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IMPORTANT NOTE 
IMPORTANT NOTE 
IMPORTANT NOTE 
IMPORTANT NOTE 

The tutorial guide included in this package was written for the 
CP/M based UO-LISP V2. You will find that it refers to a manual 
you did not receive. It will also refer to functions not included 
in your system. 

The CP/M based version of the tutorial guide is now included with 
the TRSDOS based version of UO-LISP Vl. WHY INCLUDE IT? We have 
found that a high percentage of those purchasing UO-LISP Vl have 
little or no LISP experience. You will find that about 90% of the 
tutorial guide is useful in learning LISP. We hope to retrofit 
the tutorial guide to TRSDOS some time in the future. 
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WHAT IS LISP? 

Lisp is the language of Artificial Intelligence (AI). The research 
community has written intelligent Lisp programs for understanding 
English (and other human languages), programs for solving complex 
mathematical problems both symbolically and numerically, and programs 
for controlling robots. Because of its wide use in constructing 
"intelligent systems", Lisp is becoming an increasingly popular 
language. In the next few years, knowledge of Lisp will become essential 
to those wishing to be a part of this exciting field and to those 
wanting to understand and profit by the uses of the systems implemented 
in it. 

Although Lisp is just now becoming well known, it is actually one of the 
older programming languages; much older than BASIC, for example. It was 
invented by John McCart.~y in the late 1950's. While most languages of 
that time (and even now) were oriented towards numerical computation, 
Lisp was designed to manipulate symbols and structures of symbols. It is 
a powerful tool for solving problems that cannot be easily handled by 
number-oriented languages. 

A great many important problems are symbolic in nature. For example, how 
do you develop a plan to run some errands? Probably, you develop the 
plan by thinking in English, not in numbers. The key point is that 
humans think symbolically, so to construct programs that think as 
intelligently as humans, it's best to .use languages that permit symbolic 
computation. That is why Lisp is the main language used by AI 
researchers to develop intelligent software and even to understand the 
way that humans think. 

A short list of many of the problems being solved by the Lisp 
programming community includes many (some whimsical) that are not even 
contemplated by BASIC, C, FORTRAN, and PASCAL programmers: 

. Understanding natural language 

. Understanding legal documents and interpreting court decisions 

. Diagnosing disease and recommending treatment 

. Manipulating algebraic equations 

. Writing other programs 

. Writing fiction 

. Developing plans of action based on incomplete and possibly 
erroneous information (robots) 

In the following sections we will slowly introduce the basic concepts of 
Lisp that will allow you to become an effective programmer and to begin 
to write your own AI software. 





CHAPTER 1 
THE LISP INTERPRETER 

The first thing you need to know about Lisp is that it is an interpreted 
language that evaluates S-expressions. To understand what that means you 
need to understand: 

What an interpreted language is 
What an S-expression is 

. What evaluation is 

To begin our Lisp tutorial, we will examine each of these topics. 

1.1 What is an interpreted. language? 

An interpreted language is one that you can rapidly interact with. You 
issue commands to the language (system), and receive immediate 
responses. Most compiled languages are not at all interactive. For 
example, if you are a FORTRAN or PASCAL programmer, you are used to 
first creating your program with an editor, compiling it, then loading 
and running it, and finally receiving your output. You are at least a 
couple of steps removed from the language; it is not interactive. 

Because it is interpreted, Lisp allows you to construct and debug your 
programs rapidly and effectively. BASIC is a familiar example of such a 
language. Lisp is more powerful than BASIC because, in addition to the 
arithmetic operations provided by BASIC, it also has many primitive 
symbol and strorage management operations that BASIC does not. 

1.2 A UO-LISP Session 

To start the UO-LISP interpreter you must first place the Lisp Learner 
floppy disk into the computer and select the disk drive. For example in 
a two drive system, the standard CP/M system disk is placed in drive A 
and the Lisp Learner Disk is placed in drive B. 

Note In the rest of this book, computer output is in bold type 
and your input is in normal type. Comments (you need not enter 
these) are prefixed with a percent sign and run to the end of 
the line. 

Once you have set up the disks as above, the following sequence will 
initialize the UO-LISP interpreter: 



HOW TO USE THIS BOOK 

This tutorial explains how to program in the language Lisp. The 
micro-computer owner and user will find operating instructions for the 
UO-LISP system, useful Lisp programming tips and techniques, and a basic 
knowledge of what the AI revolution is all about. However, this is not a 
text book. There is no required homework, no complicated busy work, no 
deadlines. You must only be willing to rethink some of your notions of 
what computers are used for and how they are programmed. 

Lisp is a unique programming language, probably very different from any 
other language you have ever used. A Lisp learner -- even one who has 
had some experience with other languages -- will need some help to learn 
how to use Lisp effectively, and how to exploit the power of the 
language. This is the purpose of the present tutorial. 

No programming language can be learned by just reading about it. To 
really understand any language, you have to use it. The tutorial 
contains many examples of interactions with UO-LISP, and we encourage 
you to follo~ these actions by getting into UO-LISP, typing in what you 
see in the tutorial, and observing how UO-LISP responds. More generally 
we encourage you to try out your ideas about Lisp programming by using 
UO-LISP. If you find yourself thinking "I wonder if ... ", don't just 
think about it! Try it out and find-the answer. 

The tutorial is not a manual. It does not describe all the functions in 
the UO-LISP language; it describes the concepts of Lisp. As we discuss 
these concepts, however, we will note the sections of your UO-LISP 
Learner's Manual which document the associated Lisp functions. You 
should consult the manual as you use the tutorial. 

--.__,I 
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+---------------------------------------------------------------------+ 
I 

A> B: 
B> UOLISP 

Note, you don't give it a program to run and leave it alone to execute. 
The idea is that by calling it up, you are going to engage in a dialogue 
with Lisp. If you wish, as part of this dialogue, you can tell Lisp to 
load a file; but you don't have to cegin by doing this. 

UO-LISP indicates it's ready to start the conversation by displaying its 
logo and prompt: 

+---------------------------------------------------------------------+ 
u u 00 L III ssss PPP 
0 0 0 0 L I s p p 
0 0 0 0 L I ss PPP 
0 u 0 0 L I s p 

OU 00 LLLL III ssss p 

Copyright 1984 by Northwest Computer Algorithms. 

1: 

+---------------------------------------------------------------------+ 

Now you should imagine that Lisp is listening to you, waiting for you to 
begin the dialogue. To talk to Lisp, or any intelligent being, for that 
matter, you need to say things it will understand. Lisp understands 
things called S-exPressions, so that's what you have to type. For 
example, you might say to Lisp: 

+---------------------------------------------------------------------+ 
1: (PLUS 3 5) 

+---------------------------------------------------------------------+ 

For now, its not important to understand the details of this 
S-expression. The important point to remember is that once you've typed 
such an expression, then a carriage return (hereafter "<CR>"), Lisp will 
try to interpret the S-expression as a command to execute. Put another 
way, Lisp will treat the S-expression as a program, or piece of Lisp 
code, and will try to evaluate the S-expression. When Lisp has evaluated 
the S-expression, it will return and PRINT the value it has found. For 
the current S-expression, UO-LISP 9erforms as follows: 



+---------------------------------------------------------------------+ 
1: (PLUS 3 5) 
8 

2: 

+--------------------------------------------------------------------+ 
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UO-LISP evaluated the S-expression you typed in as a request to add two 
numbers, 3 and 5. The value of the piece of Lisp code "(PLUS 3 5)" is 8, 
which UO-LISP prints on the next line. Finally, UO-LISP indicates it has 
finished responding and that it is now your turn in the dialogue by 
giving you a the prompt "2:". Note that 00-LISP increments the prompt 
number so that you (and it) can keep track of where you are in the 
conversation. 

While talking with 00-LISP, you may want to add a comment in English. It 
is especially important to comment your code so that others can 
understand it. The percent sign signals the presence of a comment. The 
00-LISP reader ignores all subsequent characters to the end of the line. 
For example: 

+---------------------------------------------------------------------+ 
1: (PLUS 1 2) 
3 

%I'm adding two numbers 

+--------------------------------------------------------------------+ 

When you are finished with 00-LISP, enter (QUIT), and you will then find 
yourself talking to the operating system: 

+---------------------------------------------------------------------+ 
2: (QUIT) 
B> 

+---------------------------------------------------------------------+ 

1. You type an expression that the 00-LISP interpreter reads 

2. The 00-LISP interpreter computes the value of the expression 

3. The UO-LISP printing function displays that value 

4. Go back to step 1 

We need to know what S-expressions the UO-LISP reading function will 
accept. Once this syntax is understood we can move on to the evaluation 
strategy and how values are printed. The following chapter presents the 
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syntax of S-expressions but before you proceed, you should make sure 
that you can start and stop UCr-LISP as described above. 



CHAPTER 2 
S-EXPRESSIONS: THE SYNTAX OF LISP 

As with any programming language, to learn Lisp, you need to learn what 
commands it understands, and which it will not. You need to understand 
the syntax of the language. Learning the syntax of most languages is a 
major chore. In BASIC, for example, you have many different kinds of 
statements declarations, assignments, conditionals, branching 
statements, and so on -- and each type has its own peculiar syntax. 

But the syntax of Lisp is much simpler; even trivial. All the commands 
of the language, all the code that you will write, will be 
S-expressions, and S-expressions obey a few simple rules. One advantage 
of Lisp, is that you can spend much more time at the more important task 
of learning to use it to solve complicated problems. 

There are only two rules for forming S-expressions, both very simple: 

Atoms are S-expressions 

Lists are S-expressions 

But what are atoms and lists? We will discuss each of these in turn. 

2.1 Atoms are S-expressions 

Atoms also obey simple rules. There are three basic types: 

Any sequence of alphanumeric characters beginning with an 
alphabetic character is an atom, an identifier 

Any sequence of numeric characters (possibly preceeded by a 
"+" or "-" sign) is an atom, a number 

Any sequence of characters enclosed in quotation marks (") is 
an atom, a string 

The first type of 
function definitions, 
things, or as just 
of identifiers: 

atom, the identifier is used as a place holder for 
as a variable name, a place to put properties of 
the characters of its name. Here are a few examples 



A [A single alphabetic character is a sequence] 
ABC [This starts with an alphabetic character] 
A12 [So does this] 
abcdeS [Lower case is ok too] 
ABCDES [The same as abcdeS since case is immaterial] 
aAbBcC [And you can mix cases if you want] 
aadasddkl4567kaweooOKJASDIKMXKLALDSLLLLadsxl4 

[There is practically no limit tk the length 
of atoms] 

Now are a few sequences that are not identifiers: 

lATOM 

AT-OM 

AT OM 

[If it starts with a number it can't have any 
alphabetic• characters] 

[Generally, you can't use characters that 
are not numeric or alphabetic in atoms] 

[Spaces, or <CR>'s separate atoms, so this 
is a sequence qf two atoms] 

9 

Numeric atoms are strings of digits optionally prefixed with a + or 
sign. They act just like integer numbers in languages like BASIC or 
FORTRAN. Here are a few numeric atoms: 

1234 
+1234 
-1234 

[All digits in a numeric atom] 
[A positive integer] 
[A negative integer] 

In the Lisp Learner version of UO-LISP, integers are restricted to the 
range -4096 to +4095. This is not as restrictive as it sounds as in 
Lisp, unlike other languages, numbers are relatively unimportant. More 
advanced versions of 00-LISP permit integers with many thousands of 
digits and arbitrary precision fixed and floating point numbers. 

The final ~ype of of atom is the string, a sequence of characters 
enclosed in double quotes. To get a quote mark in the string, simply put 
two in next to each other. Strings are used mostly for information 
displays and error messages. The following are valid strings: 

"Hi there" 
nn 

"""Hi there""" 
"A two line 

string" 

[Simple string] 
[Empty string] 
[String with quote marks in it] 
[Strings can extend across lines] 

For more information about identifiers, numbers, and strings, consult 
chapter 1 of the 00-LISP Learner's Manual. 
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2.2 Lists are 5-expressions 

Besides atoms, the only other kind of S-expression in Lisp is the list. 
Again, the rules for forming lists are straightforward: 

An empty pair of parentheses"()" is a list 

Any sequence of atoms (atoms separated by one or more spaces 
or <CR>s) that is enclosed in parentheses is a list 

Any list of one or more lists is a list 

Basically, lists are bounded by parentheses, and have elements inside 
the parentheses. The three rules above describe different things that 
can be list elements. 

The first rule defines what we call the empty list, a list of no 
elements. It can appear in a variety of ways: 

() 

NIL 

[Two parentheses with nothing between 
them is an empty list] 

[Or you can put in any number of spaces; 
they are just delimiters in Lisp] 

[Sometimes the empty list is written 
as the identifier NIL. This may be a 
bit confusing, but we'll explain why 
later.] 

The second rule defines simple lists. Here are a few simple lists: 

(A) 
(Ab) 
(1 B c) 

( 1 2 3 

(1 2 
3) 

[A list with just one atom] 
[A list can have two or more atoms, too] 
[You can mix numbers and identifiers 
in lists] 

[You can separate list elements by any 
number of spaces] 

[Or even by <CR>s] 

And a few non-lists (hence, non S-expressions): 

(ab c 
(HE L p)) 

[A closing parenthesis please!] 
[Parentheses must balance] 

The most complex of the three rules for lists is the last one. 
called the recursive clause for lists, because it defines what 

It is 
a list 

Lisp 
that 

can be in terms of itself. (We will be studying recursive 
structures in later sections). While the second rule for lists says 
atoms can be list elements, the third rule says that lists can also 
elements of lists. We refer to these as complex lists. For example: 

be 



(The rain (in spain) falls (mainly on the plain)) 
[A list with 5 elements, the third and 
fifth of which are also lists] 

( (The ( (rain (in)) spain))) 
[Lists can be nested arbitrarily deeply; as 
many parentheses as you like, providing 
they are balanced] 

(()) [Since lists can be elements of other lists, 
the empty list"()" can be an element of 
a list] 

(NIL) [This is the same as the last one, since 
() and NIL mean the same thing. Note, 
(NIL) is not equivalent to NIL.] 
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Since complex lists are so important in Lisp, it is worth taking a 
moment to really understand their structure. Let's look at: 

(HERE (IS (A LIS1) (OF (IDENTIFIERS))) (FOR YOU)) 

First, check to see that it really is a list. Does each opening 
parenthesis "(" have a matching closing parenthesis")"? Find each pair 
of parentheses that match. How many elements are in this list? The first 
element is an atom, HERE, that's one. The second element is itself a 
list, (IS (A LIST) (OF (IDENTIFIERS))), that's two. The third element is 
a simple list, (FOR YOU). And that's it, so there are three elements in 
this list, one atom, and two lists (which also have their own elements). 

One last example before we continue. How many elements does the list () 
have? It's the empty list, so it has none. How many elements does this 
have: ( ())? The inside parentheses, (), is the empty list, and because 
it's a list, it can be an element of another list, so (()) is a list 
with one element, the empty list. Now you can see why () and (()) are 
not the same: The first is a list with no elements, and the second is a 
list with one element. 

2.3 S-expressions are Both Program and Data in Lisp 

Now that you understand what S-expressions are in Lisp, you need to know 
what they are used for. The answer is: everything! S-expressions are the 
way you write programs in Lisp, and they are also the data that Lisp 
programs manipulate. So you now know all about the syntax and datatypes 
of the Lisp language. 

You may find it a bit difficult to get used to the idea that 
S-expressions in Lisp are both the programs and data of the language. In 
the languages you might know, like BASIC or FORTRAN, there is a clear 
distinction between the two. Programs are made up of statements like 
"GO SUB 400" or "IF (I.GT.1001) I=l", and the data, things represented 
by variables, are numbers or arrays. In the following sections we will 
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carefully discuss how S-expressions are both program and data. We will 
come to see that many of the things that make Lisp the simplest of 
languages -- the fact that the syntax of the language is so easy, the 
fact that there is no distinction between program and data -- also make 
it a most powerful language. 



CHAPTER 3 
THE LISP EVALUATOR: EVAL 

If S-expressions are both the programs of Lisp and the data manipulated 
by the language, how does the Lisp interpreter tell if it should treat 
something as a piece of program or as a piece of data? The answer is, 
basically, that what you type to the interpreter gets treated as code. 
Recall our discussion of the READ-EVAL-PRINT loop in Section 1. When we 
typed the S-expression: 

(PLUS 3 5) 

to Lisp, it took that S-expression as a piece of code to evaluate, then 
returned the answer. In this section we will discuss exactly how Lisp 
evaluates the S-expressions you give it, so that you can learn to 
construct pieces of Lisp code that do what you want. 

3.1 Evaluating Identifiers 

How Lisp evaluates an S-expression depends on the kind of expression it 
is --·atom or list -- so lets begin with identifiers. The values of lisp 
identifiers are much like the values of variables in other languages. 
Usually, identifiers don't have values to begin with. For example, if 
you just called up the 00-LISP interpreter and typed X it would give you 
an error message: 

+-------------------------. ------------------------------------------+ 
1: X 
***** (not global X) 

2: 

+-------------------------------=-------------------------------------+ 

indicating that the identifier X does not have a value, when Lisp tried 
to evaluate it. Just as in other languages, you have to give atoms 
values. Don't worry about how this is done just yet, we'll discuss it· in 
Section 5. For now all you need to know is that the value of an atom can 
be~ S-expression. For example, X could be assigned the value 5, or 
(A LIST) or (A (COMPLEX (LIST))). 



3.2 Evaluating Numbers and Strings 

Numeric atoms and strings are exceptions to the rule that atoms 
initially don't have values. While identifiers are initially "unbound", 
numbers and strings have themselves as their values. If you ask Lisp to 
evaluate a number, it will just print that number, the same for a 
string. This is demonstrated in the following UO-LISP session: 

+---------------------------------------------------------------------+ 
1: 9 
9 

2: -246 
-246 

3:"0n the other hand" 
"ON THE OTHER HAND" 

+-----------------------------------------~---------------------------+ 

3.3 Evaluating Simple Lists 

The evaluation of lists is quite different than atoms. Lists, unlike 
atoms cannot be assigned a value. To understand evaluation of lists, 
let's begin with a simple example. We will follow the UO-LISP 
interpreter as it evaluates (PLUS 3 5) to produce the value 8. 

When the interpreter sees a list, _it always assumes the first element of 
the list is the name of a function. A function in Lisp is roughly the 
same as a procedure, or subroutine, or program, in other languages. 
Functions are the basic units of computation in Lisp. For example, "ABS" 
is the name of a built-in absolute value function in FORTRAN, BASIC, and 
UO-LISP. 

Names of functions are identifiers, so for this reason, the first 
element of an S-expression you type to the interpreter should be an 
identifier. In the case above, 00-LISP interprets "PLUS" to be the name 
of a function, and goes to find the function's definition. Since PLUS is 
a built-in function, the interpreter has no trouble finding the 
definition. (In Section 5 we .will show you how to define your own 
functions.) If Lisp can't find a function definition, it will give you 
an error message. For example: 

+---------------------------------------------------------------------+ 
1: (FOO 1 2) 
***** (FOO undefined function) 

+---------------------------------------------------------------------+ 

14 

When Lisp has found the function definition, using the first element of \.J 
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the s-expression, it interprets the remaining elements as arguments to 
the function. Then it applies the function definition to those 
arguments. For example, since PLUS is a function for adding numbers 
together, and 3 and 5 are numbers, when you apply PLUS to these numbers 
you get 8. We say this is the value returned from the function PLUS, and 
it is the value that Lisp will print, if you type "(PLUS 3 5)" to it. 

This example illustrates that functions can be thought of as little 
machines. They take some input (their arguments), manipulate them (apply 
the definition of the function to the arguments), ~nd produce a result 
as output (return a value). Try picturing function calls iike this: 

5 ---> 

3 ---> 
PLUS ---> 8 

All calls to Lisp functions follow this simple pattern. 

The previous demonstrates one added detail of evaluation. Lisp does not 
directly apply a function definition to the remaining elements in the 
list it is evaluating. Rather, it first evaluates the arguments, then 
applies the function. This was obscured in the previous· example, since 
the value of 5 is 5 and the valua of 3 is 3. In the next example, assume 
that the value of the atom VAR is 7 and the value of VAR2 is 8. Then we 
would see 

+---------------------------------------------------------------------+ 
1: (PLUS VARl VAR2) 
15 

+---------------------------------------------------------------------+ 

In other words, the Lisp interpreter first gets the function definition 
of "PLUS", then evaluates each of the remaining elements of the 
expression, obtaining 7 and-8, then applies PLUS's definition to these 
two numbers, returning and printing 15. 

3.4 T and NIL 

T and NIL are very special Lisp atoms whose evaluation and role require 
some discussion. Like numbers, T and NIL are bound to themselves, and 
these values cannot be changed: 
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+---------------------------------------------------------------------+ 
1: T 
T 

2: NIL 
NIL 

+--------------------------------------------------------------------+ 

The reason for this is that T 
T means roughly "true" or 
atom (by calling the built-in 
returning T: 

and NIL have unique roles in Lisp. In Lisp 
"yes". Thus if I ask Lisp whether 10 is an 

function ATOM), Lisp. tells me it is by 

+---------------------------------------------------------------------+ 
1: (ATOM 10) 
T 

+---------------------------------------------------------------------+ 

One use of NIL is to denote the opposite of T; NIL means "false" or 
"no". Thus if I ask Lisp whether 10 is greater than 12 (by calling the 
built-in function "GREATERP"), Lisp tells me it is not by returning NIL: 

+---------------------------------------------------------------------+ 
1: (GREATERP 10· 12) 
NIL 

+---------------------------------------------------------------------+ 

NIL has a second role in addition to its logical one. It not only means 
"false", it denotes the empty list or list with no elements, as we 
discussed in Section 2. NIL's dual role gives it a unique status in 
Lisp: It is the only S-expression that is both an atom and a list. While 
this may be a bit confusing at first, it will help to remember that NIL 
plays only one role at a time. Tt's an atom when used logically to 
denote "false", and it's a list when used to represent the empty list. 
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3.5 Summary of the Rules of Lisp Evaluation 

The previous examples show all the basic rules that govern Lisp's 
evaluation of s-expressions. They are about as simple as the rules 
governing the structure of the language themselves! Before continuing, 
let's summarize the rules for evaluation: 

TO EVALUATE ANS-EXPRESSION, S: 
IFS IS AN ATOM, RETURN ITS VALUE 
IFS IS A LIST THEN 

GET THE DEFINITION, D, OF THE FIRST ELEMENT OF S, 
AND 

EVALUATE EACH OF THE REMAINING ELEMENTS OF S, AND 
APPLY THE DEFINITION OF D TO THE EVALUATED 

ARGUMENTS, AND 
RETURN THE VALUE OF THE FUNCTION APPLICATION 

The interesting thing about these rules, and what can make them 
difficult to follow, is their recursive nature. As we said in Section 2, 
a definition is recursive if the thing being defined is defined (partly) 
in terms of itself. In this case, we have defined evaluation in terms of 
itself, because to evaluate a list we have said that you must evaluate 
the arguments to the list (that is, all elements of the list except the 
first). To give you a better understanding of the potentially tricky 
recursive definition of evaluation, we will examine the evaluation of 
some complex lists. 

3.6 Evaluating Complex Lists 

How will Lisp evaluate: 

(PLUS 3 (ADDl 5)) 

It's really not hard, if we just carefully follow the rules set out in 
the previous section. First, the interpreter assumes "PLUS" is the name 
of a function, and gets its definition. Next, it evaluates the arguments 
to PLUS, 3 and (ADDl 5); since 3 is a number, its value is itself, 3. 
Evaluating (ADDl 5) is a bit more complex because it is a list. We have 
to get this value before we can apply PLUS to its arguments. 

To evaluate (ADDl 5) we have to follow the rules of evaluation all over 
again, for this s-expression. To evaluate this list, the interpreter 
will first get the definition of the function ADDl (since it is t..~e 
first element of the list). ADDl is a function that adds 1 to a number. 
Now Lisp will interpret the rest of the elements in the list (ADDl 5) as 
arguments to ADDl. That is, 5 is the argument to ADDl. The value of 5 is 
5, so now to complete the evaluation of the expression (ADDl 5), the 
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definition of ADOl is applied to 5, and the value 6 is returned. 

Now we are finished 
both arguments to 
to 3 and 6, getting 
control program. 

evaluating (ADOl 5) and have the values we need for 
PLUS. They are 3 and 6. So finally we can apply PLUS 

9. This is returned and printed by the top level 

As you can see from following this example, part of the difficulty in 
understanding the recursive computation of the Lisp interpreter is that 
in order to complete evaluating "outside" S-expressions, you have to 
begin and complete evaluating "inside" expressions, because the 
interpreter uses the values of the inside expressions to find the value 
of the outside expression. In this case, for example, (ADDl 5) is inside 
(PLUS 3 (ADDl 5)) and its evaluation begins after, but completes before, 
the evaluation of (PLUS 3 (ADDl 5)). One final note, notice that while 
every S-expression returns a value when evaluated, only the value of the 
very most outside expression is printed by Lisp. This is called a 
"top-level" expression. 

3.7 Picturing Lisp Evaluation 

There is a simple graphical notation that helps you get a better picture 
of how Lisp's evaluation works. Let's use it to picture the last 
example: 

Here 

--> (PLUS 3 (ADDl 5)) 
--> 3 

3 <-- 3 
--> (ADDl 5) 

I I 
--> 5 
5 <-- 5 

I 6 <-- (ADDl 5) 
9 <-- (PLUS 3 (ADDl 5)) 

"--> [form]" - means Lisp is about to evaluate [form] 

"[value] <-- [form]" - means Lisp just finished evaluating [form] 
and is returning [value] as the result 

The indentations and vertical bars also help you see which evaluations 
are inside which others, and therefore which ones are returning values 
to be used in other outside evaluations. A notation much like this one 
is available inside UO-LISP to let you trace the evaluation of function 
calls (see Chapter 2.17 of the 00-LISP Learner's Manual under the 
function TR). You will find it particularly useful in understanding what 
happens in evaluating recursive functions. 

'-..J 
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3.8 EVAL Evaluates S-expressions 

One fascinating and really very important aspect of Lisp is that the 
interpreter that performs the Lisp evaluation we have just discussed is 
not a program written in another language, like machine language, but is 
in fact just another Lisp function, called EVAL. EVAL is a function that 
takes one argument, the S-expression to be evaluated, and returns the 
result of evaluating ito The availability of the Lisp interpreter as a 
function, EVAL, distinguishes Lisp from almost every other language, and 
can be exploited to powerful effect. In Section 11, we introduce a Lisp 
program that uses explicit calls to EVAL.· 

Reading about how evaluation in Lisp works is fine, but you will acquire· 
a much deeper understanding by getting into UO-LISP and letting Lisp 
evaluate some expressions. Why don't you start up an interactive UO-LISP 
session now? 



CHAPTER 4 
LIST MANIPULATION FUNCTIONS 

Now that you have a good understanding of how Lisp S-expressions are 
interpreted as programs or function calls, you might well ask: How do 
you prevent Lisp from treating all S-expressions as code? How can Lisp 
treat expressions as data too? We answer these questions in this section 
and discuss the basic, most primitive, Lisp functions that allow you to 
construct, access and change list data structures. 

4.1 Quoting a List 

Up until now, every time you typed a list to Lisp, it evaluated it. To 
get Lisp to treat a list as data you have to have some way of saying: 
"Don't evaluate this list, I want to be able to manipulate it as a data 
object". The way to do this is to QUOTE the object. You quote an object 
by just putting a single quote mark before it. For example: 

+---------------------------------------------------------------------+ 
1: ' (a b c) 

+---------------------------------------------------------------------+ 

Now, instead of evaluating the list, as a call to the function "a" with 
arguments "b" and "c", Lisp leaves it alone: 

+---------------------------------------------------------------------+ 
1: '(a b c) 
(a b c) 

+-----------------------------------------------------------' ---------+ 

That is, Lisp just returns whatever object you quoted. 
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4.1.l Anything can be Quoted 

Quoting can be applied to any S-expression to prevent it from being 
evaluated. For example: 

+---------------------------------------------------------------------+ 
1: 1 A 
A 

2-: I 5 
5 

%Quoting literal atoms is ok 

%You can quote numbers, 
%although you don't need to 

3: '(a (b (c d (ell f) (g h)) %You can quote a complex 
(a (b (c d (e)) f) (g h)) %list 

4: 'NIL 
NIL 

5: 'T 
T 

%You may· quote NIL and T 
%although you don't have to 

+---------------------------------------------------------------------+ 

Initially, quoting may seem to be a very strange operation. But, in fact 
it is quite familiar. English uses a similar convention. For example, 
when I say "John is a good boy", I might be correct, because the 
appearance of John refers to a particular boy. However, if I say" 
"John" is a good boy", I'm not making sense, because the appearance of 
"John" refers to the word;· not the referent of the word. I could say 
""John" is a four-letter word". Plus, in English, the use of"" protects 
words against evaluation, just as 'does in Lisp. 

4.1.2 The Use of QUOTE to Manipulate Lists 

Quoting by itself is not a powerful operation. What makes it powerful is 
that by protecting lists from being evaluated, we can manipulate them 
construct them, access pieces of them and alter them. Because lists can 
now be freely manipulated they become full-fledged data objects, just 
like numbers. In the following sections we will discuss in detail how 
lists are manipulated. 
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4.2 CONS Constructs Lists 

00-LISP has many built-in functions that create and manipulate list data 
objects, just as the built-in function PLUS is used to manipulate 
numbers. The most basic of these functions is CONS. CONS is used to 
build lists. It takes two arguments; the first can be any S-expression, • 
and the second is generally a list. CONS makes and returns a new list 
that adds its first argument to the front of the list that is its second 
argument. Here are some examples of CONS constructing simple lists: 

+---------------------------------------------------------------------+ 
1: (CONS 'A I (B)) 
(A B) 

2: (CONS I A I()) 

(A) 

3: (CONS 'A NIL) 
(A) 

4: (CONS 'A I (NIL)) 
(A NIL) 

5 : ( CONS ' (A) ' ( B C) ) 
((A) B C) 

6 : ( CONS 5 ' ( 6 7) ) 
(5 6 7) 

%CONS puts A on the front of 
%the list (B) 

%the atom A cets added to the 
%front of the empty list 

%Remember NIL is also a name 
%for the empty list 

%Also remember that NIL is not 
%same as (NIL) 

%A list can be CONSed onto a 
%list, not just atoms 

%You can make lists of numeric 
%atoms as well 

7: (CONS 'A (CONS 'B (CONS 'C NIL))) 
(AB C) 

+---------------------------------------------------------------------+ 

Only the last example should require any explanation. Remember, in our 
discussion of Lisp.evaluation, we said that to complete the evaluation 
of an outside form we had to first evaluate the inside forms that is its 
arguments. So, to evaluate (CONS 'A (CONS 'B (CONS 'C NIL))), we have to 
first evaluate (CONS 'B (CONS 'C NIL)), and to evaluate that we need to 
_first do (CONS 'C NIL). So lets begin there. 

The value returned from (CONS 'C NIL) is (C), thus 
(CONS 'B (CONS 'C NIL)) will put Bon the front of the list (C), and 

will return (BC). This is what (CONS 'A (CONS 'B (CONS 'C NIL))) will 
put 'A onto, thus, finally, it will return (ABC). Here's a diagram of 
the evaluation: 



--> (CONS 'A (CONS 'B (CONS 'C NIL))) 
--> 'A 
A<-- 'A 
--> (CONS 'B (CONS 'C NIL)) 

--> 'B 
B <-- 'B 
--> (CONS 'C NIL) 

--> 'C 
C <-- 'C 
--> NIL 
NIL<-- NIL 

(Cl <-- (CONS 'C NIL) 
(BC) <-- (CONS 'B (CONS 'C NIL)) 

(ABC) <-- (CONS 'A (CONS 'B (CONS 'C NIL))) 
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UO-LISP provides many different functions for building lists. Another 
basic and particularly useful function is called LIST. It takes any 
number of arguments and returns a list made up of them: 

+---------------------------------------------------------------------+ 
1: (LIST 'This 'is 'a 'LIST) 
(THIS IS A LIST) 

2: (LIST 'This 'is 'a (LIST 'COM~LEX 'list)) 
(THIS IS A (COMPLEX LIST) ) 

+---------------------------------------------------------------------+ 

Note that you can get the same results using CONS: 

+---------------------------------------------------------------------+ 
1: (CONS 'This (CONS 'is (CONS 'a (CONS 'LIST NIL}))} 
(THIS IS A LIST) 

2: (CONS 'This 
(CONS 'is 

(CONS 'a 
(CONS (CONS 'COMPLEX 

(THIS IS A (COMPLEX LIST)) 

(CONS 'list NIL)) 
NIL)))) 

+---------------------------------------------------------------------+ 

You can see from these examples that the LIST function often makes it a 
lot easier to construct the list you want. Each of the different list 
manipulation functions has its own special purpose, like LIST. Even 
though you would prefer to use LIST to build the lists mentioned above, 
it's a good exercise to test your understanding of of Lisp evaluation by 
tracing through the calls to CONS in the last two examples. Give it a 
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try now. Just remarnber -- do the inside evaluations before the outside 
ones. And if you have any problems, draw a diagram! 

4.3 Accessing Parts of Lists 

Once you've built a list, in order to do anything useful with it, you'll 
need to be able to isolate the elaments of it. 00-LISP has a variety of 
functions to do this. Just as CONS is the basic Lisp function for 
building lists, CAR and CDR are the primitive functions for accessing 
parts of them. CAR takes a single argument, should be a list, and 
returns the first element of the list. CDR is the· complement of CAR: 
when given a list, it returns all but the first element. Some examples 
will make this clear: 

+----------------------------------------------------------~----------+ 
1: (CAR ' ( 4 SCORE AND 7 YEARS)) 
4 

2: (CDR ' ( 4 SCORE AND 7 YEARS) ) 
(SCORE AND. 7 YEARS) 

3: (CAR ' ( (A B) (C D)) ) 
(A B) 

4: (CDR ' ( (A B) (C D)) ) 
( (C 0)-) 

5: (CAR 'A) 

%CDR doesn't return the second 
% element, but a list of all 
%the elements but the first 
%The argument to CAR and CDR 

***** (A is not a pair for CAR) %must be a list 

6: (CAR NIL) %It is an error to try to take 
***** (NIL is not a pair for CAR) %the first element 

%of an empty list 
7: (CDR NIL) %And the empty list doesn't 
***** (NIL is not a pair for CDR) % have a remainder 

%either 

+---------------------------------------------------------------------+ 

Multiple applications of CAR and CDR can be used to get at any element 
of a list, no matter how deeply embedded it is in other lists. For 
example: 
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+-------------------------------------------------~-----------=-------+ 
1: { CAR ( CDR ' { A B C) ) ) 
B 

2: {CAR (CDR (CDR '(A B C)))) 
C 

3~ {CDR {CDR (CDR '(ABC)))) 
NIL 

4: ( CAR ( CDR ( CAR ' ( ( A B) C D) ) ) ) 
B 

+---------------------------------------------------------------------+ 

Notice the close relation between CONS, on the one hand, and CAR and CDR 
on the other. CAR will get back what was the first argument to CONS; CDR 
will get back the second: 

+---------------------------------------------------------------------+ 
1: ( CAR { CONS ' A ' ( B C) ) ) 
A 

2: ( CDR ( CONS 'A ' { B C) ) ) 
(B C) 

+---------------------------------------------------------------------+ 

4.4 Testing Properties of Lists 

In addition to constructing and accessing parts of lists, another very 
basic kind of operation is to test lists for various properties. One of 
the most basic tests is to determine if a list is empty. You can do this 
using the function NULL. NULL returns T if the list it is given as an 
argument is empty, ot~erwise, it returns NIL. 

+---------------------------------------------------------------------+ 
1: (NULL '(A)) 
NIL 

2: (NULL NIL) 
T 

3: (NULL 'A) 
NIL 

%A is an atom, so can't be the 
%empty list 

+---------------------------------------------------------------------+ 
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The function NOT is a synonym for NULL and can be used interchangeably: 

+---------------------------------•v ·---------------------------------+ 
4: (NOT NIL) 
T 

5: ( NOT ' ( B C D ( E F) ) ) 
NIL 

+---------------------------------------------------------------------+ 

4.4.1 Testing Lists and Atoms for Equality 

Perhaps the most basic test on lists is to determine if two lists, or 
atoms for that matter, are the same. The primitive Lisp function 
provided for testing equality is called EQ. For now, you should think of 
EQ as testing the equality of atoms only. It will return T if the the 
two arguments you give it are the same atom; otherwise, it returns NIL. 
Here are some examples of EQ in action: 

+---------------------------------------------------------------------+ 
1: (EQ 'A 'A) 
T 

2: (EQ 'A 'B) 
NIL 

%These literal atoms are the same 
%because they have the same name 

3: (EQ 54 54) %The small integers that are 
T %numeric atoms in UOLISP are also 

%EQ if they have the same name 
4: (EQ 54 55) 
NIL 

5: (EQ NIL NIL) 
T 

+---------------------------------------------------------------------+ 

The reason to use EQ with only atoms is that it doesn't work as you 
might expect with lists. For example: 

+---------------------------------------------------------------------+ 
6 : ( EQ ' ( A B C) ' ( A B C) ) 
NIL 

I 

+---------------------------------------------------------------------+ 

The right function to use with lists is called EQUAL. It works as you'd 

'---,/ 

expect: \.J 
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+--------------------------------------------------------------------+ 
7: (EQUAL ' (A B C) ' (A B C)) 
T 

8: (EQUAL 'A 'A) 
T %Note, EQUAL works for atoms too. 

%In general any two things that 
54 54) %are EQ are EQUAL, but not the 9: (EQUAL 

T %converse 

+---------------------------------------------------------------------+ 

4.4.2 Equality of S-expressions 

It may seem odd to you that (EQ '(AB) '(AB)) is not true. This is 
because the notion of sameness is actually ambiguous. Suppose you have 
two identical twins. Are they the same? On one view the answer is 
clearly "No"; after all, they are different people. Those arguing this 
way interpret "S'ame" as referring to the identity of the object. But 
another view says they are the same; after all, you can't tell them 

·apart. Those arguing this way are referring to the appearance of the 
object. 

EQ and EQUAL correspond to these different interpretations of "same". EQ 
refers to the stricter "identity" sense of "same", while EQUAL refers to 
the looser "appearance" sense of "same". Thus you can clearly see why to 
(EQUAL' (AB) '(A Bl) is true; both lists have the same appearance in 
print. And the reason that these two lists are not EQ is that, like the 
twins, while they look the same, they are really two different lists. 

This may seem surprising, so let's take some time to understand why it 
is so. When you ask Lisp to build a list by: 

+---------------------------------------------------------------------+ 
1: (LIST 'A 'B) 
(A B) 

2: ' (A Bl 
(A B) 

%or 

+---------------------------------------------------------------------+ 

Lisp act4ally takes this as an instruction to create a Lisp entity, a 
Lisp data object. If you repeat the instruction, you are essentially 
asking Lisp to -create a new object. The new object is a different 
structure than the old one, even though they look alike, much like two 
houses from the same blueprint are different structures, even though 
indistinguishable. Thus, if you say: 
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+---------------------------------------------------------------------+ 
3 : ( EQ ' ( A B) ' ( A B) ) 
NIL 

+---------------------------------------------------------------------+ 
Lisp first evaluates the arguments to EQ, creating two new list objects, 
then tests them for EQness. Since they are not the identical list, EQ 
returns NIL. 

Maybe you now understand why two same-appearing lists are not EQ, but 
you might ask: Why are two atoms EQ? Doesn't Lisp create two DIFFERENT 
versions of A when I say (EQ 'A 'A)? In fact Lisp does not. It only 
creates new list objects; it never creates two atoms with the same name. 
And that is why you can use EQ with atoms but should use EQUAL with 
lists. 

4.5 Primitive List Operations 

The primitive operations CONS, CAR, CDR, and EQ, provide the basis for 
constructing most of the complex operations of Lisp Many of these 
compound operations are so convenient and frequently used, that 00-LISP 
£rovides built-in functions that effect them. Chapter 2.3 in the 00-LISP 
Learner's Manual describes the primitive list manipulation functions, 
while Chapter 2.14 discusses the built-in composite functions. In 
Section 5 of this tutorial we· describe how you can create your own 
functions to effect just the compound list operations you wish. 

List operations like these are at the heart of symbolic computation in 
Lisp. You'll need lots of practice to get proficient. The next sections 
will provide some of the necessary practice. 

4.6 Asking for Help 

00-LISP provides much assistance for the beginning user. There are three 
built-in functions that interface to a data base containing an English 
description of each built-in function, error message, and editor 
command. The APROPOS function assists the user in determining the 
spelling of a function name by providing a list of built-in functions 
that have a specified sequence of letters in them. The HELP function 
provides an English description of any built-in function, and ERROR!? a 
description of an error. 

Suppose I would like to substitute the identifier A for every occurrence 
of the identifier B in a list and do not know if there is a built-in 
function that does this. If there is such a function it probably has '-.J 
some of the letters of 'substitute' in it. Two distinguishing letters of 
'substitute are Sand Bas normal function name construction uses the 
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first part of the corresponding English word less vowelso The APROPOS 
function will find the names of all functions that have an S and B in 
them in that order. 

+------------------------------. -------------------------------------+ 
1: (APROPOS 'SB) 
(SETIOBYTE SUBST SUBLIS SUBl) 

Of the four functions, only the last three look like they have something 
to do with list substitution. The HELP function can now be used to 
discover what these functions do. The first two go something like this: 

+---------------------------------------------------------------------+ 
2: ( HELP SUBST) 

(SUBST U:any V:any W:any):any [EXPR] (2 .. 14] 

SUBST returns the result of substituting U for 
all occurrences of Vin W.; EQUAL is used for equality 
t.ests. 

NIL 

3: (HELP SUBLIS) 

(SUBLIS X:alist Y:any}:any [EXPR] (2.14] 

SUBLIS returns the result of substituting the 
CDR of each element of the alist X for every 
occurrence of the CAR part of that element in Y. 

NIL 

I 
I. 

+---------------------------------------------------------------------+ 

Evidently SUBST is the function I want. The textual explanation gives 
the arguments of the function, the type of the function (see the 
: .. ntroduction to Chapter 2 of the UO-LISP Learner's Manual) , and the 
chapter and section number of the function in the UO-LISP Learner's 
Manual. 

UO-LISP provides assistance when a recoverable 
Error messages are always prefixed by 5 
sometimes fairly cryptic. The ERROR!? function 
explanation ·of why the error was signaled 
alternative courses of action. For example, in 
tried to open a file, but spelled INPUT wrong. 

system error is signaled. 
asterisks (*****) and are 
will provide an English 
and will sometimes suggest 
the following sequence I 
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+---------------------------------------------------------------------+ 
1: (OPEN "XYZ" 'INPT) 
***** Cannot OPEN 

2: (ERROR!?) 

***** cannot OPEN 

A file cannot be opened for 
reasons. These include: poorly fanned 
not mounted, operating system error, 

.exist, or the second argument to OPEN 
OUTPUT. 

NIL 

a variety of 
file name, 'disk 
file does not 
is not INPUT or 

+---------------------------------------------------------------------+ 

These functions provide a comprehensive interactive manual 
immediate access to a large amount of information. Until he 
considerable practice with the system the beginning user will find 
access very helpful . 

with 
has 

this' 



CHAPTER 5 
NAMING AND DEFINITION 

As you construct progressively larger programs in Lisp you may find 
yourself repeatedly typing the same expressions. For example, you may be 
continually retyping a long list like 
"(TOYOTA NISSAN MAZDA SUBARU HONDA MITSUBISHI)". This is extremely 
awkward and time-consuming. What you'd like is a way of naming that 
particular expression, then using the name in your code, not the 
expression itself. Similarly, you might repeatedly accessing the fifth 
element of a list, using 
"(CAR (CDR (CDR (CDR (CDR I (ABC DEF G))))))". Here again, you'd like 
to associate a name with that particular operation (getting an element 
of a list at a particular index). Lisp provides powerful ways for naming 
such things. 

5.1 Naming Data Structures 

In the first case above, you would like to remember a particular data 
object. To do this in Lisp, you can set the value of an atom to that 
data object. This is done using the SET function: 

+--------------------------------. -----------------------------------+ 
1: (GLOBAL '(JAPANESECARS)) 
NIL 

2: (SET 'JAPANESECARS '(TOYOTA NISSAN MAZDA SUBARU 
HONDA MITSUBISHI)) 

(TOYOTA NISSAN MAZDA SUBARU HONDA MITSUBISHI). 

+---------------------------------------------------------------------+ 

For now, don't worry about the call to the built-in function GLOBAL in 
the first line; we'll return it that shortly. SET actually does two 
things. First it will make the value of the atom JAPANESECARS be 
(TOYOTA NISSAN MAZDA SUBARU HONDA MITSUBISHI), and, second, it returns 
the value. The value returned, of course, is not the important thing; it 
happens because in Lisp, every function call returns a value. The 
important result of SET is its side effect of setting an atom's value. 

Now, when we type "JAPANESECARS", it will be evaluated like any atom 
(see Chapter 3), and its value returned: 
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+---------------------------------------------------------------------+ 
3: JAPANESECARS 
(TOYOTA NISSAN MAZDA SUBARU HONDA MITSUBISHI) 

4: (LIST 'JAPANESECARS JAPANESECARS) 
(JAPANESECARS (TOYOTA NISSAN MAZDA SUBARU HONDA 
MITSUB·ISHI) ) %remember quoted things aren' t 

%evaluated 

+---------------------------------------------------------------------+ 

If you want to set the value of an atom using SET, you always have to 
quote its first argumer.t (i.e., the atom). This can be awkward, so there 
is a special function, called SETQ, which is just like SET, except it 
quotes its first argument for you: 

+---------------------------------------------------------------------+ 
1: ( GLOBAL ' ( US CAR~; GMCARS) ) 
NIL 

2: (SETQ OSCARS '(FORD GM CRYSLER AMERICAN)) 
(FORD GM CRYSLER .AMERICAN) 

3: (SETQ GMCARS '(PONTIAC BUICK CHEVROLET CADI~C)) 
(PONTIAC BUICK CHEVROLET CADILLAC) 

+---------------------------------------------------------------------+ 

Generally, you will find it more convenient to use SETQ than SET. 

SETQ will allow you to set any S-expre::sion as the value of an atom: 
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+---------------------------------------------------------------------+ 
1: (GLOBAL' (ATOMLIST NUMLIST COMLIST REST)) 
NIL 

2: (SETQ ATOMLIST '(A LIST OF LITERAL ATOMS)) 
(A LIST OF LITERAL ATOMS) 

3: (SETQ REST (CDR ATOMLIST)) 
(LIST OF LITERAL ATOMS) 

4: REST 
(LIST OF LITERAL ATOMS) 

5: (SETQ NUMI,IST '(1 2 3 4 5 6 7)) 
(1 2 3 4 5 6 7) 

6: (CAR (CDR NUMIIST)) 
2 

7: (SETQ COMLIST '((THE) (:RAIN (IN SPAIN)) FALLS)) 
( (THE) (RAIN (IN SPAIN) ) FALLS) ) 

8: (CAR (CDR (CAR (CDR COMLIST)))) 
(IN SPAIN) 

I 

+---------------------------------------------------------------------+ 

The use of SETQ will be famili.ar to all programmers. It is what Lisp 
uses to assign values to variables, much as"=" is used in FORTRAN and 
BASIC, and":=" in PP.SCAL. 

5.2 Naming Procedures or Functions 

In addition to providing names for data objects, it is also useful to 
provide names for pieces of code or procedures. 

Note: There is no difference between a procedure and a function 
in Lisp and we will use the terns interchangeably. 

For example, it is not only briefer, but much clearer to say 
(CUBE NUMBER)" than to say "(TIMES NUMBER (TIMES NUMBER NUMBEF))", when 
you want to raise a number to the third power. All Lisps have ways to 
associate a name like "CUBE" with a procedt:re. This is done by defining 
your own function, called CUBE. In UO-LISP you define new functions by 
using a built-in function, called DE. The form of DE is as follows: 
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(DE <£unction name> <parameter list> <body>) 

where: 

<function name> is an atom naming the new function 

<parameter list> is a list of atoms that will be bound to the 
arguments given to the function 

<body> is a sequence of S-expressions defining new function 

It is best to explain DE through examples. Lets begin by defining our 
function CUBE which is paraphrased in English as follows: 

To cube something multiply it by times itself itself 
I I I I I I I I 

(DE CUBE (NUMB~R) (TIMES NUMBER (TIMES NUMBER NUMBER))) 

Now you will be able to use CUBE just as you do the built-in functions 
of LISP: 

+---------------------------------------------------------------------+ \.__,I 

1: (DE CUBE (NUMBER) 
(TIMES NUMBER (TIMES NUMBER NUMBER))) . 

TIMES 

2: (CUBE 5) 
125 

3: (CUBE 8) 
512 

4: (CUBE 'A) %CUBE only works for numbers 
***** Non-numeric argument 

5: (PLUS 4 (CUBE 4)) %you can combine calls to your own 
68 %functions and built-in ones 

+---------------------------------------------------------------------+ 

The first thing to notice about the function DE is that, unlike the 
others we have discussed, you do not have to quote the arguments to DE, 
because DE doesn't evaluate its arguments. Why not? Because if it did, 
to define a function called CUBE, you'd have tO say: 
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( DE I CUBE I ( NUMBER) ... ) 

But, since the user would always be quoting the arguments to DE, it was 
designed to do the quoting automatically, sparing the user unnecessary 
effort. Functions that automatically quote their arguments are called 
Special Forms (also called FEXPRs in the 00-LISP Learner"s Manual). You 
may have noticed that SETQ is also a special form. There are not very 
many special forms in Lisp, but they are among the most important so we 
will be meeting a few more. 

Lets take a little closer look at the mechanics of function definition 
using DE. To define a new function, you have to give it a name (here 
"CUBE"), and a meaning, in terms of code that will get executed when the 
function is called (here "(TIMES NUMBER (TIMES NUMBER NUMBER))"). But 
you also need a way of referring to whatever argument is given to the 
function, and that's what the parameter list is used for. For example, 
the parameter list of CUBE is "(NUMBER)". Since the list has only one 
element, we say CUBE is a function of one variable. Thus when someone 
calls the function CUBE, with a specific argument, say 5 (i.e., he types 
"(CUBE 5)", the variable "NUMBER" becomes bound to the value "5", and 
will have that_ value when it is referred to in the body of the function 
definition. In general, "NUMBER" will be bound to whatever argument CUBE 
is called with. 

Note, when you define a function you must provide one formal parameter 
in the parameter Lisp for each argument you expect the function to be 
called with. For example, if you want a function to average two numbers 
to be called like "(AVERAGE 10 6) ", then you will have to supply two 
formal parameters in the parameter list you create: 

+--------------------------------·------------------------------------+ 
1: (DE AVERAGE (X Y) 

(QUOTIENT (PLUS X Y) 2)) 
AVERAGE 

2: (AVERAGE 10 6) 
8 

3 : (AVERAGE 11 6) 
8 %AVERAGE does integer arithmetic. 

+---------------------------------------------------------------------+ 
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5.2.1 Fonnal Parameters and Global Variables 

The formal parameters of a function are often called local variables. 
They are variables, because, just like any other atoms that have values, 
they are "assigned" values when the function is entered, and can be used 
to access those values. They are local variables, however, because 
unlike other variables they can only be referenced inside the function 
for which they are defined. An example will make this clearer: 

+---------------------------------------------------------------------+ . . 

1: (GLOBAL '(VARIABLEl)) 
NIL 

2: ( SETQ VARIABLEl ' ( FOO BAR) ) 
(FOO BAR) 

3: (DE FUNNYFUNCTION (VARIABLE2) 
(LIST 'BANG VARIABLE2 VARIABLEl)) 

FONNYFUNC?ION 

4: (FUNNYFUNCTION '(AB)) %VARIABLE2 and VARIABLE both 
%have values when referenced 

(BANG (AB) (FOO BAR)) %here 

5: VARIABLE2 
***** (not global 

6: VARIABLEl 
(FOO BAR) 

%but VARIABLE2 has no value 
VARIABLE2) %outside the scope of 

%FUNNYFUNCTION. 
%however, VARIABLEl has it 
%value anywhere 

+-----------------------~---------------------------------------------+ 

In contrast with a local variable, like VARIABLE2, whose scope is just 
the function for which it is defined, variables like VARIABLEl, are 
defined everywhere; hence they are global in scope, and are often called 
global variables. Why does Lisp make this distinction between local and 
global variables? We discuss this in the next section. 

5.2.2 Modularity and Function Definitions 

There is a good reason formal parameters are local to their functions 
and that is, the names chosen for the parameters do not affect the 
meaning of the functions. For example I could have defined CUBE as: 

+---------------------------------------------------------------------+ 
1: (DE CUBE (ANYNAMEIWANT) 

(TIMES ANYNAMEIWANT 
(TIMES ANYNAMEIWANT ANYNAMEIWANT))) 

CUBE 

'-._,/ 

+---------------------------------------------------------------------+ '-._,/ 
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Clearly someone using the function CUBE shouldn't have to know the name 
of the variable that I used as its formal parameter, in order to use the 
function properly. More generally, he shouldn't have to know anything 
about the function that doesn't have to do with its meaning. But if 
formal parameters were global variables he would have to know the names 
I had used, or else his own functions might not work properly. An 
example will show why this is so. Suppose that Ralph is writing a Lisp 
program, and has borrowed some of my functions, including CUBE. Now 
Ralph writes a new function that uses CUBE: 

+---------------------------------------------------------------------+ 
10: (DE SUMCUBE (ANYNAMEIWANT Y) 

(PLUS (CUBE Y) ANYNAMEIWANT)) 
SUMCUBE 

+---------------------------------------------------------------------+ 

Now, assuming ANYNAMEIWANT and the other formal parameters of these 
functions were global in scope, what would happen when Ralph asked Lisp 
to evaluate "(SUMCUBE 19 5)"? When SUMCUBE was.entered, Y would be set 
to 5 and ANYNAMEIWANT to 19. Then, the arguments to PLUS would be 
evaluated. To evaluate the first argument "(CUBE Y)", the function CUBE 
is entered, and its parametar, ANYNAA."'1EIWANT, is set to 5. CUBE 
eventually returns 125, and now the second argument to PLUS, the atom 
nANYNAMEIWANT" is evaluated. But it no longer has the value it had when 
SUMCUBE was entered! The variable ANYNAMEIWANT has had its value changed 
to 5 by CUBE. Thus, the call to SUMCUBE would return 130, not 144. 

Needless to say Ralph, would be very confused. His SUMCUBE function is 
correct, and I promised him that my CUBE function is ok (which it is). 
The problem is that Ralph unfortunately used a variable name which 
clashed with one that I used. Thus, if parameter names were global, to 
write his functikns correctly, Ralph would not only have to know what my 
functions did, but what names I used. Because the names chosen for 
parameters don't have anything to do with the meaning of functions, we 
don't want to require Ralph to know such things. Thus Lisp makes all 
formal parameters local to their function, not global, and the clash we 
described above never arises. 

The localization of formal parameters is one feature of Lisp that 
enables the functions you write to be modular "black-boxes". Good 
functions are black boxes because you should not need to know any of the 
details about how they are implemented or what goes on inside them when 
they are operating. You should write your functions so that all any user 
needs to know to use tham is what the name of the function is, the 
arguments it needs (their meaning, not their names), what its body does 
(not how it does it), and what the function returns. 
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5.2.3 On the Use of Global Variables 

Now that we understand why formal parameters are made to be local 
variables let's discuss the role of global variables a little more 
carefully. First of all, how do you tell if you are dealing with a 
global variable? Simple. If you can access the value of the variable 
anywhere, its global. In particular, only global variables can be 
referenced at the "top-level" in Lisp: 

+--------------------------------------------------------------------+ 
8: FOOBAR 
(A LIST OF 5 THINGS) 

9: BARFOO 
***** (not global BARFOO) 

+---------------------------------------------------------------------+ 

Here, FOOBAR is global, but BARFOO is not. In UO-LISP you can also find 
out whether a variable is global or not by using the function GLOBALP; 
if it returns Tits argument is global; if it- returns NIL, the variable 
is not global. 

+---------------------------------------------------------------------+ 
10: (GLOBALP 'FOOBAR) 
T 

11: ( GLOBALP ' BARFOO) 
NIL 

+---------------------------------------------------------------------+ 

Second, how do you create a global variable? This is also simple. Just 
declare it to be global, using the GLOBAL function (see Chapter 2.7 of 
your UO-LISP Learner's Manual), then you can SETQ it to anything you 
like. Now you understand all those calls to GLOBAL in the preceding 
sections! Note that each of the global variables we used in those 
examples was mentioned in an appropriate GLOBAL declaration before we 
every tried to reference it. 

Finally, when do you use global variables? This is not so simple to 
answer. You can, of course, use them anywhere you want. But a rule of 
style in Lisp programming says that you should never use them if you can 
figure out a way to use local variables instead. In general try to use 
them to represent pieces of data that must be referenced by many 
functions. Data that are used by only a few functions can almost always 
be passed as function parameters. Section 11 will present several 
examples of the appropriate use of global variables. For now, just be 
aware that their use should always be carefully considered. 



5.2.4 Good Programming Style in Lisp 

Writing modular functions and limiting the use of global variables are 
two aspects of good programming style in Lisp. Other aspects of the use 
of functions are equally important. Perhaps the most important rule to 
keep in mind is that well-written large Lisp programs usually comprise a 
large collection of separate functions. This design of a system is often 
difficult to appreciate for novice Lisp programmers who are familiar 
with other languages. In languages like FORTRAN or BASIC, you are 
encouraged to think of programs as consisting of one large main program, 
and a few auxiliary subroutines. In fact, in many cases the subroutines 
are really not separate from the main program, they are just blocks of 
code you branch into and out of inside "the program". In Lisp, things 
are completely different. First, there is no such thing as a "main 
program". There are only modular function definitions, which may call 
one another. And there need not even be a "top-level" function which 
calls the others, but is not called by them. Recursion in Lisp enables 
function "A" to call "B", which, in turn, calls "A" again. Second, 
rarely are any of the functions .in a large Lisp program ~hemselves 
large. It is. almost always a good rule of thumb to never let any Lisp • 
function exceed about 20 lines of code. In the following sections we 
will have a chance to put these and other rules into practice. 

5 . 3 Saving Functions 

We have written a few small functions: nothing that would be difficult 
to type in every time we started a new session. But sooner or later it 
will become painful to retype large programs every time we restart the 
system. 00-LISP provides both an editor for modifying the definition of 
a function and a filing system to save and restore functions from disk. 

To save a set of functions and global variables requires four simple 
steps: 

1. Define all the functions using DE. 

2. Create a GLOBAL variable by which you want to know this 
collection of functions. This variable is known as the file 
control variable. Normally this variable should have the same 
name as the first characters of the name of the file in which 
the functions are to be stored. 

3. Assign a list to the file control variable using SETQ. The 
first element of the list should be a string with the name of 
the file that you want the functions written to. The remaining 
elements should be the names of functions you want saved or 
expressions to execute during the loading process (the 
following example will demonstrate creating and initializing 
some global variables using this process). 

4. Call the SAVE function with the file control variable as its 
unquoted argument. 

39 
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In the following example we create a global variable, assign it a value, 
define a function and save the whole works in the file FIRST.LSP. 

+---------------------------------------------------------------------+ 
1: (GLOBAL '(GGG)) 
NIL 

2: (SETQ GGG 34) 
34 

3: (DE FNl (X Y) (TIMES X (TIMES Y Y))) 
FNl 

4: (GLOBAL ' (FIRST)) 
NIL 

5: ( SETQ FIRST 
I ( "FIRST .LSP" . 

(GLOBAL I (GGG)) 
(SETQ GGG 34) 
FNl)) 

(•FIRST.LSP" (GIDBAL (QUOTE (GGG))) (SETQ GGG 34) FNl) 

• 6: ( SAVE FIRST) 
FIRST 

+---------------------------------------------------------------------+ 

SAVE should be called periodically during a session so that a hardware 
or software crash does not cause all your work to be lost. The file 
system will change the name of the file each time SAVE is entered by 
changing the extension into Enn and adding one to nn for each call. This 
will create a string of file ·names for the above of FIRST.LSP, 
FIRST.EOG, FIRST.E0l, FIRST.E02, and so on. 

To restore a file created by SAVE is the function of LOAD. LOAD will 
read a file created by SAVE and create a file control variable for it so 
that it can be saved again. The name of the variable is returned by 
LOAD. For example: 

+---------------------------------------------------------------------+ 
1: (LOAD "FIRST. E02") 
FIRST 

+---------------------------------------------------------------------+ 

Here, the third incantation of FIRST.LSP is restored and the file 
control variable FIRST created. 

At this point you should try and define a few simple functions, save 
them on disk, and restore them. 



CHAPTER 6 
FLOW OF CONTROL 

You may have noticed that Lisp, like almost every 
language, has a default order of evaluating expressions. 
several expressions to 00-LISP at once, like this: 

other computer 
If you type 

+---------------------------------------------------------------------+ 
1: (LIST 'A 'B) (LIST 'C 'D) (LIST 'E 'F) 

+---------------------------------------------------------------------+ 

UO-LISP will evaluate them in the order presented, returning their 
values in that order: 

+--------------------------------------------------------------------=+ 
(A B) 

2 (C D) 

3 (E F) 

4: 

+---------------------------------------------------------------------+ 

Similarly, remember that when Lisp evaluates the arguments to a function 
it does the first, then the secondr then the third, and so on. And when 
a function is called, the forms in the body of the function are 
evaluated in the exact order given when the function is defined. These 
are examples of the seauential flow of control that is standard in Lisp, 
BASIC, FORTRAN, and probably every other language you know. 

However, to develop sophisticated programs you often need to go beyond 
simple sequential evaluation of expressions. Branching statements, 
common to many languages, are examples of ways of circumventing 
sequential flow of control. In this section we discuss a few of the ways 
that Lisp provides to control the evaluation of s-expressions. In 
particular we will look at conditional, iterative, and recursive flow of 
control in Lisp. You will get a glimpse of how in Lisp, unlike other 
languages which come with a fixed set of ways of controlling execution, 
it is actually possible to create your own flow of control functions. 
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6.1 Conditional Flow of Control 

It is often the case that you want something to happen only if a certain 
condition is true. In other languages you might express this using 
conditional statements such as: 

or 

or 

IF (J~EQ.5) N = 1 

100 IF J = 5 THEN N = 1 

if j == 5 then n = 1 

[FORTRAN] 

[BASIC] 

(CJ 

There are several different ways of expressing these forms in Lisp. 

6.1.1 AND and ORD 

In Lisp you • express conditional evaluation the way you do everything 
else: with a function. The simplest conditional functions in Lisp are 
AND and OR. To express the above assignment using AND you would say: 

+---------------------------------------------------------------------+ 
1: (AND (EQ J 5) (SETQ N 1)) 

+---------~-----------------~-----------------------------------------+ 

The general form of AND is: 

(AND <forml> <forrn2> <forrn3> ... <forrnj> ... <forrnM>) 

where <formj> is any S-expression. AND evaluates the <formj>s in order 
until one returns a NIL value, at which point AND returns NIL and leaves 
the remaining forms unevaluated. Thus, in the above case, if (EQ J 5) 
returned NIL (say J had the value 6), AND would not evaluate the next 
form, and N would not get set to 1. If all AND's arguments evaluate to 
non-NIL, AND returns the value of the last <forrnM>. 

Note that AND can have any number of arguments, and in the simple case 
where it is given only two, it has a natural interpretation in terms of 
familiar IF-THEN constructions: 

(AND <forml> <form2>) 
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means: 

IF <forml> 
THEN <form2> 

OR is the converse of AND. It evaluates each of its arguments in order 
until one returns a NON-NIL value, at which point OR returns that 
non-NIL value and leaves the remaining forms unevaluated. If all OR's 
arguments evaluate to NIL, OR returns NIL. In the simple case where OR 
is given only two arguments, like AND, it also has a natural 
interpretation in terms of IF-THEN: 

means: 

6.1.2 COND 

(OR <forml> <forrn2>) 

IF NOT (<forrnl>) 
THEN <forrn2> 

The Lisp functions AND and OR are sufficient to express simple 
conditionals, but what if you want to say more complicated things? 

( BASIC } 

IF I = 5 THEN LET N = 1 
IF I = 6 THEN LET N = 0 

or 

( PASCAL } 

if i = 5 then n .- 1 
else if i = 6 then n := 0; 

To express complex conditionals, Lisp has a very general function called 
COND, which combines both the actions of AND and OR. To express the 
above complex conditional using COND you would say: 
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+---------------------------------------------------------------------+ 
1 : ( COND ( ( EQ I 5 ) ( S ETQ N 1) ) 

( ( EQ I 6) ( SETQ N O) ) ) 

+---------------------------------------------------------------------+ 

The general form of COND is: 

(COND (<testl> <sequencel>) 
(<test2> <sequence2>) 

(<testi> <sequencei>) 

(<testN> <sequenceN>) ) 

where <testi> is any S-expression, and <sequencei> is any sequence of O 
or more S-expressions. The (<testi> <sequencei>) lists that are the 
arguments to COND are often referred to COND clauses with the <test> 
being called the antecedent and the <sequence> the consequent. 

COND first evaluates <testl> (the form (EQ J 5) in the previous 
example). If that returns any non-NIL value, then the remaining forms in 
that COND clause (<sequencei>) are all evaluated in order. In the 
previous example there was only one such form, (SETQ N 1), but we could 
have put any number of S-expressions there. After the <sequencel> forms 
are evaluated, COND stops, returning the value of the last form in the 
sequence. No other COND clauses will be evaluated. However, if <testl> 
had the value NIL, then COND does not evaluate the remaining forms in 
the COND clause. In this respect it is acting like AND, only evaluating 
<sequencel> if <testl> is non-NIL. Instead of evaluating <sequencel>, 
COND repeats the above process with the second COND clause. It evaluates 
<test2>, and if the value of <test2> is non-NIL, then, analogous to the 
first clause, the <sequence2> forms are are all evaluated, and the COND 
stops. Also analogous to the first clause, if <test2> evaluates to NIL, 
the third COND clause is tried. In general, this evaluation of the 
<testi> forms continues until one finally returns a non-NIL result, at 
which time the remaining S-expressions in that clause are evaluated, and 
the COND returns. In this respect it is acting like OR, stopping 
evaluation when the first non-NIL <testi> is found. More information 
about COND can be found in Chapter 2.10 of your 00-LISP Learner's 
Manual. 

The action of COND may seem confusing at first, because it is such a 
general conditional statement. You might find it useful to think of COND 
in terms of IF-THEN conditionals, with·which you might be more familiar. 
Here's what COND looks like in IF-THEN form: 
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IF <testl> 
THEN <formll> <forml2> <forml3> ... 

ELSEIF <test2> 
THEN <form21> <form22> <form23> ... 

ELSEIF <test3> 
THEN <form31> <form32> <form33> 

ELSEIF <testN> 
THEN <forrnNl> <forrnN2> <forrnN3> ... 

Another example of the use of COND will also give you a better feel for 
how it is used. Suppose you wanted a function, called ADDRESS, that 
would remember the addresses of your friends for you. More specifically, 
ADDRESS should be a function of one argument (a friend's name), and 
should return the friend's address when called. Here is a simple way to 
implement ADDRESS using COND~ 

+---------------------------------------------------------------------+ 
1: (DE ADDRESS (NAME) 

(COND ( (EQ NAME 'JED) '(411 LA SALLE)) 

ADDRESS 

((EQ NAME 'WILLIAM) '(765 LONG BEACH)) 
( (EQ NAME 'STEPH) '(918 OCEAN) J 
((EQ NAME 'HANK) '(1010 SANTA MONICA)) 
( (EQ NAME 'DAVE) ' ( 1055 MANNING)))) 

2: (ADDRESS 'HANK) 
(1010 SANTA MONICA) 

3: (ADDRESS 'STEPH) 
(918 OCEAN) 

4: (ADDRESS 'ARNOLD) 
NIL 

~---------------------------------------------------------------------+ 

Note, as the last example (4:) illustrates, if all of the COND <testi>s 
return NIL, COND returns NIL. It is common practice to use the last 
clause of a COND as an "otherwise" clause; a clause whose <sequencei> 
forms should be evaluated, but only if all the other clauses fail. To 
accomplish this, you must use a last <test> that is guaranteed to return 
a non-NIL value. Traditionally T is used for this purpose, since it 
means the logical opposite of NIL. For example, suppose you wanted to 
set N to O if I was 5, to 1 if I was 6, and otherwise set N to 2. This 
is easily accomplished by: 
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+---------------------------------------------------------------------+ 
1: (COND ( (EQ I 5) (SETQ N 1)) 

( ( EQ I 6) ( SETQ N O ) ) 
(T (SETQ N 2))) 

+---------------------------------------------------------------------+ 

6.1.3 COND, AND and OR are Special Forms 

A final thing to note about COND, as well as AND and OR, is that like DE 
and SETQ they don't evaluate their arguments before operating on them. 
They are Lisp special forms. If you think about it a bit, this makes 
sense. COND is a conditional function that shouldn't evaluate its 
arguments automatically; its qnly supposed to evaluate the <sequencei> 
forms, when <testi> evaluates to non-NIL. Automatically evaluating all 
COND's arguments before entering COND would defeat its conditional 
purpose! 

6.2 Iterative Flow of Control 

It is very common to write programs to do things repeatedly. Branching 
statements like: 

or 

[ FORTRAN } 

IF (I.LT.10) GO TO 222 

[BASIC} 

GO TO 200 

that allow you to return to a previous labelled statement, are one 
common way many programming languages provide for iterative flow of 
control. In this section we will look at one means Lisp provides to do 
iteration. It is not the only means, or the most elegant, but it is the 
most basic. 
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The basic function that allows you to do iterative, non-sequential, 
execution is called PROG. It is rather difficult to describe the 
structure of PROG, and in fact it has several different important 
features. So we wil.l introduce PROG with a series of examples each 
demonstrating more of its features, culminating in an example where it 
is employed to define a useful iterative function. 

The first important feature of PROG is that it allows you to declare and 
use an unlimited number of local variables. The first form in a call to 
PROG must be a list of atoms, or the nul 1 list "() "; for example: 

(PROG () ... ) [No variables] 

or 

( PROG ( FOOBAR) .. ~ ) [One variable] 

or 

(PROG (ABC D) ... ) (4 variables] 

The atoms are local variables within that call to PROG. Recalling our 
discussion of local and global variables in Section 5.2.1, you will 
remember that this means the variables in the list can only be 
referenced inside the call to PROG, no~ outside. Thus, if I say: 

+---------------------------------------------------------------------+ 
1: (PROG (FOO) (SETQ FOO' (OH SAY CAN YOU SEE))) 
NIL 

+--------------------------------------------------------------------+ 

there is no problem, but if I try to access FOO outside the PROG in 
which it is declared, I get into trouble: 

+---------------------------------------------------------------------+ 
1: (PROG (FOO) (SETQ FOO '(OH SAY CAN YOU SEE))) 
NIL 

2: FOO 
***** (not global FOO) 

+-----~---------------------------------------------------------------+ 

We see here a general technique· for creating local variables needed to 
temporarily remember the results of computations inside a function. body. 
If you need to remember a value temporar~ly, don't assign it to a global 
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variable. Just wrap the expression in a PROG and declare all the locals 
you need inside the PROG. The value of the PROG is set by executing the 
special functior. RETURN, the argument of RETURN becoming the value of 
the PROG. For example: 

+---------------------------------------------------------------------+ 
1: (DE BEERSONG (N) 

(PROG (REFRAIN) 
(SETQ REFRAIN (CONS N '(BOTTLES OF BEER))) 
(RETURN 

(APPEND REFRAIN 
( APPEND I ( IN THE WALL) 

(APPEND REFRAIN 
'(IF ONE OF THE BOTTLES SHCULD 

HAPPEN TO FALL))))))) 
BEERSONG • 

2: (BEERSONG 47) 
(47 BOTTLES OF BEER IN THE WALL 47 BOTTLES OF BEER 
IF ONE OF THE BOTTLES SHOULD HAPPEN TO FALL) 

3: (BEERSONG 46) 
(46 BOTTLES OF BEER IN THE WALL 46 BOTTLES OF BEER 
IF ONE OF THE BOTTLES SHOULD HAPPEN TO FALL) 

+---------------------------------------------------------------------+ 

The forms after the list of local variables in the PROG functior. are 
called the~ of the PROG. As the last example illustrates, the PROG 
body can contain any number of s-expressions, and they are generally 
evaluated in order. Note also that PROG, like DE, SETQ and COND is a 
special form; it does not evaluate its arguments before the function 
evaluation begins. 

6.2.2 RETURN 

PROG, like COND, and unlike other Lisp functions, has an important 
feature that lets you stop evaluating forms in the PROG body whenever 
necessary. If a call to the function RETURN is found anywhere in a PROG, 
the computation exits from the PROG immediately, evaluating no further 
forms in the PROG body. For example: 

'-._/ 



49 

+---------------------------------------------------------------------+ 
1: (DE ODDSQUARE (N) 

% ODDSQUARE returns the square of a number, N, if 
% it is odd, otherwise it returns just N. A 
% number is odd if, when divided by 2, it yields 
% a remainder of 1. The built-in UOLISP function 
% REMAINDER returns this remainder. 

(PROG (SQ) 
(SETQ SQ (TIMES N N)) 
(COND ((EQUAL 1 (REMAINDER SQ 2)) 

(RETURN SQ))) 
(RETURN N) )) 

ODOSQUARE 

2: (ODDSQUARE 5) 
125 

+---------------------------------------------------------------------+ 

In the previous call to ODDSQUARE, N will be set to 5, and so the SETQ 
will set the value of the local PROG variable SQ to 125. In the next 
form, COND first evaluates (EQUAL 1 (REMAINDER SQ 2)) which returns T, 
since SQ is 125. Then, since the first argument to the COND is non-NIL, 
COND evaluates its second argument, which is a call to the function 
RETURN. Note that RETURN has one argument, and its value, 125, will be 
the value returned from the PROG. Because the RETURN is encountered, the 
last S-expression of the PROG is not evaluated. If the argument to 
ODDSQUARE had been even, say 4, then (EQUAL 1 (REMAINDER SQ 2)) would 
have returned NIL, and COND would not have evaluated its second form, 
the call to RETURN. As a result~ the last form in the PROG body, 
(RETURN N), would have been evaluated, and its value, 5, returned as the 

value of the PROG. 

One final note: If no RETURN is executed during the body of the PROG, 
NIL is returned, not the value of the last expression as you might 
expect. 

6.2.3 GO and Labels 

The final important feature of PROG enables you to do iteration by 
looping through a portion of the PROG body code, much like you do in 
other languages. Within the body of a PROG you can place a label, which 
can be any Lisp atom. Then, as the code in a PROG body is executed, if a 
call to the function GO is encountered, with the label as an argument, 
control will return to S-expression right after the label. Thus, PROG 
labels in Lisp act much like numeric statement labels in BASIC, FORTRAN, 
and PASCAL. In this way, a block of S-expressions can be repeatedly 
evaluated, as shown schematically below: 



(PROG () 

LOOP 

<S-expressions> 

(GO LOOP) ... } 
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% a label called LOOP 

% this call to GO results in a 
% jump to just after the label LOOP 

Here, the expressions between the label LOOP and the form (GO LOOP) will 
be evaluated again and again. Of course, you don't want to get into an 
infinite loop, so you need some way of jumping out of this code. To do 
this, you can place a call to the function RETURN inside the repeated 
code. By judiciously using GO, RETURN, and statement labels within a 
PROG body (and only within a PROG body!), you will find it possible to 
tailor the flow of evaluation of S-expressions in almost any way you 
wish. Chapter 2.8 of the UC-LISP Learner's Manual will give you more 
information on these functions, and how to use them correctly. For now, 
we will· present an example that uses' all the important features of PROG 
to give you an idea of how they are typically used to accomplish 
iteration. 

6.2.4 An Example Using PROG 

I want to define a Lisp function., called SUMSEGMENT, that is described 
as follows: 

NAME: 
-SUMSEGMENT 

INPUT: 
-two integers (M, N) 

PLAN 
-if Mis greater than N, SUMSEGMENT from M to N is equal to O 
-if Mis equal to N, SUMSEGMENT from M to N is M 
-otherwise, SUMSEGMENT from M to N is the sum of the integers 

M to N 

Here is how SUMSEGMENT can be implemented using PROG, GO, RETURN, and 
labels: 
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+--------------------------------=------------------------------------+ 
1: (DE SUMSEGMENT (MN) 

(PROG (SUM) % 1 
(COND ( (GREATERP M N) (RETURN 0))) % 2 

(SETQ SUM M) % 3 
LOOP % 4 

( COND ( ( EQ M N) % 5 
(RETURN SUM)) % 6 

(T % 7 
(SETQ M (PLUS 1 M)) % 8 
(SETQ SUM (PLUS M SUM)) % 9 
(GO LOOP))))) % 10 

SUMSEGMENT 

2: (SUMSEGMENT 2 7) 
27 

3: (SUMSEGMENT 5 5) 
5 

4: (SUMSEGMENT 5 3) 
12 

+---------------------------------------------------------------------+ 

Let's go carefully through each line of this definition to fully 
understand it. The basic idea of this definition is to keep a running 
sum in the variable SUM, first initializing SUM to M, then incrementing 
M by 1, adding that new M to SUM, repeating the process until Mis equal 
to N, and finally returning the SU~. 

On line 1 (%1) we enter a call to PROG and declare a single PROG 
variable, SUM, which will be used to hold the accumulating sum. On line 
2, we take care of the case where N is greater than Mand return 0. If M 
is less than or equal to N, on line 3 we continue by initializing the 
variable SUM to M. Line 4 contains the PROG label, LOOP, which announces 
the start of our repeated block of code in the PROG body. The remainder 
of the PROG body is a call to COND. On line 5, the COND tests to see if 
Mand N are equal. If so, the call to RETURN on line 6 returns the 
current value of SUM out of the PROG and out of the function. If Mis 
still less than N, the "otherwise" clause of COND is executed. Line 8 
increments M by 1, and line 9 increments the accumulating SUM by M. Then 
line 10 returns control to the label LOOP, and the COND is repeated. 
This iterative process will continue until Mis incremented to the value 
of N. 
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6.3 Recursive Flow of Control in Lisp 

The previous example showing how to specify an iterative process in Lisp 
should be familiar to many of you who already program. It is really not 
very different from how you might accomplish the same task in FORTRAN or 
BASIC. However, Lisp provides a way to accomplish this and many other 
related tasks in a way that is often much more elegant and succinct. In 
this section we will show how to write the same SUMSEGMENT function as a 
RECURSIVE computation, not an iterative one; and we will also spend some 
time giving you a "feel" for recursion -- when to use it, and how to 
understand recursive functions that others have written. 

Let's begin by considering a definition scheme for SUMSEGMENT that is a 
bit different from the one we used above: 

NAME: 
-SUMSEGMENT 

INPUT: 
-two integers (M, N) 

PLAN: 
-if Mis greater than N, SUMSEGMENT from M to N is 0 
-if Mis equal to N, SUMSEGMENT from M to N is M 
-otherwise, SUMSEGMENT from M to N is M + SUMSEGMENT 

from M + 1 to N 

The only difference between this scheme and the previous one is the last 
clauses in their plans. While the first plan described a general, vague 
property of SUMSEGMENT, "SUMSEGMENT from M to N is the sum the integers 
M to N" the new plan describes a more precise, but somewhat strange 
property "SUMSEGMENT from M to N is M + SUMSEGMENT from M + 1 to N". 
While this latter property seems true (think about it!), does it really 
describe a procedure for computing SUMSEGMENT. In most languages, the 
answer is "no"; in Lisp, a recursive procedure can be constructed that 
is quite faithful to this plan. The function ADDl used here is an 
abbreviation for (PLUS 1 M). 

+---------------------------------------------------------------------+ 
1: (DE SUMSEGMENT (MN) 

( COND ( ( GREATERP M N ). 0) 
( (EQUAL M N) M) 
(T (PLUS M (SUMSEGMENT (ADDl M) N))))) 

SUMSEGMENT 

2: (SUMSEGMENT 2 8) 
35 

+---------------------------------------------------------------------+ 

This a recursive definition of SUMSEGMENT because it is defined in terms 
of itself (i.e., the definition of SUMSEGMENT embeds a call to 
SUMSEGMENT). Such a recursive definition is likely to seem strange to '-" 
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you. How can you define a function in terms of itself without getting 
into some sort of infinite loop? Since recursion is a bit unnatural, and 
because your previous programming experience may not have taught you 
about this important concept, we will spend some time looking at exactly 
how this recursive definition works. 

The best way to understand how a function works is to watch it in 
action. In 00-LISP you can do this by tracing the function (see Cnapter 
2.17 of your 00-LISP Learner's Manual) with TR and watching as calls to 
the function are evaluated. 

+--------------------------------------------------------.------------+ 
3: (TR SUMSEGMENT) 
*** Redefined: SUMSEGMENT 
SUMSEGMENT 

4: (SUMSEGMENT 3 5) 
Entering SUMSEGMENT % 1. 

arg[l] = 3 
arg[2] = 5 

Entering SUMSEGMENT % 2. 
arg[l] = 4 
arg[2l = 5 

Entering SUMSEGMENT % 3. 
arg[l] = 5 
argc21 = 5 

Exiting SUMSEGMENT = 5 % 4. 
Exiting SUMSEGMENT = 9 % 5. 
Exiting SUMSEGMENT = 12 % 6. 
12 

+---------------------------------------------------------------------+ 

To evaluate (SUMSEGMENT 3 5) (line % 1.), the COND of SUMSEGMENT is 
entered, and since none of the other COND <tests> are true, the 
otherwise (final )clause is evaluated. This is a call to PLUS, and both 
arguments to PLUS must be evaluated before the call to PLUS can return. 
The second argument is a call to (SUMSEGMENT 4 5), so SUMSEGMENT is 
re-entered (line% 2.), this time with the arguments 4 and 5, not 3 and 
5. Again only the othenvise clause of the COND in SUMSEGMENT is true, so 
a call to PLUS is again initiated. As before, to do the PLUS, we must 
first evaluate its arguments, and this means re-cal'ling SUMSEGMENT one 
more time, with the arguments 5 and 5 (line% 3.). When SUMSEGMENT is 
entered this time, however, the second clause of the COND, is evaluated, 
and the recursive call is never reached. 

If you imagine each call to SUMSEGMENT as going down a level (as the 
above suggests), we are now at the bottom. This particular call to 
SUMSEGMENT does not result in any further calls. Instead, because Mis 
equal to N, the second clause of the COND will return the value of M, 5, 
and this will be returned out of the call (SUMSEGMENT 5 5) (line %4.). 
Since the call (SUMSEGMENT 5 5) has now returned a value, we can 
complete the call to (PLUS 4 (SUMSEGMENT 5 5)), since both arguments to 
PLUS are now evaluated. This call to PLUS thus returns 9. We are now 
beginning the climb back up to our first function call. Recall that 
(PLUS 4 (SUMSEGMENT 5 5)) was evaluated as the part of the attempt to 
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evaluate (SUMSEGMENT 4 5). Now that the PLUS has returned a value, the 
call (SUMSEGMENT 4 5) can now return a value, 9 (line % 5.). We have 
climbed another step back up. Because (SUMSEGMENT 4 5) is finished, the 
call to (PLUS 3 (SUMSEGMENT 4 5)) has all its arguments evaluated, and 
itself returns a value of 12. Finally, the last step -- back up to the 
top -- is to complete the evaluation of (SUMSEGMENT 3 5) by returning 
the value of its last expression, the call to PLUS. So, finally our 
top-level call returns 12 (line% 6.). 

Following the path of a recursive computation like this is a bit 
complicated, and it will take a while for you to get a good feel for· the 
flow of evaluation. One good exercise is to get into UO-LISP, trace it 
as above, then call SUMSEGMENT with various pairs of arguments. You can 
also trace the calls to PLUS, and even EQ, inside SUMSEGMENT, if you 
want more details of what is happening. I would also suggest beginning 
with small segments (e.g., 2 to 3, 10 to 12), then proceeding to larger 
ones. 

6.4 Why Use Recursion? 

If recursion is tricky to understand, you might well ask: Why use it at 
all, especially •since familiar iterative constructs can do the same 
thing? The strongest answer is that not everything you·might want to do 
in Lisp can be done iteratively. After you get some experience with Lisp 
you will see that some recursive operations on trees (lists that have 
other lists as elements) cannot be captured by iterative functions. 

A second reason, which you should be able to appreciate even now, is 
that the code in a recursive function is often more compact, elegant, 
and clear than the code in its iterative counterparts. Compare the two 
definitions of SUMSEGMENT we have given. Notice first, that there is 
much less code in the recursive version. Also observe that the recursive 
version doesn't need the local variable SUM, that the iterative version 
requires, and that the recursive version never has to call the function 
SETQ to keep a running sum of the segment. Finally, look how much more 
closely the recursive version reflects its English plan. Recursive 
versions of functions are usually a much more transparent statement of 
the properties of the required operation than are iterative versions. 

One of the best ways to get the concept of recursion under your belt is 
to define some useful recursive functions. In the next sections we'll do 
just that. 

\._/ 



CHAPTER 7 
COMPOSITE LISP FUNCTIONS 

In this section we will define some functions, not only to give you 
practice with recursion, and using DE, but also to give you some idea of 
the style of well-written Lisp functions, and to provide you with an 
overview of some of the composite Lisp functions that are available in 
UO-LISP. 

The built-in list manipulation functions that UO-LISP provides, such as 
CAR, CDR and CONS are very general, and ultimately, can be used to do 
almost any operation you want on a list. However, expressing the 
operation you need can often be very tedious, especially if you want to 
repeat that operation many times. By using "DE", you can define highly 
specific functions that encode any complex list manipulation operation 
that you want. Some of these functions, while much less general than 
built-in functions like CAR, are no less .useful. 

7.1 The Length of Lists 

One very important operation on a list is to determine its length. This 
is such a frequent operation that we should have a function that names 
the operation, allowing easy use. ijow should we go about writing this 
function? When you are just learning Lisp, it is a good idea to plan out 
the function before writing the code. So for each function we write 
here, we will first lay out a definition scheme, like the ones we used 
for SUMSEGMENT in Section 6. The scheme gives us all answers we need to 
construct the function in an orderly fashion. 

Here is a reasonable scheme for a function to compute the length of a 
list: 

NAME: 
-LENGTH 

INPUT: 
-a list (Ll 

PLAN: 
-if Lis not a list or is the empty list NIL, 

the length of Lis O 
-otherwisei the length of Lis 1 + the length of 

(CDR L) 

As you look at the plan for LENGTH you should recognize its similarity 
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to the last plan for SUMSEGMENT. You can probably guess that the 
function adhering to the plan will be recursive. Before looking at the 
definition below, use the plan for LENGTH, and your knowledge of the 
recursive definition of SUMSEGMENT to see if you can't implement LENGTH 
on your own. Go and try it in UO-LISP now! Write a definition, then try 
a few calls to your LENGTH function. As you do, notice how quickly you 
can test out and debug your code in Lisp. 

Did your definition of LENGTH work? Compare it to the one below: 

+---------------------------------------------------------------------+ 
1: (DE LENGTH (L) 

(COND ( (ATOM L) 0) 
(T (ADDl (LENGTH (CDR L)))))) 

*** Redefined: LENGTH 
LENGTH 

2: (LENGTH '(A B C D NIL)) 
5 

3 : ( LENGTH ' ( A ( B C) ) ) 
2 

4: (LENGTH NIL) 
0 

+---------------------------------------------------------------------+ 

If your version of LENGTH didn't work, or you don't understand this one, 
get back into UO-LISP, type in the above definition and trace LENGTH \J 
(and possibly ADDl). Than call LENGTH with various lists and non-lists, 

watching what gets printed out. Soon you'll get the hang of it! 

One final note, LENGTH is a built-in function. Once you understand its 
operation, you should feel free to use the internal version. 

7.2 List Membership 

Let's continue by writing a couple of other recursive functions for some 
especially common list operations. One absolutely necessary operation is 
to determine if an S-expression is in a given list. Here is a scheme for 
such a function: 



NAME: 
-MEMBER 

INPUT: 
-an S-expression (E)and a list (L) 

PLAN: 
-if the L, has no elements, Eis not a member of L 
-if Eis equal to the first element of the list, 

Eis a member of L 
-otherwise, Eis a member of L if Eis a member 

of (CDR L) 

57 

Once again, I encourage you to use this scheme 
recursive version of MEMBER on your own. As 
will notice the definition of MEMBER follows 
closely: 

to try to implement a 
in the previous cases, you 
its recursive plan very 

+--------------------------------------------------------------------+ 
1: (DE MEMBER (EL) 

(COND ( (ATOM L) NIL) 
( (EQUAL E (CAR L)) L) 
(T (MEMBER E (CDR L))))) 

*** Redefined: MEMBER 
MEMBER 

2: (MEMBER 'B '(A B C)) 
(B C) 

3: ( MEMBER ' 2 ' ( A B C) ) 
NIL 

%Since Bis in the list, 
%return the sublist, 
%beginning with "B" 

%2Jis not in the list 

4: (MEMBER '(A B) '(1 2 (A B) 3)) 
((AB) 3) %The element you are 

%looking for does not 
%have to be an atom 

+---------------------------------------------------------------------+ 

The previous examples highifght one peculiarity of our definition of 
MEMBER. When E is a member of L, MEMBER doesn't just return T, 
indicating that Eis in L; instead it returns the whole sublist of L 
beginning with E. This is a perfectly adequate value, since it will be 
non-NIL, and, in fact, the UO-LISP built-in function called MEMBER 
operates in exactly this way. 
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7.3 Concatenating Two Lists into One 

As a final exercise, let's define a function that will take two lists 
and return one that combines them into one long list. Once again, we 
will use a recursive plan. 

NAME: 
-APPEND 

. INPUT: 
-two (possibly null) lists, Ll and L2 

PLAN: 
-if Ll is a null list, the result of appending L2 to 

Ll is L2 
-otherwise, the result of appending L2 to Ll is the 

same as CONSing the first element (CAR} of Ll onto 
the result appending L2 onto the remainder (CDR) 
of L 

This scheme once again implies a recursive definition. Although this 
definition is a bit trickier than the previous two, give it a try, and 
to fully understand the following definition make sure to actually 
implement it in UO-LISP and carefully trace its execution on a variety 
of inputs. 

+---------------------------------------------------------------------+ 
1: (DE APPEND (Ll L2) 

(COND ( (NULL Ll) L2) 
(T (CONS (CAR Ll) . 

(APPEND (CDR Ll) L2))))) 
*** Redefined: APPEND 
APPEND 

2: (APPEND' (THE RAIN IN SPAIN) 
'(FALLS MAINLY ON THE PLAIN)) 

(THE RAIN IN SPAIN FALLS MAINLY ON THE PLAIN) 

3: (APPEND NIL ' (A B C) ) 
(ABC) 

4: (APPEND ' ( (A) B C) NIL) 
( (A) B C) 

5: (APPEND NIL NIL) 
NIL 

6: (APPEND 'A '(B C)) 
***** (A not a pair for CAR) 

%The empty list has no 
%elements, so doesn't 
%contribute anything to 
%the appended list 

%To really test a 
%definition it is always 
%important to test it on 
%special cases and cases 
%where it should fail! 

+---------------------------------------------------------------------+ 
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As you can see, recursive definitions are the rule not the exception. 
The functions LENGTH, MEMBER, APPEND, as well as many others, are built 
out of more basic Lisp functions, but are also included in your UO-LISP 
system because they are so useful (see Chapter 2.14 in the UO-LISP 
Learner's Manual). 

7.4 Other List Manipulation Functions 

The foregoing sections should give you a feel for the wide range of list 
manipulation functions it is possible to implement in Lisp .. All good 
Lisps come with many such functions built-in, even though the user could 
implement them, using only the primitive Lisp functions like CAR, CDR 
and CONS. The functions that ·come built-in have proved universally 
useful over the years, so they are supplied to save Lisp programmers the 
trouble of constructing their own "library" of utility functions. While 
we cannot go into detail on the semantics of these functions, or even 
enumerate them, we can classify the the list manipulation functions into 
several distinct categories, according to what they do to lists . 

. List constructor functions make new lists out of other lists and 
atoms. Examples: CONS, LIST, APPEND . 

. List selector functions access parts of existing lists. Examples: 
CAR, CDR. 

List predicates determine if some property is true of a list. 
Examples: EQ, EQUAL, MEMBER . 

. Other list manipulation functions return various properties of 
lists. Example: LENGTH. 

You will find many of all these kinds of functions described in Chapter 
2 of your UO-LISP Learner's Manual.· 



CHAPTER 8 
THE STRUCTURE EDITOR 

UCrLISP has its own resident structure editor which performs a number of 
functions. 

Writes functions to disk 

Reads files of functions from disk 

Modifies the definitions of functions already defined 

This chapter demonstrates some of the basic features of the structure 
editor by following a session through creation, testing, and completion 
of a simple Lisp program: the number guessing game. This program uses a 
binary search to "guess" at a number thought of by the player. 

The creation of a program in the presence of the structure editor can be 
accomplished in two different ways. The program code can be entered 
directly into Lisp through the console terminal, or a file of functions 
may be created by the system editor and read in by the usual method. The 
first method has the advantage of providing immediate feedback on the 
matching of parentheses. The file editor has the advantage of permitting 
retyping of parts of a function without reentering it in its entireity. 
We suggest the use of the system editor in the initial creation of 
functions as it permits single character fixes until all the functions 
can be read in. For the purposes of the this exercise, we recommend that 
you enter the program using the system editor and make the file 
correspond exactly to what you see here. Don't fix any bugs or 
mispellings you find, that will be part of the exercise. 



(DE NUMBERGUESS () (GUESS O 127) ) 

(DE GUESS (LOW HIGH) 
(COND ( (EQUAL LOW HIGH) (PRIN2T LOW) ) 

((ISITGT (HALF HIGH LOW)) 
(GUESS (ADDl (HALF HIGH LOW)) HIGH)) 

(T (GUESS LOW (HALF HIGH LOW))) )) 

(DE HALF (AB) (DIVIDE (PLUS AB) 2)) 

(DE ISITGT (N) 
(PRIN2 "Is it greater than") 
(PRIN2 N) 
(PRIN2 " (answer Y or N) ?") 
(YORN (READ) ) ) 

(DE YORN (C) 
(COND ( (EQ C 'Y) (PROGN (TERPRI) T)) 

( (EQ C 'N) (TERPRI)) 

STOP 

(T (PRIN2T "Y or N only!") 
(YORN (READ))) )) 
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Put this into a file called GUESS.LSP using what ever editor you have 
handy: even the standard CP/M line editor will create files which can be 
read by Lisp. Verify that what you typed matches the above character for 
character (don't worry about the spaces though). Then enter the 
following: 

+--------------------------------------------------------------------+ 
1: (LOAD "GUESS.LSP") 
GUESS 

+------------------, -------------------------------------------------+ 

If you have typed things correctly, the editor should respond with 
GUESS. If not, it will protiably stop with the prompt "Please enter STOP" 
after the LOAD. This usually-indicates a missing parentheses or string 
terminator. If this happens, type ~C to exit from Lisp and fix the file 
to exactly match that above. 

The GUESS returned by LOAD is the name of the file control variable that 
contains information needed by the structure editor to write the edited 
file back onto disk. If you look at the value of GUESS, you will see: 

+---------------------------------------------------------------------+ 
2: GUESS 
(•GUESS.E00" NUMBERGUESS GUESS HALF ISITGT YORN) 

+---------------------------------------------------------------------+ 

The first element of the list is the name of a file which the editor 
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will use to write the functions to after they have been edited. The 
extension is E followed by a two digit number which is incremented by 
one each time the file is written out. By this means many versions of 
the file may be created and changes made can be removed by "rolling 
back" to some previous version. You will occassionally have to remove 
some of the old versions of a file to keep from filling up a disk. 

The rest of the GUESS list contains the names of the functions in the 
GUESS.LSP file. Note that if you had entered the functions directly into 
Lisp, you would also have to create this list and the file name by hand 
(see section 5.3). 

It is time to try our program. The program waits for you to think of a 
number between 1 and 128. When you type something, it asks you a 
question which you must answer Y or N. Eventually, if you don't change 
your mind, it will zero in on the number you were thinking of. Think of 
the number 10 and after typing (NUMBERGUESS), you should see the 
following: 

+---------------------------------------------------------------------+ 
3: (NUMBERGUESS) 
Is it greater than (63. 1) (answer Y or N)? N 

***** Non-numeric argument 

+---------------------------------------------------------------------+ 

Evidently there is something wrong with the program as the error and 
(63 . 1) indicate. Let's address the first issue as the Non-numeric 
argument error looks like it might be caused by trying to do some 
arithmetic on (63 . 1). Looking at the source code, we see a DIVIDE 
function call in HALF which should be a QUOTIENT. The structure editor 
will allow us to change this function name and reexecute the program 
without leaving the Lisp environment. To edit a function definition, 
call EDIT with the unquoted function name to edit as its argument. When 
EDIT is called, it goes into a loop which reads structure editor 
commands from the user and executes them. You can find the documentation 
for these commands in Chapter 3 of the UO-LISP Learner~s Manual. The 
following sequence is one way in which the DIVIDE in HALF can be changed 
into a QUOTIENT. 
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+---------------------------------------------------------------------+ 

I 
I. 

4: (EDIT HALF) 
Edit[l] PP % Display definition 
{EXPR LAMBDA (AB) (DIVIDE (PLUS AB) 2)) 

Edit[l] F DIVIDE 
Found 1 of 1 

Edit[2] R QUOTIENT 
Edit[2] -
Edit[l] PP 
(EXPR LAMBDA {A B) 

Edit[l] E 
HALF 

% Find DIVIDE 

% Replace with QUOTIENT 
% Exit FIND loop 
% Display changed form 

(QUOTIENT (PLUS AB) 2)) 

% Save edited form. 

+---------------------------------------------------------------------+ 

When the structure editor command loop is in control, the prompt changes 
to Edit[n] where n is a number indicating the current editor nesting 
level. The first thing we want to do is to be sure of what we are 
editing. The PP command causes the expression currently being edited 
(the "focus" of the editor) to be prettyprinted. In this case, we see 
the internal definition of the function HALF. Our strategy is to find 
and replace each occurrence of the atom DIVIDE by the atom QUOTIENT. The 
F DIVIDE command causes the structure editor to search the entire 
expression to all levels for the atom DIVIDE. When a DIVIDE is found, 
the editor is reinvoked on the expression found and the nesting level is 
incremented by 1. When an expression is found, a message is printed 
indicating the number of occurrence of the expression and how many were 
being looked for. The R QUOTIENT command causes the DIVIDE to be 
replaced by the atom QUOTIENT. The - command causes the focus of the 
editor to return to the previous command level, Edit[l] which was 
examining the entire structure. The final PP shows that QUOTIENT has 
indeed replaced DIVIDE in the HALF function. The E command causes the 
changes to be saved and the function updated (though only in storage, 
not in the disk file). If you don't like the changes you've made, the Q 
command will exit the editor without updating the function definition. 

Once this change has been made, the game runs to completion. This time 
I'm thinking of the number 85. 
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+---------------------------------------------------------------------+ 
5: (NUMBERGUESS) 
Is it greater than 95 (answer Y or N)? N 

Is it greater than 79 (answer Y or N)? y 

Is it greater than 87 (answer y or N)? N 

Is it greater than 83 (answer y or N)? y 

Is it greater than 85 (answer y or N)? N 

Is it greater than 84 (answer y or N)? y 

85 

+---------------------------------------------------------------------+ 

To demonstrate a few more features of the editor, we will add an English 
explanation of the game at the beginning of the program by editing 
NUMBERGUESS again. The following sequence adds two print statements to 
the beginning of the NUMBERGUESS function. 

+---------------------------------------------------------------------+ 
6: (EDIT NUMBERGUESS) 
Edit[l] PP 
(EXPR LAMBDA NIL 
Edit[l] 3T 
Edit[2] P 

% Display expression. 
(GUESS O 127) ) 

( (GUESS O 127) ) 
Edit[2] I ( (PRIN2T " 
Edit(2] (PRIN2T 

% Move down 3 CDR's. 
% Display expression. 

Number Game" ) 

Edit[2]"Think of a number between O and 127 and type T") 
Edit[2] (READ)) 
Edit[2] 3-
Edit[l] PP 
(EXPR LAMBDA 

NIL 
(PRIN2T" 
(PRIN2T 

% Back to top level. 
% Check correctness. 

Number Game" ) 

"Think of a number between O and 127 and type T") 
(READ) 
(GUESS O 127)) 

Edit[l] E % Save the new definition. 
NOMBERGUESS 

+---------------------------------------------------------------------+ 

The command 3T is the command T repeated 3 times (T stands for Tail, the 
CDR of the current expression). It simply changes the focus of the 
editor to CDR of the CDR of the CDR of the expression being edited. Most 
structure editor commands can be prefixed by repetition counts in this 
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manner. The P command following this assures us that the right 
expression .is being edited. Pis like PP but calls the PRINT function 
instead. The I command inserts a list on the front of a list, that is, 
the expression being edited is appended to the expression following the 
I, in this case two PRIN2T and a READ function call. The 3- instruction 
"backs out" of the editing to the top level. The final PP verifies that 
the insertion was done correctly. • 

The most important thing to remember is saving the functions you have 
edited in a disk file. This does not happen automatically when you leave 
Lisp. Use the SAVE function as described previously. SAVE writes the 
current definitions of the functions onto disk and increments the 
version number in the control variable by 1. 

+---------------------------------------------------------------------+ 
7: (SAVE GUESS) 
GUESS 

+---------------------------------------.-----------------------------+ 

The edited file will now be found in GUESS.EOO. 

This concludes the ·demonstration of the structure and character 
editors. There are many more commands explained and a one page synopsis 
of them in the conclusion of Chapter 3 of the UO-LISP Learner's Manual. 



CHAPTER 9 
PROPERTY LISTS 

In Section 6 you will recall we used COND to implement a simple 
function, ADDRESS, that remembered tha addresses of a set of people. 
This function hinted at the ability Lisp provides to store and access 
symbolic data. In this section we discuss a much more general database 
and data retrieval facility of Lisp. 

One problem with the ADDRESS function was that the small database of 
people and addresses it stored was not extensible. If we wanted to add a 
new person, we would have to change the definition of ADDRESS. If we 
wanted to store more information about a person -- say his age as well 
as his address we 'probably would have to write a totally different 
function. 

There is a very general way Lisp provides to store information about any 
entity. We can think of entities, like people, as having attributes, 
such as age, address, height, etc. Each entity is described by 
specifying specific values for those attributes. For example, Bob's age 
might be 19, his address 1066 Main St, his height 180 cm, etc. How can 
we store this kind of information in Lisp? We begin by using an atom to 
represent the entity we want to describe. We might use BOB to represent 
our friend Bob. We have already seen that atoms such as BOB can have 
values, but they also have one other facet. Each Lisp atom also has a 
property list which is ideal for storing attributes and their values. 

The UO-LISP function PUT is used for assigning a particular value to an 
attribute of an entity. It is a function of three arguments with the 
following general form: 

(PUT <entity> <attribute> <value>) 

Here are a few specific examples of its use: 

+---------------------------------------------------------------------+ 
1: (PUT 'BOB 'AGE 19) 
19 %Sets the value of BOB's AGE 

%attribute to 19 
3: (PUT 'BOB 'ADDRESS '(1066 MAIN)) 
(1066 MAIN) %Sets BOB's ADDRESS attribute. 

%Note the value is returned 

+---------------------------------------------------------------------+ 
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Now. we need to be able to access any other these attributes and values 
as needed. The function GET is the main selector function for property 
lists. It has the form: 

(GET <entity> <attribute>) 

and returns <entity>'s <attribute>. For example: 

+---------------------------------------------------------------------+ 
3: (GET 'BOB 'AGE) 
19 

4: (GET 'BOB 'ADDRESS) 
(1066 MAIN) 

+--------------------------------------------------------------------+ 

You'll probably find property lists a very natural way of thinking about 
data storage and access. In fact you might already be able to see how to 
reimplement the ADDRESS function using PUT and GET. Try it! More 
information about property lists can be found in Chapter 2.5 of your 
UO-LISP Learner's Manual. We'll also be using property lists in a later 
example, to give you some more practice. 



CHAPTER 10 
INPUT AND OUTPUT 

We've talked in some detail about the evaluation of S-expressions, but 
input and output (I/0) refers to the reading of S-expressions, and 
printing them. Input and output in Lisp is usually pretty simple, and we 
will only discuss a few I/0 functions. They should be all you need to 
know for a while. 

10.1 Input 

The basic input function is called READ. READ reads and returns an 
S-expression from the currently selected input file. For all" our 
purposes, this file will be your terminal, so READ is a way of reading 
from the terminal. For example: 

+---------------------------------------------------------------------+ 
1: (READ) 5 
5 

2: (READ) (FOO BAR) 
(FOO BAR) 

+---------------------------------------------------------------------+ 

You may have written a number of Lisp functions into a file and want to 
read them into Lisp so you can use tham during a session. This could 
have been done by the SAVE function (see Chapter 8) or by a system 
editor. To read a whole file you should use the function LOAD: 

+---------------------------------------------------------------------+ 
1: (LOAD "FNS.LSP") 
FNS 

+---------------------------------------------------------------------+ 

Notice that you should specify your file name using a string (characters 
surrounded by double quotes (")), not using an identifier. The string 
should contain both the name of the file (FNS), and its extension (.LSP 
in this case). LOAD will take each of the S-expressions in the file you 
give it and evaluate them. Thus if you have several calls to DE and SETQ 
in the file, the LOAD will rasult in a bunch of new variables and 
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functions 
access and 
interpreter 
global file 

being defined. 
use them just 

directly. The 
control variable 

Once they are loaded, you will be able to 
as if you had typed them to the Lisp 
value returned by LOAD is the name of the 
( see Chapter 8) . 

10.2 output 

Just as you may need to read from the terminal or from a file, you might 
want to print S-expressions to a file to the terminal. The simplest 
output function is PRINl. It takes one argument, an S-expression, prints 
it to the terminal, and returns the value printed: 

+---------------------------------------------------------------------+ 
'FIVE) 1: (PRINl 

FIVEFIVE %The first FIVE is the result of 
%printing, the second one is the 
%value returned 

2: (PRINl 5) 
55 

3: (PRINl "FIVE") 
"FIVE" "FIVE" 

+---------------------------------------------------------------------+ 

PRIN2 is very much like PRINl, except it does not print strings with 
their double quotes. Compare 3; above with 4: below 

+---------------------------------------------------------------------+ 
4: (PRIN2 "FIVE") 
FIVE"FIVE" 

5: (PRINl 'FIVE) 
FIVEFIVE 

%Quotes come off the expression 
%printed, although not off the 
%value returned 
%Otherwise PRIN2 is the same as 
%PRIN1 

+---------------------------------------------------------------------+ 

PRINT is also like PRINl, but it puts out a carriage return after its 
prints its expression: 

+---------------------------------------------------------------------+ 
6: (PRINT "FIVE") 
"FIVE" 
"FIVE" 

+---------------------------------------------------------------------+ 

Finally, PRIN2T is like PRIN2 except it adds a carriage return: 



70 

+---------------------------------------------------------------------+ 
7: (PRIN2T "FIVE") 
FIVE 
"FIVE" 

+---------------------------------------------------------------------+ 

There is also a function that just puts out carriage returns. It is 
called TERPRI. PRIN2T could have been implemented as: 

+---------------------------------------------------------------------+ 
8: (DE PRIN2T (E) t ROG-'2. 

(PRIN2 E) 
(TERPRI) ll 

*** Redefined: PRIN2T 
PRIN.2T 

+---------------------------------------------------------------------+ 

You can learn more about I/O functions in Chapter 2.16 of your UO-LISP 
Learner's Manual. Chapter 3, on the editor, also discusses the function 
LOAD. 
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CHAPTER 11 
AN EXTENDED EXAMPLE 

In the previous sections you've learned a lot about Lisp, how it works 
and how to write Lisp functions. But that is not the same as learning 
how to use Lisp effectively to solve substantial problems. You know 
about the "bricks" and "planks" of Lisp; now you need to learn a bit 
about how to use these materials to build real programs. If you are a 
BASIC, FORTRAN, or PASCAL programmer, you will find that good 
programming style in Lisp is quite different than in the languages with 
which you are familiar. Therefore, in this final section we discuss 
several techniques for problem solving in Lisp and introduce some of the 
elements of style that characterize artificial intelligence programming. 

llol An "Expert System" for Tic-tac-toe 

To learn about building programs in Lisp, we'll actually build one. The 
program we develop below will play the game of Tic-tac-toe (hereafter 
"TTT"). Although TTT is a very simple game, it will serve to illustrate 
many important techniques of Lisp programming and problem solving. The 
approach we take to build our TTT program is very different than you'd 
take in any other language. We will build our program as a TTT "expert 
system". 

Expert systems are kinds of AI programs that attempt not only to solve 
problems, but to solve them like humans do. This insistence on 
"intelligent" or "human-like" systems is a hallmark of much AI research, 
especially work in expert systems. Intelligent expert systems now exist 
for aiding in medical diagnosis, configuring computers, and for many 
other tasks. 

How do humans solve problems? Expert systems research has found that 
people often solve problems by employing "rules of thumb", not 
necessarily correct algoriphms. For example, people play chess using 
rules like "If you are beginning a game, then move out your center pawns 
first, then your bishops". They do not try all moves in their heads, 
creating massive "lookahead trees" (as do the best computer programs for 
chess). Thus, expert systems a're designed as rule-based programs. They 
are really very simple in structure. They comprise a (possibly large) 
set of simple rules of the form "If <condition> then <action>", and, to 
make a decision, they iterate through their rules until they find one 
whose <condition> is true. Then they "fire" the rule (do the rule's 
<action>). Usually, after a rule is fired, an expert system will go back 
to the start of its ruleset, and iterate through again, to make a new 
decision. And that's all! 
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Why is Lisp the obvious language for building expert systems? Take a 
look at the rules humans use to solve problems. Like the simple chess 
rule given above, they are typically expressed symbolically, often in 
English. Humans usually think in symbolic languages, not in numbers or 
arrays of numbers. Thus a language that supports symbolic computation, 
like Lisp, is an ideal medium for modeling much of human problem 
solving. 

11.2 Developing the "Expert" Rules for TTT 

Expert systems are typically built by getting a human expert, and 
finding out what rules he uses to solve his problems. For example, if 
you wanted to built an expert system for car repair, you might talk to a 
mechanic, or watch him work. This is referred to as "knowledge 
acquisition". You are acquiring his knowledge for your system. At this 
stage, the rules are written down in the language the expert finds most 
natural. 

Let's acquire a knowledge base for our TTT expert system. Since we are 
all experts in TTT, all we have to do is introspect, and try to make 
explicit the rules we ·use to play the game. It is often surprisingly 
difficult to make explicit the knowledge you use to play even a simple 
game like this -- so much of our expertise is unconscious. Try it! 

Here is one set of rules. These aren't the only rules that could be used 
to play TTT, and they are not the best rules either. Note that they are 
written down in their "natural" form; I haven't worried at all about how 
to represent them in Lisp. 

Rule 1: If two squares in a line are occupied, and you occupy both, 
then play the empty square. 

Rule 2: If two squares in a line are occupied and your opponent has 
both then play the empty square in the line. 

Rule 3: If the line contains the center square, and its empty, play 
it. 

Rule 4: If the line has an empty corner square, play on it. 

Rule 5: If the line has any empty square, play on it. 
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11.3 Interpretation or Use of the Rules 

The rules are written from the point of view of a player who decides 
upon a move by looking at each of the 8 "lines" of three squares (3 
horizontal, 3 vertical and 2 diagonal) of the TTT board. The player 
stops looking when a rule fires for the particular line he is looking 
at, giving him a move. The rules themselves are ordered. For example, 
the player always wants to follow Rule 1, (winning the game), if 
applicable, rather than Rule 2 (preventing a win for the opponent). Thus 
the correct way to use this ruleset is to see if the first rule applies 
to any line; if not, repeat trying the second rule, and so on. 

11.4 Implementing the Rules and the Rule Interpreter 

We now implement our simple "expert" rules for playing the game. Because 
each rule naturally divides into an if-part and then-part, we choose to 
simply represent each rule as a list of two elements: the if-part 
followed by the then-part. Our implementation of the rules illustrates a 
top-down approach to problem-solving, which we employ frequently in Lisp 
programming. In this case, a top-down approach means we simply write the 
rules the way we wish them to appear; as close to their "natural" 
representation as possible. Later we will go back to define the required 
lower-level functions we require to support this natural representation. 
We do not implement the low-level functions first, then force the rules 
into a mold they dictate. 
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+---------------------------------------------------------------------+ 
% TTTRULES as a global variable whose value will be 
% the list of all TTT rules 
( GLOBAL ' ( TTTRULES) ) 

(SETQ TTTRULES 
% Rule 1 

(((AND (EQ 2 (NUMBEROFSQUARES (OCCUPIEDSQUARES LINE))) 
(OCCUPIES SELF (OCCUPIEDSQUARES LINE))) 

(PLAYMOVE SELF (CAR (EMPTYSQUARES LINE)))) 
% Rule 2 

((AND (EQ 2 (NUMBEROFSQUARES (OCCUPIEDSQUARES LINE))) 
(OCCUPIES OPPONENT (OCCUPIEDSQUARES LINE))) 

(PLAYMOVE SELF (CAR (EMPTYSQUARES LINE)))) 
% Rule 3 

( (AND ( INCLUDES LINE CENTERSQUARE) 
(EMPTY CENTERSQUARE)) 

( PLAYMOVE SELF CENTERSQUARE) ) 
% Rule 4 

((EMPTYSQUAPES (CORNERSQUARES LINE)) 
(PLAYMOVE SELF 

(CAR (EMPTYSQUARES (CORNERSQUARES LINE))))) 
% rule 5 

( (NOT (COMPLETE LINE)) 
(PLAYMOVE SELF (CAR (EMPTYSQUARES LINE)))) ) ) 

+---------------------------------------------------------------------+ 

Once the rules are written, we should specify how they are used in 
playing TTT and finding a move. The function that manipulates and fires 
rules should act exactly as outlined in our specification in Section 
11.2. The code that controls the execution of rules in expert systems is 
often called the "rule interpreter". The function FINDMOVE is our TTT 
rule interpreter. Note that the code is heavily commented to help you 
understand it. This is a practice we encourage in general. 
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+-------------------------------------------------------------=-------+ 
% FINDMOVE dictates how the rules are used to 
% determine the next move. We refer to FINDMOVE 
% as the rule interpreter. Each rule has an if-part 
% which looks at certain features of a TTT line 
% (contiguous triplet). If the if-part of the rule 
% is correct, the then-part of each rule suggests a 
% move to play. Thus, the rule interpreter FINDMOVE 
% operates in two loops. First (in OUTERLOOP) it 
% iterates thru all of the rules (stored as the value 
% of TTTRULES). For each such rule it will look at all 
% lines on the board (INNERLOOP), TESTing to see if 
% if-part of the rule works for that line. If it does, 
% FINDMOVE DOes the t~en part of the rule, and stops. 
% It continues its loops through rules and lines until 
% it finds a rule that "fires". If no rule fires 
% FINDMOVE returns NIL. 

( DE F INDMOVE ( ) 
(PROG (LINES RULES) 

(SETQ RULES TTTRULES) 
OUTERLOOP· 

(COND ( (NULL RULES) (RETURN NIL))) 
(SETQ LINES TTTLINES) 
(SETQ LINE (CAR LINES)) 

INNERLOCP 
(COND ( (NULL LINEs(e v(rt 

(SETQ RULES (CCR RULES)) 
(GO OUTERLOOP)))) 

(SETQ LINE (CAR LINES)) 
(COND ( (TEST ( IFPART (CAR RULES))) 'f fJ 

( DO ( THENP ART ( CAR RULES) ) ) 
(RETURN NIL))} 

(T CPt. ( tJ 
(SETQ LINES (CDR LINES)) 
(GO INNERLOOP)) )))~ 

+---------------------------------------------------------------------+ 

The implementation of the rule interpreter, and choice of representation 
for the TTT rules, constrains a few lower-level decisions. First, we see 
that several global variables are referenced in the code for the rules, 
so let's declare them: 
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+---------------------------------------------------------------------+ 
% CENTERSQUARE will have the center TTT square as its 
% value LINE is a global variable that the rules 
% reference and which is set to successive TTT lines 
% by the rule-interpreter function, FINDMOVE. SELF 
% is a variable set to the mark the TTT expert system 
% will use (either "X" or "O"l. OPPONENT is set to the 
% opponent's mark. 
(GLOBAL' (CENTERSQUARE LINA SELF OPPONENT)) 

+---------------------------------------------------------------------+ 

We can also now write several of the functions used by FINDMOVE: 

+---------------------------------------------------------------------+ 
(DE IFPART (RULE) (CAR RULE)) 

(DE THENPART (RULE) (CAR (CDR RULE))) 

+---------------------------------------------------------------------+ 

Because we have completed our representation of rules we can also say 
what it means to TEST the if-parts and DO the then-parts. The if-part is 
a single S-expression, and to TEST it we just want to·evaluate it as a 
piece of Lisp code. If the value it returns in non-NIL, we want to do 
the then-part. The then-part is also a single S-expression, a call to 
the function PLAYMOVE. So to do the then-part, we also just want to 
evaluate it too. To force an expression to be evaluated, we just 
explicitly call the function EVAL: 

+---------------------------------------------------------------------+ 
(DE TEST (IFPART) (EVAL IFPART)) 

(DE DO (THENPART) (EVAL THENPART)) 

+---------------------------------------------------------------------+ 



77 

11.5 Choosing Data Representations 

Now before we write the low-level functions that manipulate lines and 
squares, in the rules, we need to decide how to represent the TTT board 
in data structures. We will adopt a simple representation, not the only 
possible one or necessarily the best. We let the atoms A through I 
represent each square as .fol lows: 

A I B I C 

D I E I F 
---------
G I H I I 

Further, for each square, let's use the property list of its atom (A 
I) to indicate who occupies it. We will use a property called "STATUS", 
and its value will be NIL when the square is empty, and X or O when 
occupied. Finally, since each square is represented as a Lisp atom, 
let's represent the TTT lines as lists of the 3 squares included in the 
line. 

+---------------------------------------------------------------------+ 
( GLOBAL I ( TTTSQUARES 

TTTLINES 
CENTERSQUARE 

) ) 

%A list of all squares. 
%A list of all lines. 
%The center square name. 

(SETQ TTTSQUARES '(A B C D E F G_ H I)) 

(SETQ CENTERSQUARE 'E) %The center square. 

(SETQ TTTLINES 
I ((ABC) 

(A D G) 
(A E I) 

%There are 8 lines of 3 squares 
(DEF) (G HI) %Three horizontal lines 
(BE H) (CF I) %Three vertical lines 
(CE G))) %And two diagonal lines 

+---------------------------------------------------------------------+ 
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11.6 Functions for the if-parts of TTT rules 

These three representation decisions now make it possible to define all 
the low-level procedures called by the rule interpreter and the TTT 
rules. The procedures include conventional Lisp functions as well as 
predicates, which are functions that return only Tor NIL, depending on 
their arguments. 

+---------------------------------------------------------------------+ 
% OCCUPIEDSQUARES takes a set of squares as an 
% argument and returns the ones occupied by X or O. 
(DE OCCUPIEDSQUARES (SQUARES) 

(COND ((NOT SQUARES) NIL) 
( (OCCUPIED (CAR SQUARES)) 

(CONS (CAR SQUARES) 
(OCCUPIEDSQUARES (CDR SQUARES)))) 

(T (OCCUPIEDSQUARES (CDR SQUARES))))) 

% OCCUPIED is a predicate that takes a square, and 
% returns T if someone is on it (X or 0), otherwise 
% it returns NIL. 
(DE OCCUPIED (SQUARE) 

(COND ((EQ 'X (GETSTATUS SQUARE)) T) 
((EQ 'O (GETSTATUS SQUARE)) T) 
(T NIL))) 

% The predicate OCCUPIES takes·a mark (either "X" or 
% "O") and returns if that mark is on all the squares 
% give as its second argument. 
(DE OCCUPIES (MARK SQUARES) 

(COND ( (NOT SQUARES) T) _ 
((NOT (EQ MARK (GETSTATUS (CAR SQUARES)))) 
NIL) 

(T (OCCUPIES MARK (CDR SQUARES))))) 

% To find out if someone is on a square, just look at 
% its STATUS property. 
(DE GETSTATUS (SQUARE) (GET SQUARE 'STATUS)) 

% To put some mark on a square, just set its status 
% property. 
(DE PUTSTATUS (SQUARE MARK) (PUT SQUARE 'STATUS MARK)) 

% EMPTYSQUARES is the opposite of OCCUPIEDSQUARES. It 
% takes a set of squares and returns all those not 
% occupied. 
(DE EMPTYSQUARES (SQUARES) 

(COND ( (NOT SQUARES) NIL) 
((EMPTY (CAR SQUARES)) 

(CONS (CAR SQUARES) 
(EMPTYSQUARES (CDR SQUARES)))) 

(T (EMPTYSQUARES (CDR SQUARES))))) 

+--------------------------------------------------------------------+ 
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+---------------------------------------------------------------------+ 
% EMPTY is the opposite of OCCUPIED. It takes a square, 
%.and returns T if someone is not on it, otherwise it 
% returns NIL. 
(DE EMPTY (SQUARE) (NOT (OCCUPIED SQUARE))) 

% CORNERSQUARES is a function that takes a set of 
% squares and returns all those that are at corners of 
% the TTT board (A, C, G and I). Note CORNERSQUARES 
% has exactly the same recursive plan for looking 
% through the list of squares as both OCCUPIEDSQUARES 
% and EMPTYSQUARES. 
(DE CORNERSQUARES (SQUARES) 

(COND ((NOT SQUARES) NIL) 
( ( CORNER ( CAR SQUARES) ) 

(CONS (CAR SQUARES) 
(CORNERSQUARES (CDR SQUARES)))) 

(T (CORNERSQUARES (CDR SQUARES))))) 

% The predicat:e CORNER returns non-NIL if its argument, 
% SQUl\RE, is a corner square, ot;herwise it returns 
% NIL. 
(DE CORNER (SQUIµIB) (MEMQ SQUARE '(A C G I))) 

% COMPLETE is a predicate that takes a set of squares, 
% and returns T if there are no empty squares in the 
% set, otherwise, it returns NIL. 
(DE COMPLETE (SQUARES) (NULL (EMPTYSQUARES SQUARES))) 

% INCLUDES is a predicate of two arguments, a set of 
% squares and a square. It returns NIL only if the set 
% does not include the square. since sets are 
% implemented as lists of squares they include, we can 
% see if a square is included in the set just by seeing 
% if it is a member of the list. 
(DE INCLUDES (SQUARES SQUARE) (MEMQ SQUARE SQUARES)) 

% NUMBEROFSQUARES is a function that returns the 
% number of squares in a line or set of squares, given 
% as an argument to the function. Since lines are 
% implemented as lists, we can determine the number 
% of squares by just computing the length of the list. 
(DE NUMBEROFSQUARES (SQUARES) (LENGTH SQUARES)) 

I 

+---------------------------------------------------------------------+ 
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+---------------------------------------------------------------------+ 
% PLAYMOVE is a function that takes a square and a 
% mark (either X or O). If the square is already 
% occupied it just returns NIL. If the square is empty, 
% it puts the mark on the square (by modifying the 
% status property of the square, and returns the mark. 
(DE PLAYMOVE (MARK SQUARE) 

(COND ((OCCUPIED SQUARE) NIL) 
(T (PUTSTATUS SQUARE MARK)))) 

+------------------~--------------------------------------------------+ 

11.7 The Importance of Abstraction Barriers 

This completes specification of all the functions called by the TTT 
rules and rule interpreter. Notice how simple most of them were to 
write. ·This simplicity is a consequence of the way we chose the 
represent our data about lines and squares iri TTT, and underscores the 
importance of representation decisions. Taking care in deciding your 
data representations is really just another part of the top-down 
approach to programming and problem-solving that we have been 
advocating. Each time you approach a large programming problem you 
should take time to write out all such decisions before you write a line 
of code. Think of making data representation decisions as a phase of 
programming, just like coding or debugging. You will find that if you 
make these decisions deliberately and explicitly, most of the functions 
you need will be very easy to implement, as they were here. On the other 
hand, if you spend little thought on data representation, you will 
almost always find it difficult to write your functions. In addition, it 
will probably take you longer to test and debug your code than it might 
have, and it will be tougher for other people (even yourself!) to 
understand how your program is operating. 

Since our judicious choice of data representations made any of the above 
functions very small, one might ask why we bothered to write some of 
them at all. Why bother with the access and setting functions GETSTATUS 
and PUTSTATUS? Why not just use GET anC: PUT directly? And, why bother 
defining INCLUDES; why not just use call to MEMQ every time you need to 
see if a square is in a line? 

This substitution would actually be a very bad idea. By using MEMQ 
instead of INCLUDES we would be showing the specific data representation 
we had chosen for lines and squares. On the other hand, use of INCLUDES 
abstracts away from the details of the representation we have chosen. 
There are several reasons this abstraction is very desirable. First, it 
makes the meaning of the code we write much clearer to others. For 
example, when someone is reading your TTT rules, it will be much easier 
for him to understand what you knowledge intend to encode by "(INCLUDES 
LINE 'E)" than by "(MEMQ 'A '(A B C)) ". In understanding the meaning of 
a rule, seeing the details of its representation is not just irrelevant, 
it is detrimental. The abstraction afforded by INCLUDES creates a \..J 
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barrier between the viewer of the code and the details of imphementation 
that actually facilitates comprehension. 

There is a second even more important reason for creating such 
abstraction barriers. Assume that had written your .TTT program using 
MEMQ, not INCLUDES. Now suppose someone tells you that thera is a much 
better way to represent your TTT data, say, using arrays, not lists. You 
want to change your representation, but you realize that your program 
has dozens of calls of the form "(MEMQ <square> <list>)". So you have to 
give up this new, better, representation, because it would take you 
hours or days to make all the required changes. 

By following the policy of using functions like INCLUDES to abstract 
away from the details of data representation you can avoid this problerr., 
preserving the flexibility and modularity of your code. In this case, 
for example, to change to an array representation all you sould have to 
do is change the definition of INCLUDES (and a couple of other functions 
that manipulate lists of squares directly). All the calls to INCLUDES 
would remain intact, because the meaning of INCLUDES has not changed, 
just the specifics of its implementation. Thus abstraction barriers not 
only make cede more comprehensible and free of implementation detail, 
they also make ~rograms much easier to modify and enable you to try out 
different representations of data. 

The important practical ressons to conclude from this discussion of data 
abstraction are: 

. Gather all the code that manipulates (craates, accesses, changes) 
the low-level data structures that you have selected into a 
few functions. 

Name these functions to. reflect the meaning of the computations 
they effect, not the low-level data manipulations they do . 

. Use these functions in all high-level code, to abstract away from 
details of your data representation. 

11.8 Some Simple Control Functions 

Now that all of the functions implementing the TTT rules and FINDMOVE 
are complete, all we need to make our TTT "expert system" operational 
are a couple of high-level routines to begin, record, and complete the 
game. As usual, we proceed in a top-down fashion. 
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+---------------------------------------------------------------------+ 
% PLAYTTT is the top-level function called to play a 
% game. It first initializes all squares to empty, 
% then determines who plays X and o, by asking the 
% user (the OPPONENT) which he wants to play. The 
% system plays SELF. It then enters a loop. First it 
% checks to see if the board is full, in which case it 
% announces a tie. If not, a move is played. If it is 
% the opponent's move, the user is asked to pick a 
% square, and it is played on. (Note if the user picks 
% a square that is already played on, PLAYTTT doesn't 
% give him another chaNce; it is as if the user chose 
% to make no move on his turn. If it is the system's 
% move, it calls FINDMOVE to select a square. After_ 
% each move, PLAYTTT checks to see if there is a 
% winner. If so it returns; if not it loops back for 
% a new move. 
( DE PLAYTTT ( ) 

(PROG (NEXTMOVE SQUARES) 
(SETQ SQUARES TTTSQUARES) 

LOOPl 

LOOP2 

(MAKEEMPTY (CAR SQUARES)) 
(SETQ SQUARES (CDR SQUARES)) 
(AND SQUARES (GO LOOPl)) 
(SETQ OPPONENT 

(QUERY "Which do you want to play [X or O]?")) 
(SETQ SELF (OTHERMARK OPPONENT)) 
(SETQ NEXTMOVE 'X) 

(COND ( (NOT (EMPTYSQUARES TTTSQUARES)) i)[; fJ , 
( PRIN2T "A tie game !'' ) 
(RETURN NIL)) JI 

( ( EQ NEXTMOVE OPPONENT) ( f (?JJ f,. , 
(PLAYMOVE OPPONENT 

(QUERY "Your square [A - I]?")) 
(PRINTBOARD) 
(COND ( (WINNER OPPONENT) 

1 

~ fO(J 
(PRIN2T "Congratulations, you win!") 
(RETURN NIL))) 

~~ (T (SETQ NEXTMOVE SELF) 
l,} I/ lf~~(GO LOOP)) ) ) ) ) 

(Ti\. ( PRIN2T "My turn. ") 
(FINOMOVE) 
(PRINTBOARD) 
(COND ( (WINNER SELF) \f' -, :,. tJ 

(PRIN2T "I win!") 
(RETURN NIL) ) ) 

(!~ (SETQ NEXTMOVE OPPONENT) 
tfMitrt, (GO LOOP))))))) ) 

+---------------------------------------------------------------------+ 

Now the lower level functions required by PLAYTTT. Most are very 
straightforward. '---" 
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+----------------------------------r---------------------------------+ 
% MAKEEMPTY makes the TTT square it.is given have no 
% mark on it. 
(DE MAKEEMPTY (SQUARE) (PUTSTATUS SQUARE NIL)) 

% QUERY is a simple utility function for querying the 
% user for a response, which it returns.·It could be 
% used in many ccnte~ts. " • . • 
(DE QUERY (STRING)~·fEiRIN2 STRINGL~ (PRIN2 11 11

) . (READ)) 
n . . 

-
% OTHERMARK returns X, ib given·Oas a:n argument, and 
% O, if given x. Otherwise it returns NIL. 
(DE OTHERMARK (MARK) 

(COND ( (EQ 'X MARK) 'O) 
( ( EQ 'O MARK) ' X) ) } .. 

. - . ·.. . -· 
% PRINTBOARD prints out a simple representation c,f the 
% TTT board. 
( DE PRINTBOARD ( ) ( p C :. tJ 

(PRINTSQUARE 'A) 
(PRIN2 "I") 
(PRINTSQUARE 'B) 
(PRIN2 "I") 
(PRINTSQUARE 'C) • 
(TERPRI) 
( PRI N2T "----- 11 

) 

(PRINTSQUARE 'D) 
(PRIN2 11 ! 11) 
(PRINTSQUARE 'E) 
(PRIN2 11 I") 
(PRINTSQUARE 'F) 
(TERPRI) 
( PRIN2T 11 

-----
11 

) 

(PRINTSQUARE 'G) 
(PRIN2 "! ") 
(PRINTSQUARE 'H) 
(PRIN2 11 ! 11) 
(PRINTSQUARE 'I) 
(TERPRI))) 

% PRINTSQUARE prints the mark on ·a, TTT square, 
% printing 11 11 if there is no mark. • 
(DE PRINTSQUARE (SQUARE) 

( COND ( (NOT ( GETSTATUS SQUARE) ) ( PRIN2 " ") ) 
(T (PRIN2 (GETSTATUS SQUARE)) )i) 

+------------------------------------ -------------------------------+ 
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~ ---- '--------------·. ·-~---- ' . . ------------------ .· -----------------·---+ 
-% WINNER returns T if the side it is given as-an 

-= , .. % argument has got thre~ . .i.n .a row in any of·· the TTT 
% l;i.nes. 
lDE WINNER (MARK) 
. ·(PROG (LINES) 

(SETQ LINES TTPLINES) 
LOOP 

(CQND ( (NOT LI~l!:SJ ..(RETURN NIL)) 
( (OCCUPIES MARK ·.(CAR LINES)) 

(RETQRN 'T)T • 
· (TA(SETQ LINES (CDR LINES)) 
\()~,-~ (GO LOOP))))-) J .: ._ . 

+---,. ----------------------------- :-·-- -- -- ,----------- . -· . --------·---+ 

.. ,.... ·. 
~ .. .... .. . 

11.9 Playing with the TTT Expert 

The foregoing code represents a complete, although small, expert system 
for playing TTT. In spite of our extended discussion of _the sy_stem, you 
are encouraged to type it into UO-LISP and play with it: ·This play can 
teach you many things-that_just i::-eading about Lisp programming cannot. 

You might try several things once you have it running. First, play a few 
games with the system .. You '.11 _find that the present system "interface" 
is pretty simple, and you might-want-to make it more "user friendly". 
For:, example, you should.-_ f~el f_re~ to improve the TTT board display 
generated by PRINTBOARD; and you might want to change PLAYTTT so that if 
;the. use:::- seleG:ts .a _square .that _is already occupied, the system will 
• re-query the - user. • - • - • - • - : • • •• 

Seqond, as_ you play games with, .. the system you will pr:opably notice that 
the-.sya;teffi,. while gene:r;aliy· intelligent, makes a few dumb _moves. Can you 
characterize the kinds of mistakes it ·is making? If so, you should 
consider how to improve its knowledge-base· its TTTRULES. Try to 
think of modifications of its present rules, or eyen new rules to add to 
TTTRULES. Write down rules you· .. :think are better by trying to make 
explicit the rules that you use to play TTT. Then program them in Lisp, 
and. see if the new TTT expert plays better, or plays more like you do. 

More· generally, you are encouraged to try all sorts: of knowledge 
experj.ments .. Add 0rules and tak~, out rules theµ se~ J1.ow . __ the modified 
sy'stem. _performs. Can you predict how a set of expert; system rules will 
behave? AI researchers have found it surprisingly difficult to determine 
the behavior of a set of knowledge-based rules by just looking at them. 
That is one of the reasons why they build expert systems. Such systems 
really help us discover and represent the knowledge human experts use to 
perform difficult tasks. 

As you create and examine various different TTT experts, notice how 
simple this experimentation is. You can create several modified experts \....,, 
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in a few minutes. This is because, (unless you are getting pretty 
sophisticated) you are only modifying the rules in TTTRULES, and the 
modifications are ·very simple .• For ·example; ·you might just· taRe out a 
rule, switch the o~der of rules, add.a rule, or modify a single rule. 
This fact points·"out one of the ~mo'st:important advantages of rule-based 
expert systems~ They represent· kn6wl-edge· ·in a highly flexible and 
modular fashion. Contrast this modularity with an implementation of a 
TTT expert in BASIC or FORTRAN. Those programs might run a ltt.tle faster 
than our TTT expert, but could you inve~t,ig~te the behavior\of a variety 
of different experts nearly as rapidly? · ~:- :s ••• -'-

Here is a final question ~o.t;··:y9i[to~ f>.Opdit :c;s you experiment with the 
TTT experts. When you modify ~TTTRULES I by -',iradf.':ng .~?-rule, or changing one, 
are you manipulating data, or a:r:::e, you __ w.¢iting __ new code? The TTT rules 
are data because they are the va·lue ':of the 'variable "TTTRULES". But they 
are also program because they are EVALuated (see the functions DO and 
TEST) to generate moves. In fact, the rules are both because they are 
just s..:..expressions (ril<e···eveiyffiing-else1: 'They become· dat:a--·t;;-fiefi ·treated 
one way (e.g., assigned as the value of a variable) and become program 
when treated another way (e.g., evaluated). Expert systems take good 
advantztge of this dual personality of rules to make them easy to modify 
and to use. 

.: r. .. 

llolO S~ of Lessons 
' • -

This has lJeen ~ a. particulariy···long section;:- so· let.! s summarize the main 
points that have been made: . .:..,,.. 

. Most lisp_;"functions are smaf:f~ _independent·;~ pieces of· progtam:~ • 
• : - - __ '·__ ·--· .:.. ; #~-- • • ~ • ~~~ •• ,·,··; :.:..~:_"":·_ = ". !:.. ~ -:~.:.::.:.: ... _-; . .: __ - ;, : -:~ .. -:~ (·_ .-_ .~-.:·. -<:•" ~ 

. In "-writing~:a:n: expert syste4rn~;:·or"·iu.1i<large Lisp program-you should 
program in a top-down fashion. ,s.: ~ ::-{: :- "'·::: : 

. Data· :.representation • should"' :.qe:.-::: i~ga.f;decl as 
piob'lem ~:·solving ·with Lisp; - :-Appr0priat§ · • 
progr:ams much easier to write:= - ·: 

.:· - _. :- - • : ~ ~ - • - ,- •• - :~ + ,s· . ·"; :.~,...... 

a:fi .. e5tplici t.· phase of 
representation~ make 

. Writing programs using the principie..:of- _abstraction barriers makes 
cede comp:reheir:isible and modifiable~ ·' • • 

Expert systems are AI programs ·' that - use sets of· • symbolic ·rules, 
cften_!i~e those used by humans! to solve complex probl~!J1S· 

. Expex:t: syi~;-t:efris havi:r easily modifiabie :. knowledge~b~ses ,- .""f-a'cilitatirig 
inve~tigattor{of:the perforrnarice"of a·:variety of ruiesets·;=-- 0 = 

. - -- - _,, ~ ... . . • - • • • ---, :· :..:.-· _t -~-- r;:;,,•·· .~·:·· 
•'•·•.• --·~ .... - ..... -· __ • ..,.., 



CHAPTER 12 
WHERE TO GO NOW 

You have come to the end of our introductory tutorial on Lisp and AI. We 
hope you have enjoyed. it enough to want to learn more about these 
subjects. In the past few years some very useful books have appeared 
that will hehp you move from a beginning AI programmer to an advanced 
one. 'l'hese include: 

-Artifical Intelligence' , by P. H. Winston. (Addison Wesley, Reading, 
Mass., 1977) . 

This book gives the relatively inexperienced user an introduction 
to both Lisp and AI research, and includes many exercises. 

-LISP', by P.H. Winston, and B. Horn. (Addison Wesley, Reading, Mass., 
1977) . 

A. book for intermediate-level Lisp programmers, with less emphasis 
on AI applications. 

-Artificial Intelligence Programming', by C. Riesbeck, E. Charniak, and 
D. McDermott. (Lawrence Erlbaum Associates, Hillsdale, N.J., 1979). 

The best advanced book fo~ learning AI programming techniques. Not 
for beginners. 

-Machines Who Think', by P- McCorduck. (W. H. Freeman, San Francisco, 
CA., 1979) . 

A somewhat biased introduction to the history and ideas of AI, 
requiring no background in Lisp. 

-The Artificial 
Fiegenbaum. 

Intelligence Handbook' (3 Vols.), edited by E. 

A voluminous compendium of the ideas and. accomplishments of AI. Not 
for the beginner. 

-The Structure and Interpretation of Computer Programs', by H. Abelson, 
and G. Sussman. (MIT Press, Cambridge, MA 1983). 

Not really a book on AI or Lisp, but an outstanding first course in 
computation, which uses a dialect of Lisp. Highly recommended to 
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those who want a solid beginning in computer science. 

..:.-

:~,. ~--· 

:. 

. '.I· . ...• ,,, .. ~--

- - ... ;. .. .. ,,'. 

,.·.., 

":: -.. -~,-· 
,....-.&,,., .. 

87 



ADDY 
Al{p _ ~-'.''.. 
antecedent 
APPEND'·. 
AEROP6S . ·- . 
~rgU:rnerits 
atom· • 
ATOM 

binding 

CAR 
CDR 
comrtlen.ts 
COND." 
COND-clauses 
cot-rs : , i_-, -. 7 

consequent: 

DE . 

E -.(editor command) 
EDIT 
editing 
err:pty list 
EQ . 
EQUAL 
error· messages 

- E.RROR!? 
E:VAL· 

F .. (editor c~rn~and) 
FE~PR :~ ~ .•. --.: .w •• , .• 

file·· control variable 
focus . ._:-.:-, ""-• 0 - :·. , 

formal·. parameters 
function 

GET. 
GLOBAL 
global'" variables 

.GLOBALP 
GO. 
GREATERP 

HELP 
• ,-.i ., ,-~ - ~ ·•·;;- ~ 

•' ,, -'-:-· -
L . (edit.or comma.nd) _ 
iden_ti"'f-ier 
integers, 
iteration 
iterative functions 
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labels 
LENGTH 
LIST 
lists 
LOAD 
local variables 

main progrcim 
MEMBER • 
modular p~o9rci~ing 

NIL 
NOT 
NULL 
numbers 

OR 

P (e9itor commapd). 
parameter., 1 i:St • 
PLUS. • •• 
PP (editor· com~and). 
PRINl 
FRXN2 
PRIN2T 
PRINT 
PROG 
property list­
PUT 

Q (editor command) 
QUIT 
QUOTE 
QUOTIENT 

R ( editor cc,mrn~pq) . READ. ( .... ,, .. 

REMAINDER 
repetition COll!):t.s (editor) 
RETURN 

s-expression - .~ • . 

SAVE 
SET 
SETQ 
side effect 
special forms 
string 
strings 
SUBLIS 
SUBST 

T 
T (editor COfM!~nd} 
TERPRI 
TR 
tree 

r . 
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