





Preface

These notes represent the intellectual content of the
subject 6.231, Programming Linguistics, taught in the Electrical
Engineering Department &t Massachusetts Institute of Technology
to undergraduates who contempiate a serious professional
interest in computer science. An important part of the subject
material has to do with PAL, a computer programming language
designed to be an integral part of the educational experience,
and it is intended that students perform, on a computer, a set of
homework exercises in PAL. The details of the PAL language are
not covered Iin these notes but instead in a separate
publication, referred to in these notes as the PAL Manual. It is
assumed that readers of these notes have 'access to the PAL

Manual.
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Chapter 1

INTRODUCT1ON

1.1 Perspective

The title of these notes includes the phrase "programming linguistics", and since this phrase

is not in current usage It behooves us to define It, But doling so Is easy: Inasmuch as
"linguistics" 1Is the science of language, It follows that "programming 1lingulstics" Is the science
of programming languages -- those languages whose purpose Is communication with computers. It

would be premature to clalm that this sclence Is fully understood, or even that It Is a science.
Nonetheless, the Importance of delineating such a science Is manifest in the context of today's
computer technology and its history,

Historical Sketch

Although most major developments In diglital computers have occurred within the past twenty
years, the underlyling concepts were anticipated by an Englishman, Charles Babbage, In the 1840's,
Babbage had bullt a small mechanical device that calculated numerfcal tables digitally by a method
of polynomial approximations. The Insight galned through thls development led him to propose a
more amblitlious machine that would have incorporated the central features of today's computers: a
digital device with flexible Internal programs and declslon-making capabilities.

Unfortunately the technology of that day could not support the actual construction of the
machine (the proposal involved long tralns of wooden gears) and Babbage's ldeas lay dormant until
embodlied In the 23 and the Mark |, developed In Germany in 1941 and at Harvard In 1943,
respectively, Shortly thereafter, dJohn Von Neumann proposed the Princeton machine, which
introduced the idea of a program which could modify itself. This computer, using vacuum tube logic
and electrostatic storage, was operating by 1949, Together with a few other contemporary machlines
constructed fndependently in thls country and In England, the Princeton machine marked the
launching of modern digital computer technology.

Of course, Babbage's Ideas are not the only early ones to which we aré indebted., For example,
punched cards for data storage were Introduced in the 1890's by H. Hollerith while he was director
of the U. S, census. (The card size In use today Is identical to that of the dollar biil of that
period.)

Since 1950 computer technology has advanced at a furlous pace. Magnetic core memories
(invented by J. W. Forrester and IiInstalled in the MIT Whirlwind computer in 1951) have aimost
entirely replaced electrostatic devices for raplid-access data storage, and vacuum tubes have given
way to transistors. Current developments In thin-film memories and Integrated circuits are having
an impact, and more flexible Input/output devices are encroaching upon the domain of the punched
card, These advances can be counted on to provide levels of computer size, speed and reliability
which over the foreseeable future will continually enlarge the complexity of problems to which
computers can be addressed.

Indeed, It seems falr to say that developments in computer hardware have outstripped
developments In our understanding of how to harness them effectively. Important research In
pattern recognition, artificial iIntelligence, information retrieval, natural-language translation,
and man-machine interaction proceeds with vigor; but no sclentist belleves that the central
problems In any of these flelds have been fully understood, much less resolved.

The crucial Issues in such research are intellectual, not linguistic. Nevertheless, the
difflculty man experiences in communicating with machines often detracts markedly from the progress
that |is made. - First, in bringing their Intellect to bear upon these problems, men experience a
need for a method of expression which is simultaneously well-matched both to thelr own patterns of
thought and to the computer's abllity to comprehend, (For example, large~scale work In artificial
Intelligence could not begin untll suitable languages such as LISP and |IPL had been developed.)
Second, many of the |Issues are sufficlently profound that they seem unlikely to yield to the
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Sec 1.1 ' Introduction

inspiration of a single researcher, There is need for communication not only with computers but
between men -- often between groups of men working independently on disparate problems,

The evolution of computer language appears more responsive to the first of these two
communication needs than to the second. Starting with the acceptance of Fortran In 1956 the
development of speclial-purpose languages has mushroomed. In part this may be attributable to
mistaken hope that a tough Intellectual problem will become amenable once a language suitable for
dealing with It 1Is avallable, More substantive, however, 1is the economic aspect: A good
programmer working on tough problems can be expected to produce about 100 1ines of debugged program
per month, Including overhead, each line of working program costs about $30, regardless of the
language used. Since one line written in a language well-adapted to a problem Is equivalent to
from 10 to 100 lines In an Il1-adapted language, the economic gain is manifest.

As a result, somewhere between 50 and 75 major high-level programming languages, and over a
thousand dialects, now exist. Moreover, the inadequacy of documentation for most dialects -- even
for most 1languages =-- Is appalling; often the precise effect of a phrase can be determined only
elther by direct experimentation with a speclfic implementation or by IiIntimate knowledge of the
compiler. Historically, a consequence has been that substantlive communication between different
workers In a computer sclence has been Inhibited.

d uter S

Of course, not all lack of adequate intercommunicatlon is attributable to proliferation of
computer languages. Perhaps the heart of the problem is the enormous current ratio of computer art
to computer sclence, The number of theorems relevant to computation is distressingly small, and
the Insight provided by the theorems that do exist is even smalier. In this regard our state of
knowledge of computatlon is analogous to that prevailing In the electrical communications field
before the 1940's, Over the preceding 40 years it had become possible to communicate with great
effectiveness, but there were no theoretical underpinnings to tell us what communications was all
about, Not until the work of Wiener, Kotel'nlkov and Shannon did it become possible to evaluate
the performance of an actual or proposed communicatlions system in terms of absolutes,

A simitar situatlion now obtains in the field of computation, There Is no metric against which
to measure the value of a proposal or a point of view. In the absence of broad professional
agreement as to what Is important, each little gfoup tends to go fits own way, hoping that Its
approach will prove fertile. Usually the effort required to understand someone else's program is
Incommensurate with the insight to be gained through dolng so, and identlical problems get solved
over and over again by different people in different installations., The ablility to prove the
equivalence of programs Is almost as elusive a goal now as when flrst enunclated in 1957 by
McCarthy as a cruclal step towards a viable theory of programming, :

Standing In the way of the development of such a theory are two problems. The first (less
fundamental) one concerns the dependence of the outcome of a program on the details of the computer
on which It Is run. For example, a program may overflow the memory of a small computer, but not of
a larger one; or round-off-error accumulation may cause a program to abort on a machine with a
smaller word-length, but not with a larger one. Presumably the effects of machine dependence can
be eliminated, at least In principle, by considering program equivalence in relation to some
canonic machine, perhaps with infinite memory and word-length,

A more basic Impediment is ‘the problem of variables. In conventlonal mathematics a
"variable", say x in the equation

x2 =1 = 0

actually denotes a constant value (or set of allowable values) which may or may not be known
explicitly; but even If Implicit, at least the denotation is invarlant with respect to time. By
contrast, In the course of an Iterative computation the value denoted by x may well be different
during successive eapochs. The only mathematical technique we have for treating this situation
involves the concept of "state", wherein the evaluation process Is viewed as a sequence of
transformations on data stored within the machine and each transformation in turn depends upon the
data conflguration produced by Its predecessor. From an analytical point of view the deficlency In
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Perspective Sec 1.1
the approach Is that it reinvolves us in the same laborious detail we use computers to avoid.

when the computer Is simple enough, of course, the speciflication of Its state [s also simple
and the state transformation method becomes very powerful as well as very fundamental. Indeed, by
following this approach Turing (in 1936) was able to prove two theorems central to mathematical
logic: that a certain extraordinarily simple machine can compute anything that a machine of
arbitrary complexity can compute; and that certaln questlions are undeclidable, f.e., that no machine
can compute an answer to them. (Using a different approach we show later that whether or not an
arbltrary program will loop Indefinitely is an example of an undecidable guestion.)

Strictly speakling, the foregolng statement of Turing's results Is Incorrect; we should have
sald "can compute anything that any machine In a broad class of arbitrarily complex machines can
compute." But other logiclans have proved the same results starting from entirely different
premises. For example, Post has considered analogous problems via the manipulation of strings of
symbols, Kleene via recursive functions, and Church and Curry vla algebraic manipulations. In each
case the class of problems to, which answers are computable Is the same, Accordingly, there 1Is a
wide-spread belief -- called "Church's Thesls'" -- that Turing's result is inevitable.

Stu u fo T

Although of great Importance, the results of mathematical logic to date unfortunately do not
in themselves constitute a viable theory of computation, so that any organized course of study In
computer sclience reflects to a much larger degree than is desirable the blas and viewpoint of its
organlzers, We take the point of view that It |Is wuseful to concentrate upon three mutually
complementary categorles of subject matter.

The first category, to which this text 1{s addressed, concerns princliples and concepts
underlying programming languages and the abstract speciflication of algorithms. To a large extent
we presume the existence of an ideallzed evaluating mechanism that Is free of important practical
constralints such as finiteness of memory. The second category concerns the strucstural nrcarlzation
of real machines for carrying out algorithms, and treats Issues that arise when the goal is to make
practical computers appear to users as if they were ideal., The third category concerns methodology
for dealing with very complex systems; the rationale here is that the principal technological
Impact of computers lies in the possibility of .deallng effectively with systems vastly more
complicated than was possible before. Successor subjects 6.232, Computation Structures, and 6.233,
Information Systems, treat categories two and three respectively.

It Is clear that a great many Important toplcs are not contained within any of these
categories, The hope, however, 1Is that the three subjects, In conjunction with appropriate
subjects In mathematics, provide approprliate common background for continued studies of a more
speciallzed nature.

The danger of bias extends also Into the Internal content of each category discussed above.
As mentlioned, "lingulstics" Is the science of language, and we have already disclaimed common
agreement that much sclience of computation exists. On the other hand, rather than to study the
details of one or two particular languages out of 50 or 75, It seems preferable, both educationally
and intellectually, to establish a coordinate system in terms of which many programming languages
can be described, The detlineation of such a coordinate system is one of two major objectives In
our study of programming 1ingulstics.

The pedagogical approach that we follow uses a particular language, PAL, as an educational
vehicle, (The acronym is for Pedagogic Algorithmic Language.) We begln our study of PAL by
gaining operational famillarity with the language by seeing in Chapter 2 many examples of its use.
That chapter contains the mathematical underpinnings on which the formal definition of PAL's
semantics Is based. Chapter 3 Is concerned with speciflication of a gedanken evaluator for the
"applicative" subsat of PAL, which Is the subset directly related to the A-calculus., (Gedanken is
a German word that translates best Into the English phrase "thought of". This gedanken evaluator
Is motivated strongly by the work of Landin.) In Chapters I and 5 we extend the gedanken evaluator
to accommodate the "Imperative" subset of PAL: llngulstic constructs such as the asslznment and
&0tO commands, Taken together, these three chapters formallze PAL semantics. In essence, the

1.1-3



Sec 1.1 Introduction

aggregate of computational concepts developed along the way represents the coordinate system we
seek to develop. The applicabillity thereof to other languages Is indicated enroute, but both time
and cohesiveness of presentation militate against thorough treatment of this toplc,

A second major objectlve is to Inculcate skill and style in programming. To achieve this end
there is a continuing series of home problems to be programmed in PAL,

1.2 Underlying Concepts

Before proceeding to the detalls of language definition, it seems advisable to discuss In a
preliminary way the conceptual base on which the language is founded. In general, the point of
view throughout these notes is that computation is concerned with transformatlions among abstract
gbjects. The key word here is abstract.

To gain liInslight Into thils viewpoint, consider part (a) of Figure 1,2-1, In which the three
objects represented by x's are distinguishable by their relative positions. A transformation
mapping unordered pairs of these objects into single objects Is represented In part (b) of the
figure. Since both members of the pair may be the same, there are 6 cases to be considered, in
the figure each case corresponds to an arrowhead having two tails; the Interpretation is that the
transformation maps the objects on which the talls terminate into the object on which the arrowhead
terminates,

An alternate way to represent a transformation is illustrated by Table 1,2-1:

Tabie 1,2-1

Here we distingulsh three objects by means of the names 0, 1, 2 and specify the transformation by
placing the result at the Intersection of the row and column corresponding to each choice of
argument pair., The symmetry of the table about Its princlipal diagonal Implies that order within
the argument palr is Immaterlal, It is clear from the table that the transformation can be
described as "Integer addition modulo-3",

There are three important aspects to these examples. Flrst, the reader may notice that there
Is something in common between the system defined by the transformation and objects of Figure 1,1
and the system defined by the transformation and objects of Table 1-1, Indeed, the two systems are
equivalent In the sense that

(1) there Is a one-to-one correspondence between the entities of the two systems, and
(2) this correspondence Is preserved under the transformation of the two systems.

-Two such systems are called Isomorphic. We may think of the figure and table as different
representations of a slingle abstract system that underiies them both. By "abstract" we mean
Independent of representation, so that the only questlions we can ask about objects in the abstract
system concern how they behave under the transformation. The situation Is analogous to that In
physics: It is not meaningful to ask what an electron Is, but only how it behaves, An abstract
object is no more or less than a bundle of properties,

The second important aspect of the example Is that it Is convenient (though inessential) to be
able to refer to objects by name -- the tabular representation is more transparent to the human
mind than |Is the figure, especlially since we chose the names {0, 1, 2} in accordance with
established convention, But the cholice of names Is clearly karbltrary; an equally valid
representation of our abstract system Is that of Table 1.,2-2, in which we use the symbol 111}
because tha Romans had no symbol for zero.
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Moreover, it Is permissible -- often desirable -- to economize on the use of names by providing
them for only some, not all, of the objects In an abstract system. For instance, If we adopt & as
the name of the transformation of Table 1,2-2, each of the functional expressions

® (1, i) (1,2-1a)
® (i1, ® (11, 11)) (1.2-1b)

and the name 111 designate the same abstract object; I.e., the same object In abstract space.
Indeed, it is evident from (1,2-1b) that just the names ® and il suffice to permit the designation
of all three objects. (Alternatively, @ and | would also suffice.)

The fact that "transformation'" is just another word for "function" 1is the third Important
aspect of our example, Both words imply nelther more nor less than a mapping from one set of
objects called the domain of the function onto a set (perhaps the same) of objects called the range
of the function. Functions that map numbers onto numbers are the most familiar ones in elementary
mathematics, but in computation we are often concerned with more general mappings. In these more
general situations the word transformation may at flrst seem more natural,

There are two common ways of specifying a function. The direct method is to enumerate all of
the result-argument palrs, as in Tables 1,2-1 and 1,2-2, The indirect method Is to express the
function in terms of other functions that have already been specifled. For example, we might
define a function whose domain Is the set of single objects from our triad, in terms of the
function @ whose domain is the set of pairs of these objects, by writing

f(x) =@ (i1, x) ' (1.2-2)

The concepts Introduced above are basic to our polnt of view and are elaborated further
throughout these notes. For Instance, we think of a program as the specification of a (perhaps
complicated) function In terms of simpler basic functlons:; and we think of running a program as
determining that object In an abstract space which results from application of the function to
particular arguments (data) chosen from the same abstract space.

It should be reemphasized that this Is not the only possible point of view that could be
adopted, In particular, one alternative would be to back off from abstract objects and relate
programs directly to transformations on the concrete representation of data in an actual or
idealized computer. One of our purposes, however, is to break away wherever possible from machine
dependence and to separate the intellectual problems of algorithm specification from the equally
Important but distinct problems of machine design. In these terms one aspect of machine design 1Is
produclng a hardware implementation of basic functions and data such that the resulting system Is a
concrete representation of a desired abstract system., By contrast, a central linguistic problem is
producing an exact specification of the transformational properties that define the abstract system
itself,

1.3 An Algorithm for Symbollc Differentiation

The relation between the abstract point of view introduced above and the activity of
programming may be demonstrated in terms of an algorithm for symbolic differentiation of simple
algebralc expressions, Flirst we generate the algorithin, and then formalize It as a PAL program.

.

The immediate question that arises when we are confronted with an expression such as

czex = x(3,6 ¢+ x/y) (1,3-1)
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concerns what it Is that the expression denotes. Clearly, different Interpretations are possible,
and we are not able to adjudicate among them solely on the basis of the expression ltself. For
example, (1.3-1) might be taken as an arithmetic expression. Then the operators would denote
arithmetic functions and the letter symbols would be names of numbers, so that (1,3-1) would denote
a number. On the other hand, we are interested here in symbolic differentiation, so that (1,3-1)
is .to be taken as an algebraic expression and must be given a non-numerical Interpretation, In
order to proceed, we must specify what this iInterpretation is to be; In other words, we must
spaclfy what transformational properties pertaln to the class of things we call "algebraic
expressions",

Properties of Algebralg Expressions

In writing (1.3-1) we have made use of several conventions that people frequently find useful:

(1) the convention which allows us to Inflx the symbols {+, -, +, /};

(2) the precedence convention which allows us to write "3,6 + x/y" In lieu of
"3.6 + (x/y)"; and

(3) the juxtapositlon convention which allows us to write "x(3.6 + x/y)" in 1lieu of
"x«(3,6 + x/y)",

An alternate representation of (1,3-1), one which makes the structure of the expression more
explicit, Is the "tree diagram™:

Figure 1,3~1: Tree Form of Equation (1,3-1)

Here each node of the tree Is labelled with one of the symbols f{+, -, *, /} and each terminal
branch of the tree 1is 1labelled with an atomic expression: an expression which has no algebraic
substructure. Even In this more explicit representation, however, we note that conventions are
still Important, For instance, the assumption Is made that the divisor and the subtrahand are
written on the right branch descending from a "/" or "-" node, respectively.

Presumably we are willing to accept as a valid algebraic expression any entity that can be
represented by such a tree. We therefore make the following definitlion:

An algebralc expression (algex) is either

an atom,

or it has
an gperator, which is one of {+,-,*,/}
and a left operand, which Is an algex,

and a right operand, which Is an algex.

To a large extent, the succinctness of this definltlon stems from the fact that It Is recursive, in
the sense that the class of things called algebraic expressions is defined in terms of itself.

The definition is "abstract'" In the sense that It provides vital (information about the
transformational properties of algebraic expressions, and hence about the properties that must be
evidenced by any valid representation thereof. In particular, the definition implies that we can
determine of any algebralc expression

a. whether or not It Is an atom, and
b, If not which of the symbols {+, -, *, /} Is Its operator and what two algebraic
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Sec 1.3 introduction
expresslons are Its right and left operands.

In order to complete the characterization of algebralc expressions, of course, we must also
establish the properties of atoms. In general -- certainly in the present case, in which we seek
the symbolic derivative with respect to some particular atom, say x -~ we are interested not only
in whether or not an expression is atomic but also (whenever it is) in whather or not It Is some
speclal atom, Of the class of entities we choose to call atoms, therefore, we require that:

c. given any two Iinstances of atoms, we can determine whether or not they are Instances
of the same atom.

e r r m

An algorithm for symbolic differentiation of algebralc expressions involves the specification
of a transformation that takes two arguments (the expression to be differentlated, and the variable
of differentiation) and produces therefrom another expression; i.e, another entlity that also has
the properties of the class "algebralc expressions”. It is convenient to refer to the function and
its arguments by names, say D, E, and x, respectively. Then the algorithm is simply a
speci ficatlion of the result, D(E, x), of appiying the transformation D to E and x. An Informal
description that embodies the essential features of the desired transformation Is on the next
page, There are several notable aspects of thls description:

1. 1t Is exceedingly long-winded,

2, It is convenient to introduce new names (Op, L, R, L1, Rl) as part of the
description itself,

3. 1t depends heavily upon all the properties of algebralc expressions,

b, 1t Is a circular description, In the sense that in order to determine L1 and Rl we
must be able to apply the very transformation that is being described.

In the process of formallizing the algorithm as a PAL program we find that it Is possible to be much
more succinct, primarlily through adoption of a representation for algebralc expressions that |is
both specific and convenlent.

Bepresenting Alzebralc Expressions in PAL

Knowing the abstract properties of algebraic expressions permits us to proceed to the problem
of choosing a representation of these entities in PAL, There are three classes of abstract objects
in PAL which are well adapted to this purpose., The class of strings Is useful for representing
Matoms"; the class of tuples Is useful for representing non-atomic algebraic expressions; and the
class of truthvalues Is useful for testing hypotheses. The properties of these objects, plus PAL's
syntactic conventions for denoting them, are detailed in Chapter 2, as well as in the PAL Manual.

There are many different representations for algebralc expresslions possible In PAL -- Indeed,
it Is characteristic of the fleld of computation that there Is seldom a unique solution to any
problem, although one solution may be preferable to another in terms of transparency to another
reader or economy of implementation, )

The solution that we choose to consider here represents algebraic expressions by strings If
they are atomlec, and otherwise by tuples of order 3, A tuple in PAL is much akin to a vector in
many other programming languages, but a vector usually must be homogeneous (in that all of its
components must be of the same type, such as Iinteger or rational) while a tuple may be
heterogeneous. We explolt this freedom to satisfy the requirement that an operand in an algebraic
expression may be a non-atomic algebraic expression. For non-atomic expressions, the requlrement
that we be able to determine the operator and the two operands Is satisfled by adopting the
conventlion that: ‘

(1) the first component of the tuple represents the left operand;

(2) the second component of the tuple is one of the strings {'+', '~', ' ' /%1 and
represents the operator; and that

(3) the third component of the tuple represents the right operand.

(Note that the string for the infix multiply is '.', " PAL provides speclial conventions for quoting

1.3-8
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The derivitive of E with respect to x is

if E Is x then the atomic expression 1
otherwise the atomic expression 0

otherwise
let L denote the left operand of E
and Op denote the operator of E
and R denote the right operand of E

next,
et L1 denote D(L, x)
and R1 denote D(R, x)

if Op ts the symbol +, then the expression
whose left operand is L1
and whose operator Is the symbol +
and whose right operand is Rl »

otherwise, If Op is the symbol - then the expression
whose left operand is L1
and whose operator is -
~ and whose right operand is R1

otherwise, If Op Is the symbol « thén the expression
whose left operand is the expression
whose left operand Is L
and whose operator s the symbol »
and whose right operand Is the symbol R1
and whose operator Is the symbol +
and whose right operand is the expression
whose left operand is L1
and whose operator is the symbol #
and whose right operand is R

otherwise, if Op Is the symbol / then the expression
whose left operand is the expression
whose left operand Is the expression
whose left operand is L1
and whose operator is the symbol »
and whose right operand is R
and whose operator is -
and whose right operand is the expression
whose left operand is L
and whose operator Is the symbol »
and whose right operand Is R1
and whose operator is /
and whose right operand is the expression
whose left operand is R
and whose operator Is the symbol »
and whose right operand Is R

otherwise, E Is improperly formed aid does not
represent an algebraic expresslion,
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an asterisk, and we prefer not to Involve ourselves with them at this point,) Thus the algebraic
expression of (1.3-1), whose tree form 1Is shown In Figure 1.3-1, is represented by the PAL
expression

zex = x*(3.,6 + x/y) (1,3-2)

On page 1.3-7 we llsted three propertles of any representation of algebraic expressions. We
now show that these requirements are met. Whether or not an algebraic expression Is atomic may be
determined by testing its representation with the predicate "Atom", so that property (a) implied by
our definition -is satisfled. Moreover, whether or not two atomic expressions are the same may be
determined through use of the infix functor "eq", which satisfles property (c). Since each
operator Is represented by the occurrence of one of the strings '+', '=', '.' or '/' as the second
component of a tuple, "eq" also permits determination of the operator of a non-atomic expression,
as required by property (b). Finally, the remaining requirements of property (b) are satisfied by
knowing that the left and right operands are represented respectively by the first and third
components of a tuple.

Program for Swymbolic Differentjation

Glven the abillity to represent alkebralc expressions, it is not difficult to convert our
informal symbolic differentiation algorithm into a corresponding PAL program. The program written
below mirrors the semantic Intent of the informal algorithm exactly; referral thereto should make
the program relatlively transparent even without extensive famillarity with PAL,

def rec D(E, x) =

test Isstring E // Is It an atom?

I1fso (E eq x => '1' | '0') // Yes - check for x.

Ifnot // No, it's not.

( let L =E1 // The left operand.

and Op = E 2 // The operator,
and R = E 3 // The right operand.
in .
let L1 = D(L, x) // Derivitive of left,
and Rl = D(R, x) // ditto right

In
Op eq '+' =-> (L1, '+', R1)
| Opeg '-' =-> (L1, '-', R1)
| Opeq'.'
= (L, '.,', R1), '+, (L1, '.', R))
| Op eq'/!
- (¢ (Ly, '.', R), '-', (L, '.', RL) ),
'/"
(R, '.', R)
)

| error // improper data

A comment is In order concerning the format of this program. An effort has been made that the
indenting scheme used indicate the parsing. In all programs in this text, the physical layout Is
such as to facilitate as much as possible the reader's understanding of the programmer's Iintent.
It is reccommended strongly that the student make It a practice to follow such conventions In his
programming.,

The last line but one uses the non-PAL reserved word "error", with obvious meaning.
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1.4 Jechnique for Language Definition

The major thrust of the rest of these notes is to define both the syntax and semantics of the
programming language PAL, Before getting started on the details, it seems appropriate to say a
l1ittle about what we are about to do and how we are going to go about doing it.

The "what" is falrly stralghtforward, and was suggested above: We are going to define a
language.  But the definition 1s merely a surface manifestion of the important intellectual
content, Recall that these notes intend to deal with "programming 1inguistics": the study of
those languages used by people In communicating wlth computers. Our intent is to Il1luminate
various ideas relevant to such languages, and our approach to doing so Is to describe a particular
language, PAL, expecting thereby to reveal one manifestation of those ideas. It Is not our claim
that PAL should be studied intensively for its own sake. To the contrary, PAL 1is a pedagogic
tool, studied in depth solely because of the concepts it reveals. Inasmuch as the original purpose
In designing PAL was to use It as a teaching vehicle to illuminate precisely those concepts, It s
not surprising that the points we wish to make can be made quite cleanly by clting PAL.

ub f : For the sake of expository convenience, we find it useful to isolate three subsets
of PAL. The first such subset we consider involves only those aspects of PAL having to do with the
application of functions to arguments, and the lingulstic facilities needed by the programmer to
define functions of his choosing., We call this subset R-PAL, roughly because It Includes those
constructs that can be used on the right side of assignment statements. (A better justification of
the term R-PAL, as well as the term L-PAL mentioned below, must awalt chapter 4.) As we see, R-PAL
Is solidly based on the mathematics of the A-calculus, The differentiation program D given earlier
Is written entirely in R-PAL,

The second major subset Is L-PAl, and Includes assignment statements. The presence of
assignment ralses problems such as the following: Suppose that x is a structure of some sort with
three components, a, b and ¢, and that the assignment statement

b :=b +1

is executed. 1s x changed thereby? The answer has to do with whether or not b and the second
component of x occupy the same "memory locatlion". To use the technical term we like, does b share
with x's second component? Explicatlion of L-PAL involves understanding of the mechanism of sharing
and its vramlifications, so that questions such as the above can be answered. (The answer in this
case turns out to be "yes",)

PAL is completed by adding to L-PAL the concepts of labels and transfer of control (goto
statements), producing what we call J-PAL (";" for jumping). J=-PAL Iis identical with the PAL of
the Manual, and the term Is only used on occasfon to emphasize the hierarchical sets of languages.

I faA

Because the development presented in the rest of these notes Is full of details, it Is all too
easy for the reader to lose sight of the ultimate goal and to fail to see how a particular topic
fits into the overall flow, Thus it seems approprlate to provide, at this point, an overview of
the entire development.

Before starting on the definition of PAL in chapters three, four and five, we study in chapter
two PAL's underlying mathematlical foundations, We have two major areas to study: The first is to
define carefully (or at 1least to show how one can so define) all of the objects with which PAL
deals. These are the objects such as integers and strings, which were used in the example on
differentiation, as well as ratlonal numbers, truthvalues, and others of which we have not yet made
use, We take the attltude that it Is not adequate to say, for example, that Integers are available
in PAL, with their '"usual" oproperties. Instead, we feel it necessary to be able to define
precisely just what those propertles are. While thls approach may seem artificial with respect to
Integers (after all, we all "know" their propertles), It pays off when we Introduce classes of
objects (such as tuples) whose properties are not so familiar,

The second major area of study In chapter two has to do with functions., Since much of what
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goes on In programming languages has to do with the application of a function to arguments, we
adopt a point of view in language description that emphasizes functional application. We study in
depth that mathematical discipline called a-calculus, a study which ylelds us excellent tools for
deallng with functions. The capstone of the chapter Is a mathematical treatment of recursion.

In chapter 3, the conceptual foundations lald in chapter 2 are used upon which to build the
R-PAL subset. R-PAL is developed as syntactic sugaring for the A-calculus. Although A-notation is
adequate for expressing any algorithm, it Is not very convenient for use by people to describe
complex transformations, ° Thus our approach in defining R=-PAL is to show how varlous R-PAL
constructs are just ways of rewrlting A-expressions in a properly human-engineered form, Having
approached R-PAL that way, we can explaln the meaning of any R-PAL program in terms of the
mathematics developed In chapter two, )

It Is unfortunately the case that the A-calculus, although admirably suited for explaining
R-PAL, 1Is not well sulted for explaining the imperatives that distingulsh L=-PAL and J=PAL.from
R-PAL. Thus, having provided an adequate explication of the meaning of any R-PAL program, we
undertake to provide a second such explanation., This one Is presented In two ways: First, we
present it as a conceptual evaluating mechanism called the CSE evaluator. This mechanism accepts
as input -a PAL program to be evaluated and returns the "value" of that program. Clearly,
understanding such a mechanism implies understanding PAL., Second, because the mechanism is falrly
complicated, we - exhibit a PAL program which represents the algorithm carried out by the machine.
That is, we exhibit In PAL a program that explains the meaning of PAL programs. The apparent
circularity 1Is 1{lluslonary and not real, since we can explain the meaning of that PAL program by
appeal to the X-calculus,

In chapter 4, we develop L-PAL by studying assignment and the related problem of sharing. Now
the CSE mechanism developed In chapter 3 shows Its value, since it is thls mechanism rather than
the A-calculus explanation upon which we build to accomodate assignment. Finally, in chapter 5 we
bulld further on the mechanism to accomodate also labels and goto statements.

Abstract Syntax

There are two aspects of 1language description that must be. considered -- syntax and
semantics. In the last few paragranhc we nave discusseu ouir plan of attack in explaining PAL's
semantics, fgnoring all mention of syntax, This is quite approprlate, s!nce we feel that it is
with the semantic pruplems that we should wrestle, the syntactic problems being morc tractable,
Nonetheless, 2 few words about our approach to syntax are appropriate here. In a PAL expression
such as

X +y*2z (1.4~13)

tkare are two sorts of Issues. From the point of view of semantics, we are concerned with such
questions as the values of the three variables used and the meanings of the operators "+'" and "»",
Syntactically, we are concerned with parsing the expression: To which of

x + (y = z) (1.4=1b)
(x + y) » 2 (1.4~1c)

Is it equivalent? Our common cultural background teads us to hope it is the first of these rather
than the second (It Is), but the speclfiers of a language must make clear In such cases just which
parsing Is correct.

We take two different approaches to this problem, 1In the PAL Manual a notatlion for syntactic
description (Backus Naur Form -- BNF) is described and used extensively., BNF certalnly provides an
adequate tool for answering such questions. In these notes, however, we choose to give 1little
attention to such syntactic issues, Instead taking the attitude that the problem arises from the
need to communicate In only one dimension. Consider now Figure 1,4-1, which shows 2-dimensional
representations of several expraessions:
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Ca)

Flgure 1,4-1: Tree Form of Some Expressions

It should be quite clear that (a) In the figure corresponds to (1,4-1b) and (b) to (1.4-1¢).
Iindeed, It Is not possible to illustrate in the tree form the problem that was ralsed by (l.4-1a)
== in trees the parsing Is expllcit, while in (1.4-1a) it is Iimplicit. Thus we regard syntax as

providing us with rules for flattening trees Into one dimension, with a minimum number of
parentheses. For example, Figure 1,4-1(c) can be flattened Into

(a +b) »c *d (1.4-1d)
whare the operator "#+" stands for exponentiation.

Our point of departure In these notes in explaining PAL Is to assume that our Input to the
evaluating mechanism Is a PAL program in the form shown In Figure 1.4-1, rather than In the "flat"
form of equatlions (1.4-1), Thus whereas a BNF description of Infix operator expressions such as
these requires four or five lines (as In section 3.3 of the PAL Manual), we need only onec '“tree

equation", as In Figure 1,4-2:
E ti= 1!!‘!!!?

E E

Figure 1,4-2: Tree Syntax Definition

We refer to this form of syntax description as abstract svntax. The intent of the figure Is that
one form of an "E" (l.e., an gxpression) Is a binop node whose two sons are E's. (We use "binop"
to represent the class of Infix binary operators.) The BNF equivalent to the flgure is

<E> ::= <(E> <blnop> <E> (1.4-2)

but this Is ambiguous, not glving an answer to the question about equation (1.4-1a)., (Syntactic
ambigulty is discussed In section 1.2 of the PAL Manual.,) Thus by dealing with tree syntax, we
avold all questions of parsing and can ignore the process of transiating equation (l.,4-1a) to the
form of Figure 1,4-1a, It Is not that these questions are uninteresting or unimportant, but that
the focus of these notes |s on other problems,
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Chapter 2

CONCEPTUAL FOUNDATIONS

In Chapter 1 we viewed a program as the specification of a (perhaps compllicated) function in

terms of simpler basic functions. A more precise characterization of our view of computation s

provided by the following definitions:
1. An algorithm is the specification of a transformation on abstract
objects, the specificatlon to be In terms of functions that need no

further specification.

2. A programmling languare is a set of conventions for communicating
algorithms.

3. A program is a representation of an algorithm in a programming
language.

Note how the definition of algorithm follows from our claim that we regard computation as having to
do with gbstract objects. The “communication" of definition 2 might be between man and man or
between man and computer, or even between two computers.

insofar as our Immedlate needs are concerned, these definitions serve primarily to alert us to
what Information a valid description of a programming language must provide, Specifically, any
such description must afford answers to the followling questlions:

A. What Is the universe of discourse of the language? That is, what are
the properties of the abstract objects, including various functions,
with which the language deals?

B. Which abstract objects and transformations can be referred to
directly, and what are the conventlons for doing so? That Is, which
abstract objects have pames in the language?

C. What facilities does the language afford for building complicated
transformations out of simpler ones?

D. What are the grammatical conventions of the language?

Clearly, modifying the answer to any one  of these questions while leaving the other answers
invariant modifles the language. Moreover, the questions are "linguistically orthogonal"”, In the
sense that modification of one answer can not be nullified by modification of the others. Thus
the questions define at least one set of coordinates suitable for language description,

In this chapter we are be concerned primarily with the first three of these questions,
Accordingly, throughout this chapter we focus less upon PAL than upon the system of mathematlical
loglc on which much of PAL Is based. This system, the A-calgulus of Church and Curry, may Itself
be viewed as a language, albelt one with particularly simple syntax and semantics. As we proceed,
we Indicate how PAL reflects the linguistic constructs of the A-calculus,

2.1 r f Discours

Historlcally, programming 1anguages have usually been designed to deal principally (alihough
not exclusively) with some specific class of abstract objects. For example:

FORTRAN and ALGOL programs manlipulate pumbers.
COMIT and SNOBOL programs manipulate strings.
LISP and IPL programs manipulate 1jsts.

The current trend seems to be towards "universal" languages, such as PL/I, which Include In their
universe of discourse many types of data.
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PAL, like PL/1, deals with many types of abstract objects (hereafter abbreviated "obs").
speclfically, we are concerned with disjoint subsets of obs called truthvalues, strings, pumbers,
tuples and fupctlons. Numbers, In turn, are partitioned into the classes Integer and rational.

Our objective in studying these sets is twofold. First, we seek thorough understanding of the
obs themselves, as a prerequisite to writing non-trivial programs. One cannot hope to build up a
complicated transformation without detalied knowledge of the basic constituents from which it Is to
be composed,

Second, we seek understanding of a methodology for defining classes of obs, an understanding
which ultimately should afford insight into certaln questions of language extensibiliity. We want
to study how a language may be modified by incorporating a new class of obs Into its universe of
discourse, or by exclsing a class already included, without deranging the language as a whole.

Plan of Attack: Our objective In this section Iis to specify the universe of discourse of PAL =-
to answer question A on page 2.!-i¥. In doing so, we find it convenlent to answer question B also,
in that we give the PAL names for the objects we describe. Note that A suggests that 'basic
functions' are part of the universe of discourse. A complete specification of the set of integers
must include, for example, specification of the basic functions such as addition and multiplication
that operate on them.

In succeeding subsections wa give the properties of truthvalues, strings, Integers, rationals
and tuples. In each case we describe both the set of abstract objects and also the relevant basic
functlions. We glve detalled consideration to functlions in Sectlions 2.2 and 2.3,

Mathematical Preliminaries

Since some of the mathematical conventions and notation used in the rest of this chapter may
not be familiar to all readers, we present now the Ideas needed. Many of the less famlilar Ideas
are used In only one place In these notes, At that point there usually appears a suggestion that
the reader study agalin the relevant part of this section., On flrst reading of these notes it 1is
probably appropriate just to scan this section, planning to study it again as needed.

Sets: A sat Is a collection of objects, 1f the object m is In the set §, we write
mesS

while if not we write
m¢g S

In general In this section, we use upper case letters for sets and lower case letters for members
of sets,

We use two conventlons to denote explicit sets. For example, we might write
{a, b, ¢, d}
to denote that set containing the four objects 1isted, We could write then
{al

to denote the set consisting of the single element 3. Note that this set Is dlfferent from 2. We
sometimes write

ix | P(x)}

to indicate the set of all objects x such that P(x) s true., For example, the two writings

{x | (x Is an integer) and (x > 0) and (x ¢ 5)}
{1, 2, 3, u}

each denote the same set, We write & to denote that set containing no elements at all,

If R and S are sets, then the set R u $ Is the union of R and S: the set of all objects that
elther are In B or are In § or are In both., That is,
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RuS= (x| (x € R) or {(x e S)}
Also, Rn S Is the intersection of B and §: the set of all objects in both R and §. Thus we have
RA S = {x | (x¢ R) and (x ¢ S)}
For any set S, It Is true that

¢ =Sn ¢
S=Sv ¢

Saying that R A S = ¢ Is equivalent to saying that R and § have no elements in common.

If all members of set R are. also members of §, we say that B Is a jsubset of § or that §
contains R, and write ‘
Re S

It Is true that

for all sets §S.

Ordered Palrs: We are on occaslon concerned with ordered palrs of objects. We write
{a, b}

to denote that ordered palr whose first element is a and whose second element Is b, The question
of whether there Is a correspondence between ordered palrs and PAL's 2-tuples is not dealt with . at
"this time. We confine our use of the ordered palr, which is a mathematical idea, to the first part
of this chapter before the Introduction of tuples,

The set of ordered pairs with first element In set A and second element In B Is written
A®B
so that we have
A®B = {fa, b} | (a e A) and (b ¢« B)}

0f course the two sets may be the same set. For example, if N is the set of integers, then N ®@N
denotes the set of ordered palrs of Integers.

Relations: A relatlon on a set A Is a set R such that
Rc A®A
Thus R Is a subset of all possible ordered palrs of objects from A. We then write
aRb

to mean that

fa, bt ¢ R
For example, the relation "less than" on numbers is the set

fix, v} | (y=x) is positive}

We are Interested In three possible properties a relation might have., A relation R on a set A
is sald to be

reflexive 1f x R x3
symmetric If x Ry Implfes y R x; and
transitive If x Ry and y R z Imply x R z;

for all x, ¥y and z In A.

An gquivalence relation is a relation that Is reflexive, symmetric and transitive. For
example, the vrelatlon "Is congruent to" Is an equivalence relation on the set of triangles. The
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subset relatlion is not an equivalence relatlon, since It 1Is reflexive and transitive but not
symmetric.

Functions: If D and C are sets, we say that f is a fupnction from D to C if there is a subset § of
D such that, for each x € S, f specifies a unique element f(x) € C. This element Is called the

value of f at x. The set D is the domaln of f, C the codomain of £, and § the domain of definition
of £.

Note that a function has three components: a domain, a codomain, and a rule. However, we are
willlng to say of two functions that they are equal if we can show that they have the same domain
of definitlion and the same rule, That is, if £ and g each have domain of definition §, we require
that f(x) = g(x) for all x & S. Since they have the same domain of definition, there can be no
point at which one is deflned and not the other,

The range of a function is the set of values it takes. It Is a subset of the codomain. For
example, the range of f(x) = x2 on integers is the set

{0, 1, 4, 9, 16, 25, ooo}

Suppose that £ is a function with domain of definition D and range R, and that S < D. Then by
f(S) we mean the set

{y | there Is an xe S such that y = f(x)}

.
This Is the set of function values corresponding to elements of S, and it is always a subset of R.
For example, for the squaring f above

f({1, 2, 31 = {1, 4, 9}

We wusually speclfy functions by giving the domaln and a rule, trusting that the nature of the
rule makes clear the domain of definition, The range is thereby defined, and a codomain follows.
For example, consider the function divide with domain palrs of rational numbers. Clearly the
domaln of definitlon Is the set of palirs with second element non-zero, and the range Is the
rationals.

A function Is sald to be total over a domain if that domain Is also its domain of definition.
A partial function over a domain is one that is not total over that domain, Division is a partial
function over palrs of rationals.

Consider the function f defined by
F(x) = x2 - 13 x + 8

with domain integers, Clearly f is total over that domain. The codomain of f Is integers, but
specifying the range is awkward, Although It seems more useful to specify the range than the
codomaln, we frequently flnd It convenient to speclify the codomaln. In such cases, It seems
desirable to specify the "smallest" convenlent codomain.

The pul) function Is that function whose domain of definition is empty,

A copstant function, or a function of no argument, is one whose domain of definition 1Is the
set {¢} where ¢ Is the empty set. (Such a function is pnot the null function.) We write f() = 3 to

Indicate that constant functlion f whose value is 3, suggesting by the empty parentheses a functlion
of no arguments,

Eunctionality: If D and C are sets, we write
D~-¢C
to designate the set of all functlons with domain D and codomain €. We can then write
fe D-C

or

f: D= C
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to indicate that the domain of £ Is D and its codomain is C. Thus one might write
f ¢ integer + integer

to iIndicate that f Is a function whose domain and codomain are each the set of Integers., Use of
the mark "e" Is justified by our statement that the arrow notation defines a set of functlons.
Such a specification of domain and codomain Is called the functionalify of a function.

We can indicate that f Is a constant functlion by writing
feldt=-S
where S contalins the value.

A few more exampies may help to clarify this concept. Consider the function Addn: N® N >N
defined by .

Addn (x, y) = x+y

where N Is the set of all integers. (Note that we have deflined Addn by glving its domain, codomain
and rule,) Suppose we have another function, Addr: R® R + R, defined by :

Addr (x, y) = x+y

where R s the set of ratlonals, Finally, suppose we want a single function Add which "works" on
elther pairs of integers or palrs of rationals, What Is its functionality? Its domain is clearly

(R® R) U (N ®N)
“and Its codomain
RuN
so It would be correct to write

Add ¢ (R® R) v (NO®N)~+ (R VN)

but this Is misteading, since what Is wanted Is to suggest that Add of two integers never
yields a ratlonal, or vice versa. We thus write

Add e (N®N »N) A(R® R »R)
Specifically, we say
fe (A=B)A(C~+D)
only If AN C = ¢, and we mean that
f¢ (AUC) » (BUD)

and that f(A) = B and f(C) = D, Such a function is called a polymorphic function, In most
programming languages the usual arithmetlic operators are polymorphic, The concept Is uncommon In
conventional mathematics.

Note two things: The arrow notation defines a set of functlions, and it Is a set that goes to
the right of the arrow, Thus It seems permissible to write

fe N>(N-=N)

Presumably such an f Is a functlion whose domain is Integers and whose values are functions from
integers to integers, Such a function Is called a curried function (after the mathematician H. B.
Curry). Although it is awkward, to write a curried function using conventional mathematical
notation, It Is easy to write one In PAL. Curried functions play a cruclal role in what follows.

Q;hg;_Qgj1nl;1gn;_ggnggznlng_gungglnng: We collect here some other definitions which we have use

of In what follows,
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A predicate Is a functlon whose range is the set [true, false} of truthvalues. For example,
the function f defined by

f(x) = x>0

on Integers Is a predicate, returning true when Its argument Is a positive Integer and false for

2ero or negative integers as argument.

A functlion is sald to be onto Its codomain § If S Is its range, while otherwise the function
is intg. For example, the function f(x) = x?® from Integers is into the non-negative integers, but
not onto them,

A function f from D to C Is sald to be many to ona if there are x, vy ¢ D with x # y such that

f(x) = f(y). That is, f maps several points onto the same value. We say f Is ong to one If it Is
not many to one. For such a functlon, f(x) = f(y) impliies that x = vy,

A function g Is a functional extension of f if g is defined at all points at which £ is, and
If their values are equal at those points. Every function is (vacuously) a functional extension of

the null function.

Suppose we have sets F and G and functlions f: F® F > F and g: G ® G « G, and that f and g are
total over the Indicated domains., Conslider a function 8: F - G with 6 total over E, Then 8 is
sald to be an Jsomorphism from (f, F) to (g, G) If o is one to one and onto, and if

e [fix, y)1 = gra(x), e(y)]

for all x, ye F. Note that an isomorphism requires both the sets E and G and also the functions f
and g on them. An example of an Isomorphism Is given on page 1.2-4,

The glosure of a function f overset § is a set defined as follows: Let S, = S, and define
Saes = S U f(Sy)

for n = 1, 2, ... . Then an element is In the closure If It Is In at least one of the S,,, For
example, If

f(x) = x+1

then the closure of f over the set {0} Is the set of non-negative Integers. Similarly, the closure
of division over palrs of integers is the gset of rationals.

Strycture Definitions: A structure definition provides a technique to specify In a single bundle
many propertles of certain kinds of objects. We have already seen one such definition (on page
1.3-7), and we repeat It here, slightly changed to meet our present needs:

An algebraic expression (algex) Is a structured object. It Is elther an
atom, or it is a
binop, in which case It has an
operator, which Is in the set B, and a
left-part, which Is an aigex, and a
right-part, which is an algex, or it Is a
unop, in which case it has an
operator, which Is in the set A, and an
operand, which is an algex.

(The iIndenting scheme used has the obvious significance.) When we write a structure definition
such as this one (and we write many of them), we are saylng certain specific things about the class
of algex's. In particular, we are saylng that glven an algex we can tell whether it is an atom, a
binop or a unop. That Is, we are claiming the exlstence of certaln set-membership predicates.
Second, if we have an algex which 1Is a binop, we are able to select out any one of its three
parts; just as we can select out efther of a unop's two parts, That 1Is, we have suitable
selectors. Finally, given a member of the set B and two algex's, we can construct an algex which
Is a binop; or we can bulld a unop from a member of A and an algex. That |Is, we have sultable

constructors.
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The important point 1is that writing the structure definition implles the existence of the
relevant predicates, selectors and constructors. Further, a definition such as that of algex
Implies that there can be no othcr kind of algex than the three kinds 1isted, Suppose that one
wanted to prove a theorem about algex's: The deflnition given makes it clear that no more is
needed than to prove that the theorem holds for atoms, binops and unops.

For example, consider the differentiation ailgorithm given in English on page 1.3- 9. The
first line implies use of the predicate IsAtomic (or some such); the specification of L, Op and R
requires use of selectors; and use of a constructor is Implied by a writing such as "the expre;slon
whose left operand is L1 and whose operator is + and whose right operand is R1",

An important aspect of a structure definition has to do with representation. To be
acceptable, any proposed representations of algex's must permit implementation of the needed
predicates, selectors and constructors, The reader should satlisfy himself that the PAL
representation used in section 1.3 does meet these requirements, as does the tree representation
suggested.in Figure 1,3-1, page 1.3-7.

Meta-language: Throughout these notes we make a sharp distinction between abstract objects and
PAL's conventions for denoting them, The reason Is that the obs are invarlant to any particular
choice of naming conventions, For example, the properties of the positive integers would be
unaffected by a declslion to use Roman Instead of Arabic numerals In PAL, and the properties of
strings would be unaffected even were we to excise from PAL every lingulstic faclllity for dealing
with them,

In order to talk about the obs Independently of PAL, we need a meta-language: a language for
talking about a language. As our meta-language we use ordinary technical English, suppiemented by
conventional mathematics. But PAL itself Is modelled in large part on conventional mathematical
notation, so that some special device Is frequently necessary to guarantee the distinguishability
of PAL and conventional expressions, We resolve the difficulty by agreeing in the latter case
always to refer to obs by '"meta-names", names that are not allowable in PAL's syntax.
Specifically, meta-names always are boldface (which In typescript, as in the present edition of

these notes, is indicated by wavy underlining), but which accord with PAL syntax in other regards,
Thus we might write

2

In  PAL to denote the ob 2. In text (as opposed to on a separate 1ine) we use double guotes to set
of f PAL names, as "2". We sometimes use underlines instead for names only one character long: 2.

With these conventions understood, we now proceed to discuss each of the classes truthvalues,
strings, lIntegers, ratlonals and tuples in turn. For each class we give first an intuitive
discussion, next a formal definition, and finally detalls on the relation to PAL.

JTruthvalues

The class of truthvalues contalns precisely two obs: true and false, with the properties the
reader should expect them to have. We are interested in the usual three functions on truthvalues:
And, Qr and Not.

Although In successive sections we use to advantage the axiomatic method to define properties
of sets such as the integers, that method seems Inappropriate for the truthvalues: Since the set
contains only two members, it Is simpler just to 1ist all of the properties we want. The power of
the axlomatic method comes Into evidence in defining Infinite sets, such as the Integers,

Eormal Definition: Rather than define the three usual functions mentloned earlier, we deflne the
single function Nor. We then define the other three functlons in terms of It. We have

Refinition: The set of truthvalues contains the two obs trye and iﬁli .
There Is a function Nor: truthvalue - truthvalue such that
Nor ¢ true, true) s false
Nor ( true, false) » false
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Nor (false, true) « false
Hor (false, false) = rue

— —

We have specifled Nor entirely: Since there are only two distinct truthvalues, there are only
four distinct palrs of truthvalues; and we have shown what value Nor has for each possible
argument it might get. (This technique 1Is clearly unsuitable for, say, defining addition of
Integers,) A compact way to provide the same information is in tabular form, as

x y Nor (x, y)
£ f t
f t f
t f f
t t f

(Here we have written ¢ and f for true and false, respectively.) Such a table is called a ftruth

Lable.

We want now to deflne And, Or and Not to have the properties one expects. We can do so either
by giving a tabular definition or by defining them In terms of Nor, whose properties are known. We
do the latter, and then show that the functions do as expected.

pDafinition: The functions Not, And and Qr, with functionallities

Not e truthvalue - truthvalue
And ¢ truthvalue @ truthvalue - truthvalue
Or ¢ truthvalue @ truthvalue » truthvalue

are defined as follows:

=

Not(x) & Nor(x, x)
And(x, y) = Nor( Not(x), Not(y) )

——

or(x, y) = Not( Nor(x, y) )

As Is reasonable, we have used the first definition in the next two., That these three functions
have the usual properties Is revealed by the following truth table:

a b c d e
Nor(x, y) Nor(x, x) Not(y) Nor(b, c) Not(a)

x y

£ f t t t f f
f t f t f f t
t f f f t f t
t .t f £ f t t

Column (a) repeats the definition of Nor. Column (b) is the definition of Not, and It clearly Is
the expected negation of x. Column (c) Is the same for y. Column (d) Is the Nor of (b) and (c) as
in the definition of And, and reveals the expected transformation; and column (e) does the same for
or.

Relation to PAL: PAL provides identiflers 'true" and '"false'" as the names of true and false,
respectively; and the PAL name for Not Is "not". Instead of providing functions for And and Or,

PAL provides Infix operators for them, Thus If E and F are any PAL -expressions, then the PAL
expression

EAF (2.1-1a)
denotes the same object as does
And (E, E) (2.1-1b)
and '
Eor F (2.1-2a)
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denotes the same ob as does

or (£, ) (2.1-2b)

where In each case E and F are the obs denoted by £ and E, respectively. Since And and” Or have
been defined only for the case In which the argument is a pair of truthvalues, each of these
expressions s undefined unless both E and E denote truthvalues. This point 1Is Important and
deserves amplification.

Saying of a construct that it Is undefined means nelther more nor less than that we have not
defined it. Thus

Not (3)

A
s undefined because we have not defined the value returned by Not when its argument Is an
Integer. Another way to look at It Is that 3 is not in the domain of definition of Not, so this
expression must be undefined, The implication of this is that the meaning of a PAL expression such
as

not 3

{s undefined. One might hope that execution of a program containing such an expression would
result in an appropriate error message, but an Implementor of PAL Is free to do anything at all and
still have met the formal definition. (A1l existing PAL implementations give a good dlagnostic.)

Note that no PAL name has been provided for Nor. Since

“Nor (x, y) = And (Not (x), Not (y))
(a fact that the reader should verlfy with a truth table), one may write in PAL
def Nor (x, y) = (not x) & (not y) : (2,1-3)

Names of variables In PAL consist of letters, digits and the underscore character. Names two or
more characters long consisting of all lower-case letters are reserved words, Thus Nor, x and y
are varlables in thls program and pot is a reserved word, We use the term functor for a name (such
as "&", "or" or "not") which, though not a varlable, nonetheless denotes a function. This program
defines the function Nor of two variables x and y, in the obvious manner. x and y are dummy
variables, or formal parameters.

Strings

The class of obs called strings may be thought of as sequences of zero or more characters
chosen from a specified alphabet, The length of a string is the number of characters it contains.
For example,

AaB?2 (2,1-4)

represents a string of length 5 with characters chosen from an alphabet containing {A, a, 2, ?, B}
as a subset, The meta-name of the string represented by (2,1-4) is 'AaB?2', and its PAL name Is

'AaB?2'
Two strings are sald to be equal If ahd only if thelr representations are the same.

We think of the stem of a string of length k>0 as the 1leftmost character in its
representation, and of the stern of a string of length k>0 as that string of length (k-1) obtained
by deleting the stem. Thus the stem of (2.1-4) Is the single character "A", and Its stern has PAL
name

'aB?2!

Finally, we are interested In concatenating two strings, say of length m and n, to produce a string
of length (men), For example, the string of (2.1-4) may be thought of as the result of
concatenating the flrst and second elements of any of the six following ordered pairs, in which "A"
denotes the string of length zero,
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A , AaB?2

A , aB?2

Aa , B?2 (2.1-5)
AaB , 72

AaB? , 2

AaB?2 s A

Postulates: The substance of the preceding informal discussion Is encapsulated in the following

Definitlon: A string system ([f,, A] over a finite set L is composed of a set
and a function A, such that the following hold:

1. Each member of L Is a member of 4,.

2, There is an element s, ¢ 4, which Is not an element of L. The
length of s, Is zero. Let 4’ be the set of all elements of 4.
other than s,.

3, The function A: L ® 4,  » 3° Is one-to-one and onto. For every
element x ¢ L, it Is true that

A(x, sg) = x

4, Define the sets S, as follows:
Se = [s.}
Snyy = SmVU A(L®S,)
Then the set 4. Is defined as follows: An object x Is a member
of 4. If there is some n such that x € Sp.

The effect of these definitions is to define the properties
of the set 4. (the set of strings) and the function A. The set 4, depends on the set L =-- the
alphabet of the string system, In that changing L changes the strings deflined. Property 1 says
that each letter of the alphabet is a string., Property 2 says that there Is at least one string
which Is not a letter: the empty string, or string of length zero,

Property 3 gives the functionallity of A and makes the Important polnts that it is one to one
and onto. This means that for every x ¢ 4J there are unique g and p such that

A (m, n) = x
That m and n exist follows from onto, and that they are unique follows from one to one,

Property & defines 4, In a manner similar to the definition of closure glven earllier, on page
2,1-19, It would have been pleasant to say that 4. Is the closure of A over (LU {s.}), but doing
so would not have been correct since A's domaln 1is pairs and our definition of closure is
Inappropriate.

We now define two functions, making use of our earlier discussion of Property 3.

Definltion: There are functions M and N with

Lt

AV R

[8

Iz

such that, for every x ¢ {4,
AIM (x), N (x)] = x

That M and N are well-defined (l.e., unfque) follows from the fact that there exist unique @ and p
such that A (m, n) = x,

Relation to PAL: The PAL name for a string Is called a quotation, and is written by writing the
characters of the string between single quote marks, The alphabet L over which strings are defined
Is given In the PAL Manual, in Section 2.1. Certaln characters in the PAL alphabet, such as new
1ine and quote, are provided with special names to facllitate quoting them, (Detalls are In
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section 2.4 of the Manual.) The PAL name for s, Is '', two adjacent quote marks.

PAL provides "Stem" and "Stern" as the names of M and N, and the function "Conc" defined
below. In addition, PAL provides the inflx functors "eq" and "ne" for determining iIf two strings

are equal.

It often happens that the primitive functions which are convenient for writing postulates do
not colnclide with the most convenlent set of functions for programming. Consider the problem of
determining whether or not two strings are the same., That objects are distinguishable impiies the
existence of a predicate, say IsEmpty, with functionality:

IsEmpty ¢ string + truthvalue
REORE .

such that lsEmpty returns true when applied to s, and returns false when applied to any other
string; as well as another predicate, say Eg, such that

Eq¢ L® L +» truthvalue

and Eq returns true when both arguments are the same character, and false If they are different
chara;;ers. As it happens, PAL's desligners have not provided functions corresponding to |sEmpty
and Eg, but have provided instead a more powerful predicate for determining the equality of
arbitrary strings. But assume that this were not so, and that "Eq" were the PAL name for the
function Eq and "IsEmpty" for |sEmpty. Then the arbitrary equallty predicate could be defined by
the PAL program

def rec Equal (x, y) =
IsEmpty x -> IsEmpty y
| IsEmpty y =-> false
| Eq (Stem x, Stem y) -> Equal (Stern x, Stern y)
| false

This program deserves some comment. The PAL conditional expression
B=->EI|F
has the value of E if B Is true and of F If B Is false. (It is undefined otherwise.) Thus
1sEmpty x => isEmpty y | F

has the value true if both x and y are empty, the value false if x is empty and y If not, and the
value of F otherwise, Thus the effect of the first two 1ines of the body of the function (the part
after the "=") is to return true if both x and y are empty, false if only one of them is, and to go
to the next line If nelther is. Here we ask if the first character of x (its Stem) Is the same as
the first character of y. |If not, we return false, while if so we call "Equal" recursively to
compare the Stern of x with the Stern of y. The punctuation "rec" indicates a recursive function
-- one that calls itself. The reader should convince himself flrst that "Equal" returns false If
one but not both of Its arguments is s,. Given that neither argument Is s,, It returns false

unless the stems of Its arguments are equal. Finally, should this test also be passed, the value
of '"Equal" depends upon equality of the sterns of its arguments. Clearly, the procedure always

terminates for finite arguments, and equally clearly Stem and Stern are applied only to non-empty
strings.

A second example concerns the function A, which -affords only a primitive version of
concatenation, Presumably we would prefer a functlon, say 2239, for concatenating strings of
arbitrary length, such as those in (2.1-5), Actually, Conc rather than A |s the string
concatenation operation provided in PAL, But were the situation reversed and "Adjoin" the PAL name
for A, we could remedy the inconvenlience by the program

def rec Conc (x, y) =
IsEmpty x => y
| Adjoin (Stem x, Conc (Stern x, y)]

Rather than provide the function "Equal", PAL provides the Infix binary functor "eq". The PAL
expresslon ’
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E eq F

has value true If € and F denote the same string. (We see later that it is also true if E and F
denote the same Iinteger or the same rational. That is, "eq" is polymorphic.) The functor "ne",
for not-equal, is also provided.

Finally, we note that PAL provides no function at all for determining the length of a string.
The definition In PAL of an appropriate function, say "Length", Is left as an exercise,

Integers

Two classes of numbers, called integer and rational, are of interest. We consider rationals
in the next subsection, considering here the integers and thelr properties.

While in the previous two sections we sald all there was to say about the sets of truthvalues
and strings, in this and the next sectlon we leave out many of the detalls. Our reasons are
three-fold:

. A complete axiomatic treatment of the Integers or of the ratlonals Is
not only 1lengthy but 1is also avallable in many elementary math
books. The other classes of interest to us are peculiar to PAL and
are thus not elscewhere defined.

. We have already made the intellectual point that axliomatlic treatment
of a unlverse of discourse Is possible, a point we make again In the
treatment of tuples.

. The reader 1Is (presumably) already familiar with Integers and
rationals, so there seems 1little educational value to a formal
treatment of them,

We therefore elect to glve In thls section only some of the needed axloms, and In the next
subsection none at all,

Postulates: What we want to define is the set of intepgers, both positive and negative, as well as
the operations, addition, subtraction, multiplication, division and exponentiation. Instead we
define by postulate only the non-negative Integers -- the natural numbers -- and give PAL

definitions for addition and multiplication on them.

Definition: The set of natural numbers is a set N such that
1. There Is a unique element p, e« H. Let No be the set of all
elements of N other than p,.
2, There Is a total function Sycc: H-+ N, which is one-to-one and
onto the set N,.
3. The set N Is the finite closure of Jugc over {n,}.

It should be clear that the p, and Succ of this definition correspond respectively to zero and to
the function which adds one to an Integer.

In property 2, the words "total", "one-to-one" and "onto" are all key. (These ideas are all
defined In the early part of this chapter.) "Total" means that every integer has a successor;
'one-to-one" means that there are no two distinct Integers that have the same successor; and
"onto" means that every natural number other than zero Is the successor of some natural number, As
we are often interested in the predecessor of a natural number, we provide the

Definition: There is a function Pred: N, + N such that, if Pred(m) = n,
then m = Sugc(n).

That Prgad Is well defined follows from our discussion above of property 2.

The arithmetic transformations on "the natural numbers follow from the postulates. For
example, If "0", "Succ" and "Pred"were the PAL names for 0, Succ and Pred, respectlvely; and If

"Zero" were the PAL name of a predicate whose value is truye when applied to 0 and false when
applied to any other Integer; then we could define functions for adding and multiplying natural
numbers by tho PAL programs
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def rec Add(x, y) = Zero y -> x | Add(Succ x, Pred y) (2,1-9a)
def rec Mult(x, y) = Zeroy => 0 | Add(x, Mult(x, Pred y)) (2.1-9b)

The reader should convince himself that these functions work so long as x and y are non-negative

integers. (How can you be sure the recursion will not loop forever?)

To complete the formal definition, one should now provide postulates for the negative
integers, and define subtractlon, Division and exponentiation could then be defined by PAL
programs. The interested reader may find axiomatization of the negative integers in any suitable
mathematics text, and the PAL functlons are left as exercises.

Relation to PAL: PAL provides the following infix binary functors:

+ addition

- subtraction

* multiplication

/ division

L exponentiatlion

le less-than-or-equal-to
< less-than

ge greater-than-or-equal-to
> greater-than

eq equal

ne not-equal

The first five functors designate functions that have functionality
integer ® Integer - integer
and the last six may be assumed to designate functions with functlonall;y
integer ® integer -.Fruthvalue

(We see later that these functors are polymorphic.) All of the functors work as one might expect.
Division by zero is not defined, nor is exponentiation for certain cases such as '"0++0", PAL also
provides "+" and "-" as oprefix unary functors, the latter designating negation. Note that the
value of E/F is always an integer., We do not here specify whether truncatlon or rounding takes
place If the division is not exact,

The PAL name for a number Is called a pumeric, and the PAL name for an integer is called an

Integer pumeric.

The only integers that PAL provides names for are the non-negative Integers, and these In the
usual way. Further, each non-negative integer has many names, both "2" and "0002" being names of
2. Although the negative Integers do not have names, one may easily write an expression whose
value is any negative Integer desired: "0-5" denotes =5. The decision not to provide names of the
negative Integers is an arbitrary one, and changing It would not change the expressive power of the
language. ‘

Bationals

Mathematically, the set of rationals Is the closure of the Integers under division,
Postulates for the rationals are not provided here, for the reasons already glven, The eleven
functors listed on this page also work on ratlonals., The functors '"+", "-", "+" and "/" have
functionality

(N®@ N-~-N)A(ROR »R)

(Here and below we use N to abbreviate Integer and R to abbreviate rational, The mark A is defined
on page 2.1-18.) These functors designate functions which return an integer when applied to a pair
of integers and return a ratlonal when applied to a pair of rationals, It Is Incorrect to apply
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one of these functors to a ratlional and an integer: The PAL expression
3 ¢+ 4.2
is erroncous.
For exponentiatlon we have the restriction
*x € (N®N +»NA (RON »R)

Thus the exponent must be an integer. We would be admitting a mathematical Inconsistency into the
language were we to permlt vratlonal exponents, since it would then be possible to write
expressions denoting obs not in the universe of discourse., For example, the expression "2 #« 0,5"
would (presumably) denote the square root of 2, an Irrational. Had we used reals Instead of
rationals, thils problem would have been avoided., However, rationals are closer by far to what
actually goes on In computers, and Introduction of reals leads to many other probliems, In some
programming languages, the term real or floating point iIs used for essentially the same class of
obs that we call rational,

The six relational functors are polymorphic. Each of "<¢", Me", '">" and 'ge" designates a
function with functionality

(N®ON>T)A(RO®R ~T)

where I 1Is the set of truthvalues. The two functors "eq" and '"ne" are even more polymorphic,
designating functions with functionality

(TUSUNUR®(TUSUNUVUR) ~-T
where § s the set of strings. Thus one may write in PAL
2 eq 'abc'

Such an expresslion denotes true |f both operands belong to the same class (J or S or N or R) and

have the same value. Each of the following PAL expressions is defined and denotes false:
2 eq 2.0 2 eq '2° true eq 'true'

Names are provided In PAL for oniy these rationals of the form P/(10**Q), where P is a
positive Integer and Q Is any Integer. The name of a ratlonal «consists of one or more digits
followed by a decimal point followed by one or more digits. Power of ten notation, such as the
13.2E5 of Fortran or PL/I, is not provided; and names such as "1." and ".1" are not acceptable.
(Use Instead "1.0" or "0.1".) Note that "2" denotes the integer 2 and "2.0" the rational 2.0, and
these are two different obs. This point Is discussed further below.

The user of PAL should be cautlious in his use of rationals, since most Iimplementations do not
store rationals exactly. For example, the ratlonal with PAL name "0.2" would probably be
approximated In a computer by a binary floating point number, so that the PAL expression

(5.0 * 0,2) eq 1.0

might denote false. For this reason one implementation of PAL (on the TX-2 computer at Lincoin
Laboratory) wuses '"fuzzy" tests for the relational functors when thelr arguments are rationals.
That Is, If g and b are ratlonals which are not too close to zero, then the PAL expression

aeqb
is equivalent mathematically to something like
| Ca=b) / M | < §

where M is the maximum of jal and |b|. (The case in which both 3 and b are close to zero Is
treated speclally,) The constant § Is Iimplementation dependent,

Although ratlonals are usually only approximated, It Is safe to assume that any sensible
language implementation provides precise integer arlthmetic so 1long as the magnitude of the
operands does not exceed some large (machine-dependent) threshold. On the other hand, one should
1ook askance at programs whose successful operation depends critically upon precision of rational
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arithmetic,

it 1Is well to remark that Imperfections due to the finiteness of machines are not peculiar to
numbers alone. There Is also a limlt on the length of a string or even of a program. We view such
difflculties as implementational rather than lingulstic in nature and give them little attention in
this document. k

Integers and Rationals: From our conceptual viewpoint there Is as much distinction between the
abstract classes integer and rational as there is between either one of them and the class string.
Al though it Is convenient in PAL to use the same functors -- such as "/" for "division" -~ |{n
conjunction with both integers and rationals, the transformation specified by the functor depends
upon the type of its arguments., (The "type" of an ob Is the ctass to which It belongs.) For
example, in PAL

a/b

denotes the ordinary quotient If a and b denote rationals, whereas it denotes the integer part of

the ordinary quotient if g and b denote positive Integers. Finally, the expression Is undefined iIf
a denotes a rational and b an integer, or vice versa.

In many languages (PL/I, for one) a "transfer function" is invoked automatically for certain
types of arguments. For example, in PL/I an Integer argument to "+" would be converted to type
rational if the other argument were rational, Type transfers in PAL, on the other hand, are never
automatic, Instead, the baslic transfer functions

"itoR" (for integer to rational)
"Rtol" (for rational to integer)
"Stol" (for string to integer)

which PAL provides must be invoked explliclitly by the programmer when needed, These functions are
described in Section 3.4 of the PAL Manual,

Juples

As we have already observed in conjunction with the symbolic differentiation program of
Chapter 1, the class of tuples Is wuseful in dealing with entities having ‘"structure",
Specifically, tuples are important in two ways:

1. A tuple may be used to represent a data structure,

2. A tuple may be used as the argument to '"polyadic" function: one that
takes several arguments. (Thls point is explained in Section 2,2 of
this chapter,)

A major part of Chapters 3, 4 and 5 s the formal specification of PAL's semantics. ~As part of
this speclification, the PAL program whose semantics are to be explained is represented as a
structure, Thus we make extensive use of structured data in these notes, and it Is important that
the reader understand the ideas.

For the present, we restrict our consideration of structured data to treae-likg structures,

o

In Chapter 4, we are also Interested in objects 1lke
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or, even worse, like thls

22

We call the situatlon In which two arrows point to the same node sharing, and much of our concern
In Chapter U4 |Is the proper explanatlon of sharing. But sharing becomes relevant only in a world
which Includes assignment statements -- and there is nothing in the A-calculus corresponding to
assignment., For the present, therefore, we content ourselves with a simplified treatment of tuples
in which the concept of sharing does not arise,

PAL's tuples are simllar In some ways to vectors In conventional mathematics. Now an
n=-component vector, say

vV Fvl, v2, ..., Vn (2.1-10a)

may be viewed as a function on the integers such that

Vi, If 1<j<&n

V(i) =
! {undeflned, otherwlise

(2.1-10b)

Since we are disposed to view computation in functional terms, we ascribe a corresponding property
to tuples.

Postulatgs: We capture the Intuitions of the preceding discussion by the following

Definition: A guple system [J, Qrder, Augment] over a terminal set dis a
set J of tuples together with two functions Order and Augment, such
that

1. No element of the terminal set 4 Is a tuple. That is, 4N Y =4,

2. There Is a total function Qrder: J » integers. A tuple £ such
that Order(t) = k Is called a k-tuple, or a tuple of order k.

3. Each k-tuple acts as a function over the first k positive
integers. That is,
te{l, 2, ..., Order(t)} » (4 v])

4, There is a unlque Ye J such that Order(¥) = Q. Let Jo be the
set of all tuples other than VY.

5. There is a function Augment: J® (L v ) » U, If ¢ 1is any
element of J and x ¢ JuJ, then »
(a) Order Augment(t, x) = 1 + Order(t)
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X if = 1+ 0rderle)

(b) f[Augment(t, x)] k = {t(k)

otherwise

6. The set J is defined as follows: Consider a sequence of sets I,
defined
t, =4

Tuet "RUMWW“HO(%Uﬂ
Then t ¢ J if there exists an p such that £t ¢ I,.

As in the definftlon of strings, in which the set 4,_depends on the alphabet L, the set O of
tuples depends on the terminal set 4 chosen. Property 1 requires only that <4 not contain any
tuples.

We use the term k-tuple for a tuple £ such that Qrder(t) = k. Clearly then Y is a.0-tuple,
and property 4 implies that it Is the only one. Property 3 Implies that a k=tuple acts as a
function on the first K integers, It follows then that ¥ Is akin to &, the null function, since
each has empty domain of definition. But they are different: Qrder(¥) = 0, while OQrder(d) is
undefined.

For convenience of expression, we think of a tuple as belng "made up" of the elements in Its
range. Suppose that § Is a tuple and that $(K) is 2. Then we think of Zz as being the keth
componnent of t, or the k-th glement of t. The Impact of property 5 is then that applying Augment
to a k-tuple £ and any ob x ylelds a k+l-tuple whose flrst k components are the same as those of ¢t
and whose k+l-st component Is x.

it Is not hard to show that Augment Is one-to-one (by a simple proof using induction) and onto
(by property 6) the set J,. Thus for every tuple t other that ¥, there exist unique w and x such
that Augment(w, x) Is £.

liote that there Is a distinction between a l-tuple and its component, |f L = Augment(¥, x),
it follows (from properties 5b and 4) that Order(t) =1, so that t 1is a 1l-tuple. Further,
$£(1) = x, But t and x are different obs entirely, with different properties,

Thdt a component of a tuple may itself be a tuple follows from property 6.

Relation to PAL: The terminal set J In PAL over which tuples are defined includes '
truthvalues u strings v integers v rationals

The PAL name for ¥ Is "nll1", PAL provides the infix functor "aug" with the property that the PAL
expression .

E aug F
denotes the same ob as does
Augment(E, F)
where E denotes E and E denotes E.

As we have already observed in Chapter 1, PAL provides a convenlent special syntax for
denoting tuples of order > 2. For example, If the Ek are PAL expressions then

El, E2, E3 (2.1-13a)
is a PAL expression that denotes the 3-tuple

Augment [Augment [Augment (¥, E1), E2], E3t ' (2.1-13b)

where Ek 1Is the ob denoted by the expression Ek, k = 1, 2, 3. (See Section 3.2 of the PAL Manual
for syntactic detalls.) There Is no convenient notation provided in PAL for a l-tuple. However,

nil aug x

denotes that l-tuple whose component Is Xx.
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Eunctions

The class of obs called functions in a universe of discourse J-may be very large or very
small. Obviously, the class Includes as a minimum all the basic functions, by which we mean all
functions introduced by postulate., Thus in a universe of discourse that includes truthvalues and
strings we might expect Hor, Adjoin, Stem and Stern to be members of the class "functlion",
Alternatively, of course, the functions f{ot, And, and Or might be chosen as basic in lieu of Hor,
and Conc in lieu of Adjoin. The complete set of basic functions in PAL is treated In detail in
Appendix 4 of the PAL Manual, and the functions corresponding to the arithmetic, relational and
logical functors ("', 'D" Mgt Mhot', and so forth) are also discussed in Section 2.2 of the
Manual,

Presumably, it Is possible that the baslc functlions should be the only obs of type function in
n. But such a universe of discourse would be severely impoverished. Typically we are interested
not just in the basic functlions themselves, but also in more complicated functions specified Iin
terms of the basic ones by such mathematical techniques as functional composition. The composition
of a function f onto a function g Is a new functlion, say h, such that

hix) = flg(x)] (2.1-14)
In the mathematics literature composition Is often denoted '"feg'., MNote that
fog p gof

In general., Conceptually, we can draw an analogy to the case of strings: Glven a set of '"basic"
strings (an alphabet) and appropriate mathematical facilitlies for operating on them (Adjoin, Stem,
and gtern), we generate the set of all strings. Simllarly, given a set of basic functions and
appropriate facllities for operating on them, we wish Lo generate the set of all functions.

Imnediate questions that arise are, 'What are the appropriate mathematical facilities for
operating on functions?" and "What do we mean by the set of all functions?'" The last three
sections of this chapter are devoted to answering these questions. We may observe Immediately from
definitions such as that of "Conc" on page 2.1-24 that functional composition is not the only
facllity we need,.

We defer further Investigation of the class function until Sectlon 2.3, saying now only that
PAL's universe of discourse iIncludes all of the baslc functlons, along with those that can be
expressed In terms of them.

Semaptics
As has been mentioned, the definition of a programming language involves two components:
(1) specification of the legal sentences of the language, and
(2) specification of the meaning of each legal sentence,
The first component concerns the gsyntax of the language; the second concerns its semantics.

Up to a few years ago, much more research has been devoted to the study of how to define
syntax than to the study of how to define semantics. The approach we follow in defining semantics
Is to establlsh rules for reducing every PAL program to the applicatlion of basic functions; i.e.,
to the postulates that define the universe of discourse. With reference to the definition of
"algorithm" on poage 2.1-1¥, these postulates are "the basic transformations that need no further
specification,"

The word "need" in the foregoing sentence Is clearly subjective; what one '"needs" depends
upon his objectives., For example, some mathematiclians "need" to specify the usual arithmetic
operations =- and even the definition of addition on real numbers is a thoroughly non-trivial
undertaking, Simllarly, a Jlogleian may '"need" to reduce all transformations to the simplest
possible base -- often, to the integers and then to 0 and the function Succ. Our own objective,
however, 1Is to study the building up of large semantic constructs out of small ones. For these
purposes, numbers, strings, tuples, truthvalues, and the basic functlions that operate on these
abstract objects constitute an appropriate base for further semantic exploration.
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One comment Is In order. In our usage the word "semantlcs'" has a connotation much stricter
than It has in common parlance. For the broader, more usual connotation, we reserve the words
"user interpretation'. (Some use instead the word "pragmatics".) Insight into the distinction we
wish to make may be gained by reconsidering the system of Figure 1,2-1 on page 1.2- 5, We have
already observed that thls figure Is but one of many isomorphic representations of a single
underlyling abstract system. Let us assume an Implementation of thls abstract system In PAL such
that the three objects are denoted by "i", "[i", "1 {1" and the transformation by "Mod". Ve now
observe that the function f defined by the PAL program

def f(x) = Mod(ii, x)

may be interpreted in various different 1ights. One programmer might think of it as the modulo 3
successor function, whereas another might think of it as effecting a 120° rotation of a three-cog
wheel, It is this cholce of point of view that we call user interpretation., Thus the semantics of
a transformation has to do with the abstract transformation that takes place, while the user
Interpretation has to do with how the user thinks of it.

As another example, consider the expression
A+ P

where A and P denote Integers., The semantics of this expression has to do with the properties of
the Integers and the adding functlion; but the user Interpretation might be that A counts apples
and P pears, and that the expression Itself counts pleces of fruit,
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2.2 F onal Appllcatio

The wunlverse of discourse of a programming language is the set of obs that
the language deals with, |In section 2.1 we have defined 1, the universe of
discourse of PAL, the definition being (for the most part) by the mathematlical
technique of axlomatization.

We have defined n in order to answer question (A) on page 2.1-14, and we
answered (B) at the same time. It Is now time to start to answer (C): What
facllities does the language afford for building complicated transformatlions out
of simple ones? This Is the question which we skipped earlier in the subsection

on functions. As we answer it, we are able to write expressions which denote
values which we have not axlomatized, such values always being functions. For
example, the PAL definition

def S(x) = Stem (Stern x)

defines a functlion S whose domain is strings of length two or more and whose
range 1Is strings of length one, S returning the second character of its
argument., Clearly S has not been postulated. '

Heretofore we have used the word "basic" to refer to the obs we have
defined by postulates. We now expand its use, with the following definitions:

Definition: A baslc ob is any member of the wuniverse

of discourse N,

Defipnition: A primitive ob is a basic ob that has a

name,

Definition: A primitive identifier is the name of a
primitive ob. E

In the next subsectlon we discuss the details of the association of primitive
identifiers with primitive obs, and in the following subsection we explore
facilities for denoting the application of functions to arguments.

-E:imitlve Epvironment

OQur axiomatlzation of the universe of discourse provides us with the
primitive identifiers of PAL: those identiflers that are defined ab initio for
users of the 1language and which denote obs in the universe of discourse. We
wish now to clarify the mechanism for this assocliation of identifiers with obs.
Our principle reason for doing this is that the mechanism is expanded in Section
2.3 to include aléo provision for yariable identifiers: = those defined by the
programmer,

The words "identifier", "variable", "constant" and others appear frequently
in what follows and are always used in a consistent manner. The basic elements
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of the PAL language are classified as follows:

names
identifiers
variables
primitive variables
programmer-defined variables
constants
quotations
numerics
integer npumerics
rational pumerics
literals
functors
punctuation

Table 2,.,2-1: Basic Elements of the PAL Language

Names are used to denote obs in the universe of discourse and are either
identifiers or functors., The association of a functor, such as "+" or ‘",
with an ob is implicit, whereas the assocliation of an identifier with an ob is
explicit. Punctuations are marks such as parentheses which have a syntactic
purpose but which do not denote obs., Literals include "true" and "false" and
"ni1", and the other sets have already been discussed.

We have defined a "primitive identifier" to be the name of a primitive ob,
In terms of the above classification, a primitive identifier is either a
constant or a primitive variable. The only identifiers which are not primitive
identifiers are the programmer-defined identiflers,

We turn our attention now to the association of primitive identifiers with
primitive obs., Figure 2,.2-1 is a sketch of what we call a primitive environment
for some ianguage. Here we assume the existence in the language of a set of
primitive identifiers. Each such identifier Is a name associated with an ob in
the set of basics, and we call the mapping from identifiers Into basics a
“primitive environment". We consider the choice of an appropriate primitive
environment to be the starting point in the definition of a programming
language. '

A primitive environment Is a meta-function whose domain of definition Is a
set of primitive identifiers and whose range Is a set of primitive obs. The
functionality of a primitive environment -- abbreviated "PE" -- Is therefore

PE ¢ primitive identifiers - primitive obs (2.2-1)
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Priwmifive Teden tifiers Priwitive Obs

T
frq“va(mf

Figure 2.2-1: A possible primitive environment for some language. The
primitive Identifiers are shown in the circle on the left and the
primitive obs in the circle on the right, The syntax of
identiflers does not happen to coinclde with that of PAL.
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n ide i : The role of the primitive environment in the
definition of a 1language 1is critical, in that the choice of primitive
environment determines the universe of discourse available to the user of the

language. Only obs within the closure of the primitive obs under functional
application can be denoted in the language, simply because the only way to
specify an ob is either directly via a name or indirectly via the application of
functions to arguments. Since primitive obs are the only obs with predefined
- names in the language, only obs ultimately expressible in terms of them can be
denoted at all.

By way of example, we see that the universe of discourse of a language
whose primitive environment is that of Figure 2.2-1 is the union of the natural
numbers, the truthvalues, and tuples whose terminal elements are either natural
numbers or truthvalues. On the other hand, If either of the domain-range pairs

(nit, ¥) (Augment, Augment)

were deleted from this primitive environment, then tuples would be deleted from
the corresponding universe of discourse.

Although the range of a primitive environment must be complete, In the
sense that its closure under application must include all desired obs,
considerable flexibility is still possible. We already know that substituting
the domain-range palrs '

(Not, Not) (And, And)
for the pair
(Nor, ggy)

in the PE of Figure 2.2-1 Jeaves the universe of discourse unchanged. The
important observation is that in general there are many different sets of
primitive obs each of which generates as its closure the same class of obs.
From a semantic point of view, all such sets are equivalent.

Syntactic Considerations: - ldentiflers are linguistic "atoms", by which we mean
the building blocks out of which the sentences of a language are cohstructed.
In Chapter 1 we characterized "atoms'" as entitles whose substructure (if any) Is
irrelevant, a comment which 1is valid here as well, From a semantic point of
view, the only property we require of identlifiers is that, given any two of
them, we can tell whether or not they are distinct, (Note that distinctness of
identifiers does not necessarily imply distinctness of the obs which they
denote, as witnessed by the fact that both "Succ" and "Addl" map onto the ob
Succ in Figure 2,2-1,) For example, changing each of the primitive Ildentifiers
in Figure 2,2-1 into Its Russian equivalent would change the syntax but not the
semantics of a language based on that primitive environment: We do not care
whether the null tuple is called "nil1" or "nyet", so long as the convention is
agreed upon. Indeed, there would be no harm in adopting both names, just as
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“"Add1l" and "Succ" are synonyms.

A second syntactic declision concerns whether or not to provide primitive
identifiers for every ob of any given type. In Figure 2.2-1 predefined
identifiers are provided for each of the two truthvalues, whereas it is
necessary to do so for only one of them since

Nor(true, true) = false

A

and
Nor(false, false) = true

By contrast, 0 is the only ob in the class of natural numbers which 1Is coupled
with a primitive identifler. In consequence, a language based on this PE
provides no direct means for referencing any number other than zero, which would
seem to be a8 syntactic inconvenience intolerable in any practicai language. On
the other hand, we know that the Inconvenience affects neither the universe of
discourse nor our ability to compute the other numbers,

Finally, we observe that a similar situation obtains in conjunction with
the class tuples: The null tuple is the only tuple denoted by a primitive,
cither in Figure 2.2-1 or in PAL. The 1Inconvenience in this case seems
unavoidable; we know of no sensible syntactic device for associating every
tuple with an appropriate predefined name.

Relation to PAL: The structure of PAL's primitive environment 1S indicated in
Figure 2.2-2, Here the primitive identiflers have been partitioned Iinto the
syntactic categories pnumerics, gquotations, literals and predefined variables, In
a manner conslistent with the classification on page 2.2-2¢. Although such
partitioning 1is Inessential from a theoretical point of view, significant
practical advantages accrue from the adoption of a judicious syntax for
identifiers, Speclifically, in PAL (as In most languages) both the type and the
value of the ob assocliated with a constant identifier is immediately deducible
from the syntax, without table look-up. Clearly, one stands to gain efficiency
of implementation when table look-ups are miniﬁlzed - espeé!ally so If the
tables are large. For numerics and quotations the tables would be (at least In
principle) unboundedly large.

The alternative to providing a "transparent" syntax for numerics and
quotations, of course, 1Is to provide primitives for only a small subset of
numbers and strings, as In Figure 2,2~1, But as a practical matter we again
stand to galn efflciency by increasing the number of primitives beyond the
minimum required for semantic completeness: Presumably it is more efficient to
recognize that the numeric "3" denotes the third positive integer then it is to
compute

Succ (Succ (Succ (0)))

A similar consideration holds with respect to the basic functions.
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Figure 2,2-2: Skeletal diagram of PAL's primitive environment. Although
functors are shown (with a dashed 1ine), it should be understood
that they are not identifiers at all,
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Although only Succ, Pred and Zero are required to enable arithmetic on the
natural numbers, it is far more efficient to provide arithmetic functions
directly, as additional basics, than to rely on recursive definitions such as
those of (2.1-9). Accordingly, PAL's primitive environment is much richer than
it would need to be were our purpose simply to establish the properties of all
obs In its universe of discourse., In particular, as we have already remarked,

each arithmetic, logical and relational functor corresponds to a basic
function.

Note that functors are treated specially in Figure 2.2-2, for example "+"
being associated via a dashed line with Add. This suggests that the programmer
may write

3+ 5
to denote
Add (3, 5)

We see in the next subsection that we regard the infix functor as an alternate
syntactic device for functional application.

ative ucture

in the preceding subsection we have seen that a primitive environment
provides linguistic facilities for denoting directly some obs in a unliverse of
discourse: the primitive obs,. A remaining task 1is to devise linguistic
facilities for writing expressions whlch denote obs which are not primitive. As
a preliminary, in this subsection we analyze the structural aspects of
functional application,

In conventional mathematics, many different notations are used to indicate
the application of a function to arguments, For example, the operator may be
prefix, Iinfix or postfix, as in the expresslions

- 4,89
17 + 9
5! (i.e. 5 factorial)

respectively. Alternatively, the physical 1layout in two dimensions may be
significant, as in the expressions

and

In every case, however, only one semantic issue is Important: Whatever the
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syntactic form, it must permit us to determine the operator and the operand. In
other words, we must be able to elicit answers to the questions "What ob is the
function to be applied?" and "What ob s the argument?" Of course, both
operator and operand may themselves be the result of functional application. By
an applicative structure we mean a display in which the operator and operand of
each subexpression is explicit.

The applicative structure of ordinary arithmetic expressions may be
exhibited in any of several ways. For example, we can write

(2 - 6) » (-5) (2,2-2)

which is a linear representation of the same AE that can be represented in tree
form as

Flgure 2,2-3: Tree Form of the AE of (2,2-2)

Each node of the tree represents an operator, and the branches diverging from
each node represent the corresponding operands. In general, unfortunately, a
display such as that of Figure 2.2-3 does not prove adequate, primarily because
of asymmetry in Its treatment of operators and operands. The asymmetry 1is not
bothersome in ordinary arithmetic expressions where only operands are
themselves the result of functional application. But we must also accommodate
sltuations in which the operator results from an application, For example,

[stem o stern] ('ABY) (2.2-3)

denotes application of the functional composition of Stem and Stern to the
string 'AB'. The operator "o" for functional composition Is defined in
(2.1-14), Obviously "composition" may be regarded as a function, say Comp, and
the operator of (2.2-3) is the result of applying Comp to the functions Stem and
Stern.

In simple cases like (2,2-3), presumably one could still represent the
operator by a node, Vike thils:
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'HB‘

Figure 2.2-4a: Tree Form of the AE of (2,2-3)

The situation can easily get out of hand, however, since the structure of the
operator may be arbitrarily complex, Accordingly, we elect always to treat
operators on a par with operands, and to display them each along branches of the
tree. One possibility Is this:

Stem Stern

Come
Figure 2.2-4b: Alternate Tree for the AE of (2,2-3)

A PAL function "Comp" corresponding to Comp may be defined by the PAL program

def Comp (f, g) =
P where P(x) = f [g(x)]

Then the functionality of Comp is

Compe (Bp-7¥)®@ (x=>p)> (x->7)

pavee

where &, B and ¢ stand for (unspecifled) types of ob. In other words, the
domain of Comp is an ordered pair of functions: |If the first maps obs of type 8
onto obs of type ¥, and the second maps obs of type x onto obs of type 8, then
the result of Comp is a function that maps obs of type = onto obs of type {.

Adiclty: Although not apparent from the tree just drawn, complete parity
between operator and operand still remains to be achieved. The residual
disparity involves the fact that while there 1is only one operator 1in any
functional application there may be several arguments, depending upon the
"adicity" of the function, By 1its adicity we mean whether a function s
monadic, diadic, triadic, or whatever.
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We achleve parity by adopting the convention that every function takes a
single operand. The k-adic case (for k # 1) Is then accommodated by stipulating
that the operand be a k-tuple. With this convention, the applicative structure
of nested applications may be displayed using only two node types: ¥ and 7. A
gamma node indicates functional application and has two sons, the left being the
function and the right the argument. A tau node with pn sons Indicates an
n-tuple, the components being taken from left to right. With these conventions,
(2.2-2) and (2.2-3) may be represented like this:

Figure 2,2-5: Trees with ¥ and U nodes

in this figure we have labelled the branches from the ¥ node with "fen" and
“arg'" and the branches from the J node are numbered.

Heretofore we have used the ®@ notatlon to specify ordered pairs, making no
attempt to associate such pairs with PAL's 2-tuples. .(On page 2.1-16 we stated
explicitly that we were refraining from making such an association.) We now
decree that there is no distinction between the ordered pair {a, b} and the
2-tuple whose PAL representation is "(a, b)" where a and b denote a and b,
respectively, This decision permits us to use the ® in functionality notation
in connection with functions defined in PAL, even though we have seen that (in a
technical sense) all PAL functions are monadic. For example, we say

Gong e string ® string —» string

to indicate that Conc must be applied to a 2-tuple of strings. We tolerate the
abuse of termlinology of using the phrase "a k-adic function" to refer one that
must be applied to a k-tuple. '

Although adoption of this '"single operand" convention is somewhat
arbitrary, two advantages accrue., First, the axiomatic treatment of functlons
and transformations on functions 1iIn the remainder of this chapter is
simplified. And second, we avoid Introducing a semantic distinction which
inhiblits (to some extent) the expressiveness of a language. To illustrate this
1ast point, consider the Iimplication of rejecting the convention. Then to
denote the application of a k-adic function we must specify an '"argument 1ist
with k elements", But how does such an argument 1ist .differ from the k-tuple
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with corresponding elements? 1{f there 1is no difference, then all operands
actually are single entitles, regardiess of protestations to the contrary. Thus
we must exhibit some property which tuples and argument lists do not have In
common, For instance, we might consider argument lists to be purely syntactic
entitities, and ascribe no semantic (i.e., transformational) properties to them
at all.

This possible distinction between tuples and argument lists Is, In fact,
typical of the situation in most programming languages. In this approach, each
element of an argument 1ist denotes an ob in the universe of discourse, but the
argument list itself does not., Specifically, no functions (comparable, say, to
Augment) are postulated for computing an argument list, or for transforming one
argument list into another. To see that thls syntactic approach does to some
extent Inhibit freedom of expression, consider the following example. Assume
that the syntax for writing an argument list were

<E1' Ez’ ee ey Ek> (2-2-58)

in which each Ei stands for an expression denoting the i-th argument. Then we

might denote the concatenation of two strings by writing
Conc <S1, S2> (2.2-5b)

in which any arbitrary expressions denoting strings may be substituted for S1
and $2. But If there is no way to compute an argument 1list, we would be
precluded from writing

Conc (S) (2.2-5¢)

in which any arbitrary expression denoting an ordered pair of strings may be
substituted for S. By contrast, adoption of tuples in lieu of argument 1ists
does admit (2.2-5c) as a valid and frequently convenient alternative to
(Z.Z-Sb)n

In computation as in other fields of engineering, we may hope to gain In
one direction If we compromise in another. For example, we can offset the loss
in expressiveness by exploiting the fact that the adicity of the operand |is
manifest from the syntax in (2.2-5b), but not in (2.2-5¢c), to gain Increased
efficiency of Implementation. In defining PAL, however, adoption of the
single-operand convention seems partlcularly appropriate and |s assumed
hereafter,

Curried Functions: We have built the universe of discourse J. so that it
includes functions, and we understand that the vaiue of any application may be
any ob in N, Thus the possibility of the value of an application being Itself a
function is apparent., A fupction-producing function is one which, when applied
to a suitable argument, has a function as value. We have already encountered
one examplie of a function whose range is functions In the functional composition
operator Comp, and It Is easy to define others. For instance, suppose that Sum
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is a function=-producing function with domain integers such that if

g = Sum (m)
where m Is an integer, then for any integer p we have

g(n) = m+n

That is,
[sum(m)] (n) = men (2.2-6a)
It should be clear that
Sum ¢ integer - (integer — integer) | (2.2-6b)

it is not at all convenient to write a definition of Sum in conventional
mathematical notation, although

Sum{m) = g where g(n) = m+n (2.2-6¢c)

comes close, Functions such as §um are called "curried" functions, after the
logician H. B. Curry, and (as we see later) provide a clean logical base for
much of our view of computation, Such functions were introduced by Schonfinkel
(1924) and have been used extensively by Curry.

For every binary function there is a curried function which is, in a sense,
equivalent to it. For example, consider the function Sum defined In (2,2-6)
and the function Add defined by

Add(x, y) = x + vy
Ciearily,
Add(x, y) = [Sum(x)] (y)

for all numbers X and y. We say then that Sum then is a curried version of
Add. '

There is considerable conceptual efficiency to be gﬁiged“byA ps!ng‘ cprried
versions of the basic functlions in N. In particutar, consider the function Agg
that is a curried version of Augment, so that

[Aug(x)] (y) = Augment(x, y)
Thus the 2-tuple

(s, t)
which we have seen can be written as

pugment [ Augment(nil, s), t 3

can alternatively be written as
fAug ((Aug nil) (s))] (t)
That there is conceptual advantage to use of curried functions can now be shown.
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Recall that In Figure 2.2-5 we saw that any expression can be represented by a
binary tree whose non-terminal nodes are ¥ or J. We see now that using curried
basics lets us dispense with J nodes, Thus the 2-tuple (s, t) may be
represented by either of

In fact, the two trees enclosed in dashed 1ines are equivalent, an obvious
correspondance extending to J nodes with any number of sons.

Trees without J nodes are concaptuélly more fundamental than those with
them, in the sense that they need only one node type rather than two. On the
other hand, the style with U nodes 1is more abbreviated and hence more
perspicuous., Since It is clear that there 1is a one-to-one correspondence
between the two display alternatives, we feel free in what follows to use
whichever is more appropriate to the purpose of the moment. Figure 2,2-6 shows
the tree form of Figure 2.2-5, with J nodes replaced by ¥ nodes and Aug. Note
the rather dramatic increase in the size of the trees.

Combinations

A tree displaying the nesting of functional applications Is one way to
represent an arbitrary ob In terms of the basic obs of a universe of discourse.
Although it Is clear that such a tree has the virtue of explicitness, the virtue
of conciseness is notably absent. We now address ourselves to the linguistic
issues involved in devising alternate representations better sufted to human
needs. All such representations -- that is, all expressions In a language which
denote the applicatlion of an operator to an operand -- are called gombinations.

PAL_Syntax: The syntax of combinations adopted in PAL corresponds cliosely to
our meta-language, which is conventional mathematical notation. The principal
distinction between the two is the replacement of meta-names by PAL primitive
identifiers., For example, the PAL combination

Conc ('A', '5.7") (2.2-7)
denotes application of the function Conc to the strings 'A' and '5.7'.

Similarly,
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Figure 2.2-6: Trees without J nodes.

These trees correspond to those in Figure 2.2-5, but in these 7
nodes have been replaced by ¥ nodes and Aug.
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5 + 7 (2,2-8a)

In PAL denotes application of "the function that adds integers" to the IiIntegers
5 and 7.

This interpretation of (2.2-8a) reflects our view that infix notation Is
syntactic "“sugar" for a corresponding prefix expression. Thus we consider
(2.2-8a) to be merely a more palatable way of writing

[sum (5)7 (7) (2,2-8b)

in which (presumably) the identifier "Sum" and the infix functor "+" denote the
same curried function.

PAL syntax also differs from ordinary mathematical notation by being
specific about conventlions governing the use and omission of parentheses in
combinations. For example, in PAL the infix combination

a/bxc (2,2-9a)
Is construed as |
(a/b)*c (2,2-9b)
rather than as
a/ (b*c) (2.2-9¢)

Similar conventions govern the parentheslization of prefix combinations. For
example

f(x) : (2.2-10a)
may also be written In PAL as

f x ‘ (2,2-10b)
or even as

(f) x (2.2-10c)

Each of these denotes the result of applying the function denoted by "f" to the
argument denoted by "x". Finally, PAL uses the convention. that combinations

associate to the left, so that

ABC (2.2-11a)
Is construed as

(AB)C (2.2-11b)
rather than as

A (B C) (2.2-11c)

Thus (2,.2-8b) could be written equivalently as

2.2-47



Sec., 2.2 Conceptual Foundations

Sum 5 7

The decision to use left association for functional application is particularly
convenlient given our predilection to the use of curried functions. Were
functional composition more common in this work, the decision might have been
otherwise. '

The details of PAL's syntax are described fully in the Manual. Hereafter,
we seek to avoid possible ambiguity and achieve consistency by always using PAL
notation when writing combinations. In general we over-parenthesize to remove
possible - doubt, but as we do make extensive .use of the left assoclation
convention of (2,2-11) and the omission of parentheses convention of (2.2-10),
the reader had best accustom himself to them.

Referential Transparency: Since our Interests embrace not only PAL but also the
linguistic principles on which PAL is based, it is appropriate to investigate
certain aspects of notation from a fundamental point of view, In this

subsection we discuss an important 1linguistic attribute, called referential
transparency (cf. Quine (1960), pages 14l to 145), which contributes mightlly to

the perspicuity of combinatlions both in conventional mathematics and in PAL.

Roughly speaking, an'expression Is referentially transparent with respect
to a subexpression if and only if the value of the expression depends on that
subexpression solely through the yalue of the subexpression. For example, the
expression

7 (1 + 1) (2.2-12)

Is 'refefentlaIIV transparent with respect to the subexpression "1 + 4" because
any expression whose value is 5 can be substituted for it without changing the
- meaning of the expression as a whole, By contrast, the definlte Reimann
integral’ .

b
J x® dx (2.2-13a)
a

is referentially transparent with respect to "a" and "b", but pot with respect
to the second occurrence of "x". Obviously, no other expression whatsoever can
be substituted for just the second occurrence of "x" without destroying the
overall meaning, although equally as obviously the meaning Is Invariant to
certaln substitutions for both occurrences, as In

b
j ve dy (2.2-13b)
a

Note that the definition of referential transparency has to do with
subexpressions, Thus "2 » 3 + 4" s pot the same as "2 * 7", even though "7"
has the same value as does "3 + 4", since "3 + 4" Is not a subexpression of the
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whole. Even more dramatically, "32 + 21" is not the same as "3u41",

i1t is clear from (2.2-13) that referentlial transparency is not a necessary
attribute of viable notation, nor even in all cases a desirable attribute. On
the other hand, two advantages accrue 1in sltuations in whilch there is
referentially transparency. First, when an applicative structure 1Is deeply
nested, the Intellectual task of discerning overall meaning 1Is greatly
simplified if we can think of the process of evaluation of a tree (such as that
of Figure 2.2-6) by replacing each sub-tree in turn by its value. (An example
is given below.) And second, our freedom of expression is enhanced by 1license
to substitute for any subexpression any other subexpression having the same
meaning. The two advantages are obverses of each other, so that actually only
one idea is involved.

An example of the evaluation process aluded to above is shown in Figure
2.2-7, which shows successive steps in the evaluation of (2.2-2), At each step
a node Is selected both of whose sons are terminal nodes, and the subtree
consisting of that node and Its sons Is replaced by the proper value.
Referential transparency not only legitimatizes this process, but also it
guarantees that the final value produced does not depend on the order of
evaluation,

Semantic Trees: PAL's notatlon for combinations is influenced strongly by a
desire to emulate conventional mathematical notation. Nonetheless, from a
syntactic point of view PAL falls far short of conventional mathematics in
variety of allowable notation. Today's programming language designer
unfortunately 1Is effectively bounded away from bold-face, 1italic or Greek
characters, and wusually from superscripted and subscripted symbols, by
limitations of the input/output devices commonly avallable on computers.

Oon the other hand, from a semantic point of view PAL and conventional
notatlions for combinations are equivalent, in the sense that both satisfy a
constraint of referentlial transparency. Specifically, this constraint requires
that any expresslion denoting a functional application must be analyzable Into
two  subexpressions (say "rator" and "rand"), and must be referentlially
transparent with respect to them both, Thus we are led to extend our notlions
of "expression" and 'wvalue" by defining a set of objects called applicative
expresslions (AE's), as follows:

An AE is a structured object. It Is either a

primitive identifier, or it is a
combination, in which case It has a
rator, which Is an AE, and a
" rand, which is an AE.

(This Is our first use of a structure definition, and the reader is advised to
take this opportunity to reread the description of such definitions starting on
page 2.1-1%,) We can exploit the predicates and selectors Impiled by this
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(-4,-5)

Flgure 2,2-7: Evaluation of the AE
' (2 - 6) * (-5)
by successive tree contractlons, Iin each step a subtree is
replaced by (a representation of) the value which (it denotes.
Some steps have been omitted.
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definition to define the value of an AE:

Definition: The value of an AE is determined as
follows: If the AE 1Is a primitive identifier,
its value is the ob associated with it in the
primitive environment. The value of a combination
is that ob that results when the value of the
rator is applied to the value of the rand,

This definitlion, which depends on the primitive environment used, specifies the
value of any combinatlion each of whose atomic constituents 1Is a primitive.
Specifically, one procedure for determining the value of any such expression
would begin by analyzing and displaying the rator-rand structure of the
expression as a semantic tree, as in Figure 2.2-8, Such a tree differs from the
trees of Figures 2.2-5 and 2.2-6 primarily in its interpretation: The present
tree denotes 1linguistic 1ideas, whereas the earlier trees designate abstract
obs. Stated differently, the leaves (i.e., terminal nodes) in Figure 2,2-8 are
primitive Iidentiflers, while the 1leaves in the earlier figures are primitive
obs. The non-terminal nodes are labelled AP (for application)and COMMA rather
than ¥ and 3, to emphasize the difference.

Given such a semantic tree, however, we can still substitute for each
identifier the value it denotes, and then proceed to replace each sub-tree by
its value, just as in Figure 2,2-7. In accordance with the definitions, the end
result of contracting the entire tree is the value denoted by the original
expression,

The distinction between the two classes of trees typified in Figures 2.2-6
and 2.2-8 Is academic, simply because the two classes are isomorphic, or at
least almost so. This isomorphism, of course, is the simplification which
referentlial transparency affords. But each additional 1linguistic construct
encountered hereafter enriches the class of structures we call "semantic trees",
whereas the structure of functional applications 1is fixed by the postulates
establishing the universe of discourse.

The relatlionship established thus far between the worlds of expressions and
abstract objects may be visualized as Illustrated In Figure 2,2-9, In the
linguistic world we generate new expressions by "combining' two expressions
called rator and rand., In the universe of discourse we generate new obs by
"applying" an ob called function to an ob called argument, As shown in the
figure, referential transparency impllies invariance with respect to the path
foltowed in moving between worlds,

That the two worlds are in fact distinct is emphasized by realization that
the mapping from expressions onto obs is incomplete, By this we mean that not
every combination corresponds to an ob in L. For example,

Stem 5 (2,2-14)
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Figure 2,2-8: Examples of semantic trees. Each is a representation of the AE
(2 - 6) » (-5)
The tree on the left uses COMMA nodes and the one on the right
does not.
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vimi“o‘n iJowi(fI'Cvr uviverse
f and combinations of distourse

Figure 2,2-9:

(aw]c'(:\wep!)

Relation between gombinations and abstract objects. Note the
invariance to path in the mapping from expressions onto obs: One
reaches the same ob regardless of whether he follows the solid or
dashed arrows., This invariance is another aspect of referential
transparency. But note also that certain combinations do not
map onto any ob.
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is an AE which is syntactically correct, but its value is undefined because the
ob 5 is not in the domain of the ob Stem. Thus the correspondance is not quite
an isomorphism, the problem being that the functions involved are not all total
over their domain. In particular, let AE be the set of AE's defined on page
2.2-493, and 1let AP: AE ® AE -~ AE be the constructor of combinations implied by
that structure definition., That Is, If g and b are AE's then ‘

AP (a, b)

is that AE whose rator Is a and whose rand is b. Let N be the universe of
discourse, and let §: n® 2 -~ N be that function such that

¥ (ér _l?)
Is the result of applying a to b.

Now 1let PE: AE - a be the primitive environment which associates with each
atomic AE a value in A, Finally, consider Val: AE - defined by

Vallx) = PE(x) If x is atomic
2 ¥[Val(M), Yal(N)) 1f x is the combination (M N)

It would be very pleasant were Val an isomorphism from (AE, AP) to (N, ¥) but It
Is not: Since ¥ is not total on N ® N it follows that Val is not total on
AE ® AE. Thus for example to evaluate (2.2-14) we have

Val L AP (Stem, 5) 1

L Vval(Stem), Val(5) 1]
( stem, 3 )

tem 5

Manaan W

= ¥
=
= §
which Is not defined. Moreover, in general it is not possible to evade this
probiem by excluding "meaningless" expressions from a language. In particular,
in Section 2,3 we extend our set of linguistic constructs to include facilities

such that an identifier (say "S") may be defined to denote any ob whatsoever.
Whether or not a combination such as

Stem S

Is meaningful then depends not just on the expression itself, but on the context
in which it occurs, The sad fact is that It is possible to write syntactically
correct sentences which are semantic nonsense in any highly developed language.

We summarize much of the preceeding discussion of the evaluation of AE's by
the

Definition: Two AE's M and N are sald to be S-equal,
written M <= N, If Val(M) = Val(N),

Clearly < 1Is an equivalence relation on AE's, since it is symmefric (x £ y

implies y £ x), veflexive (x <& x) and transitive (x & y and y & 2z implies

that x & 2). It Is because the relation 1Is symmetric that we use the
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double=-pointed arrow. Note that the relation §-equal is defined in terms of the
function XEJ' which in turn is defined in terms of some primitive environment
PE.

2.3 Functional Abstraction

Although In principle a programmer can specify any ob in the universe of
discourse in terms of primitives and combinations of pflmitiVes, in practice the
desirability of additional linguistic faclililities 1is manifest. This section
introduces an additional 1lingulstic concept, called "functional abstraction",
which suffices to permit the incorporation of user-coined definitions into a
language. More precisely, functional abstraction. makes it possible for the
programmer to denote arbltrary obs in Nl directly, by identifiers of his own
choosing.

Roughly speaking, functional abstraction means using an expression to
specify a function by stipulating that some particular identifier in the
expression 1Is to be interpreted as a "dummy variable". The idea is a famiiiar
one: |In conventional notation, given an arithmetic expression such as

3+ x ', (2.3-1a)
we can write
f(x) =3 + x (2.3-1b)
and refer thereafter to "the function f", Alternatively, we could write
g(x) = 3 + x (2.3-1c)
or
gly) =3 +y (2.3-1d)

each of which designates the same function (i.e., the same abstract object) that
(2.3-1b) does, to wit, "that function of x which 3+x is".

Recall that the definition of a function involves specification of a
domain, a codomain and a rule, the rule being a mapping from one set of objects
into another. Clearly, in our example we intend the same rule, hence function,
regardless of the name "f" or "g" we choose to call it and regardless of the
name "x" or "y" we use to denote the dummy variable. Moreover, it is evident
that (2,3-1b) does not define any mapping at aIT except relative to an
environment in which all identiflers except the dummy variable are known. In
other words, it does pot specify a function unless the values denoted by the

names "3" and "+" are known. For example, writing
h(x) = x+a

defines h only if the value of "a" is known. Clearly (2.3-1b) defines f. But
can we write an expression that has the same value that f does?
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2-Expressions

Conventional notation is not well sulited for formalizing the concept of
functional abstraction because it does not allow us to designate a function
without simultaneously giving it a name. In consequence, an expression such as
f(x) can be interpreted in two ways. If "x" is interpreted as a dummy variable,
then f(x) presumably denotes a function which we are naming "f". Alternatively,
If "x" is iInterpreted as a name coupled with a specific value, then f(x)
presumabiy denotes the application of the function named "f" to this value as
argument.

‘ Usually we can rely on context to decide which interpretation is correct.
But even context Is not infallible, as is evidenced by the following example.
Consider the function P defined as

P [F(x)] = 2 (2.3-2a)

whenever "x" s not zero, Both the domain and range of P are number-to-number .
functions; in other words,

P ¢ (number - number) - (number -+ number) (2.3-2b)

Now, even though the definition of P itself Is unequivocable, it is not at all
clear what 1is meant when we write P[(f(x+l)]., Presumably the intent is to
specify a function in terms of the dummy variable "x", but there are two
possible Interpretations:

(1) Plf(x+1)] means the function (P(g)), where g Is the function of x that
f(x+1) Is, or '

(2) PIf(x+1)] means the function of x that h(x+1) 1is, where h - is the
function (P(f)).

That there Is a distinction between the two interpretations may be seen by
considering the case Iin which f designates the function '"square"; 1i.e., by
letting f(x) = x2, Then (1) yields

2
‘§+] )2 - (1)
g(x) = (x+1)%; so (P g) x = X = x+2 (2.3-3a)
whereas (2) yields
(x - (0P
h(x) = (P f) x = F3 = x; so h(x+l) = x+l (2.3-3b)

Conventional notation does not specify which interpretation is intended. By the
end of this section it becomes apparent that the interpretation of (2.3-3a) may -
be specifled by writing PlXx. f(x+1))], and that of (2.,3-3b) by writing
[Ax. P f(x+1)], where in either case

() - £(0)
P = Atadu. — g (2.3-3c)
(This example is cited by Curry and Feys (1958) on page 80.)

~ The problem here was mentloned earlier: The inablility in avallable
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notation to designate a function without simultaneously giving it a name. To
define the functlon h that adds three to its argument we can write

hi{x) = x+3 , . - (2.3-4a)
but we have no way to write |
h = that function of "x" that "x+3" is (2.3-4b)
other than in English. Following Church (1951), we write
h = Ax. x+3 (2,3-4¢)

to designate the idea of (2.3-%a) or (2,3-4b). Here the A signiflies "function",
and the period separates the dummy variable from the expression in terms of
which the function Is deflned. Using this notatlon, we can rewrite equations
(2,3-1b), (2.3-1c) and (2.,3-1d) as

= Ax, 34+x (2.3-5a)

g = AX, 3+x (2.3-5b)

g€ =AY, 3+y (2.,3-5¢)

An expression 1like those of (2,3-5) 1is called a 2-expression. By

convention, the components of a A-expression to the left and right of the period
are called its bound variable and body, respectively. Note that a A-expression
Is not referentially transparent with respect to its bound variable: The role
of "A" jis directly analogous to that of "d" in (2.2-13) on page 2.2-48, in which
"dx" signifies that "x" is to be interpreted as a bound variable. Hereafter we
use the term "bound variable" consistently in lieu of the more colloquial term
“"dummy variable'", frequently abbreviating it bv.

1nformal Reduction Rule: In simple cases, the meaning of combinations
Involving 2A-expressions is easily deducible, Conslder, for example, the
combination

(Ax. x*3+x) 5 (2.3-6a)

Since the rator denotes '"the function of x that x#*3+x is'", it 1is clear that
(2.3-6a) should have the same meaning as the expression

5#3+45 (2.3-6b)

which results when the rand "5" |s substituted for each occurrence of the bound
variable "x" in the body of the rator. We say that we have reduced (2,3-6a) to
(2.3-6b), .

More generally, if "M" and ."N" are any two expressions and "y" is any
identifier, we decree that

(Ay. M) N — subst (N, y, M) (2.3-7)

Here " " should be read "is reducible to" and
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subst (a, b, c)

ARAAAARN

may be interpreted (somewhat nalvely) as '"the result of substituting the AE a
for the identifler b in the AE ¢". The rule may be invoked repeatediy, as in
the example '

(Ax, 3-x) [(Ay, W*y+7) 2]
= (Ax, 3-x) (L4%2+7)
—» 3=-(4%2+7)

In each line of this derivation we have underlined the 2 that 1Is about ¢to be
reduced, to ease the reader's task in following the derivation. We follow that
practice hereafter.

A nalve attitude towards subst suffices for the moment, but we need to be
more careful to avoid inconsistencies when we come to treat reduction rules
axiomatically., The problem has to do with multiple use of the same name and
requires considerable care in formulating the rules, Note that subst is pot a
function in the universe of discourse but rather a function that'transforms one
expression into another expression. We call subst a meta-function.

Our semantic interpretation of reducibility Is the obvious one: Given any
two expressions E1 and E2 such that

£1 — E2 (2.3-8)

we define the meaning (i.e. value) of E1 to be the same as that of E2, In other
words, vreducible expressions are equivalent in the sense that both denote the
same ob in N, We have much more to say later about the relation "—" and
others similar to It.

Relation to PAL: Consider the PAL expression
let x =5 In x*3 + x (2.3-9a)
and the AE

(Ax. x*3 + x) 5 . ‘ (2.3-9b)

Each involves evaluation of the AE "x*3 + x" with the understanding that "x" is
to be replaced by "5", That Is, each is equivalent to

subst("5", "x", "x*3 + x'") (2.3-9¢)
Thus we regard a PAL expression such as
let y =N in M (2.3-10a)

as just a '"sugared" syntactic alternative specifying the same abstract
transformation as does the more austere expression

(Ay. M) N (2.3-10b)
A third syntactic form in PAL which is also equivalent semantically is

203-58



Functional Abstraction Sec 2.3
M where y =N (2,3-10¢)

Here as in (2.3-7) we are assuming that M and N may bé any two expressions, and
that "y" may be any identifier.

Function-Form Definitions: The preceding paragraph i1lustrates that
2-expressions accommodate the definition of variables in PAL. Although perhaps
not immediately obvious, it 1Is true that A-expressions suffice also to
accommodate programmer ‘definition of functlons. To see this, we need only
observe that severing the name being given to a function from the function
itself (as in (2,3-5)) implies the equivalence of

let g{x) =P In M ( (2,3-11a)
and
let g =Ax. P in M (2.3-11b)

It follows from (2,3-10) and Identification of "N" with "Ax. P" and of "y" with
"g' that a thlrd equivalent expression is

(Ag. M) (Ax, P) (2,3-11c¢c)
As an example, consider the PAL expression
let f(x) = x*3 + x in f 5 (2.3-12a)

In accordance with the desugaring of (2.3-11) and the reduction rule of (2.3-7),
equivalent expressions are

(Af. £ 5) (Ax, x*3+4x)

— (2X. Xx*3+¢x) 5 (2.3-12b)
~— 52345

£s 20

so that the meaning of the PAL expression (2.3-12a) is 20.
Similarly, the value of

let f(x) = x*3 + x in f(f 5) (2,3-13a)
Is deducible to be the same as the value of

L2f. f(f 5)] (Ax, x*3+x)

— (Ax. x*3+x)[(2X. x*3+x) 5]

— (Ax., x*3+x) (5%3+5) (2.3-13b)
— (5%345) * 3 4+ (5%3+5)

& 8o

and hence equal to 80.

One other notational point need be made: We suggested on page 2.1-17 the
possibility of writing
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f() =3

to define a constant function f with value 3, so we provide the notation
A0.3

to denote f's value., Evidently such a function is zero-adic, so for convenience
we decree that it can be applied to only the 0-tuple nll. That is,

A0 M
denotes a constant function such that the combination
(A(). M) ni
denotes the same value as does M.
Curried Fupctions: If we abstraét on én expression that 1is itself a

A-expression, the resulting expression specifies a curried function. For
example, abstracting twice on the expression

x+y | (2.3-142)
produces flirst
AYe X+y (2,3-14b)
and then |
Axe (Ay. x+y) (2.3-14¢c)

It follows In accordance with the reduction rule of (2,3-7) that the
combination

[ax. (Ay. x+y)] 3 ~ ' (2.3-15a)
Is equivalent to
Ay. 3+y (2.3-15b)

which in turn specifies the function that adds 3 to 1its argument. Thus the
meaning of

{lax. Ay, x+y)1 3} 5

-~ (Ay. 3+y) 5 (2,3-15¢)
- 3 +5

53

Is the ob 8. PAL requires fewer parentheses than used in the first 1ine of
(2.3-15c), permitting

(Ax, Ay. x+y) 3 5 . (2.3-15d)
with identical meaning. .

PAL notation for defining function-producing functions Is a natural
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extension of the syntactic sugaring involved in (2.3-11). Specifically, the
view that the construction

let g(x) = N in ... | (2.3-16a)
Is sugaring for
let g = 2x. N in ... (2.3-16b)
leads us to adopt
let g(x)(y) = P in ... (2.3-16c¢)
as sugaring for
let g = Ax. Ay, P in ... | (2.3-16d)

(A1l parentheses In equations (2.,3-16) are optional iIn PAL,) Thus the PAL
expression

let Sum x y = x +y in Sum3 5 (2,3-17a)
Is equivalent to the combination
(A Sum, Sum 3 5) (Ax, Ay, x+y) (2,3-17b)
and hence to (2,3-15¢c). Similarly,
let Twice f x = f(f x) in Twice Sqrt 16 (2.3-18a)
Is equivalent to

(2_TIwice. Twice Sqrt 16) [Af, Ax. f (f x)]

= [2f., Ax. f (f x)] Sqrt 16 (2,3-18b)
- [2Ax. Sqrt (Sqrt x)) 16

~* Sqrt (Sqrt 16)

which in turn denotes the ob 2, relative to an environment in which the

identifier "Sqrt" denotes the function that returns the square-root of its
argument,

Referential Opacity: We have observed that' functional abstraction adds
definitional facilities to a language, but that A-expressions are not
referentially transparent., It is interesting to note that this encroachment of
referential opacity Is unavoidable. That is to say, it 1is not possible to
accommodate programmer definitions by functional application alone, even if we
arm ourselves for this purpose with new and arblitrary basic functions,

To see that this Is the case, consider the combination
Define (y, M, N) (2.3-19a)

and require for all expressions "M" and "N" that 1iIts value relative to any
environment must be the same as the value of ‘
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(Ay. M) N (2,3-19b)

Regardiess of the function denoted by the identifier "Define", referential
transparency requires that the value of (2.3-19a) depend on "M" and "N" solely.
through their values. Thus the values denoted by

Define (y, 2+y, 3) (2.3-20a)
énd
Define (y, y+y, 3) ' (2.3-20b)

relative to an environment in which "y" denotes 2 must be identical, whereas
this is not true of the expressions

(Ay. 2+y) 3 _ (2.3-212)
and
Ry, y+y) 3 (2,3-21b)

Even more cogently, (2.3-2la) and (2.3-21b) are meaningful relative to an
environment in which "y" does pot denote a value, whereas in such a case
(2.3-20a) and (2,3-20b) are undefined

A4 ons

Up to this point we have been Iimprecise in our treatment of A-expressions
on two counts. First, we have been vague about the class of expressions with
which we are concerned, and second we have been inaccurate in our treatment of
substitution. We remedy the first of these defects in this subsection, iIn
preparation for the axiomatic development of "reduction" which follows.

in order to distinguish between the austere language of the A-calculus and
the sugared constructs of PAL, we call formulas of the a-calculus "applicative
expressions', abbreviated AE's. The class of AE's is an extension of the class
previously defined to have that name on page 2.2-49,

Definition: An applicative expression (AE) is a structured

object. It is either an
identifier, or it is a
combination, which has a
rator, which is an AE, and a
rand, which is an AE, or It Is a
2-expression, which has a
bv-part, which is a variable, and a
body, which Is an AE.

As 1Is the case for all structured ob;ects, this definition implies predicates,
selectors and constructors, and makes explicit the requlirements on any
representations of AE's, The term "variable" used here is defined on page
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2.2-34.

Semantic Trees: Starting on page 2.2-99 we Introduced the idea of a semantic
tree, suggesting that such a tree is an acceptable representation of an AE as
that term was defined on page 2.2-49. Clearly our new definition of AE to
include A-expressions merely requires that we permit also A-nodes in addition to
¥-nodes, As before, we continue to write J nodes, with the understanding that
each J node is an abbreviation for a complex of ¥ nodes.

By way of examplé, the AE which In (2.3-15d) we wrote

(AXe AYe X+y) 3 5

may be represented by the tree

Figure 2,3-1: Tree Form of (2,3-15d)

Here each branch is explicitly 1labelled, Hereafter we refrain from such
labelling, using Instead the following conventions:

(a) The left and right sons of a § node designate the rator and rand,
respectively.

(b) The left and right sons of a A node designate the bv-part and
body, respectively,

(c) The sons of a J=node are numbered from left to right,

(These conventions may of course be overruled by labelling, If necessary.)
Using these conventions, the tree form of

(Af. £57) Ox. Ay, x+y) - (2,3-22)
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Figure 2.3-2: Tree Form of (2,3-22)

Although we can eliminate J nodes in favor of ¥ nodes, it is important to
note that we can pot eliminate A nodes in favor of ¥ nodes, because (as we have
shown) definitions can not be accommodated by combinations, Thus the notion of
functional abstraction is "linguistically orthogonal” to the notion of
functional application, in the sense that one cannot be eliminated in favor of
the other. More preclsely, one cannot forego the notion of functional
abstraction without also foregoing user-coined definitions,

Svyntax of AE's: in addition to the tree representation just discussed, we need
also a linear representation that can be written as a line of text, both for
usage in this text and for inclusion in PAL programs. The linear representation
must meet the requirement that any representation of a structured object must
meet: that the relevant predicates, selectors and constructors must be
real izable, It Is the predicates that are the problem, and another way to state
the requirement Is that it must be possible to construct the semantic tree from
any linear AE.

Clearly, sufficient information s provided If we demand that every AE
which is a constituent of an AE be enclosed in parentheses. As usual, however,
we are interested in economlzing on parentheses to improve readability. To this
end we adopt the following conventions:

(1) |If a A-expression occurs either as a rator or as a
rand, it must be enclosed in parentheses.
Otherwise, parentheses are optional.

(2) The body of a parenthesized A-expression is
terminated by the closing parentheses.

(3) When the body of one A-expression Is a second,
unparenthesized A-expression, the bodies of both
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A-expressions terminate together,

These conventions are In substantial agreement with those of PAL. Examples
fl1lustrating these conventions follow. As usual, we feel free to employ
brackets and/or braces in lieu of parentheses when doing so improves visual
claritY.

[axe F (x+3) QAy. g)]1 3
body 1

X|X. (_AQV. y*x) 6
body 2
body 1

[AXe Ayye F (x+3) y] 5 7
|_______—.__-——l
body 2
\—____"_____J
body 1
Although subscripts on A's are not a part of our syntax, we sometimes use them
(as above) to indicate particular instances of A~expressions.

We remark in passing that PAL syntax permits the writing of AE's that
accord with the foregoing conventlons, except that "fn'" is used In 1ieu of ")".
PAL syntax is richer, however, in that "fn" may occur also in constructions
(such as assignment statements) which are not AE's.

Free and Bound Variables: The semantics of a high-level language such as PAL
depend critically on the scope of a definition, by which we mean those parts of
the text of a program within which the variable defined by the definition Is to
be associated with that ob which is denoted by the right side of the definition.
When the definitional facilities of a language are modeled on the A-calculus, as
in the case of PAL, all questions about scope ultimately depend on the concepts
of free and bound océurrences of an identifier, Since the structure of an AE
may be quite complicated and include several )-expressions each having the same
identifier as its bound variable, we must be careful to define these concepts
very precisely,

Definition: Let M and N stand for any two AE's and let
X stand for any identifier. Then an occurrence of
X is said to be free in an AE iIf and only if it
can be proved to be so by means of the following
rules:

1, The occurrence of x in the AE "x" is free.

2. Any free occurrence of x in elither M or N is
free in the combination (M N).

3. If y is any identlfier distinct from X, then
any free occurrence of x in M is free in
Ay.M,
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Definition: An occurrence of x is said to be bound in
an AE if and only if it is not free In that AE.

An equivalent definition of bound is the following: An occurrence of an
ijdentifler x In an AE is bound if it is part of a A-expression whose
bv-part is X. The smallest such A-expression is referred to as the A-expression
that binds the occurrence. The utility of the definition lles in specification
of the assoclation of varliables. Consider the AE

LAx. (Ax. x*a) (x=-b)1 (x+c) (2.3-23)
1 2 :313 ly 5
N
| ! 4]
L P Q

and let M, N, 0, P and Q denote the subexpressions indicated by the underbars.
Using the Iinteger subscripts as 1labels to distinguish among the various
occurrences of x, the definition implies that

occurrence 1 is bound in PB;

occurrence 2 is bound in N;

occurrence 3 is free in M but bound in N, Q, P and Q;
occurrence 4 is free in Q but bound in P and Q; and
occurrence 5 is free in Q.

Note that every free occurrence of x in (2.3-23b) except occurrence 5 switches
status from free to bound as one considers 1larger and larger subexpressions.
Presumably, occurrence 5 becomes bound in some still larger A-expression that
encompasses Q within its body,

It follows from the reduction axioms for AE's that each free occurrence of
X Is to be assoclated with the bound variable of the particular A-expression at
which its status switches. Thus the assoclation 1Is as Indicated by the
subscripts in

[x,. Ax,. x,%a) (x,-b)]1 (x5+c) (2,3-23¢)
The assocliation is described in words by the

Definition: The scope of a bound variable is the
entire body-part of the A-expression to which it
belongs, with the specific exception of each
included A-expression whose bound variable is that
same identifier,

Alternatively, we may say that any occurrence of an identifier is "bound by" the
smallest enclosing A-expression whose bound variable is that identifier,

The assocliation of variables may be seen in terms of semantic trees In a
particularly straightforward manner: To find the binding A for any occurrence
of an identifier, follow up the tree looking for a 2 node whose left son is
that identifier. |If none is found, the occurrence is free in the AE.
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Voids in the scope of a bound varlable may seem strange at first, but on
reflection they turn out to be a natural concomitant of requiring that the rules
for interpreting a A-expression be independent of its context. For example,
agreement that the AE's '

AXe X*3 (2.3-242a)

and

Ay. y*3 (2,3-24b)

denote the same function regardliess of the context in which they occur implies
that the meaning of

[Ax. (Ax. x*3) (x-2)1 5 (2.3-252)

and
[Ax. Ay, y*3) (x-2)]1 5 (2,3-25b)

must be the same, It is obvious that '"5" should not be substituted for "y" in
(2.3-25b), from which it follows that "5" must not be substituted for the
corresponding occurrence of "x" in (2,3-25a).

The concept of "contextual independence'" is closely related to the concept
of referential transparency; indeed, the former is just a slightly restricted
version of the latter. Referential transparency implies freedom to substitute
any one subexpression for any other, provided only that both have the same
meaning. Contextual independence Implies identical freedom except that
substitution 1is restricted to "whole AE's"; specifically, we prohiblt splitting
a 2-expression into its bound yvariable and body parts and substituting in the
two parts Independently, (The same restriction applies in the case of
referential transparency: One may not substitute "5" for "1+4" in "21+43" to
get ""243")

F Postul ates: Just as we made a conscious decision to require referential
transparency when adopting rules about the meaning of a combination, we now make
a conscious decision to require that rules governing the meaning of AE's be
contextually independent. The objective behind this decision is to enhance the
perspicuity and flexibility of the AE's as a language.

The decision leads us to make our Informal reduction rule for AE's precise
through postulation of the following axloms:

Axiom o: |If x and y are identifiers and M is an AE in
which y does not occur free, then in any context

(Ax. M) = Ay, subst (y, x, M)

Axlom B: If M and N are any AE's and x any
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identifier, then in any context
(Ax. M) N L subst (N, x, M)

It is important that these axioms hold in any context. Here Axiom = formalizes
the notion that the dummy wvariable of a function 1is arbitrary; i.e. that
(2,3-24a) and (2,3-24b) should be equivalent in any context. Axiom @ formalizes
the notlion that functlonal application involves substitution of an actual for a
dummy parameter, ‘

finition: If P 2> q we say that P is g-reducible to
9, or that Q is g-expandable to P. If B % Q we
say that P is 9-convertible to Q.

Since a-conversion is symmetric, it is clear that P = Q implies that Q % P.

Hereafter we use - and % in an extended sense, writing P 2> Q i{if the
conversion is elther on all of P or on some part of P, and similarly for Jﬁ.

For example, we might write

Ax. (Ay. x+y) 2 N CAX, x+2

even though the reduction is on only part of the AE on the left.

The Substitution Rule: The foregoing statement of the axioms is misleadingly
simple, primarily because it shifts the burden of being careful onto the

deflnltlon of subst. In particular, we must now define subst in such a way that
we guard agalnst Inconsistencies encroaching through "in any context".

The danger of Inconsistency turns on the possibility of a "conflict of

varlables" arising through substitution. Basically, conflict of variables means
inadvertent binding of a variable that should be free, and may occur in two

ways. The first Involves Axiom o, and Is evidenced by the AE
[xa. (Ax. a+x)] 3 5 ' (2.3-26a)
the desired interpretation of which is

(2x. 3+x) 5 (2,3-26b)
-5 3+5

But if we choose "y" in Axiom o to be a and misapply subst to the inner
2-expression of (2,3-26a) in violation of the condition "y not free in M", we

get
[2Aa. (xa, a+a)]l 3 5 (2.3-26c)

which presumably would be lnterpretedv as (5+5), The inconsistency arlses
because although the occurrence of "a" in the inner A-expression of (2,3-26a) is
free, the corresponding occurrence in (2,3-26b) is bound. Note that Axiom o« as
stated prohibits this substitution. However, there is nothing in the axiom to
prohibit substituting x for a in the outer 2-expression, leading to
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{Ax., [subst (x, a, (Ax. a+y))]l} 3 5 (2,3-26d)

This is permissible, and it should be clear to the reader that subst must be
very careful to insure that (2,3-26d) is equivalent to (2.3-26b).

The second way Iin which a free variable may become bound inadvertentily
involves Axiom B. Consider the meaning of the AE

(A%xe AYs X+y) ¥y 3 (2,3-27a)
In a context defining y. Proceeding naively, we might produce

(2X. AY. X+y) y 3

L (Ay. y+y) 3 (2.3-27b)

L8 3+3
whereas using Axiom o first could lead to

(Ax. Ay. x+y) y 3

2y (z&. AU X*U) V4 3 (2.3'27C)
& Qu. y+u) 3
-9->y+3

These two evaluations would be equivalent only in a context in which y is bound
to 3. Since the rules are to be applicable in any context, we have erred. The
inconsistency arises because in line 2 of (2.3-27b) we have inadvertently bound

the free occurrence of "y" by carrying it inside the body of a A-expression.
whose bound variable is also "y".

Difficulty with conflicts of variables may be obviated by defining subst in
such a way that Axiom o is invoked (as in 2,3-27¢c) whenever the possibility of a
clash of bound variables arises, The following recursive definition
accompl Ishes this objective,

Definition: Let N and M be AE's and x an ldentifier.
Then by

subst (N, x, M)
we mean

(a) if M is an identifier, then
(a.l) if it is x, then N
(a.2) and otherwise M

(b) if M is the combination (P Qj, then the
combination

[subst (N, x, P)] [subsg (N, x, Q)]

(c) If M is a A-expression, then
(cel) if it is (Ax. P) then M
(c.2) if it is (Ay, P) where y is not x then
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let z be some identifier (other than x)
not occurring free in either P or N and
the value is

Az. subst (N, x, subst (z, y, P))

Cases (a) and (b) are self-evident and account for situations in which M is an
identifier or a combination. Case (c.l) accounts for the situation in which M
is a A-expression in which all occurrences of '"x" are bound, so that in fact no
substitution is to be performed. Case (c.2) avoids conflicts of variables by
changing the bound variable of M from "y" to "z" before substitution of N for
"x", By way of example we consider again part of (2,3-27a):

(Ax. Ay. x+y) vy

subst [y, x, (Ay. x+y)]

Az, subst [y, x, subst (z, y, x+y)]1 (2.3-28a)
= Az, subst (y, x, x+z)

AAAAA

Az, y+2z

Even this lengthy derivation leaves out many steps. Consider
subst (y, x, x+z) (2,3-28b)

NAAAA-

in which we are substituting into the AE "x+z". To make clear that this is an
AE, we must display it as a combination, such as

Add x z (2.3-28¢)

whose rator is "(Add x)" and whose rand is z. Then (2.3-28b) is replaceable by

| | subst [y, x, (Add x 2)] (2.3-28d)
and from rule (b) in the definition of subst to

{subst [v, x, (Add x)1} [subst (y, x, 2)} (2.3-28e)

The rand In this combination can be replaced by "z" by rule (a.2), and rule (b)
is needed again for the rator. ‘

The substance of the definition may be summarized' in words (no 1longer
naively) by stating that

subst (N, x, M) means to substitute N for each
free occurrence of "x" in M, changing bound
. variables whenever necessary to avoid conflict.

Normal Form: Recall that in section 2,2 we discussed evaluation of AE's that
are pure combinations not involving A-expressions. To make the results of that
section available to us In the present discussion, we introduce the

Axiom 8: 1f M and N are AE's which do not include
A=-expressions, then o
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M S N

if Val (M) = Val(N), We say that M is

As with @ -conversion and f-reduction, we extend the use of 4. for the case in
which the conversion is on some part of the AE rather than on the whole,

permitting

Ax. x+(2+42) B Ax, x+b

The function Ya) used as part of the definition of §-conversion 1is defined on
page 2.2-54.

It is clear that = and -*» are equivalence relations and that A is not.

As we need a single equivalence relation encompassing all three types of
conversion, we introduce the

Definition: An AE M is said to be directly convertible
to the AE N, written M = N, if any one of the
following holds:

M = N

M-S N

NS M

M 5N
ef on: Two AE's M and N are sald to be
equivalent, written M = N, If there exists a

sequence

The implication of this last line is that M, (which is the same AE as M) is
directly convertlible to M,, which is directly convertible to M,, ..., which is
directly convertible to M,, which is the same AE as N. Clearly "2" is an
equivalence relation on AE's,

An advantage of including p-expansion as well as @=-reduction in the
definition of equivalence Is that it permits us to carry out transformations
inverse to those of Axiom B. For example, we may abstract on the subexpression

"5" to replace
5435 (2,3-32a)
in any context by
(Ax., x+3*x) 5 (2.3-32b)

The technique is especially useful when an expression contains many occurrences
of a complicated subexpression, as (to a minor degree) in

(5+¢3%5)/(7+32x7)=(9+3+9)
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Abstracting twice, we obtain the equivalent expression
CAf, (F 5)/(F 7) - (f 9] (Ax, x+3*x)

Recall the definition of equivalence relation in Section 2,1, The
significance of an -equivalence relation on AE's is that it Implies a
partitioning of the set of AE's into disjoint subsets, called equivalence
classes. The reduction rules defining "=" have been carefully chosen so that
our intuition about "meaning' accords with a definition of value of an AE built
on these equivalence classes. Essentially, any two AE's in the same
equivalence class have the same value, (This point Is pursued shortly.) Thus
the reduction rules provide a mathematical basis in terms of which we may hope
to extend the concept of value from just primitives and combinations (as in the
definition of page 2.2-51) to AE's in general. We understand the value of an AE
to be undefined if any equivalent AE is undefined.

Merely to say that all AE's in an equivalence class have the same value
does not, of course, pin down what that value is, We must also exhibit some
specific member of the class whose value is ascertainable on other grounds. For
example, we discover that the value of

(Ox. 3+4x) 5 S 345 5 g

is 3. As far as the $-conversion Is concerned, "2+6" would be just as valid a
final result as "8".

An AE is said to have (or be in) npnormal form if no B-reduction is
possible. For example, each of the AE's

3+ 5 (2.3-33a)
AX. 3+x (2,3-33b)
Ax. x Ay, 3+y) ' (2.3=-33¢)

has normal form, We have then the following

Definition: An AE is said to be in pormal form if it
is either
(1) an identifier, or
{2) a combination in which the rator .is not a
2-expression and in which both rator and rand
are in normal form, or
(3) a A-expression whose body is in normal form,

The task of evaluating an AE in normal form is relatively straightforward.
In accordance with the definitions of page 2.2~51, the value in cases (1) and
(2) above Is implied by the postulates establishing the universe of discourse.
In case (3), If the A-expression is "Ax.M" the value is "the function of x that
M is". It follows that one approach to the problem of evaluating an arbitrary
AE involves first trying to produce an equivalent AE having normal form, and
then evaluating the result,
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A difficulty arises, however, from the fact that not all AE's are reducible
to normal form; witness

(Au. u u) (Au. u u) (2.3-34a)

Although this AE seems somewhat pathological, it cannot be excluded on grounds
that (Au., u u) is vacuous., For example, consider

(Qu, u u) Twice Sqrt x E-Twlce Twice Sart x (2.3-34b)
which in turn is equivalent, gliven the definition of "Twice" in (2,3-18), to
Sart (Saqrt (Sqrt (Sart x))) , (2.3-34¢)

in addition, we see in section 2.4 that a construct similar to (2.,3-34) 1is of
fundamental interest 1in the study of recursion. The remainder of this chapter
is devoted to exploring the Implications of this difficulty from a theoretical
point of view, The problem of evaluating AE's is approached somewhat more
pragmatically in Chapter 3.

d Red o

An important attribute of functions is the flexibility with which nested
functional applications can be evaluated, For example, the tree contractions of
Figure 2,2-7 (on page 2.2-50) can be reordered in arbitrary ways without
affecting the final value. It is referential transparency that guarantees that
this independence of order carries over to any semantic trees involving only §
nodes. (As usual, we note that 7 nodes can be replaced by equivalent subtrees
Iinvolving only § nodes. Equivalently, we can stipulate that the components of a
J node may be evaluated in any order.) An effective procedure for evaluating
such a tree is summarized in words by the rule:

(a) Evaluate the rator and rand (in elther order)
{b) and then apply the value of the rator to the value
of the rand.

In such a world without A's, every order of evaluation consistent with the rule
produces the same final result, including the result of being undefined in case
a function is applied to some argument not within Its domain.

c - T : We now ask whether or not the similarity between
referential transparency on the one hand and contextual independence on the
other 1is strong enough to induce a comparable insensitivity to the order in
which an AE is reduced, Unfortunately the answer at best is a nicely qualified
"yes" .

The precise answer to the question is embodied in the fundamental result of
the A-calculus, the Church-Rosser Theorem. As a preliminary, we introduce
Definition: Given an AE M, a reduction seguence on M
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is a sequence of AE's
M= M, ® M, & M, = ...

Definition: A reduction sequence is sald to terminate

if its last AE is in normal form,

Definition: Two AE's M and N are said to be
congruent, written M < N, if there is a sequence
M=z Mg 2 M, % ,,, % M,= N

Given any AE, a problem of obvious interest is to find a terminating reduction
sequence on that AE. Frequently there is a choice of order of evaluation, since
at any stage of the reduction one may have an AE containing more than one
combination whose rator is a A-expression. In such cases one must make an
arbitrary cholce, and there seem to be three possible consequences of thét
choice:

(a) One order of evaluation may terminate, while
another fails to terminate. (Cleartly for (2,3-34)
there is no terminating reduction sequence.)

(b) Two orders of evaluation may produce non-congruent
results, (We do not mind if, say, one evaluation
leads to (Ax.x+1l) and another leads to (Ry,y+l).)

(c) One order of evaluation may be less efficient than
another, in that it takes more steps before it
terminates.

The Church-Rosser theorem says about all there is to say about (a) and (b), but
we have little to say now about (c). (We come back to it in Chapter 3.)

Before presenting the theorem, we find it useful to single out one
particular order of evaluatlion, in which we proceed from left to right,

Definition: A reduction sequence is said to be In

normal order if, at each step, the left-most
possible A is reduced.

A simple example of reduction to a normal form in normal order is

(2f. f 6) CAu. (Av, u+v) 4l
S [2u. v, u+v) 41 6

& Qu. 6+v) &

8 6en

Note that the final result is the same as that in

(Af. £ 6) [Au. (Ay, u+v) 47
& (Af. f 6) (Au. u+b)
LS (Au. u+h) 6
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We now state (but do not prove) a theorem equivalent to the Church-Rosser
Theorem:

A All sequences of reductions on an AE - that
terminate do so on congruent AE's,

B If there 1Is any sequence of reductions that
terminates, then reduction in normal order is
guaranteed to terminate.

This theorem [s stated, although in a much differeht appearing form, 1in Curry
and Feys (1958)., It Is proved for reduction rules involving only a-conversion

and @-reduction, but not &-conversion. A rather complex example of normal order
reduction Is

[2Xe A¥Y,e AZ. AW, x Zz (y z W)] (Ax, Ay, y) (Ax, Ay. Xx)
B [ay. 2z, aw. O x, Ay, y) z (y z w)] (Ax. Ay, x)
Bz, aw. @Bx. Ay.e y) z [(OOx. Ay, x) z w1l

’e*)\z. Awe (Av. ¥v) [ (Ax. Ay. x) z w1l

&lz. Aw, (AX. AY. X) z W

Sy 2, Awe (Ay. z) w

8 Az, aw. 2z

The reader should convince himself that any other order of reduction he may
choose terminates on an AE congruent to (Az. 2w, 2z),.

Insight into Part B of the theorem may be gained by considering the case
A = (Ax, Ay, x) z [(Au., u u) (Av, v V)] (2.3-35a)

Here normal order reduction yields

A S Qu. D [@Gu.uw Gv. vl S g (2.3-35b)

whereas if we attempt first to reduce the AE 1In brackets (see (2,3=34)) we
become involved in a non-terminating reduction, The quintessence of proceeding
in normal order 1is that one postpones any attempt to eliminate a A by
B-reduction wuntll that 2 has reached a position where no possibility of its
being discarded remains. Indeed, if we restrict the class of ﬁﬁfs py tgquir!n§
that the body of any 2-expression must contaln at least one free dccurrence of
its bound variable, no subexpression of an AE can ever be discarded. (Note that
(Mx. Ay. x) and (Ax. Ay. y) do not satisfy this requirement.) Were we to accept

this restriction, Part B of the Church-Rosser Theorem could be strengthened to
read:

B* |If any order of reduction of an AE terminates,
there exists an integer k such that no more than k
successive A-reductions to that AE are possible.

The thrust of the Church-Rosser Theorem may be summarized informally as
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follows:

1, Some AE's can be reduced to normal form, but not
all of them.

2. If a normal form exlists, it Is unique to within an
alternate choice of bound variables.

3. |If discarding of subexpressions Is impossible and
a normal form exists, every order of reduction
terminates.

4, |If a normal form exists, a reduction 1In normal
order always produces it in a finite number of
steps.

Conditiopnals: The fact that not all AE's can be reduced to normal form s

analogous to the fact that not all functions can be applied to all arguments;
for example, numbers cannot be divided by zero. Thus insofar as sensitivity to
order of procedure 1is concerned, reduction of AE's differs from evaluation of
"pure" combinations only when discarding subexpressions 1is permitted. Since
invariance to order is appealing, why not disallow any A-expression whose body
does not involve at least one free occurrence of its bound variable?

In answer to this question we observe that if El and E2 are 'AE's, then

g (El, if B = Ax, Ay. x
B El1 E2 — (2,3-36a)
E2, 1f B = Ax, Ay. ¥ ’

Thus the AE of (2.,3-36a) embodies the concept of a g¢onditional expression,
written in PAL as

B -> E1l | E2 (2,3-36b)

As mentioned earlier, the value of a PAL expression such as (2,3-36b) is defined
to be that of El or of E2 depending on whether B denotes true or false. If we
adopt (Ax. My, x) as a representation in AE's of the ob true, and (Ax. Ay. y)
as the representation of the ob false, then (2,3-36b) may be viewed as syntactic

sugaring for (2,3-36a).

It may seem strange at first to think of truthvalues playing a role as
functions (specifically, as curried functions that select one of ;heir two
arguments and discard the other). But there is nothing inconsistent in doing
so. Indeed, we have already agreed that abstract objects are '"bundles of
properties", and that the properties are established by definition. Moreover,
the definition on page 2.1-20 serves only to establish properties of truthvalues
as arguments and leaves open all questions related to how truthvalues are to
transform when (or if) they occur as functions, Thus we are free (if so
inclined) to expand the properties assigned to truthvalues by postulating that,
for all obs g and b in N:
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true a b

(2,3-37)
false a b

"
o o

Actually, truthvalues in PAL are pot defined as operators, But the -
decision is clearly arbitrary and could have been made differently. Although in
Chapter 3 we select still another method for dealing with conditionals such as
(2.3-36b), in dealing with such expressions in the rest of this chapter we
regard

B -> E | F v | (2.3-38a)
as a syntactic variant for the combination
QBEF o (2.3-38b)
where Q is defined as follows: |

Q true -9» Ax. Ay. X

(2,3-39)
Q false 4y Ax, AV. Y

Q is undefined for all other arguments. The advantage of introducing this'g, as
opposed to using the definitions of (2,3-37), is that we want expressions such
as (2.3-38a) to be undefined Iin the case in which B fails to denote a
truthvalue. The definition of (2.3-39) has that effect,

As one might expect, condltional expressions are sensitive to order of
evaluation, Specifically, we require that the premise (B) must be evaluated
before either "arm" (El1 or E2) in order to avoid encountering an expression
whose value may be undefined, as in the example

(aeq 0) => a | (1/a) (2.,3-40)

As an example of the use of the Q.defined.in (2.3-39), we replace the a of
(2.3-40) by zero to get

(0 eq 0 => | .(1/0) ' (2.3-41a)
Using the desugaring of (2.3-38) leads to

Q (0 eq 0) 0 (1L/0)

. (2.3-41b)
a’Q‘true 0 (1/0)

(Here we have used the é-rule that "0 = 0" has the same value as does "true".
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We then use the definition of Q in (2.3-39) to get

45 (Ax. Ay. x) 0 (1/0)
L av. 0 (1/0)
S o0

Note that no attempt is made in this evaluation to divide by zero.
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2.4 Recursive Functions

we have shown that PAL constructs can be regarded as alternate syntactic
ways of writing AE's, so that, for example,

let x =P in Q

is an alternate form for

(Ax. @) P
and
X+y
Is an alternate form for
Add x y

The question of the moment, then, is this: For what AE is
let rec f n =P in Q

an alternate form? The answer to this question is the topic of the remainder of
this section. It is a distinctly non-trivial question.

A recursive definition is one in which the object being defined is used as

pvart of its definition. Every definition of a structured object which we have
seen so far is recursive; for example, that of AE on page 2.3-62 is recursive

since it waeflnes the class AE and uses that class three times in the
aefinition. The definition "works" since each use is a smaller entity than the

whole, and the definition can terminate on identifier, which uses no recursion.

wWwe have also shown several PAL programs which are recursive, such as that
of "Equal" on page 2.1-24. In that program the function "Equal" is invoked in
order to compute '"Equal'. Again, the definition "works" because each recursive
Iinvocation 1is on shorter strings than the previous one, so that initial
application of "Equal" to finite-length strings must eventually terminate. ‘

o ion o o

Our intuition about rec is the following: When we write a PAL program such
as

let rec fn =P in Q (2.4-1)

(where P and 4 are AE's), we intend that any free occurrence of £ in B Is to be
vound to the f being defined. Without the "rec", (2.4-1) would be -equivalent
tv the AE

(Af. Q) (An. P)~

in which it 1is clear that any f that occurs free in P is free in the entire
expression.

An example may help, and we use the factorial function. The PAL program
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let rec fn=neq 0 =>11|n=*f (n-1)
in ‘ (2.4-2a)
f3

consists of a definition of £ to be the factorial function, and the application
of f to 3. Were the "rec" not present, (2.4-2a) could be rewritten as the AE

(Af. F3)[An. neq 0 ->11n+f (n-1)] (2.4-2b)

in which it is clear that the appearance of £ In the square brackets is free in
the entire expression. Evidently "rec" is a magical operator whose effect is to
cause that occurrence of f to be bound to the bracketted expression. How do we
dispel the magic? To answer that question we need some mathematics.
Eixed Points: If E is a function and w Is a value such that -

we Fw (2.4-3)

then w is called a fixed point of E. If F: A-» B, then clearly we AN B, For
example, the function $ defined by

S = Ax, x2-6 (2.4-4a)
has the two fixed points 3 and -2, as can be verified by

(Ax. x*-6) 3 & 3% -6 & 3

(Ax. x2-6) (-2) & (-2)? - & -2 (2.4=Ub)

(It is wusually easier to yerifv a fixed point than to fipnd one.) Here § has
functionality
Se N—-N

and the fixed points are, therefore, numbers. (Here and through the rest of
this section we use "N" for numbers.)

Now consider the function J defined by

T = Af. A0. (f ni1)* - 6 (2.4-5a)

Une fixed point of I Is (A(). 3), since

T (A0, 3)

s [2f. AQ). (f niD)% - 6) QO. 3)

£ AO). [QQ. 3) nil1)? -6 . (2.4-5b)
& 0. 318 -6

e

The reader can easily verify that (A(). -2) is also a fixed point of i.

The functionality of I is easy to work out. |If I is applied to some ob g,
we get

AO). (g nin)?® -6 : (2.4-5¢)

Evidently g is a function of no arguments whose codomain is numbers (to be
within the domain of "='"), and equally evidently the expression in (2.,4=-5¢c) is
also a function of no arguments whose codomaln is numbers. Thus

Te (nit = N) =-(ni1 =»N) (2.4-5d)
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and the two fixed points of I which we have seen are elements of

nil - N (2.4-5e)
As another example, consider
U= AXf. An. neq 0 =>1 1] n=*f (n-1) (2.4-6a)
Clearly
Ue (N-=N) = (N=N) (2.4-6b)

we now show two things: The function Square (that is, Ax. x%) is pot a fixed
point of Yy, and Factorial is. Consider first “Square':
BICIAL LN

U Square .

= [2f. 2n. neq U => 1 | n » f (n-1)] [Ax. x3
S an. neq U =>1 | n* (Ax. x%) (n-1)

s An. neq U =>1 | n * (n-1)>

This last is clearly not Square. (If applied to 0 it returns 1.) HNow,

U Factorial »
2 [Af. An. neq 0 ->1 | n * f (n-1)] Factorial
£ An. neqg 0 => 1| n * Factorial (n-1)

This 1last is the factorial function, since it is clear that its domain of
definition is the non-negative integers and that 1its value at p 1is the

factorial of n. Of course,

Factorial € N » N

As a final example, we leave It to the reader to verify that the
square~root function is a fixed point of

Af. Ax. x / (f x)
Two points have been made:
(1) The flxed point of a function may itself be a function.
(2) IfFea>aandwaFw thenw e o,
Desugaring of "rec'": Let us go back now to the problem of getting the magic out
of rec. What we want to do Is capture formally our intuitive idea that "rec" is

to cause any free occurrence of £ in P (in (2.4-1)) to be bound to the f being
defined.

Before proceeding, note that
(2x. M) x = M (2,4-7)
for any AE M, since p-reduction of the expression on the left leads to
subst (x, x, M)
which will be M, whether or not there are free occurrences of x in M.
Now let us again consider

let rec f n =P in Q (2.4-8a)
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We can reurite this as
let rec f = 2n. P in Q (2.4-8b)

as our usual desugaring of a function-form definition. Next, we take (An. P) as
W in (2.4-7) to get

let rec f = (Af., 2n. P) f in Q (2.4-8¢)
(Here we have used (2.4=7) "backwards",
. Now let f be defined as
F £ Af, an. P ‘ (2.4-8d)

Wwith this abbreviation, then, we can rewrite (2.4-8c) as

let rec f = F(f) in Q (2.4-8e)

This form has a rather desirable property, one that is not In evidence in
(2.4-8a). In the nature of things there can be no free occurrence of £ in E,
since any free f in P is bound by the "Af'", Thus (2.4.8e) Is some sort of
standardized form of the general recursive definition, one in which there is on
the right exactly one free occurrence of the recursive variable being defined.

Now recall the intuition that we started out to capture: that free
occurrences of f on the right are to be bound to the f being defined. That is,

in
rec f = F f

the two vccurrences of f are to be the same. Another way to state this is that

"f" is to be a fixed point of "E". wWith this In mind we can rewrite (2.4-8e)
as

let f = a_fixed_point_of F in Q (2.4=-8F)

where "a_fixed_point_of" Is the name of a functlon which produces fixed points,
Since we plan to study this function extensively we give it a shorter name, Y,
following the notation of Curry. Replacing E as in (2.4-8d) we conclude that

let rec f n =P in Q (2.4-93)
can be rewritten as _
let f =Y (Af. An. P) in Q (2.4-9b)
and hence as
f. Q) LY (Af. An. P)] (2.4-9¢)

There can be nu free vccurrence of f in (2.4-9c),

Let us review what we have done. We started out to ask what AE (2.4-9a)
could be a sugaring of, so that any free occurrence of f in P would be the same
as the f being defined. Our answer seems to be the AE in (2.4-9c), an AE whose
only free identifier is Y. (Any other identifier free in (2.4-9¢c) is also free
in (2.4-9a) and not of concern at the moment.) Thus we have replaced the study
of recursion by a study of Y. We devote the remainder of this section to that

study.
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we have just seen that a PAL program involving "rec" can be regarded as
syntactic sugar for an At involving Y, an operator that produces fixed points.
it therefore follows that if we understand Y we understand recursion. In the

present sectlon we investigate the properties of Y itself, and In the next

section we consider the properties of the fixed point which it produces,

h u d : UWe have postulated a Y that produces fixed points,
and that 1Is all we need to assume about Y to deduce its important properties.
For assume E Is some function and that (Y F) is a fixed point of E, Now, a
fixed point w of F has the property that

w e F w ) (2.4-10)

by definition of what it means to be a fixed point. If (Y F) is a fixed point
of E, we may substitute it for w in (2.4-10) to get

Y F& F (Y F) (2.4-11)

This is the fundamental jdentity for "Y", and we wuse it to derive all the

properties of Y that we need. HNote carefully that we deduced it by assuming
only that Y applied to E yields a fixed point of E.

The reader is advised to stop at this point to reflect on Y and on the
fundamental identity. We have seen two results on recursion, and although
neither Is particularly deep they are quite important and often misunderstood.
(The last sentence means that the authors have seen many students misunderstand
them,) More to the point, much of the development in the rest of these notes
requires a good guts understanding of two points. The first is the explanation
of "rec" in terms of Y as in (2.4-8) and (2.4-9), and the second is the
derivation of the fundamental identity. You should be able to explain either of
these to a friend, without reference to these notes. Unless you are sure you
can, read again from the beginning of Section 2.4, (Note the recursive
instruction,)

Evaluation Using "Y": The ‘explanation of "rec" in terms of Y may seem plausible

up to this point, but what 1is still 1lacking is any evidence that, in any
practical sense at all, It works. It turns out that AE's involving Y can be

evaluated using only the fundamental identity (and also, of course, & and g and
§ rules),

To make explicit our rules, we add now a fourth axiom to be wused in
addition to the previous three.

Axliom p: If E is any AE, then in any context
YF & F(YF)

We modify our definition of normal form to require that an AE in normal form not
be a combination whose rator is Y. Finally, we redefine normal order reduction
to require that at each step we reduce the left-most possible Y or A.
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Wwith these preliminaries complete, let us try to compute the factorial of
three, using the PAL program

let rec fn=neq0=>11n=*f(n=l) in f 3 : (2.4-123)
The equivalent AE is

(Af. £ 3) LY (Af. 2n. neq 0 => 1 | n « f(n=1))] (2.4-12b)

wWwe now do normal order reduction on this AE, using our new rules. To save
writing, we abbreviate )

Fe A, 2n. neq 0 =>1 | n* f (n-1) (2.4-12c)
Then we liave
(Af. f 3) (Y F) (2.4-12d)
& vyvFs3
Srve s

2 [AMf. An. neq 0 =>1 1] n* f(n-1)] (Y F) 3
S Can. neq U =>11n=*YF (n-1)]3

S 3eq0->113%*YF (3-1)

F Q(3eq0)1(3*YF2)

-L'Q false 1 (3 » Y F 2)

53 % (YF2)

in going from the second line to the third we used p-conversion, Line b
involives replacing F by that which it abbreviates, The last two 1lines involve
use of §-rules, including selection of an arm of a conditional.

The derivation of (2.4-12d) shows that
YF3=23+«YF2 , (2.4-13a)
and it is clear that, for any Integer k>0,
YF k=kw«YF (k-1) (2.4-13b)
Further,

FE 0 (2.4-13c)
[L2an. neq0=>{| n+*YF(n-1)] 0

0eq0=>11]0«YF (-1)

1

b” n =<

o

Thus for the E of (2.4-12c) we see that (Y F) is the factorial function since it
has the same domain of definition as does factorial and the same values at those
points.

This derivation shows us that regarding PAL programs involving "rec" as
sugaring for certain AE's Iinvolving Y "works", In the sense that we get AE's
that we can evaluate using our axioms.

Theré remain many Issues to discuss. For what class of PAL programs does
this method work? What is the nature of the fixed point produced by Y? Is it
unique? We return to these and related questions after discussion of several
A-calculus versions of Y. '
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A_A-calgulus "Y' : By adding p-conversion as a new axiom we have made A4

somewhat of a special case in evaluation. A sensible question to ask is whether
or not we could get the effect of Y without postulating a new ob in the universe

of discourse. That 1is, can we find an AE that satisfies the fundamental

identity? The answer is "yes"; and In fact there exists a whole family of

such
AE's. we use a rather roundabout way to derive one of them.

we first try to write a program for factorial without using recursion.
Cunsider

let f (g, n) =neqgU=>11n+* g(g, n=-1)

in

let hn=f (f, n) (2.4-14)
in

h

The definition of f Is not recursive, since f does not call itself. To see that
h is the factorial function, consider h(3). Proceeding Informally, we have

h3 = f (f, 3)
= 3eq0-=>11]3~«~f(f 2)
= 3« f (f, 2)
= 3 %2« f (f, 1)

Further, h(0) is oune.

The f of (Z.4-14) is dyadic, but we find it more convenient to consider a
curriea version. Currying f requires that g be curried also, and we have

let fgn=neqdl=->1] n*x g g (n-1)
in (2.4-15a)
f f

We assert first that the value of this AE is Factorial, leaving it to the reader
to verify this assertion. (Let w be the AE. Show first that w(k) = k#w(k=-1)
and then that w(0)=1.)

We now proceed with a derivation to show that the AF -of (2.4-153) s
equivalent to an AE of the form (Z F), where F is as in (2.4-12c). Since E

encompasses all there is to be sald about factorial, Z 1is, as it were, a
"recursion maker",

we start by rewriting (2.4-15a) as an AE:
(Af. £ f) [Ag. sn. neq 0 => 1 | n+gg (n-1)] (2.4-15b)
we use p-expansiun on this to get the AE
(Af. f ) {2g. [Af, 2n. neq U => 1 | n*f (n-1)1 (g g)] (2.4-15¢)

That this is in fact equivalent may be most easily seen by using p-reduction on
(2.4-15c) with the rator In square brackets and (g g) as the rand. The result
Is (2.4-15b). Note that the expression 1In square brackets in (2,4-15¢c) is
precisely the E defined in (2.4-12c). Using E as an abbreviation, (2,4-15c) s

the same as

(M. £ f) [2g. F (g g)] (2.4-15d)
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and we do ovne final @-expansion to get

[AF. (Af. f f) QQg. F (g g))] F (2.4~15¢)

Letting Z be the abbreviation
Z=)ANF., (Af, f f) (Ag. F (g g)) (2.4-16)
we have shown that (2.4-15a) is equivalent to (Z F), as promised.

Note what happened: We started out with an AE which does not involve
recursion but which nonetheless denotes factorial. The AE has two aspects to
it A part that defines factorial and a part that does (in some sense) the
recursion. The derivation served to separate these two parts: VWe know that E
relates to factorial, and we want to study Z. It is clearly related to Y, since
both (Z F) and (Y F) have been shown to denote factorial.

we filrst show that £ satisfies the fundamental identity. For any G we have

16 (2.4-17a)
= [ME. Of. £ f) (ag. F (g )] G
2> (Af. f f) (Ag. G (g g))

2 [)g. G (g )1 [2g. G (g g)3

This last is of course equivalent to (Z G). OUne more p-reductlon gives

G {[2e. G (g g)1[Ag. G (g g)]} (2.4-17b)

in which the expression in braces is the same AE as the last line of (2,4~-173),

SO
Z GG (ZG) (2.4-17¢c)

We have a A-expression that satisfies the fundamental identity, Although
we have shown that (Z F) denotes factorial, the reader is advised to replace Z

and E by the A-expressions they abbreviate ((2.4-16) and (2.4-12¢),
respectively) and to evaluate (Z F 2) using only g-reduction and é-rules. The

result is instructive (though tedious).

au u i s: It turns out that there is a whole class of Z's that
satisfy the fundamental identity. More remarkable, each of them is itself a
fixea point of the function

Hs Ay. Af. f (y f) (2.4,18)
Let
z L FAF. (Af. f f) (2g. F (g g))
o = LFAF. Q & E & (2.4-19)
Zye ® L H

Consider Z,. We have
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L, , (2.4-20)
= [2E. (Af. f f) (Ag. F (g g))] Ay, Af. f (y f))

A Af, £ f) [ag. QQv. Af. F (y f)) (g )1
£ O0f. £ f) [Ag. Af. Ff (g g F)]

We show first that Z, satisfies the fundamental identity. First define the
abbreviation

2]
U]

rg. Af. f (g g f) (2.4-213a)
Then

CF (2.4=21b)
= (Af. f f) (Ag. Af. f (g g f)) F

= (Af. f £) G F

266 F

s [2g. Af, f (g g f))GF

S [Af. f(GG F)IF

A F(GeF)

& F (Z, F)

since (G G F) appears on the fourth line of the derivation. It is not hard to
see that Z, is a fixed point of H., We must show that H Z,= Z , and we have

ZO

[Av. Af. fly f)]) Z,

A, f(Z, f)

M. F{[2E.(Af.f f) (Ag.F(g g))] F}
M. FUQRE.F f) (ag.flg g))]

M. flOag.flg 8)) (Ag.f(g g))]

M. (Ag.f(g 8)) (Ag.f(g &))

Mo (Af.f f) (Ag.f(g g))

Zo

lxt%a?tmm kcm x

verivations such as this one that use g-expansion have a certain mysterious air
aoout them. Although it is easy for the reader to verify that the expansion is
correct (by doing the corresponding reduction), it 1is probably not at all
obvious why this path was chosen -- other than the fact that it works.

We leave It as an exercise to the reader to show that other Z, are fixed
points of H and that they satisfy the fundamental identity. These L, are due to
Bohm (1966) and are discussed in Morris (1968) who proves (page 71) these
results for all kK. It is apparently true (although it has yet to be proved)
that no two Z, are interconvertible by i-reduction. That is, it is pnot true

that
Io = Z,

Since they both do the same thing, this is a rather remarkable resuilt.

2.4-87



Sec 2.4 o Conceptual Foundations

e Mininal Eix il

We have seen that our decision to desugar "rec" in terms of Y works for
factorial, 1leading to an AE that can be evaluated using either pP-reduction or
(by replacing Y by a suitable A-expression) by ¢-reduction. What is not obvious
is how to characterize the class of A-expressions E for which (Y F) produces a
useful fixea point.

That every A-expression E has at least one fixed point == namely (Y F) --
follows from the definition of Y. Thus the problem is the nature of the fixed
point, not its existence. Specifically, does (Y F) act 1like the function we

want?

Wwe saw that it does for factorial. Let us look at some other examples.

oin n : We first consider the case in which the "rec" is, in a sense,
superfluous. Consider

let rec fn =P in Q (2,4-22)
in which there is no free occurrence of £ in P. This desugars to

(Af. @ LY Of. an. P)]
L (Af. @ @f. n. PYLY (AFf. An. P)]
£ (Af. Q) {subst [Y (Af, an. P), f, (An. P)1}

Since we have postulated no free occurrences of £ in B, no substitution in fact
takes place, and we get

(Af. Q (An. P)
which can be sugared to

let f n =P in Q

Thus we have confirmed what seems plausible: Adding an unneeded "rec" has no

semantic effect. (It may adversely affect efficiency.)

As another example, recall that the square-root function is a fixed point
of

Af. Ax. x / (F x) (2.4-23a)
This suggests that we can define § in PAL to be the square root function by
let rec s x = x / (s x) In «.0 (2.4-23b)

Desugaring leads to
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Y [Ds. Axe x / (s X)) *= Y &

x / (Y b x)

X/ [ax. x/ (Y S x)) x
£ ax. x / (x / Y S x)

Y S x

and this never terminates. Thus Y does not produce a useful fixed point. It
would have been surprising in some sense had it done so, since there is an air
of getting something for nothing In using (2.4-23b) as a definition of square
root.

As another example in which we should expect failure of Y to produce a
fixed point consider

let rec x () = (x ni1)* - 6 in ... . (2.4-24a)
in which we are concerned with
F2ax, A0, (x nil)* = 6 (2.4-204b)

This is the same function that we considered in (2.4-5a), and we know its flxed
points are (A(). 3) and (2(). -2). It would be rather surprising were (Y F) to
select elther of these two fixed points (how to choose?), so let us see. We
have

Y F

£ F (Y F)

= [2%x. M), (x nil)® = 61 (Y F)
S A0 (Y FRiN® -6

Since this is (Y F), it follows that

Y F nil

e (YFniNnN? -6

¢ ((YFnl1® -6 -6

e [(YFnin? -6)2 -61°-6

which clearly does not terminate. Further, there can exist no x such that
(Y F x) terminates.,

Let us Investigate still another E:

F # AX. AY.e X (2.4-25)

we have
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Y F

£ F (Y F)

2 (2AX. 2y. Xx) (Y F)
& ay. YF

= Ay. 2y. YF

o« Ay, AY. Y. Y F

Not only does this (Y F) not admit a normal form, but it is a "unlversal
annihilator" in the sense that

YFV1IV2 ... Vn=YF

for all AE's Vk.

Now we consider a case in which (Y F) has no normal form but for whlch
fixed points exlst, |If

F& 2x. x X X (2.4-26)
we have

Y F

£ F (Y F)

2 (AX. x x x) (Y F)
Sy Yy P

which clearly has no normal form. But It Is easy to verify that both of

true 2 AX., AY. X

(2,4-27
false AXe AY. Y ‘

are fixed points of this E, and are in normal form. |In this case as in (2.4-24)
Y falls to produce a fixed point, although two exist.

we now consider a more involved example, one in which (Y F) has no normal
form but nonetheless acts like a function, in the sense that we show an x such
that (Y F x) has normal form. Let

Fr ax. ay. y y (x false) v (2.4-28)

(Hereafter in this section "true" and "false" are as in (2.4-27).) Then

Y F

S FA(YF)

& (Ax. Ay, y y (x false)) (Y F)
& 2y, y y (Y F false)

Then

Y F false
e (Ay. y y (Y F false)) false

£ false false (Y F false)

2

= Y F false

Thus (Y F) has no normal form, and we also see that (Y F false) has no normal
form either. Now,
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Y F true

# (Ay. v v (Y F false)) true
£ true true (Y F false)

« true

Thus we see that (Y F) acts 1like a function, a function whose domain of
gefinition inclues "true" but not "false". It is easy to see that

G = pz, z z false
is also a fixed point of E, and that

G true =~ true
G false ~ false

Thus we have two fixed points: (Y F) and G. At a point at which they are both
defined (the pofint "true") they agree, but G is defined fo?fleast one point at
which (Y F) is not defined. Thus we have some evidence (but no proof) that G is
a functional extension of (Y F). (Reread now the definition of functional
extension on page 2.1-19. We see more of it in this section.)

For our final example we consider again
Fe Af. 2X. X eq 0 => | x » f (x-1) (2,4-29)

we have seen that (Y F) is the factorial function. Has E any other fixed
points? The answer is yes. Consider the function g defined (mathematically)
by

1 x =0
x*g (x-1) x =1, 2, 3, «c.
g (x) = k X = 1/2
x*xg (x-1) x =312, 5/2, 1/2, ...
g (x+1) / (x+1) x =

-1/2, -3/2, =-5/2, ...

Here k Is any number at all, It is easy to verify that g Is a fixed point of £
by letting h be (F g) and showing that h and g are the same function. We have

h=Fg=2x. xeq0d =>1] x* g (x-1)

and thus
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h(o) 1
h{n) = n*g (n-1) n=1, 2, ...
h(u.5) = 0.5 » g (-0.5)

= 0.5 « (g (0.5) / 0.5)

=g (0.5)
h(x) = x#*g (x-1) x =3/2, 5/2, ...
h(x) = x*g (x-1) Xx = =1/2, =3/2, +..
=x * (g (x) /x))
= g (x)

Further, h Is defined at no other points. Thus h = g so

gxF g
and g is a fixed point of E.

Wwe have two fixed points: (Y F) and g. What is the relation between
them? It is clear that g is a fupctional extension of (Y F), in that it s

defined whenever (Y F) is and has the same values at' those points. Further, any
function like g but with a different value at 0.5 (i.e., a different value of k)

would also be a fixed point of £ and a functional extension of (Y F). Finally,
we coula add, say, U.4 to the domain of g with any value at all and define g
with the usual recursion at (1.4, 2.4, ...) and (-0.6, =-1.6, ...) to get still
another fixed point of E which is an extension of (Y F).

Characterization of (Y F): The preceding discussion serves to motivate ‘the

following theorem, which we state without proof; It is due to Morris (1968);

Theorem: |If w Is any fixed point of F, then w 1is a
functional extension of (Y F).

(Morris' proof was for the A-calculus Y of (2.4-16), The theorem has not been
proved for the Y we are using.)

The theorem says two things: First, of all possible fixed points of E,
(Y F) is the one with "smallest" domain. (lts domain is contained In the domain
of any other fixed point.) And second, all fixed points agree with (Y F) at
points at which (Y F) is defined. Thus we say that (Y F) is the pminimal flxed
point. The last example brought this out clearly.

The fact that (Y F) is minimal is distressing in the sense that (Y F)
represents the weakest possible response to the question,"What is the fixed
point of F?" Un the other hand, in a mwmore important sense this fact s
reassuring. Recall for example that both "true'" and "false" are fixed points of
the AE in (2.4-26), We should look askance on any scheme that arbltrarily
returned one or the other when both are equally appropriate. Only the minimal
fixed point of an AE is uniquely specified solely by the AE itself. To expect Y
to produce any other fixed point would indeed be magical.

Continuing with consideration of (2.4~26), the reader might wonder how our
results in connection with that AE are consistent with Morris' theorem. Recall
that every function Is a functional extension of ¢, the empty function., Since
the (Y F) of (2.4-26) is nowhere defined (in the sense that there is no X such
that (Y F x) terminates), (Y F) is indistinguishable from ¢. Both "true" and
"false" are perfectly good extensions of ¢.
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im ions - ulus o

Our entire approach to explication of PAL's semantics 1is based on the
A-calculus. Other approaches to the study of prograrmming linguistics could be
taken, and indeed have been taken by others, Our claim about our approach is
not that It 1is the best approach, but only that it is an adequate approach to
address the problems which we feel are important. Ve claim that the material of
these notes, read and understood, provides the professional in computer science
with the tools he needs for the study of programming languages.

Une shortcoming of the A-calculus approach should be pointed out. A
fundamental idea in programming is the recursive function, a function that calls
itself in the course of its operation. As we have seen, regarding PAL as
sugaring for 2A-expressions leads to the problem of deciding just what sort of
A-expression, when sugared, results in a PAL program with a rec. This 1is an
interesting problem, and the mathematics needed to answer it is distinctly
non=-triviale.

The objection voiced by some is that recursion is a syntactic problem,
having to do with that part of the program text wherein a particular name is
known, and that It should not be necessary to develop complicated mathematics to
explain 1it. We answer that objection on two different levels: In the first
place, we do not feel that recursion is qulite that simple, Although it s
possible to explain recursion syntactically as just suggested, such explanations
that we have seen seem to lack the mathematical rigour we feel appropriate for
this study. OQur objective 1is to develop techniques for formalizing the-
semantics of computer languages, and facing squarely the hard problems of
recursion seems appropriate. The problems don't go away through being ignored.

This 1leads wus to the second answer to the ovbjection. There is no denying
that the mathematics we have presented in this section is harder than that in
the rest of this text. But one should not avoid problems just because they are
hard. The mathematiclan can clalm (correctly) that the mathematics is
beautiful, and worth studying just for its own sake. While the authors of these
notes happen to agree, we do not base our argument on that belief. Instead, we
claim that the material is relevant to an understanding of programming
linguistics as we see it, and further claim that this view of programming
linguistics Is an appropriate one for the computer scientist,
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Chapter 3
Evaluation of Applicative Expressions

In Chapter 2 we provided a mathematical formalization of the semantics of
R=PAL by showing first how any R=PAL program may be vreplaced by an AE with
equivalent semantics and second how to evaluate AE's using the axioms of the
A-calculus. As we know, R=-PAL is a subset of the entire PAL language, and our
job next 1is to formalize L-PAL (a 1larger subset) and J-PAL (the entire
language). It is unfortunately the case that the technique we have been wusing
so far lends itself poorly to L-PAL and not at all to J-PAL, Let us consider
brlefly use of it for L-PAL.

in L-PAL, as in Algol, Fortran, PL/| and other languages, a statement such
as

X s= x + 1 (3.0-1a)

means to add 1 to x and to store the result back into x. (In Fortran and PL/|

the ":=" would be replaced by "=",) Suppose we try to formalize this idea as we
have been doing. We first Iimbed (3.0-la) In a complete program so that x does
not occur free:

let x = 3
in (3.0-1b)
X s=x + 1; x

This correct L-PAL program has the value 4, as one would expect. It can be
desugared into the AE

(Axe X 25 x + 1; x) 3 (3.0-1c)
but the next step =-- Q-reduction -- leads to
3:=3+1;3 (3.0-1d)

which 1Is clearly meaningless. We see in Chapter 4 that the AE in (3.0-1c) is
correct, but that e-reduction is in general not valid in AE's involving
ass ignment,

The conclusion we should reach is that the A-calculus as we have presented

it Is not an appropriate vehicle for explication of the rest of PAL. We clearly
have two alternatives: to extend the A-calculus or to develop a different

technique for language formalization. We choose the latter, for two reasons:

. Although It 1is possible to extend the A-calculus to
accommodate L-PAL in a reasonably natural manner, it has not

proved possible to extend it to J-PAL in any appealing way.
Such extension has been done by Landin (1966b), but the
handling of jumps is quite forced and unnatural.
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. The techniques we develop 1In our alternate approach are
related to many important ideas in computer language
processing, ldeas which are an important part of the study
of programming linguistics.

We therefore reject the possibility of extending the A-calculus and adopt
another approach to formalization.

The approach we adopt is to explain PAL by exhibiting an algorithm for
evaluating PAL programs., Assume for the moment that we are concerned with the
value of every legal PAL program. (This assumption 1is not completely valid,
since we are concerned in J-PAL with the output printed as a result of running
the program. It is nonetheless a useful assumption for the moment. This point
is returned to in Chapter 5.) Then our objective is a function whose domain is
correct PAL programs and whose range is fL. To the extent that one understands
such a function, then, one understands PAL. We call the mechanism which this
function represents the gedanken evaluator, and we give the function the name
Evaluate.

Clearly, the gedanken evaluator is quite complex, and its explication is a
non-trivial task. One way to do it 1Is to define Evaluate using the usual
mathematical techniques, as suggested by Strachey (1966). This approach,
although attractive, Is not followed in these notes. We take instead the
following approach. The function Evaluate defines a transformation (from PAL
programs to M) and is, therefore, an algorithm. (Reread the three definitions
tin the first paragraph of Chapter 2.) Thus we can explicate Evaluate by
Sekcthgan appropriate language and writing in it a program which 1is a
representation of that algorithm. Thus writing this program is our objective.

The first question to ask is, "In what Jlanguage shall we write the
program?' This is an Iimportant question, since our understanding of the program
can be no better than our understanding of the 1language in which it is
expressed. (It is avoiding thils problem that makes the mathematical definition
mentioned earlier so attractive.) Let us consider the implications of using PAL
as the language in which to write Evaluate. We can clearly do it and the result
is a long PAL program whose understanding is needed to understand PAL. We seem
to be caught in a circular trap, though, since we must understand PAL in order
to understand the program, but we must understand the program in order to
understand PAL. How to break the clrcularity?

Fortunately we have a starting point: We already understand R-PAL, so we
can write Evaluate in R-PAL. We can then explain Evaluate by appeal to the
techniques of Chapter 2, and Evaluate explains all of PAL. This is in fact
precisely what we do, although there are additional complications.

The function Evaluate is quite complex, and a major task before us in the
next three chapters is to explain it. |t proves eXpedient to explain it in
stages. Thus in the present chapter we explicate a version of Evaluate that
works only for R-PAL programs, the next two chapters handling L-PAL and J-PAL.
we derive an interesting advantage from this three step process; By the time we
explain J-PAL we have complieted the formalization of L-PAL, and so are able to
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write the J-PAL version of Evaluate in L-PAL., Although it could be written In
R-PAL, there are aspects of the algorithm which are expressed much more
conveniently in L-PAL.

3.1 rimi d Combinatio f Primiti

In Chapter 2 we defined a class of objects called AE's and developed rules
for their evaluation. We developed first (in Section 2.1) the properties of
the universe of discourse and then (in Section 2.2) we considered AE's made up
from the primitive identifiers and functional application. Not until section
2.3 did we introduce A-expressions. |In our present treatment of the evaluation
of AE's, we similarly start with pure combination, treating AE's with
A-expressions in Section 3,2,

As we already know, the basic building blocks of AE's -- that is, the
atomic elements without semantic substructure -- are _Jidentifiers. Each
identifier provides direct reference to an ob in the universe of discourse
called its value, and a mapping of Identifiers into obs is called an
environment. PAL's primitive environment (i.e. the mapping of primitive
identifiers into primitive obs provided ab initio by PAL's designers) has been
diagrammed in skeletal form in Figure 2.2-2, page 2.2-33. '

We study extension of the primitive environment via user-coined definitions
in considerable detail in Section 3.2. For the moment, however, we need only

stipulate that evaluation of an identifier relative to an environment Involves
looking up that identifler in the environment and returning the assoclated
value. Here we exploit the crucial property of identifiers, namely that given
any two of them we can determine whether or not they are the same. Otherwise,
the look-up operation could not be effected.

As a practical matter, in any PAL implementation all pumerics, literals,
functors and gquotations are converted directly on input to the computer into an
internal representation of their value, so that look-up in a table In actually
necessary only in the case of variables. (The Internal representation of a
functor is a piece of machine code that does the work.) Conceptual (as opposed
to practical) simplicity is obtained, however, by viewing all identifiers as
evaluated in the same way.

u \' io f xpressi

Assuming ability to determine the value of any identifier, we want to
organize a mechanical bookkeeping procedure for evaluation of combinations. We
have seen one possible procedure, that shown in Figure 2.2-7, but we want one In
which order of evaluation Is explicit. Consider, for example, the AE

a*b+c (3.1-1)

b and ¢ are

(We assume for the moment an environment In which the identifiers a,
known.) Evaluation of this AE Involves
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. noticing that the multiplication is to be done before the
addition; '

. evaluating each of a3 and b;

R multiblylng their values;

. evaluating g¢; and

. adding the value of ¢ to the product .

A1l of this ordering is implicit in the expression. Clearly desirable would be
a way to rewrite (3.1-1) so that the order of evaluation is explicit.

A writing such as (3.,1.1) in which each binary operator 1is between Iits
operands is said to be in infix form. An equivalent writing such as

+ *abec (3.1-2a)
in which each operator precedes its operands is called prefix form, and
abx*xc+ (3.1-2b)

is called postfix form, Now note that the order of the appearance of
identifiers in (3.1-2b) is exactly the same as the order of evaluation given
just below (3.,1-1). That is, a left-to-right scan of postfix gives the order
of evaluation explicitly, For various reasons we find it convenient to scan
from right to 1left rather than from 1left to right, so we use prefix form
exclusively hereafter for evaluations.

Prefix and postfix forms were introduced by 'tukasiewicz and are called
polish form after him. We do not devote any effort to the study of the
transformation from infix to prefix, assuming that the reader can work out the
details himself, For example, the arithmetic expression

a*3 = (-b)/(4+c) (3.1-3a)

has prefix form
-*a3/ negb+ bhc (3.1-3b)

and postfix form
a3+~bneglbct+t/ - . (3.1-3c)

Figure 3.1-1 shows a tree form of (3.1-3a) and shows how the prefix form may be
obtained by means of a suitable walk over the tree in which each node is written
down the first time it iIs visited.
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Figure 3.,1-1: Tree Flattening to Prefix Form
The success of Polish form requires that it be possible to tell by looking at
each operator how many operands It has, Thus unary minus 1is written as peg
while binary minus as "-".

A push-down 1list, or stack, is a last-in-first out device often 1likened to
a plate dispenser at a cafeteria. A new item inserted into the device becomes
the 1st item, the old 1lst item becomes the 2nd, the old 2nd item becomes the
3rd, and so forth, When the device 1{Is '"popped", the transformation s
reversed: The 1st item (also called the top item) is removed from the device,
the old 2nd item becomes the top, the old 3rd item becomes the 2nd, etc. We
assume that any push-down list is arbitrarily long in the sense that there is
always room for one more item.

The use of two push-down 1lists (called the control and the stack) to
evaluate (3.1-3b) is illustrated in Figure 3.1-2. The top of each device is
adjacent to the vertical iine which separates them, Initially, the prefix
string is loaded into the control and the stack is empty, as shown on line 1 of
the figure. An environment giving values to a, b, and ¢ is shown on the right.
Evaluation then proceeds in accordance with the following rules:

(1) Whenever an identifier appears as the top item of the
control, it 1is evaluated and its value is pushed onto the
stack. The identiflier is popped from the control.

(2) Whenever an n-ary functor is the top item of the control, it
is applied to the top p stack items. The functor and its pn
arguments are popped, and the value of the application Iis
pushed onto the stack.

Thus the state (l.e. the configuration) of the system after the first two
control items have been evaluated is as shown in line 3 of the figure. The
state after the first 1invocation of rule (2) is exhibited on line & of the
figure. As {llustrated on succeeding lines, the evaluation cycle 1Is Iiterated

until the control is empty, at which time the filnal result occupies the top of
the stack.

Economy of penmanship may be obtained by displaying successive states as
shown in Figure 3.1-3, Here the control is left-justified, so that its top is
its right-most item. Similarly, the stack is right-justified so that its top is
its left-most Iitem. On each 1line the top of each push-down 1ist Is always
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Jtack

EhVHWWmenf

T N T e S I S

~
A~/

"

Control
— ¥ a 3 \ng b + 1 c
- % a 3 \ nng b + ¢
| — % a 3 \ ng b +
— % & 3 N\ qneg
——‘ﬁ-°~3\ucg
._.,)‘_CL.B\
- % a 3
.—*Q.
- ¥
—t

ol N 5t fw 1
iV iy JONS

]
~

TRE)

;-0 fo~ I fw {J\' i

a.:&
b= 2l
e = éi

Figure 3.1-2: Evaleation of (3.1-3%)

COhtYo( S'{: &Ck E‘nvz‘rom«eﬂt

. |> - % a 3 /mg'l;.-\‘— 4 < — | a - 2
2 + 36 - x

3 - P I
4 o meg b 7

5 oy 2

6 3/ e g

7 * 3 o3

8 * o 33

T ¥ 2 3

o | - ¢ 2

(| — q

Figurz 3.(-3: H”ﬁ'nu,& Qorm,O‘F F:'Z*wrc 3./-2

3.1-100



Primitives and Combinations of Primitives Sec 3.1

written explicitly, but the deeper items (which of course remain unchanged from
the preceding line) need not be rewritten,

Blackboard Evaluation

Recall that in section 2.2 we considered first trees like that in Figure

3.1-1 whose non-terminal nodes are operators such as "+" or "+", and then found

it useful to restrict our attention to trees all of whose non-terminal nodes are
¥. The reasoning that lead to this simplification continues to apply, and  we

consider here evaluation of such forms. The semantic tree equivalent to
(3.1-3a) is

* o2 g bt 4

Figure 3.1-4: Semantic tree for (3.1-3a)

and a prefix walk over this tree yields

¥3¥ - ¥¥*xa3 ¥¥/¥neg3 d¥¥+1bc (3.1-4)
Evaluation of this control sequence is shown in a display in Figure 3.1-5. Here
| J)—UU*QJTD/&Wq6¥T+Vc —t a=- 2
2 r 8 + ¢ ,,3. b = > . 3. l_s-:
b y ‘/"‘}, o = 3 F;gurc '
:?{ bm‘ b v EV&’“&f"" of
s Y /¥ wg 2l ) [CWEL,
¢ T Y /A7
2 ¥ ¥ a3 . a7
3 YT -~ T} +2 373
Y| v : -6 -d
o | —4 ?

the rule is simpler than that stated earlier:

(1) |If the top control item is an identifier, pop it and push
fts value onto the stack.

(2) |If the top control item is ¥, pop It and pop the first two
stack items, and push onto the stack the value obtained by
applying the old top stack item to the old second stack
jitem,

several conventlons have been used in Figure 3,1-5:
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. The evaluation of the identifier "+" 1leads to the ob .,

assumed to be a curried addition function like "Sum" in
(2.2"'6).

. Application of ¥ to 4 yields a function which adds four. We
write it as U+. Similarly, =21/ represents a function
which, applied to an integer n, returns =-21/n.

. We leave out many uninteresting lines of evaluation. For
example, two lines are left out between lines 1 and 2, so
that all of the identifier evaluations seem to take place
"at once". Similarly, between lines 5 and 6 neg is applied
to 21 and the identifier "/" is evaluated. After line 8 two

§'s are applied and is evaluated, and ]ine 9 shows

application of two {§'s.

A display such as Figure 3.1-5 is called a blackboard evaluation, since it can
be done in class on a blackboard. We give much attention in the rest of these
notes to developing conventions for the blackboard evaluation of PAL programs,
culminating In Chapter 5 with a J-PAL evaluator., The reader should keep clearly
in mind our objective in doing so: We wish to exhibit a mechanism that
evaluates PAL programs, and the blackboard evaluator serves a a bookkeeping
technique for simulating operation of that méchanism. Given that point of view,
it seems appropriate to adopt any conventions that simplify use of the
blackboard machine, since such simplifications serve to make more transparent
the operation of the gedanken evaluator.

As an example of such simplification, compare (3.1-3b) with (3.1-4), The
latter is obtained from the former by preceding every binary functor by "y ¥*
and every unary -functor ("neg") by "¥'. Thus we use hereafter in blackboard
evaluation forms such as (3.1-3b), but the reader should understand that, for
example, "+" is an abbreviation for "§ ¥ +", The distinction becomes Iimportant
in Section 3.5 in which we exhibit the PAL program for the gedanken evaluator,
for then we use the "¥ ¥ +" form.

Tuples in Blackboard Evaluation: In Section 2.2 we observed that while only §

nodes are needed for semantic trees, use also of J nodes makes for trees which
are simpler and, hence, more perspicuous. A similar argument applies to
blackboard evaluation. For example, the PAL 2-tuple

a, b (3.1-5a)
could be represented by the control )
¥ ¥aug ¥ Xlaug nil ab (3.1-5b)
oé, using "aug" as an abbreviation for "3 ¥ aug" as done above for "+", by
aug aug nil a b ) (3.1-5¢)

Instead, however, we choose to use
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Oa ab ‘ (3.1-6)

We can think of J; as an abbreviation for the control sequence
§ 3 aug ¥ ¥ aug nil : (3.1-7)
and similarly for a whole set of Uk. For example, the PAL expresslion
Conc ('ab', 'ed') (3.1-8a)
is equivalent to the control sequence
d Conc Jz 'ab' 'cd' (3.1-8b)

The blackboard evaluation is then

Comtvol Stack EnviromwmenT
J  Conc :7& fab' led' — PE
Cowa v,_ el 'Cd'
¥ Cove ’ ‘Q[yl, led'
! Come  'qbf, 'ed’
—t labed'

Figure 3.1-6: Evaluation of (3.1-8)

Here we write 'ab' to indicate a particular string, and 'ab', 'cd' to indicate a
particular 2-tuple.

It is Interesting that the operators Jx denote functions which are already
in the universe of discourse, Consider the function Juple defined by the
following PAL program:

def Tuple n =
let rec Q k T =
keg 0 ->T 1 (ax. Q (k=1)(T aug x)) (3.1-9)
in v . .
Qn nil

Then for everypn =20,1, 2, ..., it is true that (Tuple n) transforms precisely
as does Jy. This can be seen by normal order reduction, and we can show it by
btackboard evaluation in Section 3.4 after we have learned to accommodate
recursions in the blackboard machine. '
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3.2 JX=Expressions

e have observed previously, on page 2.2-73, that the referential
transparency of a semantic tree comprised only of ¥-nodes implies invariance to
order of evaluation. In particular, the ob denoted by any such tree may be
geternined by

(1) evaluating first its rator and rand (in either order)
(2) and then applying the one to the other.

since aefinitions were not involved, considerable filexibility was therefore
available when deciding in Section 3.1 how to collapse a semantic tree into a
control, Indeed, under these conditions the blackboard decision always to
evaluate a rand before its vrator is purely administrative; referential
transparency guarantees that the order of evaluation could be changed -- say to
rator always first and then rand, or (if parallel processors were available) to
both together -- without altering semantics.

-The definitional facilities of a language, however, can not be
referentially transparent, so that greater care presumably 1Is required in
producing a control from semantic trees Involving 2a-nodes. Consider, for
example, the PAL expression

lety =3 in 2 +y (3.2-1a)
and hence the AE
(Ay. 2+y) 3 (3,2-1b)

The semantic tree representation of this AE is

(3.2-1c¢c)

and a prefix walk over this tree (as in Figure 3.1-1) leads to the control
sequence

8y +2y3 (3.2-1d)
Evaluation of this control clearly aborts as soon as a value of y 1is needed,
since ¥y 1is not in the PE, Needed is a way to construct a control seauence for

(3.2=-1b) which leads, under blackbaord evaluation, to semantics equivalent to
that of normal order evaluation. The modification adopted in the next
subsection turns on the observation that a Mexpression denotes a function.
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lackboard u

In the absence of conflicting requirements, a sound linguistic principle is
“"to treat similar entities similarly". Specifically, notice in Figures 3.1-2,
3.1-3, 3.1-5 and 3.1-6 that

(1) basic functions are denoted by single entities (identifiers); and
that

(2) when such an entity occupies the top of the control, it is popped
and its yalue pushed into the stack; and that

(3) the value of such a function incorporates all information
necessary to apply it to any argument,

since A~expressions also denote functions, we elect to use these observations as
gzuideposts in extending our blackboard procedure to accommodate semantic trees
involving X-nodes.

.

epres -Ex s$S : Obviously there are many different syntactic
devices whereby a A-expression can be vrecognized as a 'single entity. In
normal-order reduction we have used parentheses for this purpose, whereas in
semantic trees each A-expression is represented by the subtree diverging from a
A-node. For blackboard purposes it is convenient to introduce still a third
convention. Noting that a A-expression is a bundle of information with two

parts (a bv part and a body), we first attempt to write a A-expression such as

Ax. x+3

x

Mxt3
with the bv-part as a superscript and the body as a subscript. Since the body
can be arbitrarily complicated, perhaps even involving other A-expressions, this
scheme may prove impractical. Hence we elect consistently to abbreviate body

parts, using subscripted &s to stand for that which is abbreviated. Thus we
choose to write the above as

x
!
§, = x+3

with this convention the AE of (3.2-1p) is represented as

¥t s (3.2-2)
$, =+ 2y ‘

Similarly, we can desugar the PAL program

let X =
let y =7
in (3.2-3a)
2 *y

in

X +3
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into the AE
(%x. x+3)[(%y. 2%y)7] (3.2-3b)
and thence into the control sequence
YA Ay
§, = +x3 (3.2-3¢)
82=*2y

The critical aspect of our convention is that each A-expression must be
associated with a unique subscript. In addition, however, it is often
convenient when writing down each A-body to represent it In prefix form,
Clearly this can be done even when A-expressions are nested, as in

lety =7
in
let x =2 » y (3.2-4a)
in
X + 3
The equivalent AE is
Dy, Qp. x +3)(2 = v)] 7 (3,2-L4b)
and the corresponding control sequence is
¥ At g
§r =¥ A; * 2y (3.2-4c)
Sg=+x3
h aJue of a A- ssjopn ¢ wWe are concerned now with the evaluation in the

plackboard mechanism of AE's involving A-expressions, and our immediate question
is this: wWhat is the value of a A-expression? Our principle guideline in
answering this question, as given in point (3) on page 3.2-105, is that the
value must fnclude all information needed to apply it to arguments. Clearly
needed as part of the value are the bv-part and the body of the A-expression,
However, this is not enough, since the body may contain free variables. It is
the nature of the binding rules of the A-calculus, as given in Section 2.3, that
the binding of such free variabies is determined contextually at the point of

appearance of the A-expression. It therefore follows that the value of a
A-expression must include the environment that exists when the A-expression Jis
evaluated. We call the value of a A-expression a A-closure. A A-closure is

then a bundle of information with three parts:

. a bv,
. a body, and
. an environment.

The bv-part 1is a single variable and we already have a convention for
abbreviating A-bodies. Needed 1is a convenient notation for dealing with

environments.
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The one environment we know about is the primitive environment, PE, which
is a mapping from primitive identifiers to primitive obs. As suggested on the
right side of Figure 3.1-5, the primitive environment can be augmented by
additional name-value couplings, the evaluation of that figure being done in an
enviromnent consisting of PE argumented by pairings for the identifiers a, b and
¢+ To see how such pairings.come about, consider a combination such as

(Ax. M) E (3.2-5)

In Section 2.3 we considerea at length the implications of the intuition that
this AE may be evaluated by substituting the AE E for all free occurrences of x
in . But there 1Is another intuitively appealing interpretation of (3;2-5):
that it is the same as gvaluating M in an environment in which X is paired with
. the value of E. It is this latter approach that is used in the blackboard
evaluator,

1 bo echanism: We want now conventions for blackboard evaluation of AE's
involving A-expressions, conventions that agree with the intuitions just
developed. There are only two questions to answer:

(1) vhat is the nature of a A-closure, the value of a A-expression?
(2) tHow do we apply a A-closure?

we know enough to answer these questions. |In environment Ek, the value of the
d-expression A, is the A-closure kl:. This writing 1s clearly a bundle of
information with the three proper components. The application of k): to an
argument, say A, is achieved by the following steps:

. Create a new environment Ep, where p has not previously been used.
Ep iIs a copy of environment Ek.

. Add to Ep the coupling of x, the bv of the rator, with A, the
rand,

. Evaluate pM, the body of the rator, in this environment.

. The value thus produced 1is returned, in the environment that
existed at the time of the original application, as the value of
the combination.

A1l of this is best seen by example. Consider the PAL expression

let x =3 in x = 2 (3.2-63)
and the corresponding AE
(Ax. x = 2) 3 (3.2-6b)
with control sequence
DS
' 3,2-6¢)
sl =~ x 2 ( C

we evaluate this control in the primitive environment, the evaluation being

shown in Figure 3.2-1. We discuss thils evaluation in detail.
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It starts 1in line 1 with the control sequence to be evaluated loaded Into

Contvol Stack Environment
X
! E, ¥ )\, 3 E, O0: PE
2 5 X ' 3
Figure 3.2-0: 3 ¥ 3‘:.3., :
Eu(«af"’" of 4 IrE' 5, E,—: l: x = 2 (o)
Qane) A A 3
1 |
6 ! - X X 1
? :5 - 3 2 !
|
g EOL-_EI_ e _:(-_EI_I Eo
Y | E L e
o |+ L

the control of the evaluator. By convention we assume £Q to be the primitive
environment, placing into the control and stack matching epvironment markers.
(Only the environment marker in the control serves a necessary purpose,
However, placement of a matching environment marker in the stack serves to
provide a pleasing symmetry, as well as a useful check that certain kinds of
error have not been made.) The transition to line 2 involves looking up the
iaentifier "3" in the primitive environment, yielding 3. We next evaluate the
A-expression ):. Since evaluation is in environment £0, we get the closure
°X. oOn line 3 we apply this closure to 3, leading to the evaluation of its
body (S,) in environment El1 which is achieved by augmenting E0 with the pairing
(x, 3). The zero in parentheses indicates that E]l is an appendment to EQ.

On line 4 we replace the abbreviation §, by that which it abbreviates (as
given 1In (3.2-6c)), leading to line 5. We next look up the identifier "2" In
El. (We know to use El because that 1is the top environment marker in the
control on the line we do the evaluation.) Since "2" is not "x", we look next
in the environment to which environment 1 Is an appendment: EQ. In evaluating
X in line 6 we immediately get 3. After doing the subtraction we find in line 8
that an environment marker is the top stack Item. There is precisely one item
in the stack above the top environment marker (the error check mentioned
earlier), so the matching environment markers are deleted from control and
stack. This operation is repcated on line 9, leading to the answer on line 10.
The dashed line encloses that part of the evaluation corresponding to the
subproblem of applying the closure.

Let us look atv two more examples, the programs of (3.2-3) and (3,2-4),
evaluations of which are shown in Figure 3.2-2, As usual, we elide
uninteresting steps. For example, rather than put %, into the control In line 3
of Figure 3.2-2a (as we did in line 4 of Figure 3.2-1), we instead 1load
immediately that control sequence which it abbreviates. Note the evaluation of

y in line 6 of Figure 3.2-2b. Since the evaluation takes place In environment
2, as evidenced by the fact that E2 is the highest environment marker in the

control, we look first in environment layer 2, failing to find y there. Since
layer 2 Is an appendment to layer 1, as evidenced by the parenthesized 1 at the
right end of line 6, we look in layer 1, there finding y.
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Confvol Stack | Envivonment
l E, >\),l ¥ N7 E, | o: PE
2 b A2 g
3 E, ¥ 2 vy E, U gw Z (o)
o £ ¥ A2
5 %TE] Mg
b Y N 1y
? v o*:(.fi
§ Ei+ x 3 | E, 2: x= (4 (o)
ki E, + M3
/0 E, E, 17 E, E
I E, n &
12 |+ 17
Fi.gu-re 3.2-2a: Evaluation of (3..2—3)
Contyot Stack Environment
! Eo ¥ )\f 7 . E, 0: PE
2 ¥ N2 e
3 E;b')\i*ly E, s y=2 (o)
1 TN 226
s Y %Iiz
4 E, + x vy & 2: x= 17 (]
p; E, €, 5 t [ 2 E E, E
2 — at

Figure 3.2-2b:1 Evaluation of (3.2 -4)
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As another example, consider the PAL program

let x = 2

in v

let y = 3 . (3.2-7a)
In

x*ry + (let y = y+3 in x*xy) + (let x = y+3 in xwy)

with corresponding AE

{)5. [%y. X*y + (}y. x*y)(y+3) + (a}. xxy)(y+3)] 3} 2 (3.2-7b)
and control sequence:
x
§ 22
§, =813
S =+ * xy + ¥ XZ +y 3 ¥ A: +y3 (3.2-7¢)
§3=*Xy

g.,:*xy

Evaluation is shown in Figure 3.2-3, in which we have Introduced one more
convention to facilitate these evaluations. In lines 3 and 5 in which new
environment layers are formed, it Is the case that in both the control apnd the
stack the new environment marker is adjacent to an old one, as it was in lines 3
and 6 in Figure 3.2-2. In such cases we delete the old ones since they can
serve no useful purpose 1in the rest of the evaluation except to be discarded
later. (Our objective here is to economize on horizontal space.) Note each
evaluation of x and y, since it is Important that the right lookup operation be

done.

ny i i

Al though perhaps not inmediately obvious, it is true that the notion of a
2-clogure as the value of a A-expression suffices to accommodate all occurrences
of )’séin blackboard evaluation. To see this, we need to reconcile blackboard
evaluation and normal-order reduction. The key to the relation between the two
lies in recognition that blackboard evaluation in general entalls the
construction of a tree of environments. We see below that the structure of the
tréé, together with appropriate definition of what is meant by "looking wup" an
identifier, resolves the conflict of variables problem that complicates normal
order reduction. In addition, blackboard evaluation Is vastly more efficient
than normal order reduction. On the other hand, however, we shall encounter
certain meaningful AE's for which the blackboard procedure does not terminate.

u jon- iti : An embryonic tree of environments has already been
encountered in Figure 3.9a. To gain further insight into the structure of the
environment tree, we now Iinvestigate blackboard evaluation of exﬁressions
involving programmer~defined functions. Consider, for example, the PAL program
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Contvol Stack |Ewnvivonwment
ClE, ¥ a2 Eo|0:PE
2 |E, ¢ N 2 E,
3|5 ¢ }\13 E | tx=2 (o)
wlE, ¥ | '\ 3 E
S'E,.+¥xy+b’/\§+y3xx:+v3 E| 2t y=3 (1)
6 ¥ Mt 33
? ¥ N b
8 Ey ¥ x vy E, 1ix=6 (2
? t+ y 3 E; ¥ 6 3 g
ro YN+ | 320
i 4 N4
12 E, ¥ x vy E, y: )"'.é (2)
3 + B, ¥ 1 4 E, |
ry * X ¥ + Lg i‘;?
Ky + ¥ ‘ & g 13
16|E, + 6 306
17— 3%

Fégwrc 3.2-3: Eva/uaf;on of (,3..1-7)
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let f x =2 + x

in v (3.2-2a)
f3
for which the equivalent AE is
(Of. f3) Q:.x' 2+x) _ (3.2-8b)
The corresponding control sequence is
MW
§v =4 (3.2-8¢)
S; = X

and evaluation is shown in Figure 3.2-4., vie observe from the figure that no new
ldeas are involved in the evaluation, even though for the first time our
blackboard machine now encounters the occurrence of a 2A-expression as an

Control Stack | Environment

! E, ¥ )ﬁ ); E, o: PE

2 | B 7 ' AN e,

3| ¥ £3 E, £ = A (o)
vy | E ¥ N 3 E

S| Bt 2 x E | o x= 3 (o
6 E, + 2 3 &

7 | fy

Figurea 3.2-%: Evaluation of (3.2-9)

operand. (Heretofore, they have occurred only as operators.) The reason is
that we have already stipulated that the value of a A-expression relative to the
environment in which it occurs is a A-closure. But a value Is a suitable object
to couple with a name in an environment layer, so that application of one
A-closure to another (as in the transition from line 2 to line 3) accords with
the evaluation procedure already established. The essential concept is that
packaging all information necessary to apply a function into a ")-closure"
permits us to treat such entities 1like any other "value" occurring in the
stack. Note that in line 5 in environment 2 the only variable defined beyond PE
is x, and that were there an f to be evaluated on that line the evaluation
would abort. This is consistent with the fact that we are evaluating a piece of
the AE, "2+x", which 1Is not within the scope of f. This is clear from
examination of either (3.2-8a) or (3.2-8b).

A still more interesting evaluation arises from the PAL program
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let g x vy

[
x

ty
in
let f
in
f3+xg54

it
]
N

(3.2-9a)

hHere we have a function-producing function, and it is gratifylng to see that no
new techniques are required. The AE equivalent to this PAL program is

[ (Af. F 3 % g5 4)(g 2)](§x. Ay x+y) (3,2-9b)
and the control sequence Is
9 x
K)' )J
5, =¥ Afryeg2
8, =*J f3 ¥yegbs5h (3.2-9¢)
§; = Ay
Sy=+ Xy

Examination of the evaluation of this control as shown in Figure (3.2-5) reveals
some new points. Note that the A-expression Az is evaluated twice, once on line
5 and again on line 9. These evaluations lead to different values, the one on
iine 5 leading to the closure 11: coupled to an environment in which x is 2 and
the one in line 9 leading to the closure q)r coupled to an environment in which
x is 5. Each closure is subsequently used, so the difference has an effect.
Curiously, the closure formed first is used second.

The vreader is strongly encouraged to test his understanding of the
blackboard procedure by attempting to reproduce Figure 3.2-5 without vreferring
to it. Computation is a dynamic process, and mere static observation of a
cumpleted blackboard evaluation does not provide adequate 1insight into the
interrelationship between subproblems and the environment tree.

2C ) i : The procedure for evaluating =-- i.e. looking up =-- an
identifier was not critical when only the primitive environment was involved,
Now, however, we have an environment tree and must be careful about what
"looking up an identifier in an environment" means.

The algorithm which we have obeyed implicitly in the preceding examples may
be stated explicitly as follows:

1. Let EK be the current environment, as evidenced by Ek being the

topmost environment marker in the control,

2. Does environment layer Ek define the desired identifier? If so
the associated value 1is the one desired and evaluation 1is
complete.

3. Is Kk zero? That s, did we just 1look in the primitive
environnent? |[f so the evaluation aborts.

kL, Let Kk be the environment to which the layer we examined in step 2
is appended, as evidenced by k appearing in parentheses in the
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Cont rol - Stack | Enyironment
Ve, ¥ XX, E. | o: pe
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Figure 3.2-5: Evaluation o‘F,(3.l"7)
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environment column to the right of the name-value coupling.
Continue at step 2.

Insight into how this procedure accords each definition its proper scope
may be gained by reexamination of Figure 3.2-2, The two AE's (rewritten here

for ease of reference) evaluated in that figure are

Ax. x+3)[(y. 2xy) 7] (3.2-10a)
and

LAy, (xx. x+3)(2xy)] 7 (3.2-10b)

Since the scope rules of the 2A-calculus (see page 2.3-66) imply that each

" in these two AE's can be changed to "y" without affecting

uccurrence of "x
meaning, blackboard evaluation rust also be invariant to such renaming. To see
that this is so, note in Figure 3.2-2a that the environment layers corresponding
to the definitions of "x" and "y" occupy parallel branches of the environment
tree, reflecting the "parallel" occurrence of the A's in (3.2-10a). In Figure
3.2-2b the two layers are in series, reflecting the nested occurrence of the A's
in (3.2-10b). 1In both cases our rule for looking up identifiers returns the
correct value even if all x's are changed to y's because conflicting

definitions are either by-passed or obscured by a subsequent definition.

0 st with N al Ord Redu ¢ An important aspect of our blackboard
procedure is that it departs from normal order. Blackboard order of evaluation
is clearly as follows:

(1) Evaluate the rand. (2) Evaluate the rator. (3) Apply the one
to the other,

Although the Church-Rosser theorem guarantees that we cannot get wrong answers
from this order, it also alerts us to the possibility that we sometimes may fail
to get an answer when one exists. We return to this point later.

There are other implications to blackboard procedure. First and most
obvious, in blackboard evaluation the meta-function subst is superseded by
separate evaluation of each free occurrence of an identifier as it reaches the
top of the control. Thus we obviate the complicated operations of changing
bound variables to avoid conflicts, searching through a )A-body to determine all
free vccurrences of the bound variable, and substituting an AE (possibly of
great complexity) for each such occurrence. '

The second simplification is less obvious but even more substantive, and
concerns efficiency. Often, a programmer chooses to name an AE because he
intends to make numerous references to it, as in

(ACi wm Came CavC =) M (3.2-11a)

where M stands for an arbitrary AE and the body of the A-expression indicates
three free occurrences of the bound variable "c". Normal order reduction

produces the AE
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e M M owe Mo (3.2-11b)

so0 that when evaluation finally does take place, M is evaluated three times. By
contrast, in the blackboard procedure M is evaluated only once, and this value
then looked=up three times. Since the complexity of M is arbitrary and "c¢" may
occur free any number of times within ‘the A-body, the efficiency gained by
blackboard evaluation can be enormous. Indeed, normal order reduction of
functional composition implies a biow=-up of computation that grows
exponentially with depth of nesting. For example, the PAL expression

f (f (7-2)) where f u = u+(uru) (3.2-12a)
translates into the AE
[Af. f (F (7-2))] (Au. u+uru) (3.2-12b)
which under normal order reduction yields

(Au. u+turu) [(QAu, u+turu) (7-2)] ‘

% vu. uturu) (7-2) + (Qu. usuru) (7-2) * Au. u+tusu) (7-2)

v [(7-2) + (7-2) » (7-2)) + [(7-2) + (7-2) * (7-2)] (3.2-12¢)
x [(7-2) + (7-2) * (7-2)]

Evaluation of the resulting normal-form expression involves 3% separate
calculations of the value of the subexpression "(7-2)". pilus (3%*-1) arithmetic
vperations on its value, whereas Figure 3.2-6 shows that blackboard evaluation

Control . Stack Evvivonment
g, Mo, A | E,|o1Pe
E, § A ‘ 3f 31 Eo
¥ § ¥ § - 2722 gl 1 £ 0 (o)
¥ £ - 2 2 E )
L L
EL + U ¥ U « £y 2 w= g (o
+ « ¥ S 5 &
¥ $ g + S A5 E,
E T O Nie |
Ei3 + u » u « E;t 3: “"’Q(ol
Fowoor kg
Ey + o1 E;
— e

“Figure 3,2-4: Evaluation of (3.2-124)

¥ ATy
S =¥ £ ¥ £ - 2 2
%, = + U ¥ U «

of (3.2-12b) Involves essentially only the calculations
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(7-2) = 5
Sx5 = 25
5425 = 30
30%30 = 900
900+30 = 930
mure generally, for kK nested compositions
f (f (oo (f (7-2))...)) where f(u) = u+tuxu (3.2-13)

normal order reduction fwplies 3% separate calculations of "(7-2)" and (3%-1)
subsequent arithmetic operations, whereas the number of calculations with
blackboard evaluation grows only linearlyv, not exponentially, with k.

In the overall scheme of things, it can be argued that inefficiencies to
within a linear factor are not of dominant concern. But one can not trifle with
exponentials! The engineering motivation for evaluation before functional
application, instead, of normal order reduction before evaluation, is avoidance
of an exponential blow-up In amount of computation. '

un the other hand, efficiency is not gained without cost: By departing
from normal order we forfeit ability to evaluate certain expressions which are
meaningful in the sense that normal order reduction terminates. For example,
the familiar AE

(Axe Aye X)) 5 [(Qu. u WAV, v v)] (3.2=14)

terminates under normal=-order reduction, but not under blackboard evaluation.
mureover, the cost is not restricted to uninteresting cases such as (3.2-14):

It is easy to verify that the blackboard procedure does not termlinate for any AE
of the form

ZF al a2 ,,., ak (3, 2— 15)

where £ is the fixed point generating Mexpression defined in (2.4-16), page
2.4-86, so that we need alternate methods for accommodating recursion.

onstru

in this section we investigate certain constructions of applicative
expressions that prove especially useful in programming practice. |In particular

we discuss gimultaneous and within definitions.

s im o i : It is frequently convenient to have several
definitions In parallel, and PAL provides for the possibility. The PAL program

let a
and b
in
P

L]
[oe]

(3.2-16a)

ieans to evaluate both A and B in the current environment, and then to evaluate
P in an environment in which g Is coupled to the value of A and b to the value
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of B. (Assume A, B and P to be arbitrary AE's.) Note how (3.2-16a) differs
from

let a = A

in

let b =B (3.2-16b)
in ’

P

Here any free occurrence of g in B is bound to the value of A, while in the
former program any a or b which is free in either of A or B 1is free in the
entire expression. '

An alternate form for (3.2-16a)'ls

let a, b = A, B

in (3.2-16¢)
P

The comma to the right of the equal signifies a tuple, but that on the left is a
syntactic device speéifying how the right side 1Iis to be decomposed. For
example, in

let a, b, ¢ =W in P (3.2-17)
it is necessary that W denote a 3-tuple.

There are -two choices available to us to explain the semantics of
simultaneous definitions: We can show how to handle them in the X-calculus, or
we can explicate them initially in terms of the gedanken evaluator. The latter
choice would have the consequence that we would not be able to use simultaneous
aefinitions in writing the PAL program for the gedanken evaluator. (Why not?)
we thus elect to show how simultaneous definitions can be handled in the
A-calculus. Since ‘the explanation leads to inefficient evaluation, we provide
an alternate explanation for blackboard evaluation and for the gedanken
evaluator.,

An obvious way to desugar (3.2-16c¢c) is into the following AE:
[A(a, b). P] (A, B) (3.2-18a)
This captures inmediately the intuition we expect from (3.2-1€c), just as
let x = E in M |
ana
(Ax. M) E

are equivalent, unfortunately this is not a desirable way to proceed. Recall
that in Section 2.3 the precise specification of a suitable subst metafunction
was a distinctly non-trivial business, the problem belng to avoid ill effects
from the clash of bound variables. Rules for simultaneous substitutions such as
would be required for (3.2-18) would be even more complex. Fortunately, we can
avoid the need for them.
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Consider the AE

[Are (Aa. Ab. P)(w 1)(m 231 (A, B) (3.2-18b)

where T is sume identifier not occurring in P, A or B. In evaluating this AE
(either in the blackboard mechanism or by normal order reduction), we first
assuciate ™ with the 2-tuple (A, B) and then associate g with the first
component of the 2-tuple and b with the second. That is, any a in B is
associated with A and any b with B, But this is precisely the effect intended
from (3.2-18). Thus we can regard (3.2-19) as a desugaring of (3.

2-18) into a
form we already can handle.

There is a minor difficulty with this desugaring: |t ascribes semantics to
certain AE's which we would prefer to call erroneous. Consider the PAL program
let a, b =W in P (3.2-19a)

and the corresponding AE
{A(a, b). P1 W (3.2-19b)

OQur semantic intent 1Is that each of these be undefined if W denotes any value
other than a 2-tuple. By our rule, (3.2-19b) desugars further into

[An. (Qa.Ab. PI(T™ 1)(m 2) W (3.2-19¢)

This AE is defined if W denotes any object whatsoever which may be applied to
each of Ll and 2. Thus W might denote a 3-tuple, or in fact any function which
includes 1 and 2 in its domain of definition, Since this state of affairs is
not our intent, we characterize this as a weak representation -- one that has
extra properties not intended. The problem is easy to fix: We can replace
(3.2-19c) by the AE

{an., Order m eq 2 => (Ma. Ab. P)(m 1)(m 2) | errorl W (3.2-19d)

where "error" is some expression whose value is undefined. This AE Is clearly

defined only if ki denotes a 2-tuple. (If W does not denote a tuple at all, then
"Order" aborts.)

An interesting problem obtrudes. There is no particular reason to replace
(3.2-19b) by (3.2-19c) rather than by

[AT, (Ab. 2a. P)(w 2)(m 1)] W

which has ldentical semantics. But consider the rather foolish PAL program

let x = A and x =B in W (3.2-20a)
which desugars as
[ACx, x). W] (A, B) (3.2-20b)
If the next step Is A
[anm, (Ax. Ax. W)(r 1)(r 2)] (A, B) (3.2-20c)
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then any free X is associated with the value of B, whereas if the next step is

Oy (Axe Ax. WX(T 2)(m 1)1 (A, B) (3.2-20d)
such x's are associated with A. We have a design choice:

(1) We can disallow repeated occurrence of the same identifier in a
bv-part, thus rendering illegal (3.2-20b) and hence (3.2-20a).

(2) we can arbitrarily adopt one or the other ordering as part of the
definition of PAL.

(3) we can leave undefined the meaning of AE's with this problem.

Although (1) is common in most programming languages, we have opted for (3) for
PAL. The force of this decision is that the user of PAL cannot predict the
effect of such expressions, so that (3) should be as effective as (1) in
discouraging use of them. We return to this discussion in Section 3.5, in which
we suggest a mechanism for the gedanken evaluator which causes expressions such
as (3.2-20a) to be undefined.

For the purpose of explaining the R-PAL gedanken evaluator programs, we
adopt the desugaring of (3.2-19c). (We do not need (3.2-19d) since the programs
are correct!) It is easy to provide an alternate approach which 1is more
attractive for blackboard evaluation. Consider the PAL program

let a =1
and f (x, ¥y) = x + vy
. (3.2-21a)
in 4
f (a, 2)
we desugar this first into
let a =1
andf= (xl V)-X"‘y
(3.2-21b)
in
f (a, 2)
and then into
[Xxa, f). f(a, 2)2 [1, (M(x, y)e x + y)] (3.2-21c)

for which the control sequence is

b A?,{ :)2 1 A:'y
b, =¥ f Jp a2 (3.2-21d)
8, =+ Xy

Blackboard evaluation of this control is shown in Figure 3,2-7:
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Cont vo/ Stack Envirommen €
5 ¥,

L€ & X7 9 1 N7 _ E. |oipE
2 r ¥y, LAY
3|6 ¥ °;?‘ I, N e,
+16.7T § 9« 2 E, | t: za= X } (o)
56_ : ¥:71 ory"’"‘%E/ F:>‘a-”

E, ,\&' I, 2 £

o O

T1E + x E, | 2 {x:g’.f (o)
8 E;, + L 2E 7= 3.
91— -3

Figure 3.2-7: Evaluation of (3.2-21)

On each of 1lines 3 and 6 we apply a A-closure whose bv has two components.
Since the rand is a 2-tuple the application 1Is 1legal, and we create an
environment layer in which two variables are deflined. The rest of the
evaluation is as before.

s "within'": Consider the PAL program
let f x =
let ¢ = C in P
s (3.2=22a)
in
f2+f3+fy4
This program desugars into the AE
(Xf. f2+f3+fh) [ﬁ}. (&F' p) ¢cJ (3.2-22b)

In blackboard evaluation the body of A: is evaluated three times -- once
for each free occurrence of f in §,. That is, L is evaluated each time f is

applied. But if C is a rather complex expression, we would like to be able to

rewrite (3.2-22a) so as to evaluate it only once. It is not hard to rework
(3.2-22b) into an AE with the desired effect. Since such a construction s
useful, PAL includes a special sugaring for it.

The AE form of the expression we want is easily seen to be
(kf. fl1+f2+fFf3) [(%F. ]}. P CcJ] (3.2-23a)

Evaluation of this AE In blackboard order leads to exactly one evaluation of (C,
as Is easy to see. The control sequence for this AE is

§AF 3 A c
S, =+ 0 F1+YF20F3
X - (3.2-23b)
52 = A
5, =
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and the first few lines of blackboard evaluation are shown in Figure 3.2-8.

Cont rol Stack | Environment
lE,,b"){,'J)«:C E, 0 PFE
> ¥ RN
I 1 e E| 1t e=C (o)
¢|e. ¥ N W&
sle, s, £, 2: £= A} (o)

Figure 3.2-8: Partial Blackboard Evaluation of (3.2-23b)

Clearly C is evaluated exactly once in this evaluation, so that application of f
in §, Iéads to evaluation of P in an environment in which ¢ is associated with
the value of C. Note that the efficiency gain shows up only in blackboard order
and not in normal order. In the latter there are still three evaluations of
since (3.2-23a) leads in one beta-reduction to

[c. ax. P) €] 1+ Ic. ax. P) €] 2 + [(ac. ax. P) C] 3 (3.2-24)

Since this form of AE Is useful, we want to make It easy to write PAL
programs which desugar to it. For simplicity let us consider

Of. F) [e. 2. P) C] (3.2-25)
This can be sugared to
let f = (Ac. Xx. P) C in F (3.2-26a)
and then into
let f =
let c =C
' in (3.2-26b)
Ax. P ‘
in
F

However, there 1is no way to sugar this into a PAL program not involving Als,
unless one introduces a new variable. (The A's can always be sugared out of an
AE by introducing new variables. Consider

ax. P <& OF. £) O, P)
which sugars to
let f x‘= P in f
But this is not what we want,)

The PAL form for (3.2-25) involves a withipn construct, like this:
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let
c =¢C
within

fx =P (3.2'27)

in
F

The scﬁantlcs of the within construct is given by saying that the definition
' a = Awithinb =B (3.2-28a)
is equivalent to the definition
b = (let a = A in B) (3.2-28b)
and hence to the definition
b =(la. B) A k3.2-28c)

The form becomes particulariy useful in connection with simultaneous
definitions, since we can have

let .
c=2¢C
within
fx=F
and (3.2-29a)
gy =2G
in
P

Here the scope of ¢ is to be F and G, and no more, (Parentheses are not
needed.) Successive desugarings are as follows:

let ¢ = C within [f = Ax. F and g = Ay, G] in P
let ¢ = C within f, g = (Ax. F), (Ay. G) in P
let f, g =[let c =C in (Ax. F), (Ay. G)] in P (3.2-29b)
et f, g = Oec. (Ax. F), (Ay. G)) C in P
Ix(F, g). P1 [(ac. (ax. F), (xy. G)) CJ]

Except in the 1last line, the square brackets are not needed but are Included
only to ald the reader. (The parentheses around the A-expressions are required
by PAL's syntax.) Note that the scope of ¢ in the last line Is clearly E and
G, as required,

It turns out that we can write PAL programs which, under the rules given so
far, desugar into forms we have not yet seen. Consider
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let
( c=2C
within
f x=F
and
gy =G (3.2-30a)
; .
and
h z =H
in
P

The effect of the parentheses is that the scope of ¢ is to include F and G as in
(3.2-29), but not H. Desugaring the within construct as in the first four lines
of (3.2-29b) leads to

let f, g = Oc. (Ax. F), (Ay. G)) C

and h z = H
(3.2-30b)
in
P
To save writing we define the abbreviation
W=TLac. (Ax. F), (Ay. G)] ¢C (3.2-30c)
Then the next step in desugaring leads to
let (f, ), h =W, (Az. H) in P (3.2-30d)
and the next step is
LA, g), h). P1LwW, (Az. H)] (3.2-30e)

Even though (3.2-30a) is a perfectly valid PAL program, (3.2-30d) and (3.2-30e)
are pot legal PAL: Vie do not permit "structured bv-parts" in PAL if there is
more structure than just a listing. (Each line in (3.2-29b) is a legal PAL
program -- If each A is replaced by fn.)

We elect not to attempt to explain (3.2-30) at this time, postponing the
explanation to Section 3.5. At that time, we glve the explanation in terms of
the gedanken evaluator. The effect of this decision is that we may not, in
writing the PAL programs for the gedandken evaluator, use constructs which
desugar into AE's with structured bv-parts. We accept the restrictions, since
the facility 1is not one which is needed and the explanation is most naturally
gliven later. Note that this is the opposite decision from the one made for
siimultaneous definltipns.
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5.3 gLopaitio ressiops

Heretofore our only stated decision concerning order of evaluation in the
blackboard machine has been to defer evaluation of a A-body until application of
the A-closure to which it belongs. We saw at the end of section 2.3 conjunction
with the Church-Rosser theorem that order becomes particularly significant when
conditionals (a form of annihllator) are Iintroduced. Specifically, PAL
expressions of the form

B ~>M | N (3.3-1)

are to have the meaning denoted by pi if the AE B denotes true, and that of N if
B denotes false. Ve know that we must evaluate the premise B before either the
true arm M or the false arm N if we are to avoid undefinedness In cases such as

ceq0 =>c/2 ]| 2/c ' (3.3-2a)

v
or iInfinite loops in recursive functions such as

let rec fn =neqg0=->11| nef(n=-1)

in (3,3=-2b)
f3

Recall from section 2.4 that evaluation of the AE corresponding to (3.3-2b)
depends critically on evaluation of the boolean ("n eq 0") and selection of one
of the two arms of the conditional before attempting to evaluate either arm.

(o) ol _o der o uatio

Needed Is a method for evaluating AE's involving conditionals which insures
that only the desired arm is evaluated. As is often the case, we have a choice
of ways to proceed, and the decision is somewhat arbitrary. We will discuss two
solutions: one conceptually more elegant, and the other with noticeable
practical advantages.

It is always pleasing conceptually to be able to describe a new construct
in terms of existing ones without the need to postulate new "built-in"
functions, and doing so turns out to be possible in the present case, The
possibility parallels the treatment of conditionals in the A-calculus (cf. page
2.3-77), in which the conditional expression

B ->MY|N (3.3-3)
is considered as sugaring for the curried combination
QBMN (3.3-4)

and Q has the property that
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Q true & AX. hy. x

. (3.3.5)
Q false 2 AXe AV Y

we must now take account of the difference in order of evaluation between the
blackboard procedure and normal-order reduction, since It turns out to be an
important difference. In the case of (3.3-4) the blackboard mechanism
evaluates first the control structure corresponding to N, then that of M, and
finally that of B, This obviously is unacceptable in cases such as (3.3-2).

Fortunately, it is easy to force the blackboard mechanism into simulating
the effect of normal-order reduction. The trick turns upon the blackboard
decision to defer evaluation of a A-body until the closure of which it is a part
is applied. When an expression such as '

[Ax., s=x~~1M (3.3-6)

is evaluated in normal order, M Iis not evaluated until, In the course of
evaluating the body of the A-expression, its instance which replaces x is
encouintered. In evaluation under blackboard rules M will be evaluated first.
To achieve in the blackboard mechanism the effect of normal order, we observe
that M in

[AXe ~~(x nil)—1[A(). M] (3.3-7a)

is not evaluated until x is applied to pll, since (3.3-7a) is equivalent under
axiom P to

v (LX) MT pil) (3.3-7b)
and hence to
e M e (3.3-7c)

It follows then that blackboard evaluation of (3.3-7a) simulates normal order
evaluation of (3.3-6), at least insofar as evaluation of M is concerned,

The equivalence of (3.3-7a) and (3.3-6) suggests a general technique
whereby a programmer can often override the PAL decision fo evaluate operands
before doing functional application. (We see in Section 3.4 that the technique
does have limitations.) In particular, we can accomodate conditionals in our
blackboard evaluator by using

Q@ B [A0).MT [X). N] nil (3.3-2)
instead of (3.3-4) as the desugaring of (3.3-3).
An Example: To see that the desugaring suggested in (3.3-8) works, we examine
blackboard evaluation of the PAL program

let F x =x >0 =-> x| =-x
in (3.3-9a) -
f 2+ f(=3)

The corresponding AE is
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(Af. £ 2+ F-3)1 Maxe x0 => x | -x] (3.3-9b)

Given our decision of (3.3-8), the body of the second a-expression 1is further
desugared as

Q (x> 0) ;0. x) (A0, =x) nil (3.3-10)
Then the entire control structure is
s %Al
& = +§ f2Y%f neg3
S, = ¥ Y¥E Q> xo0 YA nn (3.3-11)
§; = x
-84 = neg x

We must now Implement our decision of (3.3-5) about application of Q. First we
must declde on what abstract object in the universe of discourse is denoted by
Q. Let us use the writing Q to denote that ob. All that we can know about an
ob Is how it transforms, and all of gfs properties are given in (3.3-5). We
thus decree that application of Q to true in the blackboard machine leads to the

closure A;, and that application of.g to false leads to 1:, where

5o = AL

by = X

€ y (3.3-12)
§¢ = Ag-

5 = Y

Note that (3.2-12) follows directly from (3.3-4), When we make the substitution
of (3.3-12) we choose to form the closures in the then-current enviropment. (No
consequences follow from this decision, since there are no free variables in
either of the A-expressions shown in (3.3-5).)

An example using this method is shown in Figure 3.3-1. In line € we
evaluate "-3 > 0", leading to false in the stack. We next apply Q to false in
line 7, and get the closure 1); in the stack in line 8. The actual selection of
an arn of the conditional is performed in line 11, leading to 1%2 in the stack
in line 12. Similarly, ‘R; is produced in 1line 18, leading later to the
selection in 1line 23 of the true arm, 6%2. Environment layers 5 and 9, produced
by the application to nil of A-closures with empty bv-parts, have no name=-value
associations; but theng}e required to complete the linkage of environment
layers. It 1is this linkage, for example, that permits evaluation of x in line
13, X being defined in layer 2, \

Another dMethod: Although the method we have discussed clearly works, it is
obviously clumsy: It seems reasonable that it should be possible to do the
entire selection of lines 7 to 12 in one step. The problem is that we have used
general tools to solve a particular problem. Since conditionals are an
important concept in programming linguistics, it seems appropriate to provide a
specific tool to process them, a tool that leads to greater efficiency. We now
develop such a tool.
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Instead of regaraing the boolean expression
B -> M | N (3.3-13)

as sugaring for the combination shown in (3.3-4) and hence the tree shown in
Figure 3.3-2, we introduce instead a new type of node -- € -- and regard

N
Figure 3.3-2 8 n

Figuwre 3,3—_‘3'

R 8

(3.3-13) as sugaring for the tree in Figure 3.3-3. The convention is that the
left son of a § node is the boolean expression, the center son is the true arm
and the right son is the false arm. MNeeded is a control sequence for this. Now
note that the selection of an arm in Figure 3.3-1 was facilitated by the fact
that each of the two arms of the conditional was represented in the control by a
single control (ltem: )? and l?. We thus decide to use §'s to abbreviate the
arms, so that the control corresponding to the conditional expression in
(3.3-9b) which under the earlier method gave rise to (3.3-10) is now

838:(@>X0
The blackboard rule is then:

When B is the top item in the control, the top item in the
stack must be a truthvalue. |If it is true, then the second
item in the control is discarded, and evaluation continues
with the (old) third item as the top of the control., |If the
top of the stack s £gi§g, then the third item of the
control is discarded and the (old) second item is used. In
either case, the B and the top stack item are discarded,

Thus we represent the PAL program (3.3-9a) and hence the AE (3.3-9b) by the
following control structure:

s A% A |

§, = + 3 f 2% f neg3s

§2 = 8 I B> x0 (3.3-14)
éy = x

¢ = neg x

The conventjon guarantees that whenever g occupies the top of the control, then
the second and third items in the control will each be §'s. Figure 3.3-4 shows
evaluation of the control structure, The transitions on lines 7 and 13 are the
interesting ones. On 1line 7, the top of the control is g and the top of the
stack Is false, so we select &y (as shown on line 8), the second element of the
control, discarding the §3 as well as the ¢ and false. (In this example and in
all subsequent ones, we aid the reader by underlining the § selected by a @.
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Contvol Stack Envivonwment
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Figure 3.3—4: Evaluation of (3,3-14)
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Evaluation of this control sequence is shown in Figure 3.3-5.,

Control Stack Envérannwent
E, v M E
E, ¥ NN E,
E ¥ ¥ § 'ab' false . E|l 1! £= A: (o)
y M ok’ Tl
] Ea.>‘§ E, ar x = b’ (o)
E T 1)\} falie E,
Eq ¥ 5.‘ S,—e y X . E3l 3 \/:i—'ab‘e (.2)
5y 308 e
¥ Stern '&kj
IR Staw b’ E
s o

Figure 3.3-8: Evaluation of (3. 3-(5)

Summary:

blackboard evaluator is primarily a matter of objective.

as the

constructs and hence the complexity of
two, in

should be select

Church=Rosser
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Method

theorem

case

analysis, so
addition to

To prove results

the

Thus &4 1s underlined in line 7.) 0n(line'i3‘the top of the stack is true, so
we select §,. (The line corresponding to line 8 is elided after line 13.) It
should be clear to the reader that this mechanism has the same effect as that
shown in Figure 3.3-1, but that the present mechanism 1Is distinctly more
efficient.
Let us 1look at one more example of evaluation of a conditional in the
‘blackboard mechanism. We consider the PAL program
let f xy =
(y -> Stem | Stern) x
. (3.3-15a)
in
f 'ab' false
Here we have used a conditional expression as the rator of a combination. The
AE corresponding to this PAL program is
(A f. f 'ab' false) T2,x. Azy. (y -), Stem |_Stern) x] (3.3-15b)
and the resultant control sequence is
YW
& = Yy y £ 'ab' false
Baos A (3 )
.3=15c
O = ¥ 8, 8. B Y x
%q = Stem
% = Stern

Wihich of the two methods to select for handling conditionals in the

such

it is advantageous to minimize the diversity of
first
the demonstrated gain in

method
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efficiency, has also the advantage of capturing clearly the essence of
conditionals in programming: the §§lgggign of one of two ways to proceed. We
thus use method two in all subsequent evaluations, and we base the gedanken
evaluator on it in section 3.5.

3-3-132



Recursion . Sec 3.4

3.4 Recursion

We have already remarked 1in conjunction with (3.2-15) that If Z is the
fixed-point generating A-expression defined by

Z 3 AG. (Au. u u)daAv. G (v v)1 (3.4=-1)
then no expression of the form
Z F al a2 .,. ak (3.4=-2)

terminates under blackboard evaluation. Thus the decision to gain efficliency by
departing from normal order forces us to devise alternate methods for
accommodat ing recursion.

As we did In the previous section, we investigate here two approaches. The
first approach Iinvolves exploliting our ablility to control order of evaluation:
By Inserting semantically-irrelevant A's, we can modify the definition of Z In
such a way that (3.4-2) does terminate for certaln important specfal cases of
expressions E. The second approach is derived from the fundamental identity

YF ¢ F(YF) (3.4-3)

and involves making changes to the blackboard evaluator itself, Neither
approach, however, succeeds in vregaining the full semantic power of the
A-calculus forfeited by departure from normal order,

Applicative Modijf ication of Y

In order to see how (3.4-1) can be modified to vyield termination of
expressions such as (3.4-2), we show in Figure 3.4-1 part of the evaluation of
the AE

(Au. u u) (Av. F(v v)) (3.4-4a)

and hence of the control structure

AN AL

2
§ = § uu (3.4=4b)
8§, = § F¥ vuv

in an environment In which E is known. It Is clear from lines 6 and 8 that the

evaluation 1is 1in a 1loop and can never terminate, Now consider normal order
evaluation of Z _E, for the Z of (3.4-1) and assuming that F abbreviates some
-expression, We have

ZF [AG. (Au. u u) (Av. G(v V)] F
(Au. u u) (Av. F(v v))
[Av.. F(v v)] [Av. F(v v)] . (3.4-5)

F {Iav. F(v v)] [Av. F(v 1}

R lca L& ‘Q "l

3.4-133



sec 3.4 Evaluation of Applicative Expressions

Contro’ Stack Eﬁvironmeut
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Figure 3.4-1: Evaluation of (3.4 —-4).

The two evaluations are analogous up 'to the point where a rand is a
combination. From this point on, however, the two procedures diverge: In
normal order E is applied to the unevaluated rand in braces, whereas the
blackboard machine attempts to evaluate the rand and becomes trapped in the
lo0p

F
LR IR {Iav. F (v WAV, F (v W]} (3.4-6)

Jl2v. F (v VI, F (v v)1}
F

Looping is avolided if in lieu of Z we use

Z' = AG. (Au. u u) CAv. G(Ax. v v x)] (3.4-7)

as the fixed point operator, since then

' F5 (QQu. uuw) [Av. FAx. v v x)]
g»[u. FAx. v v x)I[Av. FAx. v v x)7 (3.4-8)
& FiAx. [Ww. FOAx. v v x)I[dv. F(Ax. v v x)] x}

Here the 1loop-inducing combination 1Is tucked away as the body of {Ax, ~~}.
Since evaluation of a A-body is deferred until application of the closure of
which it 1{is a part, the next step In blackboard evaluation of (3.4-8) is
application of E to {Ax., »~} , which agaln accords with normal order,

The semantlic irrelevance of replacing (v v) in (3.4=1) by (Ax. vv x) In
(3.4-7) follows from the observation that

(Ax. v v x) ng v Q (3.4-9)

for every applicative expression Q. Thus the effect of the replacement is
solely to modify the order in which subexpressions are evaluated, Some
presentations of the A-calculus use

Mo Mx XM (3.4-10)

as another axiom, called n-conversion, in addition to the ones presented in
section 2.3. Equation (3.4-9) is of course a special case of this axiom.
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The function Z' defined in (3.4-7) suffices to handle many Iimportant
instances of recursion, but it suffers from two disadvantages: First, Its use
in blackboard evaluation Is tediously Iinefficlent; and second, as we see

Hater, there are certain constructs which still cannot be accommodated.
’ .

To see both that Z' works and also just how Inefficient it is, we consider
the PAL program

let rec fn=neq0=>11}] n+* f(n-1)

in (3.4-11)
f3

and hence the AE

(Af. f3)1 [{P. (Ay. u u)(&y._G(ﬁ;. v v x))]

[Af.An. nea 0 =>1 | n*f(n-1)] } (3.4-122)
¢ s v 7
and hence the control structure
R
S = 3 £ 3
3. o= ¥ AN
§ = Juu
S5y = § 6 A;
s: _ i vy x (3.4-12b)
5(, = A:
8 = bg §4f ean o0
% = 1
89 =*n¥ f-nl

The first part of the blackboard evaluation of this control is shown 1in Figure
3.4-2, Lines 1 through 9 serve to set things up in preparation for the
recursion, and lines 18 to 23 lead from one recursive step to the next. It is
clear that the overhead is high and that a blackboard method for recursion that
reduces or eliminates -this overhead 1Is desirable. The method about to be
presented reduces the overhead noticeably, and we see later in this section a
method that reduces it still further.

h - ethod: We saw in section 2.4 (in (2.4-12d) on page 2.4-84, for
example) that AE's involving Y can be evaluated by p-reduction and p-reduction,
the latter being derived from the fundamental identity

YF = F(Y F) (3.4-13)

The lidea Implicit In p-reduction is that, although we do not know the value
produced by applying Y to E, we do know that it is the same as E applled to that
value. That is, we know that the value is a fixed point of E. We exploit this
jdea now to do recursion in the blackboard evaluator. We consider again the PAL
program (3.4~11), but now we regard it as sugaring for the AE

(M. £ 3)LY (Af. An. neq 0 =->1 | n*f(n-1))] (3.4-14a)
1 PR Y 5
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and hence the control structure

5N YN

8l = §f3

S, = A; |

83 = 84y égB ean 0 (3.4-14b)
8y = 1

8% = *nd f-n1l

Just as we introduced Q as a special lIdentifier in section 3.3, so now we
introduce Y. Blackboard evaluation of (3.4-14b) proceeds to

DA{

s o0 6 i 1 e a0 (30“‘15a>

and we are faced with the problem of deciding what Y is to do when applied to a
closure. Presumably the next step leaves some value in the stack, so we give
that value a name: 1. Now let E abbreviate oAi. Since we have said that the
value of Y F is ®, we can substitute 3 for Y E in (3.4-13) to get

nm= Fn

That is, the unknown value Y produced by applying Y to the <closure ’Ai is
equivalent to the value that would be produced by applying 'Ai to 4. Thus we

decree that the next blackboard line after (3.4-15a) is to be

R PR | (3.4-15b)

and we make a note that ) is an abbreviation for the resuit of applying Y to
oks. The rest of the evaluation Is shown In Figure 3.4=3. 1In going from line 3
to line 4, we associate f In the environment with the as-yet-unknown quantity
denoted by Ww. We make a note in the extra column at the right as to what p is
an abbreviation for. (in a more complicated evaluation involving several
recursive functions, we could use subscripted 1's, one for each recursive

function being defined.)

On line 13 Is the first need for the value of 3. Although we do not know
this value we do know what it is an abbreviation for, so on line 14 we have
replaced 1 by the application of Y to in. Thus line 14 repeats the situation
of line 2, and the evaluation proceeds, On line 33 the recursion terminates and
starts to unwind., Note that each of the three "n"s in the control In line 33 is
eventually 1looked up In a different environment, a fact that is essential to
make the evaluation come out correctly,

Note the Improvement in efficliency over the evaluation 1in Figure 3.4-2:
Initialization here takes &4 1lines, whereas it took 9 lines in the earlier
method. The first recursive call used four lines for overhead (lines 13 to 16)
and the other two each use three, since the line corresponding to line 14 is
elided. Thus the overhead of a recursion has been reduced from six 1lines to
three. No very solid quantitative conclusions on efficiency improvements can be
inferred from this argument, since counting lines In blackboard evaluation s

rather meaningless. It is safe though to conclude that efficiency has been
improved.

3.4-137



@ ¢ d
: =
| >3
o % .
v o
Al .
%
[} -~ —
X ~ ~ ~ ~ N
2w 5o
» m W ¢ < 3 = ~ * —4 <’ Qof
S ol & 0 i u ¢ n 1 f u u
AN w x G~ < “+ = o =<
pn [ 24 . - .. i .- IS .. .. .-
< () - ~ ~ 3 L ~o ~ 6 o~
Uy
° |uwd K¢ @ W W7 ~of
mk Wewe o QWW - A PR Rt ol ety e W W~ o
J
S8 O HE e K= o FF R e R .mm = = o g W@ @-t = ™
6 > N o PR ot W= =
: = = ¥ e -
= o
-
- e
Q & <
= | LY
- £ =aP® Wi-
o b3 WV o do dote b WTTUFT
x | W\A\. n\wm»ﬂ & F
- e o+ =W & * * * *
Q v WD WAy IS g o 3oV Ty af o W
el = I L oo Cﬂ £ s £ &
> F< S g o o W & Caﬂwfro * x %
< o o W ™~ D™ Yo o e o o W W W w? w’ Qﬂ
™~ _ _ L I
o x|H=< %< + w K| F £ = F
%w.»m > o S o o S g % * " *
Ql v W e W ui? AN 1
_ o - - ~ ™~ o \n
l3u:567ooa:lanuI:W/Ia WHMQ&HWUUl%&) umouw“3wwb/uww.ﬁum
~—— ~—__ N AR

3.4-138



Recurs ion Sec 3.4

Ihe-Nature of the Problem

We have seen that building a new mechanism into the blackboard evaluator
permits us to reduce noticeably the overhead for recursion, both for the
initialization and for each recursive call., Since recursion is so Important in
our study of programming languages, we would 1like to reduce this overhead
further [f possible. While the next Improvement to be made requires use of the
imperative features of PAL and we must wait for Chapter 4§ to see its details, it
is appropriate here to investigate further the nature of the problem.

Insight may be achieved by study of evaluation of the non-recursive PAL
program

let fn=neq0->1] n«f(n-1)

in (3.4-16a)
f 2
and the corresponding AE
(M. f2)IAn. neq 0 =>1 | nef(n-1)] (3.4-16b)
' a 3 4
and the control sequence
f \n
I A M
§, = ¥ £ 2
§8a = 8 %y B eqn 0 , (3.4~16¢c)
83 = 1

8« = *n¥f-n1l

Blackboard evaluation of (3.4-16¢c) relative to an environment in which the value
of £ is the function Succ is carried out (with many uninteresting steps elided)

Control Stack Evwvitonment
1 ﬁ>~u- A B, [ X} PE
2 E,XAf)\:_ . E, 1: = Suec (o)
3157 3,';:: -
$ Y § 2 L. Bt = A W)
s| &7 )h.& Ex
AR P AERERN
715+ Y £ - Es
'] * ¥ e L E
7| ¥ ¥
fo | H X

Figure 3.4 -%. Evaluation of (3.9-/6)

in Figure 3.4~4, Note that the value coupled with f when environment layer 2 is

[}
laid down Is the A-closure A,. It follows that application of f (the
transition from 1line 5 to line 6) creates a new environment layer (labelled 3)
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’ W%
which is appended to layer 1. Accordingly, the body 8‘.L of Aais evaluated In an

environment in which the value of f is determined by environment laver 1. Thus
the £ in §, references Succ.

‘ In order to effect a self-referential definition of f, it 1Is sufficient
that matters be altered so that the body of A: is evaluated instead relative to
an environment in which the yvalue of f is determined by the (new) definition of
environment laver 2. This would be accomplished if, somehow, the value of f in
environment layer 2 were *A: Instead of'A:_. Then the application of £ in line
5 would result in environment layer 3 being linked to 2 instead of to 1, and
then the lookup of £ in line 7 would result in a recursive call instead of a
call to éggg. To see this more clearly, consider evaluation of the PAL program
(3.4-11) using the desugaring (3.4-1ka). Since we plan to use a method other
than the Y-n method, we replace Y by Y" to emphasize the difference. Thus we
get the control structure

PR RN
6| =5f3
82 = A

(3.4-17
§ = 848, 8e€an0 )
8-, = 1
§¢ = *n{ f-n1l

Examine now blackboard evaluation of this control structure in Figure
3.4-5, Assume for the moment that application of Y" to 'Ai on line 2, the
details of which are elided, leaves the result shown on line 4., The key fact is
that the A-closure which is the value of £ in environment layer 2 is linked to
laver 2, rather than to layer 1 as it was in Figure 3.u4-4, In consequence,
initial application of f (the transition from line 8 to line 9) creates new
environment layer 4 which is appended &g-laxgg 2 rather than to laver 1. 1t
follows that any previous definition of £ (such as Succ) is superceded by the
new definition when f is encountered within the body of A;, as in line 11, The
same effect recurs until the premise "n eq 0" is true, at which point the
procedure unwinds. Thus evaluation of (3.4-17) produces the factorial of 3.
Note particularly that there was no overhead at all In successive steps of the
recursion, and that the initial overhead is in the elided steps. Clearly we
have met our objective of Improved efficiency, provided only that we can specify
a Y" that does what is wanted.

The Function Y": We now explain in detail a blackboard mechanism for Y" that
works as suggested above. Although the mechanism is rather ad hoc and not very
well grounded in theory, it is worth studying because it captures the essence
of what Is needed to do recursion. We defer until Chapter 4 presentation of a
PAL program that corresponds to Y, since such a program requires use of the
assignment statement, a PAL language feature whose explanation requires concepts
which we have yet to see,

We proceed as follows: We assume that the ob that is the value of Y" s
written (in the stack) as )Y!'. Because of the nature of the desugaring rules, Y"
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s e Ay YR E, |1t 4= Sace (o)
2 S o Y '/\jE,
¥ )\H_E‘\_________________________Z‘J_E.z_‘ 2: £ A (1)
s ¥y N UM
6| E ¥ NN E
7 E’J + 3 - E; |3 £ - :X; (2)
51E 0 . N 35
7| E, & sfagmo E N n= 2 (2)
o|E, ¥ n ¥ F — n E,
7 ¥ N & &,
12 E, 8435 8 ap M 0 E |5 = 2 (9
{13 E} 5 -n E
(¥ v G L E,
(5 B dyo5sB g™ | E, 6: n= L ()
16 E ¥nd £ —ml £
5 r N 2 &
¥ 57_5:,«5:6"*5" ! &
IT|Ey ¥ " E¥ n £, » mE E, E, E E,
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* ¥ " E ¥ 2L &
a2 | E, * 3 2 E
23| L
Figu'rc 3.4-5;. Evaluation of 63,‘/—-/7),
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can be used only as a rator in a combination whose rand is a A-closure. Suppose
then that we encounter

e e hoLL (3.4-18)

o~

in environment 2. We again explolt the fundamental identity. Study carefully
the following steps:

(1) We want to know the value produced by applying Y!" to 5&§. Call

that value B, and let F abbreviate LA?.

(2) Since Y is a fixed point operator, it must satisfy the fundamental

identity.
(3) Since 8 is Y' F it follows from (2) that 4 « E 8.

(4) Therefore we can evaluate 8 by evaluating F_8. That 1Is, we can
proceed from (3,4-18) by applying bXﬁ to 0.

(5) We would like to use the blackboard evaluator to do this, but we
can do so only Iif we know €. But that is what we wanted in the
first place.

(6) Not knowlng'the value of @, we assume temporarily a value for it
which we call 2. When we eventually get a value for ¢, we wil]
replace the 1 by that value.

‘
(7) Thus we replace the application of Y" to LA; in (3.4-18) by

application of bA; to 2. This leads to the subproblem of

evaluating §; in an environment in which f Is associated with 2.
Call that environment ¢.

(8) After a while the subproblem will terminate with a value In the
stack: Call it «, Since o is the value of 6, it follows from

(3) that this is the value we wanted and is what we should have
used instead of 2. Thus in environment ¢ we replace the 2 by &,

A1l of this can be summarized:

b, €
1 L N ) 6 Y" L I ]
5 ¥ s f‘ (3.4~19)
LN ] _—_______:“__.:-:— LI ol
3 .":Ec* 8 Ecﬂ eee | €2 f =T (b)
“ leoe -0': ’
5 ...:fc* x EEJ cee
5 e e e “ e o0

There are several points to note about this:

« The 2 in environment layer ¢ is shown as being crossed out and
replaced by x. This is done when the evaluation reaches line 5.

. The environment markers for layer ¢ are shown as Ec* instead of Ec as
usual. The purpose is to serve notice that something out of the
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ordinary is to be done on completion of the subproblem;
specifically, that the variable in layer ¢ is to be changed.

. The 2 as the value of £ in the subproblem serves notice that the value
of f should not be used in the course of the subproblem.

. Evaluation of the identifier Y'" produces the ob x: in the stack.

The method is clearly ad hoc and has an alr of magic about it. We present it at
this time because we want next to compare the Y's we have seen with one another,
and we need an exposition of each to do so, We have yet to give any argument
that the method works. 1In fact It frequently does, and there are several

examples In the rest of this section of its use., The PAL implementation uses a
method very similar to this one.

Comparison of Y's

We have now discussed four different ways to handle recursion in blackboard
evaluation:

. normal order evaluation, using the axioms of section 2.3
. the A-expression Z', defined by (3.4-7)

. the Y-1 method

. the function Y" just described

We have already compared these methods in one way, having observed that each Is
noticeably more efficient than the previous one, We now want to consider
situations in which, in a sense to be described, the methods "don't work".
consideration of PAL's within construction leads nicely to such problems.

As mentioned on page 3.2-121!, the "within" construct plays an Iimportant
role vis-a-vis computational efficlency. The role becomes particularly
significant In connection with recursive functions., The PAL expression

let rec (c = P within gn = Q) in M (3.4-20)

exemplifies the definition of a recursive function g involving an own variable
c. (Note that PAL's syntax requires the parentheses, since without them the
parse would be different.) We desugar, first reducing the  definition to the
standard form

let rec g = (Ac. An. Q) P in M (3,4-21)

and then reducing to the equivalent AE

(Ag. M) {Y [Ag. (hc. An. Q) P1} (3.4-22)
] a 2 14
Using X" for ¥ and (g 3) for M in (3.4-20) leads to the control structure

5N ¢y Al
8( = b3 g 3
§2 = YA P (3.4-23)
53 = )‘;‘
% = Q
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Evaluation of

Evaluation of Applicative Expressions

this control is shown in Figure 3.4-6.

By line 10 we are about to

Control Stack | Environment
1| Eo N ¥ YL E, | ot PE
2 ¥ XN E, Ay
(4 P ¥ Y =
2; A:'_,:;M. ')“pg" 1t g 2 (o)
. el d an 7
5 vEffa_X: E, 25 = P (1)
6| ¥ XN§g | 2 E"
21 E ¥ RNE, .
;;Egzrgz a)\"gfj 3:g=>\, (o)
EJ ¥ Y w%
101 £ Q E, | ¥+ m = 3 (3)

Figure 3.4-6: Evalugtion of (3.4-23)

evaluate Q, in an environment

occurs free

not again

evaluated, just as one

in which n, £ and g are known. Note that

if g

(as It presumably does, else why the rec in (3.4-20)?), the
value assoclated with it s the same as the value associated with g in M. P is

(Compare the PAL program

with (3.4-20).

from M.)

let rec g n = (Q where ¢ = P)

would hope with the within construction.

Here P is evaluated each time g is called, either recursively or
Note also that P is evaluated In an environment in which g is known,

Thus it would appear that there may be free occurrences of g in P. But may

there?

properly programs

deficiency.

This point

such as

Although " is clearly

(3.4-20), carefuly

It seems clear that the scope of g Is to include P.

efficient and
study uncovers a

is discussed in the next subsection.

seems to handle
semant ic

(This fact is

obvious In (3.4=22), In which P appears in the body of LAg.s],) Thus free
occurrences of g in P are to denote the recursive function being defined. But

in Figure 3.4-6 the evaluation of P takes place at line &,
associated with 2 in environment 1.

There is

function.

3. 4=14k

kind of <case in which there is no problem:
For example, consider

while g s still

What value of g can be used?

when ¢ Is a
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let rec
( ck=P
within
gn=0Q (3.4-24)
)
in
M

since any free g's in P occur in the body of (\k.w), they are not needed until
¢ is applied in Q. By that time g Is no longer associated with 2. That is,
ce 'A: so that when §, Is evaluated it Is in an environment linked to El, in
which g is then properly defined.

To continue with the case where ¢ does not denote a function, consider
first the PAL program

let rec
( c =120
within
fn=neq0=->11]1neqb5 =->c | n*f(n-1) (3.4-25)
) 4
in

£6+ F71+f38

This variation on the factorial is designed for greater efficlency than the
usual definition for arguments 5 or greater, This is not yet an example of the
problem -- there are no problems here with any method for recursion,

Evidentliy.the writer of (3.4-25) knew that the factorial of five 1Is 120,
Suppose the function is to be changed, so that the cutoff is 10 rather than 5.
Not knowing the factorial of 10 one might try

let rec
( c = f10
within
fn=neq0=>11]neql0 =>c | n*f(n-1) (3.4-26)
)
in

f 11 + £ 12 + f 13

This program fails for all methods of doing recursion, since we must apply f to
10 to get a value of ¢, but doing so requires knowing ¢. (A proof that (3.4-26)

cannot be evaluated by any Y would require only showing that normal order ‘leads

to a loop. Why is this sufficient? The reader is advised to carry out the
proof.)

There Is an obvious minor variation on (3.4-26) which avoids the problem
just presented:
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let rec
o c=f10
within
fn=neq0-=->11]neqll =>1l*c | n*f(n-1) (3.4-27)
, ,
in

f11 + f 12 + f 13

Now there is hope, at least, since f 10 can be evaluated without knowing a value
for ¢. But it is by no means clear which Y, if any, will work.

To find out, we simpliify (3.4-27) slightly to an AE that Is easier to work
with. Let F abbreviate the AE

MJIAc.hnineq 0 => 1 | neq 11 => 1ll*c | n+f(n-1)]1(f 10) (3.4-28a)
Then we concern ourselves with the AE
(Af. £ 11) (Y F) ‘ (3.4-28b)
We first Investigate normal order reduction. We have
Qf. F1D (v S vE 11
Let us write first Y F: We have

YF

Lr v P ,
€5[ac.An.neqg 0 => 1 | neq 1l => 11*c | n*Y F (n-1)1 (Y F 10)
S[Mreneqa 0 => 1 | neq 1l -> 11*Y F 10 | n*Y F (n-1))

Now for any Kk such that k # 0 and k # 11, we have

YF k
“keq0=->11] kegqll => 11+«Y F 10 | kY F (k-1)
¥ keY F (k-1)
Also,
YFO0=1
Since

YF11 211 « Y F 10

it follows that Y F is the factorial (as expected) and that there are no
problems. Y F_k has normal form to all non-negative integers k. (As might be
expected, the efficiency gain of the within disappears under normal order,)

We now show that Z', the Y= method and Y" all fail to evaluate (3.4-28).
Consider first Z'. Replacing Y in (3.4~28b) by the A-expression (3.4-7), we get
the control structure

3,4-146



Recurs ion Sec 3.4
r ok g A%
&y = § f11
82 = 4 A 0 f 10
53 = M
s'l = 85 565 eq n O
Sy =1
8§, = 8, §; feanll (3.4-29)
8, = *1l c
% = *ny¥ f-n1l
S? = Al’o Al:‘
%0 = ¥ g &
S = 0 F A.:_
%2 = ¥ ¥ hhx
The beginning of an evaluation of this 1Is shown in Figure 3.4-7, Line 13
repeats line 7, and we are In a loop.
Com'tro/ Stac k Er virowwenT
o E,JA‘,UA:,X{; oFeg 2|0 PE
2 r \ Ay M E, .
3 RPN , E |1tF =N
ll El b/ 'xlao ‘)u El | h
s BLTg g o B2 pE A W)
A 52.6 X ’\n /\u E:g .
7 ETF M e 3 B |3 h W
3 T . N ME | -
1 E T A 0§ e N R AT A Y ©
10 ¥ A L0 E,
I E.T T h b x - Stk = 10 (3)
n R 1 An M IRE,
3 IEYXEVNETETF M\ ErEEEI6 h- "\

Figure 3.4=-7:

Evaluat fon of (3.4-29) using the A=expression Z'.

The Y-1 method, shown in Figure 3.4-8, fares little better.
replaced A; on the first line of (3.4~29) by Y, causing the last four lines to

be unneeded.) The 1loop here comes

initialize Ce
apply A; to the unevaluated rand.

from an

attempt

to

(Here we

evaluate f 10

The corresponding step In normal order after line 4 would be to

have

to
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AConfroI St zck Environwent Pefs
R R R __E[01 PE

2 ’ LNE e
3 ¥ A N~ A
y E ¥ X7 f 1o E, |1: ¥ = n (o)

s g L L2

6 rr A‘:n

71l v NE ¥ XY E ¥ AT § 0 E I2EE|a: £ = » (o)

Figure 3,4~8: Evaluation qf (3.4-29) by the Y-n Method
—

Figure 3.4-9 shows evaluation using Y". Here we need the value of £ while
it Is still 2.

W m
Control - Stack | Environmen t

1 |E, & Af'yw): ve E, 0! PE

Ca y ‘N

3 § M)

4 E §X ¥ F 0 5 1§ = P (o)

Sle s NE UMY ? 12 g E

Figure 3.4-9: Evaluation of (3.4-29) using Y".

We can draw two conclusions: First, although we can evaluate (3,4-28) in
normal- order, each deviation from normal order which we have tried leads to
failure. Second, we developed the Y-N method and then Y" to improve efficiency,
and we do see that each of these revealed the problem in fewer steps thah did
the previous one, One final comment: The PAL implementation, which is
modelled closely after Y", also fails on this program.

A Family of Y's: A natural question Is to ask whether there is any systematic
departure from normal order that terminates for (3.4-28)., It turns out that
there is, and that there are some Interesting observations to be made In
studying the problem, We started this section by observing that if Z Is defined
by

AFe (Au. u u) (Av, F (v v)) (3.4=30)
then no expression of the form
ZFal a2z ... (3,4-31)
terminates under blackboard evaluation. We derived
Z' T AF. (Dus u u) (Ave F (Ax, v v X)) (3.4-32)

and showed that, at least for some AE's F,
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Z' F al a2 ...

terminates Iin blackboard order. Clearly the function £ in (3.4-28b) is not such
an E.

We derived Z' from Z by observing that the problem in order of evaluation
could be circumvented by adding semantically irrelevant A's. An obvious
question now Is whether we <can find a modification of Z' =-- say Z'' -- that
works for (3.4-28)., To ald our thinking, we consider the simpler PAL program

let rec
( c =g
within
gn=neq0=>11] ntc (3.4-33)
)
in
g 5

since thls rather silly program captures the essence of the problem of (3,4-28)
and is easier to work with. The corresponding AE is

(Ag. g 5) §Y [Ag. (Ac. n. neq 0 => 1| n+c) (g 011} (3.4-314)

and we are Iinterested In a A-expression for Y such that evaluation of this AE
terminates In blackboard order. To gain insight, we look more carefully at what
fails for Z'. We define the following abbreviations:

F 5 Ag. (Aco ANeneq 0 =>11 n+tc) (g 0)
M B M. F(AXe vV v X) (3.4-35)
AL 2 OMX. A A X

Then we are concerned with the AE
CLAG. (Au. u u) (Av. G(Ax. v v x))] F 5 (3,4=36)

At first the evaluation proceeds Iidentically in normal order and blackboard
order:

Z' F 5
2 [AG., (hu. u u) (Av. GOAx. v v x))] F 5
N (AUs U U) (Ave F(AXe V V X)) 5

9; [Ave FOXe v v X)) [Ave FOX. v v x)] 5 (3.4-37a)
= F (Ax. )‘l Al x) 5
FOE A S

Sy (hc. An. neq 0 ->1 | n+c) (A 0) 5

The next step in blackboard order Is to apply A, to Q. But this .leads to a
loop '

A0
4 )‘ A( 0

(30“'37b)
2 F (Axe Ay Ay x) 0

R

(Mo ANn. neq 0 =>1 | n*c) (A, 0) O
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since the next step (in blackboard order) is again to apply A, to 0. There is
of course no probiem in normal order,

Compare this evaluation carefully with that in (3.4-8) on page 3.u4-]34.
There we avoided a 1loop by tucking the loop-inducing combination away as the
body of a A-expression. This kept us out of trouble for the simple combination

[Av. F(v V)] [Av. F(v V)] (3.4-38a)
but fails for the "two-level® combination
[Ave FOAxe v v x)1 [Av. F(Axe v v x)J 0O (3.4-38b)

because of the presence of the extra rand 0. We can solve this problem by using
two levels of padding with semantically irrelevant A's, by defining

Z'' 2 AF, (Du. u u) (Ave FAXe AY.e vV V X ¥)) (3.4-39)

Here we have once agaln used n-conversion, as in (3.,4-10). The reader should
satisfy himself that

N ' F 5
terminates under blackboard order, although Z'' is even less efficient than Z!

It is not hard to see that Z'' does not solve all our problems: Consider

let rec
( c = g al a2
within
g nl n2 = Q (3.4-40)
)
in
M

This loops using Z'', but would terminate for
Z''Y = AF. (Du. u u) (Ave FAXe AYe MZo V V X ¥ 2Z))

Iindeed, for any PAL prograwm of the form

let rec
( c =gal a2z ... ak
within .
gnln2 ... nk = @ (3,4=41)
)
in
M

we can find an appropriate fixed point operator Z::L to accommodate it.
Conversely, however, given a design decision that always adopts any particular
21:1 in desugaring rec, one can always write a program such as (3.,4-41) that
cannot be accommodated, even though it could be evaluated in normal order,
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3.5 Ihe Gedanken Evaluator

The blackboard methodology deveiloped in preceding sections has been
mot ivated primarily by human considerations. We have sought to gain insight
into the structure of the environment tree. built up 1in the course of a
computation, and into how computational efficiency relates to order of
evaluation. To these ends, we have sought to organize and display successive
stages of an evolving computation in an easily comprehensiblie format,

it should be recognized, however, that our blackboard procedure has not
been defined precisely. Indeed, precise definition is unnecessary for two
reasons: First, we have been concerned exclusively with applicative
expressions, the semantics of which are already established in terms of the
A-calculus and the postulates underliying the universe of discourse., And second,
the procedure 1Is to be carried out by people, who presumably can resolve
uncertainties in accordance with what they understand to be the established
semantic intent.

Although the A-calculus suffices to define the semantics of the applicative
subset of PAL, we have mentioned at the beginning of this chapter that semantic
specification of PAL's imperatives involves additional concepts. Specifically,
the introduction of imperatives into PAL corresponds to a change of perspective:
Beforehand an evaluator s peripheral, in the sense that its operation mirrors
the effect of evaluation via the rules of the A-calculus. But hereafter the
role of the evaluating mechanism becomes central, since the introduction of
imperatives admits constructs whose semantics apparently cannot be.expressed, at
least in any natural way, in terms of the A-calculus, Thus the semantics of
imperatives cannot be specified without specifying the evaluator itself, Our
purpose in thls section 1Is to develop an evaluator for applicative PAL. In
chapters 4 and 5, we expand the capabilities of the evaluator so that It
handles imperative PAL also.

Methodology and QObjectives

The objective of the present section is to introduce a "gedanken evaluator"
for the applicative subset of PAL which

(a) Is isomorphic to our blackboard procedqre, in the sense that both
always produce the same result in substantially the same way, and
which also

(b) can be easily extended in Chapters 4k and 5 to accommodate semantic
definition of PAL's imperatives as well,

Qur present task 1Iis to explain the gédanken evaluator. Since it is nothing
other than a very compliex algorithm, and since we have claimed (at the beginning
of Chapter 2) that the purpose of a programming language is to serve as a set of
conventions for conmunicating algorithms, we take the obvious path and choose to
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exhibit the evaluator as a PAL program. It is the operation of this program
that we have been simulating with the blackboard evaluator.

Given our decision to exhibit the algorithm in PAL, we are faced with the
task of selecting representations of the various computational entities with
which we deal, as well as of writing the detailed PAL programs. The usual way
to write a program Involving various variables such as x, y and z as well as
functions such as E, G and H, Is in the form

let
and
and z = .,.

x
]
.
.
.

<
"

.

.

in
let F(...) = ...
in
let G(...) cos
In
let H(.oe) = 440

in

LI )

Here x, Y and z may be used In defining E, G and H; E may be used in G and H:
G may be used in H; and all six may be used in the "main program" at the end.
Iin the programs to be presented, we want for the sake of convenience of
presentation to exhibit functions such as H above without showing at the same
time the preceeding and following text. To this end we use the PAL feature
def, which permits writing a single definition In isolation., Thus a writing
such as

def H(...) = ...

def ines the function H, but we do not attempt to ascribe semantics to this
writing except in a "suitable context', As this section proceeds we present

nany functions defined by the def construct, providing the "suitable context'" by
explanatory text in English. |In the appendix at the end of this section all of
the functions are collected together in order, providing the proper context.

An important question to be decided on in writing any program as this one

has to do with representation of the data objects with which the program deals.
In the blackboard evaluator we know that "x" appearing in the control represents
a variable, while "2" represents a constant. In order to write a PAL program
that does the same thing we must decide how to represent constants and
variables, as well as A-expressions and other constructs, so that the necessary
operations can be done. For the most part we ignore issues of representation in
the early part of this section. Instead, we assume that the necessary
predicates, such as "lIs_variable" and "Is_constant" suggested above, can be
written. A1l of the necessary details are provided eventually at the end of
this section, but the main part of the section may be read without worrying

about them., The earlier programs are not incorrect -- just incomplete.
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Logical Bootstrapping: In a sense, use of PAL to describe the gedanken
interpretor involves the circular logic of using a language to describe Iitself.
Such a procedure is not wunusual in the field of computation -- a classical

exercise is to write in some language a compiler for the language, and then to
claim that the program "explains' the language. The utility of the exerclise is
that one need then understand only a single program (presumably written in a
subset of the language) in order to.understand the whole language.

This advantage, of course, 1is one which we secure automatically. In
addition, however, we achieve a stronger result: By writing the Interpretor in
terms of the applicative subset of PAL, we gain an “evaluating machine" whose
operation is defined by axiom. The semantics of our program then is defined by
the reduction axioms of the A-calculus, the axioms defining PAL's universe of
discourse, and the desugaring rules. Thus our specification of PAL involves
logical bootstrapping rather than logical circularity. (A small lacuna in the
argument remains by virtue of our decision to use PAL syntax In defining the
interpretor. To desugar the Interpretor program into a pure AE, however, is an
intellectually vacuous exercise 1In virtuosity and perseverance.) This
bootstrapping activity 1Is continued in Chapters L4 and 5, wherein the full PAL
interpretor is developed Iin two phases, The first phase presumes prior
definition of PAL's applicative subset, called R-PAL, and extends to the
language L-PAL which includes assignment, sequences, and structures. The second
phase in turn presumes prior definition of L-PAL and completes extension of the
language to J-PAL to include labels, goto's, and the constructs valof and res.
J=-PAL is the PAL of the PAL Manual.

e f is_Se ¢ Our objective in the rest of this section is to write
in PAL the function Gedanken_evaluator which accepts a PAL program as input and
whose value is the value of the program. We divide our labors into two parts:

translation of the program into control structure, and gvajuation of the

results., Thus we write

def Gedanken_evaluator Program =
let Control_structure = Translate Program (3.5-1)
in ’

Evaluate( Control_structure, Empty_stack, PE )

The input to Translate Is some representation of a PAL program, about which we
have much to say later, and Control_structure 1Is much akin to the control
sequences we have been using as input to the blackboard machine,

The function Evaluate works very much as does the blackboard evaluator.
its three arguments are the initlal control, stack and environment. PE is the
primitive environment, and the stack is initially empty,

Our next goal is to specify the functions Transiate and Evaluate. As part
of doing so, we must specify the representations of the PAL program, the control
structure, and the control, stack and environment of the evaluator. We proceed
by defining first the representation of control structure and of the components
G, S and E, defining next the workings of Evaluate, defining next represention
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of PAL programs, and finally specifying the function Translate. 1In our initial
discussion of Evaluate we ignore the possibility of simultaneous definitions.
In discussing Translate we show the control structure which they give rise to,
and then 1later we go back to Evaluate to show the changes needed to accomodate
them,

Representation of the Control, Stack and Environment

As we have seen, the gedanken evaluator with which we are concerned has
three components. We refer to the control, stack and environment as £, S and
E, respectively. (In Chapter 4 we add a fourth component M, for memory.) We
sometimes refer to the evaluater as the "CSE machine".

Historically, our CSE machine 1is a direct descendant of Landin's SECD
evaluator, described in Landin (1964), We have permuted the letters to
correspond to the way the components are written in blackboard evaluation, and
we have subsumed Landin's dump (the "D") by using environment markers in the
control and stack, The idea Is the same.

is a 4 e : Our next task is to choose representatlons of
the components C, S and E. C and S are each represented by a ]list, so it is to
lists that we first turn our attention. As we have done in the past, we start
with a structure definition:

A list of objects is elther
empty, or it is
non-empty, in which case it has a (3.5-2)
top, which is an gbjegt, and a A
rest, which is a list of objects.

Note that "object" is, In a sense, a free variable In this definition. Thus we
can use terminology such as "list of integers" to refer to a 1lst in which each
top Is an Integer. We choose to represent the empty 1list by "nil1", and a
non~empty 1list by a 2-tuple whose first component is the top and whose second
component is the rest. Various functions useful when dealing with 1ists are
defined by ’ ’

def t(x, y) = «x // top of a list (3.5-3)
and r(x, y) = y // rest of a list
and Push(t, r) = ¢t, r // make a list

def rec Prefix(Ll, L2) = // concatenate 2 lists
Null L1 -> L2 |
Push(t L1, Prefix(r L1, L2))

def 2d x = t(r x) // second element

and 3d x = t(r(r x)) // third

and r2 x = r(r x) /! rest of rest

and r3 x = r(rir x)) // rest of (rest of rest)
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We frequently find it useful to represent lists graphically. An obvious
way to represent a 2-tuple Is shown in part (a) of Figure 3.5-1, Since in
general the "rest" s also a list, we usually find it more convenient to use the

41—
top rest 1o
rest 2
€a) Cb) b
Figure 3.85-1: braphical Representadions C9)

vertical display of part (b) of the figure, Thus the list which in PAL might be
written as

(1, (2, (3, nil)) (3.5-4)

can be presented graphically as in part (c). The circle at the bottom stands
for the empty Vist, nil. The various "tops" of the list are its components. We
somet imes have lists some of whose components are lists.

Representation of Control: We start with three structure definitions:

A control structure is a

list of control items. (3.5-53)

A control item is elther a
constant, or a
variable, or a
M-expression, or
BETA, or
AUG, or
RETURN, or
GAMMA ,

(3.5-5b)

A A-expression has a
bv-part, which is a variable, and a (3.5-5¢)
body, which is a control structure.

We later change the 1last definition, permitting structured bv-parts in
A-expressions so as to accomodate simultaneous definitions. RETURN corresponds
to an environment marker in the control of the blackboard machine, signifying
termination of a subproblem. The other control items are as in the blackboard
machine.

We have stated previously that writing structure definitions such as these
implies the existence of certain predicates, selectors and constructors. Any

representation we might choose must permit us to write these functions, or the
representation is not satisfactory., As suggested earlier, we do not choose to
specify now the representation we use for each of the items just 1listed,
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defering that until later. We claim though that we can write the predicates
Is_constant, Is_variable and |Is_lambda_exp; the selectors bV and Body (to be
applied to A-expressions); and the constructor Cons_lambda_exp. We also
assume that variables named BETA, AUG, RETURN and GAMMA are in the environment
with values which are in the domaln of the functor eg. All of these entities
are defined In the PAL programs at the end of this section.

As a convention, predicates written for wuse in the gedanken evaluator
‘always have names that start with "Is_", such as "Is_variable", to distinguish
them from built-in PAL names such as "lsstring". Recall that the underscore may
be used as part of the name of a variable in PAL.

'Conditlonals, such as
B ->M | N
are acconmodated (as In blackboard evaluation) by a control which

begins with the control corresponding to the premise B,
followed by the control symbol 8,
followed by the control structure corresponding to N, the false arm,

followed by the control structure corresponding to M, the true arm,
followed by the remalnder of the control.

Thus we have encompassed all cases of current interest.

An example illustrating the format of control structures 1is provided in
Figure 3,5-2, which corresponds to the PAL program

(let a = 5 in (Zero a => (b where b=3) | a) + 2) *» 3 (3.5-6)

Of course, the structure definitions (3.5-2) and (3.5-5) and the example of
Figure 3,5-2 do not suffice to specify completely what control structure
corresponds to any given input PAL program: This correspondence is establlshed
formally by the function Iranslate. But for the time being we can vrely upon
the intuition already gained via blackboard evaluation,

Representation of the Stack: As with the control, we start with two structure

definitions:
A stack is a list of stack items. (3.,5=7a)

A stack .item is elther a

PAL constant, or a

PAL tuple, or a

A-closure, which has a (3.5-7b)
by-part, which is a variable, and a
body, which is a control structure, and an
environment, or it is

XY, or an

eta-object, or an

environment.
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(lg't 2=S5in (Zero 2 » (b where b=3) la)*l)%\}
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We again postpone discussion of the detallg.of the representation. We assume
that we <can write the predicates Is_constant, Is_tuple (which differs from
Istuple), Is_closure, Is_Y and ls_eta; the selectors bV, Body and Env (the
first two of which can be applied to either a A-expression or a A-cliosure); and
the constructor Cons_lambda_closure. Cons_lambda_closure takes two arguments: a
A-expression and an environment.

Representation of Environment: As in the blackboard evaluator, an environment
provides a pairing between names and values, along with a 1link to another
environment., The structure is

An enviropment is either
empty, or it is
pon-empty, in which case It has a
pame, and a ’
value, and an
environment.

(3.5-8)

We represent the empty environment by pnil, and a non-empty environment by a
3-tuple whose first component Is the name, whose second component is the

associated value, and whose third component 1is the next environment layer.
Names in the environment are represented as are variables in the control, and
values are represented as they are in the stack.

We assume Initially (and exhibit later) a function Lookup, such that the
call

Lookup(Var, Env)

returns the value associated with variable Var in environment Env.

Ihe Evaluator

We have said that the gedanken evaluator has two parts: a translator and
an evaluator. We discuss in this section the latter., The definition of the
evaluator is given by the following PAL program:

def rec Evaluate(C, S, E) =

Null ¢ => t S | (3,5-9)
( let New_C, New_S, New_E = Transform(C, S, E)
in

Evaluate(New_C, New_S, New_E)
; .

The function Transform Is applied to a CSE 3-tuple corresponding to the state on
one line of the blackboard evaluator, and returns that CSE 3-tuple corresponding
to the next line. Evaluate calls itself recursively until the control is empty,
at which point it returns as the "answer" the top stack item. Our task in this
section is to specify the workings of Transform.
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Strategies in the Evaluator: Quite a few arbitrary decisions were made in
development of the blackboard evaluator, and some of these require further
discussion in connection with the gedanken evaluator., For example, we elect to
use the Y-W method in the gedanken evaluator to accomodate recursion, since it
seems to be the method which is most efficient, both .in 1Its operation and
conceptually, of those that are available. (It is unfortunately not practical
to express the algorithm of Y" in R-PAL, since wupdating of the "?" in the
environment really vrequires an assignment command.) |In the desugaring process
to be specified In Transiate, definitions of recursive functions transform into
the application of the wvariable "Y#" to a suitable A-expression. Since this
name is not acceptable syntactically as a variable name in PAL, its use cannot
conflict with any name used by the programmer. The primitive environment PE
supplied to Evaluate associates Y# with a special built=-in value which can be
recognized in Transform so that vrequisite special processing can be done.

Applying Y# to a closure results in an eta-object in the stack, which has the
closure associated with it.

Tuples are accomodated by the control item AUG, and a tuple such as

31 !‘l 5 (3-5-103)

written by the programmer |Is desugared by Translate as if the programmer had
written

nil aug 3 aug 4 aug 5 (5.5-10b)
when AUG appears at the top of the control, the effect 1Iis to build the

appropriate tuple from the top two stack items,

Ihe Function "Transform': Recall that Transform is applied to a CSE 3-tuple
corresponding to a line of blackboard evaluation and returns that 3-tuple which
represents the next line, It is defined as follows: '
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def Transform(C, S, E) = - (3.5-11)
let A=¢C, S, E // to save writing later
and x =t C // the top control Item
in _

Is_constant x =-> Eval_constant A
| Is_variable x => Eval_variable A
| 1Is_lambda_exp x => Eval_lambda_exp A
| x eq BETA -> Do_conditional A
| x eq AUG -> Do_aug A
| x eq RETURN -> Do_return A
| x eq GAMMA

=>(letr=tS [/ the rator
in

Is_closure r => Apply_closure A
Is_constant r -> Apply_constant A
Is_tuple r => Apply_tuple A

Is_.Yr => Apply_Y A
Is_eta r ~-> Apply_eta A
error

)
| error

There are several points to note about this program:

. The function Transform is not recursive, the recursion being done by
Evaluate.

. It uses eleven functions which we have yet to write: three to do '"Eval's,
three to do "Do"s and five to do "Apply"s.

. The control item RETURN corresponds to the presence In the blackboard
evaluator of an environment marker at the top of the control. It signifies
a sub-probiem exit.

. The program uses the non-PAL reserved word "error", whose semantics should
be obvious,

. It makes explicit use of the various predicates and selectors for control
items and stack items which were discussed earlier.

In the next several subsections, the missing functions aluded to are provided.

The "Eval' Functions: There are three evaluating functions used by Transform,
one for each type of control item which has a value: constants, varlables and
A-expressions. As in the blackboard evaluator, the value of a constant is
implicit in the constant (the detalls differ), variables are looked up In the
environment, and A-expressions are evaluated to form A-closures by associating
with them the current environment. The three functions are: '
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def Eval_constant(C, S, E) = /( Evaluate a constant.,
let V = Value_of(t C) // lIts value.

. (3.5-12a)
in
r C, Push(v, S), E
and Eval_variable(C, S, E) = // Evaluate a variable.
let V = Lookup(t C, E) // Look it up.
! (3.5-12b)

in
r C, Push(v, §), E

and Eval_lambda_exp(C, S, E) = // Evaluate a A-expression,
let V = Cons_closure(t C, E)
in (3.5~12c)

r C, Push(v, S), E

Note that each of these returns a C-S-E 3-tuple. Consider Eval_constant, The
top item in the control when it is calied is known to be a constant (or this
function would not have been called by Transform), so the function Value_of Is
called to return the constant's value. (This function is defined later, since
it depends on the representations yet to be specified for items in the control
and the stack.) The 3-tuple returned by Eval_constant consists of the rest of
the control after deletion of the constant, a stack with the new value pushed on
top of the old stack, and the old environment.

The other two functions are similar, the second using Lookup to find the
value of the variable In the current environment and the third forming a
M-closure by associating the current environment with the A-expression.

Subproblems: In the CSE machine as in the blackboard evaluator, application of
a A-closure Involves setting up a subproblem to evaluate the body in an
appropriate environment, Jleaving enough (information to get back to the main
evaluation on completion of the subproblem, The new control is formed by
pushing the <control item RETURN onto the existing control, and then prefixing
the body of the closure being applied on top of that. The new stack, as in the
blackboard evaluator, contains information about the environment to bhecome
current on complietion of the subproblem, (The blackboard machine puts an
environment marker Into the control, too, but this is not needed here.) What we
put into the stack Is not an environment marker but the environment itself, The
relevant functions are:

def Apply_closure(C, S, E) =
‘let Rator t S // What is being applied,
in (3.5-12d)
let New_C = Prefix(Body Rator, Push(RETURN, r C))
and New_S Push(E, r2 S)
and New_E = Decompose(bV Rator, 2d S, Env Rator)
in '

]

New_C, New_S, New_E

3.5-161



Sec 3.5 ‘Evaluation of Applicative Expressions

and Dq_retutn(c, S, E) =

rC, Push(t S, r28), 2d S (3.5-12e)

in making New_E in Apply_closure we have used the function Decompose to make a
new environment from a name, value and existing environment. This function, to
be specified later, accomodates the structured bv-parts which are needed to
handle simultaneous definitions, For the case in which the bv is a simple name,
Decompose returns a 3-tuple consisting of Its three arguments,

when RETURN 1is encountered, the top stack item Is the "value" of the
subproblem and the second Item in the stack is the environment that was current
just before entry to the subproblem. The rest of the stack is the stack to be
reinstated on completion of the subproblem -- the stack that was there before
subproblem entry.

Recursion: The reader would be well advised at this point to review the
discussion starting on page 3.4-135, in which the Y-% method 1Is explained,
before continuing with this discussion.” The following code used in the CSE
machine formalizes the method: : '

def Apply_Y(C, S, E) =
let V = (ETA, 2d S) // ETA

in
let New_S = Push(2d S, Push(V, r2 S)) (3.5-12F)
in .
C, New_S, E // Leave GAMMA in C.
and Apply_eta(C, S, E) =
P ¢ > (3.5-12g)

Push(GAMMA, C), Push(t § 2, S), E

The effect of Apply_Y is replacing (Y A) by (Mn), where n is a (marked) copy of
X\ and Apply_eta Involves replacing n by the application of A to n. Study
carefully the new stack created by each of these functions. Note that Apply_Y
leaves the GAMMA in the control, to be "reused", and that Apply_eta performs the
unusual task of pushing a GAMMA onto the control.

Conditionals, Tuples and Basics: The remaining functions to be discussed are

these:

def Do_conditional(C, S, E) =
let Sw = Vai_of(t §) // The boolean arm,
in
let Selected_arm = (Sw => 3d | 2d) C
in
Prefix(Selected_arm, ¢3 C), r.S, E

(3.5-12h)
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and Do_aug(C, S, E) =
let V = Augment_tuple (t S) (2d S)
in
r C, Push(v, r28), E

(305'12‘)

and Apply_constant(C, S, E) =
let V = Apply (t S) (2d S)
in
r C, Push(v, r2 §), E

(3.5-12j)

and Apply_tuple(C, S, E) = .
et V = Apply (t S) (2d S)
in
r C, Push(v, r2 8), E

(3.5-12k)

In Do_conditional the function Val_of is needed because objects on the stack of
the CSE machine have fdentifying tags, which must be removed. The function
Augment_tuple used by Do_aug is equally concerned with representation.

The Translator

We have now specified that part of the gedanken evaluator that performs
evaluation of control structures, and have next to explain the function
Translate that transforms PAL 1input Into control structure. Translate does
essentially the same task done by the average compiler for a language such as
Fortran or PL/I, except that it produces control structure instead of machine
code. Complilers are almost always organized into two or more phases, so that
there 1Is an iInitial activity of reading source text and parsing it according to
the syntax of the language, followed by an activity concerned with creation of
executable code, The Interface between these two activities is often some sort
of tree representation of the input text, wherein the nodes of the tree
correspond to the syntactic categories of the language.

It would seem then that the function Translate should be similarly
organized, However, we choose instead to bypass entirely the parsing activity,
assuming as input to Translate a tree representation of the program to be
analyzed. This decision Is based mainly on the fact that syntactic analysis s
very well understood, there being a large collection of published literature on
it. Since our purpose In these notes is to illuminate certaln aspects of
programming languages, we choose to devote ourselves to those aspects of the
problem which are less well understood. It Is not that we regard syntactic
analysis as uninteresting, but rather that we elect to study other subjects.

Our present task then Is two-fold: We must specify exactly the form of the
Input to Translate, and we must specify Translate's algorithm, In the remaining
parts of this section we first show three ways to describe syntax, the last of
which leads us to the form used as input. We finally discuss In detail how
Translate operates.
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Iree Syntax: Heretofor we have expressed PAL's syntax using the BNF notation
discussed in Section 1.2 of the PAL Manual. For example, the following
equations taken from Appendix 2.1 of the PAL Manual define the syntax of
arithmetic expressions, abbreviated “A": '

A s:s A+ Al | A - Al | Al

Al ::= AL * A2 | AL / A2 | A2

A2 :i:= A3 *% A2 | A3

A3 ::= A3 % NAME R | R (3.5-13)
R s:= R Rl | R1

RL ::= CONSTANT | VARIABLE | ( A )

(The definitions of the categories A, A3 and Rl have been simplified slightly.)
We know that this syntax provides a unique parse for any string which is an
instance of an A.

Now consider instead the following syntax:

A ::=AOPAIAA]| (A) CONSTANT | VARIABLE

|
(3.5-14
OP ::= + l - l *v | / l * K l o/o NAME )

This ambiguous §1ﬂ£§& defines the same set of strings as does the syntax of
(3.5-13), but it pays for being shorter by being ambiguous. For example, this
syntax permits the string "a+b*c" to be parsed as either "a+(b*c)" or as
“(a+b)*c",

Related closely to (3.5-14) is the tree syntax shown in Figure 3.5-3:

E clrE ElE e'E ElE elEe €l E E
‘ NADE

CONSTABNT ‘ VARIABLE

Figure 3.5-3: Tree Syntax for Arithmet ic Expressions

The legal utterances in the language deflned by this syntax are trees, such as
either of the following:
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A N
a ¥ /A\
B/\C P

Note that the possibility of ambiguity does not exist in this language, just as
it did not exist in the prefix or postfix forms discussed at the beginning of
this chapter. The input to Translate is the type of tree of which these are
saniples. Another example of input to Translate is given in Figure 3.5-4, which
shows the tree form of the PAL program of (3.5-12h), the function Do_conditional
in the CSE evaluator. (Some of the variable names have been shortened to ease
the task of drawing the figure.)

The applicative subset of PAL is characterized precisely by the ambiguous
syntax of Figure 3.5-5 and the tree syntax of Figure 3.5-6, As shown, each
principle syntactic alternative of the ambiguous syntax leads to a node-type in
the tree syntax., The overall syntax may then be viewed as specifying rules for
piecing nodes together Into syntax trees, For example, an AP node

(corresponding to application) may be formed by connecting together two E's as
the sons of an AP node, and so forth.

Two comments may prove helpful in conjunction with Figure 3.5-6. First,
the declision as to what syntactic alternatives are to be accorded a node-type is
somewhat arbitrary: All that |Is entailed Iis a division of responsibility
between the syntactic anaysis done before inputting a program to Translate, and
the subsequent processing done by Translate, The precise boundaries of the
division are unimportant, the only substantive issue being to gain conceptual
clarity by separating the jobs of tree generation and tree processing Iinto

distinct tasks. For example, we have chosen to avoid an overabundance of
node-types by stipulating that infix and prefix operators be input as shown
using node-type BINOP for all infix functors and UNOP for all prefix functors.

The second comment pertains to the absence of tags (i. e., labels on the
nodes) In those subtrees that indicate the binding of variables: the left sons
of LAMBDA and FF nodes. The use of tags in these subtrees is avoidable simply
because bound-variables can not be "computed objects" 1in PAL; 1i.e. because
expressions such as

let (x eq 0 => a | b)) =MinN

are not allowed. The structure of such a node is Implicit Iin its position in
the overall tree, so no tagging information Is needed. A similar remark applies
to the right sons of BINOP and UNOP nodes, which are always functors.

The graphical representations of Figure 3.5-6 are easy to visualize, but do
not accord directly with PAL's tuples. In particular, tuples do not include
"tags'. We Introduce therefore two functions:
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E D E vi E E E
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Figure 3.85-é: Tree Syntax for R~PAL
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def Tag n s
and Is_tag s n

S aug n
n eq s(Order s)

(3 -5"‘156)

which serve to "tag" a node and to "test its tag", respectively. If M and N are
PAL expressions, it follows then that the ob denoted by

Tag GAMMA (M, N)

may be visualized as either of the following:

(6AMHAD

H N M v 6AnMA

The left picture shows the form corresponding to the trees of Figure 3.5-6,
while on the right is a form more in accord with the way we usually think of a
3-tuple. We hereafter choose the graphical form on the left as being more
persplicuous. |If w is anhy tuple tagged with GAMMA, then the PAL expression

ls_tag w GAMMA
denotes true, whereas
BAAAY
Is_tag w v

denotes false, whenever y denotes any ob other than GAMMA within the domain of

Yeq". Since tagging a tuple adds another component to it, we introduce also the

following two functions:

def Get_tag s
and Sons s

s(Order s)

(3.5-15b
Order s = 1 5b)

With the functions now available, and assuming that variables such as AP,
FN, LET, etc., are defined with suitable values (as we have been assuming all
along about GAMMA and others) the PAL expression

xeq0 -> vy |} f 2 (3.5-16)

would be represented by the tree

and hence by a PAL expression something 1lke

Tag ARROW [Tag BINOP (x, 0, eq), y, Tag AP (f, 2)] (3.5-17)
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(The details of the representation of names and functors have yet to be
specified., The preceeding use of "eq" is of course not legal PAL.)

he i "Trans “": It proves expedient to break the job of translation
of syntax trees to control structure Into two parts: standardizipns the syntax
tree, and flattening the result into a control structure. Thus we have

def Translate Program =
(3 05-18)
FF( ST Program, nil )

ST produces a standardized tree which is similar to the original tree but which
includes only nodes of type GAMMA, BETA, LAMBDA and AUG. Thus ST's operation is

much 1ike desugaring PAL into pure AE's, FF processes standardized trees,
flattening them Into control structure.

The general rule for standardization is

To standardize a structure...
first standardize its sons, (3.5-19)
and then_ assemble the result into standard form.

The details of ST are shown graphically in Figure 3.5-7, which shows in the left
columns each permissible node type (those listed in Figure 3.5-6) which may be
input to Translate, and which shows in its right columns what ST does to it.
The asterisks indicate standardization of the sons. For example, the first
picture shows that an AP node may be standardized by first standardizing its
sons, and then building a GAMMA node with those sons. Note the adherence to the
principle enunciated in (3.5-19).

A standardized definition is always an EQUAL node, and. the standardization
process is much the same as the desugaring process which we have been doing.
However, we now choose to face squarely the problem of desugaring simultaneous
definitions, a problem which up to now we have been ignoring. To see the
probliem, consider the foliow!ng PAL program, which 1is similar to that in
(3.2-30a) on page 3.2-12}.

let f = F
and ( w=W
within

g x =0

and (3.5-20a)

hy=H '

)

in
M

The desugaring and standardization processes are similar, each leading to
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let f = F

and g, h = [Aw. (Ax.G), (Ay.H)1 W
in

M

(3,5-20b)

and. then to

let f, (g, h) = F, LAw. (Mx.G), (Oy.H)] W

in ‘ (3.5-20¢)
M '

and finally _
[ACF, (g, h))MT §F, [Aw. (Ax.G), (xy.H)IW} (3.5-20d)

The tree forms of (3.5-20a), the original program, and (3.5-20c), in which the
definition |s standardized, are shown in Figure 3.5-8. Note that (3.5-20c) and

| H
Figu.'fe. 3.5—'8: g ¢ ’

(3.5-20d) are not legal PAL, since structured bv=-parts are not permitted.
However, it is clear that PAL's syntax permits definitional structures which, on
standardization, produce arbitrarily complicated bv-parts. (This is the problem
that was aluded to in the discussion of Apply_closure on page 3.5-162) The
decision to exclude structured bv-parts from PAL Is an arbitrary one, reflecting
the ideas of PAL's designers as to what constitutes "good human engineering".
The language would not be -changed in any important way were the decision to be
reversed. Indeed, the standardization functions would be unchanged.

The functions D and ST which do the job of standardization are shown in
Figures 3.5-9 and 3.5-10, respectively. These programs formalize the process
shown graphically in Figure 3.5-7, the same process which is done in preparing
input for blackboard evaluation. ’ '
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*

def rec D x = // Standardize a definition.

let Type = Is_tag x
in

Type EQUAL => x // Already OK.
| Type WITHIN

> ( [et u, v = D(x 1), D(x 2)

in
EQUAL_ (v 1) ( AP_ (FN_ (u 1) (v 2)) (u 2) )
)

| Type REC
=> ( let w = D(x 1)
in
) EQUAL_ (w 1) ( AP_ Y_VAR (FN_ (w 1) (w 2)) )
| Type FF
=> (let rec Q kT =

k<2 => T
| Q (k=1) (FN_ (x 1 k) T)

in
EQUAL_ (x 1 1) (Q (Order(x 1)) (x 2))
)
J | Type AND
- <> ( let rec Q kST =
k > Sons x => (S, T)
I« let w = D(x k)
in
Q (k+1l) (S aug w 1) (T aug w 2)

)
in
let L, R=0Q1 nil nil
in
EQUAL_ L (Tag COMMA R)

| error

Figure 3. S-7: 'The FQ‘hC'L(’On "“D
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- def rec ST x // Standardize abstract syntax tree,

]et Type ls_tag x
in
Is_identifier x => x

| Type BETA or Type TEST or Type ARROW

-> BETA_ (ST(x 1)) (ST(x 2)) (ST(x 3))
| Type FN ' '

-> LAMBDA_ (x 1) (ST(x 2))
| Type COMMA

-> (. Q1NIL _

where rec Q k t =
k >Sons x => t
I  Q (k+l) ( AUG_ t (ST(x k)) )
)

| Type PERCENT _

-> GAMMA_ (x 2) ( AUG_ (AUG_ NIL (ST(x 1))) (ST(x 3)) )
| Type LET .

=> ( let w = D(x 1) // Standardize the definition,

in
) GAMMA_ ( LAMBDA_ (w 1) (ST(x 2)) ) (ST (w 2))

| Type WHERE => ST(LET_ (x 2) (x 1))
| Type AP => GAMMA_ (ST(x 1)) (ST(x 2))
| Type BINOP

-> GAMMA_ ( GAMMA_ (CONSTANT, x 3) (ST(x 1)) ) (ST(x 2))
| Type UNOP _

-> GAMMA_ (CONSTANT, x 2) (ST(x 1))
| Type AUG => AUG_ (ST(x 1)) (ST(x 2))

| error

Figure 3.5-10% The Fumction "§T”
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1 eni tan ized Trees: The final step in producing control structure
for input to the CSE machine involves the flattening function FF(x, c). In
visualizing the operation of this function, it helps to recognize that its

principal effect is to extract a new control item from the (standardized) tree x
and to push it onto the nascent control structure c. FF calls itself

recursively until the original tree is exhausted. Since standardized trees are
made up of only GAMMA, LAMBDA, BETA and AUG nodes, there are only four cases to

consider. Figure 3.,5-11 shows graphically the effect of FF, and Figure 3.5-12
shows the code,

vEAQnEﬂjLJUi;LLaﬂ§L§Lg: Consider the following PAL program:

let f x =x + (x> 0=>11] -1)

in (3.5-21)
f 2 * f(-3) '

The tree form of this program, along with the standardized tree and control
structure, are shown in Figure 3.5-13,

ther 1o

We have one problem which we have so far bypassed =- simultaneous
definitions -~ and one possible defect which we have yet to mention, that of
overspecification of order of evaluation. We consider these in turn, and then
discuss some of the implications of our logical bootstrap.

Simultaneous Definitions: The only problem in R-PAL remaining to be discussed
concerns simultaneous definitions. Recall from Figure 3.5-7 on page 3.5-17!
that a standardized definition may have a left side which under transformation

by the function ST is converted into a A-expression having that same tree as its
bound variable part. However, the structure of an Environment as given by
(3.5-8), page 3.5-158, is a simple linking of (name, value) pairs. The task of
unravel ing a tree of bound variables in the application of a A-closure has been
relegated to the subsidiary function Decompose. As indicated In (3.5-12d) this
function takes three arguments:

. a bound-variable or a tree of bound-variables,
. an ob, which may be a tree of obs, and
. an environment.

The function Decompgse is defined as follows:
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FF(R/\ , &) =2 A
8 a0u6
[
def rec FF(x, c) = /7 Flatten standardized tree x onto control c.
let Type = |Is_tag x
in

Is_identifier x => (x, c) .
| Type LAMBDA Figure 3,5-/2
=> ( let Body = FF( x 2, nil )
in
) Cons_lambda_exp(x 1, Body), ¢
| Type BETA :
=> ( let TA = FF(x 2, nil) // True arm,
and FA = FF(x 3, nil) // False arm.
in
, FF( x 1, (BETA, (FA, (TA, ¢))) )
| Type GAMMA => FF( x 2, FF( x 1, (GAMMA, c) ) )

| Type AUG => FF( x 2, FF( x 1, (AUG, c) ) )
| arror )
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let f x= x + (k=0 =1 ]-1) in £ 2% F(-3)

Y ANoM
Sq"*b"‘Folb"F 3
33' !

87““‘?’

F«'.gufe 3.5-13: J_,
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def rec Decompose(Names, Values, Env) =
test Is_variable Names // Is it a single variable?
ifso (Names, Values, Env) // Yes, add it to environment.
ifnot // Check conformality.
test Is_tuple Values
ifnot error // Tuple applied to scalar.
ifso
test Order Names eq Order (Val_of Values)
ifnot error // Differing tuple lengths.
ifso // Process a muitiple-bv part.
( Q1 Env
where rec Q n e =
n > Order Names => e |
Q (n+1) ( Decompose(Names n, (Vai_of Values) n, e) )

Figure 3.5-14: The function Decompose.

Note that |If Names 1is a single bound variable, the effect of Decompose is to
return an environment obtained by placing on top of environment Env a new layer
consisting of the pair (Names, Values). If Names is a tuple and Values is
conformal thereto -- i.e., has the same number of components -- a succession of
layers 1Is placed on Env, Should a component of Names also be a tuple, this
tuple too is wunraveled and its bound-variables paired with corresponding
components of Values. Finally, if Values is not conformal to Names -- i.e., if
at any level Names is a tuple and Values is a tuple of different Order -- the
function aborts. These four cases are {llustrated in Figure 3.5-15,

Order of Evaluation: One who specifies a programming language must decide what
to say about the order of evaluation of the constituents of expressions such as

a+b (3.5-22)

There are several possibijlities: Evaluation may be done from 1left to right,
from right to 1left, or in some more compiex order which is implicit in the
implementation. The decision of PAL's designers, as documented in Section 3.3/S
of the PAL Manual, is as follows:

"No order of evaluation is to be inferred... The reader may find it
helpful to think of the process in these terms: The choices are made
at the time the expression is evaluated, and the choice made by the
evaluating mechanism 1Is dependent on the then-current weather
forecast. The programmer |Is cautioned not to write a program whose
successful evaluation depends on a particular order of evaluation of
expressions."”

Although the intent of the designers is clear, it is equally clear that the
formal definition so far presented provides that evaluation is always from right
to left, The Intent and the result being out of argument, it behooves us to
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change one or the other. We elect to change the formal definition, and the
reason is not what one might expect, As far as PAL is concerned, it seems to be
unimportant which decision is adopted. We elect to leave order of evaluation
unspecified so that we may have the opportunity to show how that effect might be
achleved. Keep in mind that our objective is not just to define PAL but rather
to illuminate various aspects of language definition. The following discussion
is of points that can be made conveniently in no other context.

The problem arises from the fact that the rand of a combination is always
evaluated before the rator. The standarized tree and control structure for
"3 + b" are shown in Figures 3.5-16(a) and (b):

b .-

b 3 v
e T

+ 2 I b

J- Loy A

(a). , L

Figure 3.,5-16: Trees for "a + b"

The ordering in (b) is required by the fact that the CSE machine, in processing
the control item GAMMA, applies the top stack item to the second. Thus the rand

must be evaluated first so that it will be "below" the rator on the stack.

Now, consider a new control item, AMMAG, whose effect 1is to apply the
second stack element to the first, deleting both and leaving the result in the
stack. Figure 3.6-16(c) shows the control for (3.5-22) using AMMAG (written ')
instead of GAMMA, Clearly the order Is different, being from ieft to right, but
it is no closer to the desired result of being unpredictable,.

What we need Is a way to use randomly either GAMMA or AMMAG. But this s
easy. We first modify the CSE machine to handle both GAMMA and AMMAG, and then
alter FF so that, on encountering a GAMMA mode in the standardized tree, it
makes @ random decision between GAMMA and AMMAG in the control structure,
adjusting its output accordingly. As suggested in the quote from the PAL
Manual, this choice could be based on the weather forecast, time of day, or some
other phenomenon independent of the program being translated. The effect then
is as desired, and the result of gedanken evaluation of any program which
requires a particular order of evaluation Is undefined, in the sense that we
have npot defined It. To implement this declsion, we might call a function
"Choice nil1" in FF which randomly returns true or zalgg.

Several more changes are needed to avoid over-specifying order of
evaluation. Control item GUA should be selected randomly instead of AUG to make
undefined the order of evaluation of operands of aug. Finally, there is the
problem, alluded to on page 3,2-120, of definitions such as
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let (x, x =1, 2) in M (3.5~23)

The mechanism so far described specifies that bv-lists are processed from left
to right, because of the way we have written the recursive function Q which Is
part of Decompose, (See Figure 3.5-14 on page 3.5-178.) To circumvent this
problem, we could provide randomness in Decompose. We leave the details as an
exercise for the reader.

The previous decision raises an interesting question, arising from the fact
that subexpressions in R-~PAL exhibit referential transparency: It is just not
bossible to write an R-PAL program whose value is dependent on order of
evaluation. So as better to see this, suppose there were a function Next of no
arguments which, on each call, returns an integer one larger than its value on
the previous call. (For the sake of concreteness, suppose it returns 2_ on its
“first" call.) Then the value of the expression

2 » Next nil + 3 * Next nii (3.5-24)

depends very much on the order of evaluation of the operands of "+", If the
order is left to right, we would have (2%x0 + 3*1) or 3, whereas otherwise it
would be (2+1 + 3%0) or 2. Now let us see why Next cannot be written in R-PAL.
If it could, we would have, in some context, the fragment

let Next() = N in M (3.5-25a)

which would desugar as

(A Next. M) LAO). N] (3.5-25b)

Since each application of Next in M results in evaluation of N in the same
environment (the one existing when this fragment is encountered), the value
returned is always the same. There Is just nothing Next can do on one call that
will have an effect on its next call, What is needed of course is an assignment
statement: In L-PAL we could write

def k=0
within
Next() = (3.5-25¢)
k := k + 1;
k -1

to get the desired effect. The semantics of programs such as this are discussed
in Chapter 4,

Since we have just shown that 1t 1Is not possible to write In R-PAL a
program whose value is dependent on the order of evaluation used by the
evaluating mechanism, one might question the need for .the previous discussion.
Qur purpose in introducing the issue of overspecification of order of
evaluation has been to lay the groundwork for further discussion in connection
with the L-PAL evaluator, where it is unquestionably relevant. We do not pursue
this point further here.
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The Logical Bootstrap: Our purpose in this section has been to define formally
the semantics of R-PAL by showing a translator and evaluator for R-PAL. Let us
reexamine our objectives with an eye to assessing our success.

The intent 1is that a reader be able to deduce the meaning of any R-PAL
program from study of Translate and Evaluate. To make this decision more

concrete, let us ask how one might deduce the semantics of the R-PAL expression

2 ->3 | 4 (3.5-26)
The user must himself himself render this exbreSSion into form suitable as input
to Translate, and then apply Translate to it. This latter can be done in one of
three ways: hand simulate the operation of Translate, use normal order
reduction or run the program on a computer. The first is of course what the

reader has been doing In preparing input to the blackboard evaluator, the second
is (as already mentioned) an intellectually vacuous exercise in virtuosity and

perseverance, and the third seems a pleasant alternative If available. By hand
simulation, we get '

2—
g._

=

which we can submit to Evaluate. We again have the same three methods to choose
from, and we assume we hand simulate.

The interesting question here is the interpretation of the conditional in
which the boolean arm 1Is not a truthvalue. The problem shows wup in
Do_conditional (3.5-12h) where we must evaluate

2 -> 3d | 2d (3.5-27)

We seem to be in a logical loop: We have found that the semantics of 2 used as
the Boolean arm of a conditional is that of 2 used as the Boolean arm of a
conditional, a not-hélpful result, This is typical of the flaw in attempts to
"explain" a language by writing its interpretor In itself,

in the PAL case we are able to break the 'loop by appeal to the
axiomatization of the universe of discourse. Using the interpretation of
(3.3=3) and (3.3-4), we see that (3.5-27) Is sugaring for

Q 2 3d 2d ‘ (3.5-28)

Since g'does not include 2 in its domain of definition, we can conclude that
(3.5-28) is undefined. Hence (3.5-27) is undefined, and so we conclude that our
original problem, (3.5-26), is undefined.
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The word "undefined" as used In this sort of discussion has interesting
philosophical implications: What does it mean to say, of a particular PAL
construct, that its semantics is "undefined"? |If the decision about meaning of
the construct is made by appeal to the definition of the universe of discourse,
it is apparently the case that the designers of the language, who after all are
the ones who designed the universe of discourse, have dellberately chosen to
leave the construct without meaning. Presumably then an implementation of the
language would give a "run error'" or similar diagnostic in the event of an
attempt to use the construct. (An attempt to execute a program including
(3.5-20) would cause a "run error' diagnostic in any existing PAL
implementation.)

But there is another aspect to "undefined". We have claimed that any
program whose succesful execution depends on a particular order of evaluation is
"undefined". It is clear that an attempt to run such a program, either on some
PAL implementation or through the gedanken evaluator, would produce some answer,
although we have shown how to build the gedanken evaluator so that the answer
cannot be predicted. But it seems most unlikely that any implementor could
detect this problem and provide a diagnostic. Thus there 1is a distinction
between saying that a construct has no definition and refraining from saying
what the definition is. We thus conclude the following: When we say that
something 1is undefined, we mean no more or less than that we have not defined
it. We make no claims about what will happen to the user who uses it. Perhaps
he will get a diagnostic, perhaps he will just get wrong answers, perhaps the
computer will blow up., The language specifier can say no more.

escri t G \

The many details of the programs presented which have been omitted for the
sake of expository convenience are presented in this section, The resulting
programs are given in enough detail that they will run on a PAL implementation.
(They do.) Our purpose is to be sure that we have completly specified the
gedanken evaluator, and providing enough detail to permit execution on a
computer helps to insure this., We leave undefined only the function Error,
whose effect when applied is to terminate the evaluation of the program of which
it is a part. Discrepencies between the programs shown here and those shown
earlier in this chapter shouid be resolved in favor of those shown here, since
these are listings of programs that have run on a computer, In some cases the

programs shown wearlier have been simplified somewhat for expository
convenience,

It is now the‘ time to say a few words about the representational issues
which heretofor we have ignored., Let us consider the PAL expression

xeq0 -> y | f 2 - (5.5-29)

which we considered briefly in (3.5-16) and (3.5-17). To facilitate writing PAL
structures to represent the tree form of expressions such as this one, we
introduce a set of tagging functions. For the three tags needed by this
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example, we have

def ARROW_ x y 2z
and BINOP_ x y z
and AP_ x vy

Tag ARROW (x, v, 2)
Tag BINOP (x, vy, z) (3.5-30)
Tag AP (x, vy)

The convention 1Is that we use names made of upper case letters for tags, and
append an underscore to get the name of the corresponding tagging function.

Note that the taggers are curried. In terms of the taggers just defined,
(3.5-29) can be rewritten as

ARROW_ (BINOP_ x 0 eq) y (AP_ f 2) (3.5-31)

~ which is certainly easier to read than is (3.5-17). The complete set of tagging
functions is listed in the appendix to this section.

(3.5-31) is still not correct PAL, and to correct it we must decide how to
represent constants, variables and functors in syntax trees input to Translate.
We make the following arbitrary decisions: Constants are represented by
2-tuples whose first component is the tag CONSTANT and whose second component is
the value of the constant. Variables are represented by 2-tuples whose first
component is the tag VARIABLE and whose second component 1is the name of the
variable as a string. Since functors may appear in input only as the right son
of a BINOP or UNOP node, they need no tags and we represent them by themselves.
In writing PAL input to translate, we would for example represent "eg" by

fn x. fn y. x eq y

We now show a correct representation of (3.5-29). We assume that our task is to
write the definition of a variable Data whose value 1is the ¢tree form of
(3.5-29), and we have

def Data =
ARROW_
( BINOP_
( VARIABLE, 'x' )

( CONSTANT, 0 ) '
, (3,5-32)

( fn x. fn Y. xeqy )
)
( VARIABLE, 'y' )
( AP_ '
( VARIABLE, 'f' )
( CONSTANT, 2 )
)

Note the consistent indenting used, in which each right parenthesis is either on
the same line as the left parenthesis which it matches, or else 1{s vertically
beneath it. Another way to write this is
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def Data =
ARROW__
( EQ x 0_ )
y
( AP_ f 2 )

where
( 0_ = CONSTANT, O
and 2_ = CONSTANT, 2
and f VARIABLE, ‘'f!
and x VARIABLE, 'x'

and EQ_ x y = BINOP_ x v (fn s. fn t. s eq t)
)

(3.5-33)

This latter form is particularly advantageous for expressing long programs,
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// PRELIMINARY DEFINITIONS

// Preliminary definitions for the evaluator.

// * * * * %* * * * * * * * * * * * * * * * *
// Selectors and constructors for the stack and control.

x J/ Top of stack or control.

def t(x, vy)
and r(x, y) =y // Rest of stack or control.

and Push(x, s) = x, s // Put new item on stack or control.
def rec Prefix(x, y) = // Put control x at top of cont rol Ye

Null x => vy
| Push(t x, Prefix(r x, y) )

def r2 x = r(r x) // Rest of (rest of (stack or control)).
and r3 x = r(r(r x)) // Rest of (rest of rest).
and 2d x = t(r x) // Second element of stack or control.

= t(r(r x)) // Third...

and 3d x
def Empty_stack = nil // The empty stack.

//*********************

// Tagger and tag-checkers for structures.,

def Tag n's = s augn // Tag structure s with tag n.
and Is_tag s n = // Does structure s have tag n?
Istuple s => n eq s(Order s) | false
and Get_tag s = s(Order s) // Return the tag of s.
and Sons s = Order s -1 // Return number of sons of s.
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// Selectors, predicates and constructors for lambda-expressions

// and lambda-closures.

def LAMBDA

def bV x = x 2 // Select bv-part of a lambda-exp or closure.
and Body x = x 3 // Select body part...
and Env x = x 4 // Select environment part...
def Test({x, n) =
Istuple x
-> Order x eg n
=> Isstring(x 1)
-> x 1 eq LAMBDA
| false
| false
| false
within

Is_lambda_exp x = Test(x, 3)
and lIs_closure x = Test{(x, Uu)

def Cons_lambda_exp(bV, Body)
LAMBDA, bV, Body

and Cons_closure(L_exp, Env) = [/ Construct a lambda-closure.

LAMBDA, bV L_exp, Body L_exp, Env

'_lambda' // Tag for lambda-expressions and.closures.

// Construct a lambda-expression.
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Evaluation of Applicative Expressions

// lItems and predicates for control structure and stack.

def GAMMA ' gamma'
and BETA ' beta'
and CONSTANT ' constant'

and VARIABLE
and AUG

nnoww N n

' variable'

and TUPLE '“tupie! // Used only in stack.
and ETA ' eta' // Used in stack for recursion,
and RETURN '_return'
def Test(x, y) =
Istuple x

-> Order x eq 2
-> Isstring(x 1)

->
|
fa

| false

within

Ils_constant x
and Is_variable x
and ls_eta x

and Is_tuple x =

Xx 1leqy
false
1se

Test(x, CONSTANT)
Test(x, VARIABLE)
" Test(x, ETA)

Test(x, TUPLE) => true // Is it a constructed tuple?
| Test(x, CONSTANT) => Nuli(x 2) // Is it nil?
| false [// Neither. .

and Is_identifier x
Test(x, CONSTANT) or Test(x, VARIABLE)

def Same_var(x, y)
X 2eqy 2

= [/ Is x a constant or a variable?

// Are x and y the same variable?

-

// Call for Y_VAR is produced in Translate for rec-defs,
def Y_NAME = 'Y#' // The name of "Y". |

def Y_VAR =

VARIABLE, Y_NAME

and NIL = // Used in ST for COMMAs.

CONSTANT, nil
def Is_Y x =

Isstring x => x eq Y_NAME | false
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// Tags for abstract syntax tree.

Sec 3.

Py

«eeo ifnot ...

. def TEST = ' test' // test ... ifso
and ARROW = ' arrow’ Il vee => cue ) ...
and AP = ap' // furctional apr ication
and FN = ' _fn! // lambda
and EQUAL = ! equal' // definition
and WITHIN = ! wuthln
and REC = ' rec'
and FF = ! ff' // function form definition
and AND = '"_and' // ‘and' definition
and COMMA =1 comma // tuple maker
and LET = ! Jet!
and WHERE = ! where
and BINOP = ! bcnop // infix tinary operator
and UNOP = ' _unop' // prefix urnar-y operator
and PERCENT = '_percent'

// Taggers for tags in abstrect syntax traz.

def ARROW_ x y z = Tag ARRCOW (x, y, 2)
and AP_ x vy = Tag AP (x, vy)
and Fil_ x vy = Tag FN (x, .
and LET_ x vy = Tag LET (=, y)
and WHERE_ x vy = Tag WHERE {x, y)
and EQUAL_ x y = Tag EQUAL (x, v)
and WITHIN_ x vy = Tag WITHIN (x, y)
and REC_ x = Tag REC (nii aug x«)
and FF_ x vy = Tag FF (x, y)
and AUG_ x vy = Tag AUG (x, vy)
and BINOP_ x y z = Tag BINOP (x, vy, 2z)
and UNOP_ x y = Tag UNOP (x, vy)
and PERCENT_ x y z = Tag PERCENT (x, y, 2z)
def // subsudiary function for n-ary taggers
rec Q kT f =
keq 0 -> £ T
| (fn x. Q (k=1) (T aug x) f)
within

COMMA_ n = Q n nil (Tag COMMA)
and

AND_ n = Qn nil (Tag AND)
// Taggers for standardized syntax tree.
def GAMMA_ X vy = Tag GAMMA (x, y)
and BETA_ = Tag BETA (x, y, 2)

Xy
and LAMBDA_ x

z
y Tag LAMBDA (x, vy)
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// Some useful functions for Transform.

def Value_of x = // Evaluate a control element, to put it on stack.
X

and Vai_of x = // De-tag a stack element, to get its value.
X 2

def Apply x y =
let t = (Val_of x) (Val_of vy)

in
CONSTANT, t

and Augment_tuple x y = // Augment x with vy.

Is_tuple x => (TUPLE, Val_of x aug V)
| Error 'first argument of Aug not a tuple'

//
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// ENVIRONMENT

// The following function is used in applying a lambda-closure,
// The names on the (possibly structured) bv-part ‘'Names' are

// added to the environment ‘Env', associated with the corres-
// ponding part of 'Values'. The new environment is returned as
// the value of the function.

def rec Decompose(Names, Values, Env) =
test |Is_variable Names // Is it a singlc variable?
ifso (Names, Values, Env) // Yes, so add it to environment.
ifnot // Check conformality.
test Is_tuple Values

Sec 3.5

ifnot Error 'conformality failure' // Tuple applied to scalar.

ifso
test Order Names eq Order (Val_of Values)

ifnot Error ‘'conformality failure.' // Differing tuple lengths.

ifso // Process a muitiple-bv part.
( Q1 Env
where rec Q ne =
n > Order Names -> e

| Q (n+l1l) ( Decompose{Names n, (Val_of Values) n, e) )

// Define primitive environment, and provide function to look
// up variables in the environment,

def PE = // The primitive environment.
Y_VAR, Y_NAME, // for recursion
nil
and Lookup(Var, Env) = // Look up a variable in the environment,

L Env // Start looking in Env.
where rec L e =
Null e => Error 'variable not found in environment'
| Same_var(var, e 1) =-> e 2 // Found.
| L (e 3) // Keep looking.
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def rec D x = // Standardize a definition.
let Type = Is_tag x
in

Type EQUAL => x // Already OK.
| Type WITHIN
-> ( let u, v = D(x 1), D(x 2)

in
EQUAL_ (v 1) ( AP_ (FN_ (ul) (v 2)) (u 2) )
: )
| Type REC
=> ( let w = D(x 1)
in
EQUAL_ (w 1) ( AP_ Y_VAR (FN_ (w 1) (w 2)) )
)
| Type FF
=> ( let rec Q kT-=
k<2 =-> T . -
| Q (k=1) (FN_ (x 1 k) T)

in
EQUAL_ (x 1 1) (Q (Order(x 1)) (x 2))
)
| Type AND
=> (let rec Q kST
k > Sons x => (S, T)
| ( let w D(x k)
in
Q (k+1) (S aug w1l) (T aug w 2)
)

in
let L, R=Q1 nil nil
in
EQUAL_ L (Tag COMMA R)
) ) .
1 Error 'improper node found in D'
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def rec ST x = [/ Standardize abstract syntax tree.
let Type = lIs_tag x
in
Is_identifier x => x

| Type BETA or Type TEST or Type ARROY

-> BETA_ (ST{x 1)) (ST(x 2)) (ST:x 3))
| Type FN

-> LAMBDA_ (x 1) (ST(x 2))
| Type COMMA

=> ( Q1 NIL

where rec Q k t =
k > Sons x => t
| Q (k+1) ( AUG_ t (ST(x k)) )
)

| Type PERCENT

-> GAMMA_ (x 2) ( AUG_ (AUG_ NIL (ST(x 1))) (ST(x 3)) )
| Type LET

-> ( let w=1D(x 1) // Standardize the definition.

in
) GAMMA__ ( LAMBDA_ (w 1) (ST(x 2)) ) (ST (w 2))

| Type WHERE => ST(LET_ (x 2) (x 1))
| Type AP -=> GAMMA_ (ST(x 1)) (ST{x 2))
| Type BIROP

=> GAMMA_ ( GAMMA_ (CONSTANT, x 3) (ST(x 1)) )} (ST(x 2))
| Type UNOP

=> GAMMA_ (CONSTANT, x 2) (ST(x 1))
| Type AUG => AUG_ (ST(x 1)) (ST(x 2))
| Error 'improper node found in ST'

Sec 3.5
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// The function FF flattens a standardized tree into a
// control structure,

def rec FF(x, c) = // Flatten standardized tree x onto control c.

let Type = Is_tag x
in
Is_identifier x => (x, ¢)
| Type LAMBDA
-> ( let Body = FF( x 2, nil )
in
Cons_lambda_exp(x 1, Body), c
)

| Type BETA
-> ( let TA = FF(x 2, nil) // True arm.
and FA = FF(x 3, nil) // False arm.,
in _
FF( x 1, (BETA, (FA, (TA, c))) )
)

| Type GAMMA =-> FF( x 2, FF( x 1, (GAMMA, c) ) )
| Type AUG =-> FF( x 2, FF( x 1, (AUG, ¢c) ) )
| Error 'imprOper node found in FF'

// * % * * * * * * * * * * * * * * * * * * *

def Translate Program = // The routine that does all the work.
FF ( ST Program, nil )
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//

def

and

and

and

and

and

and

and

and

and

and

State transformations for the right-hand evaluator,

Do_return(C, S, E) =
r C, Push(t S, r2 §), 2d S

Eval_constant(C, S, E) =
r C, Push(Value_of(t C), S), E

Eval_variable(C, S, E) =
r C, Push( Lookup(t C, E), S ), E

Eval_lambda_exp(C, S, E) =
let New_S$ = Cons_closure(t C, E)
in
r C, Push(New_S, S), E

Do_conditional(C, S, E) =
let Selected_arm = ( Val_of(t S) => 3d | 2d ) C
in
Prefix(Selected_arm, r3 C), r S, E

Do_aug(C, S, E) =
[et New_S = Augment_tuple (t S) (2d S)
in
r C, Push(New_S, r2 §), E
Apply_closure(C, S, E) =

let Rator = t & // The closure being applied,
in ‘

let New_C = Prefix(Body Rator, Push(RETURN, r C))
and New_S = Push(E, r2 S)
and New_E = Decompose(bV Rator, 2d S, Env Rator)

in
Hew_C, New_S, New_E

Apply_constant(C, §, E) =
let V = Apply (t S) (2d S)

in
r C, Push(v, r2 S), E

Apply_tuple(C, S, E) =
let New_S = Apply (t S) (2d S)
in
r C, Push(Vv, r2 S), E

Apply_Y(C, s, E) =
[et V = ETA, 2d S
in
let New_S = Push(2d S, Push(v, r2 S) )
in
C, New_S, E

Apply_eta(C, S, E) =
Push(GAMMA, C), Push(t S 2, S), E

Sec 3.5
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// Main program. Transform does one step in the evaluation,
// and Evaluate is the driver for it.

def Transform(C, S, E) = // Do a single step.

let A=¢C, S, E '
and x = t C // Top of control.
in

Is_constant x -> Eval_constant A
| Is_variable x -> Eval_variable A
| Is_lambda_exp x => Eval_lambda_exp A
| x eq BETA -> Do_conditional A
| x eq AUG -> Do_aug A
| x eq RETURN => Do_return A
| x eq GAMMA

->(let r=tS // The rator.
in

Is_closure r => Apply_closure A
Is_constant r => Apply_constant A

Is_tuple r => Apply_tuple A
Is_Y r => Apply_Y A
Is_eta r -> Apply_eta A

—— —— —— —

Error 'improper rator!
) ‘
| Error 'bad control'

def rec Evaluate(C, S, E) =
Null ¢ =-> t S |
Evaluate(Transform(C, S, E))

def Gedanken_evaluator Program =
let Control_structure = Translate Program

in
Evaluate(Control_structure, Empty_stack, PE)
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Chapter 4

ASSIGNMENT, STRUCTURES and SHARING

Heretofore we have been concerned almost exlcusively with functions and
with techniques for defining and manipulating them. As we have seen, A-calculus
provides a natural and perspicuous mathematical model for such a study.

From a conceptual point of view, the most important attribute of functions
in mathematics is independence of the result of functional application on order

of evaluation of the function and its argument. This independence has led to
the informal dictum

to evaluate a functional application, first evaluate the
function and its argument (in either order), and then apply
the one to the other.

More formally, the Church-Rosser theorem guarantees of the A=~calculus the
(weaker) result that all orders of evaluation which produce any value will
produce the same value. The pragmatic import is that a programmer need not
usually be concerned with irrelevant details of evaluation order when dealing
with applicative expressions.

But it is obviously not true that the functional approach to programming is
sacrosanct; indeed, pure LISP is the only common programming language in which
applicative ideas are fundamental, Most languages (PL/I, for example) are
predicated instead on the concept of a computational procedure, by which we mean
specification of a computation in terms of a sequence of steps, each of which is
to be executed in an order explicitly decreed by the programmer. We use the
word imperatives to refer to those linguistic facilities (such as agsignments
and jumps) which are peculiar to the specification of procedures. The essence
of applicative programming is that subexpressions are for the most part of
interest for their wvalue, while in imperative programming execution of
subexpressions is frequently for effect. Thus we speak of the evaluation of an
applicative expression, and of obeying an imperative. A command is a part of a

program such as an assignment statement which is of interest primarily for its
effect.

Clearly, there is no theoretical basis on which to decide that procedures
are less fundamental than functions from a linguistic point of view, 1Indeed, to
be practical it must be conceded that imperatives mesh better with the current
state of evolution of actual computers. Why then have we chosen in these notes
to treat functions first? Simply stated, the only real justification stems from
our belief that applicative expressions provide a better

springboard for the
study of imperatives than vice versa. In this chapter and the next we use this

springboard to deal with imperatives. We concern ourselves ‘with two specific
imperatives: the assignment command, and the goto command. The effect of
obeying an assignment is to change the value of a variable, and the effect of
obeying a goto is to alter what would otherwise be the normal order of execution

4,0-197



sec 4.0 Assignment, Structures and Sharing
of commands. Adding these constructs to PAL, in all of their generality, has

profound implications. In this chapter we study in depth the implications of
assignment, and we consider goto in Chapter 5.

4.1 New Linguistic Concepts

To gain preliminary insight into imperatives, consider the three following
programs, each of which defines the factorial function:

def £ n =
g (1, 0) ‘
where rec g (r, k) =
kegn => r | g( r*(k+l), k+l )

(4.1-1a)

def £ n =
let r, k=1, 0
in
until k eq n do
( k :=k + 1;
r:=r ¥k

(40 l"lb)

def £ n =
let r, k=1, 0
in
Ls if k eq n do goto M;
k :=k + 1;

r s=r * k;

(4.1-1c)

goto L;
Ms r

Yhe first definition, which is applicative, differs from the one which ;é h%ve
been studying in that it uses a subsidiary recursive function to do the work.
It clearly computes factorial, and it is written entirely in R_PAL. By
contrast, the second and third definitions each involve a sequence of
"assignments, The intent when Kk is not equal to n is first to increment k by
one, then to replace the value associated with r by the value of "r*k", and
finally to reiterate these steps until k does equal n, at which time r is
returned as the value. The colon is a syntactic device which signifies that the
identifiers "L" and "M" are labels., It is clear that the order in which the
assignments are carried out is vital, whereas in evaluating "r*k" it makes no
difference whether "r" or "k" is evaluated first. The program in (4,1-1b) is
written in L-PAL, while that in (4.l1l-lc) uses linguistic facilities available

only in J-PAL. In this chapter we explain L-PAL, covering‘J-PAL in the next,

Our task then is to provide an explanation of the imperative features of
PAL. Before proceeding, we observe that the A-calculus is inadequate to explain
these features, Consider
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let x = 2 in x t=x + 3; X (4.1-2a)

The semantic intent here is to define a variable x initialized to 2, to
increment x by 3, and then to return the value of x, 3. Desugaring according to
our rules leads to

(M. X ¢= x + 3; x) 2 (4.1-2b)

We develop later a way to interpret expressions such as this one, but we point
out here that our existing procedure is deficient. Naive use of A-reduction on
(4.1-2b) would lead to

2 :=2 + 3; 2 (4.1-2c¢)

which is manifestly absurd. Let us look ahead a bit to see how one might
interpret expressions such as (4.1-2b). We would have proceeded in the R=-PAL
blackboard evaluator (or the R~PAL gedanken evaluator) by evaluating the body in
an environment in which x is associated with the ob 2. In the L~PAL evaluator
to be described we accom;lish the evaluation by finding a place to store a value
of X, initializing that place to hold 2, and then evaluating. the body in an
environment in which x is associated with that place. The assignment statement
then changes the contents of that place. The place of course is a cell in a

memory.

Chapter Outline: In Chapter 3 we introduced a gedanken evaluator (the CSE
machine) for evaluating programs written in the applicative subset of PAL, which

subset we now call R-PAL. This machine, which hereafter we call the right-hand

evaluator or the R-machine, was defined in terms of a program which (after
conceptually straightforward desugaring) was meaningful in terms of a normal
ordey A-calculus reduction mechanism. In this chapter and the next we introduce
two new machines, the left-hand (or L) machine and the jumping (or J) machine.
The L-machine, defined in terms of a program meaningful to the R-machine,
accommodates assignments and sequences. In turn, the J-machine is defined in
terms of a program meaningful to the L-machine, and accommodates goto's and
labels,

'‘'he advantage of building up a hierarchy of machines in this way is
threefold:

. We isolate related sub-classes of important linguistic facilities in
such a way that they can be studied separately.

« Each level of the hierarchy can be treated efficiently by exploiting
concepts and tools which have already been established.

« The complete set of PAL semantics is reducible to intuitively
satisfying axioms,

A disadvantage of the procedure rests in the length of the train of reasoning;
we need to remember the substance of each phase of the development in order to
treat the  next. In balance, howeVer, the approach seems consistent with our
definition of programming linguistics as the science of building large semantic
structures out of smaller ones.
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Generalized Tuples

The gedanken evaluator of Chapter 3, the R-machine, accepts as input a
syntax tree representation of a PAL program, produces therefrom a control
structure via application of Translate, and then executes a series of CSE state
transitions which depend on that control structure. Clearly, each CSE state 1is
itself a structure. It seems fair to conclude that in large part the study of
programming linguistics entails the study of structures and their manipulation.

Now, the class of structures and the facilities for manipulating them which
we have encountered to date are rather primitive. 1In particular, the postulates

for tuples which we have used thus far encompass only structures that are
representable as trees. For example, the structures

(4.1-3a)

are naturally represented in terms of Augment, the function postulated in
Section 2.1, or Aug, its curried version. The structure on the 1left could be
written as

(i, 2, (3, 9)) _ (4.1-3b)
which we have been regarding as sugaring for
Aug [Aug (Aug nil 1) 2] [Aug (Aug nil 3) 4]

It is a moot point whether or not the structure

(4,1-4a)
can be specified in R-PAL., Does the expression
(L, x), (x, 3) where x = 2 (4.1-4b)
represent this tree, or is
(4.1-4c)

a more appropriate drawing of (4.1-4b)? Nothing we have said so far answers
this question, not even the programs in Chapter 3 for the CSE machine. In
fact, no R-PAL program can distinguish between (4,1-4a) and (4,1-4c), although
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they can be easily distinguished by an L=~PAL program. As we see later, the

L-PAL expression (4.1-4b) denotes a structure such as that shown in (4.l-4a),
and (4.1-4c) might be written as

(1, 2), (2, 3) (4.1-44)

More general types of structure are possible, such as

(4.1-5)

Such reentrant structures are not just pathological cases but arise naturally in
many cases of interest. (We see such structures in the output of the J=PAL
version of Translate.) 1In order to accomodate these more general structures, we
introduce into PAL the infix functor aug. Informally, if E denotes a k-tuple,
then the PAL expression

E aug F
denotes an object that transforms precisely as does
Aug E F

However, whereas the specification of Aug leaves unanswered such questions as

that raised by consideration of (4.1-4), we specify aug so as to answer them.

Our objectives in introducing the functor aug are two-fold: first to
enrich the class of structures with which we can deal, and second to increase
the efficiency with which we can manipulate them. The problem of efficiency in
pure A-calculus manipulation of structures is intimately related to the

"copying" implicit in the reduction of A-expressions. Consider for example the
reduction

in which § may be an arbitrary AE. We have already pointed out (on page
3.2-117) the enormous gain in efficiency afforded by evaluating S before
substituting for the free occurrences of x within the body of the rator. But
still another problem remains, namely the need for providing as many copies of
the value of S as there are free occurrences cf x. If the value of § is
represented by only a few bits of information, as in the case where S denotes an
integer, then the cost of inserting several distinct copies . of this
representation when carrying out the reduction is unimportant. On the other
hand, when S denotes, say, a 500-tuple, then the cost of maintaining multiple
copies cannot be ignored. Thus we are motivated to substitute not a
representation of the value of § itself, but instead concise information telling
us - how to access that representation. In common parlance, such information is
called a "pointer": One elects to keep only one copy of the representation,
stored away somewhere, and replicate as many copies of pointers to the place of
storage as may be necessary.
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Addresses and Contents: The possibility of "storing things away somewhere"
leads us to- the question of the properties of the place where we might do the
storing. Such a place to store information we call a memory. We use the temm
address for the name of a location in a memory where an object may be stored,
and we call the storage place itself a cell. We must distinguish carefully
between addresses and obs. However, once this distinction is made, a whole new
panoply of manipulatory procedures becomes immediately available. The situation
is illustrated in Figure 4.1-1, in which we use circles to indicate addresses
and dots with directed arcs emanating therefrom to indicate tuples whose
components are addresses. Clearly, from Figure 4.l-la we can obtain

Figure 4.1-1lb by changing the contents of x to be the contents of
(x 1); or

Figure 4,1-lc by changing the contents of (x 3) to be the contents of
x 1); or

Figure 4.1-1d by changing the contents of (x 2) to be the one-tuple
'nil aug (x 3)"; or

Figure 4.l-le by changing the contents of (x 2) to be the ~“one-tuple
"(nil aug x)".

In L-PAL these transformations may be effected respectively by the assignment
commands

x 3=x1 _ (4.1-6a)

x 3 :=x1 (4.1-6Db)

X 2 := nil aug (x 3) (4.1-6c)

X 2 := nil aug x (4.1-64)
A

It is clear from Figure 4.1-1] that the concept of addresses not only
affects efficiency but also introduces the notion of sharing in structures:
specifically, we say that two constituents of a structure share if and only if
they designate the same address. In Figqure 4.1-1 we rely simply on location
relative to the sheet of paper to indicate an address. That is, a 1location on
the page corresponds to an address in a memory.

The flexibility afforded by addresses, however, is not gained without cost

in intellectual overhead. Study of the assignment commands in (4.,1-6), for
example, indicates a forfeiture of contextual independence (cf page 2.3-67).
For example, in equation (4.1-6b) the expression "x 3" is to be interpreted as

the address which is the third component of x, whereas the (syntactically
equivalent) expression "x 1" is to be interpreted as the contents of the cell
whose address is the first component of x. Thus the meaning of such expressions
depends on the context in which they occur, in this case on whether they occur

to the 1left or to the right of the assignment operator ":=", This contextual
dependence gives rise to the nomenclature "L-value" and "R-value" to indicate
whether one means an address or its contents, respectively., But the contextual
dependence in PAL is not always so simple, as careful study of (4.1-6c)
indicates: Here comparison with Figure 4.1-1d reveals that both "x 2" and "x 3"
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are to be interpreted as addresses, even though they occur on opposite sides of
the ":=". We see later that this fact hinges on a design decision concerning
the semantics of the infix operator "aug" -=- it is not true in PAL that "aug" is
just an infix version of the curried function "Aug".

The Functors "aug" and "§$": The semantics of PAL's infix functor aug is as

follows: If E denotes a k-tuple and F is any expression, then the expression
E aug F

denotes that (k+l)-tuple whose first k components share with the k components of
E, and whose (k+l)-st camponent ;hares with F. This is not the only way we
might have defined aug, and other possibilities are suggested by Figure 4.1-2.
Consider the two tuples t and s shown in Figure 4.l1-2a, and the problem of
extending t to have s as a third component. The simplest procedure would be to
draw a third arc, as indicated by the (crossed-out) dashed line; but this
operation has the undesirable effect of altering structure t, so that if "aug”
were defined this way the value of

[Order t eq 2 > t 11 | t12] + [(t aug s) 3 1]

would be 6 or 5, depending upon whether "t aug s" were evaluated before or after
"Order t", This violation of invariance to order of evaluation seems
unwarranted, and was rejected in the design of PAL.

Alternatively, as 1illustrated in Fiqure 4.1-2b, we could make complete
copies of t and s, which is presumably the operation implied by the function
"Aug". this leaves t and s uneffected, but implies possible monumental
inefficiencies which we have already discussed. Of course copying structures

- such as those of (4.1-5) is a distinctly non~-trivial task.

An example of the use of the infix operator "aug" in PAL is illustrated in
Figure 4.1-2c. Assume that t and s are each associated with addresses, and that
E's address references a memory cell containing a k-vector of addresses. Then,
to evaluate "t aug s":

1. Form a (k+l)-vector of addresses. (4.1-7)
2. Copy the k addresses specified by t into the first k conponents
of that vector.

3. Copy the address of s into the (k+l)-st component.

We say that "aug” evaluates its left argument in R-mode, and its right argument
in L-mode.

It may happen that the left argument of "aug" is already an R-value, as in
“nil aug s

In this case step 2 of (4.1-=7) is to be omitted. Alternatively, it may happen
that the right argument of "aug" is an R=-value, as in
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t aug 7

In this case we are to obtain a new address, store the given R-value into it,
and use this address as the (k+l)-st component in step 3 of (4.1-7). In
defining the L-machine we must be careful that transfer functions from L-values

to R-values or from R-values to L-values are executed automatically whenever the
context demands them.

The sharing effects of "aug" are evident in Figure 4,1-2c: The first two
conponents of "t aug s" share with the corresponding components of t, and the
third component shares with s. But it may happen that sharing with s is
undesirable., In this case, a programmer may invoke PAL's ‘"unsharing" operator
"$", as illustrated in Figure 4.,1-2d. "$" is a prefix operator which, when
applied to an address, extracts its contents (in this case, a 2=-vector of
addresses) . Thus "$" is simply a transfer function from an L-value to an
R-value, defined to be nugatory if its argument is already an R-~-value.

Alternatively, we may think of "$" as making a one-level copy of its argument.
(The mark "$" is mnemonic for a crossed-out "S", standing for "unshare®.)

The distinction between an address and its contents (i.e. between L-values
and R-values) is fundamental to the concept of structures in almost every
programming language which deals with them. The design decision in PAL is to
associate an address implicitly with every node of a structure: The effect is
to permit every component of a tuple to be updated by an assignment command. An
alternative design decision would have been to associate a node with an address
only under explicit instruction by the programmer, in which case only nodes so
designated would be wupdatable, Although in some sense less flexible, this
alternative appears to have an advantage in the readability of programs which do
not entail pervasive updating. With either alternative, a little thought should
make it clear that PAL's "aug" and the postulated function "Aug" are
indistinguishable in the absence of the assignment command.

Memories

A major part of the task of specifying L-PAL's semantics is explication of
the effects of sharing, To do this we find it useful to add a memory to our
evaluating mechanism, as a fourth component. Although for the purposes of
blackboard evaluation we can be fairly casual about the properties of memories,
we must be more formal when it comes to specification of the L-PAL gedanken
evaluator., Our objective now is to specify the memory to be used in the
gedanken evaluator.

There are two obvious ways to proceed: We can either postulate memories as
abstract objects in the universe of discourse, or we can represent them by obs
already available to us., Before investigating each of these possibilities in
turn we consider intuitively what properties we want. We think of a memory as a
collection of cells, Each cell has an address which identifies it and a
contents which is any ob. Given any memory, we can always find a second memory
just 1like it but with another cell, (This property is rather a departure from
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the real world.) We can find the contents of any cell in a memory, and given
any memory we can create another memory just like it except that one cell has a

different contents.

postulated Memories: Although memories are rather different sorts of things

from strings or integers, there is no reason why we cannot use the same sort of
technique to put memories into the universe of discourse that we used earlier
with strings. The fact that we start with less intuition about memories than we
had about strings makes axiamatizing memories all the more useful: We are

forced to be precise.

In choosing the postulates, we are guided more by a desire to model the
characteristics of a sheet of paper than by a need to mimic the characteristics
of an actual computer memory. Specifically, we think of the paper as being
marked off in squares, each of which (like a cell) may contain an ob. Since
each square of paper is distinct, we do not envision the possibility that a
square might contain another square, although it might contain the name (i.e.,
address) of one. By analogy, we do not permit a cell to contain another cell.
In order to accommodate tuples, however, we do elect to permit a cell to contain
a vector of addresses. These considerations lead us to adopt the following

postulates for memories. We assume a universe of discourse fLand a set (@ of
addresses, of which we require only that they be distinguishable. We then have
the

pefinition: A memory system Zm, @, Contents, Extend, Update} over a
set N, is composed of a setWM of memories and a set of @ of

addresses, along with the three functions Contents, Extend and
Update, such that the following hold:

(a) There is a function Contents: M®a -+ N. The address o 1is
said to be encompassed by memory M if

Contents (M, )
is defined.

(b) There is a memory M# that encompasses no addresses at all.
It is called the emEtZ memory.

(c) There is a function Extend: (M ® ) » (Mo Q) such that if
MeW and x ¢ (1, and if

Extend (M, x) = (M', o)
then o is not encompassed by M and, for any b € 4,

. Contents (M, b) if b # o
Contents (M', b) = .
X ifb=2o0

(d) There is a function Update: M ® & ® +W_ such that if M
is a memory, o an address encompassed by it, and x ¢ L,
then the memory M' denoted by
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Update (M, @, x)

satisfies, for any address b,

Contents (M, b) if b T
Contents(M', b) = { (M, b) 7

b “ifb=o

(e) The set M of memories is the closure of the function Extend
over the empty memory M# and the universe of discourse /L.

Clearly the set of addresses is arbitrarily large, since we can use Extend
as often as we like and each use must yield a "new" address. The essence of
Extend is that it can always find still another address, distinct from any
already encompassed by the memory supplied to it. These memories differ in
another important way from those of real computers, in that the contents of a
cell can be any ob whatsoever. In real computers, a cell is wusually sone
specified size, such as 32 bits, and it is just not possible to store a 20-tuple
in one. A problem to be solved by any implementer of PAL 1is to represent
memories such as those just described in the memory of a real computer.,

Note the implications of the fact that the operation Update specifies one
memory in terms of another one, just as the operation Succ specifies one number
in terms of another, But Succ does not "destroy" its operand, and neither does
Update. In this regard also our class of abstract memories differs
significantly from the memory of an actual computer. In the latter case, a
change in the contents of a memory cell destroys the previous contents of that
cell: the transformational analogy is to erasing a square of paper and
rewriting in it, with only one piece of paper ever being of interest. By
contrast, in the abstract case the transformational analogy is to having a sheaf
of papers each with slightly different inscriptions, and to specifying one sheet
in terms of another by specifying how it differs in a particular square.

In our L-machine, the role of memories is meta-linguistic. That is to say,
we elect not to include memories as objects in the domain of discourse of the
programmer. Instead, we use memories in the evaluator to represent objects
(such as tuples and programmer-defined functions) which the ‘programmer is
allowed to manipulate. The rationale behind this philosophical decision is
simple: By constraining the programmer, we bound him away £from certain
well-defined but disastrous transformations which would otherwise be legal. For
example, in defining the L-machine we discipline ourselves to reflect reality by
never requiring access to more than one memory at a time. Specifically, we
discipline ourselves not to write expressions such as

Contents(m, a) + Contents(n, a)

(4,1-8)
where n = Update(m, a, 5)

in which "a" is an address, and "m" and "n" denote different memories, Such
expressions are meaningful in the abstract, but are inconsistent with a picture
of the real world wherein each instantaneous memory configuration represents a
single distinct abstract memory. In terms of our analogy between memories and
sheets of paper, we always "throw away" one sheet of paper as soon as we have
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defined another,

befinition by Representation: We are now in a position to define L-PAL's

tuples. Formally, we replace the tuple axioms of section 2.2 by the simple
definition

A tugle ig a vector 2£ addresses 1& a memory.

Thus tuples are now defined indirectly by representation in terms of memories,
which in turn are defined by axiom. Rather than being stated explicitly, the
properties of tuples follow implicitly from the properties of memories and the
operations to which memories are amenable, Consider for example the structure
shown in Figure 4.l-le. We can describe the associated tuple as being stored in
the memory cell with address o, , where

e

[ hd (V‘_l aj’ U",)
v, ~ 7 '

. (4.1-93
9 4~  nil aug o )

~ ‘cat!

3

Here our writing indicates that the cell with address o, contains the 3-vector

shown, cell ¢, contains l' etc. A possible PAL program denoting this structure
is

let x = 7, nil, ‘cat!'
in

X (4.1-9b)
X 2 = nil aug x;

X
there are of course other possible PAL programs.

It is important to realize that definition by representation is equally as
valid as definition by axiom. Indeed, 'the sem;nt1c§ of most programming
languages is defined by representation, in the sense that the implementation in
an actual computer is the principle definition. Moreover, even in principle,
recourse to definition by representation entails no 1loss of power: It is
straightforward to show that the natural numbers are representable by
M-expressions with no free variables, and conversely Godel has shown that all
recursively definable functions are representable by the natural numbers. It
follows that one's choice of definitional procedure must rest on dquestions of
convenience and taste, rather than on more fundamental questions of mathematical
validity. '

There is, however, one fundamental question which deserves comment, namely
the distinction between strong and 3335 representations., Consider the natural
numbers: Peano's axioms enumerate properties that must be evidenced by any set
if it is to qualify as a representation of the "natural numbers". Although
various sets of A-expressions can be concocted which evidence these properties,
such A-expressions also have other properties as well: For example, in the
absence of free variables any A-expression can be applied to any other’
A-expression, so that the representation of 2 can be applied to the
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representation of g.even though this operation is not meaningful in arithmetic.
Any representation that has properties beyond those required of it is called
"weak", whereas a representation that has only the necessary and sufficient
properties is called "strong". A problem inherent in definition by
representation is avoiding the encroachment of unwanted additional properties.,

Represented Memories: The preceeding discussion suggests that we could have

defined memories by representation rather than by postulate. We now show two
different ways to define them via representation by obs already in our universe
of discourse., Our first approach is to regard a memory as a function, and to
represent addresses by integers, To implement Extend we arrange that "cell 0"
always contains the next free address. We have then

def Empty memory = fn x. x eq 0 => 0 | error

and Contents(M, a) = M a
and Extend (M, v} =
leta=1+M0

// next free cell (4.1-10)
in i
(fn x, x eq 0 > a | xeqa =>v | MX), a

and Update(M, a, v) =
fn x. x eq a=>v | M x

This representation is weak for several reasons: Representation of addresses by
integers gives addresses unwanted properties. For example, we can add two
"addresses", which we could not do with postulated addresses. A second weakness
is that postulated memories cannot be applied (i.e., they have empty domain),
whereas these representations can be applied to some integers. On the other
hand, .we have the desired property of an arbitrarily large set of
distinguishable addresses. Of course, there is the very practical objection to
use of this representation in that it is disasterously inefficient if much
updating is done.

. An interesting aspect of the preceeding discussion is that memories, which
provide the essence of what distinguishes L-PAL from R-PAL, can be represented
by purely applicative functions. It turns out that we could instead represent
memories by R-PAL structures. Consider the structure definitions

A memory has two components: a )
nextcell, which is an integer, and a

mem,

A mem is either
empty, or it is (4.1-11)
non-empty and has three parts: an
address, and a
value, and a

mem.
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Thus a mem is much like an environment in the R-machine. (See (3.5-8) on page

3.5-158.) We select the rather obvious choice of representing a memory by a
2-tuple and a non-empty mem by a 3-tuple, and we have '

def Empty_memory =
0, nil

and Contents (Memory, Address) =
Look (Memory 2)
where rec Look Mem =

Address eq Mem 1 -> Mem 2 | Look (Mem 3)

and Update (Memory, Address, Value) = (4,1-12)
Memory 1, (Address, Value, Memory 2)

and Extend(Memory, Value) =
let NC = 1 + Memory 1 // next cell
in
let NextMemory = NC, (NC, Value, Memory 2)
in
NextMemory, NC

As in the functional representation, a memory that has been updated very often
leads to serious inefficiencies in both time and space. This representation is
of course also weak., It is the representation actually used in the L-PAL
gedanken evaluator.

The inefficiency of each of these representations arises from the fact that
a structure in R-PAL, once created, can never be changed. One would expect that
an L-PAL representation of memories in which assignment statements could be used
would be more efficient, so we show that this is indeed the case. (0f course,
there is no value to this particular definition as part of a formal definition,
since we do not permit ourselves to define L-PAL via an L-PAL program,) Since
we are writing in L=PAL we can exploit the fact that functions can be executed
for their effect only, and we refrain from supplying the memory as a parameter
or returning a memory as part of the result, We then have
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def
M = nil // the memory
within
Initialize_memory () =
M := nil
and
Contents A =
MA
and (4.1-13)
Extend V =
M := M aug $V; Order M

and
Update(aA, V) =
MA :=V

Here there is only one memory rather than a set of them. Initialize_memory and
Update are executed only for effect, Contents has a useful value and no effect,
and Extend has both a useful value and an effect,

New Linguistic Constructs

; Our purpose in developing abstract memories has been to provide a
‘conceptual base in terms of which the ideas of sequence and assignment can be

made precise. We now turn to this task, that is, to the formal definition of
‘L=-PAL, .In defining'the L-Machine, we continue (as with the R=-Machine) to assume
that the program to be evaluated has already been represented in the form of an
abstract syntax tree, The new node-types incorporated into L-PAL are
illustrated in Figure 4.1-3. The semantic intent of "aug" and of "$" has
already been discussed, but we have still to discuss assignment and the
variations on the conditional, First though we make an arbitrary decision
converning the value of a sequence, say "El; E2". Presumably, the expression El
is. to be executed for its effect only, so its value is of no interest.
Accordingly, we take the value of any such sequence to be the value of E2.

Assignment: A second arbitrary decision concerns the value of an assignment
cormand . Thus far we have established the side-effect of an assignment: to
update the value associated with a variable or with a component of a tuple. But
Figure 4.1-3 implies that an assignment command can occur anywhere that an
expression can occur -- and expressions have values.

Two alternatives seem reasonable, The first is to introduce a new and
distinct ob into our universe of discourse, say dummg, and adopt it as the value
of a ":=" node; the second is to assume that the value of a ":=" node 1is the

value of E2, Efficiency of computation slightly favors the latter alternative,
since not infrequently a programmer may wish to re-use this value immediately.
But the former alternative offers a correspondingly slight advantage in program

explicitness, hence readability, and also eases the task of program debugging,
since it makes it less convenient to write programs such as
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X + (x := E2) ' (4.1-14a)

whose value is so obviously dependent on the order of execution. PAL opts in
favor of the concept of dummy, and incorporates the identifier "dummy" to denote
this ob and the predicate "Isdummy" to test for it., 1In order to retain the
value of E2 with this decision, the programmer need only write code such as

x + (x := E2; x) : (4.1-14Db)

Of course, the semantics of this is also undefined because of its dependence on
order of evaluation.

Figure 4.1-3 shows that the left son of a ":=" node may be any expression,
but the examples used so far show only variables or components of a tuple used
in that position. The usual semantic intent is that the left side be evaluated
to yield the location into which to do the store. Thus if T denotes a tuple,
obeying

Tk :=E (4.1-15a)
updates the k-th component of T (providing that it exists). Similarly, obeying
x>y =>x|[y) :=0 (4.1-15b)

sets to zero whichever of x or y was previously greater. An exception to this
general rule occurs if the left son of the ":=" node is a COMMA node, in that
then it is the components of the tuple that are updated., Thus obeying

X, y := x+l1, y+l (4,1-16a)

causes both x and y to be changed. The rule is that, if there are k sons of the
COMMA node which is the left son of the ":=" node, then the expression on the
right must denote a k-tuple. The semantics is that the k R-values on the right
are all evaluated before any updating is done. Thus obeying

X, Y 3= ¥, X (4.1-16b)

causes the values of x and y to be interchanged, We later explain such
simultaneous assignment in terms of simple assignment, regarding (4.1-16b) as
sugaring for

Assign# (x, y) (y, x) (4.1-16¢)

where Assign# is an identifier already in the environment which denotes a
function that does simultaneous assignment by iteration of simple assignment.
This function is given in Section 4.2 under the heading "Library Functions",

A second use of dummy in PAL involves the function Print. The intent of
Print, of course, is to provide a side-effect on the world outside the computer
itself, specifically to output (say, onto a piece of paper) a written
representation of the argument to which Print is applied. As with assignments,
the value of "Print E" is taken to be dummy for any expression E.

variations on the Conditional: As do most other programming languages, PAL
provides several syntactic variations on the conditional. Each of
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test (B) ifso (El) ifnot (E2)
test (B) ifnot (E2) ifso (El) (4.1-17)
(B) -> (E1) | (E2)

has identical semantics, although they have different parsing rules. (See the
PAL Manual.)

Because of the L-PAL possibility of execution for effect, it 1is often
useful to have a one-armed conditional. The intent of the construct

if El do E2 (4.1-18a)

is to execute E2 when and only when the value of El is true., We take (4.1-18a)
as syntactic sugaring for

test El ifso E2 ifnot dummy ’ (4.1-18b)
Similarly, the construct
unless El1 do E2 (4.1-18c)
is syntactic sugaring for
test El ifnot E2 ifso dummy | (4.1-184)

That is, (4.1-18c) is equivalent to
if not (El) do E2 (4.1-18e)

but it is more convenient to use where it is appropriate. Note that the value

of an "if" or "unless" node is either that of E2 or durmy, depending on the
value of El.

PAL also provides a feature somewhat akin to the iteration statements of
other languages. The intent of the construct

while El do E2 (4.1-19a)

is to execute E2 repeatedly, so long as the value of El remains true. We take
the value of the overall construct to be dummy. Using labels (as in J=PAL) we
can say that (4.1-19a) is sugaring for the program

L: if El do (E2; goto L) (4.1~19b)

where L is sone identifier not otherwise used. However, this explanation, while
perhaps helpful to the reader, cannot be used at this time as part of the formal
definition of "while", since we must restrict our explanations to use only
R-PAL. A conceptually simple (but somewhat inefficient) way to formalize the

semantics of (4.1-19a) makes recourse to the auxiliary function Loop# defined by
the PAL program

def rec Loop# Xy =

4' 1-20
if x nil do (y nil; Loop# x Yy) ( )

Assuming that the function Loop# is known, we encapsulate the intent of
(4.1-19a) by considering it as sugaring for the combination
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Loop# [M(). E1] [AQ). E2]

in which the "A(). m" construct is used to defer evaluation of El and E2 until
(each) application of Loop#. Similarly,

until E1 do E2 (4.1-21a)
is equivalent to the J=PAL program
L: unless El do (E2; goto L) (4.,1-21b)
but is regarded for now as sugaring for
Loop# [A(). not (E1)] [A(). E2] (4.1-21c)

Note that for both "while" and "until" the boolean is evaluated before the first

execution of the body, so that there is the possibility of executing the body
zero times,

It should be clear that the "if", "unless", "while"” and "until"™ constructs
add no new power to the language. On the other hand, as syntactic devices they
can contribute significantly to program readability. In particular, "while" and
"until"™ correspond to a specialized form of recursion (called iteration). We
see in conjunction with J-PAL that the special nature of such iterations makes
it possible to accommodate them efficiently without recourse to recursion.
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4.2 Mechanical Evaluation of L-PAL Programs

Just as the formal definition of R-PAL is provided by a gedanken evaluator
whose algorithm is represented by a PAL program, so also the formal definition
of L-PAL is provided by a gedanken evaluator whose algorithm is represented in
R-PAL. And just as we gained familiarity with the R=-PAL evaluator by simulating
its operation with blackboard evaluator conventions, so also we develop an L-PAL
blackboard evaluator. The strategy is a bit different for L-PAL, however, since
certain aspects of the language (such as simultaneous assignment) are easier to
explain in terms of the gedanken evaluator than to carry out in the blackboard
evaluator. We adopt in each case the more expedient mechanism for explanation.

Blackboard kvaluation

he principle distinction between L-PAL and R=PAL involves the use of
memories to specify sharing. In addition to the three components (Control,
e ———
stack and Lknvironment) of the CSE machine, we now introduce a fourth component,
.M, for memory. Thus the gedanken evaluator for L-PAL is a CSEM machine.

With L-PAL as with R-PAL, blackboard simulation provides insight into the
evaluation of programs. In this section we extend the informal blackboard
bookkeeping rules of Chapter 3 to accommodate the new constructs (":=", ";", and
"$") which occur in the control structure produced by L-PAL's "Translate"

function, as well as show the control structure produced by the variations on
the conditional., We must of course change the handling of "aug".

Memory Conventions: For blackboard purposes it is convenient to use a separate

column to keep track of the state of the memory, like this:

|Control Stack | Environment |Memory|
| zo E0O | 0: PE o] |

Figure 4.2-1 Lmpty Blackboard Evaluator

“he memory we are using is similar to that of (4.1-12), page 4.1-2!/, in which
PAL structures are used to represent memories, For use by Extend, the left
column of the memory contains the index of the last cell used. Addresses as
represented by o, , o,s ..., when they appear in the stack or elsewhere. (v may
be thought of as mnemonic for storage.)

Any representation of memories must permit us to realize the three
functions we need. Figure 4.2-2 shows a memory that has been extended and
updated several times., On the first extension 12 was put into cell o, Then
cell o, was created holding 14, and then o was updated to hold 10. The rules
are as follows:
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S( Envivonment | Mewory
o: re 0
| V| —tze
2| R—HF Figure 4.2-2:
[ 1o
33 W " Memory dor He L-PAL
L Blackboard HMachive
it lakel
Prot
A B c

. To extend the memory, note the last integer used in column A.
Write the next integer on the current line in column A, and make
an entry for that cell in columns B and C.

. 'To update a cell, make a new entry for it in columns B and C.
Find the last entry for that cell in column B, and cross out
columns B and C on that line.

. To find the contents of a cell, look for an uncrossed-out instance
of its address in column B. The corresponding entry found in

column C is the value,

If the rules are followed, column B can never contain more than one
uncrossed-out instance of any given address. The purpose of the crossing out is
to decrease the possibility of human error in the lookup operation.

We have already noted the PAL design decision that all programmer-defined
names should be variables, by which we mean that they should be updatable. The
implication of this is that the environment should couple a name with an address

rather than with a value. Thus we have the transition

A

cee 6, X"‘ V', (‘)

Here cell 4 contains the value of x, shown as 2. Subsequent execution of the
control corresponding to the PAL statement

X 1= 3
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would lead to the transition

o0 :: . 0;’ .3- see
vee d“--’ LX) lf 3 i

At the same time this last line is obeyed, we would also cross out the earlier
memory pairing of address 4 with &:

As an example, consider the L-PAL program

let x = 2 )
in (4.2=1a)

which was also shown in (4.1-2). This desugars to the AE

({x. X 1= x+3ﬁ‘x) 2 (4.2-1b)
and to the control structure

)

6‘ = S:\; = X + x 3 (402"1(:)

81 = X
Note that the PAL sequence "El; E2" leads to a control sequence consisting of
the control for E2 followed by a semicolon followed by the control for El. We
consistently abbreviate with a § that piece of control following a semicolon.
kxecution in an L-PAL blackboard evaluator of this control is shown in Figure

4,2-3. iThere

here and explain in more detail in the next subsection.

are many new ideas in this evaluation, which we mention briefly
On line 2 we must apply
names with
the 2

»wn
Then in line 4 we make a new

a closure, Since we have agreed that environments associate

addresses, we must extend the memory (as in line 3) and replace in the
stack by «,, the address of a cell that holds 2.
environment in which X is associated with o,. 1In line 5, + is to be applied to
oy and 3. Since i needs R-values, we replace 9, by the contents of that cell,
so that + can be applied to 2 and 2~on line 6, cell 1 to
nold 3. The answer

shown is o as the stack item left on completion of the evaluation. Of course

On line 7 we update
The memoxry entry on line 3 is crossed out at this time,

the value we are interested in is.g, the contents of that cell,
The

control Items: control items new to the L-PAL evaluator are the following

four items:

statement separator

-

3= assignment functor
$ unshare functor
aug tuple extender
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ConTRoOL STack Environnenr | Heror v
; |Ee ¥ N 2 |0 pE o
2 ¥ A2 e,
3 e, ¥ 1K:oy E, P2
Y |g & § t= x + x 3 , E| i x~w (o)
S + %34
6 1= X+ 23
? ; = % 5
g 52 5 dummy £, v 3
? El 3.1‘ E,
/o |E ¥ E,
n = 9

Figure 4,2-3: L-PAL Eyaluation of (4.2-1)

Much of the processing required for these is implied by the discussion of
Ssection 4.1 and the example just given., For example, we have agreed that the
value of the sequence

El; E2

is to be that of L2 and that the value of El is to be discarded. 'Thus the rule
. for a semicolon in the control is simple: Discard the top stack item. This

rule was used on line 8 of Figure 4.2-3.

If := is the top control item, the top of the stack should be an address
and the second stack item should be an ob. The effect of obeying the := is that
the cell whose address is on top of the stack is to be updated so that its
contents is the ob which is the second stack item. In going from line 7 to line
8 of Figure 4.2-3 cell 1 is updated to hold 5. Our blackboard convention is to
write a new "memory layer" showing the new address-contents pairing for that
cell, and to'line out the last such pairing so as to reduce the possibility of

human error.

the unsharing functor "$" is of use when an address is the top stack item,
Its effect is merely to replace the address on the stack by its contents.

when aug is executed the top stack item is to be a vector of length n
(where n is perhaps zero) of addresses, and the second stack item is to be an
address. The effect is to remove these items and to leave in the stack a vector
of length n+l of addresses, the first n of those being the addresses in the
previous top stack item and the n+l-st being the old second item.
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context Rules: Let the term mode, when used to refer to a stack item, refer to

whether the item 1is an R-value or an L-value. The discussion of the previous
subsection is predicated on the assumption that the top one or two stack items
already have the correct mode before the control item under discussion is
encountered. ‘“That this fortui tous situation does not always come about in
practice is shown in several places in Figure 4.,2-3 -~ on lines 2 and 5 for
example. ‘he evaluation rule is simple: When the mode of a stack item 1is not
as needed, fix 1it, using either Contents or Extend as appropriate., (Contents
was used on line 5 and Extend on line 2 of Figure 4.2-3.,) Thus for example we
require that, if the top of the control is § and the top stack item is a
A-closure, the second stack item be an L-value. This is one instance of what we
call a context rule, one which can be stated in Inglish by saying that closures
are always applied to L-values., All of L-PAL's context rules are summarized in
the following table:

Top of Control Top Stack Item 2nd Stack Item

J R -

¥ M-closure L

¥ tuple R

Y basic function R

aug R L

p R --

= L R

$ R --

T, L L...L

Table 4,2-1 Context Rules

here R and L indicate respectively need for an R-value or an L-value, and "=-"
indicates "don't care". Whenever a conflict with a context rule is detected in
the course of a blackboard evaluation, the necessary "transfer function" is to
be invoked., Some additional comments about this table seem noteworthy:

« It must be remembered that although an address is an L=value, a
vector of addresses is an R-value,

. The context rules make nugatory all statements such as
5 := 3

The effect of obeying such a statement is to get a new cell

containing 3, to update the contents of that new cell to 3, and
then to return the value dummy. Since no reference to the address
endures, the computational effect of the assignment is equivalent
to that of
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dummy

In the L-PAL gedanken evaluator, this situation is detected (as it
presumably would be by any alert blackboard evaluator) and the
useless memory extension is not done. Of course the evaluation of
the right side may have side effects,

o The design decision that requires an L-value as rand in an
application whose rator is a M-closure implies that x and y share
during evaluation of the body (E) in program segments such as

ees (let y = x in E) ...

Thus an assignment to either of x or y in E also updates the
other. If such sharing is not desired, the programmer should
write

eee (let y = $ x in E) ...
Note also that x and y share in
let F X = P in eee F Y coo

Neglect of these sharing effects can lead to programming errors that are quite
hard to diagnose, so the programmer is advised to note carefully how he binds
any variable which he plans to update.

This use of PAL's context rules is a process which, in the current
literature, is often referred to as coercion. The idea is that the programming
system, noting that the program has produced one sort of value in a context in
which another sort is required, automatically invokes a suitable transfer
function. PAL's only coercion is between R-values and L-values., A coercion
common to many programming languages is to coerce the left operand of "+" in
expressions such as

3 + 7.2

to be of type rational rather than integer. That is, a transfer function such
as PAL's ItoR is invoked, so that the above is treated as sugaring for

(ItoR 3) + 7.2

An elaborate coercion scheme can be very advantageous to the programmer whose
desires match closely those of the designers of the system which he is using.
To the extent that this match fails in a system in which the design decisions
cannot be overridden, the user suffers, PAL's designers have opted for minimal
coercion, a decision that seems to be consistent with our pedagogical
objectives. ‘

Other Matters: Recursion in the L-PAL blackboard machine is to be handled just
as in the R-PAL machine, using the Y-n method. We perxrmit Tx as a blackboard
control item, although for the gedanken evaluator we desugar tuples to usages of
aug, as in R-PAL. Simultaneous assignment is not handled in the blackboard
evaluator, although the technique presented later for the L=PAL gedanken
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evaluator would clearly apply.

The conditional sugarings if and unless are not of concern in the
blackboard evaluator, as each of them leads to a suitable § node in the control
by the correspondences of (4.1-18). Although we could process while (and until)
by regarding

while B do E (4,2-2a)
as syntactic sugaring for

Loop# (A(). B) (AQ). E) (4.2-2Db)

where Loop# is the function shown in (4.1-20), and in fact do that in the
gedanken evaluator, there is a more efficient method for blackboard evaluation.
It hinges on the observation already made that (4.2-2a) can be regarded as
sugaring for

L: if B do (E; goto L) (4.2-2¢)

where L 1is same identifier not appearing elsewhere., Of course this is a J-PAL
program, but it turns out we can get its effect by suitable desugaring. We
standardize the tree shown in (a) of Figure 4.2-4 into that shown in (b). As in

Figure 4.2 ~4: Standardization for while

Figure 3.5-7, B* stands for the standardization of B and E* for that of E. The
control structure is shown in (c), in which B** and E** are the flattened B* and
E*, For blackboard purposes, assume that the control of (c) is abbreviated by
§.. Then the control § is

L = $kar dkea 8 B**
Sker = §, i E** (4.2-3)
Sxea = dummy

We are unable to build a control like this in the L=-PAL gedanken evaluator,
since it involves a structure with a loop and it is not possible to write in
R-PAL a program which produces such a structure., We can (and do) use this
technique in the J-PAL gedanken evaluator, since it is written in L-PAL. Its
efficiency for blackboard evaluation is suggested by the example shown below.
170 see the gain, the reader should try desugaring the while as shown in (4,2-2b)
and starting the blackboard evaluation. (The definition of (4.1-2a) is needed

4,2-223



sec 4.2 Assignment, Structures and Sharing

as part of the program to be evaluated.) It takes many more steps.

It seems worthwhile to comment on introducing while (and until) into L-PAL,
since they seem to be J-PAL constructs. Doing so gives us the advantage of
being able to use while and until in the code for the J-PAL gedanken evaluator,
with two gains:

« The programs are more perspicuous, since we may use a simple while
construct instead of a recursive function to accomplish
iteration.

. There is the pedagogic advantage of exhibiting contrasting
techniques to accomplish the same task.

This latter point manifests itself in two ways: Firstly, we see that while can
be regarded either recursively (with Loop#) or iteratively (via a loop in the
control structure). Secondly, some tasks which are programmed recursively in
the R-PAL and L-PAL gedanken evaluator are programmed iteratively in the J=PAL
evaluater.

An Extended Example: We give now a fairly long example of an L-PAL blackboard

evaluation, showing most of the techniques introduced in this section. ' Consider
the -program

let k, T =1, nil

in

while k le 2 do (T := T aug k; k 3= k+l);
T

(4.2-4)

This program clearly builds a 2-tuple and returns it as its value. Before
examining the evaluation, the reader is advised to decide in his own mind the
value of this program. It is not (1,2), nor is it (2,2),

The program (4.2-4) desugars as

[Nk, )¢ & 1 (1, nil)

. ' (4.2-5)
while k le 2 do (T := T aug k; k :=k + 1; T

in which the down arrow indicates that the AE on the next line is to stand at
that point. We then get the control structure

F AT Ty 1ni

& = 65 3 a
82 = 83 8:@ le k 2
53 = S,V s t=Taug T k (4,2-6)

§y =8,~;:=k+kl‘
§s = dummy
S‘ = T

Here we have used consistently the convention that the right son of a semicolon
node is to be abbreviated. Note the loop: 8& is used in 37.
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kvaluation in an L-PAL blackboard evaluator is.shown in Figure 4.,2-5, We
need a way to represent tuples. Since a tuple is an R-value, we use a vector of
address with a wiggly underline. Thus the l-tuple whose component is o, is
written G, , as for example in the memory on 1line 14, Note the use of the
context rules, on lines 2, 7, 12 and elsewhere. As is our usual practice, we

have elided many uninteresting lines.

Note that the answer is that 2-tuple whose components are each o, Thus
the value of (4.2-4) is (3,3), since cell 1 holds 3 at the end. Because of
PAL's context rules -- in particular the one that requires an L-value as the
second stack item under aug -- all of the components of the tuple share with k.
(Changing the "2" in (4.2-4) to a "5" would produce the 5-tuple (6,6,6,6,6) as
value.) The easiest way to change the original program to cause it to produce
(1,2) is to change the assignment to T to read

T :=T aug ($ k)

(The parentheses are not needed.) The "$" forces the R-value of k to be taken,
and then a new cell holding that R-value will be "aug"ed onto the tuple.

The L-PAL Gedanken Evaluator

Having gained intuitive understanding of L-PAL through the blackboard
evaluator, we proceed now with the formal definition of the language, using the
L-PAL gdedanken evaluator. The mechanism is very similar to that of R-PAL, the
addition of a memory being the biggest change. The main program is

def Gedanken_evaluator Program =
let Control_ structure = Translate Program
and MO = Initial_memory nil (4.2-7)
in

Evaluate (Control_structure, Empty-stack, PE, MO)
As before, kvaluate is quite simple:

def rec Evaluate (C, S, E, M) =

Null C -> (Rval(M, t S), M) | (4.2-8)
Evaluate (Transform(C, S, E, M))

Our task now is to explain Translate and Transform, as well as the details of
the final answer returned,

Translate: As in the R-machine, Translate involves the composgsition of
standardization and flattening, so that we have

def Translate Program = FF (ST Program, nil) (4.2-9)

Here Program is an abstract syntax tree representation of a PAL program, and ST
and FF, which differ only slightly from their R-PAL counterparts, have yet to be
discussed. All the cases for ST for R-PAL as shown on page 3.5-193 remain
unchanged, but we replace the 1last line (the "Error" line) by the following
code:
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Figure #4.2-5 1 Blackboard Evaluation of (4,2-4)
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| Type IF

=> BETA_ (ST (x 1)) (ST (x 2)) DUMMY
| Type WHILE

-> ( let u = LAMBDA nil (ST (x 1))

and v = LAMBDA_ nil (ST (x 2))
in
GAMMA_ (GAMMA__ Loop_VAR u) Vv

)

| Type ASSIGN
=-> ( let u = 8T (x 1) (4.2=~10)
and v = ST (x 2)
in

Is_tag (x 1) coiMMA
-> GAMMA_ (GAMMA_ Assign_VAR u) v
| ASSIGN_u v
)
| Type DOLLAR -> DOLLAR_ (ST (x 1))
| Type ALPHA =) ALPHA_ (ST (x 1)) (ST (x 2))
| error

Here Loop VAR and Assign_VAR denote representations of the variables we have
been calling Loop# and Assign#, respectively; ALPHA is the tag used for
semicolon nodes; IF, WHILE, ASSIGN and DOLLAR are tags; and DOLLAR_, ALPHA_
and ASSIGN_ are the obvious tagging functions. Code for unless and until is not
shown here; it is of course similar to that for if and while,. As in Chapter
3, we defer till later any discussion of these representation issues. Camplete
programs are given at the end of the chapter. A graphical representation of the
transformation of ST is shown in Figure 4,2-6.

The code for FF differs from that shown for R-PAL on page 3.5=-174 in that
the last line there (the "Error" line) is to be replaced by the code

| Type ALPHA =-> FF ( x 1, FF (x 2, c) ) (4.2-11)
| sons x eq 2 => FF (x 2, FF (x 1, (Get-tag x, c) ) )

| sons x eq 1 => FF (x 1, (Get_tag x, c) )
| error

Note that the code for ALPHA insures that the control structure for the 1left
son is evaluated before that for the right son, corresponding to the fact that
we execute first that which appears before a semicolon and then that which

appears after it. The transformation of FF is shown graphically in Figure
4.2“7.

Transform: The function Transform, which transforms one (C, S, E, M) state into
another, is all that is needed to complete the specification of the L-PAL
gedanken evaluator. It is similar to R-PAL's Transform:
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def Transform (C, S, E, M) =
let A=C, S, E, M

and X = t C // Top of control.
in
Is_constant x => Eval_constant A
| Is_variable x => Eval_variable A
| Is_lambda_exp x =) Eval_lambda_exp A
| x eq ALPHA -> Do_alpha A // semicolon
| x eq ASSIGN -> Do_assign A
| X eq DOLLAR =) Do_dollar A
| Is_address(t S) => LtoR A
| x eq BETA -» Do_conditional A
| x eq AUG -> Do_aug A : ’ (4.2~12)
| x eq RETURN => Do_return A
| x eq GAMMA -y
(letr=¢tsS
in
Is_closure r => Apply_closure A
| Is_constant r -> Apply_constant A
| Is_tuple r => Apply_tuple A
| 1s Y r -3 Apply_Y A
| Is etar ~> Apply_eta A
| error
)
| error

For the most part, the routines called to do the work are similar to those with
the same name in the R-PAL evaluator. Thus evaluation of constants, variables
and A-expressions, as well as handling of RETURN and conditionals, is the same
in L~PAL. Of course we must add the fourth component, M, to the machine state,
but in each case M is unaffected by the transformation. ﬁThe relevant code is
shown at the end of the chapter,

when the top of the control is ALPHA, corresponding to a semicolon in the
original program, we wish merely to discard the result stored in the top of the
stack. This is accomplished as shown:

- def Do_alpha (C, s, E, M) =
rcCc, r s, E, M

(4.2-13)

When ASSIGN is the top control item, we wish to update the memory. We have

def Do_assign (C, S, E, M) =
let val = // Right side of :=
Is_address (2d §)
=> Contents (M, 24 S)
l 24 s
in

(4,2-14)
let New M = //New memory
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Is_address (t §)
-> Update (M, t S, Val)
I M
in
r C, Push (DUMMY, r2 S), E, New M

Here Val is the R-value to the right of the ":=", If the top stack item is not
an address, the assignment is nugatory. As we decreed earlier, we take the
value of the assignment to be dummy., DUMMY has a suitable value.

The control item DOLLAR signifies the programmer's intent that an R-value
be the top stack item. The code

def Do_dollar (C, S, E, M) =

(4.2~15)
r C, push ( Rval(M, £t 8), r s) ), E, M

has the desired effect,

Each of the remaining cases requires that the top of the stack be an
R-value. In order to guarantee this, we want the function LtoR defined by

def LtoR (C, S, E, M) =
let New_S = Contents (M, t S)
in .
C, Push (New S, r S), E, M

(4.2-16)

to be called when needed. It follows from the placement of the test
Isaddress (t S) => LtoR A

in (4.2-12) that this transformation is invoked whenever both of the following
hold:

(a) The top control item is "g", "aug" or "¥"; and
(b) the top stack item is an L~-value.

on the next iteration of Transform, the control item of (a) governs and
evaluation proceeds as usual,

The control item "aug" signifies that a vector of addresses (at the top of
the stack) is to be extended by the addition of another component:

def Do_aug (C, S, E, M) =
let New M, x =
Is_address (2d S)
-> M, 2d 8)

| Extend (M, 24 S) (4.2-17)
in
let V = Augment_tuple (t S) x
in

r ¢, Push (V, r2 s), E, New M
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Note the definition of "New M" and of x. PAL requires that the right side of
this simultaneous definition evaluate to be a 2-tuple, and it should be clear
that this will be the case whether or not the second stack item is an address.
(The function Extend returns a 2-tuple.) The function Augment_tuple used knows
how items in the stack are represented.

Application of a closure is as follows:

def Apply_closure (C, S, E, M) =
let New_M, Rand =
Is address (2d S)
-> (M, 2d 8)
| Extend (M, 2d S)
and R = t S // The rator

. (4,2-18)
in .

let New_C = Prefix (Body R, Push (RETURN, r C))

and New_S = Push (E, r2 §)

and New E = Decompose (bV R, Rand, Env R, New_M)

in

New_C, New_ S, New E, New M
The differences from R-PAL all arise from presence of the memory. Note
particularly that Decompose has a fourth parameter: the memory in effect when

it in called. It needs this to be able to access tuple components in the case
when the A-closure being applied has a structured bV-part.

All other cases are enough simi lar to R-PAL that no further discussion is

needed.

Order of Evaluation: 1In the 1last section of Chapter 3, starting on page

3.5-180, we observed that the gedanken evaluator for R-PAL is over-specified in
that a right-to-left order of evaluation of operands is forced, even though
doing so is irrevelant to the semantic intent. A method of remedying this
defect was proposed, having to do with a random selection in Translate between
GAMMA and AMMAG for the control structure, the former leading to right to left
evaluation and the latter to left to right., At the time, we mentioned that the
whole discussion was rather irrevelant to R-PAL, since it is not possible to
write in R-PAL a program whose value depends on order of execution. Now that we
have L-PAL, it is easy to write such programs. A simple one, similar in spirit
to (3.5-28), is

let x = 1
in
2% (x 1=x+1; x) + 3 * (x := x+1; Xx)

whose value is either %3 or &g. Another example

let x = 1
in ,
. [x » 0 => (At.t) | (Ate=t)] [x = =x; x]
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clearly depends on whether the rator or the rand is evaluated first. The design
decision taken in PAL 1is predicated on the belief that a program is
unnecessarily obscure if its successful execution depends critically on such
implicit implementational details as order of evaluation. The decision is that
such programs should be undefined,

As suggested in section 3.5, we could modify the gedanken evaluator by
calling the random function Choice at suitable places to achieve the required
undefinedness. We do not do so in our definition of the L-machine (or the
J-machine) simply to avoid obfuscating other important concepts with unnecessary
detail. In a formal definition of PAL, however, Choice would be used as
suggested above, Our present objectives are pedagogic rather than formal.

Library Functions

‘there is some unfinished business still before us: We have yet to speci fy
the function Assign# used in desugaring simultaneous assignments, and we must
explain PAL's def construct which we have been using in our coding. The topics
are related, since we can made Assign# available to the user by assuming a
suitable def for it.

The Function Assign#: Recall that an ASSIGN node whose left son is a COMMA node
is desugared as follows:

Figure 4.,2-8: Standardization of Simultaneous Assignment

Thus for example, the statement
X,y :=E (4.2-19)
is desugared as if the programmer had Qritten
Assign# (x, y) E : (4.2-20)

The assumption is that the identifier Assign# is in the environment when the
program runs., We see later how it gets there, but are concerned now with
defining the function which it denotes.

The function is a curried function which takes two arguments, the first of
which must always be a tuple., (Calls for Assign# can only be produced by ST,
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and then only when the left side of the assignment denotes a tuple.) The
function requires that its second argument be a tuple of equal order.  Since we
require that all R-vaues on the right be determined before any assignment is
done, the function makes a one-level copy (with "$") of each component of its
second argument, and then the assignments are done. We have then the following
code:

def Assign# x y =
let n = Order x
and w, k = nil, 1
in
unless n eq Order y do error;

while k le n do (4.,2-21)
(w:=waug $ (y k);
k :=k +1
):
k := 1;

while k le n do (x k := w k; k := k+1)

since this program is to be interpreted by the L-PAL gedanken evaluator, it may
use all of the power of L-PAL. (But not simultaneous assignment. Why not?)
Note how natural is the use of the one-armed conditional, and how convenient is
the while construct for iterating through first the components of y and then
those of X. The unsharing functor "$" in the assignment to w is critical, since
without it the components of w would share with those of y, thus nullifying the
effect of creating w.

This definition has an unfortunate property: It over-specifies PAL in
terms of order of assignment to the components in a simultaneous assignment.
Better in some sense would be a random choice of which way to go. The objective
is that statements such as

be undefined.

The "def" Construct: The assumption underlying our exposition of simultaneous
assignment is that the identifier Assign# is somehow in the enviromment of the
user's program before it starts to run, Of course this is not a new concept,
since all of the postulated functions such as Stern, Null, Isstring as well as

those denoted by such functors as "+" and "not" are in the primitive environment
PE. What is different here is that Assign# is written in PAL, and what is
needed is an explanation of PAL's "def" construct.

Recall from the discussion of def at the beginning of section 3.5 (on page
3.5-15§2) that a program of the form

def (definition)

has no defined semantics when taken in isolation but does when it appears in a
suitable context. The PAL syntax, as given in Appendix 2.1 of the PAL Manual,
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says

(program) ::=
{ def (definition> {7 (4.2-22)
| <(expression)

This syntax defines that which may be submitted as input to a PAL compiler. It
suggests the term "def-program” for a <«programd consisting of one or more
def's. What we are concerned with now 1is how one can combine several
def-programs with an expression.

Let us think of the problem like this: Suppose that a programmer has a
collection of one or more def-programs (such as the definition of Assign# in
(4.2-21)) as well as an expression. The def-programs are to be taken in some
order and followed by the expression, and our task is to ascribe semantics to
the result. We do so now in two different ways, and select one of them for
inclusion in the formal definition.

The first explanation is in terms of textual modification. Each
def-program is to be altered as follows:

o The first "def" in it is replaced by "let",

. All other instances of "def" which occur in it are replaced by "in
let",

. The word "in" is appended to the program,

We then form one long program by concatenating together all of the modified
def-programs, in order, followed by the expression. The result will be a
syntactically correct PAL program (if all the original programs were correct)
and its semantics are deducible from the rules already given. Note that the
order of appearance of the def-programs is important, since each may refer to
identifiers defined in previous ones,

An alternate way to explain a collection of def-programs and an expression
is in terms of input to the function Translate which is part of the gedanken
evaluator. Assume that all of the programs exist as syntax trees suitable as
input to Translate, For that purpose, we assume a new node type, def, whose

single son is a definition. Now consider the last def node and the expression,
and perform the transformation

D P =

D

which replaces them by a single let node. Since this latter is an expression,
we can repeat the process on all of the def nodes in succession, until all that
remains is a single let node which can be input to Translate. Figure 4.2-9
shows successive steps of this transformation on two def-programs and an
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expression,

A curried function Do_def to do this task may be defined by the PAL
programn

def rec Do_def x =
Is_tag x DEF
=> [ fn y. LET_ (x 1) (Do_def y) ]
| x

(4.2-23)

Note that this function is to be applied to the def's in the orxder in which they

are to be processed, and "eats up" arguments until it encounters one which is
not a def.

All of the preceeding discussion applies equally to R-PAL and to L-PAL, and
we see in the next chapter that it applies also to J-PAL,

The L~PAL Library: We have seen that standardization of L-PAL programs may
produce calls for Assign# or Loop#. Thus it is assumed that definitions of
these variables must precede the user's program. Since the code for Assign#
contains while, which desugars into a call for Loop#, it is necessary that Loop#
appear before Assigni.

We can fix the formalization easily by modifying the definition of the
function Gedanken_evaluator as given in (4.2-7) to read

def Gedanken_evaluator Program =

let Tree = Do_def Loop_T Assign_T Program

in

let Control_structure = Translate Tree (4,2-24)

and M) = Initial_memory nil

in

Evaluate (Control_structure, nil, PE, MO)
Here Do_def is the function defined in (4.2-23), and Loop_T and Assign_T are
syntax trees which are def-nodes corresponding to (4.1=20) and (4,2-21),
respectively. The variable Tree is a syntax tree for the two library functions
and the user's program, and the rest of the evaluation proceeds as before,

An alternate approach is to leave the function Gedanken_evaluator
unaltered, and to make it the user's responsibility to include either or both
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of Loop T or Assign T as needed. Suppose that User_ T denoteé the tree to be
evaluated. Then instead of applying the function of (4.2-24) to User_T, one
might instead apply the function of (4.2-7) to the tree denoted by

Do_def Loop_ T Assign_T User T

The result is clearly the same. The advantage to the latter approach has to do
with efficiency: The user need not include Loop_T or Assign_T unless they are
needed. Although the issue of efficiency is not really relevant in connection
with a formal definition, it nonetheless seems worth mentioning in these notes.
This alternate approach is assumed in the formalization at the end of the
chapter.

4.3 Listings of the L=PAL Evaluator

The following pages contain a complete listing of the gedanken evaluator
for L-PAL, as it has actually run in a PAL implementation (on Multics). All
necessary representational issues are faced up to. As in the R-PAL listings in

Chapter 3, the only variable appearing here that is not defined (other than
those in PAL's primitive environment) is Error.

Any discrepencies found between the programs shown -here and those shown
earlier in the chapter should be resolved in favor of those shown here.
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// : PRELIMINARY DEFINITIONS

// Preliminary definitions for the evaluator,

// Selectors and constructors for the stack and control.

def t(x, y) = x // Top of stack or control.

and r(x, v) y // Rest of stack or control.
and Push(x, s) = x, s [/ Put new item on stack or control,
def rec Prefix(x, y) = // Put control x at top of control vy.
Null x => vy
| Push(t x, Prefix(r x, y) )
def r2 x = r(r x) // Rest of (rest of (stack or control)).
and r3 x = r(r(r x)) // Rest of (rest of rest).

and 2d x = t(r x) // Second element of stack or control.

and 3d x = t(r(r x)) // Third...

def Empty_stack = nil // The empty stack.

//*********************

// Tagger and tag-checkers for structures.

def Tagn's = s aug n // Tag structure s with tag n.
and Is_tag sn = // Does structure s have tag n?
Istuple s => n eq s(Order s) | false
and Get_tag s = s(Order s) // Return the tag of s.
'and Sons sv = Order s -~ 1 // Return number of sons of s,
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// Selectors, predicates and constructors for lambda-expressions
// and lambda-closures.
def LAMBDA = '_lambda' // Tag for lambda-expressions and closures.
def bV x = x 2 // Select bv-part of a lambda-exp or closure.
and Body x = x 3 // Select body part...
and Env x = x &4 // Select environment part...
def Test(x, n) =

Istuple x

=> Order x eq n
-> Isstring(x 1)
-> x 1 eq LAMBDA
| false
| false
| false
within

Is_lambda_exp x = Test(x, 3)
and Is_closure x = Test(x, U4)

def'Cons_lambda_exp(bV, Body)
LAMBDA, bV, Body

// Construct a lambda-expression.

and Cons_closure(L_exp, Env) = [/ Construct a lambda-closure,
LAMBDA, bV L_exp, Body L_exp, Env
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// Definitions and predicates for the left-hand evaluator.

// * * * * * * * * * * * * * * * * * * * * *

// ltems and predicates for control structure and stack,

def GAMMA = ' gamma'
and BETA = ' beta'
and CONSTANT = ' _constant'
and VARIABLE = '_variabie'
and ADDRESS = ' _address' // Used only in stack.,
and ASSIGN = ' _assign' /] :=
and DOLLAR = ' dollar'
and AUG = ' aug'
and TUPLE = ' tuple' // Used only in the stack,
and ALPHA = ' _alpha'
and ETA = ' _eta' // Used in stack for recursion.
and RETURN = '_return’' :
def Test(x, y) =

Istuple x

-> Order x eq 2

-> Isstring(x 1)
->x1legy
| false
| false
| false
within

Ils_constant x
and Is_variable x
and |s_address x
and Is_eta x

Test(x, CONSTANT)
Test(x, VARIABLE)
Test (x, ADDRESS)
Test(x, ETA)

and Is_tuple x =
Test(x, TUPLE) =-> true // |Is it a constructed tuple?
| Test(x, CONSTANT) => Null(x 2) // Is it nil?
| false // Neither,

and Is_identifier x = // lIs x a constant or a variable?
Test(x, CONSTANT) or Test(x, VARIABLE)

def Same_var(x, y) = [/ Are x and y the same variable?
X 2eqy 2
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// Call for Y_VAR is produced in Translate for rec-defs,

def Y_NAME = 'Y#' // The name of "Y".

and Loop_NAME = ‘Loopt#' // Used in evaluation of while expressions,
and Assign_NAME = 'Assign#' // Used in simultaneous assignment.

def Y_VAR =
VARIABLE, Y_NAME

and Loop_VAR =
VARIABLE, Loop_NAME

and Assign_VAR =
VARIABLE, Assign_NAME

def Is_Y x =
Isstring x => x eq Y_NAME | false

and NIL =
CONSTANT, nil

and DUMMY =
CONSTANT, '_dummy'
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// Tags for abstract syntax tree,

def TEST = '_test' // test ... ifso ... ifnot ...
and ARROW = ' arrow' [/ vee = cee ]l e

and IF = '_if' . // if o 00 dO LY

and WHILE = '_while' // while ... do ...

and AP = ' _ap' // functional application
and FN = ' fn! // lambda

and EQUAL = ' _equal' // definition

and WITHIN = ' _within'

and REC = ' _rec'

and FF = '_ff! // function form definition
and AND = ' _and' // ‘and' definition

and COMMA = ' _comma' // tuple maker

and LET = ' let'

and WHERE = ' where'

and BINOP = ' binop'

and UNOP = ' _unop'

and PERCENT = '_percent'

// Taggers for tags in abstract syntax tree.

def TEST_ x vy 2z
and ARROW_ x vy z
and AP_ x vy

and IF_ x vy

and WHILE_ x vy
and FN_ x vy

Tag TEST (x, y, 2z)
Tag ARROW (x, vy, z)
Tag AP (x, vy)

Tag IF (x, y)

Tag WHILE (x, y)
Tag FN (x, y)

and LET_ x vy Tag LET (x, y)

and WHERE_ x vy Tag WHERE (x, y)
and EQUAL_ x y Tag EQUAL (x, vy)
and WITHIN_ x vy Tag WITHIN (x, vy)
and REC_ x Tag REC (nil aug x)
and FF_ x vy Tag FF (x, vy)

and AUG_ x vy

and ASSIGN_ x y
and ALPHA_ x y

and DOLLAR_ x

and BINOP_ x y 2z
and UNOP_ x vy

and PERCENT_ x y z

Tag AUG (x, y)

Tag ASSIGN (x, y)

Tag ALPHA (x, v)

Tag DOLLAR (nil aug x)
Tag BINOP (x, vy, 2)
Tag UNOP (x, y)

Tag PERCENT (x, vy, z)

Tag AND X
Tag COMMA x

and AND_ x
and COMMA_ x

// Note that the last two taggers are not curried, as are
// all the others.

// Taggers for standardized syntax tree.
Tag GAMMA (x, y)

Tag BETA (x, y, z)
Tag LAMBDA (x, y)

def GAMMA_ x vy
and BETA_ x vy
and LAMBDA_ x

z
Y
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// Some useful functions for transform.

def Value_of x = // Evaluate a control element, to put it on stack.
X

and Val_of x = // De-tag a stack element, to get its value,
X 2

def Apply x y =
let t = (val_of x) (Val_of y)
in
Is_address t => t | (CONSTANT, t)

and Augment_tuple x y =
Is_tuple x => (TUPLE, Vval_of x aug y)
| Error 'first argument of aug not a tuple'

/] * * *x x % % *x x % % *x %k % % &% *k *x *x * Kk &
// MEMORY

def Initial_memory () =
0, nil

def Contents(Memory, Address) =
let A = Address 2
in
Look(Memory 2)
where rec Look m =
Null m => Error 'address not in memory'
| Aegqml -> m2 // Found,
| Look(m 3) // Keep looking.

and Update(Memory, Address, Value) =
Memory 1, (Address 2, Value, Memory 2)

and Extend(Memory, Value) =
let Next_C =1 + Memory 1
in
let Next M = Next_C, Value, Memory 2
in
(Next_C, Next_M), (ADDRESS, Next_C)

def Rval(Memory, X) =
Is_address (X) => Contents(Memory, X) | X
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/!  ENVIRONMENT

// An environment is either empty (nil), or a 3-tuple:
// Name, Value, Environment

// The primitive environment:

// Define primitive environment, and provide function to look
// up variables in the environment,

def PE = // The primitive environment.
Y_VAR, Y_NAME, // for recursion
nil

and Lookup(Var, Env) = // Look up a variable in the environment.
L Env // Start looking in Env.
where rec L e =
Null e => Error 'variahle not found in environment'
| Same_var(Var, e 1) =-> e 2 // Found.
| L (e 3) // Keep looking.

// The following function is used in applying a lambda-closure.
// The names on the (possibly structured) bv-part 'Names' are

// added to the environment 'Env', associated with the corres-
// ponding part of 'Values'. The new environment is returned as
// the value of the function.

def rec Decompose(Names, Values, Env, Memory) =
test |Is_variable Names // Is it a single variable?
ifso (Names, Values, Env) // Yes, so add it to environment,
i fnot
( let V = Contents(Memory, Values)
in
test Is_tuple V :
ifnot Error 'conformality failure' // Tuple applied to scalar.
ifso ,
test Order Names eq Order(Val_of V)
ifnot Error 'conformality failure.,' // Differing tuple lengths.
ifso // Process a multiple-bv part.
( Q1 Env
where rec Q ne =
n > Order Names =-=> e | _
Q (n+l1) (Decompose(Names n, Val_of V n, e, Memory))
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def rec D x = // Standardize a definition.
let Type = Is_tag x
in

Type EQUAL => x // Already 0K,

Type WITHIN

-> ( let u, v = D(x 1), D(x 2)

in

)
Type REC
-> ( [et w = D(x 1)
in

EQUAL_ (v 1) ( GAMMA_ (LAMBDA_ (u 1) (v 2)) (u 2) )

EQUAL_ (w 1) ( GAMMA_ Y_VAR (LAMBDA_ (w 1) (w 2)) )

)
Type FF

=> ( EQUAL_ (x 1 1) (Q (Order(x 1)) (x 2))

where rec Q k t =
k<2 = t
| Q (k=1) (LAMBDA_
)
Type AND
=-> ( EQUAL_ L (Tag COMMA R)
where rec L, R =Q 1 nil
where rec Q k s t =
k > Sons x => (s,
(¢ [et w = D(x k)
in
Q (k+1) (s aug
)
)

Error 'improper node found in D'

(x 1 k) t)

nil

t)

wl) (t aug w 2)

Sec 4.3

4.3-245



Sec 4.3 Assignment, Structures and Sharing

def rec ST x // Standardize abstract syntax tree.

let Type
in

ls_tag x

Is_identifier x => x
|} Type BETA or Type TEST or Type ARROW
=> BETA_ (ST(x 1)) (ST(x 2)) (ST(x 3))

] Type IF
=> BETA_ (ST(x 1)) (ST(x 2)) DUMMY
| Type WHILE
-> ( let u = LAMBDA_ nil (ST(x 1))
and v = LAMBDA_ nil (ST(x 2))

in
GAMMA_ (GAMMA__ Loop_VAR u) v
)

| Type ASSIGN
=> ( let u = ST(x 1)
and v = ST(x 2)

in
Is_tag (x 1) COMMA
-> GAMMA_ (GAMMA_ Assign_VAR u) v
) | ASSIGN_ (ST(x 1))(ST(x 2))
| Type LAMBDA or Type FN
-> LAMBDA_ (x 1) (ST(x 2))
| Type COMMA
=> (Q1NIL
where rec Q k t =
k > Sons x => t
: | Q (k+*1l) ( AUG_ t (ST(x k)) )
| Type PERCENT
-> GAMMA_ (x 2) ( AUG_ (AUG_ NIL (ST(x 1))) (ST(x 3)) )
| Type LET
-> ( let w=D(x 1) // Standardize the definition.
in
GAMMA_ ( LAMBDA_ (w 1) (ST(x 2)) ) (ST (w 2))
)

| Type WHERE => ST(LET_ (x 2) (x 1))
| Type AP => GAMMA_ (ST(x 1)) (ST(x 2))
| Type BINOP ' :
-> GAMMA_ ( GAMMA_ (CONSTANT, x 3) (ST(x 1)) ) (ST(x 2))
| Type UNOP '

-> GAMMA_ (CONSTANT, x 2) (ST(x 1))
| Sons x eq 1 => Tag (Get_tag x) ( nil aug ST(x 1) )
| Sons x eq 2 -> Tag (Get_tag x) ( ST(x 1), ST(x 2) )
| Error 'improper node found in ST'
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// The function FF flattens a standardized tree into a
// control structure. '

def rec FF(x, c¢) = // Flatten standardized tree x onto control c.
let Type = Is_tag x
in

Is_identifier x => (x, c)
| Type LAMBDA
-> ( let Body = FF( x 2, nil )
in
Cons_lambda_exp(x 1, Body), ¢

)
| Type BETA
=> ( let TA = FF(x 2, nil) // True arm,
and FA = FF(x 3, nil) // False arm,
in
FF( x 1, (BETA, (FA, (TA, ¢))) )
)
| Type ALPHA

-> ( let Rest = FF(x 2, c)

in
FF(x 1, (ALPHA, Rest))
)
| Sons x eq 2 -> FF( x 2, FF( x 1, (Get_tag x, c) ) )
| Sons xeq 1l -> FF( x 1, (Get_tag x, c) )
| Error 'improper node found in FF'

def Translate Program = // The routine that does all the work.
FF( ST Program, nil )

Sec 4.3
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//

def

and

and

and

and

and

and

and

and

and

State transformations for

Eval_constant(C, S, E, M) =
r C, Push(Value_of(t C), S), E, M
Eval_variable(C, S, E, M) =
let New_S = Lookup(t C, E)
in :
r C, Push(New_S, S), E, M

Eval_lambda_exp(C, S, E, M) =
let New_S = Cons_closure(t C, E)
in

~r C, Push(New_S, S), E, M

Do_alipha(C, S, E, M) =
rC, rs, E, M
Do_assign(C, S, E, M) =

Assignment, Structures and Sharing

the LPAL Evaluator.

// Look up top of C in E,.

let New_M = Is_address(t S) -> Update(M, t S, Rval(M, 2d S)) | M
in
r C, Push(DUMMY, r2 S), E, New_M

Do_dollar(C, S, E, M) =
r C, Push( Rval(M, t S), rS ), E, M

LtoR(C, S, E, M) = // Replace L-value at stack top by R-value,
let New_S =

in
C, Push(New_S, r S), E, M
Do_conditional(C, S, E, M) =
[et Selected_arm =
in
Pref ix(Selected_arm,

r3 ¢), r S,

Do_aug(C, S, E, M) = // aug

let New_M, x = |Is_address(2d S) => (M,

in

let V = Augment_tuple (t S) x
in

r C, Push(V, r2 S), E, New_M
Do_return(C, S, E, M) =

r C, Push(t S, r2 8), 2d S, M
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and Apply_closure (C, S, E, M) =

Sec 4.3

let New_M, Rand = Is_address(2d S) -> (M, 2d S) | Extend(M, 2d S)

and Rator =t S

in

let New_C = Prefix(Body Rator, Push(RETURN, r C))

and New_S = Push(E, r2 S)

and New_E = Decompose(bV Rator, Rand, Env Rator, New_M)
in

New_C, New_S, New_E, New_M

and Apply_constant(C, S, E, M) = ‘
let V = Apply (t S) (Rval(Mm, 2d S))
in :

r C, Push(v, r2 S), E, M

and Apply_tuple(C, S, E, M) =
let V = Apply (t S) (Rval(M, 2d S))
in .
r C, Push(v, r2 S), E, M

and Apply_Y(C, §, E, M) =

let V = ETA, 2d S

in '

let New_S = Push(2d S, Push(V, r2 S) )
in :

C, New_S, E, M

and Apply_eta(C, S, E, M) =
Push(GAMMA, C), Push(t S 2, S), E, M
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// Main program for the LPAL Gedanken Evaluator,

def Transform(C, S, E, M) = // Do one step of an evaluation.

let A=C, S, E, M
and x =t C // Top of control,.
in
|l s_constant x -> Eval_constant A
| Is_variable x ~-> Eval_variable A
| Is_lambda_exp x => Eval_lambda_exp A
| x eq ALPHA ~-> Do_alpha A // semicolon
| - x eq ASSIGN -> Do_assign A
] x eq DOLLAR -> Do_dollar A
| Is_address(t S) =-=> LtoR A // R-value to top of stack.
| x eq BETA -> Do_conditional A
| x eq AUG -> Do_aug A
| x eq RETURN -> Do_return A
| x eq GAMMA ->
(let r =1t S
in
Is_closure r => Apply_closure A
| Is_constant r =-> Apply_constant A
| Is_tuple r => Apply_tuple A
| Is_Y r -> Apply_Y A
| Is_eta r -> Apply_eta A
|

Error 'improper rator'
)
| Error 'bad control'!

def rec Evaluate(C, S, E, M) =
Null C => (Rval(M, t S), M) |
Evaluate(Transform(C, S, E, M))

def Gedanken_evaluator Program =

let Control_structure = Translate Program

and MO = [nitial_memory nil

in : :
Evaluate(Control_structure, Empty_stack, PE, MO) .
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Chapter 5
JUMPS AND LABELS

“he one remaining feature to be added to L-PAL to make it J=-PAL (and
therefore, complete PAL) is the "goto" statement. Note the PAL program with a
label at the beginning of Chapter 4 in (4.1-1lc). The idea is that, in a program
such as

ees 5 L2 S1; +4ve 3 goto L; ... (5.0-1)

obeying the "goto L" statement causes the successor of that statement to be the
statement Sl. We say that the appearance of "L:" before S1 is a label, which
labels the statement. Thus the goto statement merely alters the "flow of
control" through the program,

But the problem is harder than this, Clearly in (4.1l-=lc) or in (5.0-1),
obeying the goto changes only the control, since the stack is empty both before
and after the goto and the environment at both places is the same. Consider
instead the program

Sl;

M: 82;

( let x = ...
in _ (5.0-2)
s3; if ... do goto M; S4

)i

S5;

nere obeying the goto must change more than just C: It must also change E,

since X is in the environment at the place where the goto appears and is not in
the environment at the place in the program where the label M appears. Clearly
this situation is more complex than that of the preceeding paragraph. To
aistinguish them, we call the goto of (5.0-2) a skip, and that of (5.0~1) a hop.
“he distinction is that execution of a skip causes layers of the environment to
be discarded, while in a hop the environment is left unchanged.

There is an even more complex type of goto: one which we  call a jump.
Consider the following:

1 let x = nil

2 in

3 S1;

4 ( let y = 0

5 in (5.0=3)
o M: S2; x s= M; S3

7 )i

8 S4;

9 if ... do goto x}
10 .
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(The numbers on the left are not part of the program but are for reference
pelow.) The scope of x is clearly the entire program after 1line 2. Thus
obeying the assignment statement on line 6 causes x to denote a value which is a
label. (We have yet to say what sort of R=-value a label is. This and the next
few examples should give us more ideas of what is needed.) Thus on line 9 the
goto leads to the label M. The environment at M has more information in it than
does the enviromment that exists on line 9. HNormally, the environment layer for
y would have disappeared (in same sense) as we passed the right parenthesis on
line 7. ow somehow we must remember it, so that it can be reinstated as part

of the goto, This requirement suggests that part of the value of a label must
be an environment.

We distinguish between skips and jumps to make one point: There exist many
languages that implement skips, but very few which implement jumps. Skips,
called "non-local gotos", are available in Algol, PL/I and related languages,

while the only languages that implement jumps seem to be those which, like PAL,
have been strongly influenced by the works of Strachey and Landin,

J=-PAL introduces one other linguistic facility == the punctuations valof
and res. We see later that they can be treated quite economically as sugarings
of jumps and labels., Briefly, the value of the expression

valof b (5.0-4a)

(which may be read as "value of E") is that of E, with the proviso that an
occurrence in E of the expression

res F (5.0=-4b)

(which may be read as "result is F") causes the value of F to be taken
immediately as the value of the entire expression (5.0-4a), regardless of what
other text may appear in E. The effect of a res is, in most cases, a hop, but
it is gquite possible to write programs in which res produces a skip or even a
jump.

vxample: Note the distinction between a skip and a jump: In the former,
environment layers are discarded, whereas in the latter environment layers that
normally would have been discarded earlier in the evaluation are reinstalled.
Let us look at another example of a jump, a rather trivial one which nonetheless
suggests some possibilities:

1 let F () =

2 true

3 -> (Print 'A'; L)

4 | (L: Print 'B')

5 in (5.0-5)
6 let x = F nil

7 in

8 if Islabel x do goto Xx;

9 Print 'C'
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whis is a complete J=-PAL program which runs on the computer, producing printed
output. bBefore proceeding, the reader might want to attempt to deduce what that
output will be. '

uines 1 to 5 define a function F, and on the sixth line x is defined to be
the wvalue produced by applying I' to nil, What will that value be? Actually,
that is not quite the proper question, since applying I to nil may have a side
effect as well as returning a value., The body of F (lines 2 through 4) is a
conditional expression with "true" as the boolean, so the "true" arm on 1line 3
is obeyed. boing so causes 'A' to be printed (a side effect) and L to be
returned as the value of the application, the wvalue to be associated with x. On
line 8 we ask if x denotes a label. (The predicate "Islabel" is in PAL's
primitive environment with the obvious meaning. See Appendix 4.1 of the PAL
Manual.) Since x does in fact denote a label, the goto is executed.

illow the explanation gets sticky. The label L appears on line 4, and going
to it certainly causes 'B' to be printed. But what happens next? That is, what
aoes the evaluator do after printing 'B'? It is evidently done with the body of
F and about to do a return, but to what point of the program does it return?
The answer is this: Going to L reinstalls the complete machine state (CSE) that
existed when L was "declared". That declaration took place after F was applied
to nil in line 6, and the state includes (in C and S) information that leads to
return to that place on completion of evaluation of the body of F. Thus we are
vack in the invocation of F that appears on line 6. Time seems to have been

backed up. Are we in a loop? No, since now F returns a different value: The
value of the combination whose rator is Print and whose rand is 'B', This
value, dummy, is now associated with x on line 6. Since x does not denote a
label, we do not do the goto on line 8 but instead print 'C' on line 9 and the
program terminates, having printed 'ABC'. What could be simpler?

This example raises quite a few interesting questions, such as the
following:

. Just what sort of R-value is label? How can we get enough
information into x so that going to it puts us back to the
application on line 6°?

. What is the scope of a label? Note that the L returned as a
value on line 3 is the "same one" that appears before a colon on
line 4. As it happens, L's scope is all of the text on 1lines 2
through 4, but we need rules,

. "L" has the syntax of a variable. Can it be updated?
. At what points in a program may we place a label?
Answering these questions takes most of the rest of the chapter.
Organization of the Chapter: Our presentation of J-PAL differs from that of

L-PAL in Chapter 4. We start off with an overview of the J=PAL gedanken
evaluator, and then treat various points in terms of how they are handled by it
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-~ usually by showing differences from the L-PAL case. Section 5.1 shows how
R-PAL and L-PAL constructs are processed by the J-PAL evaluator, and section 5.2
iilow jumps are done. The chapter ends with a complete 1listing of the J=PAL
gedanken evaluator. Blackboard evaluation, which was so very important to our
presentation of R-PAL and was of interest in L~-PAL, is less important for
J-PAL. The reason is that it is difficult to find meaningful programs that both
exploit the power of jumps (as opposed to hops) and are sufficiently short that
vlackboard evaluation is feasible, The program in (5,0~5) is such a program,
and a blackboard evaluation of it appears in section 5,2,

5.1 Changes to the Gedanken Evaluator

Our presentation of J-PAL's semantics requires that we specify the J=-PAL
gedanken evaluator. Because the changes from the L-PAL evaluator are extensive,
we discuss in this section how L-PAL constructs  are handled by the J=-PAL
evaluator, and in section 5.2 how to do jumps.

overview of the J-PAL Gedanken Lvaluator

Our logical bootstrapping procedure permits us to specify J=PAL in terms of
an L-PAL program, and we take extensive advantage of this ability, The overall
structure of the evaluator is as follows:

// definitions for representational issues

def C, S, E, M = nil, nil, nil, nil

// definitions for memory

def Print_ x = // user-callable Print routine

// definitions for environment ' (5.1-1)
def Translate P = // and also D, ST, LL, FF

def

o programs for Transform

def

def Transform () =

def Gedanken_evaluator Program = ...

lNote that C, S, E and M are variables global to essentially all of this.,
For example, whereas in L-PAL we had

def Eval_constant (C, S, E, M) =
r C, Push (Value_of (t C), S), E, M

the corresponding J-PAL program is

def kval_constant () =

(5.1=2)
C, S =r C, Push (value of (t C), $ S)

since C and S are global to this definition (i.e., already in the environment),
and since we are writing in L-PAL, we merely update them to hold the desired
values. E and M, not being changed by this function, are not mentioned. The
unsharing operator §$ is needed to prevent a disasterous sharing: The second
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component of the 2-tuple returned by Push (see (3.5-3) on page 3.5-15%)shares
with Push's second argument. Since S is updated in the normal operation of
rransform, it is essential that no part of the stack (or of anything else)
share with it.

The main program for the evaluator is’

def Gedanken_kvaluator Program =
Initialize_memory nil;
C := Translate Program;
(5.1-3)
S := Empty_stack;
Initialize_env nil;
until Null C do Transform nil

This program looks quite different £from that of (4,2-7) for L-PAL, For one
‘thing, the function Evaluate is gone, all of its work being done by the until
construct in the last line. Further, the entire evaluation is for effect, so
that a Print program must evidently be provided. Note that memory is
initialized before the call to Translate: We see later that parts of the
control structure are stored in cells in the memory.

demory: We start our discussion with the M component of the evaluator.
kxtending memory in the L-machine was made somewhat awkward by the need to carry
M along as an explicit argument in every machine state transformation. Having M
as a global variable facilitates a simpler treatment.

As before, we represent a memory by a 2-tuple, whose first component is

that integer which is the last address used (initially zero}, and whose second
component is a Mem:

A Mem is either empty (nil)

or it is a 3-tuple, whose components are
an address,
a contents, and
a Mem,

towever, there exists only one memory: the one stored in the global variable
M. The first function we consider serves to initialize that memory:

def Initialize_memory () =

. (5.1=-4)
M := 0, nil

Note that this function has no useful value but is executed solely for its
effect. Now we need the three function Extend, Update and Contents, but we must
first select a representation for addresses. The address for cell k (where k

aenotes some integer) is represented by the 2-tuple
(ADDRESS, k)

We have then
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def Extend Value = // Find a new cell to hold value.
let k =1+ M1 // Address of next free cell,
in (5.1=5a)

M =Kk, (k, value, M 2); // Create new memory,
(ADDRESS, k) // Return the new address.

def Update (Cell, Value) =

5.1-5b
M :=M 1, (Cell 2, Value, M 2) ( )
def Contents Cell =

let ¢ = Cell 2

in

Look (M 2) ' (5.1=5c)

where rec Look m =
Null m -> error
] mlegc=>m2

| Look (m 3)

Compare these definitions with those in (4.1-13). Finally, the foilowing two
definitions are frequently convenient:

def Rval x =
Is_address x => Contents x | x

and Lval x = . (5.,1-6)
Is_address x -> x | Extend x

A function such as Lval could not be written for the L-Machine, since it would
have to return the new memory and would thus be no more than Extend.

Transform: The major change to Transform has to do with the fact that we need
no longer pass around the (C, S, E, M) state. We have

5.1-256



changes to the Gedanken Evaluator Sec 5.1

def Transform () =
let x =t C

in
Is_constant x => Eval constant nil
| Is_variable x => Eval_variable nil
| Is_lambda_exp X ~-> Eval_lambda_exp nil
I Is_address x -> Hop nil
I Is_delta x -> Make_labels nil
I x eq ALPHA -7 Do_alpha nil
| x eq ASSIGN -> Do_assign nil
| x eq RETURN -> Do_return nil
| Is address (t s) => LtoR nil (5.1=7)
| x eq BETA => Do_conditional nil
| x eq GO_TO => Jump nil
| x egq DOLLAR = Do_dollar nil
| x eq AUG -> Do_aug nil
] X eq GAMMA
->( let r =t 8 // The rator.
in
Is_closure r => Apply_closure nil
| Is_constant r -> Apply_constant nil
| Is_tuple r -> Apply_tuple nil
| error
)
| error

Hop, ilake_labels and Jump are the only new functions. The former is needed
because of the fact, alluded to earlier, that parts of the control are stored by
Translate into the memory, so that an address may appear as a control item. The
last two functions are used to declare 1labels and to implement goto,
respectively, and are discussed in section 5.2, The code for Hop is quite
simple:

def Hop () =

. (5.1=-8)
C := Prefix (Contents (t c), r C)

bval constant has already been given in (5.1-2), and Eval_yariable and
Eval_lambda_exp differ similarly from their L-PAL counterparts. For assignment
we have

def Do_assign () =
. if Is_address (t S) do
Update (t S, Rval (2d 8));
C, S s= r C, Push (DUMMY, r2 S)

(5.1=9)

Note how much simpler this code is than that in the L-machine, because it is not
here necessary to carry the memory around all of the time.

Do_return and LtoR are similar to their L-PAL counterparts. The handling
of conditionals differs slightly:
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def Do_conditional () =
let V = Contents ((Val_of (t s) => 3d | 2d) ¢)
in (5.1-10)
C, S := Prefix (v, ¥r3 C), r s

The control structure produced by the J-PAL Translate for a conditional always
has the code for each arm stored in memory cells, corresponding to our R-PAL and

L~PAL blackboard decision to abbreviate each arm with a 4.
For Do_aug we have changes similar to those for Do_assign:

def Do_aug () =
let V = Aug (t S) (Lval (24 s))
in ' (5.1-11)
C, S t=r C, Push (v, r2 8s)

The three Apply functions are little changed, Apply_closure being slightly
simplified in use of memory. The code is

def Apply_closure () =
let R=t § // the rator

. and Rand = Lval (24 S)
in (5.1-12)
let New_C = Prefix (Contents(Body R), Push(RETURN, r C))
and New_S = Push ($ E, r2 §)
and New_E = Decompose (bV R, Rand, Env R)
in

C, S, E 3= Hew_C, New_S, New E

liote that Apply_Y and Apply_eta are missing: Recursion is achieved through use

of a library routine.

Translate: In going from the R-machine to the L-machine, most of the changes
made were to Iransform, the changes to Translate being confined for the most
part to providing straightforward processing for the new node types. Now we
must make extensive changes to Translate, the new main program being

def Translate Program =

5. 1-13
FF (LL (ST Program), nil) ( )

ST differs from the L-PAL version only in that the present one processes four
new node types: COLON, GO_TO, VALOF and RES. The kind of processing done is
unchanged. The function LL solves the problem of scope of labels, and we defer
discussion of it to section 5.2, in which we consider labels.

One aspect of the J-machine's Translate is appropriately discussed here,
and ‘that is its use of memory. In blackboard evaluation in R-PAL and L-PAL, we
have consistently abbreviated certain control structures: A-bodies, arms of
conditionals, and (in L-PAL) the right sons of semicolon nodes. Although this
use of abbreviation was only for convenience and did not affect the
formalization, the use of abbreviation in blackboard handling of the while
construct is critical, (See (4.2-3) on page 4.2-223.) Since we want to make
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loops in the control to handle while, we now formalize the idea of

abbreviations.,

w“he idea of an abbreviation is that a single mark, such as §3, stands for
some complex item. The effect we want is that, on encountering §3 in a suitable
context, we look it up in a table and replace it by what we find there. (That
is precisely what we have been doing in blackboard evaluation, all along.)
Although we could easily implement such a table of abbreviations, it turns out
that the memory has all of the needed properties. Thus we choose to put pieces
of control structure into memory and to permit an address as a control item,
For example, the control structure for

while B do E

would be just like that shown in (4,2-3), except that each § would be replaced
by a o,

liops, Skips and Jumps

In the introduction to the chapter, the trichotomy of hops, skips and jumps
was introduced, in increasing order of complexity. Recall that execution of a
hop involves changing only C and that execution of a skip or jump involves also
changes in k. (We see later that S is also involved.) We wish now to study the
distinction in more detail., We start with consideration of iteration, leadinq
to a discussion of hops.

Iteration: The concept of iteration is a fundamental one in programming, and
syntactic sugaring for it appears in one guise or another in almost every
programming language., In PAL, iteration appears explicitly only as the while

and until constructs, the syntax of which

while El1l do E2
until E1 do E2

we have already encountered in L-PAL. Still other variants on the conditional
and iteration occur in other languages, and it seems clear that program
readability is greatly enhanced when a rich catalogue of possible syntactic
forms is available.

Despite its importance, however, the concept of iteration seems difficult
to define abstractly. The difficulty centers on restricting the concept in a
meaningful way. For example, the following PAL program (which we have
encountered before as (4.1-1lc) at the beginning of Chapter 4) involves looping
to the label L, and may be thought of as an "iterative" definition of the

factorial function,
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L: if k eq n do goto M;
k := k+1; (5.1-14a)
r := r*k; ' ‘
goto L;

M: r

In its overall semantics, (5.1-14a) equivalent to

def £ n =

let r, k=1, 0
in (5.1~14b)
until k eq n do

( k :=k + 1;

r:=r *Kk

);

r

In point of fact we have seen that 1labels in PAL (and in many other
languages--for example, ALGOL) are more powerful than is necessary to
accommodate iteration; in other words, (5.1-14a) exploits only a subset of the
properties of labels, precisely that subset which we have referred to as hops.

In the same vein, recursion includes iteration as a special case; indeed,
our initial explication of while and wuntil in L-PAL was in terms of the
recursive function Loop# of (4.,1-20). Operational insight into the distinction
between full recursion and iteration is provided by the two following programs,

each of which again defines the factorial function.
def rec fn=negq 0 -> 1 | n*£(n-1) (5.1~15a)

def £ n =
g (1, 0)
where rec g (r, k) =
kegn=->r | g (r*k+l), k+l )

(5.1-15b)

liere (5.1-15a) depends upon the full power of rec, in the sense that every
intermediate result (one for each call to f) must be stored until the escape
condition "n eq 0" is met, at which, point evaluation unwinds. By contrast, on
calls to g in (5.1-15b) the results of previous calls are irrelevant: All
necessary information is carried from one call to the next by means of the
bound variables r and k., Thus (5.1-15b) == which resembles closely (5.1-14b) in
effect and thus can be considered to be iterative =-- represents a degenerate
case of recursion in which the full potential of rec is not required. Evidently
the degeneracy hinges upon the fact that the recursive variable £ in (5,1-15a)
is encountered as part of a rand (in this case of the operator "*"), whereas in
(5.1-15b) the recursive variable g occurs only in the role of a rator in a
combination which is itself the entire value of a recursive call. We conclude
that any abstract distinction between recursion and iteration depends critically
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on the constraints in temms of which the discussion is circumscribed, and pass
on instead to study of how the distinction manifests itself in PAL.,

Conceptually at least, we can view the J-PAL implementation of while as
being achieved by a loop in the control structure. Thus

while B do E

leads to the control structure

Figure 5.1-1: Reentrant control
for the construct
while B do E

It is more convenient to use abbreviations than to attempt actually to construct
such a loop, so we produce instead something like

dumn’

Figure 5.1-2: Control for while, with abbreviations.

Review the code for Hop in (5.1-8) and for Do_conditional in (5.1-10) to see
that the effect is as desired. On encountering the control item o3, indicated
in the figure by a circled 4, the J-machine prefixes onto the control that
control structure stored in cell 4, and then obeys ite Thus the code for B is
obeyed. If the result is true, the code in g; is loaded, leading to execution
of & followed again by oy. This continues until evaluation of B 1leads to
false.
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liops: We have wused the term hop to refer to that linguistic facility which
requres no more than a reentrant loop in the control structure, in
contradistinction to the more general 1linguistic facilities which we call
"skips" or "jumps". The node of the control structure at which reentry occurs
is called the entry point.

Although while and wuntil are the only examples of hops in PAL, it should
not be concluded that hops are an unimportant construct. Indeed, in most
languages hops are the only explicit facility whereby the programmer can specify
deviations from the normal flow of control. For example, by our definition
labels in FORTRAN are hop entry points, It would have been possible -- even
preferable, from the point of view of efficiency =-- to have chosen entry points
as the value of labels in the design of PAL. Since our objectives are pedagogic
rather than practical, however, the decision was made to opt for the full
generality of jumps.

From the point of view of use (as opposed to implementation), the principle
distinction between a hop and a jump lies in the scope within which it is
effective., - In the normal course of executing a PAL program, the J-machine
creates a new environment each time a A-closure is applied. Conversely, on exit
from a A-body the newly created environment is lost and the old control resumed.
A little thought should make it clear that in these circumstances =~- jindeed
whenever one is dealing with a language that entails variables whose scope is
limited -- it is not meaningful to hop to an entry point from outside the A-body
that contains it. For example, consider the (defective PAL) program

let x =5

in

[let y =7 in L: x := x+yl; (5.1-16)
if x le 15 do goto L; // Error

X+l

and assume that the value of the label L were an entry point. The execution of
the "goto L" command would involve hopping into the scope of y after having
discarded its definition, so that the evaluation of y in the assignment to x
would abort.

A second difficulty with (5.1-16) is that in PAL the definition of the
label L is itself unknown at the point of call, so that the program is defective
on two counts rather than one, That is, the scope of L does not include the
goto statement. But the first difficulty can occur without the second when
assignment of labels is allowed. As an example, consider the valid program

let x, M = 5, nil
in

{let y =7 in M := L; Lt x := x+y]; (5.1-17)
if x le 15 do goto M;
x+1

here M is known at the point where the goto appears, and its value 4is wupdated
earlier by the assignment "M := L", If the value of the label L consisted
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merely of an entry point (which in PAL it does NOT), then executing the goto
would again entail hopping into the scope of y after its definition had been
lost, with ensuing chaos.

From the foregoing examples it might seem at first that hops are meaningful
provided only that they occur within a single M=body. But trouble can arise
even when this constraint is met, as witnessed by the (again, defective PAL)

program
let y =4
in
test (L: y)< 3 (5.1-18)
ifso y

ifnot (y := y=-2 ; goto L) // Error

The reader should see that the stack is empty just before the interpretor hegins
execution of "goto L". If the effect of this command were merely to reenter the
control structure, evaluation would abort because there would be no second
argument for the operator "<" on the stack. We conclude that the wvalue of a
label must comprise more than just an entry point if the programmer is to have
freedom to label arbitrary subexpressions, even if all flow of control is
confined within a single A-body.

Like (5.1-16), the example just given is defective because of PAL's scope
rules for labels (which are discussed later). It suffices for the moment to
state that the program

let y, M = 4, nil

in
test (M ¢= L; L: y)< 3 (5.1=19)
ifso Y ‘

ifnot (y := y-2; goto M)

is correct PAL and would also abort if the value of a label in PAL were an entry
point.

The limitations of hops which we have just explored are not encountered in
languages such as FORTRAN by virtue of several constraints imposed by the
language designers. Typical constraints are:

(a) A label cannot be assigned, be passed as an argument, or be the
value of a function,

(b) The scope of all variables is the entire program,
(c) Labels may only be placed in restricted contexts.

rluch of the time such constraints are innocuous, but they are occasionally
troublesome., The alternative, which is to generalize the concept of a hop to
the concept of a jump, is explored in the next section, It appears that both
hops and jumps deserve a place in our catalogue of 1linguistic facilities, but
that the latter should be used sparingly.
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5.2 Jumps

It should be acknowledged at the outset that very little guidance, either
in mathematical theory or in computational practice, is at hand to guide a
language designer in establishing what the semantic intent of a generalized
junping construct should be, Without apology =-- but also without much
confidence that a more restrictive formulation may not ultimately prove more
acceptable -- we therefore proceed on the basis of remedying the 1limitation of
hops.

Before starting, we should make one point. Programs involving a maze of
junps tend to be hard to read and understand, as anyone who has encountered
FORTRAN-2 will surely attest. (The language has no sugaring for conditionals.)
Indeed, it has been suggested by E. W. Dijkstra (1968) that "labels should be
abolished entirely from programming languages. Nonetheless, there are instances
in which the full power of jumps as they are available in PAL seems to be called
for, although simple examples illustrating such a need are hard to come by. The
modern trend in programming language design is toward providing enough syntactic
sugaring for hops so that 1labels are rarely needed, and this trend has been
followed in PAL. In addition to the various sugarings discussed so far, the
valof-res construct discussion later in this section is available.

Maving made these points, let us adopt a set of desidarata regarding the
use of labels in PAL:

(a) A label identifier should be a variable.

(b) A label should be allowable on any subexpression of a program.
That is, programs such as (5,1-19) should be allowed,

(c) The labelling of any subexpression should not affect the meaning
of a program if the label is not jumped to during execution.

(d) If the label on a subexpression is L, then execution of the jump
command "goto L" with the memory in some state should be
equivalent to entering the subexpression normally, but with

memory as it is at the occurrence of the goto.

(e) An R-value of type label may be used just as may any other value,
Specifically, it may be assigned as the value of a variable,
may be a component of a tuple, may be passed as an argument to a
function, may be the value of a function, etc.

By "entering the subexpression normally" in (d) we mean entering it NOT via a
jump, but rather via the control structure which would exist if all labels (i.e.
writings of the form "<{NAME»:") were excised from the program. This point is
discussed further later. '

These desiderata suffice to specify the semantics of jumps, but do not
specify the scope of labels. We defer detailed treatment of label scope until
after we have extended the state-transition function Transform to accommodate
evaluation of, and jumping to, a label,
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The Value of a Label

The examples we have seen make it clear that the value of a label is a
conplete machine state with three components: C, S and E. Further, point (a)
above makes it clear that the syntactic device "L:" declares L to be a variable
whose initial value is of type label. Thus, for example, the segment

let ... in S1; L: S2; S3; M: S4 {(5.2=1a)

is treated somewhat as if the programmer had written

let ... in let$ L, M = R in Sl;"S2; s3; s4 (5.,2-1b)

llere let# is written to suggest that this is a rather special sort of 1let, one
which serves to define labels. The arrows emanating from the circles suggest
that L labels S2 and that M labels S4. Of course the programmer cannot write
let# -- (5.2-1b) is meant only to be suggestive.

The issue of scope of labels, which we defer until later, has to do with
just where the let# is placed. The reader should rest confident that the
examples we give are correct.

bxamples: We need now some examples of the use of labels, to see some of the
implications of desiderata at the beginning of this section. The following
program segment makes clear that labels really are variables, as suggested by
(a):

A: Print 'A';

goto B;

B: Print 'B'; (5.2=2)
B 1= C; '
goto A;

C: Print *'C'

In the absence of the assignment statement the program would loop, printing
‘ABABAB...'. However, the semantics of "goto B" involves transfer to whatever
value the variable B has at the time the goto is obeyed. The second time
around, that value is C, so the program prints 'ABAC' and terminates.

To get further insight, consider the fragment

let x =5
in (5.2-3)
(M := L; L: x) + 3

and assume that this lies within the scope of the variable M. The syntax tree
for this fragment is shown in (a) of Figure 5.2-1. The new node here is COLON,
whose left son is a label and whose right son is the tree that is labelled. The
standardized tree is shown in (b) of the figure. Note that the left son of the
COLON node is a one-tuple whose component is L. Otherwise there is nothing new
here.,
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What we want now is a control structure for this. An intermediate result
on the way to creation of control is shown in (c¢). (This is the output of the
function LL mentioned in (5.1-13) on page 5.1-25%) This picture is somewhat
sinplified, but it is substantially correct for our present purposes. The A
node is placed at the point where the label is to be declared. Its left son is
(in this case) a 2-tuple whose components are the label and the place labelled.
The right son of the delta is that piece of tree which is the scope of the
label.

In dealing with A-expressions we have found it convenient to set off the
body as a separate control item. A A-body is then evaluated in the new
environment created at the time the A-closure is applied, thereby clearly
delineating the scope of its bound variable., Since the effect of obeying the
control item DELTA includes creation of a new environment, it is consistent to
set off the right son in a similar way. Thus, we are led to flatten the
program representation as shown in Figure 5.1-1(d). By contrast, if the writing
"L:" were deleted from (5,2-3) the flattened control structure would have been
as shown in Figure 5.1-1(e). The distinction between (d) and (e) lies in
insertion of the control item A, whose left son is the label name and entry
point, and right son is the expression over which L is to be known. This latter
we refer to hereafter as a label body.

betails of how the control structure of (d) is generated from the abstract
syntax tree of (a) are covered later during discussion of Translate. For the
moment, it suffices to observe that this control structure (however it may have
been produced) exhibits certain important information in a convenient form:

(1) The control item A provides forewarning that a label is about to
be declared.

(2) The label name and entry point are readily accessible,
(3) The label body is manifest.

In this program there is only one label declared at the delta node, but it
may be the case that several are declared. For example, conventional
programming practice permits the possibility of forward jumps, as in

sl; if ... do goto L; S2; L: S3

The scope of L is the entire writing, (4.l1=lc) contains a forward jump, Let us
consider the following example

let x = nil
in (5.2-4)
L: S1; M: S2; N: P: S3

hHere S1, S2 and S3 may be any statements, including possibly the case that S1 is
"goto N", Figure 5,2-2 shows successively the syntax tree, the standardized
tree, the output of LL and the control structure for this program. (We continue
to simplify slightly.) UNote in (b) that the left son of the third COLON node is
a 2-tuple, whose components are the two labels of S3. In (c) the A node is
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placed so as to declare all of the labels on entry to the A\-body, and (d) shows
the control. Four labels being declared, the DELTA node has an 8-tuple as the
left son. "The first, third, fifth and seventh elements are the variables to be
declared, and the even-numbered elements point to the relevant part of the
control,

blackboard Evaluation: We have seen some examples of control structures for

labels, and we now concern ourselves with evaluation. We consider again the
program of (5.0-5), which we repeat here for convenience:

let F () =
true
-> (Print 'A'; L)
| (L: Print 'B')
in (5.2=5)
let x = F nil
in
if Islabel x do goto x;
Print 'C!

The abstract syntax tree, standardized tree and output of LL are shown as {a),
(b) and (c) of Figure 5.2-3. (Much of (c) is not drawn, since it is identical -
to the corresponding part of (b). To the extent that COLON nodes are absent,
the output of LL is identical to its input.) The intent of the circled 1 in (c)

is that the node below it is stored in a memory cell -- o, in this case.

Pigure 5.2-4 shows two drawings of the control structures produced by FF.
Again, circled numbers denote addresses. The upper drawing shows the control
structure as a whole, and the lower drawing shows separately the contents of
each cell. The reader should satisfy himself that the drawings are equivalent.
Note the correspondence between the occurrences of o, in this figure and in
Figure 5.2-3(c): This correspondence will be seen to be critical to the

successful operation of Translate.

Figure 5.2-5 shows the AE form of (5.2-5) and the control sequence for
blackboard evaluation. So as to emphasize the relation between blackboard
evaluation and the gedanken evaluator, each § refers to the same piece of
control as the corresponding ¢, (0f course, the numbering of the §'s |is
arbitrary -- any eleven numbers in any order could be used. The numbering shown
ilere happens to be that actually produced by FF.)

Figure 5.2-6b shows blackboard evaluation in a J-PAL evaluator. The column
at the right 1labelled P shows printed output, an entry being shown there each
time the identifier Print is applied. The colunn headed J contains line
nunbers actually referred to as part of the blackboard evaluation, as opposed to
the column to its left which appears only to facilitate reference to the
evaluation .in this text. Now note the appearance of 'A; on line 6., The
subscript indicates that the piece of control structure abbreviated as 8, is to
be executed next, The two superscripts indicate that identifier L is to be
declared as a label, referring to the entry point §,. The line immediately
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following is labelled 7 in the "J" column, and this number is placed as a
superscript on the value associated with L in memory cell ¢o3. A new environment
layer, k3, is created for L and connected to the environment (2) which was
current when the & was encountered. The R-value 8: associated with L contains
two items: The subscript 1 indicates that §, is to be obeyed if L is gone to,
and the superscript 7 indicates that information on line 7 of the evaluator is
" to be used. Specifically, the intent of any future goto with 8: as a target is
to be as follows:

(a) The control and stack are to be put back as they are on that line
labelled 7, up to and including the innermost environment markers
(E3 in this case), but not beyond them.

(b) The control structure abbreviated by §, is then to be loaded into
the control.

This is just what happens on going from line 20 to line 21. Note that no
special provision is needed for the environment in the blackboard evaluator, as
opposed to the J-machine, because in the former putting environment markers back
into the control (and stack) has the desired effect.

Were several labels to be declared at one place, as would be the case for
(5.2-4), a control item such as 2@52" might be used. Obeying this would create
two new environment layers, one associating L with a cell containing S:
(assuming the J-entry to be 7) and the other associating M with a cell
containing 87. Line 7 must be a line in which the environment is such that both
L and M are known, so that after a jump to one of these labels execution will be
in an environment where both variables are known.

Conditionals: None of the control structures we have seen so far has included a
conditional with a 1label placed on one arm and in which we are concerned with
the successor of the conditional. An example of this idea is

Sl; test B ifso S2 ifnot (L: s3); sS4 < (5.2=6)

If S3 is entered normally, by virtue of B having been evaluated as false, its
successor is clearly S4. Because of decision (d) on page 5.2-264, it follows
that execution of S3 by virtue of a transfer to L must also be followed by S4.
The rules we have been using up to now suggest the control structure shown in
Figure 5.2=7(a). The effect of a transfer to L will not be such that the
successor of S3 is sS4, (This may not be obvious at this point, but it is true.
There is no way to go "backwards" on the arrows in the figure,) Needed is a
control structure which includes with each arm of each conditional the successor
to that arm. For (5.2-6) proper control is shown iﬁ Figure 5.2=7(b). Clearly a
transfer to L would lead to execution of S3 and then of s4,

Let us. do a blackboard evaluation that illustrates this idea. Consider
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in
x 1= 1+ ( M = L; :
L: yi=yeqd4-> 6| 2; (5.2~7)
y + 3

if x eq 10 do goto M;
X

In sone sense this program is vacuous, since we have claimed that in J=-PAL
evaluation is for effect only and the program contains no Print statement.
Nonetheless blackboard evaluation is illuminating. Note first what is going on:
The first time x is updated the value of y is 4, so that we assign § to y and
then 1 + [y + 3] or 10 to x. 1In the process the label M has been set equal to
the value of the label L, so that obeying later "goto M" leads to evaluation at
the entry point corresponding to L, in an environment in which x is 10 and y is
&r and with a state wherein execution of "x := 1 + [...]" has been set up but

not yet completed. Evaluation of the bracketed expression this time assigns 2
to y, and returns (y + 3) or 5. Resuming therefore updates x again, this time
to 6, and the evaluation ends.

Figure 5.2-8 shows an AE form and blackboard control sequence for (5.2-7),
and Figure 5,2-Y shows the evaluation., Figure 5,2-10 shows, for the sake of
comparison, gedanken evaluator control structure,

'ransform

As in chapters 3 and 4, we have gained intuitive understanding through
simulation of the gedanken evaluator using the conventions of the blackboard
machine, Now we must complete the formal definitions. In this section we
assume that control structure exists, discussing here only Transform, In the
next section we finally address the issue of scope of 1labels in our

specification of Translate.

s

Jump: There are only two new transformation functions in the J-machine for
labels: Make_labels, which is called for a 8 node, and Jump, which is called
for a goto. We look first at Jump, and then at Make_labels. Hop is also new,
but it has already been discussed,

Jump is called when the top control item is GO_TO, and expects the top
stack item to be a label. What Jump is to do is to effect a transfer to that
label. (This is the action done in the blackboard machine when go is at the top
of the control.) What we must now specify is just how the R-value of a 1label
is to be represented. ‘

Look closely at the blackboard evaluations we have done. As mentioned, a
label value such as Sf indicates that §, is to be obeyed in the situation that
prevailed on - line 6 of the evaluation. The effect of a goto, then, is to
install a complete new machine state: all three of C, S and E. Note that the
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values of C, S and E at the time of the goto do not take part in the next line,

For gedanken evaluation, a different packaging than that suggested by the
notation Sf is more appropriate. We thus decree that a label has three
conponents, corresponding to the C, S and E to be installed as ?art of the
goto., Of course, it also must have some sort of tag indicating that it is a
label, so we decree that a label is to look like this:

LABEL

Figure S.2-11: R-value of a label

Jump then is quite simple:

def Jump () =
unless Is_label (t S) do error; (5.2-8)
C, S, E:z=t s 2

The first 1line is a necessary check, and the next line is a simultaneous
assignment whose right side clearly denotes a 3=tuple. Our task now is to see

how such an object is made,

dakelabels: We have already seen that Make_labels is the function called in
Transform when & is the top control item. We know from our discussion of Jump
what it must do, and are now ready to look at the code:

def Make_labels () =
let V=t C 2
in
let L, k =V 1, Order(v 1) // Labels

and New_C = Push(RETURN, r C)

and New_S = Push($ E, § S)

and New E = $ E

in (5.2-9)

while k > 1 do
( let Lab = LABEL, (Push(L k, New C), New_S, New_E)

in
New_E := L(k-1), Lval Lab, $ New_E;
k s=k - 2

)i
C, S, E := Prefix(Contents (V 2), New C), New_S, New E

This program requires some conment. A delta node is a rather complex bundle of
information. (Study Figures 5.2-2 or 5.2-4 or 5.2-10,.,) It is a 2-tuple, whose
first component is DELTA (so that one can tell what it is) and whose second
component (V in the program) is the useful data. V has two components: A tuple
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of labels to be declared, and the address of the control to obey upon completion
of the act of declaration. (This piece of control is precisely the scope of the
label variables,) Note in the program that L is the tuple of labels (the first
conponent of V) and k is its order. The first, third, ... components of L are
each variables, and the second, fourth, ... are each the (address of the)
associated control.

llext New_C is calculated, to be used both as part of each 1label and as
part of the control to be done next. We want to obey the control of (V 2) in
an environment in which the labels are known, then to remove the labels from the
environment, and then to continue with what was going on when the & was
encountered. The expression

Prefix (Contents (V 2), Push (RETURN, r C)) (5.2-10a)

has as value the desired control. (Compare with the code in Apply closure in
(5.1-12) on page 5.1-258.) The definition of New_C along with the assignment
at the end of the code produce this value.

As in Apply closure we must save the current environment on the stack, so:
lew_S = Push ($E, $5) (5.2-10b)

The new environment is to contain all of the current environment, along
with the labels being declared. At first glance it appears that New E is just
an unshared copy of k. However, note the assignment to New_E within the while
loop:

New_E := L{(k-1), Lval Lab, $ New E (5.2=10c)

Clearly, executing this statement creates a new environment layer on top of the
existing one, a-layer in which the label L(k~-1l) is associated with a memory cell
(the one returned by Lval) whose contents is Lab, to be discussed next. The "$"
is necessary to prevent a disasterous sharing.

Note now the definition of Lab:
Lab = LABEL, (Push (L k, New _C), New_S, New_E). (5.2-104d)

This is precisely the right kind of value for a label: a 2-tuple whose first
component is LABEL and whose second component is a (C, S, E) 3-tuple. A
subsequent transfer with this label as target will cause the control stored in
the address (L k) to be obeyed, followed by resumption of the item after the A,

We must still discuss the environment, New_E. It is clear that, after
processing the O node, we are in an environment in which all of the labels
declared are known. It follows from (d) on page 5.2-26% that any transfer to
such a label must also result in execution in such an environment. Thus the
environment associated with each label must include all of them. Fortunately
this is easy: Each label is created by execution of (5.2-10d). (Recall that
this definition appears within the iteration on k.) For each such label, the E
camponent shares with New_E. Thus all of the labels share an E component, and
it is this component that is updated in (5.2-10c¢).
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The reader is advised to study carefully this description. Although
sharing is a very important concept in PAL, this is one of the few instances in
the formalization where it is used in such a critical way. The key idea is that

we form a (C, S, E) 3-tuple with an E component which we later update to hold
the desired information.

Scope of Labels

A problem we have been deferring right along is this: A writing such as
"L:" serves to define the variable L as a label. What is the scope of L? That
is, in just what part of the program is L to be known? It is this question that
is answered so poorly in section 4,3/S of the PAL Manual, and it is time now to
answer it. In doing so, we also specify Translate for the J=-machine.

Informal Scope Rules: The definition of the wvalue of a 1label in PAL is

predicated on the stipulation that it be meaningful to jump to a label even in
circumstances where a hop would be meaningless. Two instances in which hopping
was inadequate were cited in (5.,1-17) and (5.1-19); in the first case we could
not hop into the scope of a local definition, and in the second we could not hop
into the middle of a combination. To remedy these deficiencies we have defined
the wvalue of a label to comprise all information hecessary to jump to it from
any place in a program where its value is known. Specifically, we have included
in a label wvalue not only an entry point into the label-body, but also the
environment and stack that are to be installed when a jump to the label is
executed.

The fundamental question to be answered when establishing the scope of a
label concerns the point in normal program execution at which the " information
requisite for constructing the label's value is at hand., We cannot declare a
label outside of the smallest enclosing A-body without prejudicing its
environment component, nor can we declare it outside the smallest enclosing
functional application without prejudicing its stack component. Thus labels
such as L in either of

let x = 5 in (L: x := x+1) (5.2-11a)
X :=5 + (L: 7): ' (5.2-11b)

cannot be declared until just before evaluation of the (parenthesized)
subexpression in which "L:" appears.

The situation is distinctly different for sequences and for conditionals.
Assume the following appears as the entirety of a A-body:

A: S1;

B: test ...
ifso (C: S2; D: S3) (5.2=12)
ifnot (E: S4; F: S5);

G: S6
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Figure 5.2-12: Control Structure for (5.2=12)
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bach of the seven labels shown has as scope the entire body, and each may
meaningfuly be transferred to from anywhere in it. Thus it is necessary that
all seven of the labels be declared on entry to the A-body. Figure 5.2-12 shows
the control structure for (5.2-12).

The situation when a 1label 1is attached to part of a premise of a
conditional is different. Consider

test (Sl; L: E) ifso S2 ifnot 83 (5.2-13a)

Should L be known outside of the parentheses? We elect to say "no", but the
rationale behind the decision is less clear cut. On the other hand, there is no
loss of generality due to this decision, since the semantics of (5.2-13a) and of

Sl; L: test E ifso S2 ifnot E3 (5.2=13b)

are identical except for the scope of L. This should be obvious, and it can be
proved by appeal to Translate: Each of these produces equivalent control
structures,

Tree Form of the Scope Rules: What we have been discussing is how far from its

position in the text a label is known, a discussion which is awkward because of
our concern with the textual representation of a program. This discussion
becomes much simpler if formulated in terms of the tree representation. For
example, consider (a) of Figure 5.2-13. Our discussion has already indicated
that any label whose scope includes all of either A or B is to be known in both
of them, a fact that we can express by saying that the label's scope propagates

(a)

Figure 5.2-13: Label Propagafio=

through the semicolon node., We thus draw the arrows shown in (b), indicating
that labels known in either son are known outside, We can specify all of PAL's
label scope rules this way, and do so in Figure 5.2-14, This picture shows, for
example, that labels known in either arm of a conditional propagate through the
BETA node, but that labels in the premise do not. We apply the rules to the
standardized tree which is the output of ST, thus restricting the number of node
types needed. Labels propagate upward only through COLON, ALPHA, BLTA and WHILE
nodes, and then only as shown. There is no propagation through GAMMA, LAMBDA,
AUG, ASSIGN, GO_TO or DOLLAR.

As an example of the use of these scope rules, let us consider the program
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5 PR

Figure S,a-1Y4: Propag-.;fn‘vw Ruleys

let x =5

in

7+ { E1l;
while E2 do L: E3;

. M: E4; (5.2-14)
test (N: ES5; L6)
ifso E7
ifnot (E8; P: Q: E9);
X
1

The syntax tree standardized tree, output of LL and control structure for this
are shown in Figure 5.2-15, The dashed arrows in (b) indicate the subtrees in
which each of the labels is known.

One final point needs to be made before we pass on to detailed treatment of
Translate, In L-PAL we treated

while B do E (5.2=15a)
as sugaring for
Loop# (A(). B) (A(). E) (5.2=15b)

whereas we have already indicated our intent to do differently in J=-PAL.
Although the efficiency issues already discussed adequately justify the change,
there is one other rather compelling reason for it. We want 1labels in L in
(5.2-15a) to propagate, an effect we achieve by the rule indicated in Figure
5.,2-14, But labels in L in (5.2-15b) do not propagate beyond the A=body of
which they are part.

Translate: The Translate functions for R-PAL and L-PAL are identical:

def Translate P = FF (ST P, nil)

The two step process consists of standardizing the input and then flattening
it, For J-PAL we require (or, at least, find useful) an intermediate step which
propagates labels in the standardized tree, so that we have

def Translate P = FF (LL (ST P), nil) (5.2-16)

5.,2-285



sec 5.2 Jumps and Labels

Figure 5.2-15: Trees for (5.2-14)
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Figure 5.2-15(d): Control Structure for (5.2=-14), as Produced by FF,
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We have already seen what each of these three functions is to do, in several
places including Figure 5,2-15, and we must now see how they do it.

The Function S%: For the most part, the J-PAL standardizing function ST
operates as does its R-PAL and L-PAL counterparts. The new node types in its
input are COLON, GO_TO, VALOF and RES, and the two node types in the output are
COLON and GO_TO. VALOF and RES will be seen to be merely sugarings for other

constructs.

For GO_TO the processing is simple:

= (co-T0)

E E”

COLON is slightly trickier. For the most part, what we want is something like

= |
(5.2=17a)

NAHE 4 NANE E¥*

However, the job of LL is eased if multiple labels on a single place are checked
for by ST. Recall that PAL's syntax permits multiple labels, as in

eesf L: M: S} eo e (5.2-l7b)

(We saw in (5.2-4) another example of this.) The tree form of (5.2-17b) and the
standardized tree are

. ‘!:!:u' ; l!ﬂﬂ[!ﬂ'
L (Coton) s*
o < L M (5.2=17¢)

It eases subsequent processing if in the output of ST the 1left son of COLON
nodes is always a tuple., Thus in the case in which there is only one label, we

decree that the output COLON node is to have a l-tuple as its 1left son, so
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(5.2-17a) should be replaced by

(Cotow) =  (Coon)

NARE £ E* (5.2-174d)

NANE

The code in ST that does the work is

let w = ST (x 2)

in.

Is_tag w COLON (5.2-18)
=> COLON_ (w 1 aug x 1) (w 2)

| coroN_ (nil aug x 1) w

The effect is that the right son of the COLON is standardized and then checked
to see if it too is a COLON node. If not, the output COLON node has as its left
son a 1l-tuple which is the label., Otherwise the two nodes are coalesced into
one.

It is necessary that this code work for more than two labels at the same
place. It is worth looking closely at it to see why it does work, since the .
technique used here in a rather simple way is used in a critical way in LL.
Note that to standardize a COLON node we first standardize its right son and
then ask if that is also a COLOHN. If it is, we agglomerate the labels
together. The point that needs careful study is just how the recursive calls to
ST are organized.

The Function LL: LL is applied to a standardized tree possibly containing COLON

nodes and returns a tree containing appropriate DELTA nodes. Lach DELTA node
has two sons: a (2 k)-tuple and a tree, where the tuple contains alternately
labels and pointers into the tree. We call such a tuple a label-list. Consider
again (5.2-14) and its standardized tree and output of LL as shown in (b) and
(c) of Figure 5.2-15., ©Note that each label has been propagated as far up the
tree as possible, as indicated by the upward arrows in (b). (These arrows are
drawn as dictated by the rules of Figure 5.2-14,) Note further that each
labeled tree is stored in a memory cell, as indicated by the small circles in
(c). The reason is this: The DELTA node provides an association between a
label variable and a piece of the tree, and it 1is necessary that this
association be preserved in FF, To achieve this, we elect to associate a label
with an address, and store in that address the tree that is labeled. FF will
then flatten that piece of tree and store the flattened tree back into the same
cell, This point was aluded to earlier on page 5.2-269 in the discussion of
Figure 5.2-3,

The code for LL is shown in Figure 5.2-16, and it is not very transparent
code. The validity of the label propagating scheme turns on the fact that for
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// The function LL processes labels, bringing each label as far
// up the tree as possible. The effect Is that each label is
// declared by a DELTA node as soon as its scope is entered,

def Combine(x, ¥v) = Q1 x
where rec Q k s =
k > Order y => s | Q (k+l1) (s aug y k)
within
Proc_labels x =
Is_tag x DELTA
-> (x1, x 2)
i (nil, x)
within
Combine_labels(u, v) =

let U = Proc_labels u
and V = Proc_labels v
in
Combine(U 1, v 1), (U 2, V 2)
within
rec LL x =
let Type = ls_tag x
in
Is_identifier x => x
| Type ALPHA
=> ( let s, w = Combine_labels( LL(x 1), LL(x 2) )
in
DELTA_ s ( ALPHA_ (w 1) (w 2) )
)
| Type BETA
=> ( let s, w = Combine_labels( LL(x 2), LL(x 3) )
in
DELTA_ s ( BETA_ (LL(x 1)) (w 1) (w 2) )
)
| Type WHILE
=> ( let s, w = Proc_labels( LL(x 2) )
in

DELTA_ s (WHILE_ (LL(x 1)) w)

)
| Type COLON
-> ( }et L, z = Proc_labels(LL(x 2))
n
let w = Lval 2z
in
DELTA_ (Q 1 L) w
where rec Q k t =
, k > Order{x 1) => t | Q (k+1) (t aug x 1 k aug w)

Type LAMBDA -> LAMBDA_ (x 1) (LL(x 2))

Sons x eq 1 => Tag (Get_tag x) ( nil aug LL(x 1) )
Sons x eq 2 => Tag (Get_tag x) ( LL(x 1), LL(x 2) )
error :

Figure 5.2-16: The Function "LL" that Propagates Labels
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any standardized subtree x, LL(x) will be a subtree in which all labels that
are candidates for further propagation are agglomerated into a single A node at
the root. Thus LL(x) will have the form illustrated in (a) of Figure 5.2-17 if
candidate labels exist, and the form illustrated in (b) otherwise. It follows
then that we can determine whether or not to propagate labels through any node
by testing its type and the type of the result of applying LL to its sons.,

The effect of label agglomeration is illustrated in (c) of Figure 5,2-17 in
which we have a node x of type A. Applying LL to its second son will by
hypothesis return a A-node, called v in the picture, with candidate 1labels
already agglomerated as shown. To continue the agglomeration we wish to produce
a single A-node whose left son contains both sets of label-entry point pairs.
This is accomplished with the help of the three functions Combine, Proc_labels
and Combine_labels, as shown in Figure 5.2-16. (PAL's syntax of within
definitions is such that each of these is known within the following ones, and
all three of them are known within LL,) One  other rather interesting
programming artifice is used to simplify the code:

def DELTA_ x y = (5.2-19)
Null x => y | Tag DELTA (x, y)

''his wvariation on the wusual tagging function makes the code for LL simpler,
since it permits applying DELTA_ to a label-list and a tree without f£first
checkiny that the list is non-empty. (If there are no labels, the label-list is
nil,)

Let us look at the three auxiliary functions. The value of
Combine (x, y)

where x and y are each tuples is a single tuple containing the components of x
followed by those of vy. It is wused to combine two label-lists, and works
properly if either or both is empty. Proc_labels is applied to a node and
returns a 2-tuple whose first component is the label-list for the labels
declared at that node and whose second component is the tree at that node.
Combine_labels is applied to two nodes and returns a 2-tuple whose first
component is the label-list and whose second component is a 2-tuple whose
components are the two trees.

Now examine again the code for LL, For each of ALPHA, BETA and WHILE, we
calculate in s the 1label-list and in w the tree(s), and then build the
appropriate DELTA node. The trick in the definition of DELTA_ in (5.2-19) saves
the necessity of checking for an empty label-list in each of these. Note that
in the BETA and WHILE cases LL is applied to the booleans, but any labels found
are not propagated.

Now note the code for COLON, Proc_labels is called to store into L the
label-list for the right son of the colon node and into z the tree for it. We
then call Lval (see (5.1-6)) to get a new memory cell, a cell that contains z,
We then call the recursive function Q to build a new label-=list by "aug"ing onto
L (which will be nil if no labels propagated to the top of the right son of the
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L Cx)

€a) (o)

Form of subfrcesr produced 6\/ Ll

Here G=D s auy node Jype oMer
than VeELTA.

Ce) Ag'b"Mn.craf"'on of labels b)l L.

Figure 5.2-17: Operation of the Function "LL"
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original COLON node x) the label(s) being declared at this point. Note that
each label thus declared is associated in the label-list with the same cell:

We

The Function FF': The J-PAL version of FF differs £from the R-PAL or L-PAL
versions in one important way: It stores pieces of control structure into

memory in a way similar to the abbreviation scheme we have been using in
blackboard evaluation. For example, we have always used a & to abbreviate
A-bodies, so the corresponding code is

Type LAMBDA
=> ( let Body = Lval (FF (x 2, nil})
in
Cons_lambda_exp (x 1, Body), c
)

It differs from the L-PAL version only through the presence of the call to
Lval.

For the case where LL produces a piece of tree in a memory cell, FF will
encounter the address of that cell in its input. The relevant code is

Is_address x => _
[ Update (x, FF(Contents x, c)); (x, nil) ]
FF does have one new problem: constructing the loop needed in the control

for while. We have

Type WHILE ->
( let w = Lval NIL

in

let TA = Lval(FF(x 2, (ALPHA, (w, nil))))
and FA = Lval (DUMMY, c)

in

Update (w, FF(x 1, (BETA, (FA, (TA, nil)))));
(w, nil)

)

The key fact here is that the address w is used in constructing TA, and then the
contents of cell w is updated to hold a reference to TA. Suppose that the three
calls to Lval return o,, vy and 9,. Then the effect of this processing is:

FF( O ,e) @ (0'” Dl")
(WHILE)
g ¢ P
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Note the similarity between this drawing and that in Figure 5.1-2,

‘the Constructs "valof" and "res"

Although jumps afford facilities for resuming any CSE state, they do not of
themselves provide for carrying back a value calculated at the place from which
the jump is made. This latter capability is provided in PAL by the wvalof and
res constructs,

The easiest way to specify the semantics of valof and res is to view them
as syntactic sugar for other expressions whose effects have already been
defined. For preliminary purposes, we may say that for any expression El

valof El (5.2=20a)
is equivalent to

let v = nil

in
s= El;
ps ™
and that for any expression E2
res E2 (5.2=21a)
is equivalent to
T 3= E2; goto P (5.2=-21b)

The intent is that (res E2) appear as a subexpression of El, so that the name
and the label ¢ of (5.2-21b) refer to the entities defined in (5,2-20b), The
same names W and P are used in all instances of valof and res that are
encountered. PAL's normal scope rules serve to associate each res with the
proper valof.

Analysis of the effect of writing
valof [ +(res 5)~]

is straightforward. If res is not encountered during evaluation of the
bracketed expression, the effect of the valof is nugatory: We merely waste
effort by setting up the dummy variable T, assigning the value of the bracketed
expression to it, and then returning this via the evaluation of T, On the other
hand, if res is encountered during the evaluation, then we assign 5 to w. All
further evaluation is terminated by jumping immediately to the label P, thereby
returning the value of w which in this case is 3. It should be clear from
(5.,2-20) and (5.2=21) that in the case of nesting, res will cause a return to
the first valof above it in the syntax tree representation of a program.

These constructs can be useful in providing an error exit from deep within
the evaluation of a recursive function, Consider for example the program
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let £ n = valof

({ gn
where rec g k =
k eq 0.0 => 1.0 (5.2-22)
| Xk * (k < 0.0 -> (res k) | g(k=-1.0))
)
in

£(3), £(2.6), £(-2.3)

Here £ is analogous to the factorial function, except defined on real numbers
rather than on integers. If n is a whole non-negative number, g returns n
factorial; if n is negative, g returns n; and if n is a fractional positive

number, g returns the non-integral part of n, minus 1.0, Thus the value of
(5.2-22) is the 3-tuple (6.0' "'004' =2.3).

There may be several instances of res within a single valof. Thus
valof (~~res 5 «~res 6 ~~res 7 w«~)

returns 3, 6 or 7, depending on which res is first encountered during
execution.

Since it is impossible to prevent the writing of obscure programs in any‘
non~trivial programming language, the proper objective in language design would
seem to be provision of facilities that are at least adequate for writing
perspicuous ones. In this regard valof and res appear meritorious -- certainly
it is desirable to avoid the wuse of explicit jumps and labels whenever
possible, With the inclusion of every new linguistic facility, however, come
new opportunities to lapse into obscurity. Consider

let £ = valof (fn t. res t)
in (5.2=23)
Isinteger £ =-> £ -3 | £ 4

Verification that the wvalue of (5.2-23) is 1 is left as an exercise for the
reader. It is an easy blackboard evaluation and an instructive one.

Our sole remaining task is to remedy a small defect in our preliminary
definitions of valof and res. The assignment command "m := E2" in (5,2-20h)
evaluates E2 in R-mode, and stores the resulting value in memory address ™, A
more general facility can be provided by redefining valof and res in such a way
that the result of "valof E1l" is the L-value of E2, Accordingly, we adopt the
equivalences

valof El <= let 7™ = nil
in
3= nil aug (El);
?: T 1

res E2 <= 7 := nil aug E2; goto P
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as the actual definitions of valof and res in PAL. There is a rather pleasant
return from the effort taken for this more complicated definition. It seems
reasonable that, for any expression E not containing res, the expressions
"valof (res E)" and "E" be identical in their semantics. But "valof(res x)" does
not share with x if the first definition is used, while it does if we use the
second.,

All of the formal definition of valof and res appears in the function ST,
where they are desugared as indicated. See the definition of ST at the end of
this chapter.

5,3 Listings of the J-PAL Evaluator

The following pages contain a complete listing of the gedanken evaluator
for J-PAL, as it has actually run in a PAL implementation (on Multiecs). All
necessary representational issues are faced up to. As in the R-PAL listings in
Chapter 3, the only variable appearing here that is not defined (other than
those in PAL's primitive environment) is Error,

Any discrepencies found between the programs shown here and those shown
earlier in the chapter should be resolved in favor of those shown here,
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// PRELIMINARY DEFINITIONS

// Preliminary definitions for the evaluator.

//********************

// Selectors and constructors for the stack and control.

def t(x, y) X // Top of stack or control.

and r(x, y) y [// Rest of stack or control.
and Push(x, s) = x, s // Put new item on stack or control.
def rec Prefix(x, y) = // Put control x at top_of control vy.

Null x => vy
| Push(t x, Prefix(r x, y) )

def r2 x

r(r x) // Rest of (rest of (stack or control)).
and r3 x = r(r(r x)) // Rest of (rest of rest).
and 2d x = t(r x) // Second element of stack or control.

and 3d x = t(r(r x)) // Third...

def Empty_stack = nil // The empty stack.

[/ * * % % % k *x Kk * * * % k Kk * Kk *k *k Kk &

// Tagger and tag-checkers for structures.

def Tagn s = s augn // Tag structure s with tag n.
and Is_tag s n = [/ Does structure s have tag n?
Istuple s => n eq s(Order s) | false
and Get_tag s = s(Order s) // Return the tag of s.
and Sons s = Order s - 1 // Return number of sons of s.
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/1
//

def
def
and
and

def

and

def Cons_lambda_exp(bV, Body)

Jumps and Labels

Selectors, predicates and constructors for lambda-expressions

and lambda-closures.

LAMBDA = '_lambda'
bV x = x 2 //
Body x = x 3 //
Env x = x U //

Test(x, n) =
Istuple x

// Tag for lambda-expressions and closures.

Select bv-part of a lambda-exp or closure.
Select body part...
Select environment part...

-> Order x eq n
-> Isstring(x 1)
-> x 1 eq LAMBDA

| false
| false
| false
within
Is_lambda_exp x = Test(x,
Is_closure x = Test(x, L) -

LAMBDA, bV, Body

and Cons_closure(L_exp, Env) =

LAMBDA, bV L_exp, Body L_exp,
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// Construct a lambda-expression.

// Construct a lambda-closure.
Env :
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//

// * * * * * * * * *

Sec 5.3

Definitions and predicates for the jumping evaluator.

// ltems and predicates for control structure and stack.
def GAMMA = ' gamma'
and BETA = ' beta'
and DELTA = ' delta'
and CONSTANT = '_constant'
and VARIABLE = '_variable'
and ADDRESS = ' address' // Used only in stack.
and ASSIGN = ' assign’ // :=
and GO_TO = ' _goto'
and DOLLAR = ' dollar'
and AUG = ' aug'
and TUPLE ="' tuple' // Used only in the stack.
and ALPHA = ' _alpha'
and LABEL = ' label! // Used only in stack.
and RETURN = ' _return'
and BASIC = ' basic' // Tag built=in functions, as Print_.
def Test(x, y) =
Istuple x
-> Order x eq 2
=> lIsstring(x 1)
-> x leqy
| false
| false
| false
within
Is_constant x = Test(x, COMNSTANT) or Test(x, BASIC)
and Is_variable x = Test(x, VARIABLE)
and ls_address x = Test(x, ADDRESS)
and Is_label x = Test(x, LABEL)
and lIs_delta x = Test(x, DELTA)
and Is_basic x = Test(x, BASIC)
and ls_tuple x =
Test(x, TUPLE) => true // |s it a constructed tupie?
| Test(x, CONSTANT) => Null(x 2) // Is it nil?
| false // Nelther.
and lIs_identifier x = // |Is x constant or variable ?

Test(x, CONSTANT) or Test(x, VARIABLE) or Test(x, BASIC)

def Same_var (X, y) =
(x 2) eq (y 2)

// Are x and y the same variable?



Sec 5.3 Jumps and Labels

]/ Variables and ConStants
// Call for Y_VAR is produced in Translate for rec-defs,
// Pl, RHO, 1_ and NIL are used for "valof" and "res".

def Y_NAME = 'yy' // The name of "Y".

def Y_VAR =
- VARIABLE, Y_NAME

and Assign_VAR = // Routine for simultaneous assignment.
VARIABLE, ‘'Assign#’

and PI = // Used in desugaring 'valof' and 'res'.
VARIABLE, 'pi'

and RHO = // Used in desugaring 'valof' and 'res'.
~ VARIABLE, 'rho!

and PRINT = // Print routine for user,
VARIABLE, 'Print_"'

and 1_ = // The constant 'l',
CONSTANT, 1

and NIL =
CONSTANT, nil

and DUMMY =
CONSTANT, ' dummy'
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// Tags and Taggers

// Tags for abstract syntax trece.

def TEST = ' test' // test ... ifso ... ifnot ...
and ARROW = ' _arrow' [l vee =2 coe | e

and IF = ' jif! /] if ... do ...

and AP = ' _ap'! // functional application
and FN ="' _fn' // lambda

and EQUAL = ' _equal' // definition

and WITHIN = '_within'

and REC = ' _rec!

and FF = ' f£f! // function form definition
and AND = ' _and' // ‘'and' definition

and COMMA = ' _comma' // tuple maker

and LET = ' Jet! ‘

and WHERE = ' where'

and COLON = ' colon'

and VALOF = ' valof'

and RES = ' res'

and WHILE = ' while'

and BINOP = ' _binop'

and UNOP = '_unop'

and PERCENT = '_percent'

// Taggers for tags in abstract syntax tree.

def TEST_ x y z = Tag TEST (x, vy, z)

and ARROW_ x vy z = Tag ARROW (x, vy, 2z2)

and IF_ x vy = Tag IF (x, vy)

and AP_ x vy = Tag AP (x, vy)

and FN_ x vy = Tag FN (x, v)

and LET_ x vy = Tag LET (x, vy)

and WHERE_ x vy = Tag WHERE (x, vy)

and EQUAL_ x vy = Tag EQUAL (x, v)

and WITHIN_ x vy = Tag WITHIN (x, y)

and REC_ x = Tag REC (nil aug x)

and FF_ x vy = Tag FF (x, vy)

and AUG_ x y = Tag AUG (x, V)

and ASSIGN_ x vy = Tag ASSIGN (x, vy)

and ALPHA_ x vy = Tag ALPHA (x, Vv)

and DOLLAR_ x = Tag DOLLAR (nil aug x)

and GOTO_ x = Tag GO_TO (nil aug x)

and COLON_ x vy = Tag COLON (x, y)

and VALOF_ x = Tag VALOF (nil aug x)

and RES_ x = Tag RES (nil aug x)

and WHILE_ x vy = Tag WHILE (x, vy)

and BINOP_ x y z = Tag BINOP (x, vy, z)

and UNOP_ x vy = Tag UNOP (x, y)

and PERCENT_ x y z = Tag PERCENT (x, y, z)

// AHD_ and COMMA_ would have to be n=-ary taggers, and hence
// are not provided.
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// Taggers for standardized syntax tree.

def GAMMA_ x vy
and BETA_ x y
and LAMBDA_ x

Tag GAMMA (x, v)
Tag BETA (x, vy, 2z)
Tag LAMBDA (x, y)

z
b

and DELTA_ x vy Null x => y | Tag DELTA (x, vy)

// * * * * * %* * * * * * %* %* * * * %* * %* * v

// Some useful functions for transform.

def Value_of x = [// Evaluate a control element, to put it on stack.
X

and Val_of x = // De-tag a stack element, to get its value.
x 2

def Apply x vy =
let t = (Val_of x) (ls_basic x => y | Val_of y)
in
Is_address t => t | (CONSTANT, t)

and Aug x vy = /J/ Augment x with vy.

Is_tuple x => (TUPLE, Val_of x aug V)
| Error '"first argument of aug not a tuple'

// * * * * * * * * * * * * * * * * * * * * *

// Define the five components of the evaluator. E and M are used
// as global variables in the following functions,

def C, S, E, M = nil, nil, nil, nil
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// MEMORY

// A memory is a 2-tuple, whose first component

is that

Sec 5.3

integer

// which is the last address used (initially zero), and whose

// second component is a Mem, like this:

// A Mem Is either empty (nil)
// or it is a 3-tuple, whose components are
// an address,
// a contents,
// a Mem.
def
Extend Value = // Find a new cell to hold Value.

let k =1+ M1 // Address of next free cell.

in

M := k, (k, Value, M 2); // Create new memory.

(AbDRESS, k) // Return the new address.

and
Update(Cell, Value) =
M:=M1, (Cell 2, Value, M 2)

and
Contents Cell =
let ¢ = Cell 2
in
Look (M 2)
where rec Look m =

Null m => Error 'address not in memory'

|l mlegec => m2
| Look (m 3)

and

Initialize_memory () =
M= 0, nil

// Two useful functions used by the evaluator.

// Return argument if not an address, and contents otherwise.

def Rval x =
Is_address x => Contents x | X

// Return argument if an address, and new cell containing it

// otherwise,

and Lval x =
Is_address x => x | Extend x
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//
// 1If the

// tuples

def Max_D

def Print_

user

X =

Jumps and Labels

Print_ -- User-callable Print routine.

includes in his program application of the variable

// PRINT, this routine will be applied to its argument. It will
// print the argument on lines starting with '>> ', and will do
by indenting.

let rec F(T, s,
= Val_of T // The value.

in

let V
in
test

ifso

ifnot

d)

= 4 // Maximum depth of tuples to print.

= [/ Print T with indent s at depth d.

Is_tuple T // Are we printing a tuple?
ifnot Write(s, T, '*n') // No, so print it.
// We are printing a tuple.

test Null V // Is it the O-tuple?

ifso Write(s, T, "*n') // Yes, so print it.

//

It

s a long tuple,.

test d ge Max_D // |s depth too great?

ifso Write(s, TUPLE, '*s', Order V, 'etc*n')
// Now we can print the long tuple.

let kK, N =1, Order V

ifnot
(

and S
and D
in

Conc(s, '*s*sxs') // The new indent.
d+1 // The new depth.

while k 1e N do // lterate through the thing.
( F( Contents(V k), S, D J); k::=k + 1 )

Print '*n';
FC x, '™»> ', 0);

Print
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/1l ENVIRONMENT

// An environment is either empty (nil), or a 3-tuple:
// Name, Value, Environment

// The primitive environment:

def Initialize_env () =
E := Y_VAR, Extend Y_VAR,
(PRINT, Extend(BASIC, Print_),
)nil

// The function to look up a variable in the environment:

def Lookup Var =
L E // Start looking in the environment.
where rec L e =
Null e => Error 'variable not found in environment'
| Same_var(Var, e 1) => e 2 // Found.
| L(e 3) // Keep looking.

// The following function is used in applying a lambdaOclosure,
// The names on the (possibly structured) bv-part 'Names' are

// added to the environment ‘'Env', associated with the corres-
// ponding part of 'Values'. The new environment is returned as
// the value of the function.

def rec Decompose(Mames, Values, Env) =
test |Is_variable Names // Is it a single variable?
ifso (Names, Values, Env) // Yes, so add it to environment.
ifnot
( let V = Contents(Values)
in
test Is_tuple V
ifnot Error 'conformality failure' // Tuple applied to scalar.
ifso
test Order Names eq Order (Val_of V)
ifnot Error 'conformality failure.'! // Differing tuple lengths,
ifso // Process a multiplie~bv part.
( Q1 Env
where rec Q n e =
n > Order Names => e
| Q (n+l1) ( Decompose(Names n, Val_of V n, e) )
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def rec D x = // Standardize a definition.
let Type = Ils_tag x
in
Type EQUAL => x // Already OK.
|  Type WITHIN

-> ( let u, v = D(x 1), D(x 2)

in
EQUAL_ (v 1) ¢ AP_ (FN_ (u 1) (v 2)) (u 2) )
) v
| Type REC
=> ( let w=1D(x 1)
in
EQUAL_ (w 1) ( AP_ Y_VAR (FN_ (w 1) (w 2)) )
)
| Type FF ‘
-> ( EQUAL_ (x 1 1) (Q (Order(x 1)) (x 2))
where rec Q k t = '
k<2 => ¢t
I Q (k=1) (FN_ (x 1 k) t)
)
| Type AND
=> ( EQUAL_ L (Tag COMMA R)
where rec L, R=Q 1 nil nil
where rec Q k s t =
k > Sons x => (s, t)
I ( let w = D(x k)
in
Q (k+1) (s aug w l) (t aug w 2)

)
| Error '"improper node found in D'

// Standardize abstract syntax tree.
ls_tag x

def rec ST x

let Type
in

Is_identifier x ~> «x
| Type TEST or Type ARROW
=> BETA_ (ST(x 1)) (ST(x 2)) (ST(x 3))
| Type IF
-> BETA_ (ST(x 1)) (ST(x 2)) DUMMY
| Type FN :
-> LAMBDA_ (x 1) (ST(x 2))
| Type COMMA
-> (Q1NIL
where rec Q k t =
k > Sons x => ¢t
| Q (k+1) ( AUG_ t (ST(x k)) )

] Type PERCENT , _
- => GAMMA_ (x 2) ( AUG_ (AUG_ NIL (ST(x 1))) (ST(x 3)) )
| Type COLON
-> ( let w = ST(x 2)
in .
Is_tag w COLON => COLON_ (w 1l aug x 1) (w 2)
| COLON_ (nil aug x 1) w '
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)
| Type LET
-> ( let w=D(x 1) // Standardize the definition.
in '
GAMMA_ ( LAMBDA_ (w 1) (ST(x 2)) ) (ST (w 2))

| Type WHERE => ST(LET_ (x 2) (x 1))

| Type VALOF
-> ( let w = GAMMA_ Pl 1_
in
let v = COLON_ (nil aug RHO) w // RHO: w
in
= ASSIGN_ PI (AUG, NIL (ST (x 1)))

let u

in
GAMMA_ (LAMBDA_ Pl (ALPHA_ u v)) NIL
)
| Type RES
=> ( let w = ASSIGN_ PI (AUG_ NIL (ST (x 1)))
in
ALPHA_ w (GOTO_ RHO)
)
Type AP  => GAMMA_ (ST(x 1)) (ST(x 2))
| Type BINOP _
-> GAMMA_ ( GAMMA_ (CONSTANT, x 3) (ST(x 1)) ) (ST(x 2))
| Type UNOP
->  GAMMA_ (CONSTANT, x 2) (ST(x 1))
| Type ASSIGN
-> ( let u, v = ST(x 1), ST(x 2)
in
Is_tag (x 1) COMMA
-> GAMMA_ (GAMMA_ Assign_VAR u) v
| ASSIGN_ u v
| Type GO_TO or Type DOLLAR
-> Tag (Get_tag x) (nil aug ST(x 1))
| Type AUG or Type ALPHA or Type COLON or Type WHILE
-> Tag (Get_tag x) (ST(x 1), ST(x 2))
| Error 'improper node found in ST
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// The function LL processes labels, bringing each label as far
// up the tree as possible., The effect is that each label is
// declared by a DELTA node as soon as its scope is entered.

def Combine(x, y) = Q1 x
where rec Q k s = .
k > Order v => s | Q (k+l) (s aug y k)
within
Proc_labels x =
Is_tag x DELTA
=> (x1, x 2)
| (nil, x)
within
Combine_labels(u, v) =

let U = Proc_labels u
and V = Proc_labels v
in
Combine(U 1, Vv 1), (U 2, V 2)
within
rec LL x =
let Type = |s_tag x
in
Is_identifier x => x-
| Type ALPHA .
-> ( let s, w = Combine_labels( LL(x 1), LL(x 2) )
in

DELTA_ s ( ALPHA_ (w 1) (w 2) )
) .
| Type BETA
-> ( let s, w
in
DELTA_ s ( BETA_ (LL(x 1)) (w 1) (w 2) )
)
| Type WHILE
-> ( let s, w = Proc_labels( LL(x 2) )
in
y DELTA_ s (WHILE_ (LL(x 1)) w)
| Type COLON
: -> (let L, z = Proc_labels(LL(x 2))
in
let w = Lval z

Combine_labels( LL(x 2), LL(x 3) )

in
DELTA_ (Q 1 L) w
where rec Q k t =

k > Order(x 1) => t | Q (k+1l) (t aug x 1 k aug w)

)
Type LAMBDA => LAMBDA_ (x 1) (LL(x 2))
Sons x eq 1 =-> Tag (Get_tag x) ( nil aug LL(x 1) )
Sons x eq 2 => Tag (Get_tag x) ( LL(x 1), LL(x 2) )
Error 'improper node in LL'

— — — —
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// The function FF flattens a standardized tree into a
// control structure.

def rec FF(x, c¢) = // Flatten standardized tree x onto control c.
let Type = Is_tag x
in

Is_identifier x => (x, c)
| Is_address x -> ( Update(x, FF(Contents x, ¢c)); (x, nil) )
| Type LAMBDA
-> ( let Body = Lval( FF( x 2, nil ) )
in
Cons_lambda_exp(x 1, Body), ¢
)

| Type BETA
=> ( let TA = Lval( FF(x 2, nil) ) [/ True arm.
and FA = Lval( FF(x 3, nil) ) // False arm.

in
FF( x 1, (BETA, (FA, ( TA, ¢))) )
)
] Type ALPHA
-> ( let Rest = Lval( FF(x 2, c) ), nil
in
FF(x 1, (ALPHA, Rest))
)

| Type DELTA
-> ( ( DELTA, (x 1, Lval(FF(x 2, nil))) ), ¢ )
| Type WHILE
-> ( let w = Lval NIL
in
let TA = Lval(FF(x 2, (ALPHA, (w, nil))))
and FA = Lval (DUMMY, c¢)
in
Update ( w, FF(x 1, (BETA, (FA, (TA, nil)))) );
(w, nil)

) o '
| Sons x eq 2 -> FF( x 2, FF( x 1, (Get_tag x, c) ) )

| Sons x eq 1 -> FF( x 1, (Get_tag x, c) )
| Error 'improper node found in FF'

def Translate P = // The routine that does all the work.
FF ( LLC ST P ), nil )
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def Eval_constant () =
' C, S := r C, Push(value_of(t C), $ S)

and Eval_variable () =
cC, S := r C, Push ( Lookup(t C), $ S )

and Eval_lambda_exp () =
C, S := r C, Push(Cons_closure(t C, $ E), $ S)

and Hop () = .
C := Prefix ( Contents(t C), r C )

and Make_labels () =
let V=t C 2 // Value part of the DELTA node.
in
let L, k=V 1, Order(V 1) // Labels being declared.

and New_C = Prefix(Contents(V 2), Push(RETURN, r C))

and New_S = Push($ E, $ S) // Stack to go on with.

and New_E = $ E // Environment that will have labels in it.
in

while k > 1 do // Cycle through the labels,
( let Lab = LABEL, (Push(L k, r C), $ S, New_E) // A label,

in
New_E := L(k=1), Lval Lab, $ New_E; // Update New_E.
k :1= k - 2

)0
C, é, E := New_C, New_S, New_E

and Do_alpha() = // Semicolon - discard top stack item,
C, S =rC, rs

and Do_assign () =
if Is_address(t S) do Update(t S, Rval(2d S));

C, S := r C, Push(DUMMY, r2 S)

and Do_return() =
C, S, E := rC, Push(t S, r2S), 2d S

and LtoR () = // Replace L-value at stack top by R-value.
S := Push(Contents(t S), r S)

and Do_conditional ()
let Selected_arm

in
C, S := Prefix(Selected_arm, r3 C), r S

Contents( (Val_of(t S) => 3d | 2d) C )

and Jump () =
unless ls_label(t S) do Error 'goto to non-iabel';

C, S, E =t S 2

and D

e )

o_dollar () = // Do nothing =-- Transform has done the work.
C:=r¢C , :
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and Do_aug () = // aug
let New_S = Aug (t S) (Lval(ad S))
in
C, S := r C, Push(New_S, r2 S)

and Apply_closure () =

let Rator = t S

and Rand = Lvai(2d S)

in

let New_C = Prefix(Contents(Body Rator), Push(RETURN, r C))
and New_S = Push($ E, r2 S)

and New_E = Decompose(bV Rator, Rand, Env Rator)

in
C, S, E := New_C, New_S, New_E

and Apply_constant () =
let V = Apply (t S) (Rval(2d S))
in
C, S :=r C, Push(Vv, r2 S)

and Apply_tuple () =
let V = Apply (t S) (Rvai(2d S))
in
C, S := r C, Push(v, r2 S)
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// Main program for the jumping evaluator.

def Transform ()

= [/ Do one step of an evaluation.

let x =t C // Top of control.
in
Is_constant x -> Eval_constant nil
| Is_variable x -> Eval_variable nil
| Is_lambda_exp x =-> Eval_lambda_exp nil
| Is_address x => Hop nil
| Is_delta x -> Make_labels nil
| x eq ALPHA ~> Do_alpha nil
| x eq ASSIGN -> Do_assign nil
| x eq RETURN => Do_return nil
| Is_address (t S) -> LtoR nil // R=value to top of stack.,
| x eq BETA -> Do_conditional nil
| x eq GO_TO => Jump nil
|} x eq DOLLAR -> Do_dollar nil
| x eq AUG -> Do_aug nil
| x eq GAMMA |
-> ( let r=t S // The rator.
in
Is_closure r -> Apply_closure nil
| Is_constant r -> Apply_constant nil
| Is_tuple r => Apply_tuple nil

Error 'improper rator'

Error 'bad control'

def Gedanken_Evaluator Program =
Initialize_memory nil;
C := Translate Program; // Set up the Control.
S := Empty_stack; [/
Initialize_env nil;
until Null C do Transform nil;
Rval(t S)
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