
LEARN LISP
TUTORIAL GUIDE

SUPPORTING THE UO-LISP PROGRAMMING ENVIRONMENT

COPYRIGHT 1984
All Rights Reserved

NORTHWEST COMPUTER ALGORITHMS
P.O. Box 90995

Long Beach, CA-90809
U.S.A

IMPORTANT NOTE
IMPORTANT NOTE
IMPORTANT NOTE
IMPORTANT NOTE

The tutorial guide included in this package was written for the
CP/M based UO-LISP V2. You will find that it refers to a manual
you did not receive. It will also refer to functions not included
in your system.

The CP/M based version of the tutorial guide is now included with
the TRSDOS based version of UO-LISP Vl. WHY INCLUDE IT? We have
found that a high percentage of those purchasing UO-LISP Vl have
little or no LISP experience. You will find that about 90% of the
tutorial guide is useful in learning LISP. We hope to retrofit
the tutorial guide to TRSDOS some time in the future.

)

CONTENTS

What is LISP?

How to Use this Book

1 The Lisp Interpreter
1.1 What is an interpreted language?
1.2 A UO-LISP Session

2 S-expressions: The Syntax of Lisp
2.1 Atoms are S-Expressions
2.2 Lists are S-expressions
2.3 S-expressions are Both Program and Data in Lisp

3 The Lisp Evaluator: EVAL
3.1 Evaluating Identifiers
3.2 Evaluating Numbers and Strings
3.3 Evaluating Simple Lists
3.4 T and NIL
3.5 Summary of the Rules of Lisp Evaluation
3.6 Evaluating Complex Lists
3.7 Picturing Lisp Evaluation
3.8 EVAL Evaluates S-expressions

4 List Manipulation Functions
4.1 Quoting a List
4.1.1 Anything can be Quoted
4.1.2 The Use of QUOTE to Manipulate Lists
4.2 CONS Constructs Lists
4.3 Accessing Parts of Lists
4.4 Testing Properties of Lists
4. 4 .1 Testing Lists and Atom~. for Equality
4.4.2 Equality of S-expressions
4.5 Primitive List Operations
4.6 Asking for Help

5 NAMING AND DEFINITION
5.1 Naming Data Structures
5.2 Naming Procedures and Functions
5.2.1 Formal Parameters and Global Variables
5.2.2 Modularity and Function Definitions
5.2.3 On the Cse of Global Variables
5.2.4 Good Programming Style in Lisp
5.3 Saving Functions

6 Flow of Control
6.1 Conditional Flow of Control
6 . 1. 1 Al.~D and OR

2

3

4
4
4

8
8
10
11

13
13
14
14
15
17
17.
18
19

20
20
21
21
22
24
25
26
27
28
28

31
31
33
36
36
38
39
39

41
42
42

6.1.2 COND
6.1.3 COND, AND and OR are Special Forms
6.2 Iterative Flow of Control
6.2.1 PROG
6.2.2 RETURN
6.2.3 GO and Labels
6.2.4 An Example Using PROG
6.3 Recursive Flow of Control in Lisp
6.4 Why Use Recursion?

7 Composite Lisp Functions
7.1 The Length of Lists
7.2 List Membership
7.3 Concatenating Two Lists into One
7.4 Other List Manipulation Functions

8 The Structure Editor

9 Property Lists

10 Input and Output
10.1 Input
10.2 Output

11 An Extended Example
11. 1 An "Expert System" for Tic-tac-toe
11.2 Developing the "Expert" Rules for TTT
11.3 Interpretation or Use of the Rules
11.4 Implementing the Rules and the Rule Interpreter
11.5 Choosing Data Representations
11.6 Functions for the if-parts of TTT rules
11.7 The Importance of Abstraction Barriers
11.8 Some Simple Control Functions
11.9 Playing with the TTT Expert
11.10 Surrmary of Lessons

12 Where to Go Now

Index

43
46
46
47
48
49
50
52
54

55
55
56
58
59

60

66

68
68
69

71
71
72
73
73
77
78
80
81
84 _,I

85

86

88

WHAT IS LISP?

Lisp is the language of Artificial Intelligence (AI). The research
community has written intelligent Lisp programs for understanding
English (and other human languages), programs for solving complex
mathematical problems both symbolically and numerically, and programs
for controlling robots. Because of its wide use in constructing
"intelligent systems", Lisp is becoming an increasingly popular
language. In the next few years, knowledge of Lisp will become essential
to those wishing to be a part of this exciting field and to those
wanting to understand and profit by the uses of the systems implemented
in it.

Although Lisp is just now becoming well known, it is actually one of the
older programming languages; much older than BASIC, for example. It was
invented by John McCart.~y in the late 1950's. While most languages of
that time (and even now) were oriented towards numerical computation,
Lisp was designed to manipulate symbols and structures of symbols. It is
a powerful tool for solving problems that cannot be easily handled by
number-oriented languages.

A great many important problems are symbolic in nature. For example, how
do you develop a plan to run some errands? Probably, you develop the
plan by thinking in English, not in numbers. The key point is that
humans think symbolically, so to construct programs that think as
intelligently as humans, it's best to .use languages that permit symbolic
computation. That is why Lisp is the main language used by AI
researchers to develop intelligent software and even to understand the
way that humans think.

A short list of many of the problems being solved by the Lisp
programming community includes many (some whimsical) that are not even
contemplated by BASIC, C, FORTRAN, and PASCAL programmers:

. Understanding natural language

. Understanding legal documents and interpreting court decisions

. Diagnosing disease and recommending treatment

. Manipulating algebraic equations

. Writing other programs

. Writing fiction

. Developing plans of action based on incomplete and possibly
erroneous information (robots)

In the following sections we will slowly introduce the basic concepts of
Lisp that will allow you to become an effective programmer and to begin
to write your own AI software.

CHAPTER 1
THE LISP INTERPRETER

The first thing you need to know about Lisp is that it is an interpreted
language that evaluates S-expressions. To understand what that means you
need to understand:

What an interpreted language is
What an S-expression is

. What evaluation is

To begin our Lisp tutorial, we will examine each of these topics.

1.1 What is an interpreted. language?

An interpreted language is one that you can rapidly interact with. You
issue commands to the language (system), and receive immediate
responses. Most compiled languages are not at all interactive. For
example, if you are a FORTRAN or PASCAL programmer, you are used to
first creating your program with an editor, compiling it, then loading
and running it, and finally receiving your output. You are at least a
couple of steps removed from the language; it is not interactive.

Because it is interpreted, Lisp allows you to construct and debug your
programs rapidly and effectively. BASIC is a familiar example of such a
language. Lisp is more powerful than BASIC because, in addition to the
arithmetic operations provided by BASIC, it also has many primitive
symbol and strorage management operations that BASIC does not.

1.2 A UO-LISP Session

To start the UO-LISP interpreter you must first place the Lisp Learner
floppy disk into the computer and select the disk drive. For example in
a two drive system, the standard CP/M system disk is placed in drive A
and the Lisp Learner Disk is placed in drive B.

Note In the rest of this book, computer output is in bold type
and your input is in normal type. Comments (you need not enter
these) are prefixed with a percent sign and run to the end of
the line.

Once you have set up the disks as above, the following sequence will
initialize the UO-LISP interpreter:

HOW TO USE THIS BOOK

This tutorial explains how to program in the language Lisp. The
micro-computer owner and user will find operating instructions for the
UO-LISP system, useful Lisp programming tips and techniques, and a basic
knowledge of what the AI revolution is all about. However, this is not a
text book. There is no required homework, no complicated busy work, no
deadlines. You must only be willing to rethink some of your notions of
what computers are used for and how they are programmed.

Lisp is a unique programming language, probably very different from any
other language you have ever used. A Lisp learner -- even one who has
had some experience with other languages -- will need some help to learn
how to use Lisp effectively, and how to exploit the power of the
language. This is the purpose of the present tutorial.

No programming language can be learned by just reading about it. To
really understand any language, you have to use it. The tutorial
contains many examples of interactions with UO-LISP, and we encourage
you to follo~ these actions by getting into UO-LISP, typing in what you
see in the tutorial, and observing how UO-LISP responds. More generally
we encourage you to try out your ideas about Lisp programming by using
UO-LISP. If you find yourself thinking "I wonder if ... ", don't just
think about it! Try it out and find-the answer.

The tutorial is not a manual. It does not describe all the functions in
the UO-LISP language; it describes the concepts of Lisp. As we discuss
these concepts, however, we will note the sections of your UO-LISP
Learner's Manual which document the associated Lisp functions. You
should consult the manual as you use the tutorial.

--.__,I

5

+---+
I

A> B:
B> UOLISP

Note, you don't give it a program to run and leave it alone to execute.
The idea is that by calling it up, you are going to engage in a dialogue
with Lisp. If you wish, as part of this dialogue, you can tell Lisp to
load a file; but you don't have to cegin by doing this.

UO-LISP indicates it's ready to start the conversation by displaying its
logo and prompt:

+---+
u u 00 L III ssss PPP
0 0 0 0 L I s p p
0 0 0 0 L I ss PPP
0 u 0 0 L I s p

OU 00 LLLL III ssss p

Copyright 1984 by Northwest Computer Algorithms.

1:

+---+

Now you should imagine that Lisp is listening to you, waiting for you to
begin the dialogue. To talk to Lisp, or any intelligent being, for that
matter, you need to say things it will understand. Lisp understands
things called S-exPressions, so that's what you have to type. For
example, you might say to Lisp:

+---+
1: (PLUS 3 5)

+---+

For now, its not important to understand the details of this
S-expression. The important point to remember is that once you've typed
such an expression, then a carriage return (hereafter "<CR>"), Lisp will
try to interpret the S-expression as a command to execute. Put another
way, Lisp will treat the S-expression as a program, or piece of Lisp
code, and will try to evaluate the S-expression. When Lisp has evaluated
the S-expression, it will return and PRINT the value it has found. For
the current S-expression, UO-LISP 9erforms as follows:

+---+
1: (PLUS 3 5)
8

2:

+--+

6

UO-LISP evaluated the S-expression you typed in as a request to add two
numbers, 3 and 5. The value of the piece of Lisp code "(PLUS 3 5)" is 8,
which UO-LISP prints on the next line. Finally, UO-LISP indicates it has
finished responding and that it is now your turn in the dialogue by
giving you a the prompt "2:". Note that 00-LISP increments the prompt
number so that you (and it) can keep track of where you are in the
conversation.

While talking with 00-LISP, you may want to add a comment in English. It
is especially important to comment your code so that others can
understand it. The percent sign signals the presence of a comment. The
00-LISP reader ignores all subsequent characters to the end of the line.
For example:

+---+
1: (PLUS 1 2)
3

%I'm adding two numbers

+--+

When you are finished with 00-LISP, enter (QUIT), and you will then find
yourself talking to the operating system:

+---+
2: (QUIT)
B>

+---+

1. You type an expression that the 00-LISP interpreter reads

2. The 00-LISP interpreter computes the value of the expression

3. The UO-LISP printing function displays that value

4. Go back to step 1

We need to know what S-expressions the UO-LISP reading function will
accept. Once this syntax is understood we can move on to the evaluation
strategy and how values are printed. The following chapter presents the

7

syntax of S-expressions but before you proceed, you should make sure
that you can start and stop UCr-LISP as described above.

CHAPTER 2
S-EXPRESSIONS: THE SYNTAX OF LISP

As with any programming language, to learn Lisp, you need to learn what
commands it understands, and which it will not. You need to understand
the syntax of the language. Learning the syntax of most languages is a
major chore. In BASIC, for example, you have many different kinds of
statements declarations, assignments, conditionals, branching
statements, and so on -- and each type has its own peculiar syntax.

But the syntax of Lisp is much simpler; even trivial. All the commands
of the language, all the code that you will write, will be
S-expressions, and S-expressions obey a few simple rules. One advantage
of Lisp, is that you can spend much more time at the more important task
of learning to use it to solve complicated problems.

There are only two rules for forming S-expressions, both very simple:

Atoms are S-expressions

Lists are S-expressions

But what are atoms and lists? We will discuss each of these in turn.

2.1 Atoms are S-expressions

Atoms also obey simple rules. There are three basic types:

Any sequence of alphanumeric characters beginning with an
alphabetic character is an atom, an identifier

Any sequence of numeric characters (possibly preceeded by a
"+" or "-" sign) is an atom, a number

Any sequence of characters enclosed in quotation marks (") is
an atom, a string

The first type of
function definitions,
things, or as just
of identifiers:

atom, the identifier is used as a place holder for
as a variable name, a place to put properties of
the characters of its name. Here are a few examples

A [A single alphabetic character is a sequence]
ABC [This starts with an alphabetic character]
A12 [So does this]
abcdeS [Lower case is ok too]
ABCDES [The same as abcdeS since case is immaterial]
aAbBcC [And you can mix cases if you want]
aadasddkl4567kaweooOKJASDIKMXKLALDSLLLLadsxl4

[There is practically no limit tk the length
of atoms]

Now are a few sequences that are not identifiers:

lATOM

AT-OM

AT OM

[If it starts with a number it can't have any
alphabetic• characters]

[Generally, you can't use characters that
are not numeric or alphabetic in atoms]

[Spaces, or <CR>'s separate atoms, so this
is a sequence qf two atoms]

9

Numeric atoms are strings of digits optionally prefixed with a + or
sign. They act just like integer numbers in languages like BASIC or
FORTRAN. Here are a few numeric atoms:

1234
+1234
-1234

[All digits in a numeric atom]
[A positive integer]
[A negative integer]

In the Lisp Learner version of UO-LISP, integers are restricted to the
range -4096 to +4095. This is not as restrictive as it sounds as in
Lisp, unlike other languages, numbers are relatively unimportant. More
advanced versions of 00-LISP permit integers with many thousands of
digits and arbitrary precision fixed and floating point numbers.

The final ~ype of of atom is the string, a sequence of characters
enclosed in double quotes. To get a quote mark in the string, simply put
two in next to each other. Strings are used mostly for information
displays and error messages. The following are valid strings:

"Hi there"
nn

"""Hi there"""
"A two line

string"

[Simple string]
[Empty string]
[String with quote marks in it]
[Strings can extend across lines]

For more information about identifiers, numbers, and strings, consult
chapter 1 of the 00-LISP Learner's Manual.

10

2.2 Lists are 5-expressions

Besides atoms, the only other kind of S-expression in Lisp is the list.
Again, the rules for forming lists are straightforward:

An empty pair of parentheses"()" is a list

Any sequence of atoms (atoms separated by one or more spaces
or <CR>s) that is enclosed in parentheses is a list

Any list of one or more lists is a list

Basically, lists are bounded by parentheses, and have elements inside
the parentheses. The three rules above describe different things that
can be list elements.

The first rule defines what we call the empty list, a list of no
elements. It can appear in a variety of ways:

()

NIL

[Two parentheses with nothing between
them is an empty list]

[Or you can put in any number of spaces;
they are just delimiters in Lisp]

[Sometimes the empty list is written
as the identifier NIL. This may be a
bit confusing, but we'll explain why
later.]

The second rule defines simple lists. Here are a few simple lists:

(A)
(Ab)
(1 B c)

(1 2 3

(1 2
3)

[A list with just one atom]
[A list can have two or more atoms, too]
[You can mix numbers and identifiers
in lists]

[You can separate list elements by any
number of spaces]

[Or even by <CR>s]

And a few non-lists (hence, non S-expressions):

(ab c
(HE L p))

[A closing parenthesis please!]
[Parentheses must balance]

The most complex of the three rules for lists is the last one.
called the recursive clause for lists, because it defines what

It is
a list

Lisp
that

can be in terms of itself. (We will be studying recursive
structures in later sections). While the second rule for lists says
atoms can be list elements, the third rule says that lists can also
elements of lists. We refer to these as complex lists. For example:

be

(The rain (in spain) falls (mainly on the plain))
[A list with 5 elements, the third and
fifth of which are also lists]

((The ((rain (in)) spain)))
[Lists can be nested arbitrarily deeply; as
many parentheses as you like, providing
they are balanced]

(()) [Since lists can be elements of other lists,
the empty list"()" can be an element of
a list]

(NIL) [This is the same as the last one, since
() and NIL mean the same thing. Note,
(NIL) is not equivalent to NIL.]

11

Since complex lists are so important in Lisp, it is worth taking a
moment to really understand their structure. Let's look at:

(HERE (IS (A LIS1) (OF (IDENTIFIERS))) (FOR YOU))

First, check to see that it really is a list. Does each opening
parenthesis "(" have a matching closing parenthesis")"? Find each pair
of parentheses that match. How many elements are in this list? The first
element is an atom, HERE, that's one. The second element is itself a
list, (IS (A LIST) (OF (IDENTIFIERS))), that's two. The third element is
a simple list, (FOR YOU). And that's it, so there are three elements in
this list, one atom, and two lists (which also have their own elements).

One last example before we continue. How many elements does the list ()
have? It's the empty list, so it has none. How many elements does this
have: (())? The inside parentheses, (), is the empty list, and because
it's a list, it can be an element of another list, so (()) is a list
with one element, the empty list. Now you can see why () and (()) are
not the same: The first is a list with no elements, and the second is a
list with one element.

2.3 S-expressions are Both Program and Data in Lisp

Now that you understand what S-expressions are in Lisp, you need to know
what they are used for. The answer is: everything! S-expressions are the
way you write programs in Lisp, and they are also the data that Lisp
programs manipulate. So you now know all about the syntax and datatypes
of the Lisp language.

You may find it a bit difficult to get used to the idea that
S-expressions in Lisp are both the programs and data of the language. In
the languages you might know, like BASIC or FORTRAN, there is a clear
distinction between the two. Programs are made up of statements like
"GO SUB 400" or "IF (I.GT.1001) I=l", and the data, things represented
by variables, are numbers or arrays. In the following sections we will

12

carefully discuss how S-expressions are both program and data. We will
come to see that many of the things that make Lisp the simplest of
languages -- the fact that the syntax of the language is so easy, the
fact that there is no distinction between program and data -- also make
it a most powerful language.

CHAPTER 3
THE LISP EVALUATOR: EVAL

If S-expressions are both the programs of Lisp and the data manipulated
by the language, how does the Lisp interpreter tell if it should treat
something as a piece of program or as a piece of data? The answer is,
basically, that what you type to the interpreter gets treated as code.
Recall our discussion of the READ-EVAL-PRINT loop in Section 1. When we
typed the S-expression:

(PLUS 3 5)

to Lisp, it took that S-expression as a piece of code to evaluate, then
returned the answer. In this section we will discuss exactly how Lisp
evaluates the S-expressions you give it, so that you can learn to
construct pieces of Lisp code that do what you want.

3.1 Evaluating Identifiers

How Lisp evaluates an S-expression depends on the kind of expression it
is --·atom or list -- so lets begin with identifiers. The values of lisp
identifiers are much like the values of variables in other languages.
Usually, identifiers don't have values to begin with. For example, if
you just called up the 00-LISP interpreter and typed X it would give you
an error message:

+-------------------------. --+
1: X
***** (not global X)

2:

+-------------------------------=-------------------------------------+

indicating that the identifier X does not have a value, when Lisp tried
to evaluate it. Just as in other languages, you have to give atoms
values. Don't worry about how this is done just yet, we'll discuss it· in
Section 5. For now all you need to know is that the value of an atom can
be~ S-expression. For example, X could be assigned the value 5, or
(A LIST) or (A (COMPLEX (LIST))).

3.2 Evaluating Numbers and Strings

Numeric atoms and strings are exceptions to the rule that atoms
initially don't have values. While identifiers are initially "unbound",
numbers and strings have themselves as their values. If you ask Lisp to
evaluate a number, it will just print that number, the same for a
string. This is demonstrated in the following UO-LISP session:

+---+
1: 9
9

2: -246
-246

3:"0n the other hand"
"ON THE OTHER HAND"

+---~---------------------------+

3.3 Evaluating Simple Lists

The evaluation of lists is quite different than atoms. Lists, unlike
atoms cannot be assigned a value. To understand evaluation of lists,
let's begin with a simple example. We will follow the UO-LISP
interpreter as it evaluates (PLUS 3 5) to produce the value 8.

When the interpreter sees a list, _it always assumes the first element of
the list is the name of a function. A function in Lisp is roughly the
same as a procedure, or subroutine, or program, in other languages.
Functions are the basic units of computation in Lisp. For example, "ABS"
is the name of a built-in absolute value function in FORTRAN, BASIC, and
UO-LISP.

Names of functions are identifiers, so for this reason, the first
element of an S-expression you type to the interpreter should be an
identifier. In the case above, 00-LISP interprets "PLUS" to be the name
of a function, and goes to find the function's definition. Since PLUS is
a built-in function, the interpreter has no trouble finding the
definition. (In Section 5 we .will show you how to define your own
functions.) If Lisp can't find a function definition, it will give you
an error message. For example:

+---+
1: (FOO 1 2)
***** (FOO undefined function)

+---+

14

When Lisp has found the function definition, using the first element of \.J

15

the s-expression, it interprets the remaining elements as arguments to
the function. Then it applies the function definition to those
arguments. For example, since PLUS is a function for adding numbers
together, and 3 and 5 are numbers, when you apply PLUS to these numbers
you get 8. We say this is the value returned from the function PLUS, and
it is the value that Lisp will print, if you type "(PLUS 3 5)" to it.

This example illustrates that functions can be thought of as little
machines. They take some input (their arguments), manipulate them (apply
the definition of the function to the arguments), ~nd produce a result
as output (return a value). Try picturing function calls iike this:

5 --->

3 --->
PLUS ---> 8

All calls to Lisp functions follow this simple pattern.

The previous demonstrates one added detail of evaluation. Lisp does not
directly apply a function definition to the remaining elements in the
list it is evaluating. Rather, it first evaluates the arguments, then
applies the function. This was obscured in the previous· example, since
the value of 5 is 5 and the valua of 3 is 3. In the next example, assume
that the value of the atom VAR is 7 and the value of VAR2 is 8. Then we
would see

+---+
1: (PLUS VARl VAR2)
15

+---+

In other words, the Lisp interpreter first gets the function definition
of "PLUS", then evaluates each of the remaining elements of the
expression, obtaining 7 and-8, then applies PLUS's definition to these
two numbers, returning and printing 15.

3.4 T and NIL

T and NIL are very special Lisp atoms whose evaluation and role require
some discussion. Like numbers, T and NIL are bound to themselves, and
these values cannot be changed:

16

+---+
1: T
T

2: NIL
NIL

+--+

The reason for this is that T
T means roughly "true" or
atom (by calling the built-in
returning T:

and NIL have unique roles in Lisp. In Lisp
"yes". Thus if I ask Lisp whether 10 is an

function ATOM), Lisp. tells me it is by

+---+
1: (ATOM 10)
T

+---+

One use of NIL is to denote the opposite of T; NIL means "false" or
"no". Thus if I ask Lisp whether 10 is greater than 12 (by calling the
built-in function "GREATERP"), Lisp tells me it is not by returning NIL:

+---+
1: (GREATERP 10· 12)
NIL

+---+

NIL has a second role in addition to its logical one. It not only means
"false", it denotes the empty list or list with no elements, as we
discussed in Section 2. NIL's dual role gives it a unique status in
Lisp: It is the only S-expression that is both an atom and a list. While
this may be a bit confusing at first, it will help to remember that NIL
plays only one role at a time. Tt's an atom when used logically to
denote "false", and it's a list when used to represent the empty list.

17

3.5 Summary of the Rules of Lisp Evaluation

The previous examples show all the basic rules that govern Lisp's
evaluation of s-expressions. They are about as simple as the rules
governing the structure of the language themselves! Before continuing,
let's summarize the rules for evaluation:

TO EVALUATE ANS-EXPRESSION, S:
IFS IS AN ATOM, RETURN ITS VALUE
IFS IS A LIST THEN

GET THE DEFINITION, D, OF THE FIRST ELEMENT OF S,
AND

EVALUATE EACH OF THE REMAINING ELEMENTS OF S, AND
APPLY THE DEFINITION OF D TO THE EVALUATED

ARGUMENTS, AND
RETURN THE VALUE OF THE FUNCTION APPLICATION

The interesting thing about these rules, and what can make them
difficult to follow, is their recursive nature. As we said in Section 2,
a definition is recursive if the thing being defined is defined (partly)
in terms of itself. In this case, we have defined evaluation in terms of
itself, because to evaluate a list we have said that you must evaluate
the arguments to the list (that is, all elements of the list except the
first). To give you a better understanding of the potentially tricky
recursive definition of evaluation, we will examine the evaluation of
some complex lists.

3.6 Evaluating Complex Lists

How will Lisp evaluate:

(PLUS 3 (ADDl 5))

It's really not hard, if we just carefully follow the rules set out in
the previous section. First, the interpreter assumes "PLUS" is the name
of a function, and gets its definition. Next, it evaluates the arguments
to PLUS, 3 and (ADDl 5); since 3 is a number, its value is itself, 3.
Evaluating (ADDl 5) is a bit more complex because it is a list. We have
to get this value before we can apply PLUS to its arguments.

To evaluate (ADDl 5) we have to follow the rules of evaluation all over
again, for this s-expression. To evaluate this list, the interpreter
will first get the definition of the function ADDl (since it is t..~e
first element of the list). ADDl is a function that adds 1 to a number.
Now Lisp will interpret the rest of the elements in the list (ADDl 5) as
arguments to ADDl. That is, 5 is the argument to ADDl. The value of 5 is
5, so now to complete the evaluation of the expression (ADDl 5), the

18

definition of ADOl is applied to 5, and the value 6 is returned.

Now we are finished
both arguments to
to 3 and 6, getting
control program.

evaluating (ADOl 5) and have the values we need for
PLUS. They are 3 and 6. So finally we can apply PLUS

9. This is returned and printed by the top level

As you can see from following this example, part of the difficulty in
understanding the recursive computation of the Lisp interpreter is that
in order to complete evaluating "outside" S-expressions, you have to
begin and complete evaluating "inside" expressions, because the
interpreter uses the values of the inside expressions to find the value
of the outside expression. In this case, for example, (ADDl 5) is inside
(PLUS 3 (ADDl 5)) and its evaluation begins after, but completes before,
the evaluation of (PLUS 3 (ADDl 5)). One final note, notice that while
every S-expression returns a value when evaluated, only the value of the
very most outside expression is printed by Lisp. This is called a
"top-level" expression.

3.7 Picturing Lisp Evaluation

There is a simple graphical notation that helps you get a better picture
of how Lisp's evaluation works. Let's use it to picture the last
example:

Here

--> (PLUS 3 (ADDl 5))
--> 3

3 <-- 3
--> (ADDl 5)

I I
--> 5
5 <-- 5

I 6 <-- (ADDl 5)
9 <-- (PLUS 3 (ADDl 5))

"--> [form]" - means Lisp is about to evaluate [form]

"[value] <-- [form]" - means Lisp just finished evaluating [form]
and is returning [value] as the result

The indentations and vertical bars also help you see which evaluations
are inside which others, and therefore which ones are returning values
to be used in other outside evaluations. A notation much like this one
is available inside UO-LISP to let you trace the evaluation of function
calls (see Chapter 2.17 of the 00-LISP Learner's Manual under the
function TR). You will find it particularly useful in understanding what
happens in evaluating recursive functions.

'-..J

19

3.8 EVAL Evaluates S-expressions

One fascinating and really very important aspect of Lisp is that the
interpreter that performs the Lisp evaluation we have just discussed is
not a program written in another language, like machine language, but is
in fact just another Lisp function, called EVAL. EVAL is a function that
takes one argument, the S-expression to be evaluated, and returns the
result of evaluating ito The availability of the Lisp interpreter as a
function, EVAL, distinguishes Lisp from almost every other language, and
can be exploited to powerful effect. In Section 11, we introduce a Lisp
program that uses explicit calls to EVAL.·

Reading about how evaluation in Lisp works is fine, but you will acquire·
a much deeper understanding by getting into UO-LISP and letting Lisp
evaluate some expressions. Why don't you start up an interactive UO-LISP
session now?

CHAPTER 4
LIST MANIPULATION FUNCTIONS

Now that you have a good understanding of how Lisp S-expressions are
interpreted as programs or function calls, you might well ask: How do
you prevent Lisp from treating all S-expressions as code? How can Lisp
treat expressions as data too? We answer these questions in this section
and discuss the basic, most primitive, Lisp functions that allow you to
construct, access and change list data structures.

4.1 Quoting a List

Up until now, every time you typed a list to Lisp, it evaluated it. To
get Lisp to treat a list as data you have to have some way of saying:
"Don't evaluate this list, I want to be able to manipulate it as a data
object". The way to do this is to QUOTE the object. You quote an object
by just putting a single quote mark before it. For example:

+---+
1: ' (a b c)

+---+

Now, instead of evaluating the list, as a call to the function "a" with
arguments "b" and "c", Lisp leaves it alone:

+---+
1: '(a b c)
(a b c)

+---' ---------+

That is, Lisp just returns whatever object you quoted.

21

4.1.l Anything can be Quoted

Quoting can be applied to any S-expression to prevent it from being
evaluated. For example:

+---+
1: 1 A
A

2-: I 5
5

%Quoting literal atoms is ok

%You can quote numbers,
%although you don't need to

3: '(a (b (c d (ell f) (g h)) %You can quote a complex
(a (b (c d (e)) f) (g h)) %list

4: 'NIL
NIL

5: 'T
T

%You may· quote NIL and T
%although you don't have to

+---+

Initially, quoting may seem to be a very strange operation. But, in fact
it is quite familiar. English uses a similar convention. For example,
when I say "John is a good boy", I might be correct, because the
appearance of John refers to a particular boy. However, if I say"
"John" is a good boy", I'm not making sense, because the appearance of
"John" refers to the word;· not the referent of the word. I could say
""John" is a four-letter word". Plus, in English, the use of"" protects
words against evaluation, just as 'does in Lisp.

4.1.2 The Use of QUOTE to Manipulate Lists

Quoting by itself is not a powerful operation. What makes it powerful is
that by protecting lists from being evaluated, we can manipulate them
construct them, access pieces of them and alter them. Because lists can
now be freely manipulated they become full-fledged data objects, just
like numbers. In the following sections we will discuss in detail how
lists are manipulated.

22

4.2 CONS Constructs Lists

00-LISP has many built-in functions that create and manipulate list data
objects, just as the built-in function PLUS is used to manipulate
numbers. The most basic of these functions is CONS. CONS is used to
build lists. It takes two arguments; the first can be any S-expression, •
and the second is generally a list. CONS makes and returns a new list
that adds its first argument to the front of the list that is its second
argument. Here are some examples of CONS constructing simple lists:

+---+
1: (CONS 'A I (B))
(A B)

2: (CONS I A I())

(A)

3: (CONS 'A NIL)
(A)

4: (CONS 'A I (NIL))
(A NIL)

5 : (CONS ' (A) ' (B C))
((A) B C)

6 : (CONS 5 ' (6 7))
(5 6 7)

%CONS puts A on the front of
%the list (B)

%the atom A cets added to the
%front of the empty list

%Remember NIL is also a name
%for the empty list

%Also remember that NIL is not
%same as (NIL)

%A list can be CONSed onto a
%list, not just atoms

%You can make lists of numeric
%atoms as well

7: (CONS 'A (CONS 'B (CONS 'C NIL)))
(AB C)

+---+

Only the last example should require any explanation. Remember, in our
discussion of Lisp.evaluation, we said that to complete the evaluation
of an outside form we had to first evaluate the inside forms that is its
arguments. So, to evaluate (CONS 'A (CONS 'B (CONS 'C NIL))), we have to
first evaluate (CONS 'B (CONS 'C NIL)), and to evaluate that we need to
_first do (CONS 'C NIL). So lets begin there.

The value returned from (CONS 'C NIL) is (C), thus
(CONS 'B (CONS 'C NIL)) will put Bon the front of the list (C), and

will return (BC). This is what (CONS 'A (CONS 'B (CONS 'C NIL))) will
put 'A onto, thus, finally, it will return (ABC). Here's a diagram of
the evaluation:

--> (CONS 'A (CONS 'B (CONS 'C NIL)))
--> 'A
A<-- 'A
--> (CONS 'B (CONS 'C NIL))

--> 'B
B <-- 'B
--> (CONS 'C NIL)

--> 'C
C <-- 'C
--> NIL
NIL<-- NIL

(Cl <-- (CONS 'C NIL)
(BC) <-- (CONS 'B (CONS 'C NIL))

(ABC) <-- (CONS 'A (CONS 'B (CONS 'C NIL)))

23

UO-LISP provides many different functions for building lists. Another
basic and particularly useful function is called LIST. It takes any
number of arguments and returns a list made up of them:

+---+
1: (LIST 'This 'is 'a 'LIST)
(THIS IS A LIST)

2: (LIST 'This 'is 'a (LIST 'COM~LEX 'list))
(THIS IS A (COMPLEX LIST))

+---+

Note that you can get the same results using CONS:

+---+
1: (CONS 'This (CONS 'is (CONS 'a (CONS 'LIST NIL}))}
(THIS IS A LIST)

2: (CONS 'This
(CONS 'is

(CONS 'a
(CONS (CONS 'COMPLEX

(THIS IS A (COMPLEX LIST))

(CONS 'list NIL))
NIL))))

+---+

You can see from these examples that the LIST function often makes it a
lot easier to construct the list you want. Each of the different list
manipulation functions has its own special purpose, like LIST. Even
though you would prefer to use LIST to build the lists mentioned above,
it's a good exercise to test your understanding of of Lisp evaluation by
tracing through the calls to CONS in the last two examples. Give it a

24

try now. Just remarnber -- do the inside evaluations before the outside
ones. And if you have any problems, draw a diagram!

4.3 Accessing Parts of Lists

Once you've built a list, in order to do anything useful with it, you'll
need to be able to isolate the elaments of it. 00-LISP has a variety of
functions to do this. Just as CONS is the basic Lisp function for
building lists, CAR and CDR are the primitive functions for accessing
parts of them. CAR takes a single argument, should be a list, and
returns the first element of the list. CDR is the· complement of CAR:
when given a list, it returns all but the first element. Some examples
will make this clear:

+--~----------+
1: (CAR ' (4 SCORE AND 7 YEARS))
4

2: (CDR ' (4 SCORE AND 7 YEARS))
(SCORE AND. 7 YEARS)

3: (CAR ' ((A B) (C D)))
(A B)

4: (CDR ' ((A B) (C D)))
((C 0)-)

5: (CAR 'A)

%CDR doesn't return the second
% element, but a list of all
%the elements but the first
%The argument to CAR and CDR

***** (A is not a pair for CAR) %must be a list

6: (CAR NIL) %It is an error to try to take
***** (NIL is not a pair for CAR) %the first element

%of an empty list
7: (CDR NIL) %And the empty list doesn't
***** (NIL is not a pair for CDR) % have a remainder

%either

+---+

Multiple applications of CAR and CDR can be used to get at any element
of a list, no matter how deeply embedded it is in other lists. For
example:

25

+---~-----------=-------+
1: { CAR (CDR ' { A B C)))
B

2: {CAR (CDR (CDR '(A B C))))
C

3~ {CDR {CDR (CDR '(ABC))))
NIL

4: (CAR (CDR (CAR ' ((A B) C D))))
B

+---+

Notice the close relation between CONS, on the one hand, and CAR and CDR
on the other. CAR will get back what was the first argument to CONS; CDR
will get back the second:

+---+
1: (CAR { CONS ' A ' (B C)))
A

2: (CDR (CONS 'A ' { B C)))
(B C)

+---+

4.4 Testing Properties of Lists

In addition to constructing and accessing parts of lists, another very
basic kind of operation is to test lists for various properties. One of
the most basic tests is to determine if a list is empty. You can do this
using the function NULL. NULL returns T if the list it is given as an
argument is empty, ot~erwise, it returns NIL.

+---+
1: (NULL '(A))
NIL

2: (NULL NIL)
T

3: (NULL 'A)
NIL

%A is an atom, so can't be the
%empty list

+---+

26

The function NOT is a synonym for NULL and can be used interchangeably:

+---------------------------------•v ·---------------------------------+
4: (NOT NIL)
T

5: (NOT ' (B C D (E F)))
NIL

+---+

4.4.1 Testing Lists and Atoms for Equality

Perhaps the most basic test on lists is to determine if two lists, or
atoms for that matter, are the same. The primitive Lisp function
provided for testing equality is called EQ. For now, you should think of
EQ as testing the equality of atoms only. It will return T if the the
two arguments you give it are the same atom; otherwise, it returns NIL.
Here are some examples of EQ in action:

+---+
1: (EQ 'A 'A)
T

2: (EQ 'A 'B)
NIL

%These literal atoms are the same
%because they have the same name

3: (EQ 54 54) %The small integers that are
T %numeric atoms in UOLISP are also

%EQ if they have the same name
4: (EQ 54 55)
NIL

5: (EQ NIL NIL)
T

+---+

The reason to use EQ with only atoms is that it doesn't work as you
might expect with lists. For example:

+---+
6 : (EQ ' (A B C) ' (A B C))
NIL

I

+---+

The right function to use with lists is called EQUAL. It works as you'd

'---,/

expect: \.J

27

+--+
7: (EQUAL ' (A B C) ' (A B C))
T

8: (EQUAL 'A 'A)
T %Note, EQUAL works for atoms too.

%In general any two things that
54 54) %are EQ are EQUAL, but not the 9: (EQUAL

T %converse

+---+

4.4.2 Equality of S-expressions

It may seem odd to you that (EQ '(AB) '(AB)) is not true. This is
because the notion of sameness is actually ambiguous. Suppose you have
two identical twins. Are they the same? On one view the answer is
clearly "No"; after all, they are different people. Those arguing this
way interpret "S'ame" as referring to the identity of the object. But
another view says they are the same; after all, you can't tell them

·apart. Those arguing this way are referring to the appearance of the
object.

EQ and EQUAL correspond to these different interpretations of "same". EQ
refers to the stricter "identity" sense of "same", while EQUAL refers to
the looser "appearance" sense of "same". Thus you can clearly see why to
(EQUAL' (AB) '(A Bl) is true; both lists have the same appearance in
print. And the reason that these two lists are not EQ is that, like the
twins, while they look the same, they are really two different lists.

This may seem surprising, so let's take some time to understand why it
is so. When you ask Lisp to build a list by:

+---+
1: (LIST 'A 'B)
(A B)

2: ' (A Bl
(A B)

%or

+---+

Lisp act4ally takes this as an instruction to create a Lisp entity, a
Lisp data object. If you repeat the instruction, you are essentially
asking Lisp to -create a new object. The new object is a different
structure than the old one, even though they look alike, much like two
houses from the same blueprint are different structures, even though
indistinguishable. Thus, if you say:

28

+---+
3 : (EQ ' (A B) ' (A B))
NIL

+---+
Lisp first evaluates the arguments to EQ, creating two new list objects,
then tests them for EQness. Since they are not the identical list, EQ
returns NIL.

Maybe you now understand why two same-appearing lists are not EQ, but
you might ask: Why are two atoms EQ? Doesn't Lisp create two DIFFERENT
versions of A when I say (EQ 'A 'A)? In fact Lisp does not. It only
creates new list objects; it never creates two atoms with the same name.
And that is why you can use EQ with atoms but should use EQUAL with
lists.

4.5 Primitive List Operations

The primitive operations CONS, CAR, CDR, and EQ, provide the basis for
constructing most of the complex operations of Lisp Many of these
compound operations are so convenient and frequently used, that 00-LISP
£rovides built-in functions that effect them. Chapter 2.3 in the 00-LISP
Learner's Manual describes the primitive list manipulation functions,
while Chapter 2.14 discusses the built-in composite functions. In
Section 5 of this tutorial we· describe how you can create your own
functions to effect just the compound list operations you wish.

List operations like these are at the heart of symbolic computation in
Lisp. You'll need lots of practice to get proficient. The next sections
will provide some of the necessary practice.

4.6 Asking for Help

00-LISP provides much assistance for the beginning user. There are three
built-in functions that interface to a data base containing an English
description of each built-in function, error message, and editor
command. The APROPOS function assists the user in determining the
spelling of a function name by providing a list of built-in functions
that have a specified sequence of letters in them. The HELP function
provides an English description of any built-in function, and ERROR!? a
description of an error.

Suppose I would like to substitute the identifier A for every occurrence
of the identifier B in a list and do not know if there is a built-in
function that does this. If there is such a function it probably has '-.J
some of the letters of 'substitute' in it. Two distinguishing letters of
'substitute are Sand Bas normal function name construction uses the

29

first part of the corresponding English word less vowelso The APROPOS
function will find the names of all functions that have an S and B in
them in that order.

+------------------------------. -------------------------------------+
1: (APROPOS 'SB)
(SETIOBYTE SUBST SUBLIS SUBl)

Of the four functions, only the last three look like they have something
to do with list substitution. The HELP function can now be used to
discover what these functions do. The first two go something like this:

+---+
2: (HELP SUBST)

(SUBST U:any V:any W:any):any [EXPR] (2 .. 14]

SUBST returns the result of substituting U for
all occurrences of Vin W.; EQUAL is used for equality
t.ests.

NIL

3: (HELP SUBLIS)

(SUBLIS X:alist Y:any}:any [EXPR] (2.14]

SUBLIS returns the result of substituting the
CDR of each element of the alist X for every
occurrence of the CAR part of that element in Y.

NIL

I
I.

+---+

Evidently SUBST is the function I want. The textual explanation gives
the arguments of the function, the type of the function (see the
: .. ntroduction to Chapter 2 of the UO-LISP Learner's Manual) , and the
chapter and section number of the function in the UO-LISP Learner's
Manual.

UO-LISP provides assistance when a recoverable
Error messages are always prefixed by 5
sometimes fairly cryptic. The ERROR!? function
explanation ·of why the error was signaled
alternative courses of action. For example, in
tried to open a file, but spelled INPUT wrong.

system error is signaled.
asterisks (*****) and are
will provide an English
and will sometimes suggest
the following sequence I

30

+---+
1: (OPEN "XYZ" 'INPT)
***** Cannot OPEN

2: (ERROR!?)

***** cannot OPEN

A file cannot be opened for
reasons. These include: poorly fanned
not mounted, operating system error,

.exist, or the second argument to OPEN
OUTPUT.

NIL

a variety of
file name, 'disk
file does not
is not INPUT or

+---+

These functions provide a comprehensive interactive manual
immediate access to a large amount of information. Until he
considerable practice with the system the beginning user will find
access very helpful .

with
has

this'

CHAPTER 5
NAMING AND DEFINITION

As you construct progressively larger programs in Lisp you may find
yourself repeatedly typing the same expressions. For example, you may be
continually retyping a long list like
"(TOYOTA NISSAN MAZDA SUBARU HONDA MITSUBISHI)". This is extremely
awkward and time-consuming. What you'd like is a way of naming that
particular expression, then using the name in your code, not the
expression itself. Similarly, you might repeatedly accessing the fifth
element of a list, using
"(CAR (CDR (CDR (CDR (CDR I (ABC DEF G))))))". Here again, you'd like
to associate a name with that particular operation (getting an element
of a list at a particular index). Lisp provides powerful ways for naming
such things.

5.1 Naming Data Structures

In the first case above, you would like to remember a particular data
object. To do this in Lisp, you can set the value of an atom to that
data object. This is done using the SET function:

+--------------------------------. -----------------------------------+
1: (GLOBAL '(JAPANESECARS))
NIL

2: (SET 'JAPANESECARS '(TOYOTA NISSAN MAZDA SUBARU
HONDA MITSUBISHI))

(TOYOTA NISSAN MAZDA SUBARU HONDA MITSUBISHI).

+---+

For now, don't worry about the call to the built-in function GLOBAL in
the first line; we'll return it that shortly. SET actually does two
things. First it will make the value of the atom JAPANESECARS be
(TOYOTA NISSAN MAZDA SUBARU HONDA MITSUBISHI), and, second, it returns
the value. The value returned, of course, is not the important thing; it
happens because in Lisp, every function call returns a value. The
important result of SET is its side effect of setting an atom's value.

Now, when we type "JAPANESECARS", it will be evaluated like any atom
(see Chapter 3), and its value returned:

32

+---+
3: JAPANESECARS
(TOYOTA NISSAN MAZDA SUBARU HONDA MITSUBISHI)

4: (LIST 'JAPANESECARS JAPANESECARS)
(JAPANESECARS (TOYOTA NISSAN MAZDA SUBARU HONDA
MITSUB·ISHI)) %remember quoted things aren' t

%evaluated

+---+

If you want to set the value of an atom using SET, you always have to
quote its first argumer.t (i.e., the atom). This can be awkward, so there
is a special function, called SETQ, which is just like SET, except it
quotes its first argument for you:

+---+
1: (GLOBAL ' (US CAR~; GMCARS))
NIL

2: (SETQ OSCARS '(FORD GM CRYSLER AMERICAN))
(FORD GM CRYSLER .AMERICAN)

3: (SETQ GMCARS '(PONTIAC BUICK CHEVROLET CADI~C))
(PONTIAC BUICK CHEVROLET CADILLAC)

+---+

Generally, you will find it more convenient to use SETQ than SET.

SETQ will allow you to set any S-expre::sion as the value of an atom:

33

+---+
1: (GLOBAL' (ATOMLIST NUMLIST COMLIST REST))
NIL

2: (SETQ ATOMLIST '(A LIST OF LITERAL ATOMS))
(A LIST OF LITERAL ATOMS)

3: (SETQ REST (CDR ATOMLIST))
(LIST OF LITERAL ATOMS)

4: REST
(LIST OF LITERAL ATOMS)

5: (SETQ NUMI,IST '(1 2 3 4 5 6 7))
(1 2 3 4 5 6 7)

6: (CAR (CDR NUMIIST))
2

7: (SETQ COMLIST '((THE) (:RAIN (IN SPAIN)) FALLS))
((THE) (RAIN (IN SPAIN)) FALLS))

8: (CAR (CDR (CAR (CDR COMLIST))))
(IN SPAIN)

I

+---+

The use of SETQ will be famili.ar to all programmers. It is what Lisp
uses to assign values to variables, much as"=" is used in FORTRAN and
BASIC, and":=" in PP.SCAL.

5.2 Naming Procedures or Functions

In addition to providing names for data objects, it is also useful to
provide names for pieces of code or procedures.

Note: There is no difference between a procedure and a function
in Lisp and we will use the terns interchangeably.

For example, it is not only briefer, but much clearer to say
(CUBE NUMBER)" than to say "(TIMES NUMBER (TIMES NUMBER NUMBEF))", when
you want to raise a number to the third power. All Lisps have ways to
associate a name like "CUBE" with a procedt:re. This is done by defining
your own function, called CUBE. In UO-LISP you define new functions by
using a built-in function, called DE. The form of DE is as follows:

34

(DE <£unction name> <parameter list> <body>)

where:

<function name> is an atom naming the new function

<parameter list> is a list of atoms that will be bound to the
arguments given to the function

<body> is a sequence of S-expressions defining new function

It is best to explain DE through examples. Lets begin by defining our
function CUBE which is paraphrased in English as follows:

To cube something multiply it by times itself itself
I I I I I I I I

(DE CUBE (NUMB~R) (TIMES NUMBER (TIMES NUMBER NUMBER)))

Now you will be able to use CUBE just as you do the built-in functions
of LISP:

+---+ \.__,I

1: (DE CUBE (NUMBER)
(TIMES NUMBER (TIMES NUMBER NUMBER))) .

TIMES

2: (CUBE 5)
125

3: (CUBE 8)
512

4: (CUBE 'A) %CUBE only works for numbers
***** Non-numeric argument

5: (PLUS 4 (CUBE 4)) %you can combine calls to your own
68 %functions and built-in ones

+---+

The first thing to notice about the function DE is that, unlike the
others we have discussed, you do not have to quote the arguments to DE,
because DE doesn't evaluate its arguments. Why not? Because if it did,
to define a function called CUBE, you'd have tO say:

35

(DE I CUBE I (NUMBER) ...)

But, since the user would always be quoting the arguments to DE, it was
designed to do the quoting automatically, sparing the user unnecessary
effort. Functions that automatically quote their arguments are called
Special Forms (also called FEXPRs in the 00-LISP Learner"s Manual). You
may have noticed that SETQ is also a special form. There are not very
many special forms in Lisp, but they are among the most important so we
will be meeting a few more.

Lets take a little closer look at the mechanics of function definition
using DE. To define a new function, you have to give it a name (here
"CUBE"), and a meaning, in terms of code that will get executed when the
function is called (here "(TIMES NUMBER (TIMES NUMBER NUMBER))"). But
you also need a way of referring to whatever argument is given to the
function, and that's what the parameter list is used for. For example,
the parameter list of CUBE is "(NUMBER)". Since the list has only one
element, we say CUBE is a function of one variable. Thus when someone
calls the function CUBE, with a specific argument, say 5 (i.e., he types
"(CUBE 5)", the variable "NUMBER" becomes bound to the value "5", and
will have that_ value when it is referred to in the body of the function
definition. In general, "NUMBER" will be bound to whatever argument CUBE
is called with.

Note, when you define a function you must provide one formal parameter
in the parameter Lisp for each argument you expect the function to be
called with. For example, if you want a function to average two numbers
to be called like "(AVERAGE 10 6) ", then you will have to supply two
formal parameters in the parameter list you create:

+--------------------------------·------------------------------------+
1: (DE AVERAGE (X Y)

(QUOTIENT (PLUS X Y) 2))
AVERAGE

2: (AVERAGE 10 6)
8

3 : (AVERAGE 11 6)
8 %AVERAGE does integer arithmetic.

+---+

36

5.2.1 Fonnal Parameters and Global Variables

The formal parameters of a function are often called local variables.
They are variables, because, just like any other atoms that have values,
they are "assigned" values when the function is entered, and can be used
to access those values. They are local variables, however, because
unlike other variables they can only be referenced inside the function
for which they are defined. An example will make this clearer:

+---+ . .

1: (GLOBAL '(VARIABLEl))
NIL

2: (SETQ VARIABLEl ' (FOO BAR))
(FOO BAR)

3: (DE FUNNYFUNCTION (VARIABLE2)
(LIST 'BANG VARIABLE2 VARIABLEl))

FONNYFUNC?ION

4: (FUNNYFUNCTION '(AB)) %VARIABLE2 and VARIABLE both
%have values when referenced

(BANG (AB) (FOO BAR)) %here

5: VARIABLE2
***** (not global

6: VARIABLEl
(FOO BAR)

%but VARIABLE2 has no value
VARIABLE2) %outside the scope of

%FUNNYFUNCTION.
%however, VARIABLEl has it
%value anywhere

+-----------------------~---+

In contrast with a local variable, like VARIABLE2, whose scope is just
the function for which it is defined, variables like VARIABLEl, are
defined everywhere; hence they are global in scope, and are often called
global variables. Why does Lisp make this distinction between local and
global variables? We discuss this in the next section.

5.2.2 Modularity and Function Definitions

There is a good reason formal parameters are local to their functions
and that is, the names chosen for the parameters do not affect the
meaning of the functions. For example I could have defined CUBE as:

+---+
1: (DE CUBE (ANYNAMEIWANT)

(TIMES ANYNAMEIWANT
(TIMES ANYNAMEIWANT ANYNAMEIWANT)))

CUBE

'-._,/

+---+ '-._,/

37

Clearly someone using the function CUBE shouldn't have to know the name
of the variable that I used as its formal parameter, in order to use the
function properly. More generally, he shouldn't have to know anything
about the function that doesn't have to do with its meaning. But if
formal parameters were global variables he would have to know the names
I had used, or else his own functions might not work properly. An
example will show why this is so. Suppose that Ralph is writing a Lisp
program, and has borrowed some of my functions, including CUBE. Now
Ralph writes a new function that uses CUBE:

+---+
10: (DE SUMCUBE (ANYNAMEIWANT Y)

(PLUS (CUBE Y) ANYNAMEIWANT))
SUMCUBE

+---+

Now, assuming ANYNAMEIWANT and the other formal parameters of these
functions were global in scope, what would happen when Ralph asked Lisp
to evaluate "(SUMCUBE 19 5)"? When SUMCUBE was.entered, Y would be set
to 5 and ANYNAMEIWANT to 19. Then, the arguments to PLUS would be
evaluated. To evaluate the first argument "(CUBE Y)", the function CUBE
is entered, and its parametar, ANYNAA."'1EIWANT, is set to 5. CUBE
eventually returns 125, and now the second argument to PLUS, the atom
nANYNAMEIWANT" is evaluated. But it no longer has the value it had when
SUMCUBE was entered! The variable ANYNAMEIWANT has had its value changed
to 5 by CUBE. Thus, the call to SUMCUBE would return 130, not 144.

Needless to say Ralph, would be very confused. His SUMCUBE function is
correct, and I promised him that my CUBE function is ok (which it is).
The problem is that Ralph unfortunately used a variable name which
clashed with one that I used. Thus, if parameter names were global, to
write his functikns correctly, Ralph would not only have to know what my
functions did, but what names I used. Because the names chosen for
parameters don't have anything to do with the meaning of functions, we
don't want to require Ralph to know such things. Thus Lisp makes all
formal parameters local to their function, not global, and the clash we
described above never arises.

The localization of formal parameters is one feature of Lisp that
enables the functions you write to be modular "black-boxes". Good
functions are black boxes because you should not need to know any of the
details about how they are implemented or what goes on inside them when
they are operating. You should write your functions so that all any user
needs to know to use tham is what the name of the function is, the
arguments it needs (their meaning, not their names), what its body does
(not how it does it), and what the function returns.

38

5.2.3 On the Use of Global Variables

Now that we understand why formal parameters are made to be local
variables let's discuss the role of global variables a little more
carefully. First of all, how do you tell if you are dealing with a
global variable? Simple. If you can access the value of the variable
anywhere, its global. In particular, only global variables can be
referenced at the "top-level" in Lisp:

+--+
8: FOOBAR
(A LIST OF 5 THINGS)

9: BARFOO
***** (not global BARFOO)

+---+

Here, FOOBAR is global, but BARFOO is not. In UO-LISP you can also find
out whether a variable is global or not by using the function GLOBALP;
if it returns Tits argument is global; if it- returns NIL, the variable
is not global.

+---+
10: (GLOBALP 'FOOBAR)
T

11: (GLOBALP ' BARFOO)
NIL

+---+

Second, how do you create a global variable? This is also simple. Just
declare it to be global, using the GLOBAL function (see Chapter 2.7 of
your UO-LISP Learner's Manual), then you can SETQ it to anything you
like. Now you understand all those calls to GLOBAL in the preceding
sections! Note that each of the global variables we used in those
examples was mentioned in an appropriate GLOBAL declaration before we
every tried to reference it.

Finally, when do you use global variables? This is not so simple to
answer. You can, of course, use them anywhere you want. But a rule of
style in Lisp programming says that you should never use them if you can
figure out a way to use local variables instead. In general try to use
them to represent pieces of data that must be referenced by many
functions. Data that are used by only a few functions can almost always
be passed as function parameters. Section 11 will present several
examples of the appropriate use of global variables. For now, just be
aware that their use should always be carefully considered.

5.2.4 Good Programming Style in Lisp

Writing modular functions and limiting the use of global variables are
two aspects of good programming style in Lisp. Other aspects of the use
of functions are equally important. Perhaps the most important rule to
keep in mind is that well-written large Lisp programs usually comprise a
large collection of separate functions. This design of a system is often
difficult to appreciate for novice Lisp programmers who are familiar
with other languages. In languages like FORTRAN or BASIC, you are
encouraged to think of programs as consisting of one large main program,
and a few auxiliary subroutines. In fact, in many cases the subroutines
are really not separate from the main program, they are just blocks of
code you branch into and out of inside "the program". In Lisp, things
are completely different. First, there is no such thing as a "main
program". There are only modular function definitions, which may call
one another. And there need not even be a "top-level" function which
calls the others, but is not called by them. Recursion in Lisp enables
function "A" to call "B", which, in turn, calls "A" again. Second,
rarely are any of the functions .in a large Lisp program ~hemselves
large. It is. almost always a good rule of thumb to never let any Lisp •
function exceed about 20 lines of code. In the following sections we
will have a chance to put these and other rules into practice.

5 . 3 Saving Functions

We have written a few small functions: nothing that would be difficult
to type in every time we started a new session. But sooner or later it
will become painful to retype large programs every time we restart the
system. 00-LISP provides both an editor for modifying the definition of
a function and a filing system to save and restore functions from disk.

To save a set of functions and global variables requires four simple
steps:

1. Define all the functions using DE.

2. Create a GLOBAL variable by which you want to know this
collection of functions. This variable is known as the file
control variable. Normally this variable should have the same
name as the first characters of the name of the file in which
the functions are to be stored.

3. Assign a list to the file control variable using SETQ. The
first element of the list should be a string with the name of
the file that you want the functions written to. The remaining
elements should be the names of functions you want saved or
expressions to execute during the loading process (the
following example will demonstrate creating and initializing
some global variables using this process).

4. Call the SAVE function with the file control variable as its
unquoted argument.

39

40

In the following example we create a global variable, assign it a value,
define a function and save the whole works in the file FIRST.LSP.

+---+
1: (GLOBAL '(GGG))
NIL

2: (SETQ GGG 34)
34

3: (DE FNl (X Y) (TIMES X (TIMES Y Y)))
FNl

4: (GLOBAL ' (FIRST))
NIL

5: (SETQ FIRST
I ("FIRST .LSP" .

(GLOBAL I (GGG))
(SETQ GGG 34)
FNl))

(•FIRST.LSP" (GIDBAL (QUOTE (GGG))) (SETQ GGG 34) FNl)

• 6: (SAVE FIRST)
FIRST

+---+

SAVE should be called periodically during a session so that a hardware
or software crash does not cause all your work to be lost. The file
system will change the name of the file each time SAVE is entered by
changing the extension into Enn and adding one to nn for each call. This
will create a string of file ·names for the above of FIRST.LSP,
FIRST.EOG, FIRST.E0l, FIRST.E02, and so on.

To restore a file created by SAVE is the function of LOAD. LOAD will
read a file created by SAVE and create a file control variable for it so
that it can be saved again. The name of the variable is returned by
LOAD. For example:

+---+
1: (LOAD "FIRST. E02")
FIRST

+---+

Here, the third incantation of FIRST.LSP is restored and the file
control variable FIRST created.

At this point you should try and define a few simple functions, save
them on disk, and restore them.

CHAPTER 6
FLOW OF CONTROL

You may have noticed that Lisp, like almost every
language, has a default order of evaluating expressions.
several expressions to 00-LISP at once, like this:

other computer
If you type

+---+
1: (LIST 'A 'B) (LIST 'C 'D) (LIST 'E 'F)

+---+

UO-LISP will evaluate them in the order presented, returning their
values in that order:

+--=+
(A B)

2 (C D)

3 (E F)

4:

+---+

Similarly, remember that when Lisp evaluates the arguments to a function
it does the first, then the secondr then the third, and so on. And when
a function is called, the forms in the body of the function are
evaluated in the exact order given when the function is defined. These
are examples of the seauential flow of control that is standard in Lisp,
BASIC, FORTRAN, and probably every other language you know.

However, to develop sophisticated programs you often need to go beyond
simple sequential evaluation of expressions. Branching statements,
common to many languages, are examples of ways of circumventing
sequential flow of control. In this section we discuss a few of the ways
that Lisp provides to control the evaluation of s-expressions. In
particular we will look at conditional, iterative, and recursive flow of
control in Lisp. You will get a glimpse of how in Lisp, unlike other
languages which come with a fixed set of ways of controlling execution,
it is actually possible to create your own flow of control functions.

42

6.1 Conditional Flow of Control

It is often the case that you want something to happen only if a certain
condition is true. In other languages you might express this using
conditional statements such as:

or

or

IF (J~EQ.5) N = 1

100 IF J = 5 THEN N = 1

if j == 5 then n = 1

[FORTRAN]

[BASIC]

(CJ

There are several different ways of expressing these forms in Lisp.

6.1.1 AND and ORD

In Lisp you • express conditional evaluation the way you do everything
else: with a function. The simplest conditional functions in Lisp are
AND and OR. To express the above assignment using AND you would say:

+---+
1: (AND (EQ J 5) (SETQ N 1))

+---------~-----------------~---+

The general form of AND is:

(AND <forml> <forrn2> <forrn3> ... <forrnj> ... <forrnM>)

where <formj> is any S-expression. AND evaluates the <formj>s in order
until one returns a NIL value, at which point AND returns NIL and leaves
the remaining forms unevaluated. Thus, in the above case, if (EQ J 5)
returned NIL (say J had the value 6), AND would not evaluate the next
form, and N would not get set to 1. If all AND's arguments evaluate to
non-NIL, AND returns the value of the last <forrnM>.

Note that AND can have any number of arguments, and in the simple case
where it is given only two, it has a natural interpretation in terms of
familiar IF-THEN constructions:

(AND <forml> <form2>)

43

means:

IF <forml>
THEN <form2>

OR is the converse of AND. It evaluates each of its arguments in order
until one returns a NON-NIL value, at which point OR returns that
non-NIL value and leaves the remaining forms unevaluated. If all OR's
arguments evaluate to NIL, OR returns NIL. In the simple case where OR
is given only two arguments, like AND, it also has a natural
interpretation in terms of IF-THEN:

means:

6.1.2 COND

(OR <forml> <forrn2>)

IF NOT (<forrnl>)
THEN <forrn2>

The Lisp functions AND and OR are sufficient to express simple
conditionals, but what if you want to say more complicated things?

(BASIC }

IF I = 5 THEN LET N = 1
IF I = 6 THEN LET N = 0

or

(PASCAL }

if i = 5 then n .- 1
else if i = 6 then n := 0;

To express complex conditionals, Lisp has a very general function called
COND, which combines both the actions of AND and OR. To express the
above complex conditional using COND you would say:

44

+---+
1 : (COND ((EQ I 5) (S ETQ N 1))

((EQ I 6) (SETQ N O)))

+---+

The general form of COND is:

(COND (<testl> <sequencel>)
(<test2> <sequence2>)

(<testi> <sequencei>)

(<testN> <sequenceN>))

where <testi> is any S-expression, and <sequencei> is any sequence of O
or more S-expressions. The (<testi> <sequencei>) lists that are the
arguments to COND are often referred to COND clauses with the <test>
being called the antecedent and the <sequence> the consequent.

COND first evaluates <testl> (the form (EQ J 5) in the previous
example). If that returns any non-NIL value, then the remaining forms in
that COND clause (<sequencei>) are all evaluated in order. In the
previous example there was only one such form, (SETQ N 1), but we could
have put any number of S-expressions there. After the <sequencel> forms
are evaluated, COND stops, returning the value of the last form in the
sequence. No other COND clauses will be evaluated. However, if <testl>
had the value NIL, then COND does not evaluate the remaining forms in
the COND clause. In this respect it is acting like AND, only evaluating
<sequencel> if <testl> is non-NIL. Instead of evaluating <sequencel>,
COND repeats the above process with the second COND clause. It evaluates
<test2>, and if the value of <test2> is non-NIL, then, analogous to the
first clause, the <sequence2> forms are are all evaluated, and the COND
stops. Also analogous to the first clause, if <test2> evaluates to NIL,
the third COND clause is tried. In general, this evaluation of the
<testi> forms continues until one finally returns a non-NIL result, at
which time the remaining S-expressions in that clause are evaluated, and
the COND returns. In this respect it is acting like OR, stopping
evaluation when the first non-NIL <testi> is found. More information
about COND can be found in Chapter 2.10 of your 00-LISP Learner's
Manual.

The action of COND may seem confusing at first, because it is such a
general conditional statement. You might find it useful to think of COND
in terms of IF-THEN conditionals, with·which you might be more familiar.
Here's what COND looks like in IF-THEN form:

45

IF <testl>
THEN <formll> <forml2> <forml3> ...

ELSEIF <test2>
THEN <form21> <form22> <form23> ...

ELSEIF <test3>
THEN <form31> <form32> <form33>

ELSEIF <testN>
THEN <forrnNl> <forrnN2> <forrnN3> ...

Another example of the use of COND will also give you a better feel for
how it is used. Suppose you wanted a function, called ADDRESS, that
would remember the addresses of your friends for you. More specifically,
ADDRESS should be a function of one argument (a friend's name), and
should return the friend's address when called. Here is a simple way to
implement ADDRESS using COND~

+---+
1: (DE ADDRESS (NAME)

(COND ((EQ NAME 'JED) '(411 LA SALLE))

ADDRESS

((EQ NAME 'WILLIAM) '(765 LONG BEACH))
((EQ NAME 'STEPH) '(918 OCEAN) J
((EQ NAME 'HANK) '(1010 SANTA MONICA))
((EQ NAME 'DAVE) ' (1055 MANNING))))

2: (ADDRESS 'HANK)
(1010 SANTA MONICA)

3: (ADDRESS 'STEPH)
(918 OCEAN)

4: (ADDRESS 'ARNOLD)
NIL

~---+

Note, as the last example (4:) illustrates, if all of the COND <testi>s
return NIL, COND returns NIL. It is common practice to use the last
clause of a COND as an "otherwise" clause; a clause whose <sequencei>
forms should be evaluated, but only if all the other clauses fail. To
accomplish this, you must use a last <test> that is guaranteed to return
a non-NIL value. Traditionally T is used for this purpose, since it
means the logical opposite of NIL. For example, suppose you wanted to
set N to O if I was 5, to 1 if I was 6, and otherwise set N to 2. This
is easily accomplished by:

46

+---+
1: (COND ((EQ I 5) (SETQ N 1))

((EQ I 6) (SETQ N O))
(T (SETQ N 2)))

+---+

6.1.3 COND, AND and OR are Special Forms

A final thing to note about COND, as well as AND and OR, is that like DE
and SETQ they don't evaluate their arguments before operating on them.
They are Lisp special forms. If you think about it a bit, this makes
sense. COND is a conditional function that shouldn't evaluate its
arguments automatically; its qnly supposed to evaluate the <sequencei>
forms, when <testi> evaluates to non-NIL. Automatically evaluating all
COND's arguments before entering COND would defeat its conditional
purpose!

6.2 Iterative Flow of Control

It is very common to write programs to do things repeatedly. Branching
statements like:

or

[FORTRAN }

IF (I.LT.10) GO TO 222

[BASIC}

GO TO 200

that allow you to return to a previous labelled statement, are one
common way many programming languages provide for iterative flow of
control. In this section we will look at one means Lisp provides to do
iteration. It is not the only means, or the most elegant, but it is the
most basic.

47

The basic function that allows you to do iterative, non-sequential,
execution is called PROG. It is rather difficult to describe the
structure of PROG, and in fact it has several different important
features. So we wil.l introduce PROG with a series of examples each
demonstrating more of its features, culminating in an example where it
is employed to define a useful iterative function.

The first important feature of PROG is that it allows you to declare and
use an unlimited number of local variables. The first form in a call to
PROG must be a list of atoms, or the nul 1 list "() "; for example:

(PROG () ...) [No variables]

or

(PROG (FOOBAR) .. ~) [One variable]

or

(PROG (ABC D) ...) (4 variables]

The atoms are local variables within that call to PROG. Recalling our
discussion of local and global variables in Section 5.2.1, you will
remember that this means the variables in the list can only be
referenced inside the call to PROG, no~ outside. Thus, if I say:

+---+
1: (PROG (FOO) (SETQ FOO' (OH SAY CAN YOU SEE)))
NIL

+--+

there is no problem, but if I try to access FOO outside the PROG in
which it is declared, I get into trouble:

+---+
1: (PROG (FOO) (SETQ FOO '(OH SAY CAN YOU SEE)))
NIL

2: FOO
***** (not global FOO)

+-----~---+

We see here a general technique· for creating local variables needed to
temporarily remember the results of computations inside a function. body.
If you need to remember a value temporar~ly, don't assign it to a global

48

variable. Just wrap the expression in a PROG and declare all the locals
you need inside the PROG. The value of the PROG is set by executing the
special functior. RETURN, the argument of RETURN becoming the value of
the PROG. For example:

+---+
1: (DE BEERSONG (N)

(PROG (REFRAIN)
(SETQ REFRAIN (CONS N '(BOTTLES OF BEER)))
(RETURN

(APPEND REFRAIN
(APPEND I (IN THE WALL)

(APPEND REFRAIN
'(IF ONE OF THE BOTTLES SHCULD

HAPPEN TO FALL)))))))
BEERSONG •

2: (BEERSONG 47)
(47 BOTTLES OF BEER IN THE WALL 47 BOTTLES OF BEER
IF ONE OF THE BOTTLES SHOULD HAPPEN TO FALL)

3: (BEERSONG 46)
(46 BOTTLES OF BEER IN THE WALL 46 BOTTLES OF BEER
IF ONE OF THE BOTTLES SHOULD HAPPEN TO FALL)

+---+

The forms after the list of local variables in the PROG functior. are
called the~ of the PROG. As the last example illustrates, the PROG
body can contain any number of s-expressions, and they are generally
evaluated in order. Note also that PROG, like DE, SETQ and COND is a
special form; it does not evaluate its arguments before the function
evaluation begins.

6.2.2 RETURN

PROG, like COND, and unlike other Lisp functions, has an important
feature that lets you stop evaluating forms in the PROG body whenever
necessary. If a call to the function RETURN is found anywhere in a PROG,
the computation exits from the PROG immediately, evaluating no further
forms in the PROG body. For example:

'-._/

49

+---+
1: (DE ODDSQUARE (N)

% ODDSQUARE returns the square of a number, N, if
% it is odd, otherwise it returns just N. A
% number is odd if, when divided by 2, it yields
% a remainder of 1. The built-in UOLISP function
% REMAINDER returns this remainder.

(PROG (SQ)
(SETQ SQ (TIMES N N))
(COND ((EQUAL 1 (REMAINDER SQ 2))

(RETURN SQ)))
(RETURN N)))

ODOSQUARE

2: (ODDSQUARE 5)
125

+---+

In the previous call to ODDSQUARE, N will be set to 5, and so the SETQ
will set the value of the local PROG variable SQ to 125. In the next
form, COND first evaluates (EQUAL 1 (REMAINDER SQ 2)) which returns T,
since SQ is 125. Then, since the first argument to the COND is non-NIL,
COND evaluates its second argument, which is a call to the function
RETURN. Note that RETURN has one argument, and its value, 125, will be
the value returned from the PROG. Because the RETURN is encountered, the
last S-expression of the PROG is not evaluated. If the argument to
ODDSQUARE had been even, say 4, then (EQUAL 1 (REMAINDER SQ 2)) would
have returned NIL, and COND would not have evaluated its second form,
the call to RETURN. As a result~ the last form in the PROG body,
(RETURN N), would have been evaluated, and its value, 5, returned as the

value of the PROG.

One final note: If no RETURN is executed during the body of the PROG,
NIL is returned, not the value of the last expression as you might
expect.

6.2.3 GO and Labels

The final important feature of PROG enables you to do iteration by
looping through a portion of the PROG body code, much like you do in
other languages. Within the body of a PROG you can place a label, which
can be any Lisp atom. Then, as the code in a PROG body is executed, if a
call to the function GO is encountered, with the label as an argument,
control will return to S-expression right after the label. Thus, PROG
labels in Lisp act much like numeric statement labels in BASIC, FORTRAN,
and PASCAL. In this way, a block of S-expressions can be repeatedly
evaluated, as shown schematically below:

(PROG ()

LOOP

<S-expressions>

(GO LOOP) ... }

50

% a label called LOOP

% this call to GO results in a
% jump to just after the label LOOP

Here, the expressions between the label LOOP and the form (GO LOOP) will
be evaluated again and again. Of course, you don't want to get into an
infinite loop, so you need some way of jumping out of this code. To do
this, you can place a call to the function RETURN inside the repeated
code. By judiciously using GO, RETURN, and statement labels within a
PROG body (and only within a PROG body!), you will find it possible to
tailor the flow of evaluation of S-expressions in almost any way you
wish. Chapter 2.8 of the UC-LISP Learner's Manual will give you more
information on these functions, and how to use them correctly. For now,
we will· present an example that uses' all the important features of PROG
to give you an idea of how they are typically used to accomplish
iteration.

6.2.4 An Example Using PROG

I want to define a Lisp function., called SUMSEGMENT, that is described
as follows:

NAME:
-SUMSEGMENT

INPUT:
-two integers (M, N)

PLAN
-if Mis greater than N, SUMSEGMENT from M to N is equal to O
-if Mis equal to N, SUMSEGMENT from M to N is M
-otherwise, SUMSEGMENT from M to N is the sum of the integers

M to N

Here is how SUMSEGMENT can be implemented using PROG, GO, RETURN, and
labels:

51

+--------------------------------=------------------------------------+
1: (DE SUMSEGMENT (MN)

(PROG (SUM) % 1
(COND ((GREATERP M N) (RETURN 0))) % 2

(SETQ SUM M) % 3
LOOP % 4

(COND ((EQ M N) % 5
(RETURN SUM)) % 6

(T % 7
(SETQ M (PLUS 1 M)) % 8
(SETQ SUM (PLUS M SUM)) % 9
(GO LOOP))))) % 10

SUMSEGMENT

2: (SUMSEGMENT 2 7)
27

3: (SUMSEGMENT 5 5)
5

4: (SUMSEGMENT 5 3)
12

+---+

Let's go carefully through each line of this definition to fully
understand it. The basic idea of this definition is to keep a running
sum in the variable SUM, first initializing SUM to M, then incrementing
M by 1, adding that new M to SUM, repeating the process until Mis equal
to N, and finally returning the SU~.

On line 1 (%1) we enter a call to PROG and declare a single PROG
variable, SUM, which will be used to hold the accumulating sum. On line
2, we take care of the case where N is greater than Mand return 0. If M
is less than or equal to N, on line 3 we continue by initializing the
variable SUM to M. Line 4 contains the PROG label, LOOP, which announces
the start of our repeated block of code in the PROG body. The remainder
of the PROG body is a call to COND. On line 5, the COND tests to see if
Mand N are equal. If so, the call to RETURN on line 6 returns the
current value of SUM out of the PROG and out of the function. If Mis
still less than N, the "otherwise" clause of COND is executed. Line 8
increments M by 1, and line 9 increments the accumulating SUM by M. Then
line 10 returns control to the label LOOP, and the COND is repeated.
This iterative process will continue until Mis incremented to the value
of N.

52

6.3 Recursive Flow of Control in Lisp

The previous example showing how to specify an iterative process in Lisp
should be familiar to many of you who already program. It is really not
very different from how you might accomplish the same task in FORTRAN or
BASIC. However, Lisp provides a way to accomplish this and many other
related tasks in a way that is often much more elegant and succinct. In
this section we will show how to write the same SUMSEGMENT function as a
RECURSIVE computation, not an iterative one; and we will also spend some
time giving you a "feel" for recursion -- when to use it, and how to
understand recursive functions that others have written.

Let's begin by considering a definition scheme for SUMSEGMENT that is a
bit different from the one we used above:

NAME:
-SUMSEGMENT

INPUT:
-two integers (M, N)

PLAN:
-if Mis greater than N, SUMSEGMENT from M to N is 0
-if Mis equal to N, SUMSEGMENT from M to N is M
-otherwise, SUMSEGMENT from M to N is M + SUMSEGMENT

from M + 1 to N

The only difference between this scheme and the previous one is the last
clauses in their plans. While the first plan described a general, vague
property of SUMSEGMENT, "SUMSEGMENT from M to N is the sum the integers
M to N" the new plan describes a more precise, but somewhat strange
property "SUMSEGMENT from M to N is M + SUMSEGMENT from M + 1 to N".
While this latter property seems true (think about it!), does it really
describe a procedure for computing SUMSEGMENT. In most languages, the
answer is "no"; in Lisp, a recursive procedure can be constructed that
is quite faithful to this plan. The function ADDl used here is an
abbreviation for (PLUS 1 M).

+---+
1: (DE SUMSEGMENT (MN)

(COND ((GREATERP M N). 0)
((EQUAL M N) M)
(T (PLUS M (SUMSEGMENT (ADDl M) N)))))

SUMSEGMENT

2: (SUMSEGMENT 2 8)
35

+---+

This a recursive definition of SUMSEGMENT because it is defined in terms
of itself (i.e., the definition of SUMSEGMENT embeds a call to
SUMSEGMENT). Such a recursive definition is likely to seem strange to '-"

53

you. How can you define a function in terms of itself without getting
into some sort of infinite loop? Since recursion is a bit unnatural, and
because your previous programming experience may not have taught you
about this important concept, we will spend some time looking at exactly
how this recursive definition works.

The best way to understand how a function works is to watch it in
action. In 00-LISP you can do this by tracing the function (see Cnapter
2.17 of your 00-LISP Learner's Manual) with TR and watching as calls to
the function are evaluated.

+--.------------+
3: (TR SUMSEGMENT)
*** Redefined: SUMSEGMENT
SUMSEGMENT

4: (SUMSEGMENT 3 5)
Entering SUMSEGMENT % 1.

arg[l] = 3
arg[2] = 5

Entering SUMSEGMENT % 2.
arg[l] = 4
arg[2l = 5

Entering SUMSEGMENT % 3.
arg[l] = 5
argc21 = 5

Exiting SUMSEGMENT = 5 % 4.
Exiting SUMSEGMENT = 9 % 5.
Exiting SUMSEGMENT = 12 % 6.
12

+---+

To evaluate (SUMSEGMENT 3 5) (line % 1.), the COND of SUMSEGMENT is
entered, and since none of the other COND <tests> are true, the
otherwise (final)clause is evaluated. This is a call to PLUS, and both
arguments to PLUS must be evaluated before the call to PLUS can return.
The second argument is a call to (SUMSEGMENT 4 5), so SUMSEGMENT is
re-entered (line% 2.), this time with the arguments 4 and 5, not 3 and
5. Again only the othenvise clause of the COND in SUMSEGMENT is true, so
a call to PLUS is again initiated. As before, to do the PLUS, we must
first evaluate its arguments, and this means re-cal'ling SUMSEGMENT one
more time, with the arguments 5 and 5 (line% 3.). When SUMSEGMENT is
entered this time, however, the second clause of the COND, is evaluated,
and the recursive call is never reached.

If you imagine each call to SUMSEGMENT as going down a level (as the
above suggests), we are now at the bottom. This particular call to
SUMSEGMENT does not result in any further calls. Instead, because Mis
equal to N, the second clause of the COND will return the value of M, 5,
and this will be returned out of the call (SUMSEGMENT 5 5) (line %4.).
Since the call (SUMSEGMENT 5 5) has now returned a value, we can
complete the call to (PLUS 4 (SUMSEGMENT 5 5)), since both arguments to
PLUS are now evaluated. This call to PLUS thus returns 9. We are now
beginning the climb back up to our first function call. Recall that
(PLUS 4 (SUMSEGMENT 5 5)) was evaluated as the part of the attempt to

54

evaluate (SUMSEGMENT 4 5). Now that the PLUS has returned a value, the
call (SUMSEGMENT 4 5) can now return a value, 9 (line % 5.). We have
climbed another step back up. Because (SUMSEGMENT 4 5) is finished, the
call to (PLUS 3 (SUMSEGMENT 4 5)) has all its arguments evaluated, and
itself returns a value of 12. Finally, the last step -- back up to the
top -- is to complete the evaluation of (SUMSEGMENT 3 5) by returning
the value of its last expression, the call to PLUS. So, finally our
top-level call returns 12 (line% 6.).

Following the path of a recursive computation like this is a bit
complicated, and it will take a while for you to get a good feel for· the
flow of evaluation. One good exercise is to get into UO-LISP, trace it
as above, then call SUMSEGMENT with various pairs of arguments. You can
also trace the calls to PLUS, and even EQ, inside SUMSEGMENT, if you
want more details of what is happening. I would also suggest beginning
with small segments (e.g., 2 to 3, 10 to 12), then proceeding to larger
ones.

6.4 Why Use Recursion?

If recursion is tricky to understand, you might well ask: Why use it at
all, especially •since familiar iterative constructs can do the same
thing? The strongest answer is that not everything you·might want to do
in Lisp can be done iteratively. After you get some experience with Lisp
you will see that some recursive operations on trees (lists that have
other lists as elements) cannot be captured by iterative functions.

A second reason, which you should be able to appreciate even now, is
that the code in a recursive function is often more compact, elegant,
and clear than the code in its iterative counterparts. Compare the two
definitions of SUMSEGMENT we have given. Notice first, that there is
much less code in the recursive version. Also observe that the recursive
version doesn't need the local variable SUM, that the iterative version
requires, and that the recursive version never has to call the function
SETQ to keep a running sum of the segment. Finally, look how much more
closely the recursive version reflects its English plan. Recursive
versions of functions are usually a much more transparent statement of
the properties of the required operation than are iterative versions.

One of the best ways to get the concept of recursion under your belt is
to define some useful recursive functions. In the next sections we'll do
just that.

\._/

CHAPTER 7
COMPOSITE LISP FUNCTIONS

In this section we will define some functions, not only to give you
practice with recursion, and using DE, but also to give you some idea of
the style of well-written Lisp functions, and to provide you with an
overview of some of the composite Lisp functions that are available in
UO-LISP.

The built-in list manipulation functions that UO-LISP provides, such as
CAR, CDR and CONS are very general, and ultimately, can be used to do
almost any operation you want on a list. However, expressing the
operation you need can often be very tedious, especially if you want to
repeat that operation many times. By using "DE", you can define highly
specific functions that encode any complex list manipulation operation
that you want. Some of these functions, while much less general than
built-in functions like CAR, are no less .useful.

7.1 The Length of Lists

One very important operation on a list is to determine its length. This
is such a frequent operation that we should have a function that names
the operation, allowing easy use. ijow should we go about writing this
function? When you are just learning Lisp, it is a good idea to plan out
the function before writing the code. So for each function we write
here, we will first lay out a definition scheme, like the ones we used
for SUMSEGMENT in Section 6. The scheme gives us all answers we need to
construct the function in an orderly fashion.

Here is a reasonable scheme for a function to compute the length of a
list:

NAME:
-LENGTH

INPUT:
-a list (Ll

PLAN:
-if Lis not a list or is the empty list NIL,

the length of Lis O
-otherwisei the length of Lis 1 + the length of

(CDR L)

As you look at the plan for LENGTH you should recognize its similarity

56

to the last plan for SUMSEGMENT. You can probably guess that the
function adhering to the plan will be recursive. Before looking at the
definition below, use the plan for LENGTH, and your knowledge of the
recursive definition of SUMSEGMENT to see if you can't implement LENGTH
on your own. Go and try it in UO-LISP now! Write a definition, then try
a few calls to your LENGTH function. As you do, notice how quickly you
can test out and debug your code in Lisp.

Did your definition of LENGTH work? Compare it to the one below:

+---+
1: (DE LENGTH (L)

(COND ((ATOM L) 0)
(T (ADDl (LENGTH (CDR L))))))

*** Redefined: LENGTH
LENGTH

2: (LENGTH '(A B C D NIL))
5

3 : (LENGTH ' (A (B C)))
2

4: (LENGTH NIL)
0

+---+

If your version of LENGTH didn't work, or you don't understand this one,
get back into UO-LISP, type in the above definition and trace LENGTH \J
(and possibly ADDl). Than call LENGTH with various lists and non-lists,

watching what gets printed out. Soon you'll get the hang of it!

One final note, LENGTH is a built-in function. Once you understand its
operation, you should feel free to use the internal version.

7.2 List Membership

Let's continue by writing a couple of other recursive functions for some
especially common list operations. One absolutely necessary operation is
to determine if an S-expression is in a given list. Here is a scheme for
such a function:

NAME:
-MEMBER

INPUT:
-an S-expression (E)and a list (L)

PLAN:
-if the L, has no elements, Eis not a member of L
-if Eis equal to the first element of the list,

Eis a member of L
-otherwise, Eis a member of L if Eis a member

of (CDR L)

57

Once again, I encourage you to use this scheme
recursive version of MEMBER on your own. As
will notice the definition of MEMBER follows
closely:

to try to implement a
in the previous cases, you
its recursive plan very

+--+
1: (DE MEMBER (EL)

(COND ((ATOM L) NIL)
((EQUAL E (CAR L)) L)
(T (MEMBER E (CDR L)))))

*** Redefined: MEMBER
MEMBER

2: (MEMBER 'B '(A B C))
(B C)

3: (MEMBER ' 2 ' (A B C))
NIL

%Since Bis in the list,
%return the sublist,
%beginning with "B"

%2Jis not in the list

4: (MEMBER '(A B) '(1 2 (A B) 3))
((AB) 3) %The element you are

%looking for does not
%have to be an atom

+---+

The previous examples highifght one peculiarity of our definition of
MEMBER. When E is a member of L, MEMBER doesn't just return T,
indicating that Eis in L; instead it returns the whole sublist of L
beginning with E. This is a perfectly adequate value, since it will be
non-NIL, and, in fact, the UO-LISP built-in function called MEMBER
operates in exactly this way.

58

7.3 Concatenating Two Lists into One

As a final exercise, let's define a function that will take two lists
and return one that combines them into one long list. Once again, we
will use a recursive plan.

NAME:
-APPEND

. INPUT:
-two (possibly null) lists, Ll and L2

PLAN:
-if Ll is a null list, the result of appending L2 to

Ll is L2
-otherwise, the result of appending L2 to Ll is the

same as CONSing the first element (CAR} of Ll onto
the result appending L2 onto the remainder (CDR)
of L

This scheme once again implies a recursive definition. Although this
definition is a bit trickier than the previous two, give it a try, and
to fully understand the following definition make sure to actually
implement it in UO-LISP and carefully trace its execution on a variety
of inputs.

+---+
1: (DE APPEND (Ll L2)

(COND ((NULL Ll) L2)
(T (CONS (CAR Ll) .

(APPEND (CDR Ll) L2)))))
*** Redefined: APPEND
APPEND

2: (APPEND' (THE RAIN IN SPAIN)
'(FALLS MAINLY ON THE PLAIN))

(THE RAIN IN SPAIN FALLS MAINLY ON THE PLAIN)

3: (APPEND NIL ' (A B C))
(ABC)

4: (APPEND ' ((A) B C) NIL)
((A) B C)

5: (APPEND NIL NIL)
NIL

6: (APPEND 'A '(B C))
***** (A not a pair for CAR)

%The empty list has no
%elements, so doesn't
%contribute anything to
%the appended list

%To really test a
%definition it is always
%important to test it on
%special cases and cases
%where it should fail!

+---+

59

As you can see, recursive definitions are the rule not the exception.
The functions LENGTH, MEMBER, APPEND, as well as many others, are built
out of more basic Lisp functions, but are also included in your UO-LISP
system because they are so useful (see Chapter 2.14 in the UO-LISP
Learner's Manual).

7.4 Other List Manipulation Functions

The foregoing sections should give you a feel for the wide range of list
manipulation functions it is possible to implement in Lisp .. All good
Lisps come with many such functions built-in, even though the user could
implement them, using only the primitive Lisp functions like CAR, CDR
and CONS. The functions that ·come built-in have proved universally
useful over the years, so they are supplied to save Lisp programmers the
trouble of constructing their own "library" of utility functions. While
we cannot go into detail on the semantics of these functions, or even
enumerate them, we can classify the the list manipulation functions into
several distinct categories, according to what they do to lists .

. List constructor functions make new lists out of other lists and
atoms. Examples: CONS, LIST, APPEND .

. List selector functions access parts of existing lists. Examples:
CAR, CDR.

List predicates determine if some property is true of a list.
Examples: EQ, EQUAL, MEMBER .

. Other list manipulation functions return various properties of
lists. Example: LENGTH.

You will find many of all these kinds of functions described in Chapter
2 of your UO-LISP Learner's Manual.·

CHAPTER 8
THE STRUCTURE EDITOR

UCrLISP has its own resident structure editor which performs a number of
functions.

Writes functions to disk

Reads files of functions from disk

Modifies the definitions of functions already defined

This chapter demonstrates some of the basic features of the structure
editor by following a session through creation, testing, and completion
of a simple Lisp program: the number guessing game. This program uses a
binary search to "guess" at a number thought of by the player.

The creation of a program in the presence of the structure editor can be
accomplished in two different ways. The program code can be entered
directly into Lisp through the console terminal, or a file of functions
may be created by the system editor and read in by the usual method. The
first method has the advantage of providing immediate feedback on the
matching of parentheses. The file editor has the advantage of permitting
retyping of parts of a function without reentering it in its entireity.
We suggest the use of the system editor in the initial creation of
functions as it permits single character fixes until all the functions
can be read in. For the purposes of the this exercise, we recommend that
you enter the program using the system editor and make the file
correspond exactly to what you see here. Don't fix any bugs or
mispellings you find, that will be part of the exercise.

(DE NUMBERGUESS () (GUESS O 127))

(DE GUESS (LOW HIGH)
(COND ((EQUAL LOW HIGH) (PRIN2T LOW))

((ISITGT (HALF HIGH LOW))
(GUESS (ADDl (HALF HIGH LOW)) HIGH))

(T (GUESS LOW (HALF HIGH LOW)))))

(DE HALF (AB) (DIVIDE (PLUS AB) 2))

(DE ISITGT (N)
(PRIN2 "Is it greater than")
(PRIN2 N)
(PRIN2 " (answer Y or N) ?")
(YORN (READ)))

(DE YORN (C)
(COND ((EQ C 'Y) (PROGN (TERPRI) T))

((EQ C 'N) (TERPRI))

STOP

(T (PRIN2T "Y or N only!")
(YORN (READ)))))

61

Put this into a file called GUESS.LSP using what ever editor you have
handy: even the standard CP/M line editor will create files which can be
read by Lisp. Verify that what you typed matches the above character for
character (don't worry about the spaces though). Then enter the
following:

+--+
1: (LOAD "GUESS.LSP")
GUESS

+------------------, ---+

If you have typed things correctly, the editor should respond with
GUESS. If not, it will protiably stop with the prompt "Please enter STOP"
after the LOAD. This usually-indicates a missing parentheses or string
terminator. If this happens, type ~C to exit from Lisp and fix the file
to exactly match that above.

The GUESS returned by LOAD is the name of the file control variable that
contains information needed by the structure editor to write the edited
file back onto disk. If you look at the value of GUESS, you will see:

+---+
2: GUESS
(•GUESS.E00" NUMBERGUESS GUESS HALF ISITGT YORN)

+---+

The first element of the list is the name of a file which the editor

62

will use to write the functions to after they have been edited. The
extension is E followed by a two digit number which is incremented by
one each time the file is written out. By this means many versions of
the file may be created and changes made can be removed by "rolling
back" to some previous version. You will occassionally have to remove
some of the old versions of a file to keep from filling up a disk.

The rest of the GUESS list contains the names of the functions in the
GUESS.LSP file. Note that if you had entered the functions directly into
Lisp, you would also have to create this list and the file name by hand
(see section 5.3).

It is time to try our program. The program waits for you to think of a
number between 1 and 128. When you type something, it asks you a
question which you must answer Y or N. Eventually, if you don't change
your mind, it will zero in on the number you were thinking of. Think of
the number 10 and after typing (NUMBERGUESS), you should see the
following:

+---+
3: (NUMBERGUESS)
Is it greater than (63. 1) (answer Y or N)? N

***** Non-numeric argument

+---+

Evidently there is something wrong with the program as the error and
(63 . 1) indicate. Let's address the first issue as the Non-numeric
argument error looks like it might be caused by trying to do some
arithmetic on (63 . 1). Looking at the source code, we see a DIVIDE
function call in HALF which should be a QUOTIENT. The structure editor
will allow us to change this function name and reexecute the program
without leaving the Lisp environment. To edit a function definition,
call EDIT with the unquoted function name to edit as its argument. When
EDIT is called, it goes into a loop which reads structure editor
commands from the user and executes them. You can find the documentation
for these commands in Chapter 3 of the UO-LISP Learner~s Manual. The
following sequence is one way in which the DIVIDE in HALF can be changed
into a QUOTIENT.

63

+---+

I
I.

4: (EDIT HALF)
Edit[l] PP % Display definition
{EXPR LAMBDA (AB) (DIVIDE (PLUS AB) 2))

Edit[l] F DIVIDE
Found 1 of 1

Edit[2] R QUOTIENT
Edit[2] -
Edit[l] PP
(EXPR LAMBDA {A B)

Edit[l] E
HALF

% Find DIVIDE

% Replace with QUOTIENT
% Exit FIND loop
% Display changed form

(QUOTIENT (PLUS AB) 2))

% Save edited form.

+---+

When the structure editor command loop is in control, the prompt changes
to Edit[n] where n is a number indicating the current editor nesting
level. The first thing we want to do is to be sure of what we are
editing. The PP command causes the expression currently being edited
(the "focus" of the editor) to be prettyprinted. In this case, we see
the internal definition of the function HALF. Our strategy is to find
and replace each occurrence of the atom DIVIDE by the atom QUOTIENT. The
F DIVIDE command causes the structure editor to search the entire
expression to all levels for the atom DIVIDE. When a DIVIDE is found,
the editor is reinvoked on the expression found and the nesting level is
incremented by 1. When an expression is found, a message is printed
indicating the number of occurrence of the expression and how many were
being looked for. The R QUOTIENT command causes the DIVIDE to be
replaced by the atom QUOTIENT. The - command causes the focus of the
editor to return to the previous command level, Edit[l] which was
examining the entire structure. The final PP shows that QUOTIENT has
indeed replaced DIVIDE in the HALF function. The E command causes the
changes to be saved and the function updated (though only in storage,
not in the disk file). If you don't like the changes you've made, the Q
command will exit the editor without updating the function definition.

Once this change has been made, the game runs to completion. This time
I'm thinking of the number 85.

64

+---+
5: (NUMBERGUESS)
Is it greater than 95 (answer Y or N)? N

Is it greater than 79 (answer Y or N)? y

Is it greater than 87 (answer y or N)? N

Is it greater than 83 (answer y or N)? y

Is it greater than 85 (answer y or N)? N

Is it greater than 84 (answer y or N)? y

85

+---+

To demonstrate a few more features of the editor, we will add an English
explanation of the game at the beginning of the program by editing
NUMBERGUESS again. The following sequence adds two print statements to
the beginning of the NUMBERGUESS function.

+---+
6: (EDIT NUMBERGUESS)
Edit[l] PP
(EXPR LAMBDA NIL
Edit[l] 3T
Edit[2] P

% Display expression.
(GUESS O 127))

((GUESS O 127))
Edit[2] I ((PRIN2T "
Edit(2] (PRIN2T

% Move down 3 CDR's.
% Display expression.

Number Game")

Edit[2]"Think of a number between O and 127 and type T")
Edit[2] (READ))
Edit[2] 3-
Edit[l] PP
(EXPR LAMBDA

NIL
(PRIN2T"
(PRIN2T

% Back to top level.
% Check correctness.

Number Game")

"Think of a number between O and 127 and type T")
(READ)
(GUESS O 127))

Edit[l] E % Save the new definition.
NOMBERGUESS

+---+

The command 3T is the command T repeated 3 times (T stands for Tail, the
CDR of the current expression). It simply changes the focus of the
editor to CDR of the CDR of the CDR of the expression being edited. Most
structure editor commands can be prefixed by repetition counts in this

65

manner. The P command following this assures us that the right
expression .is being edited. Pis like PP but calls the PRINT function
instead. The I command inserts a list on the front of a list, that is,
the expression being edited is appended to the expression following the
I, in this case two PRIN2T and a READ function call. The 3- instruction
"backs out" of the editing to the top level. The final PP verifies that
the insertion was done correctly. •

The most important thing to remember is saving the functions you have
edited in a disk file. This does not happen automatically when you leave
Lisp. Use the SAVE function as described previously. SAVE writes the
current definitions of the functions onto disk and increments the
version number in the control variable by 1.

+---+
7: (SAVE GUESS)
GUESS

+---------------------------------------.-----------------------------+

The edited file will now be found in GUESS.EOO.

This concludes the ·demonstration of the structure and character
editors. There are many more commands explained and a one page synopsis
of them in the conclusion of Chapter 3 of the UO-LISP Learner's Manual.

CHAPTER 9
PROPERTY LISTS

In Section 6 you will recall we used COND to implement a simple
function, ADDRESS, that remembered tha addresses of a set of people.
This function hinted at the ability Lisp provides to store and access
symbolic data. In this section we discuss a much more general database
and data retrieval facility of Lisp.

One problem with the ADDRESS function was that the small database of
people and addresses it stored was not extensible. If we wanted to add a
new person, we would have to change the definition of ADDRESS. If we
wanted to store more information about a person -- say his age as well
as his address we 'probably would have to write a totally different
function.

There is a very general way Lisp provides to store information about any
entity. We can think of entities, like people, as having attributes,
such as age, address, height, etc. Each entity is described by
specifying specific values for those attributes. For example, Bob's age
might be 19, his address 1066 Main St, his height 180 cm, etc. How can
we store this kind of information in Lisp? We begin by using an atom to
represent the entity we want to describe. We might use BOB to represent
our friend Bob. We have already seen that atoms such as BOB can have
values, but they also have one other facet. Each Lisp atom also has a
property list which is ideal for storing attributes and their values.

The UO-LISP function PUT is used for assigning a particular value to an
attribute of an entity. It is a function of three arguments with the
following general form:

(PUT <entity> <attribute> <value>)

Here are a few specific examples of its use:

+---+
1: (PUT 'BOB 'AGE 19)
19 %Sets the value of BOB's AGE

%attribute to 19
3: (PUT 'BOB 'ADDRESS '(1066 MAIN))
(1066 MAIN) %Sets BOB's ADDRESS attribute.

%Note the value is returned

+---+

67

Now. we need to be able to access any other these attributes and values
as needed. The function GET is the main selector function for property
lists. It has the form:

(GET <entity> <attribute>)

and returns <entity>'s <attribute>. For example:

+---+
3: (GET 'BOB 'AGE)
19

4: (GET 'BOB 'ADDRESS)
(1066 MAIN)

+--+

You'll probably find property lists a very natural way of thinking about
data storage and access. In fact you might already be able to see how to
reimplement the ADDRESS function using PUT and GET. Try it! More
information about property lists can be found in Chapter 2.5 of your
UO-LISP Learner's Manual. We'll also be using property lists in a later
example, to give you some more practice.

CHAPTER 10
INPUT AND OUTPUT

We've talked in some detail about the evaluation of S-expressions, but
input and output (I/0) refers to the reading of S-expressions, and
printing them. Input and output in Lisp is usually pretty simple, and we
will only discuss a few I/0 functions. They should be all you need to
know for a while.

10.1 Input

The basic input function is called READ. READ reads and returns an
S-expression from the currently selected input file. For all" our
purposes, this file will be your terminal, so READ is a way of reading
from the terminal. For example:

+---+
1: (READ) 5
5

2: (READ) (FOO BAR)
(FOO BAR)

+---+

You may have written a number of Lisp functions into a file and want to
read them into Lisp so you can use tham during a session. This could
have been done by the SAVE function (see Chapter 8) or by a system
editor. To read a whole file you should use the function LOAD:

+---+
1: (LOAD "FNS.LSP")
FNS

+---+

Notice that you should specify your file name using a string (characters
surrounded by double quotes (")), not using an identifier. The string
should contain both the name of the file (FNS), and its extension (.LSP
in this case). LOAD will take each of the S-expressions in the file you
give it and evaluate them. Thus if you have several calls to DE and SETQ
in the file, the LOAD will rasult in a bunch of new variables and

69

functions
access and
interpreter
global file

being defined.
use them just

directly. The
control variable

Once they are loaded, you will be able to
as if you had typed them to the Lisp
value returned by LOAD is the name of the
(see Chapter 8) .

10.2 output

Just as you may need to read from the terminal or from a file, you might
want to print S-expressions to a file to the terminal. The simplest
output function is PRINl. It takes one argument, an S-expression, prints
it to the terminal, and returns the value printed:

+---+
'FIVE) 1: (PRINl

FIVEFIVE %The first FIVE is the result of
%printing, the second one is the
%value returned

2: (PRINl 5)
55

3: (PRINl "FIVE")
"FIVE" "FIVE"

+---+

PRIN2 is very much like PRINl, except it does not print strings with
their double quotes. Compare 3; above with 4: below

+---+
4: (PRIN2 "FIVE")
FIVE"FIVE"

5: (PRINl 'FIVE)
FIVEFIVE

%Quotes come off the expression
%printed, although not off the
%value returned
%Otherwise PRIN2 is the same as
%PRIN1

+---+

PRINT is also like PRINl, but it puts out a carriage return after its
prints its expression:

+---+
6: (PRINT "FIVE")
"FIVE"
"FIVE"

+---+

Finally, PRIN2T is like PRIN2 except it adds a carriage return:

70

+---+
7: (PRIN2T "FIVE")
FIVE
"FIVE"

+---+

There is also a function that just puts out carriage returns. It is
called TERPRI. PRIN2T could have been implemented as:

+---+
8: (DE PRIN2T (E) t ROG-'2.

(PRIN2 E)
(TERPRI) ll

*** Redefined: PRIN2T
PRIN.2T

+---+

You can learn more about I/O functions in Chapter 2.16 of your UO-LISP
Learner's Manual. Chapter 3, on the editor, also discusses the function
LOAD.

riO ~1- ~ ovt 'be,,,.~' L\jP «l

5 - et' p' e.s "ti:) ~ l/ J,el. r.>j ~ " i,,

rn !1\ttJ bo +-~ t~ lP.t,,.,l t) ft<. <'l ~~,v,r\y

i I' ,-,, o llt 5 ~ .i.:~rq ~ Of\: £f> ~ C,)_

·"' ~ ; vL ~ l-l(L. 4,-\
)

~v~\ a\o ;n 6t"1°t.

't

f~o~ l IS OI {~J ... d-io~ w\.,~c;l ~f-i-tr {~~IJti t,·()5 ec,ck)-(,<p(cJ;i)o
1

rcNrns -\'\.,Q VQ.\vf Df !le.)~lo~A s-e'l're.,fiJ. - k ... H-11 vtilue is(\'t re.JI~,

lfl\p~r~t- f Ro & ,J 1 6\ 51n._ f10,, -tv~ e,~o.--J t'!.vc.\uti ➔ n eei(,l,)- er.fe;s,·b,...

~-A f&lO'S ~. vc1\u£ <l _,.l.c \~ ~'!'.prPj.>:o-, 1 i Co ulA be \JSe6) 11Jt l)S

'-'e It 'bv-i -lyil,.J J- J. 1 \ • .1 11 \ ,,, ro b-C •\ f'i 1 e 5 "\rv-ef '

CHAPTER 11
AN EXTENDED EXAMPLE

In the previous sections you've learned a lot about Lisp, how it works
and how to write Lisp functions. But that is not the same as learning
how to use Lisp effectively to solve substantial problems. You know
about the "bricks" and "planks" of Lisp; now you need to learn a bit
about how to use these materials to build real programs. If you are a
BASIC, FORTRAN, or PASCAL programmer, you will find that good
programming style in Lisp is quite different than in the languages with
which you are familiar. Therefore, in this final section we discuss
several techniques for problem solving in Lisp and introduce some of the
elements of style that characterize artificial intelligence programming.

llol An "Expert System" for Tic-tac-toe

To learn about building programs in Lisp, we'll actually build one. The
program we develop below will play the game of Tic-tac-toe (hereafter
"TTT"). Although TTT is a very simple game, it will serve to illustrate
many important techniques of Lisp programming and problem solving. The
approach we take to build our TTT program is very different than you'd
take in any other language. We will build our program as a TTT "expert
system".

Expert systems are kinds of AI programs that attempt not only to solve
problems, but to solve them like humans do. This insistence on
"intelligent" or "human-like" systems is a hallmark of much AI research,
especially work in expert systems. Intelligent expert systems now exist
for aiding in medical diagnosis, configuring computers, and for many
other tasks.

How do humans solve problems? Expert systems research has found that
people often solve problems by employing "rules of thumb", not
necessarily correct algoriphms. For example, people play chess using
rules like "If you are beginning a game, then move out your center pawns
first, then your bishops". They do not try all moves in their heads,
creating massive "lookahead trees" (as do the best computer programs for
chess). Thus, expert systems a're designed as rule-based programs. They
are really very simple in structure. They comprise a (possibly large)
set of simple rules of the form "If <condition> then <action>", and, to
make a decision, they iterate through their rules until they find one
whose <condition> is true. Then they "fire" the rule (do the rule's
<action>). Usually, after a rule is fired, an expert system will go back
to the start of its ruleset, and iterate through again, to make a new
decision. And that's all!

72

Why is Lisp the obvious language for building expert systems? Take a
look at the rules humans use to solve problems. Like the simple chess
rule given above, they are typically expressed symbolically, often in
English. Humans usually think in symbolic languages, not in numbers or
arrays of numbers. Thus a language that supports symbolic computation,
like Lisp, is an ideal medium for modeling much of human problem
solving.

11.2 Developing the "Expert" Rules for TTT

Expert systems are typically built by getting a human expert, and
finding out what rules he uses to solve his problems. For example, if
you wanted to built an expert system for car repair, you might talk to a
mechanic, or watch him work. This is referred to as "knowledge
acquisition". You are acquiring his knowledge for your system. At this
stage, the rules are written down in the language the expert finds most
natural.

Let's acquire a knowledge base for our TTT expert system. Since we are
all experts in TTT, all we have to do is introspect, and try to make
explicit the rules we ·use to play the game. It is often surprisingly
difficult to make explicit the knowledge you use to play even a simple
game like this -- so much of our expertise is unconscious. Try it!

Here is one set of rules. These aren't the only rules that could be used
to play TTT, and they are not the best rules either. Note that they are
written down in their "natural" form; I haven't worried at all about how
to represent them in Lisp.

Rule 1: If two squares in a line are occupied, and you occupy both,
then play the empty square.

Rule 2: If two squares in a line are occupied and your opponent has
both then play the empty square in the line.

Rule 3: If the line contains the center square, and its empty, play
it.

Rule 4: If the line has an empty corner square, play on it.

Rule 5: If the line has any empty square, play on it.

73

11.3 Interpretation or Use of the Rules

The rules are written from the point of view of a player who decides
upon a move by looking at each of the 8 "lines" of three squares (3
horizontal, 3 vertical and 2 diagonal) of the TTT board. The player
stops looking when a rule fires for the particular line he is looking
at, giving him a move. The rules themselves are ordered. For example,
the player always wants to follow Rule 1, (winning the game), if
applicable, rather than Rule 2 (preventing a win for the opponent). Thus
the correct way to use this ruleset is to see if the first rule applies
to any line; if not, repeat trying the second rule, and so on.

11.4 Implementing the Rules and the Rule Interpreter

We now implement our simple "expert" rules for playing the game. Because
each rule naturally divides into an if-part and then-part, we choose to
simply represent each rule as a list of two elements: the if-part
followed by the then-part. Our implementation of the rules illustrates a
top-down approach to problem-solving, which we employ frequently in Lisp
programming. In this case, a top-down approach means we simply write the
rules the way we wish them to appear; as close to their "natural"
representation as possible. Later we will go back to define the required
lower-level functions we require to support this natural representation.
We do not implement the low-level functions first, then force the rules
into a mold they dictate.

74

+---+
% TTTRULES as a global variable whose value will be
% the list of all TTT rules
(GLOBAL ' (TTTRULES))

(SETQ TTTRULES
% Rule 1

(((AND (EQ 2 (NUMBEROFSQUARES (OCCUPIEDSQUARES LINE)))
(OCCUPIES SELF (OCCUPIEDSQUARES LINE)))

(PLAYMOVE SELF (CAR (EMPTYSQUARES LINE))))
% Rule 2

((AND (EQ 2 (NUMBEROFSQUARES (OCCUPIEDSQUARES LINE)))
(OCCUPIES OPPONENT (OCCUPIEDSQUARES LINE)))

(PLAYMOVE SELF (CAR (EMPTYSQUARES LINE))))
% Rule 3

((AND (INCLUDES LINE CENTERSQUARE)
(EMPTY CENTERSQUARE))

(PLAYMOVE SELF CENTERSQUARE))
% Rule 4

((EMPTYSQUAPES (CORNERSQUARES LINE))
(PLAYMOVE SELF

(CAR (EMPTYSQUARES (CORNERSQUARES LINE)))))
% rule 5

((NOT (COMPLETE LINE))
(PLAYMOVE SELF (CAR (EMPTYSQUARES LINE))))))

+---+

Once the rules are written, we should specify how they are used in
playing TTT and finding a move. The function that manipulates and fires
rules should act exactly as outlined in our specification in Section
11.2. The code that controls the execution of rules in expert systems is
often called the "rule interpreter". The function FINDMOVE is our TTT
rule interpreter. Note that the code is heavily commented to help you
understand it. This is a practice we encourage in general.

75

+---=-------+
% FINDMOVE dictates how the rules are used to
% determine the next move. We refer to FINDMOVE
% as the rule interpreter. Each rule has an if-part
% which looks at certain features of a TTT line
% (contiguous triplet). If the if-part of the rule
% is correct, the then-part of each rule suggests a
% move to play. Thus, the rule interpreter FINDMOVE
% operates in two loops. First (in OUTERLOOP) it
% iterates thru all of the rules (stored as the value
% of TTTRULES). For each such rule it will look at all
% lines on the board (INNERLOOP), TESTing to see if
% if-part of the rule works for that line. If it does,
% FINDMOVE DOes the t~en part of the rule, and stops.
% It continues its loops through rules and lines until
% it finds a rule that "fires". If no rule fires
% FINDMOVE returns NIL.

(DE F INDMOVE ()
(PROG (LINES RULES)

(SETQ RULES TTTRULES)
OUTERLOOP·

(COND ((NULL RULES) (RETURN NIL)))
(SETQ LINES TTTLINES)
(SETQ LINE (CAR LINES))

INNERLOCP
(COND ((NULL LINEs(e v(rt

(SETQ RULES (CCR RULES))
(GO OUTERLOOP))))

(SETQ LINE (CAR LINES))
(COND ((TEST (IFPART (CAR RULES))) 'f fJ

(DO (THENP ART (CAR RULES)))
(RETURN NIL))}

(T CPt. (tJ
(SETQ LINES (CDR LINES))
(GO INNERLOOP)))))~

+---+

The implementation of the rule interpreter, and choice of representation
for the TTT rules, constrains a few lower-level decisions. First, we see
that several global variables are referenced in the code for the rules,
so let's declare them:

76

+---+
% CENTERSQUARE will have the center TTT square as its
% value LINE is a global variable that the rules
% reference and which is set to successive TTT lines
% by the rule-interpreter function, FINDMOVE. SELF
% is a variable set to the mark the TTT expert system
% will use (either "X" or "O"l. OPPONENT is set to the
% opponent's mark.
(GLOBAL' (CENTERSQUARE LINA SELF OPPONENT))

+---+

We can also now write several of the functions used by FINDMOVE:

+---+
(DE IFPART (RULE) (CAR RULE))

(DE THENPART (RULE) (CAR (CDR RULE)))

+---+

Because we have completed our representation of rules we can also say
what it means to TEST the if-parts and DO the then-parts. The if-part is
a single S-expression, and to TEST it we just want to·evaluate it as a
piece of Lisp code. If the value it returns in non-NIL, we want to do
the then-part. The then-part is also a single S-expression, a call to
the function PLAYMOVE. So to do the then-part, we also just want to
evaluate it too. To force an expression to be evaluated, we just
explicitly call the function EVAL:

+---+
(DE TEST (IFPART) (EVAL IFPART))

(DE DO (THENPART) (EVAL THENPART))

+---+

77

11.5 Choosing Data Representations

Now before we write the low-level functions that manipulate lines and
squares, in the rules, we need to decide how to represent the TTT board
in data structures. We will adopt a simple representation, not the only
possible one or necessarily the best. We let the atoms A through I
represent each square as .fol lows:

A I B I C

D I E I F

G I H I I

Further, for each square, let's use the property list of its atom (A
I) to indicate who occupies it. We will use a property called "STATUS",
and its value will be NIL when the square is empty, and X or O when
occupied. Finally, since each square is represented as a Lisp atom,
let's represent the TTT lines as lists of the 3 squares included in the
line.

+---+
(GLOBAL I (TTTSQUARES

TTTLINES
CENTERSQUARE

))

%A list of all squares.
%A list of all lines.
%The center square name.

(SETQ TTTSQUARES '(A B C D E F G_ H I))

(SETQ CENTERSQUARE 'E) %The center square.

(SETQ TTTLINES
I ((ABC)

(A D G)
(A E I)

%There are 8 lines of 3 squares
(DEF) (G HI) %Three horizontal lines
(BE H) (CF I) %Three vertical lines
(CE G))) %And two diagonal lines

+---+

78

11.6 Functions for the if-parts of TTT rules

These three representation decisions now make it possible to define all
the low-level procedures called by the rule interpreter and the TTT
rules. The procedures include conventional Lisp functions as well as
predicates, which are functions that return only Tor NIL, depending on
their arguments.

+---+
% OCCUPIEDSQUARES takes a set of squares as an
% argument and returns the ones occupied by X or O.
(DE OCCUPIEDSQUARES (SQUARES)

(COND ((NOT SQUARES) NIL)
((OCCUPIED (CAR SQUARES))

(CONS (CAR SQUARES)
(OCCUPIEDSQUARES (CDR SQUARES))))

(T (OCCUPIEDSQUARES (CDR SQUARES)))))

% OCCUPIED is a predicate that takes a square, and
% returns T if someone is on it (X or 0), otherwise
% it returns NIL.
(DE OCCUPIED (SQUARE)

(COND ((EQ 'X (GETSTATUS SQUARE)) T)
((EQ 'O (GETSTATUS SQUARE)) T)
(T NIL)))

% The predicate OCCUPIES takes·a mark (either "X" or
% "O") and returns if that mark is on all the squares
% give as its second argument.
(DE OCCUPIES (MARK SQUARES)

(COND ((NOT SQUARES) T) _
((NOT (EQ MARK (GETSTATUS (CAR SQUARES))))
NIL)

(T (OCCUPIES MARK (CDR SQUARES)))))

% To find out if someone is on a square, just look at
% its STATUS property.
(DE GETSTATUS (SQUARE) (GET SQUARE 'STATUS))

% To put some mark on a square, just set its status
% property.
(DE PUTSTATUS (SQUARE MARK) (PUT SQUARE 'STATUS MARK))

% EMPTYSQUARES is the opposite of OCCUPIEDSQUARES. It
% takes a set of squares and returns all those not
% occupied.
(DE EMPTYSQUARES (SQUARES)

(COND ((NOT SQUARES) NIL)
((EMPTY (CAR SQUARES))

(CONS (CAR SQUARES)
(EMPTYSQUARES (CDR SQUARES))))

(T (EMPTYSQUARES (CDR SQUARES)))))

+--+

79

+---+
% EMPTY is the opposite of OCCUPIED. It takes a square,
%.and returns T if someone is not on it, otherwise it
% returns NIL.
(DE EMPTY (SQUARE) (NOT (OCCUPIED SQUARE)))

% CORNERSQUARES is a function that takes a set of
% squares and returns all those that are at corners of
% the TTT board (A, C, G and I). Note CORNERSQUARES
% has exactly the same recursive plan for looking
% through the list of squares as both OCCUPIEDSQUARES
% and EMPTYSQUARES.
(DE CORNERSQUARES (SQUARES)

(COND ((NOT SQUARES) NIL)
((CORNER (CAR SQUARES))

(CONS (CAR SQUARES)
(CORNERSQUARES (CDR SQUARES))))

(T (CORNERSQUARES (CDR SQUARES)))))

% The predicat:e CORNER returns non-NIL if its argument,
% SQUl\RE, is a corner square, ot;herwise it returns
% NIL.
(DE CORNER (SQUIµIB) (MEMQ SQUARE '(A C G I)))

% COMPLETE is a predicate that takes a set of squares,
% and returns T if there are no empty squares in the
% set, otherwise, it returns NIL.
(DE COMPLETE (SQUARES) (NULL (EMPTYSQUARES SQUARES)))

% INCLUDES is a predicate of two arguments, a set of
% squares and a square. It returns NIL only if the set
% does not include the square. since sets are
% implemented as lists of squares they include, we can
% see if a square is included in the set just by seeing
% if it is a member of the list.
(DE INCLUDES (SQUARES SQUARE) (MEMQ SQUARE SQUARES))

% NUMBEROFSQUARES is a function that returns the
% number of squares in a line or set of squares, given
% as an argument to the function. Since lines are
% implemented as lists, we can determine the number
% of squares by just computing the length of the list.
(DE NUMBEROFSQUARES (SQUARES) (LENGTH SQUARES))

I

+---+

80

+---+
% PLAYMOVE is a function that takes a square and a
% mark (either X or O). If the square is already
% occupied it just returns NIL. If the square is empty,
% it puts the mark on the square (by modifying the
% status property of the square, and returns the mark.
(DE PLAYMOVE (MARK SQUARE)

(COND ((OCCUPIED SQUARE) NIL)
(T (PUTSTATUS SQUARE MARK))))

+------------------~--+

11.7 The Importance of Abstraction Barriers

This completes specification of all the functions called by the TTT
rules and rule interpreter. Notice how simple most of them were to
write. ·This simplicity is a consequence of the way we chose the
represent our data about lines and squares iri TTT, and underscores the
importance of representation decisions. Taking care in deciding your
data representations is really just another part of the top-down
approach to programming and problem-solving that we have been
advocating. Each time you approach a large programming problem you
should take time to write out all such decisions before you write a line
of code. Think of making data representation decisions as a phase of
programming, just like coding or debugging. You will find that if you
make these decisions deliberately and explicitly, most of the functions
you need will be very easy to implement, as they were here. On the other
hand, if you spend little thought on data representation, you will
almost always find it difficult to write your functions. In addition, it
will probably take you longer to test and debug your code than it might
have, and it will be tougher for other people (even yourself!) to
understand how your program is operating.

Since our judicious choice of data representations made any of the above
functions very small, one might ask why we bothered to write some of
them at all. Why bother with the access and setting functions GETSTATUS
and PUTSTATUS? Why not just use GET anC: PUT directly? And, why bother
defining INCLUDES; why not just use call to MEMQ every time you need to
see if a square is in a line?

This substitution would actually be a very bad idea. By using MEMQ
instead of INCLUDES we would be showing the specific data representation
we had chosen for lines and squares. On the other hand, use of INCLUDES
abstracts away from the details of the representation we have chosen.
There are several reasons this abstraction is very desirable. First, it
makes the meaning of the code we write much clearer to others. For
example, when someone is reading your TTT rules, it will be much easier
for him to understand what you knowledge intend to encode by "(INCLUDES
LINE 'E)" than by "(MEMQ 'A '(A B C)) ". In understanding the meaning of
a rule, seeing the details of its representation is not just irrelevant,
it is detrimental. The abstraction afforded by INCLUDES creates a \..J

81

barrier between the viewer of the code and the details of imphementation
that actually facilitates comprehension.

There is a second even more important reason for creating such
abstraction barriers. Assume that had written your .TTT program using
MEMQ, not INCLUDES. Now suppose someone tells you that thera is a much
better way to represent your TTT data, say, using arrays, not lists. You
want to change your representation, but you realize that your program
has dozens of calls of the form "(MEMQ <square> <list>)". So you have to
give up this new, better, representation, because it would take you
hours or days to make all the required changes.

By following the policy of using functions like INCLUDES to abstract
away from the details of data representation you can avoid this problerr.,
preserving the flexibility and modularity of your code. In this case,
for example, to change to an array representation all you sould have to
do is change the definition of INCLUDES (and a couple of other functions
that manipulate lists of squares directly). All the calls to INCLUDES
would remain intact, because the meaning of INCLUDES has not changed,
just the specifics of its implementation. Thus abstraction barriers not
only make cede more comprehensible and free of implementation detail,
they also make ~rograms much easier to modify and enable you to try out
different representations of data.

The important practical ressons to conclude from this discussion of data
abstraction are:

. Gather all the code that manipulates (craates, accesses, changes)
the low-level data structures that you have selected into a
few functions.

Name these functions to. reflect the meaning of the computations
they effect, not the low-level data manipulations they do .

. Use these functions in all high-level code, to abstract away from
details of your data representation.

11.8 Some Simple Control Functions

Now that all of the functions implementing the TTT rules and FINDMOVE
are complete, all we need to make our TTT "expert system" operational
are a couple of high-level routines to begin, record, and complete the
game. As usual, we proceed in a top-down fashion.

82

+---+
% PLAYTTT is the top-level function called to play a
% game. It first initializes all squares to empty,
% then determines who plays X and o, by asking the
% user (the OPPONENT) which he wants to play. The
% system plays SELF. It then enters a loop. First it
% checks to see if the board is full, in which case it
% announces a tie. If not, a move is played. If it is
% the opponent's move, the user is asked to pick a
% square, and it is played on. (Note if the user picks
% a square that is already played on, PLAYTTT doesn't
% give him another chaNce; it is as if the user chose
% to make no move on his turn. If it is the system's
% move, it calls FINDMOVE to select a square. After_
% each move, PLAYTTT checks to see if there is a
% winner. If so it returns; if not it loops back for
% a new move.
(DE PLAYTTT ()

(PROG (NEXTMOVE SQUARES)
(SETQ SQUARES TTTSQUARES)

LOOPl

LOOP2

(MAKEEMPTY (CAR SQUARES))
(SETQ SQUARES (CDR SQUARES))
(AND SQUARES (GO LOOPl))
(SETQ OPPONENT

(QUERY "Which do you want to play [X or O]?"))
(SETQ SELF (OTHERMARK OPPONENT))
(SETQ NEXTMOVE 'X)

(COND ((NOT (EMPTYSQUARES TTTSQUARES)) i)[; fJ ,
(PRIN2T "A tie game !'')
(RETURN NIL)) JI

((EQ NEXTMOVE OPPONENT) (f (?JJ f,. ,
(PLAYMOVE OPPONENT

(QUERY "Your square [A - I]?"))
(PRINTBOARD)
(COND ((WINNER OPPONENT)

1

~ fO(J
(PRIN2T "Congratulations, you win!")
(RETURN NIL)))

~~ (T (SETQ NEXTMOVE SELF)
l,} I/ lf~~(GO LOOP))))))

(Ti\. (PRIN2T "My turn. ")
(FINOMOVE)
(PRINTBOARD)
(COND ((WINNER SELF) \f' -, :,. tJ

(PRIN2T "I win!")
(RETURN NIL)))

(!~ (SETQ NEXTMOVE OPPONENT)
tfMitrt, (GO LOOP))))))))

+---+

Now the lower level functions required by PLAYTTT. Most are very
straightforward. '---"

I

83

+----------------------------------r---------------------------------+
% MAKEEMPTY makes the TTT square it.is given have no
% mark on it.
(DE MAKEEMPTY (SQUARE) (PUTSTATUS SQUARE NIL))

% QUERY is a simple utility function for querying the
% user for a response, which it returns.·It could be
% used in many ccnte~ts. " • . •
(DE QUERY (STRING)~·fEiRIN2 STRINGL~ (PRIN2 11 11

) . (READ))
n . .

-
% OTHERMARK returns X, ib given·Oas a:n argument, and
% O, if given x. Otherwise it returns NIL.
(DE OTHERMARK (MARK)

(COND ((EQ 'X MARK) 'O)
((EQ 'O MARK) ' X)) } ..

. - . ·.. . -·
% PRINTBOARD prints out a simple representation c,f the
% TTT board.
(DE PRINTBOARD () (p C :. tJ

(PRINTSQUARE 'A)
(PRIN2 "I")
(PRINTSQUARE 'B)
(PRIN2 "I")
(PRINTSQUARE 'C) •
(TERPRI)
(PRI N2T "----- 11

)

(PRINTSQUARE 'D)
(PRIN2 11 ! 11)
(PRINTSQUARE 'E)
(PRIN2 11 I")
(PRINTSQUARE 'F)
(TERPRI)
(PRIN2T 11

11

)

(PRINTSQUARE 'G)
(PRIN2 "! ")
(PRINTSQUARE 'H)
(PRIN2 11 ! 11)
(PRINTSQUARE 'I)
(TERPRI)))

% PRINTSQUARE prints the mark on ·a, TTT square,
% printing 11 11 if there is no mark. •
(DE PRINTSQUARE (SQUARE)

(COND ((NOT (GETSTATUS SQUARE)) (PRIN2 " "))
(T (PRIN2 (GETSTATUS SQUARE)))i)

+------------------------------------ -------------------------------+

84

~ ---- '--------------·. ·-~---- ' . . ------------------ .· -----------------·---+
-% WINNER returns T if the side it is given as-an

-= , .. % argument has got thre~ . .i.n .a row in any of·· the TTT
% l;i.nes.
lDE WINNER (MARK)
. ·(PROG (LINES)

(SETQ LINES TTPLINES)
LOOP

(CQND ((NOT LI~l!:SJ ..(RETURN NIL))
((OCCUPIES MARK ·.(CAR LINES))

(RETQRN 'T)T •
· (TA(SETQ LINES (CDR LINES))
\()~,-~ (GO LOOP))))-) J .: ._ .

+---,. ----------------------------- :-·-- -- -- ,----------- . -· . --------·---+

.. ,.... ·.
~

11.9 Playing with the TTT Expert

The foregoing code represents a complete, although small, expert system
for playing TTT. In spite of our extended discussion of _the sy_stem, you
are encouraged to type it into UO-LISP and play with it: ·This play can
teach you many things-that_just i::-eading about Lisp programming cannot.

You might try several things once you have it running. First, play a few
games with the system .. You '.11 _find that the present system "interface"
is pretty simple, and you might-want-to make it more "user friendly".
For:, example, you should.-_ f~el f_re~ to improve the TTT board display
generated by PRINTBOARD; and you might want to change PLAYTTT so that if
;the. use:::- seleG:ts .a _square .that _is already occupied, the system will
• re-query the - user. • - • - • - • - : • • ••

Seqond, as_ you play games with, .. the system you will pr:opably notice that
the-.sya;teffi,. while gene:r;aliy· intelligent, makes a few dumb _moves. Can you
characterize the kinds of mistakes it ·is making? If so, you should
consider how to improve its knowledge-base· its TTTRULES. Try to
think of modifications of its present rules, or eyen new rules to add to
TTTRULES. Write down rules you· .. :think are better by trying to make
explicit the rules that you use to play TTT. Then program them in Lisp,
and. see if the new TTT expert plays better, or plays more like you do.

More· generally, you are encouraged to try all sorts: of knowledge
experj.ments .. Add 0rules and tak~, out rules theµ se~ J1.ow . __ the modified
sy'stem. _performs. Can you predict how a set of expert; system rules will
behave? AI researchers have found it surprisingly difficult to determine
the behavior of a set of knowledge-based rules by just looking at them.
That is one of the reasons why they build expert systems. Such systems
really help us discover and represent the knowledge human experts use to
perform difficult tasks.

As you create and examine various different TTT experts, notice how
simple this experimentation is. You can create several modified experts \....,,

85

in a few minutes. This is because, (unless you are getting pretty
sophisticated) you are only modifying the rules in TTTRULES, and the
modifications are ·very simple .• For ·example; ·you might just· taRe out a
rule, switch the o~der of rules, add.a rule, or modify a single rule.
This fact points·"out one of the ~mo'st:important advantages of rule-based
expert systems~ They represent· kn6wl-edge· ·in a highly flexible and
modular fashion. Contrast this modularity with an implementation of a
TTT expert in BASIC or FORTRAN. Those programs might run a ltt.tle faster
than our TTT expert, but could you inve~t,ig~te the behavior\of a variety
of different experts nearly as rapidly? · ~:- :s ••• -'-

Here is a final question ~o.t;··:y9i[to~ f>.Opdit :c;s you experiment with the
TTT experts. When you modify ~TTTRULES I by -',iradf.':ng .~?-rule, or changing one,
are you manipulating data, or a:r:::e, you __ w.¢iting __ new code? The TTT rules
are data because they are the va·lue ':of the 'variable "TTTRULES". But they
are also program because they are EVALuated (see the functions DO and
TEST) to generate moves. In fact, the rules are both because they are
just s..:..expressions (ril<e···eveiyffiing-else1: 'They become· dat:a--·t;;-fiefi ·treated
one way (e.g., assigned as the value of a variable) and become program
when treated another way (e.g., evaluated). Expert systems take good
advantztge of this dual personality of rules to make them easy to modify
and to use.

.: r. ..

llolO S~ of Lessons
' • -

This has lJeen ~ a. particulariy···long section;:- so· let.! s summarize the main
points that have been made: . .:..,,..

. Most lisp_;"functions are smaf:f~ _independent·;~ pieces of· progtam:~ •
• : - - __ '·__ ·--· .:.. ; #~-- • • ~ • ~~~ •• ,·,··; :.:..~:_"":·_ = ". !:.. ~ -:~.:.::.:.: ... _-; . .: __ - ;, : -:~ .. -:~ (·_ .-_ .~-.:·. -<:•" ~

. In "-writing~:a:n: expert syste4rn~;:·or"·iu.1i<large Lisp program-you should
program in a top-down fashion. ,s.: ~ ::-{: :- "'·::: :

. Data· :.representation • should"' :.qe:.-::: i~ga.f;decl as
piob'lem ~:·solving ·with Lisp; - :-Appr0priat§ · •
progr:ams much easier to write:= - ·:

.:· - _. :- - • : ~ ~ - • - ,- •• - :~ + ,s· . ·"; :.~,......

a:fi .. e5tplici t.· phase of
representation~ make

. Writing programs using the principie..:of- _abstraction barriers makes
cede comp:reheir:isible and modifiable~ ·' • •

Expert systems are AI programs ·' that - use sets of· • symbolic ·rules,
cften_!i~e those used by humans! to solve complex probl~!J1S·

. Expex:t: syi~;-t:efris havi:r easily modifiabie :. knowledge~b~ses ,- .""f-a'cilitatirig
inve~tigattor{of:the perforrnarice"of a·:variety of ruiesets·;=-- 0 =

. - -- - _,, ~ • - • • • ---, :· :..:.-· _t -~-- r;:;,,•·· .~·:··
•'•·•.• --·~ - -· __ • ..,..,

CHAPTER 12
WHERE TO GO NOW

You have come to the end of our introductory tutorial on Lisp and AI. We
hope you have enjoyed. it enough to want to learn more about these
subjects. In the past few years some very useful books have appeared
that will hehp you move from a beginning AI programmer to an advanced
one. 'l'hese include:

-Artifical Intelligence' , by P. H. Winston. (Addison Wesley, Reading,
Mass., 1977) .

This book gives the relatively inexperienced user an introduction
to both Lisp and AI research, and includes many exercises.

-LISP', by P.H. Winston, and B. Horn. (Addison Wesley, Reading, Mass.,
1977) .

A. book for intermediate-level Lisp programmers, with less emphasis
on AI applications.

-Artificial Intelligence Programming', by C. Riesbeck, E. Charniak, and
D. McDermott. (Lawrence Erlbaum Associates, Hillsdale, N.J., 1979).

The best advanced book fo~ learning AI programming techniques. Not
for beginners.

-Machines Who Think', by P- McCorduck. (W. H. Freeman, San Francisco,
CA., 1979) .

A somewhat biased introduction to the history and ideas of AI,
requiring no background in Lisp.

-The Artificial
Fiegenbaum.

Intelligence Handbook' (3 Vols.), edited by E.

A voluminous compendium of the ideas and. accomplishments of AI. Not
for the beginner.

-The Structure and Interpretation of Computer Programs', by H. Abelson,
and G. Sussman. (MIT Press, Cambridge, MA 1983).

Not really a book on AI or Lisp, but an outstanding first course in
computation, which uses a dialect of Lisp. Highly recommended to

,,.._

~

those who want a solid beginning in computer science.

..:.-

:~,. ~--·

:.

. '.I·• ,,, .. ~--

- - ... ;. ,,'.

,.·..,

":: -.. -~,-·
,....-.&,,., ..

87

ADDY
Al{p _ ~-'.''..
antecedent
APPEND'·.
AEROP6S . ·- .
~rgU:rnerits
atom· •
ATOM

binding

CAR
CDR
comrtlen.ts
COND."
COND-clauses
cot-rs : , i_-, -. 7

consequent:

DE .

E -.(editor command)
EDIT
editing
err:pty list
EQ .
EQUAL
error· messages

- E.RROR!?
E:VAL·

F .. (editor c~rn~and)
FE~PR :~ ~ .•. --.: .w •• , .•

file·· control variable
focus . ._:-.:-, ""-• 0 - :·. ,

formal·. parameters
function

GET.
GLOBAL
global'" variables

.GLOBALP
GO.
GREATERP

HELP
• ,-.i ., ,-~ - ~ ·•·;;- ~

•' ,, -'-:-· -
L . (edit.or comma.nd) _
iden_ti"'f-ier
integers,
iteration
iterative functions

• ;:, f

~;,:•

,.·

~'.;·):
'--.
;,.'. ~":

' . f

Index

20

17, 52
42
44
48, 58
28
14
8
16

35, 36

24
24
6
43
44'
22

- 44

33

63
62
60
1_0, .16'.
26, 27
26, 27
29
28, 29
13, 19, 76

'.

6~
3~
39,
63
36
14

66

61, 68

31, 38
36
38
49
16

28, 29

64
8
9
47
46

-~1:-\:?" ... '.~~
,../1 ..::.

"-

labels
LENGTH
LIST
lists
LOAD
local variables

main progrcim
MEMBER •
modular p~o9rci~ing

NIL
NOT
NULL
numbers

OR

P (e9itor commapd).
parameter., 1 i:St •
PLUS. • ••
PP (editor· com~and).
PRINl
FRXN2
PRIN2T
PRINT
PROG
property list­
PUT

Q (editor command)
QUIT
QUOTE
QUOTIENT

R (editor cc,mrn~pq) . READ. (.... ,, ..

REMAINDER
repetition COll!):t.s (editor)
RETURN

s-expression - .~ • .

SAVE
SET
SETQ
side effect
special forms
string
strings
SUBLIS
SUBST

T
T (editor COfM!~nd}
TERPRI
TR
tree

r .

•. {~ ,..
~'.)·:

~

:-·r:-:­
..:.-:,;.:· ·::
-,:'...~!~~-
-. ;.!" ,. __

, .1.:::,-,:--
,. '-:_;:"?"-

. ·:;; :·~ ..;...

• i :; , • ., -,,:.

49·
·• 56

23: ,
10 •
40· 68 · • • If.

36~ 47:

39
57 ~
36.

10,
25',
25::
8,

43

64
35',
5

'· 63
69.

•. 69
: 6.9

69 ..
41
66
66

62
6
20
35

63
68-
48.
64
47,

s,

1~,

9,. 14

36:

4~.

8
3 9, •• 6_5,
3;1.
32
31
35
9
8, 14
29
29

15
64
·70
18, 53
54

16,

68

.-:; f'; ---~-:--::;; .:·~s•;'. ,,.-:Jl~ .. •-.,
• :.:: ·:.~ ::.:z ~;-i! ::-(~15-~: £

.:: ::;f~r:~~_'t} /
~--t-1~~f,fp:f~>i~/,,

:-, .. _tr,.:r;.-.·:::r.: .. i;·

r;e1.t ;:~
fff"",>-;"1 \
;•;., :

.. S :::-: .. ·:c -~ :~ , .Jr:··::_:_···
. ~--s.: ~ .2: _ ··--:.·. 2ri0:: /.

~;.· ·;:::., :-.~~"•,:~: _ _:-~~f.i'·)-::'
-v:, -:;: ~ --.:~-..; ;::.>1 ,-:. ~.

.;--.,. .: ::::.-., .. ·-,;...

:"I .• • • . ·- _, .. ~

(:' • .. 1 .~ -~

··.,~ .. ~·---=-··• - ·•

.:- ~-5:r;,:-:-.~~-:~--:1.~:: ..:.. ~)7.

.~." :: .. ~:::L;;_,1::;:~ ·:. ~-·~:=z/4t~°:.~/:,;:_--·.:_ .:.:·.:...·
~: .;: -.-~~;-,, -~<~ :--::j·.--:-.~

-:;2 f"i ... ~-:.': ::L~ =. · t.;-.-~_ .. t::£;.~~:w:Bc:;~ .t
::c.~ _; .-~ . ::'."~: ;_ -. :.:.·~ .:· .. :"" J

89

63
_: 61 ,

90

	Contents
	What is Lisp?
	1. The Lisp Interpreter
	2. S-Expressions: The Syntax of Lisp
	3. The Lisp Evaluator: EVAL
	4. List Manipulation Functions
	5. Naming and Definition
	6. Flow of Control
	7. Composite Lisp Functions
	8. The Structure Editor
	9. Property Lists
	10. Input and Output
	11. An Extended Example
	12. Where to Go Now
	Index

