TLC-LISP co■piler cannot be executed 
directly. Each co■piled function is represented as a list of 
instructions and labels, as the examples in the prior sections 
de■onstrate. Those instruction lists must be translated into 
sequences of byte codes, and references to labels must be 
converted into references to the machine location that 
corresponds to the label. These conversions are accomplished by 
LAP, the LISP Assembler. The structure is simple: a static table 
containing opcdoes, and a dynamic table that contains labels and 
their associated locations in the P-code object. There is 
another internal table of object references, that has to be 
retained when the P-code is loaded. The problem arises when a 
function makes reference to a symbolic constant. In interpreted 
code, such references will be marked by the garbage collector. 
When the function is compiled, such references become fields in 
P-code operations, and are not so easily tracked by the garbage 
collector. Thia problem is discussed in the Native Mode Module. 

There isn't much else of co■plexity in the P-code assembler --a 
simple stack, a frame of arguments, and thou beside me. By 
comparison, the 8086 asse■bler in LISP is 2-1/2 times as large, 
and thou hast to sit somewhere else. 

The Assembler -- 24 







TLC-LISP Documentation Native Code Module 

The Native Code Module 
From the Sublime to the Ridiculous 

This package contains two basic components. 

1. A full-fledged 8086 assembler so that you may write your 
assembly code in to comfort of TLC-LISP and then link 
creations into the calling structure of LISP. This portion 
not require the P-code Module. 

own 
your 
does 

2. The P-code to Code translation expanders coupled with their 
peep-hole optimizers. To utilize this feature you ■ust possess 
the P-code Module. 

The Files 

ASM.LSP 
The 8086 Assembler 

DISASM.LSP 
The 8086 disasse■bler. Compare its size with that of 

DISPC0DE. 

PASM.LSP 
The P-code to Cede transformer. Attaches itself to the back

end of the compiler. 

ASM0PT.LSP 
A simple-minded 8086 code optimizer. Finds many idiocies, 
misses others. No, it's not an expert system. 

The assembled versions of these files exist as *•P 

To install the Native Code Module in your system see the file 

INSTALL.ASM 

on your Native Code Module Disk. 

Introduction -- 1 



TLC-LISP Documentation Native Code Module 

Fro■ P-code To Code 

The P-code compiler does an effective job of boosting the 
execution speed, while decreasing the nodes consumed in Object 
Space. All the P-code, except a descriptor resides in byte space. 
Actually, that's a partial lie. We must make sure that any 
objects that are referenced by the interpreted code, are also 
■aintained by the P-code. For exa■ple. if an interpreted function 
references a quoted list (ABC) then the list will get marked by 
the garbage collector since it is just a portion of the list 
structure. However, a P-code reference will simply be an 
instruction to place a reference to the object (probably) on the 
stack. How could the garbage collector find this? It could 
examine each instruction in each P-code object, searching for a 
markable object--a highly expensive operation, even for LISP. 
Rather, we encode a vector in the header of a P-code object, each 
element of which is an object reference that must be marked. The 
morbidly curious may examine this vector invoking the EXTRA 
selector on a P-code object. So this vector consumes some Object 
Space, but substantially less than the list representation for 
moderate programs. 

Why bring this EXTRA detail up here, rather than in the P-code 
section? You don't have to be morbid to write P-code, but 
■orbidity is a prerequisite for 8086 coding. More generally, the 
levels below P-code will require much more attention to the 
internal details of the specific imple■entation (8086, 68K, ... ). 
So a great deatil of the following material will deal with the 
internals of TLC-LISP. We will not give a course on 8086 
programming, but will assu■e familiarity with that architecture. 
Actually, the TLC-LISP implementation uses only a s■all subset of 
the possible instructions, and you can learn about that portion 
of the 8086, at least, by writing some LISP code, compiling it 
and diassembling the result. It's not pretty, but someone has to 
do it. Now let move on to the details of Code Objects. 

The portion of this Module that deals with compiled code takes 
the machine intependent code and transforms it into more specific 
8086 instructions interspersed with calls to TLC-LISP run-time 
routines. 

As we mentioned in the P-code Module, the major issue to resolve 
when moving from P-code to Code is the transformation of LISP 
objects into 8086 addresses. These details, though important, are 
handled generally by the run-time support. However, if you decide 
to write your own 8086 native-code routines, they must conform to 
the conventions. 

From P-code to Code -- 2 



TLC-LISP Documentation Native Code Module 

So to give a flavor of the transformations, 
instruction 

(CDR) 

translates into the following sequence: 

(POP CX) since TOS has object 

the P-code 

(OBJADR CX) transform object to address 
(GET CX CDR) select the CDR 
(PUSH CX) The value to TOS. 

These instructions expand further into 8086 instructions or 
sequences of such. For example 

(OBJADR CX) becomes 

mov bl cl 
and bx 0003 
shl bx 1 
mov es (bx) 
mov bx ex 
and bl FC 

which certainly must be eye-opening -- more about this later. 

There is a certain amount of local optimization done on push-pop, 
mov-push, and pop-push sequences. For example, the GET-PUSH above 
will become a single 8086 instruction: (PUSH (ES BX 2)). However 
no "life-time" analysis of registers is done; and hand 
optimization may have something to offer here. 

The parameter passing for Code objects is still done through full 
LISP frames as is the case with P-code, but since these frames 
are stored on the 8086 stack, we can utilize certain frame 
conventions within 8086 code. For example, the TLC-LISP 
interpreter builds frames so that as a Code object begins 
execution, SI points at the bottom of the current frame, and thus 

(FGET 0) translates to (PUSH (SS SI 12)) 

with similar instructions for the other FGETs 

Named calls (NCALL ... ) are translated into a sequence of 8086 
instructions. The format is not important here, only the fact 
that compiled and interpreted code can still be freely mixed, 
modified, and replaced in a dynamically changing environment. The 
interpreter insures this by building frames for itself, for P
code, and for Code all of which are compatible with one another. 
The next code objects --of type Asm-- are not as gentile, but are 
potentially faster. 

From P-code to Code -- 3 



TLC-LISP Documentation Native Code Module 

Fro■ Code To As■ 

Asm objects are as close to the bits as anyone should get (in 
fact one can argue that LISP is as close to the bits as any 
rational person should ever get.) The interpreter does not build 
a frame before calling such a function. Rather the parameters are 
passed in the 8086 registers-- CX, DX, and DI--respectively. The 
function is entered with a far call, and exit is expected using a 
far return with the value in CX. If you don't know what a "far 
call" or "far return" is, you should get an 8086 book. 

Though arbitrary 8086 code is supported at the ASM level, we 
advise that most code follow a particular stylized form that we 
call Block asm. The name "Block" comes from our intention to use 
this code style to support Block compilation. In this scheme of 
things we are able to compile away all stack references and 
replace named-calls with direct 8086 call-instructions. 

As an interim stage, the Version 1.51 TLC-LISP86 interpreter has 
been modified to support the necessary internal register 
maintenance. The next few paragraphs outline the conventions of 
Block Asm objects. This way we can move from Code objects to 
these Block objects by a collection of (mechanical) source-to
source transformations. 

Since ASM object have no frame, but have their arguments passed 
in the registers (unless there are more than three of the■.) We 
have two things to accomplish (1) save the registers, and (2) be 
able to return to the caller. 

The arguments are pushed onto the stack (think "8086 stack", not 
"P-code stack"--they may not be the same), after we push BP and 
reset BP to the current value of SP. As a result: 

* The FGETs transform to BP-relative addresses. 

* The RETs transform into restoration of the stack pointer and BP 
followed by a return to the caller. 

The call and return problem is our next issue. 

Within a Block we need to call other As■ code within that Block. 
The 8086 call-instruction is the operation we need, but we must 
reconcile it (a short call) with the far return required to 
return to the interpreter. So: 

* The entry is transformed into a local internal call followed by 
a far return. The local code sets up BP and saves the registers. 

From Code to Asm -- 4 



TLC-LISP Documentation Native Code Module 

* Internal recursive calls (that are named calls) can be replaced 
by direct 8086 calls to the internal routine. This speeds 
up function calls immensely, but of course removes all 
possibilities to break, trace, or backtrack broken code at the 
LISP level. 

This scheme requires that BP be maintained across calls to the P
machine, internal routines, or other code blocks. 

Finally, we can also "open code" many of the p-machine operations 
as direct sequences of 8086 code. This requires a certain amount 
of knowledge about the internal structure of objects, and it 
requires a certain degree of care, but the results can be 
dramatic. For example, the TAK function 

(DE TAK (X Y Z) 
(IF (GEY X) Z 

(TAK (TAK (SUBl X) Y Z) 
(TAK (SUBl Y) Z X) 
(TAK (SUBl Z) X Y)))) 

computes (TAK 18 12 6) in the following times on an 8-Mhz 8086: 

P-code 
Block code 
+ Open SUBl 
+ Open GE 

24.6 Seconds 
9.3 Seconds 
6.2 Seconds 
1.9 Seconds 

We include the final TAK Block code below. 

(defasm TAK() 
(call inttak) 
(retf) 

inttak {push bp) 
(mov bp sp) 
(push ex) 
(push dx) 
(push di) 

(mov ex (bp -4)) 
(mov dx (bp -2)) 
(cmp cl dl) 
(jb iff7) 
(mov ex {bp -6)) 

xit (add sp 6) 
(pop bp) 
(rtn) 

;continued 

From Code to Asm -- 5 

initialization ritual 

set up a simple fra■e 

save the arguments 

end of initialization 

(fget 1) 
(fget 0) 
y-x -- open (ge) 
ju■p if X) y 
(fget 2) 

synch the stack 

(ret) 



TLC-LISP Documentation 

; continued fro■ previous page 

if-f7 (mov ex (bp -2)) 
(dee cl) 
(110v dx (bp -4)) 
(■ov di (bp -6)) 
(call inttak) 
(push ex) 

(110v ex (bp -4)) 
(dee cl) 
(mov dx (bp -6)) 
(mov di (bp -2)) 
(call inttak) 
(push ex) 

(mov ex (bp -6)) 
(dee cl) 
(mov dx (bp -2)) 
(mov di (bp -4)) 
(call inttak) 
(■ov di ex) 
(pop dx) 
(pop ex) 
(call inttak) 
(jump xit) })) 

Native Code Module 

(fget O) 
open (subl) 
(fget 1) 
(fget 2) 
(nc3 tak) 
the result 

(fget 1) 
open (subl) 
(fget 2) 
(fget 0) 
(nc3 tak) 
the result 

(fget 2) 
open (subl) 
(fget 0) 
(fget 1) 
(nc3 tak) 

; the result set up .. 
as last argument to 
inttak 

Of course, the code could still be improved, 

* generally, the open-coded (ge) could be performed before saving 
all the registers. These changes drop the time to 1.1 seconds, 
but require deeper analysis by the compiler . 

... still the 1.9 seconds is a long way from 24 seconds. 

From Code to Asm -- 6 



TLC-LISP Documentation Native Code Module 

Interfacing to the Asse■bler 

TLC-LISP supports three different degrees of assembly code: 

P-Code: This is a LISP pseudo code, emitted by the compiler. As 
such, there is no need for the LISP programmer to deal directly 
with the compiler output. However for completeness we mention 
that the pseudo-machine is a single stack device whose operations 
take their operands from the stack and place their results on the 
top of the stack. 

Code: This level of code is a mix of 8086 native code, macro 
calls that expand to 8086 code, and 8086 calls to LISP internal 
routines to interface between 8086 objects and TLC-LISP objects. 
As with P-code objects, parameter passing is policed by the 
required/optional preamble. 

Asm: This level of code is as close to the raw machine as one 
should ever get. Parameters are not checked, and arguments are 
passed in the hardware registers. When speed is of the essence, 
ASM-objects are in order. 

* As■ objects are passed arguments in CX, DX, and 
functions of O - 3 arguments). 

DI (for 

* The asm object is invoked via a far call thus must do a far 
return. 

* The as• object must preserve DS, SS, SI and must maintain SP. 
Do not invoke any internal lisp functions without the values in 
DS, SS and SI as they were on entrance to the asm routine. 

Three ass■bler drivers are included on the file LISP.SYS: 
DEFPCODE, DEFCODE, and DEFASM. Since arguments are checked for 
CODE and PCODE objects, these drivers expect their code to begin 
with a preamble. ASM object expect their arguments in registers 
as described above. 

The following sections are of interest only to those who wish to 
work with code-like objects below the level of the Assembler. 
Above that level, macros handle the problems. The internal 
descriptions will help those who want to write their own machine 
code, or who wish to use DIS to examine Code or asm objects. 

Interface -- 7 



TLC-LISP Documentation Native Code Module 

A Brief Outline of The De■ ifn of TLC-LISP86 

The following sections can be ignored without peril. They contain 
a discussion that may interest implementors and possibly those 
who plan to write at the LISP assembly-level. 

The basic memory model of TLC-LISP86 is a BIBOP implementation. 
We encode pointers in a 16-bit word accessing a 4-byte quantum. 
Since this means that the bottom two-bits of a address pointer 
are unused, so we use them to select one of four segments that 
represent object space. 

The BiBop Table 

In a BiBop scheme, the object address space is partitioned into 
pages, each of which can contain objects of a single specific 
type. The type of each such page is contained in a separate map 
called the BiBop table. The key to the success of BiBop is the 
speed of the translation process. In the TLC languages we take 
the top byte as the index into the table. Thus: 

The following table is a list of the embedded types 
current version of TLC-LISP86. The relative position 
type'in the table is the numeric value used by the 
function named ASRT. For example, 

ASRT IE 

verifies that the top of stack contains a string object. 

The type Its value 

symbol 0 
list 1 
expr 2 
fexpr 3 
macro 4 
closure 5 
float 6 
integer 7 
class 8 
instance 9 
stream 10 
subr 11 
aload 12 
file 13 
string 14 
env 15 
vector 16 

Internals of TLC-LISP -- 8 

in the 
of the 

P-code 



TLC-LISP Documentation Native Code Module 

package 
code 
pcode 
turtle 

fix 
char 
unbound 

none 
illegal 
asm 

17 
18 
19 
20 

21 
22 
23 

24 
25 
26 

How To Use All This Infor■ation 

Notice that objects as si■ple as integers have an encoded for■, 
and thus are ~ubject to an object-to-address translation before 
they can be ■anipulated by the 8086. Because of this and the 
extensive run-ti■e object ■anage■ent that's necessary to turn a 
traditional processor into a LISP processor, we cannot produce 
pure native-code for any non-trivial operations. Co■patibility 
between the two ■achine architectures is ■aintained by a set of 
macro instructions that expand into a sequence of 8086 native 
code and calls on TLC-LISP pri■itives. For exa■ple: 

(objadr <reg>) 

must be invoked to transfor■ a TLC-LISP object into a physical 
8086 address. The actual code that defines objadr is: 

mov bl cl j (objadr ex) 
and bx 0003 
shl bx 1 
■ov es (bx) 
mov bx ex 
and bl FC 

This code selects the bottom two bits of an object reference and 
maps them through a table of seg■ents. Then uses the extra 
segment to do the actual selection. So, for example, 

(get ex cdr) becomes (■ov ex (es bx 2)) 

Internals of TLC-LISP -- 9 



TLC-LISP Documentation Native Code Module 

In other cases, we need to ■eke explicit reference to TLC-LISP 
internals. Thus: 

(assert ex, string) 

■ov bx type-table 
■oval ch 
xlat 
c■p al tOE 
jz labl 
callf cs:likecx 

labl: 

Here we need to know: 

OE= string type 

* the location of the BIBOP table (type-table) 
* the numeric value of string-types (OE) 
* the location of an error routine to announce type-errors 

(this location has two co■ponents: a segment, and an offset) 

The correspondence between types and numbers is static and was 
given in a previous section. The locations of routines will 
depend of specific versions and ■achines. That information is 
accessible through a TLC-LISP function na■ed INTERNALS. 

The INTERNALS table is located by invoking: 

(INTERNALS} SUBR 
Returns a list of offsets and segment values of interest to 

asse■bly language progra■■ers. The values returned are: 

BIND -- a far routine that shallow binds the symbol in CX to 
the value in DX. 

TYPE-TABLE the offset in DS of the BIBOP type table. Useful 
for open coding type checks in asse■bly language as follows: 

mov bx,type-table 
■ov al,ch 
xlat ; al now has type of object in ex 

NAME-STACK the offset in DS of the name stack pointer 
(points into the stack segment}. Useful for compiling DO and LET. 

CODE-SEGMENT -- the value of the lisp interpreters code segment 

OBJTOINT far label of a routine that converts a number 
object in CX into a 32 bit integer in DX:AX. 

Internals of TLC-LISP -- 10 



TLC-LISP Docu■entation Native Code Module 

APFINI -- far label to a routine that re■oves the current frame 
and returns to the frame's erector. Useful for code objects only, 
do not use for as■ objects. 

NAMED-CALL -- far label for application of functions by na■e. 
Arity is in AX, sy■bol is in CX. Arguments are on the stack and 
are re■oved by this routine. Value is returned in CX. 

SCALL 0 
SCALL 1 
SCALL 2 
SCALL 3 far routines for invocation of built-in functions 

(subrs). BX has the offset of the subr. CX, DX, or DI has the 
LAST argu■ent to the subr for aritys of 1, 2, and 3 
respectively. The other arguments are on the stack, first 
argu■ent pushed first. Subr values are returned in CX. The 
argu■ents are re■oved fro■ the stack by this routine. 

DISPATCH 
argu■ents 

registers. 
above the 
lsubrs do 

far routine for invoking internal functions 
in registers. Code offset in BX, argu■ents in 
Lsubrs are invoked this way by setting BP to 
first argument and AX to the arity. Re■e■ber 

not re■ove their arguments. 

witrh 
other 
point 
that 

UNBIND -- far routine that unbinds the name stack to the value 
in CX. The na■e stack pointer is not changed by this routine and 
■ust usually be set by the caller to the argument which is 
returned in ex. 

LIKECX -- far routine that generates ARG-WRONG-TYPE error with 
the object in ex. 

INTTOOBJ -- far routine that converts a 32 bit integer in 
DX:AX into an object in ex. 

SELFBIND far label of a routine that saves the current value 
of the sy■bol in CX in the name stack without changing the 
sy■bols value. Useful for co■piling DO and LET. 

MEM -- far label to a routine that does a fast version of MEMQ. 
Used by the compiler 

Routines that are far are invoked via far calls using the 
offset and the code-seg■ent value. Subr offsets are found via 
(exa■ine-word (objadr subr)). 

To ■ake these ideas ■ore concrete and i■■ediately useful, we give 
a sequence of exa■ples that utilize a specific setting of 
(INTERNALS) and a specific loading of routines in memory on one 
specific afternoon. 

Internals of TLC-LISP -- 11 



TLC-LISP Documentation 

Here was the result of (INTERNALS): 

(t[16]26F9 
t[16]540 
#[16)694 
#[16]B55 
#[16)2705 
#[16]1F44 
t[16]270D 
t[l6]2786 
t[16]278B 
#[16)2791 
#[16]279E 
t[l6]2783 
#[16]26FD 
t[16]615F 
t[l6]2709 
t[l6]26F5 
t[16]26EO 
t[16]139F 
t[16]155B 
#[ 16) FFFF 
t[16]FFFF 
#[16]FFFF 
t[16]FFFF} 

bind 
type-table 
na■e-stack 
code-seg■ent 
objtoint 
apfini 
na■ed-call 

scall 0 
scall 1 
■call 2 
■ call 3 
dispatch 
unbind 
likecx 
inttoobj 
aelfbind 
■em 

alloc 
zballoc 

Native Code Module 

A Code example: Xrplacb, to replace the car- and cdr-portiona 
of a pair with new objects. 

A binary operation with argu■ents on stack, and result to 
replace top of stack. Return ■uat clean up ■achine state 
through the apfini entry in the.internal table. 

(defcode XRPLACB (11 12) 
2 0 0 0 
(fget O} 
(fget 1) 
(pop ex} 
(pop dx} 
(objadr ex} 
(get ex cdr) 
(get di car} 
(objadr dx} 
(put cdr ex) 
(put car di) 
(push dx} 
(ret) 

) ) ) 

LI 
12 

12 
Ll 
12 

; Ll 
; rplacd 
; rplaca 

; return Ll 

Internals of TLC-LISP -- 12 



TLC-LISP Documentation Native Code Module 

; The result of (dis xrplacb) was: 

C24F:E2Al 02 00 00 00 
C24F:E2A5 push (ss si 0012) (fget 0) 
C24F:E2AA mov ex (ss si 0010) (fget 1) (pop ex) 
C24F:E2AF pop dx {pop dx) 
C24F:E2BO mov bl cl (objadr ex) 
C24F:E2B2 and bx 0003 expansion 
C24F:E2B6 shl bx 1 ... continues 
C24F:E2B8 mov es (bx 
C24F:E2BA mov bx ex 
C24F:E2BC and bl FC 
C24F:E2BF ■ov ex (es bx 0002) (get ex cdr) 
C24F:E2C4 IIOV di (es bx ) (get di car) 
C24F:E2C8 IIOV bl dl (objadr dx) 
C24F:E2CA and bx 0003 
C24F:E2CE shl bx 1 
C24F:E2DO IIOV es (bx 
C24F:E2D2 IIOV bx dx 
C24F:E2D4 and bl FC 
C24F:E2D7 mov (es bx 0002) ex ; (put ex cdr) 
C24F:E2DC mov (es bx ) di {put di car) 
C24F:E2EO mov ex dx (push dx) (ret) 
C24F:E2E2 jmpf OB55: 1F44 = jmpf cs:apfini 

An ASM example -- A fast xrplacb (without type checking) 
arguments in CX and DX; result to CX. 

(defasm XRPLACB 
(objadr ex) 
(get ex cdr) 
(get di car) 
(objadr dx) 
(put cdr ex) 
(put car di) 
(retf) 

(11 12) 
; 12 

11 
rplacd 
rplaca 

Internals of TLC-LISP -- 13 









TLC-LISP Documentation Editor Customization 

Bow To Install The Editor In MSDOS and CPM/86 Syste■s 

***Note*** This section does not apply to PC-Dos co■patible 
versions of TLC-LISP. 

The TLC-LISP editor is composed of three pieces: 

EDIT.P -- the P-code file that defines the higher-level 
functionality of the editor. This editor is an extension of the 
basic editing facilities of WordStar, including search, replace, 
and block operations, but not including the text-justification 
and formatting co■■ands. The basic repertoire of the editor has 
been extended, however, to include some LISP-specific operations 
-- parenthesis balancing, incre■ental evaluation, and incre■ental 
compilation. See pages 126-127 of the TLC-LISP Reference Manual 
for a command summary. The source for the EDITOR is available 
from TLC as part of the System Module. 

TERM.P the P-code file that defines the basic screen 
primitives. This file is automatically loaded by EDIT.P. This 
file contains all the terminal dependent references made by the 
editor. The file includes basic drivers for a myriad of terminal 
types -- ANSI versus binary, smart versus stupid, insipid, vapid, 
flatueut, and even urbane ter■inals; all are handled. The source 
for this mystical file is included in the Kernel Module as 
TERM.LSP. 

*-CUS and CUSTOM.LSP -- these files select specific drivers for 
the user's specific terminal type from TERM.LSP. The files named 
*-CUS are exa■ples of co■pleted customizations. The specific CUS 
file that is used by TERM.Pis copied into CUSTOM.LSP. 

The next section explains how to build a *-CUS file or, if an 
appropriate CUS file exists, how to get CUSTOM.LSP installed. 

Using The Ter■inal Custo■izer 

Before the Editor can be used, you ■ust install a driver for your 
specific terminal. We have included a few such drivers on the 
system disk. To examine your options from the comfort of LISP, 
type: 

LISP (followed by a carriage return). 

and when you get the prompt 

>>> 

type 

(stat "*.cus") 

Editor Installation -- 1 

followed by carriage-return. 



TLC-LISP Documentation Editor Customization 

This operation will give you an indication of what's currently 
available, since the file na■es are descriptive of the terminal 
type. To install one of the CUS fles, or to make your own, enter 
LISP and then load the customizer by typing: 

(LOAD "CUSTOMIZE") ; again, supply a return. 

Be sure that both leading and trailing double-quotes (") are 
present. If the file does not see■ to be loading, then (1) make 
sure you typed the carriage return, (2) or if you left off the 
trailing parenthesis, type it followed by return. Or (3) if you 
missed the trailing double-quote("), hold down the control key, 
strike the g-key, (this is written ~g or ctl-g) and follow this 
incantation with a return. You'll receive an error message 
("user abort"), and then type (LOAD "CUSTOMIZE") again. 

Once the customizer is loaded, you will be asked a series of 
questions. Below is a sa■ple interaction to customize the editor 
for a Fujitsu FM-16. Text that follows a semi-colon (;) is 
commentary. User responses are underlined. Other text is printed 
by the syste■. The first time you'll see from the customizer is: 

Below is a list of pre-defined terminal types 
1 ADM16.CUS 
2 ANSI.CUS 
3 FOOBAR.CUS 
4 TUTI.CUS 
5 TVI95O.CUS 
Type the number associated with your terminal, 
or type O to define a new type Q ; we want to define a new type. 

Please supply a terminal name for this new type 
fyj!!!Y 

If one of the existing types was appropriate, then we would 
have typed the necessary numeric response and the corresponding 
*.CUS file would have have been copied into CUSTOM,LSP and we'd 
be done. But zero opens up a series of questions: 

Number of colu■ns on your screen? ~Q 

Nu■ber of rows on your screen? 24 

In the next line we'll see an "escape-sequence" -- a sequence 
that begins with the escape character and is followed by a 
sequence of bytes. Escape sequences are a common way to 
indicate terminal commands. When we type the escape-key in the 
customizer it will echo as the five-character string *ESC*. 
Thus: 

Erase to end-of-line? (return if not) !~~2!! 

Editor Installation -- 2 



TLC-LISP Documentation Editor Customization 

This will make the string escape-followed-by-uppercase-t. 

Next we ask about highlighting. Highlighting is used for block 
■ode commands, Some terminals can't highlight, some reverse the 
background, and some change the characters' color. 

Start of Highlighting? (return if not) !B~~!g~ 

Since we have specified that highlighting can be turned on, 
we must also specify how to turn it off. 

End of Highlighting? (must be supplied) !B~~!gg 

The next entry illustrates a new feature of the customizer: 
the ability to over-ride the implied character-oriented 
escape sequence. It is frequently convenient to ■ix character 
and numeric quantities in the same terminal command. For 
example, we assume that *ESC*O means the escape character (27) 
followed by the character O (48). To get escape followed by 
the number O, we preface O with a percent sign, as in *ESC*%0. 
Numbers that follow the percent are assumed to be decimal. 

In this first case we need a simple numerical value. Thus: 

Clear the Screen? (must be supplied) ~g§ 

; The sequences for cursor-on/off are more complex: 

Turn the cursor off? (return if not) *ESC*,%32%0 

So the period is a character and the 32 and Oare numeric. 
We could have represented the 32 by a character space, but 
the null character (0) is harder to come by. 

Since the cursor can be turned off, we expect to be given a 
sequence that will turn it on: 

Turn the cursor on? (must be supplied) *ESC,%0%7 

The Fujitsu terminal emulator does not have character-insert 
or character-delete commands, so we respond with carriage
return (written RET), and the editor will simulate these 
operations using software in TERM.P. The morbidly curious 
may see the code in TERM.LSP. 

Insert character ■ode? if none, return RBI 

Delete character ■ode? if none, return R~I 

Editor Installation -- 3 



TLC-LISP Documentation Editor Customization 

; Insertion and deletion of lines is supported: 

Insert line mode? if none, return !i§Q!i 

Delete line mode? if none, return !i§2!~ 

The major command the Customizer must install is the one to 
position the cursor at an arbitrary location on the screen. 
There are two basic rituals for such positioning: 

Binary -- numerical values are given for cursor positions 
usually x-y coordinates offset by some constant. 
For example a frequent offset is 32, so 20 would 
be represented as 52. 

ASCII -- the cursor coordinates are given in ASCII. Thus 
20 would turn into the string "20". ANSI terminals 
use this style. 

The customizer supports both forms. 

Regardless of the for■, terminals expect cursor positioning 
to be prefaced with a command. Thus: 

What initiates a cursor positioning command? !i§2!= 

Immediately following the preface is the row/column information. 
We need to know which comes first. Row? Column? 

Which comes first, row or column? R for row, C for column r 

Now comes the major decision-- ascii or binary row/column 
data. 

Is the positioning in ascii or binary? A for ascii, B for binary~ 

Since we have assumed a binary representation for row/column 
data, we are expected to give an offset to be added to each 
position. Thirty-two is a common value, and that's what this 
terminal expects. 

Offset to add to line? ~g 

Offset to add to column? ~g 

Customization complete 

That's all there is to it. A file named FUJITSU.COS is formed and 
a copy is made and named CUSTOM.LSP. The latter file is used by 
the editor. The former becomes part of the terminal library. An 
examination of CUSTOM.LSP (with TERM.LSP in hand) will show the 
curious how the customization process works. 

Editor Installation -- 4 



TLC-LISP Documentation Editor Customization 

The dialog for an ASCII ter■inal is only slightly ■ore co■plex. 
These terminals expect a separator between the row and colu■n 
information and a terminator to end the cursor com■and. The 
Ascii-branch of the customizer prompts for this infor■ation and 
acts accordingly. 

The current customizer seems to take care of ■ost terminal 
anomalies. Special cases ■ay occur and can be addressed by 
overlaying portions of TERM.P with new code. For exa■ple, ■ore 
complex screen initialization ■ay be required to enter the 
editor, and correspondingly restoration ■ay be needed on leaving 
the editor. Those drivers are in TERM.LSP and can be ■odified and 
used in interpreted form without degrading the perfor■ance of the 
editor. If these ■odifications are required, be sure to install 
the■ in the EDIT: package. 

A final remark: There is a two-fold purpose for supplying the 
customizer in source for■. First, it illustrates so■e programming 
techniques unique to LISP. Specifically, the elements of the 
dialog are carried in several tables that consist of a ■essage to 
be printed and a function to be applied to the response. This 
■akes it easy to build a flexible response with minimal code. No, 
this is not the rudiments of an expert system! 

Second, it ■ ight be convenient to ■odify the customizer for your 
particular ter■inal. If so, we'd be interested in bearing about 
the enhancements you've made. 

Editor Installation -- 5 



TLC-LISP Documentation Editor Customization 

On Keyboard Custo■ization 

Another possibility for variation is the interpretation of 
keystrokes. Though this portion of the editor has not been 
decoupled from the terminal specifics as completely as the 
terminal emulator, we can still redefine and/or enhance ■uch of 
the activity. (More detailed modification can be accomplished 
using the editor source in the SYSTEM Module). This current 
section outlines the basic keystroke-to-action ■echanism of the 
editor and duplicates the code of the editor so that 
modifications may be done. Such modification is a semi-advanced 
exercise, not reco■■ended for the beginner. 

The interpretation of the keystrokes is accomplished though a 128 
element vector na■ed c■d that resides in the edit package. 
Behavior of the editor can be modified by changing that table. 

The following is the current configuration of cmd: 

CMD -- the function to store an action into the appropriate 
slot in the keyboard vector. 

(de CMD (chr fen) 
(store cmd-vector (addl (ascii chr)) fen) nil ) ) ) 

CMD-VECTOR -- vector of co■■ands corresponding to characters typed 

Build the initial vector and initialize each entry with an 
error function. (Many of these entries will be over-written) 

(setq cad-vector (newvec 128 illegal-cmd)) 

; Now set the ordinary keys to be inserted into the text stream. 
; 
(for (i {ascii *space*) (ascii \~)) 

(cad (ascii i) insert-cad) ) printable characters get inserted 

carriage return is nothing special either: 
; 
(cmd *er* insert-cad) 

; Treat tab (ctl-i) specially, please: 

' (cmd "i tab-cmd) 

Keyboard Cu.atomization -- 6 



TLC-LISP Documentation Editor Customization 

; Now define the si■ple Wordstar-like com■ands: 
; 
(cmd "x down-c■d) 
(cmd "e up-c11d) 
(c■d "d right-cad) 
(c■d "s left-c■d) 
(c■d "r prev-page-c11d) 
(c■d "c next-page-c■d) 
(cad "z scroll-up-cad) 
(c■d "w scroll-down-cad) 
(cad "f word-right-c11d) 
(c■d A 1 find-replace-again-cmd) 
(c■d "a word-left-cad) 
(c■d "y delete-line-cad) 
(c■d "t delete-word-cad) 
(c■d *backspace* backapace-c■d) 
(cad "g delete-cad) 
(c■d *rub* backapace-c■d) 

The next three coa■ands spoil the clean mapping by expecting 
a second key to chose between options. Thoe options are not 
spelled out (yet). 

; 
(c■d "k k-cad) 
(c■d "q q-c■d) 
(c■d "j j-cad) 

(cad *esc* esc-cmd) To leave the editor with the escape key. 

One extension of this mechanism that we've seen ia the desire to 
extend the editor to handle more that 128 possible keys. It's 
easy: 

0. Enter the edit: package: (setq package edit:) 

1. Define a new vector of the appropriate size and copy c■d into 
it: 

(setq newc■d (newvector <size> 0)) 
(for (i 1 128) (store newc■d i (c11d i))) 

2. Now augment the new slots with the the desired functions. For 
example if you what the new positions to be normal keys then: 

(for (i 128 <size>) (store newc■d i insert-cmd)) 

3. Now install the new command vector: (setq cmd newcmd) 

4. Reae■ber to exit from the edit: package: (setq package sys:) 

Keyboard Customization -- 7 



TLC-LISP Documentation Editor Customization 

If you install this code on LISP.SYS as part of the initial 
editor load, then the editor will know about characters above 128. 

If you wish to (and are able to) type in characters whose ASCII 
codes are above 128,. then another modification needs to be made. 
Specifically, each character is assigned a "character type" using 
the current (vector) value of READ-TABLE. Since TLC's vectors are 
one-based, the type for the character whose ASCII code is I will 
be found in (READ-TABLE (ADDl i)). READ-TABLE's value is a 
vector of 256 elements whose top 128 elements are initially the 
same as the corresponding elements below 128. So if you wish to 
read characters in this portion of the table, set their type 
values accordingly. See pp.108-109 of the Reference Manual. 

Keyboard Customization -- 8 







TLC 
The LISP Company 

End User Program License Agreement 
June, 1984 

CAREFULLY RBAD THI FOLLOWING LBGAL AGUBMBNT REGARDING YOUR USB 
or TD BNCLOSBD TLC PRODUCT. Ir YOU DON'T AGRBI WITH WHAT IT 
SAYS, PROMPTLY RBTURN TBB UNUSBD SOFTWARI AND DOCUMENTATION AND 
YOUR NORBY WILL BB RBFUNDBD. 

You are required to return the Ind Uaer Agree■ent Acknowledge■ent 
For■ to receive cuato■er aupport and product update•. 

The LISP Co■pany (TLC) develops computer programs and 
related materials (its Products). 

Ind User (the consumer) desires to obtain the benefits of 
TLC's Products and by opening this package agrees to abide by the 
terms of this License. Therefore, subject to the following terms 
and conditions, TLC grants to End User a non-transferable licens~ 
to use its Products only as indicated below. 

Article 1: General Copying Reatrictiona. End User shall only 
make copies of TLC Products when authorized to do so by TLC. 
Unauthorized copying of TLC Products (including Products that 
have been modified~ merged, or included with other software) and 
the acquisition and use of unauthorized copies of TLC Products 
may be both criminal and civil offenses for which End User may be 
liable for fines, damages, and attorney's fees. TLC has the right 
to terminate this license and to take legal action if the terms 
of this license are violated. TLC has the right to trace serial 
numbers at any time and in any reasonable manner. 

Article 2: Archival copies. End User may make archival 
backup copies of TLC diskettes, but only if such copies are for 
End User's personal use within the scope of this license. Any 
copying of documentation is strictly prohibited. 

Article 3: Proprietary rights of TLC. The TLC logo, product 
names, software, manuals, documentation, and other support 
materials are either patented, copyrighted, trademarked, or owned 
by TLC. End User agrees not to remove any product identification 
or notices of such proprietary restrictions from TLC Products. 
TLC retains exclusive ownership of the TLC software and of TLC 
printed materials. 

Article 4: Use with multiple computers or terminals. This 
license is limited to use of the TLC Products included in this 
package on a single computer and may not be transferred or 
assigned. In the event End User intends to use a TLC Product on 
more than one computer, or if End User's computer is or becomes 
capable of allowing multiple terminals to access common disk 
memory, End User shall notify TLC of the proposed configuration 
and apply for a multiple use license. All multiple use license 
fees shall be in accordance with TLC's fee schedule then in 
effect and shall be paid directly to TLC. 

Article 5: Custo■er service. End Users may obtain customer 
service from TLC (at the address below) only if a properly signed 
End User Agreement Acknowledgement Form is on file at TLC's main 
office. 

Article 6: Update Policy. TLC may from time to time revise 
or update its Products. Revisions will be provided to End Users 
only if a properly signed End User Agreement Acknowledgement Form 

1 



is on file at TLC's main office. TLC is not obligated to make any 
Product revisions, or to supply any such revisions to End User. 

Article 7: Termination of End User license. If any of the 
terms and conditions of this Agreement are broken by End User, in 
addition to all other legal rights and remedies, TLC may 
terminate this license. Upon termination, End User shall return 
to TLC all TLC Products and copies thereof, whether modified, 
merged, or included with other software, and shall certify in 
writing to TLC that End User has not retained any TLC Products or 
copies thereof. The provisions of this license which protect the 
proprietary rights of TLC shall continue in force after 
termination. 

Article 8: Governing law. When entered into in the United 
States, this Agreement shall be interpreted in accordance with 
the laws of the State of California. Otherwise, this Agreement 
will be interpreted in accordance with the laws of the United 
States or such other law as may be required to protect the 
legitimate interests of TLC. 

Article 9: End User Agreement Acknowledgement. End User may 
obtain updates, customer service, and TLC newsletters only if End 
User signs and mails the TLC End User Agreement Acknowledgement 
For■. 

DISCLAIMER or SOFTWARE WARRANTIES AND LIABILITIES 

1. TLC SOFTWARE IS DISTRIBUTED AND LICENSED "AS IS." All 
warranties, either express or implied, are disclaimed as to the 
software and its quality, performance, or fitness for any 
particular purpose. You, the consumer bear the entire risk 
relating to the quality and performance of the software. In no 
event will TLC be liable for direct, indirect, incidental, or 
consequential damages resulting from any defect in the software. 
If the software proves to have defects, you, and not TLC, assume 
the cost of any necessary servicing or repairs. 

2. 30-DAY LIMITED WARRANTY ON DISKETTES. TLC warrrants the 
enclosed diskette(s) to be free of defects in materials and 
workmanship under normal use for 30 days after purchase. During 
the 30-day period, you may return a defective diskette to TLC, at 
the address given below, and it will be replaced without charge 
unless the diskette is damaged by accident or misuse. Replacement 
of a diskette is your sole remedy in the event of a defect. This 
warranty gives you specific legal rights, and you may also have 
other rights which vary from state to state. 

3. Some states do not allow the exclusion or limitation of 
implied warranties or liability for incidental or consequential 
damages, so the above limitation or exclusion may not apply to 
you. 

The LISP Company, P. O. Box 487, Redwood Estates, CA 95044 
(408) 354-3668 



IND USBR AGRBBMBNT ACXNOWLBDGBMBNT FORM 

Please complete and return this form. Keep the End User Agreement 
in your files. 

The undersigned 
acknowledges that 
terms of the End 
which are hereby 
this reference. 

End User of TLC product materials hereby 
he or she has read and fully understands the 
User Agreement, the terms and conditions of 
incorporated in this form and acknowledged by 

The undersigned hereby agrees that by signing this document he or 
she becomes a party to said End User Agreement and agrees to be 
bound by all terms, conditions, and obligations contained 
therein. 

End User's Signature-------------------------------------------

Please print legibly: 

Product Name 

Date of Purchase 

End User's Name 

Address 

City 

Country 

Version !.!.§! Serial# 

State Zip Code ____ _ 

End User's Company's Name (if applicable) ______________________ _ 

Address 

City 

Country 

End User's Computer Make and Model 

Serial# 

State Zip Code ____ _ 



(Tape or staple here) 

The LISP Company 
POB 487 
Redwood Estates CA 

(fold here) 

+-------+ 

+-------+ 

95044 

The TLC User's Group has been formed to encourage communication 
and cooperation between users of TLC-LISP and TLC-Logo. We 
produce a quarterly newsletter containing technical information 
as well as topical (if not irreverent) comments on the fields of 
AI, expert systems, language design, education, and crop 
rotation. 

Yes, I wish to participate in the TLC User's Group. Please 
bill me for $25.00 for the first four issues. 


	Table of Contents
	Preface
	Part I: An Introduction to LISP-Like Ideas
	Introduction to TLC-LISP
	Data Objects
	Names, Values, Objects, and Aliases
	Comparison of Lists and Dotted Pairs
	Graphical Languages
	Programs as Data
	Use, Mention, Object, and Value
	First Class Objects
	More Data Objects
	Updaters and Mutators
	Explicit Control
	Functions
	Environments
	Closures
	Property Lists
	Classes
	Catch and Throw
	Evaluation
	How LISP Works
	LISP as a Systems Language
	Bibliography

	Part II: System Interaction
	Getting Started
	Examples
	The Editor
	Untitled
	Debugging
	Tutorial
	Large Examples
	Command Line Options

	Part III: The TLC-LISP Reference Manual
	Conventions
	Object Types
	Defining Functions
	Evaluation
	Functions to Manipulate Functions
	Flow of Control
	Recognizers and Predicates
	Arithmetic
	Boolean
	Lists and Dotted Pairs
	Strings and Characters
	Vectors
	Environments and State Modifiers
	Property Lists
	Syabols and Packages
	The Class System
	Errors and Debugging
	Input and Output
	Operating System Specific Functions
	Autoloading Functions and Values
	Miscellaneous Utility Functions
	Functions Defined in the File SYS.LSP
	Advanced Functions
	The Editor
	Turtle Graphics
	IBM Personal Computer Functions

	Function Index
	Appendix I: The Pseudo Code Module
	Appendix II: The Native Code Module
	Appendix III: The Editor Customization Ritual
	End User License Agreement



