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Pre face 

These notes r~present the intellect~al content of the 
subject 6.231, Programming Linguistics, taught in the Electrical 
Engineering Departn~nt ~t_Ma5sachusetts Institute of Technology 
to undergraduates who contempiate a serious professional 
Interest in computer sctence. An important part of the subject 
material has to do wIth PAL, a comput~r programming language 

designed to be an integral part of the educational experience, 
and it Is intended that students perform, on a computer, a set of 

homework exercises in PAL. The details of the PAL language are 
not cover~d in these notes but instead In a separate 

publ ication, referred to in these notes as the PAL Manual. It is 

assumed that readers of these notes have . access to the PAL 

Manual 0 
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Chaptc r 1 

INTRODUCTION 

1.1 pc rspcct Ive 

The title of these notes Includes the phrase "programming linguistics", and since this phrase 
Is not in current usage it behooves us to define It. But doing so Is easy: Inasmuch as 
"linguistics" Is the science of language, It follows that "programming linguistics" Is the science 
of programming languages -- those languages whose purpose is communication with computers. It 
would be premature to claim that this science Is fully understood, or even that It Is a scIence. 
Nonetheless, the Importance of del ineatlng such a science Is manIfest In the context of today's 
computer technology and Its history. 

HIstorical Sketch 

Although most major developments in dIgItal computers have occurred wIthIn the past twenty 
years, tho underlying concepts were antIcIpated by an Engl Ishman, Charles Babbage, In the 1840's. 
Babbage had buIlt a small mechanical device that calculated numerIcal tables digItally by a method 
of polynomial approxImatIons. The insIght gained through thIs development led hIm to propose a 
more ambitIous machIne that would have incorporated the central features of today's computers: a 
digital device with flexible Internal programs and decision-making capabilities. 

UnfortunatelY the technology of that day could not support the actual construction of the 
machine (the prOPosal Involved long trains of wooden gears) and Babbage's Ideas lay dormant until 
embodied In the Z3 and the Mark I, developed In Germany In 1941 and at Harvard In 1943, 
respectively. Shortly thereafter, John Von Neumann proposed the Princeton machine, which 
Introduced the Idea of a program which could modify Itself. This computer, using vacuum tube logic 
and electrostatIc storage, was operating by 1949. Together wIth a few other contemporary machines 
constructed independently In thIs country and in England, the PrInceton machine marked the 
launching of modern digital computer technology. 

Of courso, Babbage's Ideas are not the only early ones to which we are Indebted. For example, 
punched cards for data storage were Introduced In the 1890's by H. Hollerith while he was director 
of the U. s. census. (The card size In use today Is Identical to that of the dollar bill of that 
per lod.) 

Since 1950 computer technology has adVanced at a furIous pace. MagnetIc core memories 
(Invented by J. W. Forrester and Installed In the MIT Whirlwind computer In 1951) have almost 
entirely replaced electrostatic devices for rapId-access data storage, and vacuum tubes have ~Iven 

way to transistors. Current developments In thin-fIlm memorIes and Integrated cIrcuIts are having 
an Impact, and more flexIble Input/output devices are encroaching upon the domaIn of the punched 
card. These advances can be counted on to provide levels of computer size, speed and rei lability 
which over tho foreseeable future will continually enlarge the complexity of problems to which 
computers can be addressed. 

Indeed, It seems fair to say that 
developments In our understanding of how to 

developments In computer 
harness them effectively. 

hardware have outstripped 
Important research In 

pattern recognition, artificial Intelligence, Information retrieval, natural-language translation, 
and man-machine Interaction proceeds with vigor; but no scientist believes that the central 
problems In any of these fIelds have been fully understood, much less resolved. 

The crucial Issues In such research are Intellectual, not linguistic. Nevertheless, the 
diffIculty man experiences In communicatIng with machines often detracts markedly from the progress 
that Is made.' First, In bringing their Intellect to bear upon these problems, men experience a 
need for a method of expression whIch Is simultaneously well-matched both to their own patterns of 
thought and to the computer's abIlIty to comprehend. (For example, large-scale work In artificial 
Intelligence could not begIn untIl suitable languages such as LISP and IPL had been developed.) 
Second, many of the Issues are sufficiently profound that they seem unlikely to yield to the 
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Sec 1.1 Introduction 

Inspiration of a single researcher. There Is need for communication not only with computers but 
between men often between groups of men working Independently on disparate problems. 

The evolution of computer language appears more responsive to the first of these two 
communication needs than to the second. Starting with the acceptance of Fortran In 1956 the 
development of special-purpose languages has mushroomed. In part this may be attributable to 
mistaken hope that a tough Intellectual problem will become amenable once a language suitable for 
dealing with It Is available. More substantive, however, Is the economic aspect: A good 
programmer working on tough problems can be expected to produce about 100 lines of debugged program 
per month. Including overhead, pach line of working program costs about $30, regardless of the 
language used. Since one line written In a language well-adapted to a problem Is equivalent to 
from 10 to 100 lines In an Ill-adapted language, the economic gain Is manifest. 

As a result, somewhere between 50 and 75 major high-level programming languages, and over a 

thousand dialects, now exist. Moreover, the Inadequacy of documentation for most dialects -- even 
for most languages Is appalling; often the precise effect of a phrase can be determined only 
either by direct experimentation with a specific Implementation or by Intimate knowledge of the 
compiler. Historically, a consequence has been that substantive communication between different 
workers In a computer science has been Inhibited. 

Compyter Art and Computer Science 

Of course, not all lack of adequate Intercommunication Is attributable to proliferation of 
computer languages. Perhaps the heart of the problem Is the enormous current ratio of computer art 
to computer science. The number of theorems relevant to computation Is distressingly small, and 
the InsIght provided by the theorems that do exist Is even smaller. In this regard our state of 
knowledge of computation Is analogous to that prevailing In the electrical communications field 
before the 1940's. Over the preceding 40 years It had become possible to communIcate with great 
effectiveness, but there were no theoretical underpinnings to tell us what communications was all 
about. Not until the work of Wiener, Kotel 'nlkov and Shannon did It become possible to evaluate 
the performance of an actual or proposed communications system In terms of absolutes. 

A similar situation now obtains In the field of computation. There Is no metric against which 
to measure the value of a proposal or a point of vIew. In the absence of broad professional 
agreement as to what Is Important, each little group tends to go Its own way, hoping that Its 
approach will prove fertile. Usually the effort required to understand someone else's program Is 
Incommensurate with the Insight to be gained through doing so, anrl Identical problems get solved 
over and over again by different people In different Installations. The ability to prove the 
equivalence of programs Is almost as elusive a goal now as when first enunciated In 1957 by 
McCarthy as a crucial step towards a viable theory of programming. 

Standing In the way of the development of such a theory are two problems. The first (less 
fundamental) one concerns the dependence of th~ outcome of a program on the details of the computer 
on which It Is run. For example, a program may overflow the memory of a small computer, but not of 
a larger one; or round-off-error accumulation may cause a program to abort on a machine with a 
smaller word-length, but not with a larger one. Presumably the effects of machine dependence can 
be eliminated, at least In principle, by considering program equivalence In relation to some 
canonic machine, perhaps with Infinite memory and word-length. 

A more basic Impediment Is the problem of variables. 
"variable", say II In the equation 

x2 - 1 0 

In conventional mathematics a 

actually denotes a constant value (or set of allowable values) which mayor may not be known 
explicitly; but even If Implicit, at least the denotation Is Invariant with respect to time. By 
contrast, In the course of an Iterative computation the value denoted by ~ may well be different 
during successive opochs. The only mathematical techniQue we have for treating this situation 
Involves the concept of "state", wherein the evaluation process Is viewed as a sequence of 
transformations on data stored within the machine and each transformation In turn depends upon the 
data configuration produced by Its predecessor. From an analytical point of view the deficiency In 
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the approach Is that It relnvolves us In the same laborious detaIl we use computers to avoid. 

When the computer Is sImple enough, of course, the specification of Its state Is also simple 
and the state transformation method becomes very powerful as well as very fundamental. Indeed, by 
following this approach TurIng (In 1936) was able to prove two theorems central to mathematical 
logic: that a certain extraordinarily simple machine can compute anything that a machine of 
arbitrary complexity can compute; and that certain Questions are undecidable, I.e., that no machine 
can compute an answer to them. (Using a different approach we show later that whether or not an 
arbitrary program will loop Indefinitely Is an example of an undecidable question.) 

Strictly speaking, the foregoing statement of Turing's results Is Incorrect; we should have 
said "can compute anything that any machIne In a broad class of arbitrarily complex machInes can 
compute." But other logicians have proved the same results starting from entirely different 
premises. For example, Post has considered analogous problems via the manipulation of strings of 
symbols, Kleene vIa recursIve functIons, and Church and Curry via algebraic manipulations. In each 
case the class of problems tO,whlch answers are computable Is the same. Accordingly, there Is a 
wide-spread belief -- called "Church's Thesis" -- that Turing's result Is Inevitable. 

The Study of Computation at M.I.T. 

Although of great Importance, the results of mathematical logic to date unfortunately do not 
In themselves constitute a viable theory of computation, so that any organized course of study In 
computer science reflects to a much larger degree than Is desirable the bias and vlewpolMt of Its 
organIzers. We take the point of view that It Is useful to concentrate upon three mutually 
complementary categories of subject matter. 

The first category, to whIch this text Is addressed, concerns principles and concepts 
underlyIng programming languages and the abstract specification of algorithms. To a large extent 
we presume the existence of an Idealized evaluating mechanism that Is free of Important practical 
const ra Ints such as fin I teness of memory. The second category conce rns thp c;t ""r:tu ral nl"~a"! zat Ion 
of real machInes for carryIng out algorithms, and treats Issues that arise when the goal Is to make 
practical computers appear to users as If they were Ideal. The third category concerns methodology 
for dealIng with very complex systems; the rationale here Is that the prIncipal technological 
Impact of computers lIes In the possibility of dealing effectively with systems vastly more 
complicated than was possible before. Successor subjects 6.232, Computation Structures, and 6.233, 
InformatIon Systems, treat categories two and three respectively. 

It Is clear that a great many Important topics are not contained within any of these 
cate80rles. The hope, however, Is that the three subjects, In conjunction wIth appropriate 
subjects In mathematIcs, provide approprIate common background for continued studies of a more 
specialized nature. 

The danger of bias extends also Into the Internal content of each category dIscussed above. 
As mentIoned, "linguIstIcs" Is the science of language, and we have already dIsclaimed common 
agreement that much scIence of computation exists. On the other hand, rather than to study the 
detaIls of one or two partIcular languages out of 50 or 75, It seems preferable, both educationally 
and Intellectually, to establish a coordinate system In terms of which many programmIng languages 
can be described. The delineation of such a coordInate system Is one of two major objectIves In 
our study of programming lInguIstics. 

The pedagogical approach that we follow uses a partIcular language, PAL, as an educational 
vehicle. (The acronym Is for £edagoglc AlgorIthmic ~anguage.) We beg'n our study of PAL by 
gaIning operatIonal famIlIarity wIth the language by seeing In Chapter 2 many examples of Its use. 
That chapter contains the mathematical underpinnIngs on which the formal definition of PAL's 
semantics Is based. Chapter 3 Is concerned with specIfIcatIon of a gedanken evaluator for the 
"appllcatlve" subset of PAL, whIch Is the subset dl rectly related to the ~-calculus. (Gedanken Is 
a German word that t ransl ates best Into the English phrase "thought of" o. Th I s gedanken eva 1 uator 
Is motivated strongly by the work of Landin.) In Chapters 4 and 5 we extend the gedanken evaluator 
to acconmodate the "ImperatIve" subset of PAL: linguistIc constructs such as the assIgnment and 
&2t2 commands. Taken together, these three chapters formalize PAL semantIcs. In essence, the 
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aggregate of computational concepts developed along the way represents the coordinate system we 
seek to develop. The applicability thereof to other languages Is Indicated enroute, but both time 
and cohesiveness of presentation militate against thorough trentment of this topic. 

A second major objective Is to Inculcate skill and style In programming. To. achieve this end 
there Is a continuing series of home problems to be programmed In PAL. 

1.2 Underlying Concepts 

Before proceeding to the details of language definition, It seems advisable to discuss In a 
preliminary way the conceptual base on which the language Is founded. In general, the point of 
view throughout these notes Is that computation 15 concerned with transformatlons.~ abstract 
objects. The key word here 15 abstract. 

To gain Insight Into this viewpoint, consider part (a) of Figure 1.2-1, In which the three 
objects represented by x's are distinguishable by their relative positions. A transformation 
mapping unordered pairs of these objects Into single objects Is represented In part (b) of the 
figure. Since both members of the pair may be the same, there are 6 cases to be considered. In 
the figure each case corresponds to an arrowhead having two tails; the Interpretation Is that the 
transformation maps the objects on which the tails terminate Into the object on which the arrowhead 
terminates. 

An alternate way to represent a transformation Is Illustrated by Table 1.2-1: 

o 
1 

2 

o 

o 
1 

2 

1 

1 

2 

o 

Tab~e 1.2-1 

2 

2 

o 
1 

Here we distinguish three objects by means of the names 0, 1, 2 and specify the transformation by 
placing the result at the Intersection of the row and column corresponding to each choice of 
argument pair. The symmetry of the table about Its principal diagonal Implies that order within 
the argument pair Is Immaterial. It Is clear from the table that the transformation can be 
described as "Integer addition modulo-3". 

There are three Important aspects to these examples. First, the reader may notice that there 
Is something In common between the system defined by the transformation and objects of Figure 1.1 

and the system defined by the transformation and objects of Table 1-1. Indeed, the two systems are 
equivalent In the sense that 

(1) there Is a one-to-one correspondence between the entities of the two systems, and 
(.2) this correspondence Is preserved under the transformation of the two systems. 

. Two such systems are called Isomorphic. 
representations of a slnRle abstract 

We may 
system 

think of the figure and 
that underlies them both. 

table as different 
By "abstract" we mean 

Independent ~ representation, so that the only questions we can ask about objects In the abstract 
system concern how they behave under the transformation. The situation Is analolous to that In 
physics: It Is not meaningful to ask what an electron Is, but only how It behaves. An abstract 
object Is no more or less than a bundle of properties. 

The second Important aspect of the example Is that It Is convenient (though Inessential) to be 
able to refer to objects by name -- the tabular representation Is more transparent to the human 
mind than Is the figure, especially since we chose the names (O, 1, 2) In accordance with 
established convention. But the choice of names Is clearly arbitrary; an equally valid 
representation of our abstract system 15 that of Table 1.2-2, In which we use the symbol III 
because thaRomans had no symbol for zero. 
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(.6) 

Figure 1.2-1: (a) A space of three objects. 
(b) A binary transformation on them. 
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III II 

III III I II 
II III 

II II III 

Tahle 1.2-2 

Moreover, It Is permissible -- often desirable -- to economize on the use of names by providing 
them for only some, not all, of the objects In an abstract system. For Instance, If we adopt e as 
the name of the transformation of Table 1.2-2, each of the functional expressions 

S(I, II) 

4P (II, ED (II, II) 

(1.2-1a) 
(1.2-1b) 

and the name II I designate the same abstract object; I.e., the same object In abstract space. 
Indeed, It Is evIdent from (1.2-1b) that just the names ~ and II suffice to permit the designatIon 
of all three objects. (Alternatively, ~ and I would also suffice.) 

The fact that "transformation" Is just another word for "functIon" Is the thIrd Important 
aspect of our example. Both words Imply neither more nor less than a mapping from one set of 
objects called the QQmaln of the function onto a set (perhaps the same) of objects called the ~ 
of the function. Functions that map numbers onto numbers are the most familiar ones In elementary 
mathematics, but In computation we are often concerned with more general mappIngs. In these more 
general situations the word transformation may at first seem more natural. 

There are two common ways of specIfying a function. The direct method Is to enumerate all of 
the result-argument pairs, as In Tables 1.2-1 and 1.2-2. The Indirect method Is to express the 
function In terms of other functIons that have already been specified. For example, we mIght 
defIne a functIon whose domaIn Is the set of single objects from our triad, In terms of the 
functIon $ whose domaIn Is the set of pairs of these objects, by writing 

f(x) • ~ (II, x) (1.2-2) 

The concepts Introduced above are basIc to our poInt of vIew and are elaborated further 
throughout these notes. For Instance, we thInk of a program as the specIficatIon of a (perhaps 
complIcated) function In terms of sImpler ~ functIons; and we think of running a program as 
determining that object In an abstract space which results from applIcation of the function to 
particular arguments (~) chosen from the same abstract space. 

It should be reemphasized that this Is not the only possible point of view that could be 
adopted. In particular, one alternative would be to back off from abstract objects and relate 
programs directly to transformations on the concrete representation of data In an actual or 
IdealIzed computer. One of our purposes, however, Is to break away wherever possible from machine 
dependence and to separate the Intellectual problems of algorithm specification from the equally 
Important but distinct problems of machine design. In these terms one aspect of machine design Is 
producing a hardware Implementation of basic functions and data such that the resultIng system Is a 
concrete represent.tlon of a desired ahstract system. By contrast, a central linguistic problem Is 
produclnl an exact specification of the transformational properties that define the abstract system 
Itself. 

1.J An Alsorlthm for Symbolic plfferentlatlon 

The relation between the abstract point of view Introduced above and the activity of 
programmlnl may be demonstrated In terms of an allorlthm for symbolic differentiation of simple 
allebralc expressions. First we generate the algorlth:n, and then formalize It as I PAL program. 

The Immediate question that arises when we are confronted with an expression such as 

z*x - x(3.6 + xlv) (1.3-1) 
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concerns what It Is that the expression denotes. Clearly, different Interpretations are possible, 
and we are not able to adjudicate among them solely on the basis of the expression Itself. For 
example, (1.3-1) might be taken as an arithmetic expression. Then the operators would denote 
arithmetic functions and the letter symbols would be names of numbers, so that (1.3-1) would denote 
a number. On the other hand, we are Interested here In symbolic differentiation, so that (1.3-1) 
Is ~ to be taken as an algebraic expression and must be given a non-numerical Interpretation. In 
order to proceed, we must specify what this Interpretation Is to be; In other words, we must 
specify what transformational properties pertain to the class of things we call "alcebralc 
express Ions". 

Properties Of Algebraic Expressions 

In writing (1.3-1) we have made use of several conventions that people frequently find useful: 

(1) the convention which allows us to Infix the symbols {+, -, *, !}; 
(2) the precedence convention whIch allows us to write "3.6 + x/y" In 11 eu of 

"3.6 + (x/y)"; and 
(3) the juxtaposition convention which allows us to write "x (3.6 + xl y)" In lieu of 

"x*(3.6 + x/y)". 

An alternate representation of (1.3-1), one whiCh makes the structure of the expression more 
explicit, Is the "tree diagram": 

Figure 1.3-1: Tree Form of Equation (1.3-1) 

Here each node of the tree Is labelled with one of the symbols f+, -, *, IJ and each terminal 
branch of the tree Is labelled with an atomic expression: an expression which has no algebraic 
substructure. Even In this more explicit representation, however, we note that conventions are 
still Important. For Instance, the assumption Is made that the divisor and the subtrahend are 
written on the right branch descending from a "I" or ".11 node, respectively. 

Presumably we are willing to accept as a valid algebraic expression any entity that can be 

represented by such a tree. We therefore make the following definition: 

An algebraic expression (algex) is either 

an .a12m, 
or I t has 

an operator, which Is one of {+,-,*,/] 
and a ~ operand, which Is an algex, 

and a !l&ht operand, which Is an algex. 

To a large extent, the succinctness of this definition stems from the fact that It Is recurslye, In 
the sense that the class of things called algebraic expressions Is defined In terms of Itself. 

The definition Is "abstract" In the sense that It provides vital Information about the 
transformational properties of algebraic expressions, and hence about the properties that must be 
evidenced by any valid representation thereof. In particular, the definition Implies that we can 
determine of any algebraic expression 

a. whether or not It 15 an atom, and 
b. If not which of the symbols {+, -, *, 11 Is Its operator and what two algebraic 
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expressions are Its right and left operands. 

In order to complete the characterization of algebraic expressions, of course, we must also 
establish the properties of atoms. In general -- certainly In the present case, In which we seek 
the symbolic derivative with respect to some particular atom, say x -- we are Interested not only 
In whether or not an expression Is atomIc but also (whenever It Is) In whether or not It Is some 
special atom. Of the class of entities we choose to call atoms, therefore, we require that: 

c. given any two Instances of atoms, we can determine whether or not they are Instances 
of the same atom. 

Informal pescrlptlon of the Algorithm 

An algorithm for symbolic differentiation of algebraic expressions Involves the specification 
of a transformation that takes two arguments (the expression to be differentiated, and the variable 
of differentiation) and produces therefrom another expression; I.e. another entity that also has 
the properties of the class "algebraic expressions". It Is convenient to refer to the function and 
Its arguments by names, say D, E, and x, respectively. Then the algorithm Is simply a 
specification of the result, D(E, x), of applying the transformation D to E and x. An Informal 
description that embodies the essential features of the desired transformation Is on the next 
page. There are several notable aspects of this description: 

1. It Is exceedingly long-winded. 
2. It Is convenient to Introduce new names (Op, L, R, ll, Bl) as part of the 

description Itself. 
3. It depends heavily upon all the propertIes· of algebraic expressIons. 
~. It Is a circular description, In the sense that In order to determIne Ll and RI we 

must be able to apply the very transformatIon that Is being described. 

In the process of formalizIng the algorithm as a PAL program we find that It Is possible to be much 
more succinct, prImarily through adoption of a representation for algebraic expressions that Is 
both specIfIc and conVenient. 

RepresentIng AlgebraIc ExpressIons In PAL 

Kno~lng the abstract properties of algebraic expressions permits us to proceed to the problem 
of choosing a representation of these entities In PAL. There are three classes of abstract objects 
In PAL which are well adapted to this purpose. The class of strings Is useful for representing 
"atoms"; the class of ~ Is useful for representing non-atomIc algebraic expressions; and the 
class of truthyalues Is useful for testing hypotheses. The properties of these objects, plus PAL's 
syntactic conventions for denotIng them, are detailed In Chapter 2, as well as In the PAL Manual. 

There are many dIfferent representations for algebraic expressions possible In PAL -- Indeed, 
It Is characteristic of the field of computation that there Is seldom a unique solution to any 
problem, although one solution may be preferable to another In terms of transparency to another 
reader or economy of Implementation. 

The solution that we choose to consider here represents algebraic expressions by strings If 
they are atomic, and otherwise by tuples of order 3. A tuple In PAL Is much akin to a vector In 
many other programming languages, but a vector usually must be homoieneous (In that all of Its 
components must be of the same type, such as Integer or rational) while a tuple may be 
heterogeneous. We exploit thIs freedom to satisfy the requirement that an operand In an algebraic 
exprelslon may be a non-atomic algebraic expression. For non-atomic expressions, the requirement 
that we be able to determine the operator and the two operands Is satisfied by adopting the 
convention that: 

(Note 

1.3-8 

(1) the first component of the tuple represents the left operand; 
(2) 

(3) 

the second component of the tuple Is one of the strings {'+', 
represents the operator; and that 
the third component of the tuple represents the right operand. 

'-' , , , . , 'I'} and 

that the string for the Infix multiply 15 
, , PAL provIdes special conventions for quoting 
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An Algorithm for Symbolic Differentiation 

The dcrlvltlve of E with respect to x Is 

If E Is x then the atomic expression 1 
otherwise the atomic expression 0 

otherwIse 
let L denote the left operand of E 
and Op denote the operator of E 
and R denote the right operand of E 

next, 
let L1 denote o(l, x) 
and Rl denote OCR, x) 

If Op Is the symbol +, then the expression 
whose left operand Is II 
and whose operator Is the symbol + 

and whose right operand Is Rl 

otherwise, If Op Is the symbol - then the expression 
whose left operand Is Ll 
and whose operator Is -
and whose right operand Is R1 

otherwise, If Op Is the symbol • then the expression 
whose left operand Is the expression 

whose left operand Is L 
and whose operator Is the symbol • 
and whose right operand Is the symbol R1 

and whose operator Is the symbol + 

and whose right operand Is the expression 
whose left operand Is LI 
and whose operator Is the symbol. 
and whose right operand Is R 

otherwise, If Op Is the symbol I then the expression 
whose left operand Is the expression 

whose left operand Is the expression 

whose left operand Is LI 
and whose operator Is the symbol • 
and whose right operand Is R 

and whose operator Is -
and whose right operand Is the expression 

whose left operand Is L 
and whose operator Is the symbol. 
and whose right operand Is RI 

and whose operator Is I 
and whose right operand Is the expression 

whose left operand Is R 
and whose operator Is the symbol • 
and whose right operand Is R 

otherwise, E Is Improperly formed and does not 
represent an algebraic expression. 

Sec 1.3 
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an asterlsk~ and we prefer not to Involve ourselves with them at this point.) Thus the algebraic 
expression of (1.3-1)~ whose tree form Is shown In Figure 1.3-1, Is represented by the PAL 
express I on 

z*x - x*(3.6 + x/y) 0.3-2) 

On page 1.3-7 we listed three properties of any representation of algebraic expressions. We 
now show that these requirements are met. Whether or not an algebraic expression Is atomic may be 
determined by testing Its representation wIth the predIcate "Atom"~ so that property (a) Implied by 
our defInition . Is satisfied. Moreover, whether or not two atomic expressIons are the same may be 
determined through use of the Infix functor "eq"~ which satisfies property (d. Since each 
operator Is represented by the occurrence of one of the strings '+', '_I, '.' or 'I' as the second 
component of a tupl e, "eq" al so perml ts determlnat I on of the ope rator of a non-atomic express I on, 
as required by property (b). Finally, the remaining requirements of property (b) are satIsfIed by 
knowing that the left and right operands are represented respectively by the first and third 
components of a tuple. 

Program for Symbolic plfferentlatlon 

Given the ability to represent algebraic expressions, It 1s not difficult to convert our 
Informal symbolic differentiation algorithm Into a corresponding PAL program. The program written 
below mirrors the semantic Intent of the Informal algorIthm exactly; referral thereto should make 
the program relatively transparent even wIthout extensive familIarity with PAL. 

def rec O(E, x) • 
test Isstrlng E II Is It an atom? 
Ifso (E eq x -> '1' I '0') // Yes - check for x. 
Ifnot II No, It's not. 

( let l • E 1 II The left operand. 
and Op .. E 2 /I The operator. 
and R • E 3 II The rl ght operand. 
In 

le~ Ll • O<L, x) /I Oerlvltlve of I eft. 
and Rl • O(R, x) II ditto right 
In 

Op eq '+' -> (Ll, '+', Rl) 
Op eq I_I -> ( Ll, I_I , Rl) 
Op eq , , . 

-> ( <L, , , Rl), '+', ( Ll, , , 
R) ) . , . , 

Op eq 'I' 
-> ( (L1, , , R) , I_I, (l, , , , Rl) ) , . , . 

'I' , 
(R, , , 

R) . , 
error /I Improper data 

A comment Is In order concerning the format of this program. An effort has been made that the 
IndentIng scheme used IndIcate the parsIng. In all programs In thIs text, the physIcal layout Is 
such as to facilitate as much as possible the reader's understanding of the programmer's Intent. 
It Is reccommended strongly that the student make It a practice to follow such conventions In his 
programming. 

The lalt 11 ne but one uses the non-PAL reserved word "error", wi th obv I ous mean Ing. 
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Technique for Language Definition 

1.4 Technique for Language Definition 

The major thrust of the rest of these notes Is to define both the syntax and semantics of the 
programming language PAL. Before getting started on the details, It seems appropriate to say a 
little about what we are about to do and how we arc going to go about doing It. 

The "what" Is fairly straightforward, and was suggested above: We are going to define a 
language.. But the defInItion Is merely a surface manlfestlon of the Important intellectual 
content. Recall that these notes Intend to deal with "programming lingUistics": the study of 
those languages used by people In communicatIng with computers. Our Intent Is to Illuminate 
various Ideas relevant to such languages, and our approach to doing so Is to describe a particular 
language, PAL, expectIng thereby to reveal one manifestation of those Ideas. It Is not our claim 
that PAL should be studied Intensively for Its own sake. To the contrary, PAL Is a pedagogic 
tool, studied In depth solely because of the concepts It reveals. Inasmuch as the original purpose 
In designIng PAL was to use It as a teaching vehicle to Illuminate precisely those concepts, It Is 
not surprising that the points we wish to make can be made quite cleanly by citing PAL. 

Subsets of PAL: For the sake of expository convenience, we find It useful to Isolate three subsets 
of PAL. The first such subset we consider Involves only those aspects of PAL having to do with the 
application of functions to arguments, and the linguistic facilities needed by the programmer to 
define functions of his choosing. We call this subset R=lAL, roughly because It Includes those 
constructs that can be used on the Light side of assignment statements. (A better justification of 
the term R-PAL, as well as the term L-PAL mentioned below, must await chapter 4.) As we see, R-PAL 
Is sol Idly based on the mathematics of the ~-calculus. The differentiation program 0 given earlier 
Is written entirely In R-PAL. 

The second major subset Is ~, and Includes assignment statements. The presence of 
assignment raises problems such as the followIng: Suppose that x Is a structure of some sort wIth 
three components, a, band c, and that the assignment statement 

b :- b + 1 

Is executed. Is x changed thereby? The answer has to do with whether or not b and the second 
component of x occupy the same "memory location". To use the technIcal term we like, does b ~ 
wIth x's second component? Explication of L-PAL Involves understanding of the mechanIsm of sharIng 
and Its ramifications, so that QuestIons such as the above can be answered. (The answer In this 
case turns out to be "yes".) 

PAL Is completed by adding to L-PAL the concepts of labels and transfer of control (~ 
statements), producIng what we call ~ ("j" for jumpIng). J-PAL Is Identical wIth the PAL of 
the Manual, and the term Is only used on occasion to emphasize the hierarchical sets of languages. 

The plan of Attack 

Because the development presented In the rest of these notes Is full of details, It Is all too 
easy for the reader to lose sight of the ultImate goal and to fall to see how a partIcular topic 
fits Into the overall flow. Thus It seems approprIate to provide, at this poInt, an overview of 
the entire development. 

Before starting on the definition of PAL In chapters three, four and five, we study In chapter 
two PAL's underlying mathematical foundations. We have two major areas to study: The first Is to 
define carefully (or at least to show how one can so define) all of the objects with which PAL 
deals. These are the objects such as Integers and strings, whIch were used In the example on 
differentiation, as well as rational numbers, truthvalues, and others of which we have not yet made 
use. We take the attitude that It Is not adequate to say, for example, that Integers are available 
In PAL, with their "usual" properties. Instead, we feel It necessary to be able to define 
precisely just what those properties are. While this approach may seem artificial with respect to 
Integers (after all, we all "know" thel r propertIes), It pays off when we Introduce classes of 
objects (such as tuples) whose properties are not so familiar. 

The second major area of study In chapter two has to do with functions. Since much of what 
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goes on In programming languages has to do with the application of a function to arguments, we 
adopt a point of view In language description that emphasizes functional application. We study In 
depth that mathematical dIscIpline called ~-calculus, a study which yields us excellent tools for 
dealIng with functions. The capstone of the chapter Is a mathematical treatment of recursion. 

In chapter 3, the conceptual foundations laid In chapter 2 are used upon which to build the 
R-PAL subset. R-PAL Is developed as syntactic sugaring for the ~-calculus. Although A-notation Is 
adequate for expressing any algorithm, It Is not very convenient for use by people to describe 
complex transformations. Thus our approach In defining R-PAL Is to show how various R-PAL 
constructs are just ways of rewriting ~-expresslons In a properly human-engineered. form. Having 
approached R-PAL that way, we can explaIn the meaning of any R-PAL program In terms of the 
mathematics developed In chaPter two. 

It Is unfortunately the case that the ~-calculus, although admirably suited for explaining 
R-PAL, Is not well suIted for explaining the Imperatives that distinguish L-PAL and J-PAL.from 
R-PAL. Thus, having provided an adequate explIcation of the meaning of any R-PAL program, we 
undertake to provide a second such explanatIon. ThIs one Is presented In two ways: Flrst,- we 
present It as a conceptual evaluatIng mechanIsm called the CSE evaluator. This mechanism accepts 
as Input a PAL program to be eval uated and returns the "val ue" of that program. Cl earl y, 
understanding such a mechanism ImplIes understanding PAL. Second, because the mechanism is fairly 
complicated, we exhIbIt a PAL program which represents the algorithm carrIed out by the machine. 
That Is, we exhibIt In PAL a program that explains the meaning of PAL programs. The apparent 
circularity Is Illusionary and not real, since we can explain the meaning of that PAL program by 
appeal to the ~-calculus. 

In chapter 4, we develop L-PAL by studying assignment and the related problem of sharing. Now 
the CSE mechanism developed In chapter 3 shows Its value, since It Is this mechanism rather than 
the ~-calculus explanation upon which we build to accomodate assignment. Finally, In chapter 5 we 
build further on the mechanism to accomodate also labels and &2tQ statements. 

Abst ract Syntax 

There are two aspects of language description that must be consIdered -- syntax and 
semantics. In the last few paragra~~: ~ nave aiscusseu uu; ~l~n of attack In explaining PAL's 
semantics, IgnorIng all mentIon of syntax. ThIs Is QuIte appropriate, ;!~ce we feel that It Is 
with the semantic pr~blems that we should wrestle, the syntactIc problems beIng mOi~ tractable. 
Nonetheless, ~ few words about our approach to syntax are appropriate here. In a PAL expre~~lon 
such as 

U.4-1a) 

t~ere are two sorts of Issues. From the point of view of semantics, we are concerned with such 
Questions as the values of the three variables used and the meanIngs of the operators "+" and ".". 
Syntactically, we are concerned with parsing the expression: To which of 

x + (y * z) 

(x + y) • z 

U.4-1b) 
U.4-1c) 

Is It equivalent? Our common cultural background leads us to hope It Is the first of these rather 
than the second (It Is), but the specifiers of a language must make clear In such cases just which 
parsIng Is correct. 

We take two dIfferent approaches to this problem. In the PAL Manual a notation for syntactIc 
descrIptIon (Backus Naur Form -- BNF) Is descrIbed and used extensively. BNF certainly provides an 
adequate tool for answering such Questlons~ In these notes, however, we choose to gIve lIttle 
attention to such syntactic Issues, Instead taking the attItude that the problem arises from the 
need to communIcate In only one dimension. Consider now Figure 1.4-1, which shows 2-dlmenslonal 
representations of several expressions: 
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Figure 1."-1: Tree Form of Some Expressions 

It should be quite clear that (a) In the figure corresponds to (1.4-1b) and (b) to (l."-lc). 
Indeed, It Is not possible to Illustrate In the tree foml the problem that was raised by (1.4-1a) 

In trees the parsing Is explicit, while In (1.4-1a) It Is Implicit. Thus we regard syntax as 
providing us with ~!QL flattening ~ ln12 ~ dimension, with a minimum number of 
parentheses. For example, Figure 1.4-l(c) can be flatten~d Into 

(a + b) * c ** d Cl. Il-1d) 

where the operator " •• " stands for exponentiatIon. 

Our point of departure In these notes In explaining PAL Is to assume that our Input to the 
evaluatlnl mechanIsm Is a PAL program In the form shown In FIgure 1."-1, rather than In the "flat" 
form of equations (1.4-1). Thus whereas a BNF descriptIon of Infix operator expressions such as 
these requires four or five lines (as In section 3.3 of the PAL Manual), we need only one "tree 
equatIon", as In Figure 1.4-2: 

E E 

Figure 1."-2: Tree Syntax Definition 

We refer to this form of syntax description as abstract~. The Intent of the figure Is that 
one form of an "E" (I.e., an .s:,xpresslon) Is a blnop node whose two sons are E's. (We use "blnop" 
to represent the class of Infix binary operators.) The BNF equivalent to the figure Is 

(E> ::- (E> (blnop> (E> Cl.4-2) 

but this 15 ambiguous, not giving an anSWer to the question about equation (1.4-1a). (Syntactic 
ambiguity Is discussed In sectIon 1.2 of the PAL Manual.) Thus by dealIng with tree syntax, we 
avoid all questions of parsing and can Ignore the process of translating equation (1.4-1a) to the 
form of Figure 1.4-1a. It 15 not that these questions are uninteresting or unimportant, but that 
the focus of these notes Is on other problems. 



Chapte r 2 

CONCEPTUAL FOUNDATIONS 

In Chapter 1 we viewed a program as the specification of a (perhaps complicated) function In 

terms of simpler basic functions. A more precise characterization of our view of computation Is 

provided by the following definitions: 

1. An algorithm Is the specification of a transformation on abstract 
objects, the specification to be In terms of functions that need no 

further specification. 

2. A programming language Is a set of conventions for communicating 

algorithms. 

3. A program is a representation of an algorithm In a programmln~ 

language. 

Note how the definition of algorithm follows from our claim that we regard computation as having to 
do with abstract objects. The "communication" of definition 2 might be between man and man or 

between man and computer, or even between two computers. 

Insofar as our Immediate needs are concerned, these definitions serve primarily to alert us to 
what Information a valid description of a programming language must provide. Specifically, any 

such description must afford answers to the following questions: 

A. What Is the universe 2i discourse of the language? That Is, what are 
the properties of the abstract objects, including various functions, 
with which the language deals? 

B. Which abstract objects and transformations can 
directly, and what are the conventions for doing so? 
abstract objects have ~ In the language? 

be referred to 
That Is, which 

C. What facilities does the language afford for ~ulldlng complicated 
transformations out of simpler ones? 

D. Hhat are the grammatical conventions of the language? 

Clearly, modifying the answer to anyone of these questions while leaving the other answers 
Invariant modifies the language. Moreover, the questions are "linguistically orthogonal", In the 
sense that modification of one answer can not be nullified by modification of the others. Thus 
the questions define at least one set of coordinates suitable for language description. 

In this chapter we are be concerned primarily with the first three of these questions. 
Accordingly, throughout this chapter we focus less upon PAL than upon the system of mathematical 
logic on which much of PAL Is based. This system, the A-calculus of Church and Curry, may Itself 
be viewed as a language, albeit one with particularly simple syntax and semantics. As we proceed, 
we Indicate how PAL reflects the linguistic constructs of the A-calculus. 

2.1 Unlyerse of Discourse 

Historically, programming languages have usually been designed to deal principally (although 
not exclusIvelY) with some specific class of abstract objects. For example: 

FORTRAN and ALGOL programs manipulate numbers. 
COMIT and SNOBOL programs manipulate strings. 
LISP and IPL programs manipulate llili. 

The current trend seems to be towards "universal" languages, such as PL/I, which Include In theIr 
unIverse of dISCOUrse many types of data. 
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f b t t b ' t (hereafter abbreviated "obs"). PAL, like Plll, deals with many types 0 a 5 rac 0 Jec s 
Specifically, we are concerned with rllsjolnt subsets of ohs called truthvalues, strings, numbers, 
~ and funct Ions. Numbers, In tu rn, a re part I t I oned Into the cl asses I ntege rand rat·lonal. 

Our objective In studying these sets Is twofold. First, we seek thorough understanding of the 
obs themselves, as a prerequisite to writing non-trivial programs. One cannot hope to build up a 
complicated transformation without detailed knowledge of the basic constituents from which It Is to 

be composed. 

Second, we seek understanding of a methodology for defining classes of obs, an understanding 
which ultimately should afford Insight Into certain questions of language extensibilIty. We want 
to study how a language may be modified by Incorporating a new class of obs Into Its universe of 
discourse, or by excising a class already Included, without deranging the language as a whole. 

plan of Attack: Our objectIve In thIs section Is to specify the universe of discourse of PAL 
to answer Question A on page 2.1-/~ In doing so, we find It convenient to answer question B also, 
In that we give the PAL names for the objects we describe. Note that A suggests that "basic 
functions" are part of the universe of discourse. A complete specification of the set of Integers 
must Include, for example, specification of the basic functJons such as addition and multiplication 
that oporate on them. 

In succeeding subsections we give the properties of truthvalues, strings, Integers, rationals 
and tuples. In each case we describe both the set of abstract objects and also the relevant basic 
functions. We give detailed consideration to functions In Sections 2.2 and 2.3. 

Mathemat Ical preliminaries 

Since some of the mathematical conventions and notation used In the rest of this chapter may 
not be familiar to all readers, we present now the Ideas needed. Many of the less familiar Ideas 
are used In only one place In these notes. At that point there usually appears a suggestion that 
the reader study again the relevant part of this section. On first reading of these notes It Is 
probably appropriate just to scan this section, planning to study It again as needed. 

~: A ~ Is a collection of objects. If the object m Is In the set ~, we write 

m E. S 

while If not we write 

m; S 

In general In this section, we use upper case letters for sets and lower case letters for members 
of sets. 

''Ie use two conventions to denote explicit sets. For example, we might write 

{a, b, c, dl 

to denote that set containing the four objects listed. We could write then 

{a} 

to denote the set consisting of the single element A. Note that this set Is different from A. We 
sometimes write 

Lx I P(x)} 

to Indicate the set of all objects a such that P(x) Is true. For example, the two writings 

{x I (x Is an Integer) and (x > 0) and (x < S)} 
{1, 2, 3, If} 

each denote the same set. We write ~ to denote that set containing no elements at all. 

If A and i are sets, then the set B u i Is the unl2n of R and~: the set of all objects that 
either are In R or are In ~ or are In both. That Is, 
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R \J S • {x I ex E R) or ex c S)! 

Also, Bn ~ Is the Intersection of B and~: the set of all objects In both Band 1. Thus we have 

R f\ 5 • {x I (x , R) an d ( x ~ S)] 

For any set ~, It Is true that 

Saying that B n ~ • ~ Is equivalent to saying that Band 1 have no elements In common. 

If all members of set B are. also members of ~, we say that B Is a ~ of ~ or that 1 
contains B, and write 

R Co 5 

I tis t rue that 

~ C S 

for all sets .§.. 

Ordered Pairs: We are on occasion concerned with ordftred ~ of objects. We write 

( a, b l 

to denote that ordered paIr whose first element Is A and whose second element Is~. The question 
of whether there Is a correspondence between ordered paIrs and PAL's 2-tuples Is not dealt with at 
this time. We confine our use of the ordered pair, which Is a mathematIcal Idea, to the fIrst part 
of thIs chapter before the IntroductIon of tuples. 

The set of ordered pairs with first element In set A and second element In 1 Is written 

A ~ B 

so that we have 

A ~ B • {h, b~ I (a E A) and (b, B)l 

Of course the two sets may be the same set. For example, If H Is the set of Integers, then H ~H 
denotes the set of ordered paIrs of Integers. 

Relations: A relation on a set A Is a set R such that 

RcA@A 

Thus ft Is a subset of all possible ordered pairs of objects from A. We then write 

aRb 

to mean that 

h, b~ £ R 

For example, the relation "less than" on numbers Is the set 

Hx, y~ I (y-x) Is positive} 

We are Interested In three possIble properties a relation might have. A relation ft on e set A 
Is said to be 

I:~f)~~ I~~ If x R x; 

:i~mm~t I: I, If x R y Implies y R x; and 
t CaD:i [t I~s: If x R y and y R z Imply x R z, 

for all A, ::J. and • In A. 

An egy'~a)S:D'S: reJatioD Is a relation that Is reflexive, symmetrIc and transitive. For 
example, the relatIon "Is congruent to" Is an equivalence relltlon on the set of triangles. The 
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subset relation Is not an equivalence relation, since It Is reflexive and transitive but not 

symmet ric. 

Functions: If ~ and ~ are sets, we say that i is a function from Q to £ If there Is a subset ~ of 
n such that, for each x ~ 5, i specifies a unique element f(x) E C. This element Is called the 
~ of i at~. The set ~ Is the QQmaln of i, k the codomain of i, and ~ the Q2maln 2i definition 

g! i. 

Note that a function has three components: a domain, a codomain, and a rule. However, we are 
willing to say of two functions that they are equal If we can show that they have the same domain 
of definition and the same rule. That Is, If i and & each have domain of definition ~, we require 
that f(x)· g(x) for all xeS. Since they have the same domain of definition, there can be no 

point at which one Is defIned and not the other. 

The ~ of a function Is the set of values It takes. It Is a subset of the codomain. For 
example, the range of f(x) • x~ on Integers Is the set 

{O, 1, ~, 9, 16, 2S, ••• J 

Suppose that i Is a function with domain of definition Q and range H, and that seD. Then by 

feS) we mean the set 

{y , there Is an x f 5 such that y • f(x)} . 
This Is the set of function values corresponding to elenents of ~, and it is always a subset of R. 

For example, for the squarinq f above 

f({l, 2, 3J) = [1, 4, 9! 

We usually specify functions by giving the domain and a rule, trusting that the nature of the 
rule makes clear the domain of definition. The range Is thereby defined, and a codomain follows. 
For example, consider the function divide with domain pairs of rational numbers. Clearly the 
domain of definition Is the set of pairs with second element non-zero, and the range Is the 
rationals. 

A function Is said to be 12tal over a domain If that domain Is also Its domain of definition. 
A partial function over a domain Is one that Is not total over that domain. Division Is a partial 
function over pairs of rationals. 

Consider the function! defined by 

f(x) • x?. - 13 x + 8 

with domain Integers. ClearlY i Is total over that domain. The codomain of i Is Integers, but 
specifying the range Is awkward. Although It seems more useful to specify the range than the 
codomaIn, we frequently fInd It convenient to specIfy the codomaIn. In such cases, It seems 
desIrable to specIfy the "smallest" convenIent codomaIn. 

The nYll functlQn Is that functIon whose domaIn of defInitIon Is empt). 

A constant fynctlon, or a function of no argument, Is one whose domain of definition Is the 
set l.} where. Is the empty set. (Such a functIon Is n£l the null function.) We write f() • 3 to 
Indicate that constant function! whose value Is 1, suggesting by the empty parentheses a function 
of no arguments. 

Fynctlonal ltv: If ~ and ~ are sets, we write 

D .. C 

to designate the set of ill functlon"s with domain .D. and codomaln~. We can then write 

or 

f: 0" C 
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to Indicate that the domain of f Is n and Its codomain Is ~. Thus one mIght write 

f E Integer ~ Integer 

to Indicate that f Is a function whose domain and codomain are each the set of Integers. Use of 
the mark "l''' Is justified by our statement that the arrow notation defines a g.t. of functions. 
Such a specification of domain and codomain Is called the functionality of a function. 

We can Indicate that f Is a constant function by writing 

f • l~ 1 .. S 

where ~ contains the value. 

A few more examples may help to clarify this concept. Consider the function ~: N ~ N + N 

defined by 

Addn (x, y) • x+y 

where U Is the set of all Integers. (Note that we have defined AQQn by giving Its domain, codomain 
and rule.) Suppose we have another function, ~: R ~ R • R, defined by 

Addr (x, y) • x+y 

where .B. Is the set of rationals. Finally, suppose we want a single function Asts1 which "works" on 
either pairs of Integers or pairs of rationals. What Is Its functionality? Its domain Is clearly 

(R. R) u (N 0 N) 

. and Its codomain 

RuN 

so It would be correct to write 

Add, (R' R) v (N C) N) ... (R \J N) 

but this Is misleading, since what Is wanted Is to suggest that ~ of two Integers never 
yields a rational, or vice versa. We thus write 

Add E (N Ci) N • N) 1\ (R CI R ... R) 

Specifically, we say 

f E CA .. B) 1\ (C • D) 

only If A n c • ~, and we mean that 

f' (A \J C) ~ (B'U D) 

and that f(A) B and fCC) D. Such a functIon Is called a polymorphic function. In most 
programming languages the usual arithmetic operators are polymorphic. The concept Is uncommon In 
conventional mathematics. 

Note two things: 
the right of the arrow. 

Thp. arrow notation defines a ~ of functions, and It Is a ~ that goes to 
Thus It seems permissible to write 

fEN -- (N .. N) 

Presumably such an ! 15 a functIon whose domain Is Integers and whose values are functions from 
Intesers to Integers. Such a function Is called a curried function (after the mathematician H. B. 
Curry). Although It Is aWkward, to wrIte a curried functIon usIng conventional mathematIcal 
notation, It Is easy to write one In PAL. Curried functions playa crucial role In what follows. 

Other Definition! Concerning Fynctlons: 
of In what follows. 
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A predicate Is a function whose range Is the set ~rue, false} of truthvalues. 

the function i defined by 

f(x) x > 0 

Sec 2.1 

For example, 

on Integers Is a predicate, returning true when Its argument Is a positive Integer and false for 

zero or negative Integers as argument. 

A function Is said to be 2nl2 Its codomain ~ If ~ Is Its range, while otherwise the function 
Is lnl2. For example, the function f(x) • x2 from Integers Is Into the non-negative Integ~rs, but 

not onto them. 

A function i from ~ to ~ Is said to be manY ~ ~ If there are x, y 6 D with x ~ Y such that 
f(x) • fey). That Is, f maps several pc;>lnts onto the same value. \~e say f Is .2!U:. ~.Qrut If It Is 
not many to one. For such a function, f(x) a fey) Implies that x • y. 

A function ~ Is a functional extension of f If & Is defined at all points at which i is, and 
If their values are equal at those points. Every function Is (vacuously) a functional extension of 
the null function. 

Suppose we have sets f and II and functions f: F ~ F ~ F and g: G ~ G • G, and that i and & are 
total over the Indicated domains. Consider a function e: F ~ G with 9 total over f. Then 9 Is 
said to be an Isomorphism from (f, F) to (g, G) If a is one to one and onto, and if 

9 [f(x, y)] gC9(x), a(y)] 

for all x, y E F. Note that an Isomorphism ~eQulres both the sets f and fr and also the functions i 
and & on them. An example of an Isomorphism Is given on page 1.2-4. 

The clOSure of a function f overset~ Is a set defined as follows: L~t So • S, and define 

S".l • S .... U f(S,,) 

for n 1, 2, •••• Then an element Is In the closure If It Is In at least one of the S~. For 
exampl e, If 

f(x) II x+1 

then the closure of i over the set (OJ Is the set of non-negative Integers. Similarly, the closure 
of division over pairs of Integers Is the set of rationals. 

Structure peflnltlons: A structure definition provides a technique to specify In a single bundle 
many properties of certain kinds of objects. We have already seen one such definition (on page 
1.3-7), and we repeat It here, slightly changed to meet our present needs: 

An algebraic expression (algex) Is a structured object. It Is either an 
.a.1J2!!l, 0 r I tis a 
~, In which case It has an 

operator, which Is In the set B, and a 
left-part, which Is an algex, and a 
right-part, which Is an algex, or It Is a 

unop, In which case It has an 

operator, which Is In the set A, and an 
operand, which Is an algex. 

(The Indenting scheme used has the obvious significance.) When we write a structure definition 
such as this one (and we write many of them), we are saying certain specific things about the class 
of algex's. In particular, we are saying that given an algex we can tell whether It Is an atom, a 

blnop or a unoI'. That Is, we are claiming the existence of certain set-membership predicates. 
Second, If we have an algex which Is a blnop, we are able to select out anyone of Its three 
parts; just as we can select out either of a unop's two parts. That Is, we have suitable 
selectors. Finally, given a member of the set B and two algex's, we can construct an algex which 
Is a blnop; or we can build 0 unop from a member of A and an algex. That Is, we have suitable 
constructors. 
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The Important point Is that writing the structure definition Implies the existence of the 
relevant predicates, selectors and const.ructors. Further, a definition such as that of algex 
Implies that there can be no oth~r kind of algex than the three kinds listed. Suppose that one 
wanted to prove a theorem about algex's: The definition given makes It clear that no more Is 
needed than to prove that the theorem holds for atoms, blnops and unops. 

For example, consider the differentiation algorithm given In Engl Ish on page 1.3- 9. The 
first line Implies use of the predicate IsAtomlc (or some such); the specification of L", Op and R 
requires use of selectors; and use of a constructor Is Impl led by a writing such as lithe expressIon 

whose left operand Is Ll and whose operator Is + and whose rIght operand Is RI". 

An Important aspect of a structure 
acceptable, any proposed representatIons 
predicates, selectors and constructors. 
representation used In section 1.3 does 
suggested.ln Figure 1.3-1, page 1.3-7. 

defInItIon 
of algex's 
The reader 

has to 
must 
should 

do wIth representatIon. To be 
permit Implementation of the needed 

satIsfy hImself that the PAL 
meet these requirements, as does the tree representatIon 

Meta-langyage: Throughout these notes we make a sharp dIstinction between abstract objects and 
PAL's conventions for denotIng them. The reason Is that the obs are Invariant to any particular 
choice of naming conventions. For example, the properties of the positIve Integers would be 
unaffected by a decision to use Roman Instead of Arable numerals In PAL, and the propertIes of 
strings would be unaffected even were we to excise from PAL every linguistic facility for dealing 
with them. 

In order to talk about the obs Independently of PAL, we need a meta-language: a language for 
talking about a language. As our meta-language we use ordinary technical EnglIsh, supplemented by 
conventional mathematics. But PAL Itself Is modelled In large part on conventional mathematical 
notation, so that some special devIce Is frequently necessary to guarantee the distInguishability 
of PAL and conventional expressions. We resolVe the dIffIculty by agreeing In the latter case 
always to refer to obs by "meta-names", names that are not allowable In PAL's syntax. 
SpecIfIcally, meta-names always are boldface (which In typescript, as In the present edition of 
these notes, Is IndIcated by wavX yod@rl Inl~&), but which accord with PAL syntax In other regards. 
Thus we might write 

2 

In PAL to denote the ob l,. In text (as opposed to on a separate line) we use double quotes to set 
off PAL names, as "2". We sometimes use underlines Instead for names only one character long: 1. 

With these conventions understood, we now proceed to discuss each of the classes truthyalues, 
strings, Integers, rationals and ~ In turn. For each class we give first an Intuitive 
discussion, next a formal definition, and finally details on the relation to PAL. 

Truthyalues 

The class of truthvalues contains precisely two obs: ~ and ~, with the properties the 
reader should expect them to have. We are Interested In the usual three functions on truthvalues: 
8M, Q.r and tiQ.!. 

Although In successive sections we use to advantage the axiomatic method to define propertIes 
of sets such as the Integers, that method seems Inappropriate for the truthvalues: Since the set 
contains only two members, It Is simpler just to list all of the properties we want. The power of 
the axiomatic method comes Into evidence In defining Infinite sets, such as the Integers. 

Formal DefinItIon: 
sIngle functIon ~. 

Rather than defIne the three usual functions mentIoned earlIer, we define the 
We then define the other three functIons In terms of It. We have 
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riQ! (f.2.lg, ~). ~e 
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We have spec I fled lliU entirelY: Since there are. onl y two distinct truthvalues, the ra a re on 1 y 

four distinct pairs of t ruthval ues; and we have shown what value t!2.r has for each possible 

argument It might get. <Thl s technique Is clearly unsuitable for, say, defining addition of 

Integers.) A compact way to provide the same Information Is In tabular form, ('HI 

x y t!£r (x, y) 

f f t 
f t f 
t f f 

t t f 

(Here we have written ~ and f for ~ and ~, respectively.) Such a table Is called a 1LY1h 

Ulli. 

'''e want now to def Ine ~, .Q.r and !i!tt to have the prope rt I es one expects. We can do so either 
by giving a tabular definition or by defining them In terms of ~, whose properties are known. We 
do the latter, and then show that the functions do as expected. 

Pe fI nit Ion: The functions t!2.t, M9 and Q.r, with functlonalltles 

!iQ.t ~ truthvalue .. truthvalue 

~l t ruthval ue t!J truthval ue - t ruthval ue 

Qr f t ruthval ue (!J t ruthval ue • t ruthval ue 

are defined as follows: 

fipJ(x) 

aM(x, y) 

Q.dx, y) 

• !!2..d x , x) 

• ~C N~Cx), ~t(y) 

• ~t( ~(x, y) ) 

As Is reasonable, we have used the first definition In the next two. That these three functions 
have the usual properties Is revealed by the f~llowlng truth table: 

a b c d e 
x y NorCx, y) Nodx, x) Not(y) NorCb, c) NotCa) 

f f t t t f f 
f t f t f f t 
t f f f t f t 
t .t f f f t t 

Column (a) repeats the definition of ~r. Column (b) Is the definition of ~t, and It clearlY Is 
the expected negation of A. Column Cc) Is the same for~. Column Cd) Is the ~ of (b) and (c) as 
In the definition of ~, and reveals the expected transformation; and column Ce) does the same for 
Q.r. 

Relation to PAL: PAL provides Identifiers "true" and "false" as the names of ~ and ~, 
respectively; and the PAL name for r!2J Is "not". Instead of providing functions for ME and Qr, 
PAL provides Infix operators for them. Thus If '" and f are any PAL ·expresslons, then the PAL 
expression 

E 6 F (2.1-1a) 

denotes the same object as does 

(2.1-1b) 

and 

E or F (2.1-2a) 
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denotes the same ob as does 

(2.1-2b) 

where I n each case S. and .E are the obs denoted by .E. and E., respect Ivel y. S I nee ~ and.Q! have 
been defined only for the case In which the argument Is a pair of truthvalues, each of these 
expressl~ns Is undefined unless both ~ and f denote truthvalues. This point Is Important and 

deserves amplification. 

Saying of a construct that It Is undefined means neither more nor less than that we have not 

defined It. Thus 

!!e.!= (1) 

Is undefined because we have not defined the value returned by ~ when Its argument Is an 
Integer. Another way to look at It Is that 1. Is not In the domain of definition of ~, so this 
exprelslon mY1l be undefined. The Implication of this Is that the meanIng of a PAL expression such 

as 

not 3 

Is undefined. One ml,ht hope that execution of a program containIng such an expression would 
result In an appropriate error message, but an Implementor of PAL Is free to do anythIng at all and 
still have met the formal definition. (All existing PAL Implementations give a good diagnostic.) 

Note that no PAL name has been provided for~. Since 

~~ (x, y) • ~ (~ (x), ~ (y» 

(a fact that the reader should verify with a truth table), one may write In PAL 

def Nor (x, y) • (not x) & (not y) (2.1-3) 

Names of variables In PAL consist of letters, digits and the underscore character. Names two or 
more characters long consisting of all lower-case letters are reserved words. Thus HQL, ~ and ~ 

are variables In this program and ~ Is a reserved word. We use the term functor for a name (such 
as "te", "or" or "not") which, though not a variable, nonetheless denotes a function. This program 
defines the function ~ of two variables ~ and~, In the obvious manner. ~ and ~ are dummy 
variables, or formal parameters. 

Strlng:s 

The class of obs called strIngs may be thought of as sequences of zero or more characters 
chosen from a specified alphabet. The ~ of a string Is the number of characters It contains. 
For example, 

AaB?2 (2.1-4) 

represents a string of length 5 with characters chosen from an alphabet containing {A, a, 2, ?, B} 

as a subset. The meta-name of the string represented by (2.1-4) Is 'AaB?~~, and Its PAL name Is 

'AaB?2' 

Two strings are said to be ~ If and only If their representations are the same. 

We think of the ~ of a string of length k>O as the leftmost character In Its 
representatIon, and of the ~ of a strIng of length k)O as that string of length (k-l) obtained 
by deleting the stem. Thus the stem of <2.1-4) Is the single character "A", and Its stern has PAL 

name 

'aB?2' 

Finally, we are Interested In concatenating two strings, say of length m and n, to produce a string 
of length em.n). For example, the string of (2.1-4) may be thought of as the result of 
concatenating the first and second elements of any of the six following ordered pairs, In which '~" 
denotes the string of length zero. 
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A , AaB?2 

A , aB?2 
Aa , B?2 (2.1-5) 

AaB , 12 
AaB? , 2 
AaB?2 , A 

Postylates: The substance of the preceding Informal discussion Is encapsulated In the followln, 

Definition: A.u..r..I.n.& ~ LJI..I10 over a finite set!:!. is composed of a set 

and a function a, such that the following hold: 

1. Each member of 1 Is a member of J L• 

2. There Is an element So E ~L which Is not an element of~. The 
1 ength of So Is ze roo Let J,~ be the set of all elements of 4L 

other than 5.,. 

3. The function A: L ~ ~L • ~~ Is one-to-one and onto. 
element x E. L, It Is true that 

Aex, 5.,) = x 

4. Define the sets Sn as follows: 
S., [ s .. 1 
S"tI .. S'" V A(L Ili!)SlI) 

For every 

Then the set J L Is defined as follows: An object ~ Is a member 
of J L If there Is some n such that x t S~. 

The effect of these definitions Is to define the properties 

of the set 4L (the set of strings) and the function A. The set ~L depends on the set 1 -- the 
alphabet of the string system, In that changing ~ changes the strings defined. Property 1 says 
that each letter of the alphabet Is a string. Property 2 says that there Is at least on~ string 
whlc~ Is not a letter: the empty string, or string of length zero. 

Property 3 gives the functionality of A and makes the Important points that It Is one to one 
and onto. This means that for every x (~, there are unique m and n such that 

A (m, n) • x 

That m and n exist follows from onto, and that they are unique follows from one to one. 

Property 4 defines J L In a manner similar to the definition of closure given earlier, on page 
2.1-19. It would have been pleasant to say that ~I.. Is the closure of A over (L U {so}), but doing 
50 would not have been correct since a's domain Is pairs and our definition of closure Is 
Inappropriate. 

We now define two functions, making use of our earlier discussion of Property 3. 

Definition: There are functions ~ and ~ with 

!j: A~" L 

!!: A; ~L 

such that, for every x , ~~, 

~ [M (x), !:! (x)] • x 

That ~ and ~ are well-defined (I.e., unique) follows from the fact that there exist unique m and n 
such that A (m, n) • x. 

Relation to PAL: The PAL name for a string Is called a quotation, and Is written by writing the 
characters of the string between sln~le Quote marks. The alphabet lover which strings are defined 
Is given In the PAL Manual, In Section 2.1. Certain characters In the PAL alphabet, such as new 
line and Quote, are provided with special names to facilitate Quoting them. (Details are In 
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Section 2.4 of the Manual.) The PAL name for So Is ", two adjacent quote marks. 

PAL provides "Stem" and "Stern" as the names of 1:1 and ~, and the function "Cone" defined 
below. In addition, PAL provides the Infix functors "eq" and "ne" for determining If two strings 

are equal. 

It often happens that the primitive functions which are convenient for writing postulates do 
not coincide with the most convenient set of functions for programming. Consider the problem of 
determining whether or not two strings are the same. That objects are distInguishable Implies the 
existence of a predicate, say ~, with functionality: 

~y ~ string ~ truthvalue 

such that ~ returns ~ when applied to So and returns ~ when applied to any other 

string; as well as another predicate, say £9' such that 

Eq '" L (!) L .. truthval ue 

and ~ returns ~ when both arguments are the same character, and false If they are different 
characters. As It happens, PAL's designers have not provided functions corresponding to JsEmpty 
and [9, but have provided Instead a more powerful predicate for determining the equality of 
arbitrary strings. But assume that this were not so, and that "Eq" were the PAL name for the 
function ~ and "lsEmpty" for !sEmpty. Then the arbitrary equality predicate could be defined by 

the PAL program 

def rec Equal (x, y) • 
IsEmpty x -> IsEmpty y 
IsEmpty y -> false 
Eq (Stem x, Stem y) -> Equal (Stern x, Stern y) 
fal se 

This program deserves some comment. The PAL conditional expression 

B -> ElF 

has the value of E If B Is ~ and of F If B Is~. (It Is undefined otherwise.) Thus 

IsEmpty x -> IsEmpty y I F 

has the value ~ If both & and ~ are empty, the value ~ If & Is empty and ~ If not, and the 
value of F otherwise. Thus the effect of the first two lines of the body of the functIon (the part 
after the ".") Is to return ~rue If both & and ~ are empty, fal,:;e If only one of them Is, and to go 
to the next line If neither Is. Here we ask If the first character of ~ (Its Stem) Is the same as 
the first character of~. If not, we return false, whfle If so we call "Equal" recursively to 
compare the Stern of & with the Stern of~. The punctuation "rec" Indicates a recursive function 
-- one that calls Itself. The reader should convince himself first that "Equal" returns ~ If 
one but not both of Its arguments Is so. GIven that neither argument Is so, It returns ~ 
unless the stems of Its arguments are equal. Finally, should this test also be passed, the value 
of "Equal" depends upon equality of the sterns of Its arguments. Clearly, the procedure always 
terminates for finite arguments, and equally clearly ~t~~ and ~~er~ are applied only to non-empty 
strings. 

A second example concerns 
concatenation. Presumably we would 
arbitrary length, such as those 
concatenation operation provided In 

the function ~ whlehaffords only a primitive version of 
prefer a functIon, say ~, for concatenating strings of 

In (2.1-5). Actually, ~c rather than l Is the string 
PAL. But were the sItuation reversed and "AdJoIn" the PAL name 

for A, we could remedy the InconvenIence by the program 

def rec Cone (x, y) -
IsEmpty x -> y 
Adjoin (Stem x, Cone (Stern x, y)] 

Rather than provIde the function "Equal", PAL provides the InfIx binary functor "eq". The PAL 
expression 
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E eQ F 

has value ~ If E and F denote the same string. 
denote the same Integer or the same rational. 
for not-equal, Is also provided. 

(\'Ie see later that it Is also ~ If E and F 
That Is, "eQ" Is polymorphic.) The functor "ne", 

Finally, we note that PAL provides no function at all for determlnlnr. the length of a string. 
The definition In PAL of an appropriate function, say "Length", Is left as an exercise. 

Integers 

Two classes of numbers, called Integer and rational, are of Interest. We consIder rationals 
In the next subsection, considering here the Integers and their properties. 

While In tho previous two sections we said all there was to say about the sets of truthvalues 
and strings, In this and the next section we leave out many of the details. Our reasons are 
three-fold: 

A complete axiomatic treatment of the Integers or of the rationals Is 
not only lengthy but Is also available In many elementary math 
books. The other classes of Interest to us are peculiar to PAL and 
are thus not elsewhere defined. 
We have al ready made the Intellectual point that axiomatic treatment 
of a universe of discourse Is possible, a point we make again In the 
treatment of tuples. 
The reader Is (presumably) already familiar with Inte~ers and 
rationals, so there seems little educational value to a formal 
treatment of them. 

He therefore elect to glvr. In this section only some of the needed axioms, and In the next 
subsection none at all. 

Postylates: What we want to define Is the set of Inte~ers, both positive and negative, as well as 
the operations, addition, subtraction, multiplication, division and exponentiation. Instead we 
define by postulate only the non-ne~atlve Integers the natural numbers -- and give PAL 
definitions for addition and multiplication on them. 

Definition: The set of natural numbers Is a set U such that 
1. There Is a unique element no'.u.. Let U. be the set of all 

elements of H other than no' 
Z. There Is a total function ~: U" No which Is one-to-one and 

onto the set Ho. 
3. The set .u. I~ the finite closure of ~UkC over {n~}. 

It should be clear that the nD and ~ of this definition correspond respectively to zero and to 
the function which adds one to an Integer. 

In property 2, the \-Iords "total", "one-to-one" and "onto" are,all key. (These Ideas are all 
defined In the early part of this chapter.) "Total" means that every Integer has a successor; 
"one-to-one" means that there are no two distinct Integers that have the same successor; and 
"onto" means that every natural number other than zero Is the successor of some natural number. As 
we arc often Interested In the predecessor of a natural number, we provide the 

Definition: There Is a function ~: Ho. N such that, If ~(m). n, 
then m ~ ~(n). 

That ~ Is well defined follows from our discussion above of property 2. 

The arithmetic transformatIons on "the natural numbers follow from the postulates. For 
example, If "Oil, "Succ" and "Pred"were the PAL names for.Q, Sues: and Pred, respectively; rind If 
"Zero" were the PAL name of a predicate whose value Is tJ:.U.e when applied to.Q and ~ when 
appl led to any other Integer; then we could define functions for adding and multiplying natural 
numbers by tho PAL programs 
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def rec Add(x, y) Zero y -> x Add(Succ x, Pred y) (2.1-9a) 

def rec Mult(x, y) Zero y -> 0 Add(x, Mult(x, Pred y» (2.1-9b) 

The reader should convince himself that these functIons work so long as A and ~ are non-negatIve 
Integers. Wow can you be sure the recursion will not loop forever?) 

To complete the formal definition, one should now provIde postulates for the negative 
Integers, and define subtraction. Division and exponentIation could then be defined by PAL 
programs. The Interested reader may fInd axlomatlzatlon of the negatIve Integers In any suItable 
mathematics text, and the PAL functions are left as exercIses. 

Relation to PAL: PAL provldos the following InfIx binary functors: 

+ addItIon 
subtractIon 

- multIplIcation 

/ dIvIsion 

-- exponent I at Ion 
le less-than-or-equal-to 

< less-than 
ge greater-than-or-eQual-to 

> greate r-than 
eQ equal 
ne not-equal 

The first five functors designate functions that have functionality 

Integer de) Integer - Integer 

and the last six may be assumr.d to designate functions with functionality 

Integer «> Integer - truthvalue 

(We see later that these functors are polymorphic.) All of the functors work as one might expect. 
Division by zero Is not defined, nor Is exponentiation for certain cases such as "0**0". PAL also 
provIdes "+" and "-" as prefix unary functors, the latter designating negation. Note that the 
value of E/F Is always an Integer. We do not here specify whether truncation or rounding takes 
place If the division Is not exact. 

The PAL name for a number Is called a numerIc, and the PAL name for an Integer Is called an 
Integer numeric. 

The only Integers that PAL provides names for are the non-negative Integers, and these In the 
usual way. Further, each non-negative Integer has many names, both "2" and "0002" beIng names of 
l. Although the negative Integers do not have names, one may easily write an expression whose 
value Is any negative Integer desired: "0-5" denotes:2,. The decision not to provide names of the 
negative Integers Is an arbitrary one, and changIng It would not change the expressive powftr of the 
language. 

Rationals 

Mathematically, the set of rationals Is the closure of the Integers under divisIon. 
Postulates for the rationals are not provided here, for the reasons already given. The eleven 
functors listed on this pallo also work on rationals. The functors "+", "_", "." and "/" have 
functionality 

(N e N - N) A (R t!) R ~ R) 

(Bero and below we use 1:1 to abbreviate Intoger and .n. to abbreviate rational. The mark" Is defined 
on page 2.1-'9.) These functors designate functions which return an Integer when appl led to a P81r 
of Integers and return a rational when applied to a pair of rationals. It Is Incorrect to· apply 
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one of these functors to a rational and an Integer: The PAL expression 

3 + ".2 

Is erroneous. 

For exponentiation we have the restriction 

** €. (II GIl tI .. U)" (Il ~ U .. Il) 

Thus the exponent must be an Integer. We would be admitting a mathematical Inconsistency Into the 
language were we to permit rational exponents, since It would then be possible to write 
expressions denoting obs not In the universe of discourse. For example, the expression "2 ** 0.5" 
would (presumably) denote the square root of~, an Irrational. Had we used reals Instead of 
rationals, this problem would have been avoided. However, rationals are closer by far to what 
actually goes on In computers, and Introduction of reals leads to many other problems. In some 
programming languages, the term real or floating point Is used for essentially the same class of 
obs that we cilll rat I onal • 

The six relational functors are polymorphic. Each of "(", "Ie", ">" and "ge" designates a 
function with functionality 

(N (gJ N ~ T) !\ (Il (!I R ... T) 

where I Is the set of truthvalues. The two functors "eq" and "ne" are even more polymorphic, 
deslgnatln~ functions with functionality 

(T lJ S v U U R) (g) (T u suN u R) .. T 

where ~ Is the set of strings. Thus one may write In PAL 

2 eq 'abc' 

Such an expression denotes ~ If both operands belong to the same class (I or ~ or li or R) and 
have the same value. Each of the following PAL expressions Is defined and denotes ~: 

2 eq 2.0 2 eq '2' true eq 'true' 

Names arc provided In PAL for only these rationals of the form P/(10**Q), where £ Is a 
positive Inteier and ~ Is any Integer. The name of a rational consists of one or more digits 
followed by a decimal point followed by one or more digits. Power of ten notation, such as the 
13.2E5 of Fort ran or PL/ I, I s not prov I dedi and names such as "1." and ".1" are not acceptab Ie. 

(Use Instead "1.0" or "0.1".) Note that "2" denotes the Integer 1 and "2.0" the rational b.Q, and 
these are two different obs. This point Is discussed further below. 

The user of PAL should be cautious In his use of rationals, since most Implementations do not 
store rationals exactly. For example, the rational with PAL name "0.2" would probably be 
approximated In a computer by a bln~ry floating point number, so that the PAL ex~resslon 

(5.0 * 0.2) eQ 1.0 

might denote tal~e. For this reason one Implementation of PAL (on the TX-2 computer at Lincoln 
Laboratory) uses "fuzzy" tests for the relational, functors when their arp;uments are rationals. 
That Is, If j1 and k are rationals which arc not too close to zero, then the PAL expression 

a eq b 

Is equivalent mathematically to something I Ike 

I (a-b) / M I ( b 

where M Is the maximum of lal and Ibl. (The case In which both a and ~ are close to zero Is 
treated specially.) The constant ~ Is Implementation dependent. 

Although rationals arc usually only approximated, It Is safe to assume that any sensible 
language Implementation provides precise Integer arithmetic so long as the magnitude of the 
operands does not exceod some large (machine-dependent) threshold. On the other hand, one should 
look askance at programs whose successful operation depends critically upon precision of rational 
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arithmetic. 

It Is well to remark that Imperfections due to the finiteness of machines are not peculiar to 
numbers alone. There Is also a limit on the length of a string or even of a program. We view such 
difficulties as Implementatlonal rather than linguistic In nature and Rive them little attention In 
this document. 

Intggcrs and Rationals: From our conceptual viewpoint there Is as much distinction between the 
abstract classos Integer and rational as there Is between either one of them and the class ~. 
Although It Is convenient In PAL to use tho same functors -- such as "I" for "division" In 
conjunction with both Integers and rationals, the transformation specified by the functor depends 
upon tho type of Its arguments. (The "type" of an ob Is the class to which It belongs.) For 
example, In PAL 

alb 

denotes the ordinary quotient If ~ and h denote rationals, whereas It denotes the Integer part of 
the ordinary quotient If ~ and ~ denote positive Integers. Finally, the expression Is undefined If 
~ denotes a rational and h an Integer, or vice versa. 

In many languages (PL/I, for one) a "transfer function" Is Invoked automatically for certain 
types of arguments. For example, In PLII an Integer argument to "." woul d be convertert to type 
rational If the other argument were rational. Type transfers In PAL, on the other hand, are never 
automatic. Instead, the basic transfer functions 

"ltoR" (for Integer to rational> 
"Rtol" (for rational. to Integer) 
"Stol" (for string to Integer) 

which PAL provides must be Invoked explicitly by the programmer when needed. These functions are 
described In Section 3.4 of th~ PAL Manual. 

As we have already observed In conjunction with the symbolic differentiation program of 
Chapter 1, the class of tuples Is useful In dealing with entities having "structure". 
Specifically, tuples are Important In two ways: 

1. A tuple may be used to represent a data structure. 
2. A tuple may be used as the argument to "polyadlc" function: one that 

takes several arguments. (This point Is explained In Section 2.2 of 
this chapter.) 

A major part of Chapters 3, 4 and 5 Is the formal specification of PAL's semantics. As part of 
this specification, tho PAL program whoso semantics are to be explained Is represented as a 
structure. Thus we make extensive use of structured data In these notes, and It Is Important that 
the reader understand the Ideas. 

For the present, we restrict our consideration of structured data to tree-like structures, 
11 ke th I s: 

In Chapter 4, we are also Interested In objects like 
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or, even worse, I Ike this 

We call the situation In which two arro\'1s point to the same node sharin!!, anti much of our concern 
In Chapter ~ Is the proper explanation of sharing. Rut sharing becomes relevant only In a world 
which Includes assignment statements -- and there Is nothing In the ~-calculus corresponding to 
assignment. For the present, therefore, we content ourselves with a simplifIed treatment of tuples 
In which the concept of sharing does not arise. 

PAL's tuples are similar In some ways to vectors In conventional mathematics. 
n-component vector, say 

V H V1, V2, ••. , Vn 

may be viewed as a function on the Integers such that 

V(j> • 
J V j , 

1 undef I ned, 
I f 1~Jin 

othc rwl se 

Now an 

(2.1-10a) 

(2.1-10b) 

Since we are disposed to view computation In functional terms, we ascribe a corresponding property 
to tuples. 

Pgstylatgs: \ie capture the Intuitions of the preceding discussion by the following 

Dg fin I t I on : 

set J 
that 

A .t..!!.I2ll ~ [~, Q.l:.Q.!tr, ~ugment1 over a terminal set,J Is a 
of tuples together with two functions 0rd~r and AUGment, such 

1. No element of the terminal set J Is a tuple. That Is, 4 n ~ :~. 

2. There Is a total function Qrdcr: J .. Integers. A tuple ~ such 
that Order(t) B k Is called a k-tuplg, or a ~ 2i ~ k. 

3. Each k-tuple acts as a function over the first k positive 
Integers. That Is, 

t fi [1, 2, , Ordor(t >} .. (..d II 'J ) 

4. There I s a unique 'f e 'J such that Order('f') • .Q. Let -;}o be the 
set of al I tuples other than 'Y. 

5. There Is a function Augment: ::J~ (..& lJ::n .. ~". 
element of 'J and ~ fi ..& v 0, then 

If ~ Is any 

(a) Order Augment(t, x) 1 + Order(t> 
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(b> r~ugment(t. x)] k · r:(k) 
otherwl se 

6. The set ~ Is defined as follows: Consider a sequence of sets In 
defined 

To -...d 
T". I T ... U ~u&meot(T'1' I) (Tn u...3) 

Then .t. E. J If there exists an n. such that .t. e. I". 

As In the definItion of strings, In which the set .<I .. depends on the alphabet 1., the set 0 of 
tuples depends on the terminal set ~ chosen. Property 1 requires only that ~ not contain any 
tuples. 

\'1c usc the term k-tuple for a tuple .t such that .2.!:.sl£.r(t>. • k. Clearl y then 'f' Is a.O-tuple, 
and property 4 Implies that It Is the only one. Property 3 Implies that a k-tuple acts as a 

function on the first k Integers. It follows then that ~ Is akin to ~, the null function, since 
each has empty domain of definition. But they are different: 9rder('I')- 0, while Order<~) Is 
undefined. 

For convenience of expression, we think of a tuple as being "made up" of the elements In Its 
range. Suppose that .t. Is a tuple and that .t.(k) Is.. Then we think of • as being the k-th 
component of ~, or the k-th element of~. The Impact of property 5 Is then that applyln,. Augment 
to a k-tuple .t. and any ob ~ yields a k!l-tuple whose first k components are the same as those of ~ 

and whose k!l-st component Is ~. 

It Is not hard to show that ~u~ment Is one-to-one (by a simple proof using Induction) and onto 
(by property 6) the set J.. Thus for every tuple .t other that ~, there exist unique ~ and ~ such 
that ~2mep~{~, ~> Is ,t. 

Ilote that thero Is a distinction between a 1-tuple and Its component. 
It follows (from properties Sb and 4) that ~r(t) e 1, so that .t. Is 
,t(1) .~. But.t and ~ are different obs entirely, with dIfferent properties. 

a 1-tuple. 

Th~t a component of a tuple may Itself be a tuple follows from property 6. 

Relation to PAL: The termInal set 4 In PAL over which tuples are defined includes 

truthvalues u strings U Integers v rationals 

Further, 

The PAL name for 'f' Is "nil". PAL provides the Infix functor "aug" with the property that the PAL 
express I on 

E aug F 

denotes the same ob as does 

where ~ denotes ~ and £ denotes f. 

As we have already observed In Chapter 1, PAL provides a convenient special syntax for 
denoting tuples of order 1 2. For example, If the Ek are PAL expressions then 

E1, E2, E3 (2.1-13a) 

Is a PAL expression that denotes the 3-tuple 

Augment (Aug,ment [Augment ('f, g>, 3], .t31 (2.1-13b) 

where ~ Is the ob denoted by the expression Ek, k • 1, 2, 3. (See Section 3.2 of the PAL Manual 
for syntactic details.> There Is no convenient notation provided In PAL for a 1-tuple. However, 

nil aug x 

denotes that l-tuple whose component Is ~. 
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Functions 

The class of obs called functions In a universe of discourse JL may be very large or very 

small. Obviously, the class Includes as a minimum all the ~ functions, hy which we mean all 
functions Introduced by postulate. Thus In a universe of discourse that includes truthvalues and 
strings we might expect !.!Q..r, Adjoin, ~ anci ~ to be members of the class "function". 
Alternatively, of course, tho functions .llQ..t, ruut, and 9..r might be chosen as basic In. lieu of llQ.!', 

and ~ In I leu of Adjoin. The complete set of basic functions In PAL Is treated In detail In 
Appendix 4 of the PAL Manual, and the functions corresponding to the arithmetic, relational and 
logical functors (11.11, ">11, 11&11, "not ll , and so forth) are also discussed in Section 2.2 of the 
Manual. 

Presumably, It Is possible that the basic functions should be the only obs of type function In 
A. But such a universe of discourse would be severely Impoverished. Typically we are Interested 
not just In the basic functions themselves, but also In more complicated functions specified In 
terms of the basic ones by such mathematical techniques as functional composition. The composition 
of a function! onto a function & Is a new function, say h, such that 

h(x) • f[g(x)J (2.I-H) 

In the mathematics literature composition Is oHen denoted IIf.g". Note that 

fcog ~ gof 

In general. Conceptually, we can draw an analogy to the case of strings: nlven a set of IIbasic" 
strings (an alphabet) and appropriate mathematical facilities for operating on them (Adjoin, ~, 
and §1£.t.n), \ie generate the set of all strings. Similarly, ~.a. ~ Qf. ~ functions gn.d 

appropriate facilities f2L operating 2n 1h£m, ~ ~ 1Q generatr. ~ ~ Qi 211 functions. 

Immediate Questions that arise are, "What are the appropriate mathematical facti Itles for 
operating on functlons?1I and "Hhat do we mean by the set of all functions?" The last three 
sections of this chapter are devoted to answering these questions. We may observe Immediately from 
definitions such as that of IIConc ll on page 2.1-.2'1 that functional composition Is not the only 
fac 111 ty \ie need. 

\~c defer further Investigation of the closs fynctlon until Section 2.3, saying now only that 
PAL's universe of discourse Includes all of the basIc functions, along with those that can be 
expressed In terms of them. 

Scmant Ics 

As has been mentioned, the definition of a programming languar,e involves two components: 

(1) specification of the legal sentences of the language, and 

(2) specification of the meaning of each legnl sentence. 

The first component concerns the ~ of the language; the second concerns Its semantics. 

Up to a few years ago, much more research has been devoted to the 
syntax than to the study of how to define semantics. The approach we follow 
Is to establish rules for reducing every PAL program to the application of 
to the postulates that define the universe of discourse. With reference 

study of how to define 
In defining semantics 
basic functions; I.e., 

to the definition of 

"algorithm" on page 2.1-1'(, these postulates are lithe basic transformations that need no further 
specification." 

The word "need" In the foregoing sentence Is clearly subjective; what one "needs" depends 
upon his objectives. For example, some mathematicians "need" to specify the usual arithmetic 
operations -- and even the definition of addition on real numbers is a thoroughly non-trivial 

undertaking. Similarly, a logician may "need" to reduce all transformations to the simplest 

possible base -- often, to the Integers and then to 2 and the functlon~. Our own objective, 
however, Is to study the building UP of large semantic constructs out of small ones. For these 
purposes, numbers, strings, tuples, truthvslues, and the basic functions that operate on these 

abstract objects constitute an appropriate base for further semantic exploration. 
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One corrment Is In o ... de .... In ou ... usage the wo ... d "semantics" has a connotation much strlcte ... 
than It has In common pa",'ance. Fo ... the b ... oader, more usual connotation, we reserve the wo ... ds 
"user interpretation". (Some use Instead the word "pragmatics".) Insight Into the distinction we 
wish to make may be gained by reconsidering the system of Figure 1.2-1 on page 1.2- s. We have 
already observed that this figure Is but one of many Isomorphic representations of a single 
underlying abstract system. Let us assume an Implementation of this abst ... act system tn PAL such 
that the three objects are denoted by "I", "II", "III" and the transformation by "Mod". \'/e now 
observe that the function i defined by the PAL program 

def f(x) Mod(ll, x) 

may be Interpreted In various different lights. One programmer might think of It as the modulo 3 
successor function, whereas another might think of It as effecting a 120· rotation of a three-cog 
wheel. It Is this choice of point of view that we call user Interpretation. Thus the semantics of 
a transformation has to do with the abstract transformation that takes place, while the user 
Interpretation has to do with how the user thinks of It. 

As another example, consider the expression 

A + P 

where A. and .e denote Integers. The semantics of this expression has to do with the properties of 
the Integers and the adding function; but the user Interpretation might be that A counts apples 
and .e pears, and that the expressIon Itself counts pieces of fruit. 
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2.2 Functional Application 

The universe of discourse of a programming language is the set of obs that 
the language deals with. In section 2.1 we have defined .n, the universe of 
discourse of PAL, the definition being (for the most part) by the mathematical 
technique of axiomatizatlon. 

We have defined It in order to answer quest ion (A) on page 2.1-14-, and we 
answered (B) at the same time. It is now time to start to answer (e): What 
facilities does the language afford for building complicated transformations out 
of simple ones? This is the question which we skipped earlier in the subsection 

on functions. As we answer it, we are able to write expressions which denote 
values which we have not axlomatized, such values always being functions. For 
example, the PAL definition 

def Sex) ~ Stem (Stern x) 

defines a function ~ whose domain is strings of length two or more and whose 
range is strings of length one, ~ returning the second character of Its 
argument. Clearly ~ has not been postulated. 

Heretofore we have used the word "basic" to refer to the obs we have 
defined by postulates. We now expand its use, with the following definitions: 

Definition: A ~ ~ Is any member of the universe 
of discourse .n. 

Definition: A primitive Qh Is a basic ob that has a 
name. 

Definition: A primItIve identifier Is the name of a 
pr I mi t I ve ob. 

In the next subsection we discuss the details of the association of primitive 
identifiers with primitive obs, and In the following subsection we explore 
facilities for denoting the appl ication of functions to arguments. 

primitIve Environment 

Our axiomatlzatlon of the universe of discourse provides us with the 
primitive identifiers of PAL: those identifiers that are defined ab inttlo for 
users of the language and whtch denote obs tn the universe of discourse. We 
wish no~ to clarify the mechanis~ for this association of identifiers with obs. 
Our principle reason for doing this Is that the mech~nism is expanded In Section 
2.3 to Include also provision for variable Identifiers: those defined by the 

p rog ramme r. 

The words "Identifier", "variable", "constant" and others appear frequently 
In what follows and are always used In a consistent manner. The basic elements 
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of the PAL language are classified as follows: 

names 
Identifiers 

variables 
pr Iml t Ive variables 

programmer-defined variables 

constants 

functors 
punctuation 

quotations 
numerics 

In tege r numerics 

rational numerics 

1 I te ral s 

Table 2.2-1: Basic Elements of the PAL Language 

Names are used to denote obs in the universe of discourse and are either 
Identifiers or functors. The association of a functor, such as 11+11 or "<", 
with an ob Is Implicit, whereas the association of an identifier with an ob Is 
explicit. Punctuations are marks such as parentheses which have a syntactic 
purpose but which do not denote obs. Literals Include "true ll and "false" and 
"n 11", and the other sets have al ready been dl scussed. 

We have defined a IIprlmltlve Identifier" to· be the name of a primitive ob. 
In terms of the above classification, a primitiVe identifier is either a 
constant or a primitive variable. The only identifiers which are not primitive 
identifiers are the programmer-defined identifIers. 

We turn our attention now to the association of primitive identifiers with 
primitive obs. Figure 2.2-1 is a sketch of what we call a primitive environment 
for some language. Here we assume the existence in the language of a set of 
primitive Identifiers. Each such Identifier Is a name associated wIth an ob In 
the set of basIcs, and we call the mapping from Identifiers Into basics a 
"primitive environment". We consIder the choice of an appropriate primitive 
environment to be the starting point In the definition of a programming 

language. 

A primitive environment Is a meta-function whose domain of definition Is a 
set of primitive Identifiers and whose range Is a set of primitive obs. The 
functionality of a primitive environment -- abbreviated "PE" Is therefore 

PE E primitive Identifiers"", primitive obs (2.2-1) 
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P)" i "..., " + " v ~ 0 b.s 

o ........ 
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Add 1 Pyc:J 
~ 

$c... b! 2(! ro 
~ 

~<:'YO 

No"}' 

Nor 

A lA 3' 'Yf"U~ ,.t. 

Figure 2.2-1: A possible primitive environment for some language. The 
primitive Identifiers are shown In the circle on the left and the 
primitive obs in the circle on the right. The syntax of 
identifiers does not happen to coincide with that of PAL. 
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Semantic Considerations: The role of the primitive environment in the 
definition of a language is critical, in that ~ choice Qf primitive 
environment determines ~ universe Qf discQurse available to the user of the 
language. Only obs within t~e closure of the primitive obs under functional 
application can be denoted in the language, simply because the only way to 
specify an ob is either directly via a name or indirectly via the appl icatlon of 
functions to arguments. Since primitive obs are the only obs with predefined 
names in the language, only obs ultimately expressible in terms of them can be 
denoted at all. 

By way of example, we see that the universe of discourse of a language 
whose primitive environment Is that of Figure 2.2-1 is the union of the natural 
numbers, the truthvalues, and tuples whose terminal elements are either natural 
numbers or truthvalues. On the other hand, if either of the domain-range pairs 

(nil, ~) (Augment, ~u~meU!) 

were deleted from this primitive environment, then tuples would be deleted from 
the corresponding universe of discourse. 

Although the range of a primitive environment must be 
sense that Its closure under application must include 
considerable flexlbil ity Is st 111 possible. \~e al ready know 
the domain-range pairs 

(Not, Not) 
""""'" 

(And, &u!) 

for the pair 

(Nor, Nor) 
~ 

complete, in the 
all desired obs, 
that substituting 

In the PE of Figure 2.2-1 leaves the universe of discourse unchanged. The 
important observation is that in general there are many different sets of 

primitive obs each of which generates as its closure the same class of obs. 
From a semantic point. of view, all such sets are equivalent. 

Syntactic Considerations: Identifiers are linguistic "atoms", by which we mean 
the building blocks out of which the sentences of a language are constructed. 
In Chapter 1 we characterized "atoms" as entitles \oJhose substructure (If any) Is 
Irrelevant, a comment which Is valid here as well. From a semantic point of 
view, the only property we require of identifiers is that, given any two of 
them, we can tell whether or not they are distinct. (Note that distinctness of 
identifiers does not necessarily imply distinctness of the obs which they 
denote, as witnessed by the fact that both "Succ" and "Add1" map onto the ob 
~ in Figure 2.2-1.) For example, changing each of the primitive identifiers 
in Figure 2.2-1 into its Russian equivalent would change the syntax but not the 
semantics of a language based on that primitive environment: We do not care 
whether the null tuple is called "nil" or "nyet", so long as the convention Is 
agreed upon. Indeed, there would be no harm In adopting both names, just as 
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"Add1" and "Succ" are synonyms. 

A second syntactic 
Identifiers for every ob 
Identifiers are provided 

decision concerns whether or not to provide primitive 
of any given type. In Figure 2.2-1 predefined 

for each of the two truthvalues, whereas it is 
necessary to do so for only one of them since 

c fa 1 se ............... 
and 

By contrast, Q is the only ob in the class of natural numbers which Is coupled 
with a primitive Identifier. In consequence, a language based on this PE 
provides no direct means for referencing any number other than zero, which would 
seem to be a syntactic inconvenience intolerable in any practical langua~e. On 

the other hand, we know that the inconvenience affects neither the universe of 
discourse nor our ability to compute the other numbers. 

Finally, we 

the class tuples: 
e I the r in F I gu re 

observe that a similar situation obtains in conjunction with 
The null tuple is the only tuple denoted by a primitive, 

2.2-1 or in PAL. The inconvenience in this case seems 
unavoidable; we know of no sensible syntactic device for associating every 
tuple with an appropriate predefined name. 

Relation to PAL: The structure of PAL's primitive environment Is indicated in 
Figure 2.2-2. Here the primitive identifiers have been partitioned into the 

syntactic categories numerics, quotations, literals and predefined variables, In 
a manner consistent with the classification on page 2.2-)+. Although such 
partitioning Is Inessential from a theoretical point of view, si~niflcant 
practical advantages accrue from the adoption of a judicious syntax for 
Identifiers. Specifically, In PAL (as In most languages) both the type and the 
value of the ob associated with a constant Identifier Is Immediately deducible 

from the syntax, without table look-up. Clearly, one stands to gain efficiency 

of Implementation when table look-ups are minimized especially so if the 
tables are large. For numerics and quotations the tables would be (at least In 
principle) unboundedly large. 

The alternative to providing a "transparent" syntax for numertcs and 

quotations, of course, is to provide primitives for only a small subset of 
numbers and strings, as In Figure 2.2-1. But as a practical matter we again 
stand to gain efficiency by increasing the number of primitives beyond the 
minimum required for semantic completeness: Presumably It is more efficient to 
recognize that the numeric "3" denotes the third positive integer then it Is to 

compute 

~ycc (Succ (~ (Q») 

A similar consideration holds with respect to the basic functions. 
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p'" ~d(!{i .... J V~ ... ;a~les 

S+e~----~------~--------~----~ 

Conceptual Foundations 

Co~~ ----------------~ __ ------~~----____ ;I 
basic 
~ ... ~e.+;."J" 

_ AdJ ---

-- --

Figure 2.2-2: Skeletal diagram of PAL's primitive environment. Although 
functors are shown (with a dashed line), It should be understood 
that they are not identifiers at all. 
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Although only ~ucc, ~ and ~ are required to enable arithmetic on the 
natural numbers, It is far more efficient to provide arithmetic functions 
directly, as additional basics, than to rely on recursive definitions such as 
those of (2.1-9). Accordingly, PAL's primitive environment Is much richer than 
it would need to be were our purpose simply to establ Ish the properties of all 
obs In Its universe of discourse. In particular, as we have already remarked, 
oach arithmetic, logical and relational functor corresponds to a basic 
funct Ion. 

Note that functors are treated specially In Figure 2.2-2, for example "+" 
being associated via a dashed line with ME. This suggests that the progl-ammer 
may wr I te 

3 + 5 

to denote 

Add (3, 5) -- - -
We see In the next subsection that we regard the infix functor as an alternate 
syntactic device for functional application. 

Apol Icatlve Structure 

In the preceding subsection we have seen that a primitive environment 
provides linguistic facilities for denoting directly some obs In a universe of 
discourse: the primitive obs. A remaining task Is to devise linguistic 
facilities for writing expressions which denote obs which are not primitive. As 
a prel imlnary, In this subsection we analyze the structural aspects of 
functional application. 

In conventional mathematics, many different notations are used to indicate 
the appl icatlon of a function to arguments. For example, the operator may be 
prefix, Infix or postfix, as In the expressions 

- 4.89 

17 + 9 
51 (I.e. 5 factorial) 

respectively. Alternatively, the physical layout In two dimensions may be 
significant, as In the expressions 

and 

x:l. dx 

In every case, however, only one semantic Issue is Important: Whatever the 
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syntactic form, It must permit us to determine the operator and the operand. In 
other words, we must be able to elicit answers to the Questions "What ob Is the 
function to be applied?" and "What ob Is the argument?" Of course, both 
operator and operand may themselves be the result of functional application. By 
an apol Icatlve strycture we mean a display In which the operator and operand of 
each subexpresslon Is explicit. 

The appllcatlve structure of ordinary arithmetic expressions may be 
exhibited In any of several ways. For example, we can write 

(2 - 6) * (-5) (2.2-2) 

which is a linear representation of the same AE that can be represented in tree 
form as 

Figure 2.2-3: Tree Form of the AE of (2.2-2) 

Each node of the tree represents an operator, and the branches dIverging from 
each node represent the corresponding operands. In general, unfortunately, a 
display such as that of Figure 2.2-3 does not prove adequate, primarily because 
of asymmetry in Its treatment of operators and operands. The asymmetry Is not 
bothersome In ordinary arithmetic expressions where only operands are 
themselves the result of functional appl icatlon. But we must also accommodate 
situations In which the operator results from an applicatIon. For example, 

(2.2-3) 

denotes application of the functional composition of ~ and ~ to the 
string ~. The operator "0" for functional composition Is defined in 
(2.1-14). Obviously "composition" may be regarded as a function, say ~omp, and 
the operator of (2.2-3) Is the result of applying ~ome to the functions ~ and 

lli.!l' • 
In simple cases like (2.2-3), presumably one could still represent the 

operator by a node, 1 Ike this: 
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Figure 2.2-4a: Tree Form of the AE of (2.2-3) 

The situation can easily get out of hand, however, since the structure of the 
operator may be arbitrarily complex. Accordingly, we elect always to treat 
operators on a par with operands, and to display them each along branches of the 
tree. One possibility Is this: 

Figure 2.2-4b: Alternate Tree for the AE of (2.2-3) 

A PAL function "Comp" corresponding to ~ may be defined by the PAL program 

def Comp (f, g) = 
P wh ere P ( x) II f [g ( x ) ] 

Then the functionality of ~ Is 

whe re 0(, ~ and 
domain of £omp is 
onto obs of type 
the result of ~ 

Adlclty: Although 
between operator 
dl sparity Involves 

~ om P E (~- ¥) (J) (~ ... ~) -+ (at -. r) 

r stand for (unspecified) types of ob. In other words, the 
an ordered pair of functions: If the first maps obs of type ~ 

~, and the second maps obs of type ~ onto obs of type p, then 
Is a function that maps obs of type ~ onto obs of type t. 

not apparent from the tree just drawn, complete pa r i ty 

and ope rand st i 11 rema Ins to be achieved. The res Idual 
the fact that wh 11 e there is on 1 y one ope rator In any 

funct lonal application there may be seve ral arguments, depending upon the 
"adlclty" of the function. By Its 519 he I t ~ we mean whether a function Is 

monadic, diadic, triadic, or whatever. 
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\~e achieve parity by adopting the convention that ~ function ~.a 
single operand. The k-adlc case (for k ~ 1) Is then accommodated by stipulating 
that the operand be a k-tuple. With this convention, the appl icatlve structure 
of nested applications may be displayed using only two node types: 1 and j. A 
gamma node indicates functional application and has two sons, the left being the 
function and the right the argument. A tau node with n sons Indicates an 
n-tuple, the components being taken from left to right. With these conventions, 
(2.2-2) and (2.2-3) may be represented 1 ike this: 

Ste'M St er n -- --
Fig u re 2. 2 - 5 : T re e s wit h ~ an d 'J node s 

In this figure we have labelled the branches from the '( node with " rcn " and 
"arg" and the branches from the J node are numbered. 

Heretofore we have used the ~ notation to specify ordered pairs, making no 
attempt to associate such pairs with PAL's 2-tuples. (On page 2.1-16 we stated 
explicitly that we were refraining from making such an association.> We now 
decree that there is no distinction between the ordered pair ~~, ~l and the 
2-tuple whose PAL representation is fICa, b)" where.2 and h denote! and ,2,., 
respectively. This decision permits us to use the 00 in functionality notation 
In connection with functions defined In PAL, even though we have seen that Cin a 
technical sense) all PAL functions are monadic. For example, we say 

~ e. s t ring ® s t ring -- s t ring 

to indicate that ~ must be applied to a 2-tuple of strings. We tolerate the 
abuse of terminology of using the phrase "a k-adlc function" to refer one that 
must be applied to a k-tuple. 

Although adoption of this "single operand" convention Is somewhat 
arbitrary, two advantages accrue. First, the axiomatic treatment of functions 
and transformations on functions In the remainder of this chapter is 
simp) Ifled. And second, we avoid Introducing a semantic distinction which 
Inhibits (to some extent) the expressiveness of a language. To illustrate this 
last point, consider the implication of rejecting the convention. Then to 
denote the application of a k-adlc function we must specify an "argument list 
with k elements". But how does such an argument list .differ from the k-tuple 
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with corresponding elements? If there is no difference, then all operands 
actually ~ single entities, regardless of protestations to the contrary. Thus 
we must exhibit some property which tuples and argument lists do not have In 
common. For instance, we might consider argument 1 ists to be purely syntactic 
entititles, and ascribe no semantic (I.e., transformational) properties to them 
at all. 

This possible distinction between tuples and argument 1 ists Is, In fact, 
typical of the situatIon In most programming languages. In this approach, each 
element of an argument list denotes an ob in the universe of discourse, but the 
argument list Itself does not. Specifically, no functions (comparable, say, to 
~u~meQ!) are postulated for computing an argument 1 ist, or for transforming one 
argument lIst into another. To see that this syntactic approach does to some 
extent Inhibit freedom of expression, consider the following example. Assume 
that the syntax for writing an argument list were 

<El, E2, ... , Ek> (2.2-Sa) 

In which each ~ stands for an expression denoting the i-th argument. Then we 

miqht denote the concatenation of two strings by writing 

Conc <51, 52> (2.2-Sb) 

In which any arbitrary expressions denoting strings may be substituted for ~ 
and~. But If there Is no way to compute an argument list, we would be 
precluded from writing 

Conc (5) (2.2-Sc) 

In which any arbitrary expression denoting an ordered pair of strings may be 
substituted for~. By contrast, adoption of tuples in 1 ieu of argument 1 ists 
does admit (2.2-Sc) as a valid and frequently convenient alternative to 
(2.2-Sb). 

In computation as in other fields of engineering, we may hope to gain in 
one direction If we compromise In another. For example, we can offset the loss 
In expressiveness by exploiting the fact that the adlclty of the operand Is 
manifest from the syntax In (2.2-5b), but not In (2.2-Sc), to gain Increased 
efficiency of Implementation. In defining PAL, however, adoption of the 
single-operand convention seems particularly appropriate and Is assumed 
he reafte r. 

Curried Functions: \'1e have built the universe of discourse JI. so that it 
Includes functions, and we understand that the value of any appl ication may be 
any ob In fl. Thus the posslbll ity of the value of an application being Itself a 
function Is apparent. A function-producing function Is one which, when appl led 
to a suitable argument, has a function as value. We have already encountered 
one example of a function whose range Is functions In the functional composition 
operator ~ome, and It Is easy to define others. For Instance, suppose that ~ 
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Is a function-producing -function with domain Integers such that If 

g IE ~ (m) 

where m is an integer, then for any integer n we have 

g(n) IE m+n 

That Is, 

[ ~ (m) 1 ( n) • m+n (2.2-6a) 

It should be clear that 

~ E integer" (Integer'" integer) (2.2-6b) 

It is not at all convenient 
mathematical notation, although 

to write a definition of Sum In conventional 
~ 

Sum(m) == g where g(n) = m+n (2.2-6c) 

comes close. Functions such as ~um are called "curried" functions, after the 
logician H. B. Curry, and (as we see later) provide a clean logical base for 
much of our view of computation. Such functions were introduced by Schonfinkel 
(1924) and have been used extensively by Curry. 

For every binary function there is a curried function which is, in a sense, 
equivalent to it. For example, consider the function ~ defined In (2.2-6) 

and the function ~ defined by 

Add(x, y) IE x + Y 

Clearly, 

~(x, y) [~(x)] (y) 

for all numbers A and ~. We say then that ~ then is a curried version of 

!'dd. 

There Is considerable conceptual efficiency to be gained by using curried 
versions of the basic functions in~. In particular, consider the function Aug 

.......".... 

that Is a curried version of ~u~ment, so that 

[~~g(x)] (y) IE .e,ugf11t!nt(x, y) 
Thus the 2-tuple 

(5, t) 

which we have seen can be written as 

can alternatively be written as 

[~ (~~) (5»] (t) 

That there Is conceptual advantage to use of curried functions can now be shown. 
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Recall that In Figure 2.2-5 we saw that any expression can be represented by a 
binary tree whose non-terminal nodes are l or j. We see now that using curried 
basics lets us dispense with ~ nodes. Thus the 2-tuple (s, t) may be 
represented by either of 

!j?\
-- '. 

J \ 

" J ; , . 
'.. .' . .' ..... _ .. 

s , 
" Au. ~ :,!."", 

............. "'" 
' .... -- --

In fact, the two trees enclosed In dashed lines are equivalent, an obvious 
corrcspondance extending to ~ nodes with any number of sons. 

Trees without "J nodes are conceptually more fundamental than those with 
them, In the sense that they need only one node type rathe r than two. On the 
other hand, the style wi th 'J nodes Is more abbreviated and hence more 
perspicuous. Since It Is clear that there Is a one-to-one co rres pondence 
between the two display alternatives, we feel free in what follows to use 
whichever is more appropriate to the purpose of the moment. Figure 2.2-6 shows 
the tree form of Figure 2.2-5, with J nodes replaced by r nodes and Au~. Note 
the rather dramatic Increase In the size of the trees. 

Combinations 

A tree displaying the nestIng of functional applIcations is one way to 
represent an arbitrary ob In terms of the basic obs of a universe of discourse. 
Although It Is clear that such a tree has the virtue of explicitness, the virtue 
of conciseness Is notably absent. We now address ourselves to the linguistic 
Issues Involved in devising alternate representations better suIted to human 
needs. All such representations -- that Is, all expressions In a language which 
denote the applicatIon of an operator to an operand -- are called combInations. 

PAL Syntax: The syntax of combinatIons adopted In PAL corresponds closely to 
our meta-language, which Is conventional mathematical notation. The principal 
distinction between the two Is the replacement of meta-names by PAL primitive 
Identifiers. For example, the PAL combInatIon 

Con c (. A', • 5 • 7 • ) (2.2-7) 

denotes application of the function ~ to the strings ~ and~. 
Similarly, 
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Figure 2.2-6: Trees without ~ nodes. 
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5 + 7 (2.2-8a) 

In PAL denotes applIcation of lithe functIon that adds integers" to the Integers 

Z and 1· 
ThIs InterpretatIon of (2.2-8a) reflects our vIew that infIx notation Is 

syntactic "sugar" for a corresponding prefix expression. Thus we consider 
(2.2-8a) to be merely a more palatable way of writing 

[S urn (5) 1 (7) (2.2-8b) 

In which (presumably) the Identifier "Sum" and the infIx functor "+" denote the 
same curried function. 

PAL syntax also differs from ordInary mathematIcal notation by being 
specIfIc about conventions governIng the use and omission of parentheses In 
combinations. For example, In PAL the Infix combinatIon 

a/b*c (2.2-9a) 

I s canst rued as 

(2.2-9b) 

rather than as 

(2.2-9c) 

Similar conventions govern the parentheslzatlon of prefIx combInatIons. For 
example 

f(x) (2.2-10a) 

may also be written In PAL as 

f x (2.2-10b) 

or even as 

(f) x (2.2-10c) 

Each of these denotes the result of applying the function denoted by "f" to the 
argument denoted by "X". Finally, PAL uses the convention that combinations 
pssoclate 12 ~~, so that 

ABC (2.?-11a) 

Is construed as 

(A B) C (2.2-11b) 

rathe r than as 

A (B C) (2.2-11c) 

Thus (2.2-8b) could be written equivalently as 
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Sum 5 7 

The decision to use left association for functional application Is particularly 
convenIent given our predIlection to the use of curried functions. Were 
functIonal composition more common in this work, the decision might have been 
otherwl se. 

The detai ls of PAL's syntax are described fully in the Manual. Hereafter, 
we seek to avoId possIble ambiguity and achieve consistency by always using PAL 
notation when wrIting combinations. In general we over-parenthesize to remove 
possible' doubt, but as we do make extensive use of the left association 
convention of (2.2-11) and the omission of parentheses· convention of (2.2-10), 
the reader had best accustom himself to them. 

Referential Transparency: Since our Interests embrace not only PAL but also the 
linguistic principles on which PAL Is based, It Is appropriate to investlr.ate 
certain aspects of notation from a fundamental point of view. In this 
subsection we discuss an Important linguistic attribute, called referential 
transparency (cf. Quine (1960), pages 1~1 to 1~5), which contributes mightily to 
the perspicuity of combInatIons both In conventional mathematIcs and In PAL. 

Roughly speaking, an expression Is referentially transparent with rp.spect 
to a subexpresslon If and only If the value of the expression depends on that 
subexpresslon solely through the ~ of the subexpression. For example, the 
expression 

7 * (1 + ~) (2.2-12) 

Is referentIally transparent wIth respect to the subexpresslon "1 + ~" because 
any expression whose value Is ~ can be substItuted for It without changing the 
meaning of the expression as a whole. By contrast, the definite ReImann 
Integral 

(2.2-1~a) 

Is referentIallY transparent with respect to "a" and "b", but D.Q.t. with respect 
to the second occurrence of "x". Obviously, no other expression whatsoever can 

be substituted for just the second occurrence of "x" without destroying the 
overall meaning, although equally as obviously the meaning is invariant to 
certaIn substitutions for both occurrences, as In 

(2.2-13b) 

Note that the definition of referential transparency has to do with 
subexpresslons. Thus "2 * ~ +~" Is.ll.Q.t. the same as "2 * 7", even though "7" 
has the same value as does "3 + ~", since "3 + ~" Is not a subexpresslon of the 
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whole. Even more dramatically, "32 + 21" Is not the same as "341". 

It Is clear from (2.2-13) that referential transparency is not a necessary 
attribute of viable notation, nor even In all cases a desirable attribute. On 
the other hand, two advantages accrue In situations In which there is 
referentiallY transparency. First, when an appllcatlve structure Is deeply 

nested, the Intellectual task of discerning overall meaning Is greatly 
simplified If we can think of the process of evaluation of a tree (such as that 
of Figure 2.2-6) by replacing each sub-tree In turn by Its value. (An example 
Is given below.) And second, our freedom of expression Is enhanced by license 
to substitute for any subexpresslon any other subexpression having the same 
meaning. The two advantages are obverses of each other, so that actually only 
one idea Is Involved. 

An example of the evaluation process aluded to above Is shown In Figure 
2.2-7, which shows successive steps in the evaluation of (2.2-2). At each step 
a node Is selected both of whose sons are terminal nodes, and the subtree 

consisting of that node and Its sons Is replaced by the proper value. 
Referential transparency not only legltlmatlzes this process, but also It 
guarantees that the final value produced does not depend on the order of 
evaluation. 

Semantic Trees: PAL's notation for combinations Is Influenced strongly by a 
desire to emulate conventional mathematical notation. Nonetheless, from a 
syntactic point of view PAL falls far short of conventional mathematics In 
variety of allowable notation. Today's programming language designer 
unfortunately Is effectively bounded away from bold-face, Ital ic or Greek 
characters, and usually from superscripted and subscripted symbols, by 
1 Imitations of the Input/output devices commonly available on computers. 

On the other hand, from a semantic point of view PAL and conventional 
notations for combinations are equivalent, In the sense that both satisfy a 
constraint of referential transparency. Specifically, this constraint requires 
that any expression denoting a functional application must be analyzable Into 
two subexpresslons (say "rator" and "rand"), and must be referentially 

transparent with respect to them both. Thus we are led to extend our notions 
of "expression" and "value" by defining a set of objects called apollcatiye 
expressions (AE's), as follows: 

An AE Is a structured object. It Is either a 
primitive Identifier, or It Is a 
combination, In which case It has a 
~, which Is an AE, and a 

- .r.an.Q, wh I ch I s an AE. 

(This Is our first use of a structure definition, and the reader Is advised to 
take this opportunity to reread the description of such definitions starting on 
page 2.1-19.) We can exploit the predicates and selectors Implied by this 
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Figure 2.2-7: Evaluation of the AE 
(2 - 6) * (-5) 

2.2-50 

by successive tree contractions. 
replaced by (a representation of) the 
Some steps have been omitted. 

In each step a subtree Is 
value which it denotes. 
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definition to define the value of an AE: 

peflnition: The ~ of an AE Is determined as 
follows: If the AE Is a primitive identifier, 
its value is the ob associated with it in the 
primitive environment. The value of a combination 
is that ob that results when the value of the 
rator is appl led to the value of the rand. 

Sec 2.2 

This definition, which depends on the primitive environment used, specifies the 
value of any combination each of whose atomic constituents Is a primitive. 
Specifically, one procedure for determining the value of any such expression 
would begin by analyzing and displaying the rator-rand structure of the 
expression as a semantic ~, as In Figure 2.2-8. Such a tree differs from the 
trees of Figures 2.2-5 and 2.2-6 primarily In Its Interpretation: The present 
tree denotes linguistic Ideas, whereas the earlier trees designate abstract 
obs. Stated differently, the leaves (I.e., terminal nodes) in Figure 2.2-8 are 
primitive Identifiers, while the leaves in the earlier figures are primitive 
obs. The non-terminal nodes are labelled AP (for ~lication) and COMMA rather 
than ~ and ~, to emphasize the difference. 

Given such a semantic tree, however, we can still substitute for each 
Identifier the value It denotes, and then proceed to replace each sub-tree by 
Its value, just a~ in Figure 2.2-7. In accordance with the definitions, the end 
result of contracting the entire tree is the value denoted by the original 
expression. 

The distinction between the two classes of trees typified in Figures 2.2-6 
and 2.2-8 Is academic, simply because the two classes are isomorphic, or at 
least almost so. This Isomorphism, of course, is the simplification which 
referential transparency affords. But each additional linguistic construct 
encountered hereafter enriches the class of structures we call "semantic t,"ees", 
whereas the structure of functional applications is fixed by the postulates 
establishing the universe of discourse. 

The relationship establ ished thus far between the worlds of expressions and 
abstract objects may be visualized as Illustrated In Figure 2.2-9. In the 
linguistic world we generate new expressions by "combining" two expressions 
called rator and rand. In the universe of discourse we generate new obs by 
"applying" an ob called function to an ob called argument. As shown In the 
figure, referential transparency Implies Invarlance with respect to the path 
followed In moving between worlds. 

That the two worlds are In fact distinct is emphasized by realization that 
the mapping from expressions onto obs Is Incomplete. By this we mean that not 
every combination corresponds to an ob in~. For example, 

Stem 5 (2.2-14) 
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Figure 2.2-8: Examples of semantlc~. Each is a representation of the AE 

(2 - 6) * (-5) 

2.2-52 

The tree on the left uses COMMA nodes and the one on the right 
does not. 
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Figure 2.2-9: Relation between combinations and abstract objects. Note the 
invariance to path In the mapping from expressions onto obs: One 

reaches the same ob regardless of whether he follows the solid or 
dashed arrows. This Invarlance Is another aspect of referential 
transparency. But note also that certain combinations do not 
map onto any obi 
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Is an AE which Is syntactically correct, but Its value Is undefined because the 
ob l Is not In the domain of the ob~. Thus the correspondance is not quite 
an Isomorphism, the problem being that the functions Involved are not all total 
over their domain. In particular, let Af be the set of AE's defined on page 
2.2-49, and let AP: AE ~ AE ~ AE be the constructor of combinations implied by 
that structure definition. That Is, If £ and k are AE's then 

AP (a, b) 

Is that AE whose rator Is.a and whose rand Is h. Let 11. be the universe of 
discourse, and let J: ~~ A ~ n be that function such that 

Is the result of applying! to ~. 

Now let PE: AE "1l. be the primitive environment which associates with each 
atomic AE a value In A. Finally, consider ~l: AE -~ defined by 

Val(x) .-
= I PE (x) 

lty'!!(M), Y.i,l(N)] 
If x is atomic 
If x is the combination eM N) 

It would be very pleasant were ~1 an isomorphism from (AE, AP) to (n, l) but It 
Is not: Since r Is not total on n ~ n It follows that Val is not total on 

~ 

AE ~ AE. Thus for example to evaluate (2.2-14) we have 

Val [ AP (Stem, 5) ] -• r r Val (Stem), Val (5) J 
== r ( ~, 2 ) 
== Stem 5 _ ... 

which Is not defined. Moreover, In general it is not possible to evade this 
problem by excluding "meaningless" expressions from a language. In particular, 
In Section 2.3 we extend our set of linguistic constructs to Include facil ities. 
such that an Identifier (say "S") may be defined to denote any ob whatsoever. 
Whether or not a combination such as 

Stem S 

Is meaningful then depends not just on the expression Itself, but on the context 
in which It occurs. The sad fact Is that It is possible to write syntactically 
correct sentences which are semantic nonsense In any highly developed language. 

We summarize much of the preceedlng discussion of the evaluation of AE's by 
the 

DefinitIon: Two AE's H and ~ are said to be S-egual, 
written M J. N, If Val(M) == Val(N). 

Clearly k Is an equivalence relation on AE's, since It Is SYJf1Me+t'iC ex.i.. y 
Implies y $.. x), Y'f/~~~ve (x L x) and transitive (x I. y and y ~ z Implies 
that x ~ z). It ~s because the relation Is symmetric that we use the 
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double-pointed arrow. Note that the relation ~-equal is defined in terms of the 
function ~l, which in turn is defined in terms of some primitive environment 
PE. 

2.3 Functional Abstraction 

Although In principle a programmer can specify any ob in the universe of 
discourse In terms of primitives and combinations of pilmltlves, In practice the 
desirability of additional linguistic facilities Is manifest. This section 
Introduces an additional linguistic concept, called "functional abstraction", 
which suffices to permit the incorporation of user-coined definitions Into a 
language. More precisely, functional abstraction. makes it possible for the 
programmer to denote arbitrary obs In ~ directly, by identifiers of his own 
choosing. 

Roughly speaking, functional abstraction means using an expression to 
specify a function by stipulating that some particular identifier in the 
ex p re s s Ion 1st 0 be i n te r pre ted a s a II dummy va r I a b 1 e" • Th e I de a I s a fa m t1 I a r 
one: In conventional notation, given an arithmetic expression such as 

3 + x (2.3-1a) 

we can wr Ite 

f(x) = 3 + x (2.3-1b) 

and refer thereafter to "the function fIle Alternatively, we could write 

g(x) is 3 + x (2.3-1c) 

or 

g(y) is 3 + y (2.3-1d) 

each of which designates the same function (i.e., the same abstract object) that 
(2.3-1b) does, to wit, "that function of x which 3+x is". 

Recall that the definition of a function involves specification of a 
domain, a codomain and a rule, the rule being a mapping from one set of objects 
into another. Clearly, In our example we Intend the same rule, hence function, 
regardless of the name "f" or "g" we choose to call It and regardless of the 
name "x" or "y" we use to denote the dunmy variable. Moreover, it is evident 
that (2.3-1b) does not define any mapping at all except relative to an 
environment in which all Identifiers except the dummy variable are known. In 
other words, It does nQt specify a function unless, the values denoted by the 
names "3" and "+,, are known. For example, writing 

hex) is x+a 

defines .h only if the value of "a" is known. Clearly (2.3-1b) defines 1. But 
can we write an expression that has the same value that! does? 
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)-Expresslons 

Conventional notation is not well suited for formal izing the concept of 
functional abstraction because it does not allow us to designate a function 
without simultaneously giving it a name. In consequence, an expression such as 
f(x) can be Interpreted In two ways. If "x" Is Interpreted as a dummy variable, 
then f(x) presumably denotes a function which we are naming "f". Alternatively, 
If "x" is Interpreted as a name coupled with a specific value, then f(x) 
presumabiy denotes the application of the function named IIfll to this value as 
argument. 

Usually we can rely on context to decide which interpretation Is correct. 
But even context Is not Infallible, as Is evidenced by the following example. 
Consider the function P defined as 

] 
f (x) - f (0) 

P [f(x) a X (2.3-2a) 

whenever "XII Is not zero. Both the domain and range of Pare number-to-number. 
functions; In other words, 

P ~ (numbe r ... numbe r) - (numbe r .. numbe r) (2.3-2b) 

Now, even though the definition of £ Itself is unequlvocable, it is not at all 
clear what is meant when we write P(f(x+1)l. Presumably the intent is to 
specify a function In terms of the dumny variable "x", but there are two 
possible Interpretations: 

(1) P(f(x+1)] means the function (P(g», where g Is the function of x that 
f(x+l) Is, or 

(2) P[f(x+l)l means the function of x that h(x+l) is, where h Is the 
function (P(f». 

That there is a distinction between the two Interpretations may be seen by 
considering the case in whlch.f designates the function "square"; I.e., by 
1 e ttl ng f (x) • X 'a. Then (1) y Ie 1 ds 

(x + 1 )2. _ (1 )2-
g(x) • (x+1)2; so (P g) X a X = x+2 (2.3-3a) 

whereas (2) yields 
(X)2 _ (0 )2 

hex) • (P f) x • x = x; so h(x+1) • x+1 (2.3-3b) 

Conventional notation does not specify which Interpretation is intended. By the 
end of this section It becomes apparent that the Interpretation of (2.3-3a) may 
be specified by writing P[~x. f(x+1)1, and that of (2.3-3b) by writing 
[~x. P f(x+1)], where In either case 

t(u) - tCO) 
P • )t.}.u. u (2.3-3c) 

(This example Is cited by Curry and Feys (1958) on page 80.) 

The problem here was mentioned earlier: The Inability In available 
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notation to designate a function without simultaneously giving it a name. To 
define the function h that adds three to Its argument we can write 

hex) I: x+3 (2.3-4a) 

but we have no way to write 

h = that function of IIX" that IIx+3" Is (2.3-4b) 

other than In Engl Ish. Following Church (1951), we write 

h = lox. x+3 (2.3-4c) 

to designate the Idea of (2.3-4a) or (2.3-4b). Here the A signifies "function", 
and the period separates the dummy variable from the expression in terms of 
which the function Is defined. Using this notation, we can rewrite equations 
(2.3-1b), (2.3-1c) and (2.3-1d) as 

f = AX. 3+x 
g = >.x. 3+x 
g =Ay. 3+y 

(2.3-5a) 
(2.3-5b) 
(2.3-5c) 

An expression like those of (2.3-5) Is called a A-expression. By 
convention, the components of a A-expression to the left and right of the period 
are called Its QQynQ variable and~, respectively. Note that a A-expression 
Is nQt referentially transparent with respect to its bound variable: The role 
of 11).11 is directly analogous to that of "d" In (2.2-13) on page 2.2-48, In which 
"dx" signifies that "x" Is to be interpreted as a bound variable. Hereafter we 
use the term "bound variable" consistently In 1 leu of the more colloquial term 
"dunmy variable", frequently abbreviating It a. 

Informal Redyctlon Ryle: 
Involving ~-expresslons 

combination 

In simple 
Is easily 

cases, the 
deducible. 

(). x. x * 3 + x) 5 

meaning 
Cons I de r, 

of 
for 

combinations 
example, the 

(2.3-6a) 

Since the rator denotes "the function of x that x*3+x is", it is clear that 
(2.3-6a) should have the same meaning as the expression 

(2.3-6b) 

wh ich resul ts when the rand 115" Is subst I tuted for each occurrence of the bound 
variable IIXIl In the body of the rator. We say that we have reduced (2.3-6a) to 
(2.3-6b). 

More generally, if IIMII and "Nil are any two expressions and lIyll Is any 
Identifier, we decree that 

(Ay. M) N - subst (N, y, M) 
~ 

(2.3-7) 

Here "-." should be read "Is reducible toll and 
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~t (a, b, c) 

may be interpreted (somewhat naively) as "the result of substituting the AE ~ 

for the Identifier .b. In the AE ~". The rule may be Invoked repeatedly, as In 
the example 

(Ax. 3-x) [(~. 4*y+7) 2] 
- ()x. 3-x) (4*2+7) 
- 3-(4*2+7) 

In each 1 ine of this derivation we have underlined the ~ that Is 
reduced, to ease the reader's task In following the derivation. 
practice hereafter. 

about to be 
We follow that 

A naive attitude towards ~ suffices for the moment, but we need to be 
more careful to avoid inconsistencies when we come to'treat reduction rules 
ax I omat I ca 11 y. The probl em has to do wi th mul t I pl e use of the same name and 
requires considerable care In formulating the rules. Note that ~t Is ngt a 
function in the universe of discourse but rather a function that transforms one 
expression into another expression. We call ~ a meta-functIon. 

Our semantic Interpretation of reducibility Is the obvious one: Given any 
two expressions El and E2 such that 

El - E2 (2.3-8) 

we define the meaning (I.e. ~) of El to be the same as that of E2. In other 
words, reducible expressions are equivalent In the sense that both denote the 
same ob In n. We have much more to say later about the relation "_" and 
others similar to It. 

Relation to PAL: Consider the PAL expression 

1 et x = 5 I n x *3 + x (2.3-9a) 

and the AE 

o.x. x*3 + x) 5 (2.3-9b) 

Each Involves evaluation of the AE "x*3 + x" with the understanding that "x" Is 
to be replaced by "5". That Is, each Is equIvalent to 

subst("5" '''x" "x*3 + x") --- ' , 
Thus we regard a PAL expression such as 

let y = N In M 

as just a "sugared" syntactic alternative specifying the same 
transformation as does the more austere expression 

(Ay. M) N 

A third syntactic form In PAL which Is also equivalent semantically Is 
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M where y = N (2.3-10c) 

Here as in (2.3-7) we are assuming that M and H may be any two expressions, and 
that "y" may be any Identifier. 

Function-Form Definitions: The preceding paragraph illustrates that 
)-expresslons accommodate the definition of variables in PAL. Although perhaps 
not immediately obvious, it Is true that ~-expresslons suffice also to 
accommodate programmer definition of functions. To see this, we need only 
observe that severing the name being given to a function from the function 
Itself (as In (2.3-5» implies the equivalence of 

let g(x) II P In M (2.3-11a) 

and 

let g = AX. Pin M (2.3-11b) 

It follows from (2.3-10) and Identification of "N" with "Ax. p" and of "y" with 
"g" that a third equivalent expression Is 

(Ag. M) (Ax. P) (2.3-11c) 

As an example, consider the PAL expression 

let f(x) = x*3 + x In f 5 (2.3-12a) 

In accordance with the desugarlng of (2.3-11) and the reduction rule of (2.3-7), 
equivalent expressions are 

(M. f 5) (~x. x*3+x) 

- (~. x*3+x) 5 
- 5*3+5 
A 20 

so that the meaning of the PAL expression (2.3-12a) Is ~. 
Similar~y, the value of 

let f(x) II x*3 + x In f(f 5) 

Is deducible to be the same as the value of 

and hence equal to ~. 

t~f. f(f 5)] (~x. x*3+x) 
.... ()x. x *3+x) [(M. x*3+x) 5] 
-. (~. x*3+x) (5*3+5) 
- (5*3+5) * 3 + (5*3+5) 
.§. 80 

(2.3-12b) 

(2.3-13a) 

(2.3-13b) 

One other notational point need be made: We suggested on page 2.1-11 the 
possibility of writing 
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f() • 3 

to define a constant function f with value l, so we provide the notation 

~ (). 3 

to denote £'s value. Evidently such a functIon Is zero-adlc, so for convenience 
we decree that It can be applied to only the O-tuple . .I1I1. That Is, 

j\(). M 

denotes a constant function such that the combinatIon 

(). ( ). M) n 11 

denotes the same value as does H. 

Curried Functions: If we abstract on an expression that 
A-expression, the resulting expression specifies a currIed 
example, abstracting twice on the expression 

x + Y 

produces first 

Ay. x+y 

and then 

A x • (~y. x +y) 

is Itself a 
funct I on. For 

(2.3-14a) 

(2.3-14b) 

(2.3-14c) 

It follows In accordance with the reduction rule of (2.3-7) that the 
comb I nat I on 

[Ax. (Ay. x+y») 3 

Is equivalent to 

~y. 3+y 

which In turn specifies the function that adds 1 to Its argument. 
meaning of 

l [A&. (A y. x + y )] 31 5 

.... (~. 3+y) 5 
-. 3 + 5 
~8 

(2.3-15a) 

(2.3-15b) 

Thus the 

(2.3-15c) 

Is the ob 1. PAL requires fewer parentheses than used In the first line of 
(2.3-15c), permitting 

(~x. AY. x+y) 3 5 (2.3-15d) 

with identical meaning. 

PAL notation for defining function-producing functions Is a natural 
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extension of the syntactic sugaring Involved in (2.3-11). Specifically, the 

view that the construction 

let g(x) = N in ••• 

is sugaring for 

let g = AX. N in ••• 

leads us to adopt 

let g(x)(y) IS P In ••• 

as sugaring for 

let g = ).x. '"Ay. P in ••• 

(All parentheses In equations (2.3-16) are optional In PAL.) 
express I on 

let Sum x y = x + y In Sum 3 5 

Is equivalent to the combination 

(). Sum. Sum 3 5) ('Ax. A y. x+y) 

and hence to (2.3-15c). Similarly, 

Is equivalent to 

let Twice f x = f(f x) In Twice Sqrt 16 

(t Twice. Twice Sqrt 16) [~f. ~x. f (f x)] 
-+ [J.f. i\x. f (f x)] Sqrt 16 
.-. [Ax. Sqrt (Sqrt x)] 16 
.-. Sqrt (Sqrt 16) 

(2.3-16a) 

(2.3-16b) 

(2.3-16c) 

(2.3-16d) 

Thus the PAL 

(2.3-17a) 

(2.3-17b) 

(2.3-18a) 

(2.3-18b) 

which in turn denotes the ob 1, 
identifier "Sqrt" denotes the function 
argument. 

relative to an environment In which the 
that returns the square-root of its 

Referential Opacity: We have observed that· functional abstraction adds 
definitional facilities to a language, but that A"expressions are not 

referentially transparent. It is interesting to note that this encroachment of 
referential opacity Is unavoidable. That is to say, It Is not possible to 
accommodate programmer definitions by functional appl icatlon alone, even If we 
arm ourselves for this purpose with new and arbitrary basic functions. 

To see that this Is the case, consider the combination 

Define (y, M, N) (2.3-19a) 

and require for all expressions "M" and liN" that its value relative to any 
environment must be the same as the value of 
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(" y. M) N (2.3-19b) 

Regardless of the function denoted by the Identifier "Define", referential 
transparency requires that the value of (2.3-19a) depend on "M" and "N" solely. 
through their values. Thus the values denoted by 

Define (y, 2+y, 3) (2.3-20a) 

and 

Define (y, y+y, 3) (2.3-20b) 

relative to an environment In which "y" denotes 1 must be Identical, whereas 
this Is not true of the expressions 

(Ay. 2+y) 3 (2.3-21a) 

and 

C).y. y+y) 3 (2.3-21b) 

Even more cogently, (2.3-21a) and (2.3-21b) are meaningful relative to an 
envi romnent in which "yll does D.Q.t. denote a value, whereas In such a case 
(2.3-20a) and (2.3-20b) are undefined 

Appllcative Expressions 

Up to this point we have been Imprecise In our treatment of A-expressions 
on two counts. First, we have been vague about the class of expressions with 
which we are concerned, and second we have been inaccurate In our treatment of 
substitution. We remedy the first of these defects in this subsection, In 
preparation for the axiomatic development of "reduction" which follows. 

In order to distinguish between the austere language of the ~-calculus and 
the sugared constructs of PAL, we call formulas of the A-calculus "appllcative 
expressions", abbreviated A£'s. The class of AEls Is an extensIon of the class 
prev I ousl y def Ined to have that name on page 2.2- -49. 

peflnltlon: An app] icative expression (AE) is a structured 

object. It Is either an 
identifier, or it is a 

combination, which has a 
~, which is an AE, and a 
LanS, which is an AE, or It Is a 

l-exDresslon, which has a 
bY-Dart, which is a variable, and a 
~, which Is an AE. 

As Is the case for all structured objects, this definition Implies predicates, 
selectors and constructors, and makes explicit 
representations of AE's. The term "variable" 
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2.2-34. 

Semantic Trees: Starting on page 2.2-49 we Introduced the idea of a semantic 
tree, suggesting that such a tree Is an acceptable representation of an AE as 
that term was defined on page 2.2-i9. Clearly our new definition of AE to 
include ~-expresslons merely requires that we permit also A-nodes in addition to 
~-nodes. As before, we continue to write J nodes, with the understanding that 
each 0 node Is an abbreviation for a complex of ~ nodes. 

By way of example, the AE which In (2.3-1Sd) we wrote 

(~x. ~y. x+y) 3 5 

may be represented by the tree 

y 

Figure 2.3-1: Tree Form of (2.3-15d) 

Here each branch Is explicitly labelled. Hereafter we refrain from such 
labell lng, using Instead the following conventions: 

(a) The left and right sons of a ~ node designate the rator and rand, 
respect I ve 1 y. 

(b) The left and right sons of a A node designate the bv-part and 
body, respectively. 

(c) The sons of a ~-node are numbered from left to right. 

(These conventions may of course be overruled by labelling, If necessary.) 
Using these conventions, the tree form of 

(A f. f 5 7) (). x. A y • x + y ) (2.3-22) 

Is 
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Figure 2.3-2: Tree Form of (2.3-22) 

Although we can eliminate J nodes In favor of r nodes, it is important to 
note that we can nQt el Imlnate ~ nodes in favor of ~ nodes, because (as we have 
shown) definitions can not be accommodated by combinations. Thus the notion of 
functional abstraction is "linguistically orthogonal" to the notion of 
functional application, In the sense that one cannot be eliminated in favor of 
the other. More precisely, one cannot forego the notion of functional 
abstraction without also foregoing user-coined definitions. 

Syntax of AE's: In addition to the tree representation just discussed, we need 
also a linear representation that can be written as aline of text, both for 
usage in this text and for inclusion in PAL programs. The 1 inear representation 
must meet the requirement that any representation of a structured object must 

meet: that the relevant predicates, selectors and constructors must be 
realizable. It is the predicates that are the problem, and another way to state 
the requirement Is that It must be possible to construct the semantic tree from 
any 1 inear AE. 

Clearly, sufficient Information Is provided if we demand that every AE 
which Is a constituent of an AE be enclosed in parentheses. As usua1, 
we are interested In economizing on parentheses to Improve readability. 
end we adopt the following conventions: 

(1) If a ~-expression occurs either as a ~ or as a 
~, it must be enclosed In parentheses. 
Otherwise, parentheses are optional. 

(2) The body of a pa ren thes I zed ) -express Ion Is 
terminated by the closing parentheses. 

(:5) When the body of one A-express ton Is a second, 
unparentheslzed ~-express Ion, the bodies of both 
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~-expresslons terminate together. 

These conventions are In substantial agreement with those of PAL. 
Illustrating these conventions follow. As 
brackets and/or braces In lieu of parentheses 
clarity. 

usual, we 
when doing 

feel free to employ 
so improves visual 

['A,x. F (x+3) ().y. g)] 3 . 
body 1 

). , x. (I. ~ y., y * x) 6 

body 2 
body 1 

[A,X. A1,Y. F (x+3) y] 5 7 , 
body 2 ~ 

body 1 

Although subscripts on A's are not a part of our syntax, we sometimes use them 
(as above) to indicate particular Instances of ~-expressions. 

We remark in passing that PAL syntax permits the writing of AE's that 
accord with the foregoing conventions, except that "fn" Is used In lieu of ")". 
PAL syntax is richer, however, in that "fn" may occur also in constructions 
(such as assignment statements) which are not AE's. 

Free and Bound Variables: The semantics of a high-level language such as PAL 
depend critically on the ~ of a definition, by which we mean those parts of 
the text of a program within which the variable defined by the definition Is to 
be associated with that ob which is denoted by the right side of the definition. 
When the definitional facilities of a language are modeled on the A-calculus, as 
in the case of PAL, all questions about scope ultimately depend on the concepts 

of ~ and QQynQ occurrences of an identifier. Since the structure of an AE 
may be quite complicated and include several A-expressions each having the same 
identifier as Its bound variable, we must be careful to define these concepts 
ve ry p rec I se 1 y. 

peflnition: Let M and H stand for any two AE's and let 
A stand for any identifier. Then an occurrence of 
A is said to be ~ in an AE if and only if it 
can be proved to be so by means of the following 
rules: 

1. The occurrence of A in the AE "x" Is free. 
2. Any free occurrence of x In either M or H is 

free In the combination (M N). 
3. If ~ is any identifier distinct from A, then 

any free occurrence of A In M is free in 
}. y.M. 
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Definition: An occurrence of ~ is said to be QQynQ in 
an AE if and only if it is not free in that AE. 

An equivalent definition of bound is the 
identifier A in an AE is bound if It is part 

following: An occurrence of an 
of a ~-expresslon whose 

bv-part Is A. The smallest such ~-expresslon is referred to as the A-expression 
that binds the occurrence. The utility of the definItIon lies in specIfIcation 
of the association 2f variables. Consider the AE 

L}. x • (~x. x * a) ( x - b >1 ( x + c ) 
1 2 ~ 4 5 

(2.3-23) 

N .J o 
, 
p 

Q 

and 1 et 
Using the 

M, N, 0, P and Q denote the subexpressions indicated by the underbars. 
Integer subscripts as labels to distinguish among the various 

occurrences of ~, the definition implies that 

occurrence 1 is bound in ofi 
occurrence 2 Is bound in Hi 
occurrence 3 is free In M but bound in li, Q, £ and !li 
occurrence 4 is free in .0. but bound in .e and ,n; and 
occurrence 5 is free In .0.. 

Note that every free occurrence of ~ in (2.3-23b) except occurrence 5 switches 
status from free to bound as one considers larger and larger subexpressions. 
Presumably, occurrence 5 becomes bound in some still larger A-expression that 
encompasses Q within Its body. 

It follows from the reduction axioms for AE's that each ~ occurrence of 
X is to be associated with the bound variable of the particular ~-expresslon at 
which Its status switches. Thus the associatIon is as indicated by the 
subscripts in 

The association is described in words by the 

peflnition: The ~ of a bound variable is the 
ent I re 
belongs, 

body-part of the ~-expression to which it 

with the specific exception of each 
Included ~-expresslon whose bound variable is that 
same identifier. 

(2.3-23c) 

Alternatively, we may say that any occurrence of an identifier Is "bound by" the 
smallest enclosIng ~-expresslon whose bound varIable is that identifier. 

The association of variables may be seen In terms of semantic trees in a 
particularly straightforward manner: To find the binding A for any occurrence 
of an Identifier, follow up the tree looking for a A node whose left son Is 
that identifier. If none Is found, the occurrence Is free in the AE. 
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Reduction Axioms 

Voids In the scope of a bound variable may seem strange at first, but on 
reflection they turn out to be a natural concomitant of requiring that the rules 
for Interpreting a A-expression be Independent of its context. For example, 
agreement that the AE's 

(2.3-24a) 

and 

(2.3-24b) 

denote the same function regardless of the context in which they occur Implies 
that the meaning of 

[~x. (").x. x*3) (x-2)J S (2.3-2Sa) 

and 

[AX. ()y. y*3) (x-2)] S (2.3-2Sb) 

must be the same. It Is obvious that "s" should not be substituted for "y" In 
(2.}-2Sb), from which it follows that "s" must not be substituted for the 
corresponding occurrence of "x" in (2.3-2Sa). 

The concept of "contextual independence" is closely related to the concept 
of referential transparency; indeed, the former is just a slightly restricted 
version of the latter. Referential transparency Implies freedom to substitute 
anyone subexpression for any other, provided only that both have the same 
meaning. Contextyal independence Impl ies identical freedom except that 
substitution is restricted to "whole AE's"; specifically, we prohibit splitting 
a ~-expresslon into its ~ variable and body parts and substituting in the 
two parts Independently. (The same restriction applies in the case of 
referential transparency: One may not substitute "s" for "1+4" in "21+L.3" to 
get "243".) 

Formal Postulates: Just as we made a conscious decision to require referential 
transparency when adopting rules about the meaning of a combination, we now make 
a conscious decision to require that rules governing the meaning of AE's be 
contextually independent. The objective behind this decision Is to enhance the 
perspicuity and flexibility of the AE's as a language. 

The decision leads us to make our Informal reduction rule for AE's precise 
through postulation of the following axioms: 

Axlom~: If Z and yare identifiers and M is an AE in 
which y does not occur free, then In any context 

(~x. M) ~ ). y • sub s t ( y, x, M) ---
Axiom ~: If M and li are any AE's and X any 

2.3-67 



Sec 2.3 Conceptual Foundations 

Identifier, then in any context 

(Ax. M) N ~ subst (N, x, M) 
~ 

It is Important that these axioms hold In ~ context. Here Axiom ~ formalizes 
the notion that the dummy variable of a function Is arbitrary; i.e. that 
(2.3-24a) and (2.3-24b) should be equivalent In any context. Axiom ~ formalizes 
the notion that functional application Involves substitution of an actual for a 
dummy parameter. 

Definition:' If p.!. Q we say that E is (!-reducible to 
.0., or that.o. is ~-exDandabl e to E. If.f ~ '.0. we 
say that .f is ~-convertlble to ~. 

Since a-conversion is symmetric, It is clear that P ~ Q implies that Q ~ P. 

Hereafter we use ~ and ~ in an extended sense, writing P ~ Q if the 
conversion is either on all of.f or on some part of.f, and similarly for~. 
For example, we might write 

AX. (~. x+y) 2 L ,~x. x+2 

even though the reduction is on only part of the AE on the left. 

Ibe SubstItytion Rule: The foregoing statement of the axioms is misleadingly 
simple, primarily because it shifts the burden of being careful onto the 
definition of ~ub~t. In particular, we must now define ~ in such a way that 
we guard against Inconsistencies encroaching through "in any context". 

The danger of Inconsistency turns on the possibility of a "conflict of 
variables" arising through substitution. Basically, conflict.2.f variables means 
inadvertent bindIng of a variable that should be free, and may occur In two 
ways. The first Involves Axiom ~, and is evidenced by the AE 

[Aa. (Ax. a+x)] 3 5 

the desired Interpretation of which is 

(~. 3+x) 5 
~ 3+5 

(2.3-26a) 

(2.3-26b) 

But if we choose "y" in Axiom ()( to be "a" and misapply subst to the inner -.......-
)-expresslon of (2.3-26a) in violation of the condition "y not free in M", we 
get 

[Aa. (la. a+a)] 3 5 (2.3-26c) 

which presumably would be Interpreted as (5+5). The inconsistency arises 

because although the occurrence of "a" In the inner i'-expression of (2.3-26a) is 
free, the corresponding occurrence in (2.3-26b) Is bound. Note that Axiom ex as 
stated prohibits this substitution. However, there Is nothing In the axiom to 
prohibit substituting A for a In the outer )-expresslon, leading to 
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\ >..x. [ ~ (x, a, (). x. a + y ) n} 3 5 ( 2 • 3 - 2 6 d ) 

This is permissible, and it should be clear to the reader that ~t must be 
very careful to insure that (2.3-26d) Is equivalent to (2.3-26b). 

The second 
Involves AxiomS. 

way in which a free variable may become bound Inadvertently 
Consider the meaning o~ the AE 

()x. ").y. x+y) y 3 

In a context deflnlng~. Proceeding naively, we might produce 

(~. Ay. x+y) y 3 

~ (~. y+y) 3 

~ 3+3 

whereas using Axiom ~ first could lead to 

ax. ~. x+y) Y 3 

~ (~. ~u. x+u) y 3 

J!.. (2u. y+u) 3 

~ y+3 

(2.3-27a) 

(2.3-27b) 

(2.3-27c) 

These two evaluations would be equivalent only In a context in which ~ is bound 
to 3. Since the rules are to be applicable in ~ context, we have erred. The 
Inconsistency arises because in line 2 of (2.3-27b) we have inadvertently bound 
the free occurrence of "y" by carrying it Inside the body of a)-expression 
whose bound variable Is also "yll. 

Difficulty with conflicts of variables may be obviated by defining ~ubsJ in 
such a way that Axiom « is invoked (as in 2.3-27c) whenever the possibility of a 
clash of bound variables arises. The following recursive definition 
accomplishes this objective. 

Definition: Let Hand M be AE's and A an identifier. 
Then by 

subst (N, x, M) -
we mean 

(a) if M is an Identifier, then 
(a.1) if it Is Z, then H 
(a.2) and otherwise M 

(b) if M is the combination (P Q), then the 
combination 

[~ubS1 (N, x, P)] [~ (N, x, Q)l 

(c) If M is a ~-expresslon, then 
(c.l) if it Is (~x. P) then H 
(c.2) if it is (Ay. P) where ~ Is not A then 
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let. be some Identifier (other than K) 
not occurring free in either P or Nand 
the value is 

AZ. subst (N, x, subst (z, y, P» 
~ ---

Cases (a) and (b) are self-evident and account for situations in which M Is an 
Identifier or a combination. Case (c.l) accounts for the situation In which M 
Is a ).-expresslon in which all occurrences of "x" are bound, so that In fact no 
substitution Is to be performed. Case (c.2) avoids conflicts of variables by 
changing the bound variable of M from "y" to "z" before substitution of !i for 
"x". By way of example we consider again part of (2.3-27a): 

().x. Ay. x+y) y 

= ~ub .. ~t [y, x, ()·Y. x+y)] 

= AZ. subst [ y, x, 
~ 

subst (z, y, x+y)] (2.3-28a) 
~ 

= }.z. subst -- (y, x, x+z) 
I: AZ. y+z 

Even this lengthy derivation leaves out many steps. Consider 

subst (y, x, x+z) (2.3-28b) -
In which we are substituting tnto the AE "X+ZII. To make clear that this is an 
AE, we must display It as a combination, such as 

Add x Z (2.3-28c) 

whose rator Is "(Add x)" and whose rand Is Zo. Then (2.3-28b) is replaceable by 

subst [y, x, (Add x z)] 
~ 

(2.3-28d) 

and from rule (b) in the definition of ~t to 

{~ [y, x, (Add x)1l f~ (y, x, z)} (2.3-28e) 

The rand in this combination can be replaced by IIZIl by rule (a.2), and rule (b) 
Is needed again for the rator. 

The substance of the definition may be summarized In words (no longer 
naively) by stating that 

subst (N, x, M) means to substitute H for each 
~ 

free occurrence of IIX" In H, changing bound 
variables whenever necessary to avoid conflict. 

Normal Form: Recall that in section 2.2 we discussed evaluation of AE's that 
are pure combinations not Involving A-expressions. To make the results of that 
section available to us In the present discussion, we Introduce the 
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M -4 N 

If ~CM) = YalCN). \~e say that is 
b-conyertible to H. 

As with rx-converslon and ~-reduction, we extend the use of ~ for the case In 
which the conversion Is on some part of the AE rather than on the whole, 
permitting 

"x. x+C2+2) ~ AX. x+4 

The function ~ used as part of the definition of S-conversion is defined on 
page 2.2- 54. 

I tis clear that ~ and J.. are equivalence rel at ions and that ~ I s not. 
As we need a single equivalence relation encompassing all three types of 
conversion, we Introduce the 

pefinition: An AE H Is said to be directly convertible 
to the AE H, written M -;::;: N, if anyone of the 
following holds: 

Definition: Two 
equIvalent, 
sequence 

M :; 

AE's H 
written 

Mo ~ M, ~ 

M ~ N 

M ~ N 

N ~ M 

M ~ N 

and H are 
M e.- N, If 

M!l, ~ ••• #;:f 

said to be 
there exists a 

M" :; N 

The implication of this 1 as t 1 I ne Is that Mo (which is the same 
dIrect 1 y convertible to H" wh ich Is directly convertible to .M~, 

AE as M) is 
••• , which Is 

directly convertible to 11n, wh I ch Is the same AE as N.. Clearly " " is an C! 

equivalence re 1 at i on on AE's. 

An advantage of including ~-expansion as well as ~-reductlon in the 
definition of equivalence Is that It permits us to carry out transformations 
Inverse to those of Axiom ~. For example, we may abstract on the subexpression 
"5" to replace 

(2.3-32a) 

In any context by 

r~x. x+3*x) 5 (2.3-32b) 

The technique is especially useful when an expression contains many occurrences 
of a complicated subexpresslon, as (to a minor degree) In 
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Abstracting twice, we obtain the equivalent expression 

[ A f. (f 5) / (f 7) - (f 9>1 (A x. x + 3 * x) 

Recall the definition of equivalence relation In Section 2.1. The 
significance of an equivalence relation on AE's is that it implies a 
partitioning of the set of AE's into disjoint subsets, called equivalence 
classes. The reduction rules defining "!:''' have been carefully chosen so that 
our intuition about "meaning" accords with a definition of value of an AE built 
on these equivalence classes. Essentially, any two AE's in the same 
equivalence class have the same value. (This point is pursued shortly.) Thus 
the reduction rules provide a mathematical basis in terms of which we may hope 
to extend the concept of value from just primitives and combinations (as In the 
definition of page 2.2-51) to AE's in general. We understand the value of an AE 
to be undefined if any equivalent AE is undefined. 

Merely to say that all AE's in an equivalence class have the same value 
does not, of course, pin down what that value is. We must also exhibit some 
specific member of the class whose value is ascertainable on other grounds. For 
example, we discover that the value of 

(Ax. 3+x) 5 ~ 3+5 ~ 8 

is 1. As far as the t-conversion Is concerned, "2+6" would be just as val id a 
final result as "8". 

An AE is said to have (or be in) normal f2Lm if no ~-reduction is 
possible. For example, each of the AE's 

3 + 5 

i\x. 3+x 

i\ x. x ('A y • 3 + y ) 

has normal form. We have then the following 

pefinltion: An AE is said to be in normal f2Lm if it 
Is either 
(1) an identifier, or 
(2) a combination in which the rator. is not a 

A-expression and in which both rator and rand 
are in normal form, or 

(3) a )-expresslon whose body is in normal form. 

(2.3-33a) 

(2.3-33b) 

(2.3-33c) 

The task of evaluating an AE in normal form is relatively straightforward. 
In accordance with the definitions of page 2.2-51, the value in cases (1) and 
(2) above Is Implied by the postulates establishing the universe of discourse. 
In case (3), If the ).-expression is ").x.M" the value is "the function of x that 
M Is". It follows that one approach to the problem of evaluating an arbitrary 
AE involves first trying to produce an equivalent AE having normal form, and 
then evaluating the result. 
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A difficulty arises, however, from the fact that not all AE's are reducible 
to normal form; witness 

0, u. u u) (J. u 0 u u) (2.3-34a) 

Although this AE seems somewhat pathological, it cannot be excluded on grounds 
that (~u. u u) Is vacuous. For example, consider 

(').u. u u) Twice Sqrt x ~ Twice Twice Sqrt x (2.3-34b) 

which In turn is equivalent, given the definition of "Twice" in (2.3-18), to 

Sqrt (Sqrt (Sqrt (Sqrt x») (2.3-34c) 

In addition, we see In section 2.4 that a construct similar to (2.3-34) Is of 
fundamental Interest In the study of recursion. The remainder of this chapter 
is devoted to exploring the Implications of this difficulty from a theoretical 
point of view. The problem of evaluating AE's is approached somewhat more 
pragmatically in Chapter 3. 

Order of Reduction 

An important attribute of functions is the flexibility with which nested 
functional appl ications can be evaluated. For example, the tree contractions of 
Figure 2.2-7 (on page 2.2-5 0 ) can be reordered in arbitrary ways without 
affecting the final value. It is referential transparency that guarantees that 
this independence of order carries over to any semantic trees involving only 3 
nodes. (As usual, we note that ~ nodes can be replaced by equivalent subtrees 
Involving only ~ nodes. Equivalently, we can stipulate that the components of a 

J node may be evaluated in any order.) An effective procedure for evaluating 
such a tree is summarized in words by the rule: 

(a) Evaluate the rator and rand (in either order) 
(b) and then apply the value of the rator to the value 

of the rand. 

In such a world without A's, every order of evaluation consistent with the rule 
produces the same final result, including the result of being undefined in case 
a function is applied to some argument not within I~s domain. 

Church-Rosser Theorem: We now ask whether or not the similarity between 
referential transparency on the one hand and contextual independence on the 
other Is strong enough to Induce a comparable Insensitivity to the order in 
which an AE Is reduced. UnfortunatelY the answer at best is a nicely qualified 
lIyes". 

The precise answer to the question Is embodied in the fundamental result of 

the )-calculus, the Church-Rosser Theorem. As a preliminary, we introduce 

Definition: Given an AE H, a reduction sequence on M 
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Is a sequence of AE's 

ll~ f I D I t i QD : A reduct Ion sequence Is sa I d to t~[mIDgt~ 

If Its last AE is in normal form. 

12~ f I D It hm : Two AE's 1:1 and H are said to be 

~S;mg[U~Dt , written M ~ N, If there Is a sequence 

Given any AE, a problem of obvious Interest is to find a terminating reduction 
sequence on that AE. Frequently there is a choice of order of evaluation, since 
at any stage of the reduction one may have an AE containing more than one 
combination whose rator Is a ~-expresslon. In such cases one must make an 
arbitrary choice, and there seem to be three possible consequences of that 
choice: 

(a) One order of evaluation 
another falls to terminate. 

may terminate, while 
(Clearly for (2.3-34) 

there is no terminating reduction sequence.) 

(b) Two orders of evaluation may produce non-congruent 
results. (We do not mind if, say, one evaluation 
leads to (Ax.x+l) and another leads to (~y.y+l).) 

(c) One order of evaluation may be less efficient than 
another, in that it takes more steps before it 
term ina t e s • 

The Church-Rosser theorem says about all there is to say about (a) and (b), but 
we have little to say now about (e). (We come back to it In Chapter 3.) 

Before presenting the theorem, we find it useful to single out one 
particular order of evaluation, In which we proceed from left to right. 

lleflDltiQn: A reduction sequence 
DQ[mal ~ If, at each 
possible ~ is reduced. 

I s sa I d to be In 
step, the left-most 

A simple example of reduction to a normal form in normal order is 

(ll. f 6) [~u. (Av. u+v) 4J 

~r2Y.. Uv. u+v) 4J 6 

~ (~. 6+v) 4 

.!!. 6+4 

Note that the final result Is the same a~ that In 
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~ 6+4 

We now state (but do not prove) a theorem equivalent to the Church-Rosser 

Theorem: 

A All sequences of reductions on an AE that 
terminate do so on congruent 

.Ii If there Is any sequence 
terminates, then reduct I on 
guaranteed to terminate. 

AE'so 

of 
in 

reductions that 
normal order Is 

This theorem is stated, although in a much different appearing form, In Curry 
and Feys (1958). It Is proved for reduction rules involvIng only a-conversIon 
and ~-reductlon, but not &-converslon. A rather complex example of normal order 
reduction Is 

[M. Ay. }.z. )... w. 
e ~ [~. lz. ·i\w. 
~ AZ. AW. Q.z. 
~A z • Aw. (~. 

..§.J.z. AW. (1A. 
J!.). z. }. w. (~. 

~ i\z. ). \'1. Z 

x z (y z w» (I\x. Ay. 
Ox. )Y. y) z (y z w)] 

J.Y. y) z [()x. ]...Y. x) 
y) [().x. 1\ y. x) z w] 
).Y. x) z W 

z) w 

y) (;\x. ).y. x) 

(~x. ).Y. x) 

z w] 

The reader should convince himself that any other order of reduction he may 
choose terminates on an AE congruent to Oz. AW. z). 

Insight Into Part B of the theorem may be gained by considering the case 

A = (A x. J.. y. x) Z [(A u. u u) (A v. v v)] (2.3-35a) 

Here normal order reduction yields 

A ~ (~. z) [(J. u • u u) () v. v v)] ~ Z (2.3-35b) 

whereas if we attemPt first to reduce the AE In brackets (see (2.3-34» we 
become involved in a non-terminating reduction. The quintessence of proceeding 
In normal order Is that one postpones any attempt to eliminate a A by 
~-reductlon until that A has reached a position where no possibility of its 
being .discarded remains. Indeed, If we restrict the class of AE's by requiring . - " .. 
that the body of any ~-expresslon must contain at least one free occurrence of 
Its bound variable, no subexpression of an AE can ever be discarded. (Note that 
().x. "Ay. x) and o.x. Ay. y) do not satisfy tlils requirement.) Were we to accept 
this restriction, Part B of the Church-Rosser Theorem could be strengthened to 
read: 

~* If any order of reduction of an AE terminates, 
there exists an Integer k such that no more than k 
successive )-reductlons to that AE are possible. 

The thrust of the Church-Rosser Theorem may be summarized informally as 
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follows: 

1. 

2. 

3. 

4. 

Some AE's can be 
all of themo 
I f a normal form 
alternate choice 
I f d I sca rd i ng of 
a normal form 
term I nat e s • 

Conceptual Foundations 

reduced to normal form, but not 

exists, It Is unique to within an 
of bound variableso 
subexpresslons is Impossible and 
exists, every order of reduction 

If a normal form exists, a 
order always produces It 
steps. 

reduction in normal 
in a finite number of 

Conditionals: The fact that not all AE's can be reduced to normal form is 
analogous to the fact that not all functions can be applied to all arguments; 
for example, numbers cannot be divided by zero. Thus insofar as sensitivity to 
order of procedure is concerned, reduction of AE's differs from evaluation of 
"pure" combinations only when discarding subexpressions is permitted. Since 
Invariance to order Is appealing, why not disallow any ~-expression whose body 
does not Involve at least one free occurrence of its bound variable? 

In answer to this question we observe that if E1 and E2 are"AE's, then 

Q I E1, if B -
B E1 E2 ~ 

E2, if B ~ 

AX. ).Y. x 
1.x. Ay. y 

(2.3-36a) 

Thus the AE of (2.3-36a) embodies the concept of a conditional expression, 
written in PAL as 

B -> E1 I E2 (2.3-36b) 

As mentioned earlier, the value of a PAL expression such as (2.3-36b) is defined 
to be that of f! or of S1 depending on whether ~ denotes ~ or~. If we 
adopt ().x. ).Y. x) as a representation In AE's of the ob ~e, and (I\x. Ay. y) 
as the representation of the ob tql~se, then (2.3-36b) may be viewed as syntactic 
sUgaring for (2.3-36a). 

It may seem strange at first to think of truthvalues playing a role as 
functions (specifically, as curried functions that select one of their two 
arguments and discard the other). But there is nothing inconsistent tn doing 
so. Indeed, we have al ready agreed that abst ract objects are "bundl es of 
properties", and that the properties are establ ished by definition. Moreover, 
the definition on page 2.1-20 serves only to establish properties of truthvalues 

as arguments and leaves open all questions related to how truthvalues are to 
transform when (or If) they occur as functions. Thus we are free (if so 
Inclined) to expand the properties assigned to truthvalues by postulating that, 
for all obs £ and k In n: 
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~ a b = a 

false a b = b 
~ 

Sec 2.3 

(2.3-37) 

Actually, truthvalues in PAL are n2t defined as operators. But the 
decision is clearly arbitrary and could have been made differently. Although in 
Chapter 3 we select still another method for dealing with conditionals such as 
(2.3-36b), in deal ing with such expressions in the rest of this chaPter we 
regard 

B -) E F 

as a syntactic variant for the combination 

where ~ is defined as follows: 

Q true 
Q fal se 

Q B E F 

k "x. )..y. x 
.4 ;l.x. ").y. y 

(2.3-38a) 

(2.3-38b) 

(2.3-39) 

~ is undefined for all other arguments. The advantage of introducing this ~, as 
opposed to using the definitions of (2.3-37), is that we want expressions such 
as (2.3-38a) to be undefined in the case in which ~ fails to denote a 
truthvalue. The definition of (2.3-39) has that effect. 

As one might expect, conditional expressions are sensitive to order of 
evaluation. Specifically, we require that the premise (~) must be evaluated 
before either "arm" (ll or ll) in order to avoid encountering an expression 
whose value may be undefined, as In the example 

(a eq 0) -) a I (l/a) (2.3-40) 

As an example of the use C£ the Q;.defined;in (2.3-39)', we replace the a of 

(2.3-40) by zero to get 

(0 eq 0 -> I ,(1/0) 

Using the desugaring of (2.3-38) leads to 

Q (0 eq 0) 0 (1/0) 

~Q~ true 0 (1/0) 

(2.3-41a) 

(2.3-41h) 

(Here we have used the 6-rule that "0 0" has the same value as does "true".) 
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We then use the definition of ~ in (2.3-39) to get 

~(~. Ay. x) 0 (1/0) 

~ (~. 0) (1/0) 

~ 0 

Conceptual Foundations 

(2.3-41c) 

Note that no attempt Is made In this evaluation to divide by zero. 
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2.4 Kecursjyc Functions 

rH! havt! sho\'Jn that PAL constructs can be regarded as al ternate syntact i c 
way::. of \'/rlting AE's, so that, for example, 

let x = P in Q 

I!:t an altt!rnate form for 

()x. Q) P 

and 

x+y 

is an alternate form for 

Add x y 

The question of the moment, then, is this: For what AE is 

let rec f n = P in Q 

an alternate form? The answer to this question is the topic of the remainder of 
thi::. ::.cctiofl. It is a distinctly non-trivial question. 

A recursive defillition is one In which the object being defined is used as 

lJart uf it::. definition. Every definition of a structured object which we have 
::.et!1l ::'0 far is recur~ive; for example, that of AE on page 2.3-62 is recursive 

~illce it uefifles the class AE:. and uses that class three times in the 

aeflnitiun. The definition "works" since each use is a smaller entity than the 

whule, and the definition can terminate on identifier, which uses no recursion. 

~e have also shown several PAL programs which are recursive, such as that 
of "Equal" on page 2.1-24. In that program the function "Equal" is invoked in 

order to compute "Equal". Again, the definition "works" because each recursive 

Invocation is on shorter strings than the previous one, so that initial 
application of "Equal" to finite-length strings must eventually terminate. 

Eorltlalizatjon of Recursion 

Our intuition about ~ is the following: Hhen we write a PAL program such 
as 

let rec f n = P in Q (2.4-1) 

(where £ and U are AE's), we Intend that any free occurrence of i in f is to be 
uouna to tilt! i bt!illt; defined. ~lithout the "rec", (~.4-1) would be equivalent 

t<J ttle AI::: 

(/If. Q) ().n. P) 

in which it is clear that any i that occurs free in f is free in the entire 

expression. 

An example may help, and we use the factorial function. The PAL program 
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let rt!c f n 

in 

f 3 

n e~ 0 -> 1 I n * f (n-l) 

(2.4-2a) 

cun~lst~ of a definition of £ to be the factorial function, and the application 
of i tool. vlere the "rec" not present, (2.4-2a) could be rewritten as the AE 

(If. f 3) CAn. n eq 0 -> 1 I n * f (n-l)] (2.4-2b) 

in which It Is clear that the appearance of f In the square brackets Is free in 
the entire expression. Evidently "rE'!c" Is a magical operator \'/hose effect Is to 
cause that occurrence of f to be bound to the bracketted expression. How do we 
dispel the maGic? To answer that question we need some mathematics. 

Fixed points: If E Is a function and ~ Is a value such that 

w ~ F u (2.4-3) 

then!'! Is called a .f..i.luuLl.W..i..n.t of E. IfF: A" El, then clearly w E A " C. For 
example, the function ~ defined by 

(2.4-4a) 

na~ the two flxeo J)oints l. and.::1, as can be verified by 

(!.K. );2. -6) 3 ..D. 32. - 6 -4 3 

(AK. x2..-b) (-2) ~ (-2)2 - 6 J.-2 
(2.4-4b) 

(It is u~ually easier to verifv a fixed point than to flag one.) Here i has 
functionality 

and the fixed points are, therefore, numbers. (Here and throu~h the rest of 
this section \'/e use liN" for numbers.) 

Now consider the function I defined by 

T .. ~ f. ). ( ). (f nll)2. - 6 (2.4-Sa) 

Une fixed point of I Is (A(). 3), since 

T (,,(). 3) .. Lll. A(). (f nil)2. - 6) C),(). 3) 

J!. A(). (UJ... 3) nill~ - 6 (2.4-5b) 
-l. ).() . r31 e. - b 

.4 AO. 3 

The reaoercan easily verify that (A(). -2) is also a fixed pOint of I. 

The functionality of I is easy to work out. If I is applied to some ob &, 
we get 

).(). (g nl1)'2. - 6 (2.4-Sc) 

Evidently & Is a function of no arguments whose codomain is numbers (to be 
within the domain of "_"), and equally evidently the expression in C2.4-5c) Is 
also a function of no arguments whose codomain is numbers. Thus 

T E (nil - N) - (nil" N) (2.4-Sd) 
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and the t~/O fixed points of I ~/hich we have seen are elements or 

ni 1 ..,. N (2.4-Se) 

As another example, consider 

u = ~f. ~n. n eQ 0 -) 1 I n * f (n-l) (2.4-6a) 

Clearly 

U £ (N ~ N) ~ (N - N) (2.4-6b) 

.~e now ShOH t~/O thin&s: The function ~3uar:.Q (that is, AX. X 1.) is .Ll2..t. a fixed 

point of 1L, and Factorial is. Consider fir&t "Square": 

u !:iquare 
::. [M. i><n. n eq U -) 1 I n * f (n-1») [AX. x2.J 

.l. ).n. n eq U -) 1 I n * (ax. x2.) (n-l) 
.§. ).n. n eq U -) 1 n * (n-l )'2. 

This last is clearly not ?qu~e. (If applied to.Q. it returns 1.) Now, 

U Factorial 

a [M. In. n eq 0 -) 1 I n * f (n-l)] Factorial 

~ ~n. n eq 0 -) 1 I n * Factorial (n-l) 

This last is the factorial function, since it Is clear that its domain of 
definition Is the non-negative integers and that Its value at n Is the 

factorial of n. Of course, 

Filctorial.: N"'*' N 

As a final example, we leave It to the reader to verify that the 
~quare-ruot function Is a fixed point of 

Af. AX. x I (f x) 

Twu JJoint~ have been wade: 

(1) The fixed point of a function nlaY itself be a function. 

(2) If ~ (: ~ .. IC and w CI F w, then'tl f: 0'. 

Peirugarlng of "rec": Let us &0 back now to the problem of getting the magic out 

of~. Hhat \'Ie want to do Is capture formally our intuitive idea that "rec" is 

to cause any free occurrence of i In £ (In (2.4-1» to be bound to the i being 
defined. 

Before proceeding, note that 

(2.4-7) 

for any AE H, since ~-reductlon of the expression on the left leads to 

~ b s~ ( x I X I ~I ) 

which will be H, whether or not there are free occurrences of & I~ H. 

Now let us again consider 

let rec f n = P In Q (2.4-8a) 
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~e can rewrite this as 

let rec f = M. P in Q C2.4-8b) 

as our usual desugarlng of a function-form definition. Next, we take CAn. P) as 
cl In C2.4-7) to get 

let r ec f = () f. ~ n • P) fin Q C2.4-.8c) 

(Here we have useu (l.4-7) "back\'lards".) 

Now let E be defined as 

F • If. ~n. P (2.4-8d) 

With this abbreviation, then, we can rewrite (2.4-8c) as 

let rec f = FCf) In Q C2.4-8e) 

This form has a rather desirable property, one that is not In evlrlence in 

C2.4-8a). In the nature of things there can be no free occurrence of i in I, 
since any free f In £ is bound by the "Af". Thus C2.4.Be) Is some sort of 
standardized fornlof the general recursive definition, one In which there is on 
the right exactly one free occurrence of the recursive variable being defined. 

Now recall the intuition that we started out to capture: that free 
occurrences of £ on the right are to be bound to the L being defined. That is, 
In 

rec f = F f 

the two occurrences of f are to be the same. Another way to state this is that 

".t" II ~ .1ul.a. f..l.Aiut.w.UJJ.t. sU. "E". ~n th this in mind we can re\'lrite (2.4-8e) 
as 

(2.4-8f) 

where "a_flxed_polnt_of" Is the name of a function which produces fixed points. 
Since we plan to study this function extensively we give It a shorter name, y, 
following the notation of Curry. Replacing E as in C2.4-8d) we conclude that 

let rec f n = P in Q C2.4-9a) 

can be rewritten as 

let f Y Ci\ f. .An. P) in Q C2.4-9b) 

and hence as 

(>t f. l!) (Y (~f. ~ n. P) J C2.4-9c) 

There cart be nu free uccurrence of £ In (2.4-~c). 

Let us review what we have done. We started out to ask what AE (2.4-9a) 

could be a su&aring of, so that any free occurrence of fin l would be the same 

as the f beln& defined. Our answer seems to be the AE in (2.4-9c), an AE whose 
only free identifier is X. (Any other identifier free in C2.4-9c) is also free 
In (2.4-9a) and not of concern at the moment.) Thus we have replaced the study 

of recursion by a study of X. We devote the remainder of this section to that 

study. 
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The fixeu pujnt Uucrytor "X" 

.'Ie have ju~t ~een that a PAL ~rogralll involving "rec" can be regarded a~ 

~yntactic ~Ubar for an AE involving X, an o~erator that ~roduces fixed points. 

It therefore follm'/s that if we understano 1. We understand recursioll. In the 

present ~ection we investigate the properties of X itself, and in the next 

section we consider the properties of the fixed point which it produces. 

The Fundamentql Identity: We have postulated a 1. that produces fixed points, 

and that is all we need to assume about X to deduce its important properties. 

For assume E is some function and that (Y F) is a fixed point of E. Now, a 
fixed point ~ of E has the property that 

w ~ F w (2.4-10) 

by definition of what it means to be a fixed point. If (Y F) is a fixed point 
of I, we 1,lay sub~titute it for l1 in (2.4-10) to get 

Y F e F ey F) (2.4-11) 

Th i ~ i ~ the funoahlenta) Uient i ty f2L "1.", and we use it to der i ve al) the 
~ropertic~ uf 1. that vie need. Note carefully that we deduced it by assuming 

only that 1. applied to E yields a fixed point of E. 

The reader is advised to stop at this point to reflect on 1. and on the 

fundamental identity. We have seen two results on recursion, ~nd althou~h 

neither is particularly deep they are quite important and often misundp.rstood. 

(The last sentence means that the authors have seen many students misundprstand 
them.) More to the point, much of the development in the rest of these notes 
requires a good guts understanding of two points. The first is the explan~tion 

of "rec" In terms of 1. as in (2.4-8) and (2.4-9), and the second is the 
derivation of the fundamental identity. You should be able to explain either of 

the5e to a friend, v/ithout reference to these notes. 

can, read ar;aira from the beginning of Section 
in~truction. ) 

Unless you are sure you 

2.4. (Note the recursive 

tvaluat;on l.J~inb "ylf: The -eXplanation of -ureclf in terms of 1. may seem plausible 

u~ to tld~ point, but what is still lacking is any evidence that, in any 
~ractical sense at all, it ~JOrks. It turns out that AE's involving 1. can be 
evaluate" using only the fundamental identity (and also, of course, (A and p and 

~ rule~d. 

To make explicit our rules, we add now a fourth axiom to be used in 

addition to the previous three. 

Axiom p: If E is any AE, then in any context 

Y F ~ F (Y F) 

We modify our. definition of normal form to require that an AE In nornal form not 

be a combination whose rator is X. Finally, We r~deflne normal order r~ductlon 

to require that at each step we reduce the left-most possible X or ~. 
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Witt. these preliminaries complete, let us try to compute the factorial of 
three, using the PAL program 

let rec f n = n eq 0 -) 1 I n * f(n-l) in f 3 

The equivalent AE Is 

().f. f 3) ry Ufo ~n. n eq 0 -) 1 I n * f(n-l»1 

rie now do normal order reduction on this AE, using our new rules. 
writing, we abbreviate 

Then we have 

F • )f. In. n eq 0 -) 1 I n * f (n-l) 

Cti. f 3) (Y F) 

~ Y F 3 

~ F CY F) 3 

a CM .• In. n eq 0 -) 1 I n * f(n-l)] (Y F) 3 

~ [!.n. n eq 0 -) 1 I n * Y F (n-l)] 3 

~ 3 eq 0 -) 1 I 3 * Y F (3-1) 

= Q (3 eq 0) 1 (3 * Y F 2) 

.i..Q false 1 (3 * Y F 2) 

.i. 3 * .cy F 2) 

(2.4-12a) 

(2.4-12b) 

To save 

(2.4-12c) 

(2.4-12d) 

In going from the second line to the third we used p-converslon. Line 4 
Involves replacing £ by that which It abbreviates. The last two lines Involve 
use of I-rules, Including selection of an arm of a conditional. 

The derivation of (2.4-12d) shows that 

Y F 3 ~ 3 * Y F 2 

and it Is clear that, for any Integer k>O, 

further, 

Y F k ~ k * Y F (k-l) 

Y F 0 

~ r In. n eq 0 -> n * V F (n-l)l 0 

~ 0 eq 0 -) 1 I 0 * Y F (-1) 
01 1 

(2.4-13a) 

(2.4-13b) 

(2.4-13c) 

Thus for the £ of (2.4-12c) we see that (Y F) Is the factorial function since it 
has the same domain of definition as does factorial and the same values at those 
points. 

This derivation shows us that regarding PAL programs Involving "rec" as 
sugarJ ng for cer ta I n AE' s I nvo I v I ng :t. u\,/orks", I n the sense that \,/e get AE' s 
that We can evaluate using our axioms. 

There remain many Issues to discuss. For what class of PAL programs does 
th I s method \'/ork? Hhat I s the nature of the f I xed po I nt produced by Y? lsi t 
unique? We return to these and related questions after discussion of several 

l-calculus versions of :t.. 
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A ).-calculus "y": By adding p-conversion as a new axiom we hllve madp. '1.. 

somewhat of a special case in evaluation. A sensible question to ask Is whether 
or not We could get the effect of y without postulating a new ob In the universe 

of discourse. That is, can \'Je find an AE that satisfies the fundamental 

Identity? The ans\'Jer b "yes"; and in fact there exists a whole family of such 
AE's. ~e use a rather roundabout way to derive one of them. 

we flr~t try tu write a program for factorial without using recursion. 
~un~lder 

let f (g, n) = n eq 0 -) lin * g(g, n-1) 

in 

let h n = f (f, n) 

In 

h 

(2.4-14) 

The definition of f Is not recursive, since f does not call Itself. To see that 
h Is the factorial function, consider h(3). Proceeding Informally, we have 

Further, h(O) Is une. 

h 3 f ef, 3) 

3 eq 0 -) 1 1 3 * f (f, 2) 

3 * f ef, 2) 
3 * 2 * f ef, 1) 

The f u f (~. 4 -14 ) I s d ya d I c, but \'/ e fin d I t mu r e con v e n len t to con sid era 
curriea ver!»lon. Currying f require!» that K be curried also, and we have 

let f g n = n eq 0 -)11 n* g g (n-1) 
In 
f f 

(2.4-15a) 

He a5sert first that the value of this AE is ~torlal, leaving It to the reader 

to verify this assertion. (Let ~ be the AE. Show first that w(k) a k*w(k-l) 
and then that w(O)a1.) 

We no\'I proceed wi th a derivation to show that the AE of (2.4-15a) Is 

equivalent to an AE of the form (Z F), \'/here .E Is as in (2.4-12c). Since .E 
encompasses all there is to be said about factorial, 1:. is, as it were, a 

"recursion maker". 

~e ~tart by rewriting (2.4-15a) as an AE: 

().f. f f) [Ag. )n. n eq 0 -) 1 I n * g g (n-1)] (2.4-15b) 

~e use p-expanslun on this to get the AE 

()f. f f) i"g. (~f. An. n eq (J -> 1 I n*f (n-1>1 (g g)1 (2.4-15c) 

That this is in fact equivalent may be lIlust easily seen by using p-reduction on 

(2.4-15c) with the ratur In square brackets and (g g) as the rand. The result 
Is (2.4-1Sb). Note that the expression in square brackets in (2.4-15c) is 

precisely the f defined in (2.4-12c). Using £ as an abbreviation, (2.4-1Sc) is 

the same as 

( ') f • f f) r}.g • F (g g) ) (2.4-15d) 
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anO we uo one final ~-ex~an~ion to get 

[ ). F • ("A f. f f) () g. F (g g»] F (2.4-15c) 

Letting Z. be the abbreviation 

Z:: 'AF. (Af. f f) ().g. F (g g» (2.4-16) 

we have ~hown that (2.4-1Sa) is equivalent to (Z F), as promised. 

Note what happened: We started out with an AE which does not involve 

recursion but which nonetheless denotes factorial. The AE has two aspects to 

it: A part that defines factorial and a part that does (In some sense) the 
recursion. The derivation served to separate these two parts: We know that £ 
relates to factorial, and we want to study I. It is clearly related to I, since 
both (Z F) and (Y F) have been shown to denote 'factorial. 

We first show that I satisfies the fundamental identity. For any Q we have 

L G 
== [ll. (). f. f f) (~g. F (g g»J G 

~ (M. f f) ("Ag. G (g g» 

.L [lg. G (g g)J [Ag. G (g g)J 

Thi~ last i~ of cour~e equivalent to (L G). One more ~-reduction gives 

G ([ )g. G (g g)J rAg. G (g g)J} 

(2.4-17a) 

(2.4-17b) 

in which the expression in braces is the same AE as the last line of (2.4-17a), 

so 

Z G :! G (Z G) C2.4-17c) 

We have a ~-expressron that satisfies the fundamental identity. Although 

we have shown that (Z F) denotes factorial, the reader is advised to replace 1 
and E by the ~-expresslons they abbreviate «2.4-16) and (2.4-12c), 
re~pectlvelY) and to evaluate (Z F 2) using onlyp-reduction and &-rules. The 

result is instructive (though tedious>. 

A Family of Function~: It turns out that there is a whole class of Z's that 
~atisfy the fundamental identity. f.\ore remarkable, each of them Is itself a 
fixea ~oint of the function 

Let 

Consider Z,. We have 

2.4-6b 

L o 

H& AY. i\f. f (y f) (2.4.18) 

• L r; i\ F. Of. f f) ( Ag • F (g g » 
(2.4-19) 
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L, (2.4-20) 
; Zo ~~ 

Ir [li. (i'f. f f) {i\g. F (g g»J (i\y. ).f. f (y f» 

~ (}.f. f f) [i\g. (~. J.f. f (y f» (g g)J 

~ (). f. f f) [).g. A f. f (g g f» 

We show first that Z, satisfies the fundamental identity. 
abbreviation 

First define the 

Then 

G=. ~g. ).f. f (g g f) 

L, F 

a. (" f. f f) (A g. i\ f. f (g g f» F 

- (M.. f f) G F 

~ G G F 

6 (2&.. "Af. f (g g f») G F 
~ [li. f (G G f)] F 

~ F (G G F) 

e!. F (Z, F) 

(2.4-21a) 

(2.4-21b) 

since (G G F) appears on the fourth I ine of the derivation. It Is not hard to 
see that -'.0 If; a fixed point of.ti. ~/e must show that H ZOCI Z , and we have 

H Zo 

s [~. i.f. fey f)] Zo 
-L "f. fez o f) 
s Af. f {[ 2£.. (i' f • f f) (A g. F (g g»] f\ 
L )f. ft<ll.f f) ('~g.f(g g»l 
~ )'f. f({').g. f{g g» O.g. f{g g»] 

~ ').f. (A g. f (g g» (~g. f (g g» 
~ A f • (Af.f f) ()g.f{g g» 
~ Zo 

Uerivation~ ~uch a~ this one that use ~-expansion have a certain mysterious air 
aoout them. Although it is ea~y for the reader to verify that the expansion is 
correct (by doing the correspondln& reduction), it is probably not at all 

obvious why this path was chosen -- other than the fact that It works. 

We I eave I t as an exerc I se to the reader to shm-I that other l. k are fixed 

points of H and that they satisfy the fundamental Identity. These Ik are due to 
Bohm (1966) and are discussed in ~Iorrls (1968) who proves (page 71) these 

results for all k. It is apparently true (although it has yet to be nroved) 
that no t\'10 ZIt are Interconvertlble by >.-reductlon. That Is, it Is .ru2.t. true 
that 

Since they both do the same thing, this Is a rather remarkable result. 

2.4-87 



Sec 2.4 Conceptual Foundations 

The Minimql Fixed Point 

we have seen that our dec i s i on to desugar "rec" in terms of 1 \'Iorks for 
factorial, leading to an AE that can be evaluated using either p-reduction or 
(by replacing 1 by a suitable ~-expression) by V-reduction. ~Jhat Is not obvious 
i~ how to characterize the class of ~-expresslons £ for which (Y F) produces a 
useful fixea ~olnt. 

That every i\-ex~resslon £ ha~ at least one fixed point -- namely (Y F) 
fullows from the definition of 1. Thus the problem is the nature of the fixed 
~olnt, not Its exl~tence. Specifically, does (Y F) act like the function we 

want? 

we saw that It does for factorial. Let us look at some other examples. 

Some Exampl es: Ue firs t cons I der the case In \'/h I ch the "rec" Is, ina sense, 

superfluous. Consider 

let rec f n = P In Q (2.4-22) 

In which there Is no free occurrence of f In £. This desugars to 

( ) f. Q) [Y () f. In. P >1 
-4 (~f. Q) (~f. n. P) CY (;\f. )n. P) J 
A (A f. Q) £ ~ C Y Ci\ f. .A n. P) , f, (A n. P ) J } 

~ince we have postulated no free occurrences of i In £, no substitution In fact 
taKes place, ana we get 

()f. Q) (~n. P) 

which can be sugared to 

1 et f n :I Pin Q 

Thus \lIe have conf I rmed \'/ha t seems p 1 aus i b 1 e: Add I ng an unneeded "rec" has no 

semantic effect. (It may adversely affect efficiency.) 

As another example, recall that the square-root function Is a fixed point 

of 

"f. AX. x I (f x) (2.4-23a) 

This suggests that we can define ~ In PAL to be the square root function by 

let rec s x a X I (s x) In ... (2.4-23b) 

Oesugaring leads to 
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Y ().5. AX. X / (5 x>1 ;. Y ~ 

-e. !) (Y ~) 

!:! }.x. X / (Y ~ X) 

t:! ~ x. x / r M. x I (Y ~ x)] x 
.a. ~x. X / (X I Y S X) 

k AX. Y S X 

Sec 2.4 

and this never terminates. Thus ~ does not produce. a useful fixed point. It 

would have been surnrlsing In some sense had it done so, since there is an air 
of getting something for nothing in using (2.4-23b) as a definition of square 

root. 

As another example In which we should expect failure of r to produce a 

fixed point consider 

let rec x () :s (x ni1)'2. - 6 in ••• (2.4-24a) 

In wh I ch \Ie are concerned \,/1 th 

F: )ox. A(). (x nin?. - 6 (2.4-24b) 

This is the ~ali1e function that vie considered in (2.4-5a), and we know its fixed 

~oints are ()(). 3) and ()(). -2). It would be rather surprising were (Y F) to 

select either of these two fixed points (how to choose?), so let us see. We 
have 

Y F 
~ F (Y F) 

J! rU. }.(). (x nl1)1. - 61 CY F) 

~ A( ). (Y F nil) '2. - 6 

Since this Is (Y F), It fOllows that 

Y F nil 
~ (Y F nll)'2. - 6 

~ « Y F nll)1 - 6)'l - 6 

t# r«Y F ni1)i? - 6)1 - 6J'2. - 6 

which clearly does not terminate. Further, there can exist no & such that 
(Y F x) terminates. 

Let us Investigate still another £: 

F • AX. ). y. x (2.4-25) 

ne have 
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Y F 
.e. F (Y F) 

e (~. )Y. x) (Y F) 

~ ).y. Y F 

::: "v. lYe Y F 

.:w ~y. ~y. AY. Y F 

Not only docs this (Y F) not admit a normal form, but It is a "universal 
annihilator" In the sense that 

Y F Vl V2 ••• Vn ~ Y F 

for all AE's Vk. 

Nuw we con~ider a case in which (Y F) has no normal form but for which 
f I xed JjO In ts ex 1st. I f 

F s ~x. x x x (2.4-26) 

we have 

Y F 
~ F (Y F) 

:If (~. x X x) (Y F) 

~(Y F) (Y F) (Y F) 

which clearly has no normal form. But It Is easy to verify that both of 

true 
false 

~x. ~y. x 
~x. ).Y. y 

(2.4-27) 

are fixed points of this £, and are in normal form. In this case as in (2.4-24) 

Y falls to produce a fixed point, although two exist. 

~4e now consider a more involved examJjle, one in which (Y F) has no normal 
forln but nonetheless acts like a function, in the sense that We show an A such 
that (Y F x) has normal form. Let 

F· ~x. ~y. y y (x false) (2.4-28) 

(Hereafter in this section "true" and "false" are as in (2.4-27).) Then 

Then 

Y F 
..e. F (Y F) 

• (lA. ~y. y y (x false» (Y F) 
~ lYe y y (Y F false) 

Y F false 
~ (~. y y (Y F false» false 

~ false false (Y F false) 
t::!- Y F" false 

Thus (Y F) has no normal forn~ and we also see that (Y F false) has no normal 
form either. Nuw, 
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Y F true 

(~. y y (Y F false» true 
~ true true (Y F fal~e) 
ct true 

Sec 2.4 

Thu~ we ~ee that (Y F) acts like a 
\lefinitioll iJlclue~ "true" but not "false". 

function, a function whose domain of 
It is ea~y to see that 

G ~ ~z. z z fal~e 

1& al~o a fixed point of E, and that 

G true C! true 
G false til false 

Thus we have two fixed points: (Y F) and n. At a point at which they are both 
at 

defined (the point' "true") they agree, but 11 is defined for"least one point at 

which (Y F) is not defined. Thus we have some evidence (but no proof) that Q is 
a functional extension of (Y F). (Reread now the definition of functional 

extension on page 2.1-19. We See more of it in this section.) 

For our final example we consider again 

F !!: Af. ~x. x eq 0 -) I x * f (x-1) (2.4-29) 

we have seen that (Y F) Is the 
~olnt~? The answer is yes. 

Dy 

factorial function. Has E any other fixed 
Consider the function ~ defined (mathematically) 

1 x = {J 

x*g (x-1) x = 1, 2, 3, ... 
{; (x) II k x c 1/2 

x*g (x-1) x = 3/2, 5/2, 7/2, ... 
g (x+1) / (x+l) x = -1/2, -3/2, -5/2, ... 

Here 1 is any number at all. It is easy to verify that & is a fixed point of f 
by letting h be (F g) and showing that h and.& are the same function. We have 

h ~ F g ~ )x. x eq 0 -) I I x * g (x-I) 

and thus 
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h(O) 

hen) 
h(u.5) 

hex) 
hex) 

1 

n*g (n-l) n .. 1, 2, 

O.s * g (-0.5) 

= 0.5 * (g (0.5) / O.S) 

= g (0.5) 

x*g (x-I) x = 3/2, 
II x*g (x-I) x II -1/2, 

1:1 X * (g (x) Ix» 
.. g (x) 

ConceptuDl Foundations 

5/2, ... 
-3/2, ... 

Further, h Is defined at no other points. Thus h .. & so 

and & is a fixed point of I. 

We hDve two fixed points: (Y F) and g. What is the relation between 
them? It is clear that & is a functional extensIon of (Y F), in that it is 
defined whenever (Y F) is and has the same values at those points. Further, any 
function like & but with a different vDlue Dt 0.5 (i.e., a different value of k) 
would al~o be ~ fixed point of £ Dnd a functional extension of (Y F). Finally, 
we coula a~d, say, U.4 to the domain of & with any value at all and define K 

with the usual recursion at (1.4,2.4, ••• ) and (-0.6, -1.6, ••• ) to get still 

another fixed point of I which is an extension of (Y F). 

Characterization of ey E): The preceding discussion serves to motivate the 

following theorem, which we state without proof. It Is due to Morris (1968). 

Theorem: If ~ is any fixed point of I, then ~ is a 
functional extension of (Y F). 

(Morris' proof was for the A-calculus r of (2.4-16). The theorem has not been 

proved for the r we are using.) 

The theorem SDYS two things: First, of all possible fixed points of I, 
(Y F) Is the one with "smallest" domDln. (Its domain is contained In the domain 
of any other fixed point.) And second, all fixed points agree \'/lth (Y F) at 
points at which (Y F) Is defined. Thus we say that (Y F) Is the minimal fixed 
point. The last example brought this out clearly. 

The fact that (Y F) is minimal is distressing in the sense that (Y E) 
represents the \'/eakes t poss i b I e response to the ques t ion, "Hhat is the fixed 

po i nt of F 1" un the other hand, I n a more I mpor tant sense th i s fact is 
reassuring. Hecall for example that both "true" and "false" are fixed points of 

the AE irl (2.4-26). We should look askance on any scheme that arbitrarily 
returned one or the other when both are equally appropriate. Only the minimal 

fixed point of an AE Is uniquely specified solely by the AE itself. To expect r 
to produce any other fixed point would indeed be magical. 

Continuing with consideration of (2.4-26), the reader might wonder how our 
results In connection with that AE are consistent with Morris' theorem. Recall 
that every function Is a functional extension of ~, the empty function. Since 
the (Y F) of (2.4-26) Is nowhere defined (in the sense that there is no Z such 
that (Y F x) terminates), (Y F) Is indistinguishable from~. Both "true" and 
"false" are perfectly good extensions of ~. 
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Limitations of the )-calculus Approach 

Our entire approach to explication of PAL's semantics is based on the 

)-calculus. Other approaches to the study of programmin~ linguistics could be 
taken, and indeed have been taken by others. Our claim ab6ut our approach is 

not that it is the best approach, but only that it Is an adequate approach to 

address the problems which We feel are important. We claim that the mat~rial of 
these notes, read and understood, provides the professional In computer science 

with the tools he needs for the study of progranunlng languages. 

One shortcoming of the )'-calculus approach should be pointed out. A 
fundamental idea in programming is the recursive function, a function that calls 
itself ill the course of its operation. As we have seen, regarding PAL as 
sugaring for l-ex~res~lons leads to the problem of deciding just what sort of 
)-t!xpres~ion, when sugared, results in a PAL program Hith a!..C£. This Is an 

interestin~ problem, and the mathematics needed to answer it is distinctly 

non-trivial. 

The objection voiced by some is that recursion is a syntactic problem, 

having to do with that part of the program text wherein a particular name is 
known, and that it should not be necessary to develop complicated mathematics to 

explain it. We answer that objection on two different levels: In the first 

place, we do not feel that recursion is quite that simple. Although it is 

possible to explain recursion syntactically as just suggested, such explanations 
that we have seen seem to lack the mathematical rigour we feel appropriate for 
this study. Our objective is to develop techniques for formalizing the 

semantics of computer languages, and facing squarely the hard problems of 
recursion seems appropriate. The problems don't go away through being Ignored. 

This leads us to the second answer to the objection. There is no denying 
that the mathematics we have presented in this section is harder than that in 
the rest of this text. But one should not avoid problems just because they are 
hard. The mathematician can claim (correctly) that the mathematics Is 
beautiful, and \,Iorth studying just for Its O\'Jn sake. Hhlle the authors of these 

notes happen to agree, He do not base our argument on that belief. Instead, we 

claim that the material is relevant to an understanding of programming 

1 i ngu 1st I cs as we see It, and further claim that this view of programming 

linguistics Is an appropriate one for the computer scientist. 





Chapter 3 

Evaluation of Appl icatlve Expressions 

In Chapter 2 we provided a mathematical formal ization of the semantics of 
R-PAL by showing first how any R-PAL program may be replaced by an AE with 

equivalent semantics and second how to evaluate AE's using the axioms of the 
A-calculus. As we know, R-PAL Is a subset of the entire PAL lanp,uage, and our 
job next is to formal i ze L-PAL (a larger subset) and J-PAL (the ent ire 
language). It is unfortunately the case that the technique we have been using 
so far lends itself poorly to L-PAL and not at all to J-PAL. Let us consider 
briefly use of It for L-PAL. 

In L-PAL, as In Algol, Fortran, PL/I and other languages, a statement such 

as 

x := x + I (3 .O-la) 

means to add! to ~ and to store the result back Into~. (In Fortran and PL/I 

the ":=" would be replaced by "=".) Suppose we try to formal ize this Idea as we 
have been doing. We first imbed (3.0~la) In a complete program so that A does 

not occu r free: 

let x = 3 
in 
x : = x + 1; x 

(3.0-1b) 

This correct L-PAL program has the value ~, as one would expect. 
desugared into the AE 

It can be 

(~x. x :- x + 1; x) 3 (3.0-1c) 

but the next step -- ~-reduction I eads to 

3 := 3 + 1; 3 (3.0-1d) 

which is clearly 
correct, but that 

meaningless. We see in Chapter 4 that the AE In (3.0-1c) is 
~-reduction is in general .D..Q1 valid in AE's involving 

assignrnent. 

The conclusion we should reach is that the A-calculus as we have presented 

It Is not an appropriate vehicle for expl ication of the rest of PAL. We clearly 
have two alternatives: to extend the A-calculus or to develop a different 
technique for language formal izatlon. We choose the latter, for two reasons: 

Although It is possible to extend the ~-calculus to 
accommodate L-PAL in a reasonably natural manner, it has not 
proved possible to extend it to J-PAL in any appeal ing way. 
Such extension has been done by Landin (1966b), but the 
handling of jumps Is quite forced and unnatural. 
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The techniques we develop in our alternate approach are 

related to many important ideas in computer language 
processing, ideas which are an important part of the study 

of programming linguistics. 

We therefore reject the possibility of exten~ing the l-calculus and adopt 
another approach to formal ization. 

The approach we adopt Is to explain PAL by exhibiting an algorithm for 
evaluating PAL programs. Assume for the moment that we are concerned with the 
~ of every legal PAL program. (This assumption is not completely valid, 
since we are concerned in J-PAL with the output printed as a result of running 
the program. It Is nonetheless a useful assumption for the moment. This point 
is returned to In ChaPter 5.> Then our objective is a function whose domain is 

correct PAL programs and whose range is 1l. To the extent that one understands 
such a function, then, one understands PAL. We call the mechanism which this 
function represents the gedanken evaluator, and we give the function the name 
E.yaluate. 

Clearly, the gedanken evaluator is quite complex, and its explication is a 
non-trivial task. One way to do it is to define Evaluate using the usual 
mathematical techniques, as suggested by Strachey (1966). This approach, 

althou~h attractive, Is not followed in these notes. He take Instead the 
following approach. The function Evaluate defines a tran'sformation (from PAL 
programs to f\) and is, therefore, an algorithm. (Reread the three definitions 
In the first paragraph of Chapter 2.) Thus we can explicate Evaluate by 
seletb .. ,;an appropriate language and writing in it a program which is a 
representation of that algorithm. Thus writing this program is our objective. 

The first question to ask is, "In what language shall we write the 
program?" This is an important question, since our understanding of the program 

can be no better than our understanding of the language in which it is 
expressed. (It Is avoiding this problem that makes thernathematical definition 

mentioned earlier so attractive.) Let us consider the implications of using PAL 
as the language in which to write Evaluate. We can clearly do it and the result 
Is a long PAL program whose understanding is needed to understand PAL. We seem 
to be caught in a circular trap, though, since we must understand PAL in order 

to understand the program, but we must understand the program in order to 
understand PAL. How to break the circularity? 

Fortunatel Y we have a starting point: We already ,understand R-PAL, so we 

can wri te Evaluate In R- PAL. We can then explain Evaluate by appeal to the 
techniques of ChaPter 2, and Evaluate explains all of PAL. This is in fact 
precisely what we do, although there are additional complications. 

The function Evaluate is quite complex, and a major task before us In the 

next three chapters is to explain It. It proves expedient to explain it in 
stages. Thus in the present chapter we explicate a version of Evaluate that 

works only for R-PAL programs, the next two chapters handling L-PAL and J-PAL. 
We derive an interesting advantage from this three step process: By the time we 

explain J-PAL we have completed the formalization of L-PAL, and so are able to 
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write the J-PAL version of Evaluate in L-PAL. Although it could be written in 

R-PAL, there are aspects of the algorithm which are expressed much more 
conveniently in L-PAL. 

3.1 primitives and Combinations of primitives 

In Chapter 2 we defined a class of objects called AE's and developed rules 
for their evaluation. We developed first (in Section 2.1) the properties of 

the universe of discourse and then (in Section 2.2) we considered AE's made up 

from the primitive identifiers and functional appl icatlon. Not until section 
2.3 did we introduce ~-expressions. In our present treatment of the evaluation 

of AE's, we similarly start with pure combination, treating AE's with 

A-expressions in Section 3.2. 

As we already know, the basic building blocks of AE's -- that is, the 

atomic elements without semantic substructure are identifiers. Each 
Identifier provides direct reference to an ob In the universe of discourse 

called its value, and a mapping of Identifiers into obs is called an 

environment. PAL's primitive environment (I.e. the mapping of primitive 
identifiers into primitive obs provided ab initio by PAL's designers) has been 

diagrammed in skeletal form in Figure 2.2-2, page 2.2-38. 

He study extension of the primitive environment via user-coined definitions 
in considerable detail In Section 3.2. For the moment, however, we need only 
stipulate that evaluation of an identifier relative to an environment Involves 
looking up that Identifier In the environment and returning the associated 

value. Here we exploit the crucial property of identifiers, namely that given 

any two of them we can determine whether or not they are the same. Otherwise, 

the look-up operation could not be effected. 

As a practical matter, in any PAL implementation all nymerics, 1 [terals, 
!Mnctors and guotat[ons are converted directly on input to the computer into an 

Internal representation of thei r value, so that look-up In a table In actually 
necessary only in the case of variables. (The internal representation of a 

functor is a piece of machine code that does the work.) Conceptual (as opposed 
to practical) simplicity is obtained, however, by viewing all identifiers as 

evaluated in the same way. 

~shdown Evalyation of polish Expressions 

Assuming ability to determine the value of any identifier, we want to 
organize a mechanical bookkeeping procedure for evaluation of combinations. We 

have seen one possible procedure, that shown in Figure 2.2-7, but we want one In 
which order of evaluation Is explicit. Consider, for example, the AE 

(3.1-1) 

(We assume for the moment an environment In which the Identifiers a, ~ and ~ are 
known.) Evaluation of this AE Involves 
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noticing that 

addition; 

Evaluation of Appl icative Expressions 
the multiplication Is to be done before the 

evaluating each of ~ and R; 

multiplying their values; 

evaluating ~; and 

adding the value of ~ to the product. 

All of this ordering is iupl jcjt in the expression. Clearly desirable would be 
a \lay to rewrite (3.1-1) so that the order of evaluation Is expl jcit. 

A writing such as (3.1.1) In which each binary operator is between Its 
oPerands is said to be in ~ form. An equivalent writing such as 

(3.l-2a) 

in which each operator precedes Its operands is called prefjx form, and 

a b * c + (3.1-2b) 

is called postfix form. Now note that the order of the appearance of 
identifiers In (3.1-2b) is exactly the same as the order of evaluation given 
just below (3.1-1). That Is, a left-to-rlght scan of postfix gives the order 

of evaluation explicitly. For various reasons we find it convenient to scan 
from right to left rather than from left to right, so we use prefix form 

exclusively hereafter for evaluations. 

Prefix and postfix fo·rms were Introduced by'lukasiewicz and are called 

Pol ish form after him. We do not devote. any effort to the study of the 
transformation from Infix to prefix, assuming that the reader can work out the 
details himself. For example; the arithmetic expression 

a*3 - (-b)/(I&+c) (3.1-3a) 

ha s p re f I x fo rm 

- * a 3 / neg b + 1& c (3.1-3b) 

and postfix form 

a 3 * b neg 4 c + / - (3.1-3c) 

Figure 3.1-1 shows a tree form of (3.1-3a) and shows how the prefix form may be 
obtained by means of a suitable ~ over the tree in which each node Is written 
down the first time It Is visited.· 
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Figure 3.1-1: Tree Flattening to Prefix Form 
The success of Pol ish form requires that it be possible to tell by looking at 
each operator how many operands it has. Thus unary minus is written as ~ 
while binary minus as "_". 

A Bush-down~, or~, Is a last-in-first out device often likened to 

a plate dispenser at a cafeteria. A new item Inserted into the device becomes 
the 1st item, the old 1st Item becomes the 2nd, the old 2nd item becomes the 

3 rd, and so fo rth. When the dev ice is "popped", the t ran s fa rma t ion is 
reversed: The 1st item (also called the ~ item) Is removed from the device, 

the old 2nd Item becomes the top, the old 3rd item becomes the 2nd, etc. We 
assume that any push-down list is arbitrarilY long in the sense that there is 

a lways room fa r one me re i tern. 

The use of two push-down lists (called the control and the ~) to 
evaluate (3.1-3b) is illustrated in Figure 3.1-2. The top of each device is 
adjacent to the vertical 1 ine which separates them. Initially, the prefix 
string is loaded into the control and the ~ is empty, as shown on line 1 of 
the flg~re. An environment giving values to~, ~, and ~ is shown on the right. 

Evaluation then proceeds In accordance with the following rules: 

(1) Whenever an Identifier appears as the top item of the 
control, it is evaluated and its value is pushed onto the 

stack. The Identifier is popped from the control. 

(2) Whenever an n-ary functor Is the top Item of the control, It 
is appl ied to the top n stack items. The functor and its n 
arguments are popped, and the value of the application is 
pushed onto the stack. 

Thus the state (I.e. the configuration) of the system after the first two 
control items have been evaluated is as shown in 1 ine 3 of the figure. The 

state after the first Invocation of rule (2) is exhibited on line 4 of the 
figure. As illustrated on succeeding lines, the evaluation cycle is iterated 

until the control is emPty, at which time the final result occupies the top of 
the stack. 

Economy of penmanship may be obtained by displaying successive states as 

shown in Figure 3.1-3. Here the control is left-justified, so that its top is 
its right-most item. Similarly, the stack is right-justified so that its top is 
its left-most item. On each line the top of each push-down 1 ist Is always 
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written explicitly, but the deeper Items (which of course remain unchanged from 
the preceding line) need not be rewritten. 

Blackboard Evaluatloo 

Recall that in section 2.2 we considered first trees like that in Figure 
3.1-1 whose non-terminal nodes are operators such as "+" or "*", and then found 
It useful to restrict our attention to trees all of whose non-terminal nodes are 
~. The reasoning that lead to this simplification continues to apply, and we 

consider here evaluation of such forms. The semantic tree equivalent to 
·(3.1-3a) is 

Figure 3.1-4: Semantic tree for (3.1-3a) 

and a prefix walk over this tree yields 

J a - r r * a 3 ¥ 1 I 1 neg 3 ~ 0 + 4 c (3.1-4) 

Evaluation of this control sequence is shown In a display in Figure 3.1-5. Here 

~ 'I - "1 ~ * 0.. 3 "'( (J / ( "., ~ '( "( + If c. 
J r ~ 

3 b r 
If ~ 'If: h 
S" '( / 'K , 1 r 
7 Y * (t 

) ~ 

B ~ J - r 
~ r a 

10 t--f 

I--f 

.,. of .! 
'(t- 1 

7 

"'r~' I 
/ -.:ll 7 

-.11 7 

~ :1 )-J 
- , -J 

~ 

Fi,/U'rf! '3.(-5"': 

clfdllAdf,',," of­
(3. f -If) 

the rule Is simpler than that stated earl ier: 

(1) If the top control item Is an Identifier, pop it and push 

Its val ue onto the stack. 

(2) If the top control item is l, pop it and pop the first two 
stack Items, and push onto the stack the value obtain·ed by 
applying the old top stack Item to the old second stack 

~ Item. 

Several conventions have been used In Figure 3.1-5: 
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The evaluation of the Identifier n+n leads to the ob ..t, 
assumed to be a curried addition function like "Sumll in 
(2.2-6). 

Application of : to l yields a function which adds four. We 
write it as.!t.!. Similarly, ::JJJ. represents a function 
which, appl led to an integer.,Q, returns :21(~. 

We leave out many uninteresting lines of evaluation. For 
example, two lines are left out between 1 ines 1 and 2, so 
that all of the identifier evaluations seem to take place 
lIat once". Similarly, between lines 5 and.6 .!J~g is appl led 

to II and the identifier "/" Is evaluated. After line 8 two 
~'s are appl led and "_" Is evaluated, and 1 ine 9 shows 

application of two ~IS. 

A display such as Figure 3.1-5 is called a blackboard evaluation, since it can 
be done In class on a blackboard. We give much attention in the rest of these 
notes to developing conventions for the blackboard evaluation of PAL programs, 
culminating in Chapter 5 with a J-PAL evaluator. The reader should keep clearly 
in mind our objective in doing so: We wish to exhibit a mechanism that 
evaluates PAL programs, and the blackboard evaluator serves a a bookkeeping 
technique for simulating operation of that mechanism. Given that point of view, 

It seems appropriate to adopt any conventions that simplify use of the 
blackboard machine, since such simpl·lflcatlons serve to make more transparent 

the operation of the gedanken evaluator. 

As an example of such simplification, compare (3.1-3b) with (3.1-4). The 
latter is obta fned from the former by preceding every binary functor by II '( 'I" 
and every unary functor ("neg") by "r'. Thus we use hereafter In blackboard 
evaluation forms such as (3.1-3b), but the reader should understand that, for 
example; ".+" is an abbreviation for II~ ~ +11. The distinction becomes important 

in Section 3.5 in which we exhibit the PAL program for the gedanken evaluator, 

for then we use the "~ 1 +" form. 

Iuples in Blackboard Eyaluation: In Section 2.2 we observed that while only ~ 

nodes are needed for semantic trees, use also of J nodes makes for trees which 

are simpler and, hence, more perspicuous. A similar argument applies to 
blackboard evaluation. For example, the PAL 2-tuple 

a, b <3.1-Sa) 

could be represented by the control 

~ ~ aug ¥ 't aug nil a b (3.1-5b) 

or, using "aug" as an abbreviation for "a J aug" as done abpve for "+", by 

aug aug nil a b (3.1-5c) 

Instead, however, we choose to use 
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ja a b 

We can think of J t as an abbreviation for the control sequence 

5 ~ aug ~ ~ aug nil 

and similarly for a whole set of J k • For example, the PAL expression 

Conc ('ab', 'cd') 

Is equ I va 1 ent to the cont rol sequence 

~ Conc 'Jz. lab' 'cd' 

The blackboard evaluation Is then 

Co')'! t,..o I Stack En\( l70"'~.e,."t.. 

1 COMe. JJ.. 
, 

Q b' 't! cI' .---1 P£ 
(0,,(, J~ 'Ot /, I 'c.cl ' --- ---

Q Co~ '- , 'Q. b I, '~tI' 

t (O.,c. ~ Cl ~r) 'e. tI' --
~ I CIt\' cd" 

Figure 3.1-6: Evaluation of (3.1-S) 

Sec 3.1 

(3.1-6) 

(3.1-7) 

(3.1-Sa) 

(3.1-Sb) 

Here we write ~ to indicate a particular string, and .'ab', 'cd' to Indicate a 
particular 2-tuple. 

It is interesting that the operators 'JI< denote functions which are already 
in the universe of discourse. Consider the function ~ defined by the 
following PAL program: 

def Tupl e n = 
let rec Q k T = 

k eq 0 -) T I ( )x. Q (k-l)(T aug x» (3.1-9) 

in 
Q n nil 

Then for every n = 0, 1, 2, ••• , it Is true that (Tuple n) transforms precisely 
as does J~. This can be seen by normal order reduction, and we can show it by 
blackboard evaluation In Section 3.4 after we have learned to accommodate 
recursions In the blackboard machine. 
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3.2 ~-Expression~ 

~Je have observed previou~ly, on page 2.2-73, that the referential 
tran~parency of a semantic tree comprised only of ~-nodes impl ies invarlance to 

vrrier of evaluation. In particular, the ob denoted by any such tree may be 
octerhlined by 

(1) evaluating fir~t Its at2!. and LR.llil (In either order) 
(2) and then applying the one to the other • 

.)ince aefinltions were not Involved, considerable flexibility was therefore 
available when deciding in Section 3.1 how to collapse a semantic tree into a 

control. Indeed, under these conditions the blackboard decision always to 
evaluate a rand before its rator i~ purely administrative; referential 
transparency guarantees that the order of evaluation could be changed -- say to 
rator always first and then rand, or (if parallel processors were available) to 
both together -- without altering semantics. 

The definitional facilities of a language, 

referentially transparent, so that 
producing a control from semantic 

example, the PAL expression 

greater care 
trees involving 

let y = 3 In 2 + y 

ana hence the AE 

(Ay. 2+y) 3 

The ~emantic tree representation of this AE I"s 

2 >' 

however, 
presumably 

"A-nodes. 

can not be 
Is required in 
Consider, for 

(3.2-1a) 

(3.2-1b) 

(3.2-1c) 

and a prefix walk over this tree (as in Figure 3.1-1) leads to the control 

sequence 

~ ~ y + 2 y 3 (3.2-1d) 

Evaluation of this control clearly aborts as soon as a value of ~ is needed, 

si~ce ~ Is not in the PEl Needed is a way to construct a control sequence for 

(3.2-1b) which leads, under blackbaord evaluation, to semantics equivalent to 
that of normal order evaluation. The modification adOPted in the next 
~ubsection turns on the observation that a ~expresslon denotes a function. 
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Blackboard Eyaluation 

In the absence of conflicting requirements, a sound 1 inguistic principle is 
"to treat similar entities similarly". Specifically, notice in Figures 3.1-2, 

3.1-3, 3.1-5 and 3.1-li that 

(1) basic functions are denoted by single entities (identifiers); and 
that 

(2) when such an entity occupies the top of the control, it is popped 
and its ~ pushed into the stack; and that 

(3) the value of such a function incorporates all information 

necessary to appl y it to any argument. 

~incc A-expre~~ion~ al~o denote functions, we elect to use these observations as 
~uideposts in extending our blackboard procedure to accommodate semantic trees 

i nvo 1 v i ng .A-node~. 

Representing A-Expressions: 

devices whereby a ~-expression 

Obviously 

can be 

there are 

recognized 

many 

as a 

different syntactic 

single entity. In 

normal-order reduction ~/e have used parentheses for this purpose, whereas in 
~emantic trees each A-expression is represented by the subtree diverging from a 
~-node. For blackboard purposes it is convenient to introduce still a third 
convention. Noting that a ~-expression is a bundle of information with t\'IO 

parts (a bv part and a body), we first attempt to write a ~-expression such as 

AX. x+3 

hith the ~v-part as a superscript and the body as a subscript. Since the body 
can be ariJitrarily complicated, perhaps even involving other A-expressions, this 

~cheme way prove Impractical. Hence we elect consistently to abbreviate body 

~art~, using subscripted ~s to stand for that which is abbreviated. 
choose to write the above as 

)," , 
~, = x+3 

r.ith this convention the AE of (3.2-Ib) is represented as 

~ ). 't 3 
I 

~, = + 2 y 

Similarly, We can desugar the PAL program 

let x = 

let y = 7 

in 

2 * Y 

in 

x + 3 

Thus we 

(3.2-2) 

<:L 2-3a) 
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into the AE 

and thence into the control ~equence 

The critical aspect of 

~ A~ 0 'Ar 7 

S I + x 3 

O'l = * 2 y 

our convention 

(3.2-3b) 

(3.2-3c) 

is that each ~-expression must be 
associated wi th a unique subscript. In addition, hO\-lever, it is often 
convenient \'~hen \'~r I t I ng down each A-body to 

Clearly thi~ can be done even when A-expressions 

let y = 7 

in 
let x = 2 * Y 

in 

x + 3 

The equivalent AE is 

anc.A the corresponding control sequence is 

~ A ~ 7 

d I = ~ A: * 2 y 

~:a. = + x 3 

represent it In prefix form. 
are nested, as in 

(3.2-4a) 

(3-. 2 -4 b) 

(3.2-L~C) 

lOhe value of a ~-expression: We are concerned now with the evaluation in the 

oJackuoard m~chanism of AE's involving A-expressions, and our immediate question 
i~ this: What is the value of a A-expression? Our principle guideline in 
a n ~ \" e r i n~ t his que s t ion, as g i v en i n po i n t (3) 0 n p age 3. 2 - 105, i s th a t the 
value must Include all information needed to apply it to arguments. Clearly 
needed as part of the value are the bv-part and the body of the A-expression. 

However, this is not enough, since the body may contain free variables. It is 

the nature of the binding rules of the l-calculus, as given in Section 2.3~ that 
the binding of such free variables is determined contextually at the point of 

appearance of the A-expression. It therefore follows that ~ ~ Qf ~ 
A-expression lllY.ll include .the. environment .t.hll exists ~ ~ A-expression II 
eyaluqted. We call the value of a ~-expression a l-c)osure. A l-closure is 
then a bundle of information \'~ith three parts: 

a bv, 
a body, and 

an environment. 

The bv-part is a single variable 
~bbreviating A-uodies. Needed is 

environment~. 

3.L-IlJb 

and we already have a convention for 
a convenient notation for dealirtg with 
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The one environment we know about is the primitive environment, PE, which 

is a filClppinb from primitive identifiers to primitive obs. As suggested on the 

right side of Figure 3.1-5, the primitive environment can be augmented by 
additiunal name-value couplings, the evaluation of that figure being done in an 

enviruflment consisting of PE argumented by pairings for the identifiers ,2, .Q. and 
~. To see how such pairings come about, consider a combination such as 

("x. M) E (3.2-5) 

In ~ectiun 2.3 we con~idereo at length the implications of the intuition that 
this AE may be evaluated by substituting the AE ~ for all free occurrences of A 

in b. ~ut there is another intuitively appealing interpretation of (3.2-5): 

that it is the same as evaluating hl in.an environment in ~ A li. paired l:Ll..tb. 
~ ~ uf.f.. It is this latter approach that is used in the blackboard 

evaluiltor. 

~lackboard Mechanism: We want now conventions for blackboard evaluation of AE's 

involving ~-expresslons, conventions that agree with the intuitions just 
developed. There are only two Questions to answer: 

(1) What is the nature of a ~-closure, the value of a ~-expression? 

(2) HO\'J do we apply a ).-closure? 

,Ie knoH enough to answer these questions. In environment ll, the value of the 

A-expression ::\)( .,. is the A-closure \(A )( 
l\' This writing Is clearly a bundle of 

i n for ma t ion \'d t h the three proper components. The app 1 i ca t ion of k).-

'" 
to an 

aq;.uhltmt, say A, is achieved by the following steps: 

Create a nevI environment.f.Q, where p has not previously been used. 
lQ Is a copy of environment lk. 

Add to II the coupling of A' the bv of the rator, with A, the 

rand. 

Evalu~te ~, the body of the rator, in this environment. 

The value thus produced is returned, in the envi ronment that 
existed at the time of the original application, as the value of 

the combination. 

All of this Is best seen by example. Consider the PAL expression 

let x = 3 in x - 2 (3.2-6a) 

and the corresponding AE 

(~x. x - 2) 3 (3.2-6b) 

with control sequence 

a ,1 
1\, 3 

S, =-x2 
(3.2-Gc) 

r.e evaluate this control in the primitive environment, the evaluation being 

shown in Figure 3.2-1. We discuss this evaluation in detail. 
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I t starts In 1 ine 1 wi th the control sequence to be evaluated loaded Into 
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the control of the evaluator. By convention \,/e assume .&Q to be the primitive 

environment, placing into the control and stack matching environment markers. 

(Only the environment marker in the control serves a necessary purpose. 

However, placement of a matching environment marker in the stack serves to 
provide a pleasing symmetry, as well as a useful check that certain kinds of 

error have not been made.) The transition to line 2 involves looking up the 
i 0 e n t i fie r " 3 " i nth e p rim i t i vee n vir 0 nrll e nt, y i e 1 din g 1. Wen ext e val u ate the 

'\ . . 
i\-ex~ressiorl 1\,. Since evaluation is in environment ..E.Q., we get the closure 
0:x:. Un 1 ille 3 we ap~ly this clo~ure to 1, leading to the evaluation of its 
buo¥ (~I) in ellv ironment II wh i ch is ach i eved by augrllent i ng lQ \'d th the pa i ring 

(x, ]). The :lero in parentheses indicates that II is an appendment to ll. 

Un 1 i ne 4 ~'e replace the abbreviation S I by that which it abbreviates (as 

given in (3.2-oc», leading to 1 i ne 5. We next look up the Identifier "2" in 

ll· OJe kno\,1 to use II because that is the top environment marker in the 

control on the 1 i ne we do the evaluation.) Since "2" is not "x", we look next 
in the environment to which environment 1 is an appendment: iQ. In evaluating 

~ in line 6 We inmediately get 1. After doing the subtraction we find in line 8 

that an environment marker is the top stack item. There is precisely one item 
in the stack above the top environment marker (the error check mentioned 
earlier), so the matching environment markers are deleted from control and 
stack. This operation is repr3ted on line 9, leading to the answer on line 10. 
The dilshed line encloses that part of the evaluation corresponding to the 

subproblem of applying the closure. 

Let us look at two more examples, the programs of (3.2-3) and (3.2-4), 

t!valuotioll~ of which are shown in Figure 3.2-2. As usua 1, we elide 

uninteresting steps. For example, rather than put b I into the control I'n 1 i ne 3 

of FILure 3.2-2a (as we did in 1 i ne 4 of Figure 3.2-1), we instead load 

inmedlately that control sequence which it abbreviates. Note the evaluation of 

~ in line 6 of Figure 3.2-2b. Since the evaluation takes place in environment 
2, as evidenced by the fact that II is the highest environment marker in the 

control, we look first in environment layer 2, failing to find ~ there. Since 

layer 2 Is an appendment to layer 1, as evidenced by the parenthesized 1 at the 

right end of line 6, we look in layer 1, there finding~. 
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As another example, consider the PAL program 

let x c: 2 

in 
let y c: 3 

In 
x*y + (let y = y+3 In x*y) + (let x 

with corresponding AE 

y+3 in x*y) 

tAx. [).Y. x*y + (Ay. x*y)(y+3) + O.x. x*y)(y+3>1 31 2 '. ~ ~ ~ 

and control sequence: 

'Y )/ o I 2 

S I ~ A; 3 

~~ = + * x Y + 1I A~ + Y 3 ~ )~ + Y 3 

bJ :: * X Y 

i., = * x y 

(3.2-7a) 

(3.2-7b) 

(3.2-7c) 

Evaluation is shown in Figure 3.2-3, In which We have introduced one more 
convention to facilitate these evaluations. In lines 3 and 5 in which ne\" 
environment layers are formed, it Is the case that in QQlh the control .£ill! the 

~tack the new environment marker Is adjacent to an old one, as it was In lines 3 
and 6 in Figure 3.2-2. In such cases we delete the old ones since th~y can 
serve no useful purpose in the rest of the evaluation except to be discarded 
later. (Our objective here Is to economize on horizontal space.) Note each 
evaluation of A and ~, since it is Important that the right lookup operation be 

done. 

Eny i rOOlnent Trees 

Although perhaps not immediately obvious, it is true that the notion of a 

~-cJo~~re- as the value of a ~-expression suffices to accommodate all occurrences 
of ~sJJn blackboard evaluation. To see this, we need to reconcile blackboard 

evaluation and normal-order reduction. The key to the relation between the two 
1 ie~ in recognition that blackboard evaluation in general entails the 
con~q:L1ction of a ~ of environments. We see below that the structure of the 

tree, together with appropriate definition of what is meant by "looking up" an 
identifier, resolves the conflict of variables problem that complicates normal 

order reduction. In addition, blackboard eVnluation is vastly more efficient 

than normal order reduction. On the other hand, however, we shall encounter 
certain meaningful AE's for which the blackboard procedure does not terminate. 

Function-Form Definitions: An embryonic tree of environments has already been 

encountered in Figure 3.9a. To gain further insight into the structure of the 
environment tree, we now Investigate blackboard evaluation of expressions 

involvi'lg programmer-defined functions. Consider, for example, the PAL program 
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let f x = 2 + x 

in (3.2-2a) 
f 3 

for which the equivalent AE is 

(). f. f 3) (A x. 2 + x) 
I .l.. 

(3.2-Rb) 

The corre~JJondiJib control sequence is 

~ A f , AX 
). 

o , = l f 3 (3.2-Bc) 
~~ = + 2 x 

and evaluation is shown in Figure 3.2-4. We observe from the figure that no new 

lciea~ arc involved In the evaluation, even though for the first time our 
blackboard machine now encounters the occurrence of a ~-expression as an 

Cont-rol .5t ae. k EnvLl'onment 

Eo '6 }..f '( ED o : PE I :1 

'')\ f 01-
~ E"o 0 I ).3., ED 

.3 C, ~ 1- 3 £:, I ~ f '= 0,,: (0) 
• )I 

If ~I ~ ",. L £, 

S" E~ + l. X f~ ;2r )( :::- l ( 0) 

6 E~ + ~ 1 £~ .-
7 ~ S" -

F'SL('Ye. 3.2-'(.- C v d-.! u a.t-; 0 '11 of C3.l..-iY') 

opera[)d. (Heretofore, they have occurred onl y as operators.) The reason is 

that \Ie have already stipulated that the value of a )-expression relative to the 
environment in which it occurs is a A-closure. But a value Is a suitable object 

to couple with a name in an environment layer, so that application of one 

)-closure t6 another (as in the transition from line 2 to line 3) accords with 
the evaluation procedure already established. The essential concept is that 
packaging all information necessary to apply a function into a "A-closure" 
permits us to treat such entities like any other "value" occurring in the 
stack. Note that in line 5 in environment 2 the only variable defined beyond PE 

i~ A' and that were there an f to be evaluated on that line the evaluation 
would abort. This is con~istent with the fact that we are evaluating a piece of 

the AE, "2+x", \'/hich is not within the scope of f. This is clear from 
examination of either (3.2-8a) or (3.2-8b). 

A still more interesting evaluation arises from the PAL program 
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let g x y 

in 

1 et f 

in 

g 2 

f 3 * g 5 4 

Sec 3.2 

x + y 

(3.2-9a) 

here He have a function-producing function, and it is gratifying to see that no 
new techniques are required. The AE equivalent to this PAL program is 

["r; • (A f. f 3 * g 5 4)( g 2)] (i\ x. ) y • x + y ) 
I ~ 3 '1 

(3.2-9b) 

and the control sequence is 

~ )1 )..lC , J 
~ , ~ A~ ~ g 2 

S:a. * (J' f 3 )' a g 5 4 (3.2-9c) 

~J = ;.l.y 
'f 

C;., = + x y 

Examination of the evaluation of this control as shovJn in Figure (3.2-5) reveals 

some new points. Note that the ~-expression ~~ is evaluated twice, once on 1 ine 
5 and again on line 9. These evaluations lead to different values, the one on 

line 5 leading to the closure 1A~ coupled to an environment in which K is 1 and 
the one in line 9 leading to the closure 't).~ coupled to an environment in which 

A is~. Each closure is subsequently used, so the difference has an effect. 

Curiously, the closure formed first is used second. 

The reader is strongly encouraged to test his understanding of the 
blackboard procedure by attempting to reproduce Figure 3.2-5 without referring 

to it. COf'lputation is a dynamic process, and mere static observation of a 

cumpleted blackboard evaluation does not provide adequate insight into the 

int~rrelationshi~ between subproblems and the environment tree. 

~cou~ uf Variable?: The ~rocedure for evaluating i.e. looking up -- an 

itientifier was not critical when only the primitive environment was involved. 

Now, however, we have an environment tree and must be careful about what 
"looking up an identifier in an environment" means. 

The algorithm which We have obeyed implicitly in the preceding examples may 

be stated explicitly as follows: 

1. Let Ek be the current environment, as evidenced by It belne the 

topmost environment marker in the control. 

2. Does environment layer II define the desired identifier? If so 
the associated value is the one desired and evaluation Is 
complete. 

3. Is k zero? That is, did \'Je just look in the primitive 
environment? If so the evaluation aborts. 

4. Let k be the environment to which the layer we examined in step 2 

is appended, as evidenced by k appearing in parentheses in the 
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environment column to the right of the name-value coupling. 

Continue at step 2. 

Insibht into how this procedure accords each definition its proper scope 

lIIay be gained by reexamination of Figure 3.2-2. The two AE's (rewritten here 

for ease of reference) evaluated in that figure are 

(;I x. x+3)[()'y. 2*y) 7] (3.2-10a) 

and 

[~y. (~x. x+3)(2*y)] 7 (3.2-10b) 

!:)ince the SCOIJt! rules of the i\-calculus (see page 2.3-66) imply that each 
uccurrence of "x" in these hlO AE's can be changed to "y" without affecting 

Illeanillg, blackboard evaluation r,lust also be invariant to such renaming. To see 

that this is so, note in Figure 3.2-2a that the environment layers corresponding 
to tlte definitions of "x" and lI y" occupy parallel branches of the environment 

tree, reflecting the "parallel" occurrence of the A's in (3.2-10a). In Figure 
3.2-2b the t\'JO layers are in series, reflecting the nested occurrence of the A's 

in (3.2-10b). In both cases our rule for looking up identifiers returns the 
correct value even if all x's are changed to y'S because conflicting 

definitions are either by-passed or obscured by a subsequent definition. 

Contrast with Normal Order Reduction: An important aspect of our blackboard 
procedure is that it departs from normal order. Blackboard order of evaluation 

is clearly as follows: 

(1) Evaluate the rand. (2) Evaluate the rator. (3) Apply the one 

to the other. 

Although the Church-Kosser theorem guarantees that we cannot get wrong answers 
from this order, it also alerts us to the possibility that we sometimes may fail 

to get an answer when one exists. We return to this point later. 

There are other implications to blackboard procedure. First and most 

ubvious, in blackboard evaluation the meta-function ~ is superseded by 
separate evaluation of each free occurrence of an identifier as it reaches the 

to~ of the co~trol. Thus we obviate the complicated operations of changing 

bound variables to avoid conflicts, searching through a A-body to determine all 
free occurrences of the bound variable, and substituting an AE (possibly of 

great complexity) for each such occurrence. 

The second simplification is less obvious but even more substantive, and 
concerns efficiency. Often, a programmer chooses to name an AE because he 
intends to make numerous references to it, as in 

(Ac. --. c -- c ----c -) t>1 (3.2-11a) 

where lvi stands for an arbitrary AE and the body of the A-expression indicates 

three free occurrences of the bound variable lie". Normal order reduction 

produces the AE 
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-- M--- t.1 -t.l --- (3.2-11b) 

~o that when evaluation finally does take place, ~ is evaluated three times. By 
contra~t, in the blackboard procedure M is evaluated only ~, and this value 

then looked-up three .times. Since the complexity of M is arbitrary and "c" may 
occur free any number of times within the ~-body, the efficiency gained by 

blackboard evaluation can be enormous. lndeed, normal order reduction of 
functional composition implies a blow-up of computation that grows 
eXPQoentially with depth of nesting. For example, the PAL expression 

f (f (7-2» where f u = u+(u*u) (3.2-12a) 

translates into the AE 

[Af. f (f (7-2»] (~u. u+u*u) (3.2-12b) 

which under normal order reduction yields 

(~. u+u*u) (Ou. u+u*u) (7-2)J 
~O,u. u+u*u) (7-2) + (},u. u+u*u) (7-2) * O,L.c.. u+u*u) (7-2) 
~ [(7-2) + (7-2) * (7-2)1 + [(7-2) + (7-2) * (7-2)J (3.2-12c) 

* [(7-2) + (7-2) * (7-2)1 

E~aluation of the resulting normal-form expression involves 3 a separate 
calculations of the value of the subexpression "(7-2)". plus (3'-1) arithmetic 

operations on its value, whereas Figure 3.2-6 shows that blackboard evaluation 

K \-f \v, 
E:" ", ,Ill. 

E"o ~ 

~, r f ?r ~ - 7 :2. 

~ { -
~ 

+ I.( ~ 

1f f cJ. + 
~, 1 

sta.c.k: 

c, 
,2 l: E, 

o ~ .r 
)-.~ ,.,.. 

E'4. 

s .r €:J. 

~~£:J... 
-\. " 30 £ 
r~_ I 

o '" ,: f =- ).:l. l 0) 

~: Ll. =- £ (0) 

EJ + t.( :If- tA Co( E J 3~ 1(-::- 3,.E (0/ 

~ l.! EJ 

1.2 ~ C] 

. F£'OI.(-r~ 3,.:2.-6: J:Vd.{ua.+,·Ot1 of (3.J..-/2.~) 

~ A;)'~ 
b, = cY f ~ of' 7.2. 

iJ.. = + t.\ * t.t Co<. 

of (3.2-12b) Involves· essentially only the calculations 
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(7-2) = 5 

5*5 = 25 

5+25 30 

30*30 = 900 

900+30 930 

{'llIre gerlerally, for 1 nested compo!>i tion!> 

f (f ( ••• (f (7-2» ••• » where feu) = u+u*u (3.2-13) 

normal order reduction I',lplles 3k separate calculations of U(7-2)" and (3k -1) 

~ub!>equent arithmetic operations, whereas the number of calculations with 
blackllOard evaluation gro\'/s only linearly, llQ.t. exponentially, \'lith k. 

In the overall scheme of things, it can be argued that inefficiencies to 
~dthin a linear factor are not of dominant concern. But one can not trifle with 

exponentials! The engineering motivation for evaluation before functional 

application, instead of normal order reduction before evaluation, is avoidance 
of an exponential blow-up in amount of computation. 

On the other hand, efficiency is not gained without cost: By departing 
from normal order we forfeit ability to evaluate certain expressions which are 
lIIeanillgful in the sense that normal order reduction terminates. For example, 
the familiar AE 

(),x. AY. x) 5 [(').u. u u)(~v. v v)J (3.2-14) 

It;rmillate~ under normal-order reduction, but not under blackboard evaluation • 

Itloreover, the cost is not restricted to uninteresting cases such as (3.2-14): 

It i~ ea~y to verify that the blackboard procedure does not terminate for .sw.v. AE 
lIf the form 

Z F a1 a2 .,. a k l3. ~- IS) 

where ~ is the fixed point generating "A-expression defined in (2.4-16), page 
2.4-86, so that we need alternate methods for accommodating recursion. 

~Qecial Constructs 

In this section we investigate certain constructions of applicative 
expressions that prove especially useful in programming practice. In particular 
we discuss simultaneous and within definitions. 

~imuJtaneous Definitions: It Is frequently convenient to have several 

defirdtions In parallel, and PAL provides for the possibility. The PAL program 

1 et a = A 

and b = B 

in 
p 

(3.2-16a) 

lIIean~ to evaluate both A and.§. in the current environment, and then to evaluate 
e in an environment In which ~ Is coupled to the value of A and k to the value 
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of i. (Assume A, i and l to be arbitrary AE's.) 

from 

let a = A 
in 

let b = B 

In 
p 

Note how (3.2-16a) differs 

(3.2-16b ) 

Here any free occurrence of 
former program any ~ or & which 

entire expression. 

~ in i is bound to the value of A, while in the 
is free In either of A or ~ is free in the 

I\n al ternate form for (3.2-1fia) is 

1 et a, b = A, B 

in (3.2-16c) 
p 

The comma to the right of the equal signifies a tuple, but that on the left Is a 

s~ntactic device specifying how the right side is to be decomposed. For 

example, in 

let a, b, c ~J in P (3.2-17) 

it is necessary that li denote a 3-tuple. 

There are two choices available to us to explain the semantics of 

sin,ultaneous definitions: We can show how to handle them In the l-calculus, or 
we can explicate them Initially In terms of the gedanken evaluator. The latter 
choice would have the consequence that We would not be able to use simultaneous 

oef i rli t Ions in wr I t I ng the PAL program for the gedanken eva 1 ua tor. n/hy not?) 
~e thus elect to show how simultaneous definitions can be. handled in the 
~-calcu1us. Since the explanation leads to inefficient evaluation, we provide 

an alternate explanation for blackboard evaluation and for the gedanken 

evaluator. 

An obvious way to desugar (3.2-16c) is into the following AE: 

['A(a, b). p] (A, B) (3.2-1Ba) 

This captures In~lediately the Intuition we expect from (3.2-1Ec), just as 

I et x = E in M 

ana 

(A x. M) E 

ar~ uquivalent. unfortunately this is not a desirable way to proceed. Recall 

that in Section 2.3 the precise specification of a suitable §u~ .. t metafunction 
was a distinctly non-trivial business, the problem being to avoid ill effects 
from the clash of bound variables. Rules for simultaneous substitutions such as 

would be required for (3.2-18) would be even more complex. Fortunately, we can 

avoid the need for them. 
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Consider the AE 

[)Tt". (~a. ~b. P)(tt" 1)(" 2)1 (A, B) (3.2-18b) 

wht::re 11 i~ ~Oltle identifier not occurring in E" A or~. In evaluating this AE 

(e i t her in the b 1 ackboa rd mechan ism or by norma 1 order reduc t i on), "'Ie firs t 

gs~oc.iate TT with the 2-tuple (A, B) and then associate .2 with the first 
cOlilponent of the 2-tupl e and .l2. vd th the second. That i 5, any .2. in . .f i 5 

a ~ ~ 0 cia t c u vii t h 11 g n dan y .1L \ ... i t h .Q.. But t his i s pre cis ely the e f f e C tin ten d e d 

from (3.2-18), Thu5 we can regard (3.2-19) as a desugaring of (3. 2- 18 ) into a 
form ~Ie already can handle. 

There i& a minor difficulty with thi& desugaring: 

certain AE's which we would prefer to call erroneous. 

let a, b = ~J i n P 

and the corresponding AE 

[).(a, b). P] ~.J 

It ascribes semantics to 

Consider the PAL program 

(3.2-19a) 

(3.2-19b) 

Our semantic intent 
uther than a 2-tuple. 

is that each of these be undefined if ~ denotes any value 
By our rule, (3.2-19b) desugars further into 

[Al1. (A a. Ab. P) (1f" 1) (rr 2) vi (3.2-19c) 

This AE i~ defined if tl denotes any object whatsoever which may be applied to 
each of 1 and 2. Thus tl might denote a 3-tuple, or in fact any function which -- -
incluoe~ 1 and jl In Its domain of definition. Since this state of affairs is 
not our intent, \'~e characterize this as a ~ representation -- one that has 
extra properties not Intended. The problem is easy to fix: We can replace 

(3.2-1~c) by the AE 

().n. Order TT eq 2 -) (Aa. Ab. P)(rr 1)(,., 2) I error") ~'J (3.2-19d) 

where "error" is some expression whose value is undefined. This AE Is clearly 

defined only if h denotes a 2-tuple. (If.ki does not denote a tuple at all, then 
"Order" aborts.) 

An Interestln& problem obtrudes. There is no particular reason to replace 
(3.2-19b) by (3.2-19c) rather than by 

[ ). 11 • 0 b. ), a • P )( 'TJ" 2)( fT 1)] vJ 

which has Identical semantics. But consider the rather foolish PAL program 

let x = A and x = B in W (3.2-20a) 

v-hich oesugars as 

[}..(x, x). WJ (A, B) (3.2-20b) 

If the lIext step i& 

[ ). 1T. (). x • ) x • vi) (TT" 1)( 1T' 2) ] ( A, B) (3.2-20c) 
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then any. free A is associated with the value of Q, whereas If the next step is 

(Arr. (Ax. AX. vJ)(-n- 2)(rr 1)] (A, B) (3.2-20d) 

~ u c h .0.' 5 are a ~ soc i ate d wit h .A. ~J e h a v e a des i g n c hoi c e : 

(1) We can disallow repeated occurrence of the same identifier in a 
bv-part, thus rendering illegal (3.2-20b) and hence (3.2-20a). 

(2) We can arbitrarily adopt one or the other ordering as part of the 

definition of PAL. 

(3) ~Ie can leave undefined the meaning of AE's wi th this problem. 

Although (1) i!» common in mo!»t programming languages, \'Je have opted for (3) for 

PAL. The force of this decision is that the user of PAL cannot predict the 
effect of such expressions, so that (3) should be as effective as (1) in 

aiscouraglng use of them. We return to this discussion in Section 3.5, in which 
we ~u~gest a mechanism for the gedanken evaluator which causes expressions such 

as (3.2-2Ua) to be undefined. 

For the purpose of explaining the R-PAL gedanken evaluator programs, we 
adopt the desugaring of (3.2-19c). (\rIe do not need (3.2-19d) since the programs 
are correct!) It is easy to provide an alternate approach which Is more 
attractive for blackboard evaluation. Consider the PAL program 

wve d t:: ~ U gar t his fir s tin to 

and then into 

let a = 1 
and f (x, y) = x + y 

in 
f (a, 2) 

let a 1 
and f = ~(x, y). x + y 

in 
f (a, 2) 

[)(a, f). f(a, 2)') [1, ().(x, y). x + y)] 

for which the control sequence Is 

a ,\q,i J l,\ lI,y ", ~ ,,~ 
& I = ~ f J a a 2 

b), = + x y 

Blackboard evaluation of this control is shown in Figure 3.2-7: 
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Figure 3.2-7: Evaluation of (3.2-21) 

On each of 1 i nes 3 and 6 we apply a ~-closure whose bv 

Since the rand I ~ a 2-tuple the application Is legal, 
environment layer in which two variables are defined. 

has two components. 
and we create an 

The rest of the 
evaluation i ~ as before. 

Pef I nit Ions Us I ng "YI i th in": Cons I der the PAL program 

let f x = 

let c = C In P 
(3.2-22a) 

in 
f 2 + f 3 + f 4 

Thi~ ~ro~ram desugars Into the AE 

('Af. f 2 + f 3 + f 4) [AX. C).c. P) cJ 
• :I. .J 

(3.2-22b) 

I( • 

In blackboard evaluation the body of A~ IS evaluated three times once 
for each free occurrence of f in 0,. That is, ~ is evaluated each time f is 

applied. But if ~ is a rather complex expression, we would like to be able to 

rewrite (3.2-22a ) so as to evaluate it only once. It is not hard to rework 
(3.2-22b) into an AE with the desired effect. Since such a construction is 
useful, PAL includes a special sugaring for it. 

The AE form of the expression we want is easily seen to be 

(Af. f 1 + f 2 + f 3) [C}.c. AX. P) C] (3.2-23a) 
, ~ l 

Evaluation of this AE in blackboard ~ leads to exactly one evaluation of ~, 
a~ I~ ea~y to see. The control sequence for this AE is 

a '-'; 3 A: C 
S. + ~ f 1 + ¥ f 2 d' f 3 

S;z = A; 
(3.2-23b) 

'~J P 
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and the first few lines of blackboard evaluation are shown in Figure 3.2-8. 

(ont TO s·t a. c.1< c-nvtTOnment 

Eo ~ . ~t ~ >.: c. E. 0, PE' 
I 

J.. r 0).. .. c 
l. "'" 

.3 ~ 
of )< £". I: ~:: f. ( 0) ~, E:, ~J 

4- f~ r }~ ',All Eo f 1 

S 1::1. ~, £~ J. : f:: I).IC 
J 

to) 

Figure 3.2-8: Partial Blackboard Evaluation of (3.2-23b) 

Clearly ~ i~ evaluated exactly once in this evaluation, so that application of i 
in " leads to evaluation of £ in an environment in which ~ is associated with 
the value of~. Note that the efficiency gain shows up only in blackboard order 

and not in normal order. In the latter there are 5till three evaluations of ~ 
since (3.2-23a) leads in one beta-reduction to 

[(Ac. ~x. P) C] 1 + [(Ac. ~x. P) C] 2 + I("~c. ~x. P) C] 3 (3.2-24) 

~Ince this form of AE is useful, We want to make It easy to write PAL 

programs which desugar to It. For simplicity let us consider 

(~ f. F) [() t • ~x • P) C] (3.2-25) 

Thi~ can ue sugared to 

let f ()c. AX. P) C in F (3.2-26a) 

and then into 

let f = 

let c = C 
In 

~x. P 
(3.2-26b) 

in 
F 

However, there is no way to sugar this into a PAL program not Involving ~IS, 
unless one Introduces a new variable. (The ~'s can always be sugared out of an 
AE by Introducing new variables. Consider 

i\x. P ~ ().f. f) ().x. P) 

which sugars to 

let f x = P in f 

t:i u t t his I 5 no t w h .lot we wan t. ) 

The PAL form for (3.2-25) Involves a within construct, like this: 
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let 

in 
F 

c = C 

within 
f x = P 

Sec 3.2 

(3.2-27) 

The ~clllantics of the ~dthln construct i~ given by saying that the definition 

a = A within b = B {3.2-28a) 

is equivalent to the definition 

b = (let a = A in B) (3.2-28b) 

and hence to the definition 

b = (~a. B) A (3.2-28c) 

The form becomes particularly useful In connection with simultaneous 
definitions, since we can have 

let 

c = C 
within 

f x F 

and 
(3.2-29a) 

g y G 

in 
p 

Here the scope of £ is to be f. and G, and no more. 
needed.) Successive desugarlngs are as follows: 

(Parentheses are not 

let c = C within [f = AX. F and g = i\y. G] in P 
1 etc = C wit hi n f, g = (). x. F), (:.\ y. G) in P 

1 e t f, g = [1 etc = C in (~x. F), (.). y. G) 1 in P 
let f, g = (Ac. ().x. F), (~y. G» C in P 
[ A ( f, g ). P] [() c • O. x • F), O. y. G» C] 

(3.2-29b) 

Except in the last line, the square brackets are not needed but are included 
only to aid the reader. (The parentheses around the ~-expressions are required 
b) PAL's syntax.) Note that the scope of £ in the last line Is clearly f and 
!I, as required. 

It turns out that we can write PAL programs which, under the rules given so 
far, desu&ar into forms we have not yet seen. Consider 
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let 

c = C 

within 
f x = F 
and 

g Y = G (3.2-30a) 

and 

h Z H 

in 
P 

The effect of the parentheses Is that the scope of ~ is to include E and Q as in 
(3.2-29), but not H. Desugaring the within construct as in the first four lines 
of (3.2-29b) leads to 

let f, g = (Ac. (AX. F), (Ay. G» C 

and h z = H 

In 
(3.2-30b) 

P 

To save writing we· define the abbreviation 

W == [i\c. c..~x. F), (Ay. G)] C (3.2-30c) 

Then the next step in desugaring leads to 

let (f, g), h = W, (AZ. H) in P (3.2-30d) 

and the next step is 

(i\«f, g), h). P] [W, (AZ. H») (3.2-30e) 

Even though (3.2-30a) is a perfectly valid PAL program, (3.2-30d) and (3.2-30c) 

are llQ.t. legal PAL: vie do not permit "structured bv-parts" in PAL if there is 
more structure than just a listing. (Each line in (3.2-29b) is a legal PAL 
progrum -- if each A is replaced by in.) 

We elect not to attempt to explain (3.2-30) at this time, postponing the 

ex~lanatlon to Section 3.5. At that time, We give the explanation in terms of 
the gedanken evaluator. The effect of this decision is that we may not, In 
writing the PAL programs for the gedandken evaluator, use constructs which 
desug~r into AE's with structured bv-parts. We accept the restrictions, since 

the facility i~ not one which is nee~ed and the explanation is most naturally 
given later. Note that this is the opposite decision from the one made for 

~ I ItIU 1 taneous def in i t ions. 
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3.3 (;onojtju[)al Expressions 

Heretofore our only stated decision concerning order of evaluation in the 
ulackboard machine has been to defer evaluation of a l-body until application of 

the ~-closure to which it belongs. We saw at the end of section 2.3 conjunction 
with the Church-Rosser theorem that order becomes particularly significant when 
conQjtjonaJs (a form of annihilator) are introduced. Specifically, PAL 

expressions of the form 

B -) t>1 I N (3.3-1) 

are to have the meaning denoted by li if the AE ~ denotes trye, and that of H if 
.Ii denotes~. VIe knm·, that VIC must evaluate the premise ~ before either the 
true arm M or the false arm H if we are to avoid undefinedness in cases such as 

c eq 0 -) c/2 I 2/c 

.. 
or infinite loops in recursive functions such as 

let rec f n = n eq 0 -) 1 I n*f(n-1) 
in 

f 3 

(3.3-2a) 

(3.3-2b) 

Recall from section 2.4 that evaluation of the AE corresponding to (3.3-2b) 
depend~ critically on evaluation of the boolean (lin eQ a") and selection of one 
of the two arms of the conditional before attempting to evaluate either arm. 

Control of Order of Eyaluation 

Needed is a method for evaluating AE's involving conditionals which insures 
that only the desired arm is evaluated. As Is often the case, we have a choice 
of ways to proceed, and the decision is somewhat arbitrary. We will discuss two 
solutions: one conceptually more elegant, and the other with noticeable 

practical advantages. 

It i~ always pleasing conceptually to be able to describe a new construct 
in terms of existing ones without the need to postulate new "built-in" 
functions, and doing so turns out to be possible in the present case. The 
possibility parallels the treatment of conditionals in the ~-calculus (cf. page 

2.3-77), in which the conditional expression 

B -) N I N (3.3-3) 

is considered as sugarint,; for the curried combination 

Q B M N (3.3-4) 

and ~ has the property that 
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Q true .4 ~x. ). y. x 
s . (3.3.5) 

Q false -. )x. ). y. y 

we must now take account of the difference in order of evaluation between the 
blackboard procedure and normal-order reduction, since it turns out to be an 
important difference. In the case of (3.3-4) the blackboard mechanism 
evaluates first the control structure corresponding to H, then that of H, and 
finally that of i. This obviously is unacceptable in cases such as (3.3-2). 

Fortunately, it is easy to force the blackboard mechanism into simulatIng 
the effect of normal-order reduction. The trick turns upon the blackboard 
decision to defer evaluation of a A-body until the closure of which it is a part 
is applied. When an expressIon such as 

[~x. -x-J ,<1 (3.3-6) 

is evalu~ted in normal order, a is not evaluated until, in the course of 
evaluating the body of the ~-expression, its instance which replaces A is 
encountered. In evaluation under blackboard rules H will be evaluated first. 
To achieve in the blackboard mechanism the effect of normal order, we observe 

that l!l in 

[.Ax. ---(x nil)-][~(). M] (3.3-7a) 

is not evaluated until A is applied to nll, since C3.3-7a) Is equivalent under 

ax I om ~ to 

-- C[). C). MIn i 1 ) -- (3.3-7b) 

and hence to 

(3.3-7c) 

It follows then that blackboard evaluation of (3.3-7a) simulates normal order 
evaluation of (3.3-6), at least insofar as evaluation of M Is concerned. 

The equivalence of C3.3-7a) and (3.3-6) suggests a general technique 

whereby a programmer can often override the PAL decision to evaluate operands 
before doing functional application. (We see in Section 3.4 that the technique 

does have limitations.) In particular, we can accomodate conditionals in our 
blackboard evaluator by using 

Q B ['A(). M] [~C). N] n J 1 (3.3-8) 

instead of (3.3-4) as the desugaring of (3.3-3). 

An Example: To see that the desugarlng suggested In (3.3-8) works, we examine 

blackboard evaluation of the PAL program 

The corresponding AE is 
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[).f. f 2 + f(-3)] [).x. x)O -) x I -xj 
I ~ 

(3.3-9b) 

Given our decision of (3.3-8), the body of the second ~-expression is further 
<.1esugared a~ 

Q (x > 0) ()'J (). x) (A.,(). -x) nil (3.3-10) 

Then the entire control ~tructure is 

~ )~ 
'I 

).~ 

~\ + ~ f 2 (f f neg 3 

~:l ~ K ~ 0 ,At') A () = Q ) x 0 'f nil J (3.3-11) 

bJ x 

·S~ = neg x 

We must now implement our decision of (3.3-5) about application of~. First we 

must decide on what abstract object in the universe of discourse is denoted by 

~. Let u~ use the writing ~ to denote that ob. All that we can know about an 
ob I~ hO~1 it transforms, and all of .9..'s properties are given in (3.3-5). We 

thus decree that application of ~ to ~ in the blackboard machine leads to the 
( ~ 

closure At' and that app li ca t I on of £l to ~ I eads to A~, I;Jhere 

~c 
'I 

= A. t -

be = x 

Sf 
'I = i\~-

(3.3-12) 

~~I = Y 

Note that (3.2-12) follows directly from (3.3-4). When we make the substitution 

of (3.3-12) we choose to form the closures in the then-current envi ronment. (No 
consequences follow from this decision, ~ince there are no free variables in 

either of the A-expressions shown in (3.3-5).) 

An example using this method is shown in Figure 3.3-1. In line 6 we 

evalutlte "-3 ) 0", leading to ~ in the stack. ~/e next apply 9. to ~ in 

line 7, and get the closure t~~ in the stack in line 8. The actual selection of 
an arr.1 of the conditional is performed in line 11, leading to 1.).~ in the stack , ,. 
i n lin e 12 • S I mil a r 1 y, Al:; i s pro d u c e din lin e 18, lea din g 1 ate r to the 

6 0 
selection in line 23 of the true arm, )'J. Environment layers 5 and 9, produced 

by the application to ~l of A-closures I;Jith empty bv-parts, have no name-value 
associations; but they are required to complete the linkage of environment 

layers. It is this linkage, for example, that permits evaluation of X in line 

13, X beint; defined In layer 2. 

Another Method: Although the method We have discussed clearly works, it is 

ooviously clumsy: It seems reasonable that It should be possible to do the 
entlru selection of lines 7 to 12 in one step. The problem is that we have used 

general tools to solve a particular problem. Since conditionals are an 

important concept in programming linguistics, it seems appropriate to provide a 

specific tool to process them, a tool that leads to greater efficiency. We now 

develop such a tool. 
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Conditional Ex~re~sions 

Instead of regaraing the boolean expression 

B -> M N 

a~ ~ubaring for the combination shown in (3.3-4) and hence the tree 
Figure 3.3-2, we introduce instead a new type of node -- f 

B " N 

r= • g- ~T<!. J. 3 - .3 

Q 8 

Sec 3.3 

(3.3-13) 

sho\'m in 
and regard 

(3.3-13) as sugaring for the tree in Figure 3.3-3. The convention is that the 

left son of a ~ node is the boolean expression, the center son Is the true arm 
and the right son is the false arm. Needed is a control sequence for this. Now 

note that the selection of an arm in Figure 3.3-1 was facilitated by the fact 
that each of the two arms of the conditional was represented in the control by a 

() <') 
single control item: ~J and ~,. We thus decide to use &'s to abbreviate the 
arms, so that the control corresponding to the conditional expression in 

(3.3-Yb) ~hich under the earlier method gave rise to (3.3-10) is now 

The blackboard rule is then: 

~4hen ~ is the top item in the control, the top i tern in the 
stack must be a truthvalue. If it is ~, then the second 
item in the control is discarded, and evaluation continues 
with the (old) third item as the top of the control. If the 

top of the stack is f?!?~, then the third item of the 
control is discarded and the (old) second item is used. In 

either case, the ~ and the top stack item are discarded. 

Thus We represent the PAL program (3.3-9a) and hence the AE (3.3-9b) by the 
folloHlng control structure: 

~I + ~ f 2 a- f neg 3 

S~ = ~J a, ~ > x 0 (3.3-14) 
dJ x 

Sy = neg x 

The convention guarantees that whenever ~ occupies the top of the control, then 

the second and third items in the control \'1111 each be 6'S. Figure 3.3-4 shows 

evaluation of the control structure. The transitions on lines 7 and 13 are the 

Interesting ones. On line 7, the top of the control is p and the top of the 

stack Is false, so we select ~, (as shown on 1 ine 8), the second element of the 
~ 

control, discarding the ~3 as well as the ~ and~. (In this example and in 

all subsequent ones, we aid the reader by underlining the ~ selected by a ~. 
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Thus 04 is underlined in line 7.> On line 13' the top of the stack is ~, so 
we select ~3' (The line corresponding to line 8 is elided after line 13.) It 
should be clear to the reader that this mechanism has the same effect as that 
shown in Figure 3.3-1, but that the present mechanism is distinctly more 
eff i ci ent. 

Let us look at one more example of evaluation of a conditional in the 
blackboard mechanism. We consider the PAL program 

let f x y = 
(y -> Stem I Stern) x 

in 
(3.3-15a) 

f lab' false 

Here He have used a conditional expression as the rator of a combination. The 
AE corresponding to this PAL program is 

( ~, f. f 'a b' fa 1 s e) I" 2. x. A 3 y. (y - >'t Stem IS" S t ern) x J 

and the resultant control sequence is 

t \)r 
(f >., II~ 

0, 0 ~ f lab' false 
bl. )./ 

J 

&J = ~ $., S S'" ~ Y X 

~'f = Stem 
= Stern 

Evaluation of this control sequence is shown in Figure 3.3-5. 

CO'l'\t .... 01 StacK E'hvc:.,."nmen t 
Eo )" ).f )..'" E;, , J.. 

o i 0 If 

eo r ~, )...1. Eo 

{3, '( "0 f '<l~1 fdls «. 
o I< 

(0) fE" I : f= )..1. 
o 'I 

I 

t ~ I~t J fd.f.re 
y J..~ --

(f 
E;)... "1 ~ ~: x -::; .. 'o..E' l 0) 

~ l' \; ~ £, 
£:3 ~ b'f bs- ~ y )C c] '1, Y=W! ( ;2.) 

b'f is- ~ ~ 11' 
1 S+erVl '0. b ' ............ 

~J l 5tt.r'f 'Otl,' E J ~ .............. 
H \' --

Fitp.ere 3,3-S": Eva.lu.at~o", of (J, J-(S) 

(3.3-15b) 

(3.3-15c) 

Summary: Which of the two methods to select for handling conditionals in the 

blackboard evaluator is primarily a matter of objective. To prove results such 
as tile Church-Rosser theorem Jt is advantageous to minimize the diversity of 

constructs and hence the complexity of case analysis, so the first method 

should be selected. Method two, in addition to the demonstrated gain in 
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efficiency, has also' the advantage of capturing clearly the essence of 
condltlonal~ In pr6gra~1Ing: the selection of one of two ways to proceed. We 
thus u~e method two in all subsequent evaluations, and we base the' gedanken 
evaluator on It In section 3.5. 
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3.4 Recursion 

We have al ready remarked In conjunction with (3.2-15) that If L Is the 
fixed-point generating A-expression defined by 

Z := ~G. (AU. u uHAv. G (v v)] (3.4-1) 

then no expression of the form 

Z F al a 2 ••• a k (3.4-2) 

terminates under blackboard evaluation. Thus the decision to gain efficiency by 
depa rt i ng from normal order forces us to devise alternate methods for 
accommodating recursion. 

As we did In the previous section, we investigate here two approaches. The 
first approach Involves exploiting our ability to control order of evaluation: 
By Inserting semantically-Irrelevant A's, we can modify the definition of Z. In 
such a way that (3.4-2) does terminate for certain important special cases of 
expressions £. The second approach is derived from the fundamental Identity 

y F ~ F (Y F) 

and involves making changes to the blackboard evaluator itself. 
approach, however, succeeds in regaining the full semantic power 
A-calculus forfeited by departure from normal order o 

ADDl icatiye Modification of Y 

(3.4-3 ) 

Ne ither 
of the 

In order to see how (3.4-1) can be modified to yield termination of 

expressions such as (3.4-2), we show In Figure 3.4-1 part of the evaluation of 

the AE 

(Au. u u) (Av. F(v v» (3.4-4a) 

and hence of the control structure· 

~ A~ A~ 
S, = 6 u u (3.4-4b) 

b). = ~ F l v v 

in an environment In which E Is known. It is clear from lines 6 and 8 that the 
evaluation is in a loop and can never terminate. Now consider normal order 
evaluation of Z-[, for the L of (3.4-1) and assuming that E abbreviates some 
-expression. We have 

Z F :; [Mi. (Au. u u) (Av. G(v v»] F 
!. (!.u.. u u) (Av. F(v v» 
~ [~. F(v v») [~v~ F(v v)] (3.4-5) 
~ F C[Av. F(v v)] [~v. F(v v)Jl 
~ 
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The two evaluations are analogous up to the point where a rand is a 
combination. From this point on, however, the two procedures diverge: In 
normal order £ Is applied to the unevaluated rand in braces, whereas the 
blackboard machine attempts to evaluate the rand and becomes trapped In the 

looP 

F 1 [~. F (v v) 1 r Av .' F (v v) ] } , 
~ F IF l[~v. F (v v)l[~v. F (v v)]J} 

Looping Is avoided If In lieu of L we use 

Z, :: ,\G. ('\u. u u) (Av. G(Ax. v v x)] 

as the fixed point operator, since then 

Z, F ~ (M. u u) [>.v. F(Ax. v v x)] 
~ r ~. F (A x • v v x >l (,~ v • F <A x. v v x) J 
~ F\)'x. [~v. FUx. v v x)][Av. F(Ax. v v x)] xj 

(3.4-6) 

(3.4-7) 

(3.4-8) 

Here the loop-Inducing combination Is tucked away as the body of t~x. ---1. 
Since evaluation of a A-body Is deferred until application of the closure of 
which It Is a part, the next step In blackboard evaluation of (3.4-8) is 
application of £ to \~x. ~l , which again accords with normal order. 

The semantic Irrelevance of replacing (v v) In (3.4-1) by (Ax. v v x) in 
(3.4~-7) follows from the observat Ion that 

for every 
solely to 

applicatlve 
mod I fy the 

expression Q.. 

or de r In wh I c h 
presentations of the ~-calculus use 

(3.4-9) 

Thus the effect of the replacement is 
subexpressions are evaluated. Some 

).x. M x ~ M (3.4-10) 

as another axiom, called ~-converslon, in addition to the ones presented In 
section 2.3. Equation (3.4-9) Is of course a special case of this axiom. 
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The function L' defined In (3.4-7) suffices to handle many Important 
Ins tances of recu rs lon, but It suf fers f rom two disadvantages: Firs t, I ts use 
in blackboard evaluation Is tediously inefficient; and second, as we see 

later, there are certain const~ucts which still cannot be accommodated. 
I 
I 

To see both that l...' works and also just how Inefficient It Is, we consider 
the PAL program 

and hence the AE 

let rec f n = n eq 0 -> 1 I n * f(n-1) 
In 
f 3 

().f. f 3) i [AG. (Au. u u)(Av. G(Ax. v v x»] 
I .1. J ¥..r 

[).f. ).n. n eq 0 -) 1 I n*f(n-1)] 1 
'7 " 

and hence the control structure 

6 ,\f ~ ~~ X'f , 
b. -d f 3 

~l. = ~ ,\14 ~; J 

bJ = ~ u u 

0,# = ~ G A~ 
S" 

Ss- t a v v x 

0(" = A~ 
0, = ~8 ~ Y ~ eq n 0 

b8 = 1 

~~ = * n r f - n 1 

(>.4-11) 

(3.4-12a) 

(3.4-12b) 

The first part of the blackboard evaluation of this control Is shown In Figure 
3.4-2. Lines 1 through 9 serve to set things up In preparation for the 

recursion, and lines 18 to 23 lead from one recursive step to the next. It is 
clear that the overhead Is high and that a blackboard method for recursion that 

reducesorellminates-thlsoverhead Is desirable. The method about to be 
presented reduces the overhead noticeably, and we see later in this section a 

method that reduces it still further. 

I.he Y - n Method: We saw In section 2.4 (In (2.4-12d) on page 2.4-B~, for 
example) that AE's Involving y can be evaluated by p-reductlon and r-reductlon, 
the latter being derived from the fundamental Identity 

Y F ~ F (Y F) (3.4-13) 

The Idea Impl iclt In r-reductlon is that, although we do not know the value 
produced by applying y to fJ we do know that It is the same as E applied to that 
value. That Is, we know that the value Is a fixed point of E. We exploit this 
Idea now to do recursion In the blackboard evaluator. We consider again the PAL 
program (3.4-11), but now we regard It as sugaring for the AE 

('\f. f 3) eV (Af. An. n eq 0 -> 1 I n*f(n-1»] 
, ~ .3 f.r 

(3.4 -14a ) 
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C'f8' x~ Z, ~ V '::. Ar ( I) 

J.~ £1 ~ ~" "r Eg 
" ~t .13 r E, "7 E1 ~ " f ". (0 ) :s 

).If E) '( '~"" J. E., 
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and hence the control structure 

(J A~ ~ Y A: 
~I 8 f 3 

= 

>.'" J 

b., ~s ~ eq n 0 

1 

bS" = * n a f - n 1 

Sec 3.4 

(3.4-14b) 

Just as we Introduced ~ as a special Identifier in section 3.3, so now we 
introduce~. Blackboard evaluat ion of (3.4-14b) proceeds to 

· .. a l) f r >t~ ••• (3.4-15a) 

and we are faced with the problem of deciding what l is to do when appl led to a 
closure. Presumably the next step leaves some value in the stack, so we give 

0\ of that value a name: ~. Now let E abbreviate I\l... Since we have said that the 

value of 1-[ is ~, we can substitute ~ for Y-E in (3.4-13) to get 

That Is, the unknown value ~ produced by applying ~ to the closure 
" ~ equivalent to the value that would be produced by applying A~ to 4. 

decree that the next blackboard line after (3.4-1Sa) Is to be 

">.: Is 
Thus we 

(3.4-1Sb) 

and we make a note that ~ is an abbreviation for the result of applying X to 
oX;. The rest of the evaluation is shown In Figure 3.4-3. In going from line 3 

to line 4, we assoc i ate .f In the env ironment wi th the as-yet-unknown Quant i ty 
denoted by ~. We make a note In the extra column at the right as to what ~ Is 
an abbreviation for. (In a more compl icated evaluation involving several 
recursive functions, we could use subscripted ~IS, one for each recursive 
function being defined.) 

On line 13 is the first need for the value of~. Although we do not know 
this value we do know what it is an abbreviation for, so on line 14 we have 

replaced ~ by the application of l to °A~. Thus line 14 repeats the situation 
of line 2, and the evaluation proceeds. On line 33 the recursion terminates and 

starts to unwind. Note that each of the three "n"s In the control In I Ine33 is 
eventually looked up in a different envi ronment, a fact that Is essential to 
make the evaluation come out correctly. 

Note the improvement In efficiency over the evaluation in Figure 3.4-2: 
Initial izat ion here takes 4 I ines, whereas it took 9 lines in the earl ier 
method. The first recursive call used four lines for overhead (lines 13 to 16) 

and the other two each use three, since the line corresponding to line 14 is 
elided. Thus the overhead of a recursion has been reduced from six lines to 

three. No very solid quantitative conclusions on efficiency improvements can be 
inferred from this argument, since counting lines in blackboard evaluation is 

rather meaningless. It is safe though to conclude that efficiency ~ been 
imp roved. 
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The Natyre of the Problem 

We have seen that building a new mechanism Into the blackboard evaluator 
permits us to reduce noticeably the overhead for recursion, both for the 
initialization and for each recursive callo Since recursion is so important In 
our study of programming languages, we would like to reduce this overhead 
further if possible. While the next Improvement to be made requires use of the 

Imperative features of PAL and we must walt for Chapter 4 to see its details, It 
Is appropriate here to investigate further the nature of the problem. 

Insight may be achieved by study of evaluation of the non-recursive PAL 
program 

and the corresponding AE 

let f n 
In 
f 2 

n eq 0 -) 1 I n*f(n-l) 

(,\f. f 2) [~n. n eq 0 -> 1 I n*f(n-1)] 
, ~ l' 

and the control sequence 

3 X~ A~ 
&, .. r f 2 

~~ = ~l CO , ~ eq n 0 

&J = 1 

8 .. = * n l f - n 1 

(3.4-16a) 

(3.4-16b) 

(3.4-16c) 

Blackboard evaluation of (3.4-16c) relative to an environment in which the value 
of i Is the function ~ Is carried out (with many uninteresting steps elided) 

co"t yo I Ell v;.,. 0 ",.,e 'tt-i: 

Of Pc , : f ,. ~ (OJ 

~: t = 'A; tl) 

I E -...- ~ ~" o of ).~ E, J. £, ~ A, ~ 
,:f , " 

3 £, ~ ~, -".;I. C, 

1 ~ ~ .f J.. E'J.. 
s e,.l 'A"" l. €. ;;a. _ 1-

3 ~ " ::: ~ (I) -, 
fJ ~J 1, ~ 1 ,. 0 ~3 

7 EJ '* " at ." £3 

~ *" 11 r hcc.. 1. EJ -1 f J -1 l.. ~ 

"" l1o'\oo 

/D fa-; I( -

in Figure 3.4-4. Note that the value coupled with i when environment layer 2 is 
I 'It 

la id down Is the A-closure AL • I t follows that appl icat ion of f (the 
transition from line 5 to line 6) creates a new environment layer (labelled 3) 
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I '" which is appended to layer 1. Accordingly, the body 0;1.. of AJ. is evaluated In an 

environment in which ~ ~ Q[ £ ~ determined Qy environment ~~. Thus 
the i In ~~ references Succ • .--

In order to effect a self-referential definition of f, It is sufficient 

that matters be altered so that the body of A~ is evaluated instead relative to 
an environment in which ~ ~ ~ ~ ~ determined ~ ~ ~ defInItIon ~ 

env I ronment ~.1. Th i s woul d be accompl I shed if, somehow, the va 1 ue of i in 
.a. '" I .., 

envi ronment layer 2 were ~l. Instead of ~l... Then the appl icatlon of i in line 
5 would result In environment layer 3 being linked to 2 instead of to 1, and 
then the lookup of £ In line 1 would result in a recursive call Instead of a 

call to~. To see this more clearly, consider evaluation of the PAL program 
(3.4-11) using the desugarlng (3.4-14a). Since we plan to use a method other 

than the y-~ method, we replace Y by ~ to emphasize the difference. Thus we 
get the control structure 

r A~ 1 yll ,\ f 
~ 

~ , = ~ f 3 

bJ. = ).'" 
l (3.4-11) 

~l = ~ 'f Ss ~ eq n 0 

S1 = 1 

bs- = * n r f - n 1 

Examine now blackboard evaluation of this control structure in Figure 
, of 

3.4-5. Assume for the moment that appl ication of ~ to A~ on 1 ine 2, the 
details of which are elided, leaves the result shown on line 4. The key fact is 
that the ~-closure which is the value of i in environment layer 2 is 1 inked ~ 
.l.2:iU l., rather than to layer 1 as it was in Figure 3.4-4. In consequence, 

initial application of i (the transition from 1 ine 8 to line 9) creates new 
environment layer 4 which Is appended.t..Q~.2. rather.t.llim .t.Q. ~~. It 
follows that any previous definition of £ (such as ~) is superceded by the 
new definition when f Is encountered within the body of A;, as in line 11. The 

same effect recurs until the premise lin eq 0" is true, at which point the 
procedure unwinds. Thus evaluation of (3.4-17) produces the factorial of ~. 

Note particularly that there was no overhead at all in successive steps of the 
recursion, and that the Initial overhead Is in the elided steps. Clearly we 

have met our objective of Improved efficiency, provided only that we can specify 
a ~ that does what Is wanted. 

The Function Y": We now explain in detail a blackboard mechanism for ~ that 
works as suggested above. Although the mechanism is rather ad hoc and not very 
well grounded In theory, It is worth studying because it captures the essence 

of what Is needed to do recursion. We defer until Chapter 4 presentatIon of a 
PAL program that corresponds to ~, since such a program requires use of the 

assignment statement, a PAL language feature whose explanation requires concepts 

which we have yet to see. 

We proceed as follows: We assume that the ob that is the value of ~ is 
written (In the stack) as l:. Because of the nature of the desugarlng rules, ~ 
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can be used only as a rator iri a combination whose rand is a A-closure. Suppose 
then that we encounter 

. .. r (3.4-18) 

in environment ~. We again exploit the fundamental Identity. Study carefully 
the following steps: 

(1) We want to know the value produced by applying ~ to 
that val ue ii, and let E. abbreviate J.,\~. 

Call 

(2) Since ~ Is a fixed point operator, It must satisfy the fundamental 
Identity. 

(3) Since [ Is ~ It follows from (2) that ~ ~ £~. 

(4) Therefore we can evaluate ~ by evaluating E-!. That Is, we can 
It of proceed from (3.4-18) by applying Ai to i. 

(5) We would like to use the blackboard evaluator to do this, but we 
can do so onl y I f we know~. But that is what we wanted in the 
firs t p lace. 

(6) Not knowing the value of !, we assume temporarily a value for It 
which we call ~. When we eventually get a value for ~, we will 
replace the ~ by that value. 

(7) Thus we rep 1 ace the 
b, ~ a pp 1 lea t i on of 1\. 

application of ~ to 
to 1.. Th I s 1 ea ds to 

b i >.. 
L 

the 
in (3.4-18) by 

subp rob 1 em of 

evaluating ~L In an environment in which 1 Is associated with 1. 
Call that env Ironment -'.. 

(8) After a while the subproblem will terminate with a value In the 
stack: Call it ~. Since ~ is the value of.E...!., It follows from 
(3) that this Is the value we wanted and Is what we should have 
used instead of~. Thus In environment ~ we replace the 1 by ~. 

All of this can be summarized: 

1 

2 

3 

4 

5 

6 

Jt yll \.\ ~ 
• •• U _ "L 

... i bh~ 1. 
ri: - - - - - - - - -- --••• Ec* S, Ec*' 
I I 

I •• • • •• 1 
I 1 ••• ~c_* ________ ~_E~ 

0( 

· .. (3.4-19) 
Ott 

· .. c: f =-T (b) 

· .. 
There are several points to note about this: 
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replaced by~. This is done when the evaluation reaches line 5. 

The environment markers for layer k are shown as ~ Instead of ~ as 
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ordinary is to be done on completion of the subproblem; 

specifically, that the variable In layer c is to be changed. 

The ~ as the value of 1 In the subproblem serves notice that the value 
of i should not be used in the course of the subproblem. 

Evaluation of the identifier ~ produces the ob y" in the stack. -
The n~thod is clearly ad hoc and has an air of magic about It. We present it at 
this time because we want next to compare the Y's we have seen with one another, 

and we need an exposition of each to do so. We have yet to give any argument 
that the method works. In fact It frequently does, and there are several 

examples In the rest of this section of its use. The PAL implementation uses a 
method very similar to this one. 

Comparison of V's 

We have now discussed four different ways to handle recursion in blackboard 

evaluation: 

normal order evaluation, using the axioms of section 2.3 

the A-expression ~, defined by (3.4-7) 
the 1.::.!. met hod 
the funct i on :e. just desc ri bed 

We have already compared these methods In one way, having observed that each Is 
noticeably more efficient than the previous one. We now want to consider 
situations in which, in a sense to be described, the methods "don'"t work". 
Consld~ratlon of PAL's within construction leads nicely to such problems. 

As mentioned on page 3.2-12.1, the "within" construct plays an important 
role vis-a-vis computational efficiency. The role becomes particularly 

significant in connection with recursive functions. The PAL expression 

let rec (c = P within g n a Q) in M (3.4-20) 

exemplifies the definition of a recursive function ~ involving an own variable 
~. (Note that PAL's syntax requires the parentheses, since without them the 
parse would be different.) We desugar, first reducing the definition to the 

standa rd form 

let rec g a (~c. An. Q) P in M 

and then reducing to the equivalent AE 

(Xg. M) {Y [Ag. (~c. An. Q) Pl1 
I ~ 1 f 

(3.4-22) 

Using ~ for y and (g 3) for M in (3~4-20) leads to the control structure 

~ 'A' l , y" ~~ 
$, 'I g 3 

S~ a l ,,; P (3.4-23) 

~J >.; 
i., D Q 
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Evaluation of this control is shown In Figure 3.4-6. By line 10 we are about to 

Corttrol stac.k £"Yf v" Yon lt1 e. )f t 
rt> ~ ~~ ~ y' ) Eo O~ PE 

~ 

.l. I y'O~? ~~ 

.~ 1 ~~. P 
~ .t Eo 'I 

3 I;f- I ~ 3 -= /. (0) 

~ .et 0 ')..(' p c! 
:J -. 1 

.". " E,. p (,J S- E, e~ >." ;l.s c:. = -, l{~~ ilA,. E." 
., I 

7 Eo r o~~'A'" E 
, If D 

.t~~ 8 EJ 1 3 3 E"J 3; ~ 
':I Lo) 

1 ~J "0 ~).ff 3 E 
., - :.J 

If} P., Q. E., 'I: ")J -= 3 (~) -

evaluate a, in an environment In which n, ~ and & are known. Note that If & 
occurs free in Q. (as It presumably does, else why the.J:e.£ in (3.4-20)?), the 

value associated with It Is the same as the value associated with K in M. £ Is 
not again evaluated, just as one would hope with the within construction. 
(Compare the PAL program 

let rec g n = (Q where c = P) 

with (3.4-20). Here £ Is evaluated each time &is called, either recursively or 

from M.) Note also that £ is evaluated In an environment In which & is known. 
Thus it would appear that there may be free occurrences of K in £. But may 

there? This point is discussed in the next subsection. 

Limitations of V": Although'y!! is clearly efficient and seems to handle 
properly programs such as (3.4-20), carefuly study uncovers a semantic 
deficiency. It seems clear that the scope of & Is to include £. (This fact Is 
obvious in (3.4-22), In which £ appears In the body of rAg.~J.) Thus free 

occurrences of K In R are to denote the recursive function being defined. But 
in Figure 3.4-6 the evaluation of ~ takes place at line 4, while K Is still 

associated with ~ In environment 1. What value of K can be used? 

There Is one kind of case in which there .Is no problem: when ~ Is a 
function. For example, consider 
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let rec 
( 

in 
M 

c k = P 

with in 
g n :& Q (3.4-24) 

Since any free K'S in £ 
c is appl ied in .Q.. 
- I t< 
C ~ ~~ so that when Sa 

occur in the body of 'Ak.~), they are not needed until 

By that time K is no longer associated with 1. That is, 
is evaluated it Is In an environment linked to.El, in 

which & is then properly defined. 

To continue with the case where ~ does not denote a function, consider 

first the PAL program 

let rec 

In 

c = 120 

with in 
f n = n eq 0 -) 1 I n eq 5 -) c I n*f(n-l) 

f 6 + f 7 + f 8 

(3.4-25) 

This variation on the factorial is designed for greater efficiency than the 
usual definition for arguments.2. or greater. This is not yet an example of the 
problem -- there are no problems here with ~ method for recursion. 

Evidently.the writer of (3.4-25) knew that the factorial of five is 120. 
Suppose the function is to be changed, so that the cutoff is 10 rather than 5. 

Not knowing the factorial of 10 one might try 

1 et rec 

in 

c = f 10 

within 
f n = n eq 0 -) 1 I n eq 10 -> c I n*f(n-l) 

f 11 + f 12 + f 13 

(3.4-26) 

This program fails for ~ methods of doing recursion, since we must apply £ to 
~ to get a value of ~, but doing so requires knowing~. (A proof that (3.4-26) 

cannot be evaluated by any Y would require only showing that normal order leads 
to a loop. Why is this sufficient? The reader Is advised to carry out the 
proof. ) 

There is an obvious minor variation on (3.4-26) which avoids the problem 

just presented: 
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1 et rec 

in 

c = f 10 
within 

f n = n eq 0 -> 1 I n eq 11 -> 11*c I n*f(n-l) 

f 11 + f 12 + f 13 

(3.4-27) 

Now there Is hope, at least, since f-lQ can be evaluated without knowing a value 
for £. But it Is by no means clear which Y, if any, will work. 

To find out, we simplify (3.4-27) slightly to an AE that Is easier to work 
with. Let f abbreviate the AE 

~f.tAc.~n.n eq 0 -> 1 I n eq 11 -) 11*c I n*f(n-l)](f 10) 

Then we concern ourselves with the AE 

(A f. f 11) (Y F) 

We first Investigate normal order reduction. We have 

(ll. f 11) (Y F) ~ Y F 11 

Let us write first 1-E: We have 

Y F 
f.F (Y F) 

~r!&..~n .n eq 0 -> 1 I n eq 11 -) i1*c n*Y F 
.!.[).h.n eq o -) 1 I n eq 11 -) 11*Y F 10 I n*Y 

Now for any ~ such that k F 0 and k ~ 11, we have 

Y F k 

(n-l») (Y 
F (n-1)] 

~ k eq 0 -> 1 I k eq 11 -> 11*Y F 10 I k*Y F (k-l) 
~ k*Y F (k-l) 

Also, 

Y F 0 ~ 1 

Since 

Y F 11 ~ 11 * Y F 10 

FlO) 

(3.4-28a) 

(3.4-28b) 

It follows that U. is the factorial (as expected) and that there are no 
problems. I-E-k has normal form to all non-negative integers k. (As might be 
expected, the efficiency gain of the within disappears under normal order.) 

We now show that ~, the ~ method and ~ all fatl to evaluate (3.4-28). 
Consider first LI. Replacing y in (3.4-28b) by the A-expression (3.4-7), we get 

the control structure 
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r ~t r ~; At 
cS J = ~ f 11 
~:t • 4 ). c ~ 

J f 10 

~.l = ).~ 
cS" = ~S" ~6 ~ eq n 0 

S". =- 1 

b, = ~ 7 S, ~ eq n 11 (3.lt-29) 

S'? = * 11 c 
~B = * n r f - n 1 

'b? = ~ 'I >." 
A" " 

b,o = '( g g 
t 

SIt = a F ).,a. 

b,~ = l if h h x 

The beginning of an evaluation of this is shown in Figure 3.lt-7. Line 13 
repeats line 7, and we are In a loop. 

C07\t "to/ Sta~k £)1 V/ YOHWeltl t 

Eo 6 
~ F f 

. Eo o L PE , X, If J., A~ 
O~F o>,f. 

.1. r 1 l. ED 
8 ~ £ I ~ o~: Co) J E, t >"0 AI( I 8 f ~ I 

F :. 
~ E, 0 >"D fl" E, 

'A ., s e;). r 3 ~ e: -1: J= (I) 
'). h I" :.l 

I, 
(;, E). ~ X " 

)." fa 

7 EJ 5 F ~b.. e. 3," ~ '= ' ). ~ (l) 
"1.J)( 'J " 

~ IEJ "1 A~ AIl..EJ J JC C. 
~ f E If: 1= ~ 1 E, r A] I' 3 )( ., ,.\ 12. (0) 

10 '{ ~ A,L!J. E. 
If E.r 1 Q h h X , .. ,~ Ej- So;" ~ 10 (3) ..-
11. r ).,. }til !2 E.,r 

T (c. . ~~ £6 !!. Es- Cf ~ '>-." 'l Eo r ~. E, AJ E"s '0 Eb 5 F 6", h ~ 
" 

(f) 

Fig u re 3. 4 - 7 : Evaluat Ion of (3.4-29) using the A-express ion Z'. 

The 1=1 method, shown In Figure 3.lt-8, fares I ittle better. (Here we have 
replaced ~; on the first line of (3.lt-29) by 1, causing the last four I ines to 
be unneeded.) The loop here comes from an attempt to evaluate f-lQ to 
Initialize £. The corresponding step In normal order after line 4 would be to 

c 
apply AJ to the unevaluated rand. 
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J. 

J 
If 
S 

~ 

7 

C Or1 t,.. D I 
Eo ~ )..T "'I 

I Y )1 
~ 

r 
E, ~ ).~ r 

d' 
l 

Eo r f 
~, E. ~ }~ J 

f 10 

r 
~ ~ x~ r f 10 

Eo 0, PE 
Y O~f Ii. 
.... 2. 0 

CJ~~ "t 

~, ,: f = "to (0) 

l1. J.!., E, 
D). f l'l 

1-

~ !2 ~ ~o ..1: f ::. ?(. (0 ) 

Figure 3.4-8: Evaluation of (3.4-29) by the Y-YlMethod 
U;J 

Figure 3.4-9 shows evaluation using y". Here we need the value of f while 
It Is still 1. 

c; 

(01'1 trot Stac.k 

Eo lS AT '( y' ~! E, 
ylff) of 

l. ( ~~ Eo 

0: PE 

l 6 ",,+ ., 
1.. , 

'I E, ~ AC. o f /0 E, J 
Eo if f 

~ A; ~ ,., ID E. E;, S ~, ~ ~ """" , 
11 f s: ? (D) 

Figure 3.4-9: Evaluation of (3.4-29) using yll. 

We can draw two conclusions: First, although we can evaluate (3.4-28) in 
normal order, each deviation from normal order which we have tried leads to 
failure. Second, we developed the y-~ method and then ~ to Improve efficiency, 

and we do see that each of these revealed the problem In fewer steps than did 
the previous one. One final comment: The PAL Implementation, which Is 
modelled closely after ~, also falls on this program. 

A Family of V's: A natural question Is to ask whether there Is any systematic 
departure from normal order that terminates for (3.4-28). It turns out that 
there Is, and that there are some Interesting observations to be made in 
studying the problem. We started this section by observing that If ~ Is defined 
by 

,AF. (,~u. u u) (,xv. F (v v» (3.4-30) 

then no expression of the form 

Z F al a2 ••• 

terminates under blackboard evaluation. We derived 

Zl : AF. (}.u. u u) (}tv. F (Ax. v v x» 

and showed that, at least for some AE's £, 
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Z I F al a2 ••• 

terminates in blackboard order. Clearly the function f in (3.4-28b) is not such 

an E. 

We derived ~ from Z by observing that the problem in order of evaluation 
could be circumvented by adding semantically Irrelevant A's. An obvious 
question now Is whether we can find a modification of ~ -- say ~ -- that 
works for (3.4-28). To aid our thinking, we consider the simpler PAL program 

1 et rec 

in 
g 5 

c = g 0 

with in 
g n = n eq 0 -> 1 I n+c (3.4-33) 

since this rather silly program captures the essence of the problem of (3.4-28) 
and is easier to work with. The corresponding AE is 

(Ag. g 5) ~Y [Ag. (~c. n. n eq 0 -> 1 I n+c) (g O)l} (3.4-34) 

and we are Interested in a ~-expresslon for ~ such that evaluation of this AE 
terminates In blackboard order. To gain insight, we look more carefully at what 
falls for~. We define the following abbreviations: 

F : Ag. (Ac. An. n eq 0 -> 1 I n+c) (g 0) 

AI ii }.v. F(~x. v v x) 
~x. A, A, x 

Then we are concerned with the AE 

[~G. (Au. u u) (».v. G(~x. v v x»J F 5 

(3.4-35) 

(3.4-36) 

At first the evaluation proceeds identically in normal order and blackboard 

o rde r: 

z' F 5 
!l [.Mi. (~u. u u) (Av. GUx. v v x»] F 5 

~ (~. u u) (~v. F(AX. v v x» 5 
~ [~. F()'x. v v x)] (~. F(>'x. v v x)] 5 

~ F (Ax. A I A I x) 5 

'E F ~~ 5 
6 1 (~c. An. n eq 0 -) 1 I n+c) ('\a, 0) 5 

(3.4-37a) 

The next step in blackboard order Is to apply ~~ to ~. 

loop 

But th Is leads to a 

~;a. 0 

:I >. I ~, 0 

~ F ( ~x • A, ).. I x) 0 
(3.4-37b) 

~ (Ac. An. n eq 0 -) 1 I n*c) (Al. 0) 0 
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since the next step (in blackboard order) is again to apply )..a to.Q.. There is 
of course no problem in normal order. 

Compare this evaluation carefully with that in (3.4-8) on page 3.4-J3~. 

There we avoided a loop by tucking the loop-Inducing combination away as the 
body of a A-expression. This kept us out of trouble for the simple combination 

(.,\v. F(v v)] [~v. F(v v)] (3.4-38a) 

but fa i1 s for the "two-l evel" comb Inat i on 

[Av. F(Xx. v v x)] ['\v. FC,\x. v v x») 0 (3.4-38b) 

because of the presence of the extra rand~. We can solve this problem by using 
two levels of padding with semantically Irrelevant ~IS, by defining 

z" a ,\ F. <.~ u. u u) (,\ v. F (). x. It y. v v x y» CS • 4 - 3 9 ) 

Here we have once again used ll-converslon, as In (3.4-10). The reader should 
satisfy himself that 

Z I I F 5 

terminates under blackboard order, although ~ Is even less efficient than ~. 

It Is 

This loops 

Indeed, for 

not ha rd to see that ~ does not solve all ou r p rob 1 ems: 

using Z!.!." 

Z I • I 11 

any PAL 

let rec 
c =- g a1 a2 
within 

g n1 n2 • Q 

in 
M 

but would terminate for 

). F • (>. u. u u) (~v • F('\x. Ay. ).z. v v x y z» 

program of the form 

let rec 

In 
M 

( c = g a1 a2 ••• ak 
within 

g n1 n2 ••• nk = Q 

Cons ide r 

(3.4-40) 

(3.4-41) 

,,~) 
we can find an appropriate fixed point operator L.:.. to accommodate it. 
CQ'lversely, however, given a design decision that always adopts any particular 

~ in desugarlng ~, one can always write a program such as (3.4-41) that 
cannot be accommodated, even though It could be evaluated In normal order. 
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3.5 The Gedanken Evaluator 

The blackboard methodology developed in preceding sections has been 

motivated primarily by human considerations. We have sought to gain insight 
into the structure of the environment tree. built up in the course of a 

computation, and into how computational efficiency relates to order of 
evaluation. To these ends, we have sought to organize and display successive 
stages of an evolving computation in an easily comprehensible format. 

It should be recognized, however, that our blackboard procedure has not 
been defined precisely. Indeed, precise definition is unnecessary for two 

reasons: First, we have been concerned excl us ivel y wi th appl ieat ive 
expressions, the semantics of which are already establ ished in terms of the 

A-calculus and the postulates underlying the universe of discourse. And second, 
the procedure is to be carried out by people, who presumably can resolve 

uncertainties in accordance with what they understand to be the establ ished 
semantic intent. 

Although the A-calculus suffices to define the semantics of the appl jeatjve 
subset of PAL, we have mentioned at the beginning of this chapter that semantic 

specification of PAL's jmperatives involves additional concepts. Specifically, 
the Introduction of imperatives into PAL corresponds to a change of perspective: 

Beforehand an evaluator Is peripheral, in the sense that its operation mirrors 
the effect of evaluation via the rules of the A-calculus. But hereafter the 
role of the evaluating mechanism becomes central, since the introduction of 
imperatives admits constructs whose semantics apparently cannot be expressed, at 

least in any natural way, in terms of the A-calculus. Thus the semantics of 
Imperatives cannot be specified without specifying the evaluator itself. Our 

purpose in this section is to develop an evaluator for appl icative PAL. In 
chapters 4 and 5, we expand the capabl1 ities of the evaluator so that It 

handles imperat Ive PAL al so. 

Methodology and Objectives 

The objective of the present section is to introduce a "gedanken evaluator" 
for the appl icative subset of PAL which 

Ca) is isomorphic to our blackboard procedure, In the sense that both 
always produce the same result in substantially the same way, and 

which also 

(b) can be easily extended In Chapters 4 and 5 to accommodate semantic 
definition of PAL's imperatives as well. 

Our present task is to explain the gedanken evaluator. Since it is nothing 
other than a very coolplex algorithm, and since we have claimed (at the beginning 
of Chapter 2) that the purpose of a programming language is to serve as a set of 

conventions for communicating algorithms, we take the obvious path and choose to 
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exhibit the evaluator as a PAL program. It is the operation of this program 

that we have been simulating with the blackboard evaluator. 

Given our decision to exhibit the algorithm in PAL, we are faced with the 
task of selecting representations of the various computational entities with 
which we deal, as well as of writing the detailed PAL programs. The usual way 
to write a program Involving various variables such as A' ~ and ~ as well as 

functions such as E, ~ and ti, Is in the form 

1 et x 
and y = 
and z • . .. 
in 
let F ( ••• ) = 
in 
let G (. •• ) = ... 
In 
1 et H (. •• ) = 

In 

Here ~, ~ and ~ may be used In defining E, ~ and H; E may be used in li and H; 
.G. may be used In Hi and 'all six may be used In the "nain program" at the end. 
In the programs to be presented, we want for the sake of convenience of 
presentation to exhibit functions such as tl above without showing at the same 

time the preceedlng and following text. To this end we use the PAL feature 
J!gf, which permits writing a single definition in isolation. Thus a writing 
such as 

def H( ••• ) • . .. 
defines the function tl, but we do not attempt to ascribe semantics to this 
writ ing except In a "suitable context". As this section proceeds we present 

many functions defined by the.dd const:ruct, providing the "suitable context" by 
explanatory text in Engl Ish. In the appendix at the end of this section all of 
the functions are collected together in order, providing the proper context. 

An important question to be decided on in writing any program as this one 

has to do with representation of the data objects with which the program deals. 
In the blackboard evaluator we know that "x" appearing In the control represents 

a variable, while "2" represents a constant. In order to write a PAL program 
that does the same thing we must decide how to represent constants and 

variables, as well as A-expressions and other constructs, so that the necessary 
operations can be done. For the most part we Ignore issues of representation in 

the early part of this section. Instead, we assume that the necessary 
pred icates, such as "I s_va r iabl e" and "I s_constant" suggested above, can be 
written. All of the necessary details are provided eventually at the end of 
this section, but the main part of the section may be read without worrying 

about them. The earlier programs are not incorrect -- just incomplete. 
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Logical Bootstrapping: In a sense, use of PAL to describe the gedanken 

interpretor Involves the circular logic of using a language to describe Itself. 
Such a procedure is not unusual in the ftel d of computat ion -- a class ical 

exercise is to write in some language a compiler for the language, and then to 

cla im that the program "explains" the language. The util ity of the exercise is 
that one need then understand only a single program (presumably written in a 
subset of the language) in order to understand the whole language. 

This advantage, of course, Is one which we secure automaticallY. In 
addition, however, we achieve a stronger result: By writing the interpretor In 
terms of the appl Icat ive subset of PAL, we ga in an "eval uat ing mach ine" whose 
operation is defined.l2.Y. S1U.Qm. The semantics of our program then is defined by 
the reduction axioms of the A-calculus, the axioms defining PAL's universe of 

discourse, and the desugaring rules. Thus our specification of PAL involves 
logical bootstrapping rather than logical circularity. (A small lacuna in the 

argument remains by virtue of our decision to use PAL syntax In defining the 
interpretor. To desugar the Interpretor program Into a pure AE, however, Is an 
intellectually vacuous exercise In virtuosity and perseverance.) This 
bootstrapping activity is continued In Chapters 4 and 5, wherein the full PAL 
interpretor is developed In two phases. The first phase presumes prior 
definition of PAL's appllcatlve subset, called R-PAL, and extends to the 
language L-PAL which includes assignment, sequences, and structures. The second 
phase in turn presumes prior definition of L-PAL and completes extension of the 
language to J-PAL to include labels, ~'s, and the constructs ~ and ~. 
J-PAL Is the PAL of the PAL t4anual. 

overview of this Section: Our objective in the rest of this section is to write 

in PAL the function Gedanken_evaluator which accepts a PAL program as input and 
whose value is the value of the program. We divide our labors into two parts: 

,translation of the program into control structure, and evaluation of the 
resul ts. Thus we wr I te 

def Gedanken_evaluator Program = 
let Control_structure = Translate Program 

in 
Evaluate( Control_structure, Empty_stack, PE } 

(3.S-1) 

The input to Translate Is some representation of a PAL program, about which we 

have fTlJch to say later, and Control_structure is much akin to the control 
sequences we have been using as input to the blackboard machine. 

The function Evaluate works very much as does the blackboard evaluator. 
Its three arguments are the initial control, stack and environment. PE is the 

primitive environment, and the stack is initially empty. 

Our next goal is to specify the functions Translate and Evaluate. As part 
of doing so, we must specify the representations of the PAL program, the control 
structure, and the control, stack and environment of the evaluator. We proceed 
by defining first the representation of control structure and of the components 
k, A and S, defining next the workings of Evaluate, defining next represent ion 

3.5-153 



Sec 3.5 Evaluation of Appl icative Expressions 

of PAL programs, and finally spec Ifying the funct ion Translate. In our In It lal 

discussion of Evaluate we Ignore the possibil ity of simultaneous definitions. 
In discussing Translate we show the control structure which they give rise to, 

and then later we go back to Evaluate to show the changes needed to accomodate 
them. 

Bepresentation of the Control, Stack and Enylronment 

As we have seen, the gedanken evaluator with which we are concerned has 
three components. We refer to the control, stack and environment as ~, ~ and 

1, respectively. (In Chapter 4 we add a fourth component~, for memory.) We 

some time s re fer tot he eva 1 ua t era s the "c SErna chi n e " • 

Historically, our CSE machine is a direct descendant of Landin's SECD 
evaluator, described in Landin (1964). We have permuted the letters to 

correspond to the way the components are written in blackboard evaluation, and 
we have subsumed Landin's dump (the "0") by using environment markers in the 

control and stack. The idea Is the same. 

Lists and their Bepresentatlon: Our next task is to choose representations of 
the components ~, ~ and~. ~ and ~ are each represented by a ~, so it is to 
1 ists that we first turn our attention. As we have done in the past, we start 
with a structure definition: 

A ~.Q.f objects Is either 
~, or It Is 
non-empty, In which case It has a 

~, which Is an object, and a 

~, which Is a list of objects. 

(3.5-2) 

Note that "object" is, in a sense, a free variable In this definition. Thus we 
can use terminology such as "list of Integers" to refer to a list In which each 

top Is an Integer. We choose to represent the empty 1 1st by "nil", and a 
non-empty list by a 2-tuple whose first component is the top and whose second 

component is the rest. Various functions useful when dealing with lists are 
def tned by 

def t(x, y) =- x II top of a list (3.5-3) 

and r<x, y) • y II rest of a list 

and Push (t, r) I: t, r II make a 11 st 

def rec Pref txCL1, L2) • II concatenate 2 1 ists 
Null L1 -> L2 I 
PushCt Ll, Pref IxC r L1, L2» 

def 2d x I: tC r x) II second element 

and 3d x I: tCr(r x» II th I rd 
and r2 x • rC r x) II rest of rest 

and r3 x = r(r(r x» II rest of ( rest of rest) 
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We frequently find it useful to represent lists graphically. An obvious 
way to represent a 2-tuple Is shown in part (a) of Figure 3.5-1. Since in 
general the "rest" is also a list, we usually find It more convenient to use the 

i;;\est j 

-1 rut: 
2 

3 
<. a) ( bJ 

Fi (/'lU( 3, s-( I b"~'~;(a' 1?epYf:u.,ta.-!iO J1j ( c:.) 

vertical display of part (b) of the figure. Thus the list which In PAL might be 
wrl tten as 

(1, (2, (3, nil» (3.5-4) 

can be presented graphically as in part (c). The circle at the bottom stands 
for the empty list, nil. The various "tops" of the list are Its components. We 

sometimes have lists some of whose components are lists. 

Bepresentatlon of Control: We start with three structure definitions: 

A control structure Is a 
list of control ~. 

A control ~ is either a 
constant, 0 r a 

Y..,arjabJe, or a 
~-expression, or 

BETA, 0 r 
AUG, 0 r 

RETURN, 0 r 
GAMr4A. 

A ~-expression has a 

by-part, which is a variable, and a 
~, which is a control structure. 

(3.5-5a) 

(3.5-Sb) 

O.5-5c) 

We later change the last definition, permitting structured bv-parts in 
A-expressions so as to accomodate simultaneous definitions. RETURN corresponds 
to an environment marker In the control of the blackboard machine, signifying 
termination of a subproblem. The other control Items are as in the blackboard 

mach Ine. 

We have stated previously that writing structure definitions such as these 
Impl ies the existence of certain predicates, selectors and constructors. Any 

representation we might choose must permit us to write thes~ functions, or the 
representation is not satisfactory. As suggested earlier, we do not choose to 
specify now the representation we use for each of the Items just listed, 
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deferlng that unt 11 later. We cla 1m though that we can write the predicates 
Is_constant, Is_variable and Is_lambda_exp; the selectors bV and Body (to be 
appl led to ~-expresslons); and the constructor Cons_lambda_exp. We also 
assume that variables named BETA, AUG, RETURN and GAMMA are in the enVironment 
with values which are in the domain of the functor~. All of these entities 
are defined in the PAL programs at the end of this section. 

As a convention, predicates written for use In the gedanken evaluator 
always have names that start with "Is_", such as "Is_variable", to distinguish 
them from built-In PAL names such as IIlsstrlng". Recall that the underscore may 
be used as part of the name of a variable in PAL. 

Conditionals, such as 

B -> MIN 

are acconmodated (as In blackboard evaluation) by a control which 

beg ins wi th the control corresponding to the premise B, 

followed by the cont rol symbol ~, 
followed by the cont rol structure corresponding to H, the false arm, 
followed by the cont ro 1 structure corresponding to ti, the true arm, 
followed by the remainder of the control. 

Thus we have encompassed all cases of current interest. 

An example illustrating the format of control structures is provided in 
Figure 3.5-2, which corresponds to the PAL program 

(let a = 5 in (Zero a -> (b where b=3) I a) + 2) * 3 (3.5-6) 

Of course, the structure definitions (3.5-2) and (3.5-5) and the example of 
Figure 3.5-2 do not suffice to specify completely what control structure 
corresponds to any given Input PAL program: This correspondence Is established 
formally by the function Translate. But for the time being we can· rely upon 
the intuition already gained via blackboard evaluation. 

Reo re sentat Ion gf the Stack: 
de fin I t I on s : 

As with the control, we start with two structure 
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A ~ is a list of stack items. 

A ~ 11gm is either a 
EAl constant, or a 
.fAI.~, or a 

A-closyre, which has a 
by-part, which is a variable, and a 
~, which is a control structure, and an 
en y I ron men t, 0 r it is 

1., 0 r an 
eta-ob i ect, 0 r an 
eny I rgoment • 

(3.5-7a) 

(3.5-7b) 
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( Ie. t 2 = S '- It (~c: YO a. ~ (b w 4e re. b -= 3) J a ) + 2-) *" J 

) 

[)..'\, ~~~TO a. ~ lAb . .b) J I a ) + '2. ] s * 3 
, ..l...3 4f 

r '0 "* a A~ s 
~, =- ~., + 

5 ~J 3 

b 

a 
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We again postpone discussion of the details of the representation. We assume 
that we can write the predicates Is_constant, Is_tuple (which differs from 
Istuple), Is_closure, Is_Y and Is_eta; the selectors bV, Body and Env (the 
first two of which can be appl ied to either a A-expression or a A-closure); and 
the constructor Cons_lambda_closure. 
~-expression and an environment. 

Cons_lambda_closure takes two arguments: a 

Bepresentation of Environment: As 
provides a pairing between names and 
env Ironment. The st ructu re Is 

In the blackboard evaluator, an environment 
values, along with a link to another 

An environment Is either 
~, or It Is 
non-empty, in which case It has a 
~, and a 
~, and an 
env Ironment. 

(3.5-8) 

We represent the empty environment by nll, and a non-empty environment by a 
3-tuple whose first component Is the name, whose second component is the 
associated value, and whose third component is the next environment layer. 
Names In the environment are represented as are variables In the control, and 
values are represented as they are In the stack. 

We assume Initially (and exhibit later> a function Lookup, such that the 

ca 11 

Lookup(Var, Env) 

returns the value associated with variable YsL In environment ~. 

The Eval uator 

We have said that the gedanken evaluator has two parts: a translator and 
an evaluator. We discuss In this section the latter. The definition of the 
evaluator Is given by the following PAL program: 

def rec Eva1 uate(C, 5, E) = 

Null C -) t 5 
( let New_C, New_5, New_E = Transform(C, 5, E) 

In 
Evaluate(New_C, New_5, New_E) 

(3.5-9) 

The function Transform Is applied to a C5E 3-tuple corresponding to the state on 
one line of the blackboard evaluator, and returns that CSE 3-tuple corresponding 
to the next line. Evaluate calls Itself recu"rslvelY until" the control is empty, 
at which point It returns as the "answer" the top stack Item. Our task In this 

section Is to specify the workings of Transfor~. 
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Strategies in the Evaluator: Quite a few arbitrary decisions were made in 

development of the blackboard evaluator, and some of these require further 
discussion In connection with the gedanken evaluator. For example, we elect to 

use the Y-~ method In the gedanken evaluator to accomodate recursion, since it 
seems to be the method which Is most efficient, both In its operation and 

conceptually, of those that are available. (It is unfortunately not practical 
to express the algorithm of Y" in R-PAL, since updat Ing of the "?" in the 

environment really requires an assignment command.) In the desugaring process 
to be specified in Translate, definitions of recursive functions transform into 
the appl icatlon of the variable "YI" to a suitable A-expression. Since this 
name is not acceptable syntactically as a variable name In PAL, its use cannot 

confl let with any name used by the programmer. The primitive environment PE 
suppl led to Evaluate associates YI with a special built-in value which can be 

recognized in Transform so that requisite special processing can be done. 

Applying YI to a closure results in an eta-object In the stack, which has the 
closure associated with It. 

Tuples are accomodated by the control Item AUG, and a tuple such as 

3, 4, 5 (3.5-10a) 

written by the programmer Is desugared by Translate as if the programmer had 

wri tten 

nil aug 3 aug 4 aug 5 (:;.5-10b) 

When AUG appears at the top of the control, the effect is to build the 

appropriate tuple from the top two stack items. 

The Fynct ion "Transform": Recall that Transform is appl led to a CSE 3-tuple 
corresponding to a line of blackboard evaluation and returns that 3-tuple which 

represents the next line. It Is defined as follows: 
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def Transform(C, S, E) • 
let A • C, S, E II to save writ Ing later 
and x = t C II the top con t rol Item 
In 

Is_constant x -> Eval_constant A 
I s_ va r I a b 1 e x -> Eval_variable A 
I s_l ambda_exp x -> Eval_l ambda_exp A 
x eq BETA -> Do_cond it i ona 1 A 
x eq AUG -> Do_aug A 
x eq RETURN -> Do_retu rn A 
x eq GAMMA 

-> ( let r = t S II the rator 
In 

Is_closure r -> Apply_closure A 
Is_constant r -> Apply_constant A 

error 

Is_tuple r -> Apply_tuple A 
Is_V r 
Is_eta r 
error 

-> Apply_V A 
-> Apply_eta A 

There are several points to note about this program: 

(3.5-11 ) 

The function Transform Is not recursive, the recursion being done by 
Eva 1 uate. 

It uses eleven functions which we have yet to write: three to do "Eval"s, 
three to do "OO"S and five to do "Apply"s. 

The control Item RETURN corresponds to the presence In the 
evaluator of an environment marker at the top of the control. 
a sub-problem exit. 

bl ackboa rd 
Its I gn I fie s 

The program uses the non-PAL reserved word "error", whose semantics should 
be obv tous. 

It makes expl lett use of the various predicates and selectors for control 
Items and stack Items which were discussed earlier. 

In the next several subsections, the· missing functions aluded to are provided. 

The "Eva]" Functlgns: There are three evaluating functions used'by Transform, 
one for each type of control Item which has a value: constants, variables and 
A-expressions. As in the blackboard evaluator, the value of a constant is 
Implicit In the constant (the details differ), variables are looked up In the 
environment, and A-expressions are evaluated to form ~-closures by associating 
with them the current environment. The three functions are: 
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def Eval_constantCe, S, E) • II Evaluate a constant. 
let V = Value_ofCt C) II Its value. 
in 
r C, PushCV, S), E 

and Eval_varlableCC, S, E) -
let V = Lookup(t C, E) 

in 
r C, PushCV, S), E 

II Evaluate a variable. 
II Look it up. 

Sec 3.5 

C3.5-12a) 

(3.5-12b) 

and Eval_lambda_exp(C, S, E) = II Evaluate a A-expression. 
let V = Cons_closureCt e, E) 

In 
r C, PushCV, S), E 

(3.5 -12c) 

Note that each of these returns a C-S-E 3-tuple. Consider Eval_constant. The 

top item in the control when it is called is known to be a constant (or this 
function would not have been cal led by Transform), so the function Value_of is 

called to return the constant's value. (This function Is defined later, since 
it depends on the representations yet to be specified for items In the control 
and the stack.) The 3-tuple returned by Eval_constant consists of the rest of 
the control after deletion of the constant, a stack with the new value pushed on 
top of the old stack, and the old environment. 

The other two functions are similar, the second using Lookup to find the 

value of the variable in the current environment and the third forming a 
~-closure by associating the current environment with the ~-expression. 

~ubproblems: In the C5E n~chine as in the blackboard evaluator, application of 
a A-closure involves setting up a subproblem to evaluate the body in an 
appropriate environment, leaving enough information to get back to the main 
eval uat ion on complet ion of the subproblem. The new control is formed by 
pushing the control item RETURN onto the existing control, and then prefixing 

the body of the closure being appl ied on top of that. The new stack, as in the 
blackboard evaluator, contains information about the environment to hecome 

current on completion of the subproblem. CThe blackboard machine puts an 
environment marker into the control, too, but this Is not needed here.) What we 

put into the stack Is not an environment marker but the envIronment Itself. The 
relevant functions are: 

def Apply_closureCe, S, E) = 
'let Rator = t S II What Is being appl led. 
In 
let New_C a PreflxCBody Rator, PushCRETURN, r e» 
and New_S = Push(E, r2 S) 
and New_E = DecomposeCbV Rator, 2d S, Env Rator) 
In 
New_C, New_5, New_E 

(3.5-12d) 
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and Do_returneC, 5, E) = 
r C, pu~het 5, r2 5), 2d 5 

(3.5-12e) 

In making New_E in Apply_closure we have used the function Decompose to make a 
new environment from a name, value and existing environment. This function, to 
be specified later, accomodates the structured bv-parts which are needed to 
handle simultaneous definitions." For the case in which the bv is a simple name, 
Decompose returns a 3-tup~e consisting of Its three arguments. 

When RETURN is encountered, the top stack item I s the "val ue" of the 
subproblem and the second Item In the stack is the environment that was current 
just before entry to the subproblem. The rest of the stack is the stack to be 
reinstated on completion of the subproblem -- the stack that was there before 
subproblem entry. 

Recursion: The reader would be well advised at this point to review the 

discussion starting on page 3".4-13S, In which the Y-l. method Is explained, 
before continuing with this discussion. The following code used in the C5E 

machine formalizes the method: 

def Apply_yeC, 5, E) • 
let V = (ETA, 2d 5) II ETA 

in 
let New_5 = Push e 2d 5, Push (V , r2 5» 

(3.5-12f) 

in 
C, New_S, E II Leave GAMMA In C. 

and Appl y_eta (C, 5, E) • 
Push(GAMMA, C) , Push(t 5 2, 5), E 

(3. 5-12g) 

The effect of Apply_Y is replacing (y ~) by (~ ~), where ~ Is a (marked) copy of 

).; and Apply_eta Involves replac Ing n. by the appl icat ion of ). to tt. Study 
ca refull y the new stack created by each of these funct ions. Note that Appl y_Y 
leaves the GAMMA in the control, to be "reused", and that Apply_eta performs the 
unusual task of pushing a GAMMA onto the control. 

Conditionals. Tuples and Basics: The remaining functions to be discussed are 

these: 
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def Do_condltlonal(e, 5, E) = 
let Sw = Val_of(t S) II The boolean 
in 
let Selected_arm • (Sw -> 3d I 2d) e 
In 
Pref Ix(Selected_arm, r3 e), rS, E 

arm. 

(3.5-12h) 
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and Do_aug(C, S, E) :z 

let V = Augment_tuple (t S) (2d S) 
in 
r C, Push(V, r2 S), E 

and Apply_constant(C, S, E) = 
let V = Apply (t S) (2d S) 

in 
r C, Push(V, r2 S), E 

and Apply_tupleCC, S, E) = 

let V = Apply (t S) (2d S) 

in 
r C, Push(V, r2 S), E 

Sec 3.5 

(3.5-12i) 

(3 .5-12j ) 

(3.5-12k) 

In Do_conditional the function Val_of is needed because objects on the stack of 

the CSE machine have identifying tags, which must be removed. The function 

Augment_tuple used by Do_aug is equally concerned with representation. 

The Translator 

We have now specified that part of the gedanken evaluator that performs 
evaluation of control structures, and have next to explain the function 
Translate that transforms PAL input into control structure. Translate does 

essentially the same task done by the average compiler for a language such as 
Fortran or PL/I, except that it produces control structure instead of machine 

code. Compilers are almost always organized Into two or more phases, so that 
there is an Initial activity of reading source text and parsing it according to 
the syntax of the language, followed by an activity concerned with creation of 

executable code. The interface between these two activities is often some sort 

of tree representation of the input text, wherein the nodes of the tree 
correspond to the syntactic categories of the language. 

It would seem then that the function Translate should be similarly 
organized. However, we choose instead to bypass entirely the parsing activity, 

assuming as input to Translate a tree representation of the program to be 
analyzed. This decision is based mainly on the fact that syntactic analysis is 

very ~ll understood, there being a large collection of publ ished 1 iterature on 
it. Since our purpose in these notes is to illuminate certain aspects of 

programming languages, we choose to devote ourselves to those aspects of the 
problem which are less well understood. It is not that we regard syntactic 

analysis as uninteresting, but rather that we elect to study other subjects. 

Our present task then is two-fold: We must specify exactly the form of the 
input to Translate, and we must specify Translate's algorithm. In the remaining 
parts of this section we first show three ways to describe syntax, the last of 
which leads us to the form used as input. We finally discuss in detail how 

T ra n s 1 ate 0 pe rat e s • 
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Tree Syntax: Heretofor we have expressed PAL's syntax using the BNF notation 
discussed In Section 1.2 of the PAL Manual. For example, the following 
equations taken from Appendix 2.1 of the PAL Manual define the syntax of 

a rlthmet ic express ions, abbreviated "A": 

A : : = A + Al , A - Al , Al 
Al : : = A1 * A2 I A1 I A2 I A2 
A2 : : D A3 ** A2 I A3 
A3 A3 % NAME R I R 

(3.5-13) : : = 
R : : c R R1 I R1 
R1 : : = CONSTANT I VARIABLE I ( A ) 

(The definitions of the categories A, A3 and R1 have been simpl ified slightly.) 
We know that this syntax provides a unique parse for any string which is an 
instance of an A. 

Now consider Instead the following syntax: 

A : : = A OP A I A A I ( A 

OP ::= + I - I * I I I ** 

CONSTANT I VARIABLE 
% NAf-1E 

(3.5-14) 

This ambiguoys syntax defines the same set of strings as does 
(3.5-13), but it pays for being shorter by being ambiguous. 
syntax permits the string " a+b*c" to be parsed as either 
"(a+b}*c". 

the syntax of 
For example, this 
"a+(b*c)" or as 

Related closely to (3.5-14) Is the ~ syntax shown In Figure 3.5-3: 

I coNsrlt/lT \ VA R IIj 8tE' 

Figure 3.5-3: Tree Syntax for Arithmetic Expressions 

The legal utterances in the language defined by this syntax are trees, such as 

either of the following: 
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-I-

1\ 
a * 

1\ 

* 1\ 
-I- c.. 

1\ 
do b 

b Co 

Note that the possibility of ambiguity does not exist In this language, just as 

it did not exist In the prefix or postfix forms discussed at the beginning of 

this chapter. The input to Translate is the type of tree of which these are 
samples. Another example of input to Translate Is given in Figure 3.5-4, which 

shows the tree form of the PAL program of (3.5-12h), the function Do_conditional 
In the CSE evaluator. (Some of the variable names have been shortened to ease 

the task of drawing the figure.) 

The appl icatlve subset of PAL Is characterized precisely by the ambiguous 

syntax of Figure 3.5-5 and the tree syntax of Figure 3.5-6. As shown, each 
principle syntactic alternative of the ambiguous syntax leads to a node-type in 

the tree syntax. The overall syntax may then be viewed as specifying rules for 
piecing nodes together Into syntax trees. For example, an AP node 

(correspond Ing to imPl Icat Ion) may be formed by connect ing togethe r two E's as 
the sons of an AP node, and so forth. 

Two comments may prove helpful In conjunction with Figure 3.5-6. First, 

the decision as to what syntactic alternatives are to be accorded a node-type Is 
somewhat arbitrary: All that Is entailed Is a division of responsibility 
between the syntactic anaysls done before Inputting a program to Translate, and 
the subsequent processing done by Translate. The precise boundaries of the 
division are unimportant, the only substantive issue being to gain conceptual 
clarity by separating the jobs of tree generation and tree processing into 

distinct tasks. For example, we have chosen to avoid an overabundance of 
node-types by stipulating that Infix and prefix operators be input as shown 

using node-type BINOP for all Infix functors and UNOP for all prefix functors. 

The second comment pertains to the absence of tags (I. e., labels on the 

nodes) in those subtrees that indicate the binding of variables: the left sons 
of LAMBDA and FF nodes. The use of tags in these subtrees is avoidable simply 

because bound-variables can not be "computed objects" In PAL; i.e. because 
expressions such as 

let (x eq 0 -> a b) = M In N 

are not allowed. The structure of such a node Is Implicit In its position in 
the overall tree, so no tagging information Is needed. A similar remark appl ies 

to the right sons of BINOP and UNOP nodes, which are always functors. 

The graphical representations of Figure 3.5-6 are easy to visual ize, but do 
not accord directly with PAL's tuples. In particular, tuples do not Include 
"ta6s". We Introduce therefore two functions: 
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r3 c.. 
FirClre J. S - '(; 

Tyee for (3.S"-/~ 4) 
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def Tag n s 
and Is_tag s n 

= 
= 

Sec 3.5 

s aug n 
n eq s ( 0 rd e r s) (3.5-1Sa) 

which serve to "tag" a node and to "test Its tag", respectively. If M. and Hare 

PAL expressions, it follows then that the ob denoted by 

Tag GAM~1A (N, N) 

may be visual ized as either of the following: 

The left picture shows the form corresponding to the trees of Figure 3.5-6, 
while on the right is a form more in accord with the way we usually think of a 

3-tuple. He hereafter choose the graphical form on the left as being more 
perspicuous. If!tL is any tuple tagge"d with GAMMA, then the PAL expression 

denotes true, whereas 
~ 

denotes false, whenever ~ denotes any ob other than GAMMA within the domain of -----"eq". Since tagging a tuple adds another component to it, we introduce also the 
following two functions: 

def Get_tag s = s(Order s) 

and Sons s = Order s 1 
(3.5-1Sb) 

With the functions now available, and assuming that variables such as AP, 
FN, LET, etc., are defined with suitable values (as we have been assuming all 
along about GAMMA and others) the PAL expression 

x eq 0 -) y f 2 (3.5-16) 

would be represented by the tree 

and hence by a PAL expression something like 

Tag ARROW [Tag BINOP (x, 0, eq), y, Tag AP (f, 2») (3.5-17) 
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(The details of the representation of names and functors have Yet to be 

specified. The preceeding use of " eq" is of course not legal PAL.) 

The F unct jon "T ransl ate": It proves exped i ent to brea k the job of trans 1 at ion 
of syntax trees to control structure Into two parts: standardizing the syntax 

tree, and flattening the result into a control structure. Thus we have 

def Translate Program = 
FF( ST Program, nil (3.5-18) 

ST produces a standardized tree which is similar to the original tree but which 
Includes only nodes of type GAMMA, BETA, LAMBDA and AUG. Thus ST's operation is 

much 1 ike desugaring PAL Into pure AE's. FF processes standardized trees, 
flattening them into control structure. 

The gene ra 1 rul e for stan da rd i zat Ion is 

To standardize a structure ••• 
first standardize its sons, 
and then.assemble the result Into standard form. 

(3.5-19) 

The details of ST are shown graphically In Figure 3.5-7, which shows in the left 
columns each permissible node type (those listed in Figure 3.5-6) which may be 
input to Translate, and which shows in its right columns what 5T does to it. 
The asterisks indicate standardization of the sons. For example, the first 

picture shows that an AP node may be standardized by first standardizing its 
sons, and then building a GAMMA node with those sons. Note the adherence to the 
principle enunciated In (3.5-19). 

A standardized definition Is always an EQUAL node, and the standardization 
process is much the same as the desugaring process which we have been doing. 
However, we now choose to .face squarely the problem of desugaring s"imultaneous 

definitions, a problem which up to now we have been Ignoring. To see the 
problem, consider the following PAL program, which is similar to that in 

(3.2-30a) on page 3.2-'2~. 

let 
and 

In 
M 

f 
( 

= F 

g x 
and 
h y 

w = W 
within 

= G 
(3.5-20a) 

= H 

The desugarlng and standardization processes are similar, each leading to 
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and finally 
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let f = F 
and g, h = rAw. (AX. G), (~y • H») W 

In 
M 

let f, (g, h) = F, C)'w. ()ox.G), (~y.H)] W 

in 
M 

[~(f, (g, h».M] IF, [).w. ().x.G), (Ay.H)]W} 

(3.5-20b) 

(3.5-20c) 

(3.5-20d) 

The tree forms of (3.5-20a), the original program, and (3.5-20c), in which the 
definition is standardized, are shown In Figure 3.5-8. Note that (3.5-20c) and 

J 1< h Y 

(3.5-20d) are .D..Qt. legal PAL, since structured bv-parts are not permitted. 
However, It is clear that PAL's syntax permits definitional structures which, on 

standardization, produce arbitrarily cOMpl icated bv-parts. (This is the problem 
that was aluded to in the discussion of Apply_closure on page 3.5-162.) The 

decision to exclude structured bv-parts from PAL Is an arbitrary one, reflecting 
the ideas of PAL's designers as to what constitutes "good human engineering". 
The language would not be'changed in any important way were the decision to be 
reversed. Indeed, the standardization functions would be unchanged. 

The functions 0 and ST which do the job of standardization are shown in 
Figures 3.5-9 and 3.5-10, respectively. These programs formalize the process 

shown graphically in Figure 3.5-7, the same process which is done in preparing 
Input for blackboard evaluation. 
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def 
• 

rp.c 0 X = II S tan dar d i ze a d P. fin i t I on • 
let Type = Is_tag x 
in 

Type EQUAL -> x II A 1 ready OK. 
Type WITHIN 

-> ( let u, v ::: D(x 1), O(x 2) 
in 
EQUAL_ (v 1) ( AP_ (FN_ (u 1) (v 2» (u 2) ) 

) 

Type REC 
-> ( let w ::: D(x 1) 

in 
EQUAL_ (w 1) ( AP_ Y_VAR (FN_ (w 1) (w 2» ) 

) 

Type FF 
-> ( 1 e t re c Q k T a 

k < 2 -> T 
I Q (k-1) (FN_ (x 1 k) T) 

in 
EQUAL_ (x 1 1) (Q (Order(x 1» (x 2» 

) 

Type AND 
-> ( let rec Q k S T = 

k > Sons x -> (S, T) 

I ( let w = D(x k) 
in 
Q (k+ 1) (S aug w 1) (T aug w 2) 

) 
in 
1 et L, R ::: Q 1 nil nil 
in 
EQUAL_ L (Tag COMMA R) 

) 

error 

If D II 

Sec 3.5 
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, def rcc ST x = I I Stan,da rd I ze abs tract syntax tree. 

3.5-174 

let Type = Is_tag x 
in 

Is_identifier x -> x 
Type BETA or Type TEST or Type ARROW 

-> BETA_ (ST(x 1» (ST(x 2» (ST(x 3» 
Type FN 

-> LAMBDA_ (x 1) (ST(x 2» 
Type COMMA 

-> ( Q 1 NIL 
where rec Q k t = 

k > Sons x -> t 
Q( k+l) (AUG_ t (ST(x k» ) 

) 
Type PERCENT 

-> GAMMA_ (x 2) ( AUG_ (AUC1_ NIL (ST(x 1») (ST(x 3» ) 
Type LET 

-> ( let w = D(x 1) 1/ Standardize the definition. 
in 

Type 
Type 
Type 

-> 
Type 

-> 
Type 

error 

GAMMA_ ( LAMBDA_ (w 1) (ST(x 2» ) (ST (w 2» 
) 

WHERE 
AP -> 
BINOP 

GAMMA_ 
UNOP 

GAMMA_ 
AUG -> 

-> ST(LET~ (x 2) (x,I» 
GAMMA_ (ST(x 1» (ST(x 2» 

( GAMMA_ (CONSTANT, x 3) (ST(x 1» ) (ST(x 2» 

(CONSTANT, x 2) (ST(x I» 
AUG_ (ST(x 1» (ST(x 2» 
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Flattening Standardized Trees: The f'inal step in producing control structure 

for input to the CSE machine involves the flattening function FF(x, c). In 

visualizing the operation of this function, it helps to recognize that its 

principal effect is to extract a new control item from the (standardized) tree K 
and to push it onto the nascent control structure~. FF calls itself 

recursivelY until the orieinal tree is exhausted. Since standardized trees are 
n~de up of only GAMMA, LAMBDA, BETA and AUG nodes, there are only four cases to 
consider. Figure 3.5-11 shows graphically the effect of FF, and Figure 3.5-12 
shows the code. 

Example of Translate: Consider the following PAL program: 

let f x = x + (x ) 0 -) 1 I -1) 

In 
f 2 * f ( -3 ) 

(3.5-21) 

The tree form of this program, along with the standardized tree and control 
structure, are shown In Figure 3.5-13. 

o the r Too i c s 

We have one problem which we have so far bypassed -- simultaneous 

definitions -- and one possible defect which we have yet to mention, that of 
overspecification of order of evaluation. We consider these in turn, and then 
discuss some of the Impl icatlons of our logical bootstrap. 

Simultaneoys Definitions: The only problem in R-PAL remaining to be discussed 
concerns simultaneous definitions. Recall from Figure 3.5-7 on page 3.5-1'71 

that a standardized definition may have a left side which under transformation 
by the function 5T is converted into a A-expression having that same tree as its 

bound variable part. However, the structure of an Environment as given by 
(3.5-8), page 3.5-ISB, Is a simple 1 inking of (name, value) pa irs. The task of 

unravel ing a tree of bound variables in the application of a A-closure has been 
relegated to the subsidiary function Decompose. As indicated In (3.5-12d) this 

function takes three arguments: 

• a bound-variable or a tree of bound-variables, 
• an ob, which may be a tree of obs, and 

• an env Ironment. 

The function pecompose Is defined as follows: 
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( ~ ) FF f' c. ~ "E I 

6 
FF( /1' ) c.) ~ 

8 N N 

let Type = Is_tag x 
In 

Is_identifier x -> (x, c) 
Type LAMBDA 

B [ 
~ 

c 

-> ( 1 e t Bod y = F F ( x 2 , nil ) 
in 

FigurQ 3,.)"-11 

Cons_lambda_exp(x 1, Body), c 
) 

Type BETA 
-> ( let TA = FF(x 2, nil) II T rue a rmo 

and FA = FF(x 3, nil ) /1 False arm. 
In 
FF( x 1, (BETA, ( FA, (TA, e») ) 

) 
Type r,AMMA -> FF( x 2, FF( x 1, (GAMMA, e) ) ) 
Type AUG -> FF( x 2, FF( x 1, (AUG, e) ) ) 
error ' 
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let. f )(. x + ()(>o~, 1-,) h1 f 2~+(-3) 

[ A f . f 2. *" f (-J) ] [).)C.. x.. (~~ 0 .. , I - I ) ] 
f ;a. ,'I 

Fi.8('(Te 3. S-13: 
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def rec Decompose(Names, Values, Env) = 
test Is_variable Names II Is It a single variable? 

Ifso (Names, Values, Env) II Yes, add it to environment. 
Ifnot II Check conformal Ity. 
test Is_tuple Values 

ifnot error II Tuple applied to scalar. 
ifso 
test Order Names eq Order (Val_of Values) 
ifnot error II Differing tuple lengths. 

Ifso II Process a multiple-bv part. 
( Q 1 Env 

where rec Q n e = 
n > 0 rde r Names -> e 

Q (n+1) ( Decompose(Names n, (Val_of Values) n, e) ) 

Figure 3.5-14: The function Decompose. 

Note that If Names is a single bound variable, the effect of Decompose is to 
return an environment obtained by placing on top of environment Env a new layer 

consisting of the pair (Names, Values). If Names is a tuple and Values is 
conformal thereto -- i.e., has the same number of components -- a succession of 
layers Is placed on Env. Should a component of Names also be a tuple, this 
tuple too Is unraveled and its bound-variables paired with corresponding 
component s of Val ues. F ina 11 y, I f Va 1 ues is not conforma 1 to Names -- I.e., if 
at any level Names is a tuple and Values is a tuple of different Order the 
function aborts. These four cases are Illustrated in Figure 3.5-15. 

Order of Evaluation: One who specifies a programming language must decide what 
to say about the order of evaluation of the constituents of expressions such as 

a + b <3.5-22) 

There are several possibilities: Evaluation may be done from left to right, 
from right to left, or in some more complex order wh ich is impl ic It in the 

implementation. The decision of PAL's designers, as documented in Section 3.3/S 
of the PAL Manual, is as follows: 

"No order of evaluation is to be inferred ••• The reader may find it 
helpful to think of the process in these terms: The choices are made 

at the time the expression Is evaluated, and the choice made by the 
evaluating mechanism is dependent on the then-current weather 
forecast. The programmer Is cautioned not to write a program whose 
successful evaluation depends on a particular order of evaluation of 

exp ress ions." . 

Althou~h the intent of the designers is clear, it is equally clear that the 
formal definition so far presented provides that evaluation Is always from right 
to left. The Intent and the result being out of argument, it behooves us to 
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change one or the other. ~Je elect to change the formal def in it ion, and the 

reason is not what one might expect.· As far as PAL is concerned, It seems to be 
unimportant which decision Is adopted. We elect to leave order of evaluation 
unspecified so that we may have the opportunity to show how that effect might be 
achieved. Keep in mind that our objective is not just to define PAL but rather 

to Illuminate various aspects of language definition. The following discussion 
is of points that can be made conveniently In no other context. 

The problem arises from the fact that the rand of a combination is always 

evaluated before the rator. The standarized tree and control structure for 
"a + b" a re shown In Figures 3. 5-16(a) and (b): 

b -1-

a d-
b (e) 

( b) 
-f- d- b 

La) . 

Figure 3.5-16: Trees for "a + btl 

The ordering In (b) is required by the fact that the CSE machine, in processing 
the control item GAMMA, appl ies the top stack item to the second. Thus the rand 

m.Y.ll be evaluated fi rst so that it will be "belOW" the rator on the stack. 

r~ow, consider a new control item, AMMAG, whose effect is to apply the 

second stack element to the first, deleting both and leaving the result in the 

stack. Figure 3.6-16(c) shows the control for (3.5-22) using AMMAG (written ~I) 

Instead of GAMMA. Clearly the order Is different, being from left to right, but 
It Is no closer to the desired result of being unpredictable. 

What we need is a way to use randomly either GAMMA or AMMAG. But this is 
easy. We first modify the CSE machine to handle both GAMMA and AMMAG, and then 

alter FF so that, on encountering a GAt-1MA mode in the standardized tree, it 
~ £ random decision between GAMMA and A~1MAG in the control structure, 
adjusting Its output accordingly. As suggested in the quote from the PAL 

Manual, this choice could be based on the weather forecast, time of day, or some 

other phenomenon Independent of the program being translated. The effect then 
is as desired, and the result of gedanken evaluation of any program which 

requires a particular order of evaluation Is undefined, In ~ ~ ~ ~ 
~ DQt defined 11. To implement this decision, we might call a function 

"Cholce nil" In FF which randomly returns true or false. 
otMAA ~ 

Several more changes are needed to avoid over-specifying order of 

evaluation. Control Item GUA should be selected randomly Instead of AUG to make 
undefined the order of evaluation of operands of.Q.U&. Finally, there is the 

problem, alluded to on page 3,2-I~O, of definitions such as 
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let (x, x = 1, 2) in M (3.5-23) 

The mechanism so far described specifies that bv-l ists are processed from left 

to right, because of the way we have written the recursive function ~ which is 
part of Decompose. (See Figure 3.5-14 on page 3.5-179.) To circumvent this 

problem, we could provide randomness in Decompose. We leave the details as an 
exercise for the reader. 

The previous decision raises an interesting question, arising from the fact 
that subexpressions in R-PAL exhibit referential transparency: It is just not 

possible to write an R-PAL program whose value is dependent on order of 
evaluation. So as better to see this, suppose there were a function Next of no 

arguments which, on each call, returns an integer one larger than its value on 
the previous call. (For the sake of concreteness, suppose it returns ~ on its 

"first" call.) Then the value of the expression 

2 * Nex t nil + 3 * Nex t nil (3.5-24) 

depends very much on the order of evaluation of the operands of "+". If the 

order is left to right, ",e would have (2*O + 3*1) or 1, whereas otherwise it 
would be (2*1 + 3*0) or Z. Now let us see why Next cannot be written In R-PAL. 

If It could, we would have, In some context, the fragment 

let Next{) = N in M (3.5-25a) 

which would desugar .as 

(A Next. M) CA(). N] (3.5-25b) 

Since each application of Next in M results in evaluation of H in the same 
environment (the one existing when this fragment is encountered), the value 

retunled is ah/ays the same. There Is just nothing Next can do on one call that 
will have an effect on its next call. What is needed of course is an assignment 

statement: In L-PAL we could write 

def 

Next{) = 

k = 0 

within 

k := k + 1; 

k - 1 

(3.5-25c) 

to get the desired effect. The semantics of programs such as this are discussed 

In Chapter 4. 

Since we have just shown that It Is not possible to write In R-PAL a 
program whose value is dependent on the order of evaluation used by the 

evaluating mechanism, one might question the need for·the previous discussion. 
Our purpose in introducing the issue of overspeclfication of order of 

evaluation has been to lay the groundwork for further discussion In connection 
with the L-PAL evaluator, where it is unquestionably relevant. We do not pursue 

this point further here. 
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The Logical Bootstrap: Our purpose in this section has been to define formally 

the semantics of R-PAL by showing a translator and evaluator for R-PAL. Let us 
reexamine our objectives with an eye to assessing our success. 

The intent is tha t a reade r be abl e to deduce the mean ing of any R-PAL 
program from study of Translate and Evaluate. To make this decision more 
concrete, let us ask how one might deduce the semantics of the R-PAL expression 

2 -> 3 I 4 (3.5-26) 

The user must himself himself render this express ion into form suitable as input 
to Translate, and then apply Tr~nslate to it. This latter can be done in one of 
three ways: hand simulate the operation of Translate, use normal order 
reduction or run the program on a computer. The first is of course what the 

reader has been doing In preparing input to the blackboard evaluator, the second 
Is (as al ready ment loned) an Intellectually vacuous exerc ise in vi rtuos ity and 
perseverance, and the third seems a pleasant alternative If available. By hand 
simulation, we get 

4-

3 

wh i ch we can subm I t to Eva 1 ua te • vJe aga in have the same th ree me thods to choose 
from, and we assume we hand simulate. 

The interesting question here Is the Interpretation of the conditional in 
which the boolean arm Is not a truthvalue. The problem shows up in 

Do_conditional (3.5-12h) where we must evaluate 

2 -> 3d I 2d (3.5-27) 

We seem to be in a logical loop: We have found that the semantics of 1 used as 
the Boolean arm of a conditional is that of l used as the Boolean arm of a 
conditional, a not-helpful result. This is typical of the flaw in attempts to 

"expla In" a language by wrl t ing its interpretor In Itsel f. 

In the PAL case we are able to break the loop by appeal to the 
axlomatizatlon of the universe of discourse. Using the Interpretation of 
(3.3-3) and (3.3-4), we see that (3.5-27) Is sugaring for 

Q 2 3d 2d (3.5-28) 

Since ~ does not include l in its domain of definition, we can conclude that 
(3.5-l8) Is undefined. Hence C~.5-27) is undefined, and so we conclude that our 
original problem, (3.5-26), Is undefined. 
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The word "undefined" as used In this sort of discussion has interesting 

philosophical implications: What does it mean to say, of a particular PAL 
construct, that its semantics is "undefined"? If the decision about meaning of 
the construct is made by appeal to the definition of the universe of discourse, 
it is apparently the case that the designers of the language, who after all are 

the ones who designed the universe of discourse, have del iberately chosen to 
leave the construct without meaning. Presumably then an implementation of the 
language would give a "run error" or similar diagnostic in the event of an 
attempt to use the construct. (An attempt to execute a program including 

O.S-2b) would cause a "run error" diagnostic in any existing PAL 
implernentat ion.) 

But there is another aspect to "undefined". We have claimed that any 

program whose succesful execution depends on a particular order of evaluation is 
"undefined". It is clear that an attempt to run such a program, either on some 

PAL implen~ntation or through the gedanken evaluator, would produce some answer, 
although we have shown how to build the gedanken evaluator so that the answer 

cannot be predicted. But it seems most unlikelY that any implementor could 
detect this problem and provide a diagnostic. Thus there Is a distinction 

between saying that a construct has no definition and refraining from saying 
what the definition is. We thus conclude the following: When we say that 
something is undefined, we mean no more or less than that we have not defined 
it. We make no claims about what will happen to the user who uses it. Perhaps 

he will get a diagnostic, perhaps he will just get wrong answers, perhaps the 

computer will blow up. The language specifier can say no more. 

Detailed Description of the Gedanken Evalyator 

The nBny details of the programs presented which have been omitted for the 

sake of expository convenience are presented in this section. The resulting 
programs are given in enough detail that they will run on a PAL implementation. 

(They do.) Our purpose is to be sure that we have completly specified the 
gedanken evaluator, and providing enough detail to permit execution on a 

computer helps to insure this. We leave undefined only the function Error, 
whose effect when appl ied is to terminate the evaluation of the program of which 
It is a part. Discrepencies between the programs shown here and those shown 
earl ier in this chapter should be resolved in favor of those shown here, since 

these are 1 istlngs of programs that have run on a computer. In some cases the 

programs shown earlier have been simplified somewhat for expository 
convenience. 

I t is now the time to say a few words about the representat ional issues 

which heretofor we have Ignored. Let us consider the PAL expression 

x eq 0 -) y f 2 (3.5-29) 

which we considered briefly in (3.5-16) and (3.5-17). To facil itate writing PAL 

structures to represent the tree form of expressions such as this one, we 
Introduce a set of tagging functions. For the three tags needed by this 
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example, we have 

def ARROW_ x y z = Tag ARROW (x, y, z) 
and BINOP_ x y z = Tag BINOP (x, y, z) 
and AP_ x y = Tag AP (x, y) 

(3.5-30) 

The convention Is that we use names made of upper case letters for tags, and 
append an underscore to get the name of the corresponding tagging function. 
Note that the taggers are curried. In terms of the taggers jUst defined, 
(3.5-l9) can be rewritten as 

ARROW_ (BINOP_ x 0 eq) y (AP_ f 2) (3.5-31) 

which is certainly easier to read than is (3.5-17). The complete set of tagging 
functions is listed In the appendix to this section. 

(3.5-31) Is still not correct PAL, and to correct It we must decide how to 

represent constants, variables and functors in syntax trees input to Translate. 
We make the following arbitrary decisions: Constants are represented by 

2-tuples whose first component is the tag CONSTANT and whose second component is 
the value of the constant. Variables are represented by 2-tuples whose first 

component is the tag VARIABLE and whose second component Is the name of the 
variable as a string. Since functors may appear in input only as the right son 
of a BINOP or UNOP node, they need no tags and we represent them by themselves. 
In writing PAL Input to translate, we would for example represent "eq" by 

fn x. fn y. x eq y 

We now show a correct representation of (3.5-29). 

write the definition of a variable Data whose 
(3.5-l9), and we have 

def Data = 
ARROW_ 
( BINOP_ 

( VARIABLE, 'x' 
CONSTANT, 0 

( fn x. fn y. x eq y 

VAR IABLE, 'y' 
AP_ 
( VARIABLE, If' 
( CONSTANT, 2 

We assume that our task is to 
value Is the tree form of 

(3.5-32) 

Kote the consistent indenting used, In which each right parenthesis Is either on 
the same line as the left parenthesis which It matches, or else Is vertically 

beneath it. Another way to write this Is 
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def Data = 

ARRO~L 

( Eo.... x 0_ 

y 

( AP_ f 2_ 

where 
0_ 

and 2_ 

and f 
and x 

= 
= 

= 

Sec 3.5 

(3.5-33) 
CONSTANT, ° CONSTANT, 2 

VARIABLE, I f' 

VAR IABLE, I x I 

and E~ x y = BINOP_ x y (fn s. fn t. s eq t) 

This latter form is particularly advantageous for expressing long programs. 
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// PRELIMINARY DEFINITIONS 

// P re 1 i min a r y de fin i t i on s for the e val ua tor. 

// * * * * * * * * * * * * * * * * * * * * * 

// Selectors and constructors for the stack and control. 

de f t ( x, y) = x / ITo p 0 f s t a c k 0 r co n t ro 1 • 

and rex, y) = y II Rest of stack or control. 

and Push(x, s) = x, s II Put new item on stack or control. 

def rcc Prefix(x, y) = /1 Put control x at top of control y. 
Null x -> y 
Pus h (t x , P re fix (r x, y ) ) 

def r2 x = r{ r x) /1 Rest of {rest of (stack or cont rol». 

and rJ x = r(r(r x» /1 Rest of (rest of rest). 

and 2d x = t{r x) II Second element of stack or control. 

an d 3 d x = t ( r( r x» / I Th i rd ••• 

def Empty_stack = nil II The empty stack. 

// * * * * * * * * * * * * * * * * * * * * * 

II Tagger and tag-checkers for structures. 

def Tag n s = s aug n /1 Tag structure s with tag n. 

and Is_tag s n 
Istuple s 

= II Does structure s have tag n1 
-> n eq s(Order s) false 

and Get_tag s = s( 0 rde r s) I I Return the tag of s. 

and Sons s = Order 5 - 1 /1 Return number of sons of s. 
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II Selectors, predicates and constructors for lambda-expressions 
I I and lambda-closures. 

def LAMBDA = '_lambda' II Tag for lambda-expressions and,closures. 

def bV x = x 2 
and Body x = x 3 
and Env x = x 4 

II Select bv-part of a lambda-exp or closure. 
II Select body part ••• 
II Select environment part ••• 

def Test(x, n) = 
lstuple x 
-) Order x eq n 

-) I sstrlng(x 1) 
-) x 1 eq LAMBDA 
I false 

I fa 1 se 
I fa 1 se 

within 

Is_lambda_exp x = Test(x, 3) 
~nd Is_closure x = Test(x, 4) 

def Cons_lambda_exp(bV, Body) = II Construct a lamb4a-expression. 
LAMBDA, bV, Body 

and Cons_closure{L_exp, Env) = II Construct a lambda-closure. 
LAMBDA, bV L_exp, Body L_exp, Env 

Sec 3.5 
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II Items and pred i ca tes for cont ro 1 st ructu re and stack. 

def GAMMA = '_gamma' 
and BETA = , beta' 
and CONSTANT ::. ':constant' 
and VAR IABLE ::. '_variable' 
and AUG ::. '_aug' 
and TUPLE = I_tuple' II Used only in stack. 
and ETA = '_eta' II Used in stack for recu rs ion. 
and RETU RN = '_retu rn ' 

def Test(x, y} = 
Istuple x 
-) 0 rde r x eq 2 

-) Isstring(x"l} 
-) x 1 eq y 
I fa 1 se 

I false 
I false 

with in 

Is_constant x 
and Is_variable x 
and Is_eta x 

= Test(x, CONSTANT} 
= Test(x, VARIABLE} 
- Testex, ETA) 

and Is_tuple x = 
Test(x, TUPLE} -) true 1/ Is It a constructed tuple? 
Test(x, CONSTANT) -) Nullex 2) /1 Is it nil? 
fa 1 se / I Ne t the r • 

and Is identifier x = II Is x a constant or a variable? 
Testex, CONSTANT) or Test(x, VARIABLE) 

def Same_var(x, y) = 1/ Are x and y the same variable? 
x 2 eq y 2 -

II Call for Y_VAR is produced in Translate for ree-defs. 

def Y_NAME = 'Y" // The name of "yli. 

def Y_VAR ::. 
VARIABLE, Y_NAME 

and NIL = II Used In 5T for COMMAs. 
CONSTANT, nil 

def I s_Y x = 
Isstring x -) x eq Y_NAME I false 
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II Tags for abstract syntax tree. 

def TEST = 
, 

test' II test ifso i fnot - . . . . . . 
and A Rf{OW : 

, 
arrow' II -) I ... . .. . .. 

and AP = '=ap' II fur: c t j on a 1 ilDP i cat ion 
and FIJ = 

, 
_fn' II lanbda 

and EQUAL = '_equa 1 ' II def in i t ion 
and ~J1 TH I N = '_with in' 
and REC : 

, rec I -
and FF = 

, 
ff' II function form definition -

and AfJD : 
, 

and' II 'and' def in it ion 
and CO~lI~A : '=comma ' II tuple make r 
and LET = '_1 et' 
and ~~HERE = 

, 
v.Jhe re I 

and B INOP = '=binop' II inf ix binary operator 
and urwp : '_unop' II pre fix ur.) ;. y ope rato r 
and PERCENT = '_percent' 

II Tagbers for tags in abstrGc~ syr; tax to r~ ~ • 

def AHHOH_ x y z = Tag ARRG\~ (x, y, z) 
and AP_ x y = Tag AP (x, y) 
and FIJ x y = Tag FN (x, ~' I -
and LET_ x y = Tag LET ( :0:" Y J 

; and WiERE x y = Tag HHERE {x, y) 
~/ 

and EllUAL_ x y = Tag EQUAL (x, v) 

and HITHIN x y = Tag HI TH Ir~ ( x # y) -
and REC_ x Tag REC (n i i aug JI. ) 

and FF x y = Tag FF (x, y) -
and AUG x y = Tag AUG (x, y) 
and SINOP_ x y z = Tag SINOP (x, 'I, z) 
and ur~oP x y = Tag UNOP (x, y) 
and PE RCEI~T x y z - = Tag PERCENT (x, y, z) 

def II subsudiary function for n-a ry tagge rs 
rec Q k T f = 

k eq 0 -) f T 
I ( fn x. Q (k-l) (T aug )C. ) f) 

within 
COMr~A_ n = Q n nil (Tag Cor·H'~A ) 

and 
Af~D n -- Q n nil (Tag AND) -

II Taggers for standa rd i ze d syntax t rae. 

def GAI>1r·'A_ x y = Tag GAf'.H~A (x, y) 
and BETA_ x y z = Tag BETA (x, y, z) 
and LAMBDA_ x y = Tag LAMBDA (x, y) 
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II Some useful functions for Transform. 

def Value_of x = II Evaluate a control element, to put it on stack. 
x 

and Val_of x = II De-tag a stack element, to get its value. 
x 2 

def Apply x y = 
let t = (Val_of x) <Val_of y) 
in 
CONSTANT, t 

and Augment_tuple x y = II Augment x with y. 

II 

Is_tuple x -) (TUPLE, Val_of x aug y) 
Error 'first argument of Aug not a tuple' 
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II E N V I RON MEN T 

II The following function is used in applying a lambda-closure. 
II The names on -the (possibly structured) bv-part 'Names' are 
II added to the environment 'Env', associated with the corres­
II ponding part of 'Values'. The ne\'/ environment is returned as 
II the value of the function. 

def rec Decompose(Names, Values, Env) 
test Is_variable IJames II Is it a singlf' variable? 
ifso (Names, Values, Env) II Yes, so add it to envi ronment. 
i f not I I C he c k con forma 1 i t Y • 
test Is_tuple Values 
ifnot Error 'conformal ity failure' II Tuple appl ied to scalar. 
ifso 
test 
ifnot 
ifso 

Order Names eq Order (Val_of Values) 
E r ro r 'co n forma lit y fa i 1 u r e • ' I I D iff e r i n g t up 1 e 1 eng t h s • 
I I P roc e s s a mu 1 tip 1 e - b v Dar t • 

( Q 1 Env 
whe re re c Q n e = 

n ) Order Names -> ~ 

Q (n+1) { Decomposc(Names n, (Val_of Values) n, e) ) 

II Define primitive environment, and provide function to look 
II up variables in the environment. 

def PE = II The primitive environme~t. 
Y_VAR, Y_UAHE, I I for recu rs ion 
nil 

and Lookup{Var, Env} = II Look un a variable in the environment. 
L Env II Start looking in Env. 
\'Ihe re re c L e = 

Null e -) Error 'variable not found in environment' 
Same_var(Var, e 1) -) e 2 II Found. 
L (e 3) I IKe e p 1 00 kin g • 
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def rec 0 X = II Standardize a definition. 
let Type = Is_tag x 
in 

Type EQUAL -) x II Already OK. 
Type ~JI TH IN 

-) ( let u, v = D(x 1), O(x 2) 
in 
EQUAl_ (v 1) ( AP_ (FN_ (u 1) (v 2» (u 2) ) 

) 

Type REC 
-) ( let w = O(x 1) 

in 

) 

Type FF 

EQUAL_ (w 1) ( AP_ Y_VAR (FN_ (w 1) (w 2» ) 

- ) ( 1 e t re c Q k T = 
k < 2 -> T 
I Q (k-1) (FN_ (x 1 k) T) 

in 
EQUAL_ (x 1 1) (Q (0 rde r( xl» (x 2» 

) 

Type AND 
-) ( 1 e t re c Q k S T = 

) 

in 

k ) Sons x -> (S, T) 
I (1 et w = D (x k) 

in 
Q (k+1) (S aug w 1) (T aug w 2) 

) 

1 et L, R = Q 1 nil nil 
in 
EQUAL_ L (Tag COMMA R) 

'I Error' improper node found in D' 

3.5-192 



) 

The Gedanken Evaluator 

def rec ST x / / S tan dar" d i ze a b s t r act s yn t a x t r e e • 

let Type = Is_tae x 
in 

Is_identifier x -) x 
Type BETA or TYDP. TEST or Type ARRO\'; 

-) BETA_ (ST(x 1» (ST(x 2» (ST,x 3» 
Type FN 

-) LAMBDA_ (x 1) (ST(x 2» 
Type COMMA 

-) ( Q 1 NIL 

Type 
-) 

Type 
-) 

Type 
Type 
Type 

whe re rec Q k t = 
k ) Sons x -) t 
Q (k+l) ( AUG_ t (ST(x k) ) 

) 

PE RCENT 
GAMr'1A_ (x 2) ( AUG (AUG_ NIL (ST(x -
LET 
( let w = D(x 1 ) /1 Standardize the 

in 
GAMMA 

) 

WHERE 
AP -) 
BIUOP 

- ( LAMBDA - (w 1) (ST(x 2) ) 

-) ST(LET (x 2) (x 1» 
GAMMA_ (ST(x 1» (ST(x 2» 

1 ) ) ) ( ST (x 3» 
de fin it ion. 

(ST (w 2» 

-) GAt'v1MA_ 
UNOP 

GAMMA_ 
AUG -) 

( GAMMA_ (CONSTANT, x 3) (ST(x 1» ) (ST(x 2» 
Type 

-) 

Type 
(CONSTANT, x 2) (ST(x 1» 
AUG_ (ST(x 1» (ST(x 2» 

Error' improper node found in ST' 
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II The function FF flattens a standardized tree into a 
I I con t ro 1 st ruct u re. 

def rec FF(x, c) = II Flatten stand~rdfzed tree x onto control c. 

let Type = Is_tag x 
in 

Is_identifier x -> (x, c) 
Typp. LAMBDA 

-> ( let Body = FF( x 2, nil) 
in 
Cons_lambda_exp(x 1, Bony), c 

) 

Type BETA 
-> ( let TA = FF(x 2, nil ) II True arm. 

and FA = FF (x 3, nil) II False arm. 
in 
F F ( x 1, (BETA, (FA, (TA, e») ) 

) 

Type GAMMA -> FF( x 2, FF( x 1, (GAMMA, c) ) ) 
Type AUG -> FF( x 2, FF( x 1, (AUG, c) ) ) 
Error 'improper node found in FF' 

II * * * * * * * * * * * * * * * * * * * * * 

de f T ran s 1 ate P r og ra m = I / The r ou tin e t hat doe s a 11 the W 0 r k • 
FF ( ST Program, nil ) 
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The Gedanken Evaluator 

II State transformations for the right-hand evaluator. 

def Do_return(C, 5, E) = 
r C, Push(t S, r2 5), 2d S 

and Eval_constant(C, S, E) 
r C, Push(Value_of(t C), S), E 

and Eval_variable(C, 5, E) = 
r C, Push( Lookup( t C, E), S ), E 

and Eval_lambda_exp(C, S, E) = 
let Ne\,,_5 = Cons_closure( t C, E) 
in 
r C, Push<r~ew_S, 5), E 

and Do_conditional(C, S, E) = 
let Selected_a rm = ( Val_of( t S) -) 3d I 2d ) C 
in 
Prefix(Selected_arm, r3 C), r S, E 

and Do_aug(C, 5, E) = 
let tJeH_5 = Augment_tuple (t S) (2d S) 
in 
r C, Push<r~ew_S, r2 5), E 

and Apply_closure(C, S, E) = 
let Rator = t S II The closure being applied. 
in 
1 et r~e\'/_C = 
an d tJe\'I_S 
and tJew_E = 
in 

Pref ix(Body Rator, Push(RETURN, r C» 
Push(E, r2 S) 

Decompose(bV Rator, 2d S, Env Rator) 

Uc\'/_C, Ncv-I_S, New_E 

and Apply_constant(C, 5, E) = 
let V = Apply (t S) (2d S) 
in 
r C, Push(V, r2 S), E 

and Apply_tupleCC, S, E) = 

and 

let New_S = Apply (t S) (2d S) 
ill 
r C, Push(V, r2 S), E 

Apply_Y(C, 5, E) = 
let V = ETA, 2d S 
in 
let New_5 = Push( 2d 5, Pus h ( V, r 2 5) ) 
in 
C, New_S, E 

and Apply_eta(C, S, E) = 
Push(GAMMA, e), Push(t S 2, S), E 

Sec 3.5 
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II Main program. Transform does one step in the evaluation, 
II and Evaluate is the driver for it. 

def Transform(C, 5, E) = II Do a single step. 
let A = C, S, E 
and x = tell Top of control. 
in 

Is_constant x 
Is_variable x 
Is_lambda_exp x 

-) Eval_constant A 
-) Eval_variable A 
-) Eval_lambda_exp A 

x eq BETA 
x eq AUG 

-) Do_conditional A 
-) Do_aug A 

x eq RETURN 
x eq GAt~t~A 

-) Do_retu rn A 

-) ( let r = t S II The rat or. 
in 

) 

Is_closure r -) Apply_closure A 
Is_constant r -) Apply_constant A 
Is_tuple r -) Apply_tuple A 
Is_Y r -) Apply_Y A 
Is_eta r -> Apply_eta A 
Error I improper rator l 

Error 'bad control I 

de f rc c E val ua t e ( C, S, E) = 
Null C -) t S I 
Evaluate(Transform(C, S, E» 

def Gedanken_evaluator Program = 
let Control_structure = Translate Program 
in 
Eva 1 uate (Cont rol_st ructu re, Empt y_stac k, PE) 
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Chapter 4 

ASSIGNHENT, S'l'RUCTURES and SHARING 

Heretofore we have been concerned almost exlcusively with functions and 

with techniques for defining and manipulating them. As we have seen, ~-calculus 

provides a natural and perspicuous mathematical model for such a study. 

From a conceptual point of view, the most important attribute of functions 

in mathematics is independence of the result of functional application on order 

of evaluation of· the function and its argument. This independence has led to 

the informal dictum 

to evaluate a functional application, first evaluate the 

function and its argument (in either order), and then apply 

the one to the other. 

Hore formally, the Church-Rosser theorem guarantees of the ,A-calculus the 

(weaker) result that all orders of evaluation which produce any value will 

produce the same value. The pragmatic import is that a programmer need not 

usually be concerned with irrelevant details of evaluation order when dealing 

with applicative expressions. 

But it is obviously not true that the functional approach to programming is 

sacrosanct; indeed, pure LISP is tile only common programming language in which 

applicative ideas are fundamental. Host languages (PI .. /I, for example) are 

predicated instead on the concept of a computational procedure, by which we mean 

specification of a computation in terms of a sequence of steps, each of which is 

to be executed in an order explicitly decreed by the programmer. we use the 

word imperatives to refer to those linguistic facilities (such as assignments 

and jumps) which are peculiar to the specification of procedures. The essence 

of applicative programn\ing is that subexpressions are for the most part of 

interest for their ~, while in imperative programming execution of 

subexpressions is frequently for effect. Thus we speak of the evaluation of an 

applicative expression, and of obeying an imperative. A command is a part of a 

program such as an assignment statement which is of interest primarily for its 

effect. 

Clearly, there is no theoretical basis on which to decide that procedures 

are less fundamental than functions from a linguistic point of view. Indeed, to 

be practical it must be conceded that imperatives mesh better with the current 

state of evolution of actual computers. Why then have we chosen in these notes 

to treat functions first? Simply stated, the only real justification sterns from 

our belief that applicative expressions provide a better springboard for the 

study of imperatives than vice versa. In this chapter and the next we use this 

springboard to deal with imperatives. We concern ourselves with two specific 

imperatives: the assignment con~and, and the goto command. The effect of 

obeying an assignment is to change the value of a variable, and the effect of 

obeying a goto is to alter what would otherwise be the normal order of execution 
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Sec 4.0 Assignment, Structures and Sharing 

of conwands. Adding these constructs to PAL, in all of their generality, has 

profound implications. In this chapter we study in depth the implications of 

assigrunent, and we consider gata in Chapter 5. 

4.1 New Linguistic Concepts 

'1'0 gain preliminary insight into imperatives, consider the three following 

programs, each of which defines the factorial function: 

def 

def 

def 

f n = 
g (1, 0) 

where rec 9 (r, k) = 
k eq n -) r g ( r* (k+l), k+l 

f n = 
let r, k = 1, 0 

in 

until k eq n do 

k := k + 11 

r := r * k 

) 1 

r 

f n = 
let r, k = 1, 0 

in 

L: if k eq n do goto 111 

k := k + 11 

r := r * kJ 

goto L1 

£.1: r 

(4.l-la) 

) 

(4.l-lb) 

(4.l-lc) 

'.1.'he first definition, which is applicative, differs from the one which we have 

been studying in that it uses a subsidiary recursive function to do the work. 

It clearly computes factorial, and it is written entirely in R_PAL. By 

contrast, the second and third definitions each involve a sequence of 

assignments. The intent when k is not equal to n is first to increment ~ by 

one, then to replace the value associated with E by the value of "r*k", and 

finally to reiterate these steps until k does equal ~, at which time £ is 

returned as the value. The colon is a syntactic device which signifies that the 

identifiers "Lit and "H" are labels. It is clear that the order in which the 

assignments are carried out is vital, whereas in evaluating "r*k" it makes no 

difference whether Itr" or "k" is evaluated first. The program in (4.l-lb) is 

written in L-PAL, while that in (4.l-lc) uses linguistic facilities available 

only in J-PAL. In this chapter we explain L-PAL, covering J-PAL in the next. 

Our task then is to provide an explanation of the imperative features of 

PAL. Before proceeding, we observe that the A-ca~culus is inadequate to explain 

these features. Consider 
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let x = 2 in x := x + 3; x (4.1-2a) 

The semantic intent here is to define a variable x initialized to l, to 

increment ~ by J, and then to return the value of ~,~. Desugaring according to 
our rules leads to 

(~x. x := x + 3; x) 2 (4.1-2b) 

We develop later a way to interpret expressions such as this one, but we point 

out here that our existing procedure is deficient. Naive use of ~-reduction on 

(4.1-2b) would lead to 

2 := 2 + 3; 2 (4.1-2c) 

which is manifestly absurd. Let us look ahead a bit to see how one might 

interpret expressions such as (4.1-2b). We would have proceeded in the R-PAL 
blackboard evaluator (or the R-PAL gedanken evaluator) by evaluating the body in 

an environment in which x is associated with the ob 1. In the L-PAL evaluator 
to be described we accomplish the evaluation by finding a place to store a value 

of ~, initializing that place to hold~, and then evaluating the body in an 

environment in which ~ is associated with that place. The assignment statement 
then changes the contents of that place. The place of course is a cell in a 

memory. 

chapter Outline: In Chapter 3 we introduced a gedanken evaluator (the CSE 
machine) for evaluating programs written in the applicative subset of PAL, which 

subset we now call R-PAL. This machine, which hereafter we call the right-hand 

evaluator or the R-machine, was defined in terms of a program which (after 

conceptually straightforward desugaring) was meaningful in terms of a normal 

order A-calculus reduction mechanism. In this chapter and the next we introduce 
two new machines, the left-hand (or L) machine and the jumping (or J) machine. 

The L-machine, defined in ter,ms of a program meaningful to the R-rnachine, 

accommodates assignments and sequences. In turn, the J-machine is defined in 

terms of a program meaningful to the L-machine, and accommodates, goto's and 

labels. 

~~e advantage of building up a hierarchy of machines in this way is 

threefoldz 

We isolate related sub-classes of important linguistic facilities in 

such a way that they can be studied separately. 

Each level of the hierarchy can be treated efficiently by, exploiting 

concepts and tools Which have already been established. 

The complete set of PAL semantics is reducible to intuitively 

satisfying axioms. 

A disadvantage of the procedure rests in the length of the train of reasoning; 

we need to remember the substance of each phase of the development in order to 

treat the next. In balance, however, the approach seems consistent with our 

definition of progranuning linguistics as the science of building large semantic 

structures out of smaller ones. 
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Generalized Tuples 

The gedanken evaluator of Chapter 3, the R-machine, accepts as input a 

syntax tree representation of a PAL program, produces therefrom a control 

structure via application of 'l'ranslate, and then executes a series of CSE state 

transitions which depend on that control structure. Clearly, each CSE state is 

itself a structure. It seems fair to conclude that in large part the study of 

programming lin~uistics entails the study of structures and their manipulation. 

Now, the class of structures and the facilities for manipulating them which 

we have encountered to date are rather primitive. In particular, the postulates 

for tuples which we have used thus far encompass only structures that are 

representable as~. For example, the structures 

(4.1-3a) 

are naturally represented in terms of 

section 2.1, or Aug, its curried version. 

written as 

Augment, the function postulated in 

The structure on the left could be 

(1, 2, (3, 4» (4.1-3b) 

which we have been regarding as sugaring for 

Aug [Aug (Aug ni 1 1) 2] [Aug (Aug nil 3) 41. 

It is a moot point whether or not the structure 

(4.l-4a) 

can be specified in R-PAL. Does the expression 

(1, x), (x, 3) where x = 2 (4.l-4b) 

zepresent this tree, or is 

(4.1-4c) 

a more appropriate drawing of (4.1-4b)? Nothing we have said so far answers 

this question, not even the programs in Chapter 3 for the CSE machine. In 

fact, no R-PAL program can distinguish between (4.1-4a) and (4.l-4c), although 
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they can be easily distinguished by an L-PAL program. As we see later, the 

L-PAL expression (4.l-4b) denotes a structure such as that shown in (4.l-4a), 
and (4.l-4c) might be written as 

(1, 2), (2, 3) (4.1-4d) 

Hare general types of structure are possible, such as 

(4.1-5) 

5uch reentrant structures are not just pathological cases but arise naturally in 

many cases of interest. (We Ree such structures in the output of the J-PAL 

version of Translate.) In order to accomodate these more general structures, we 

introduce into PAL the inf ix functor aug. Informally, if E denotes a k-tup Ie, 

then the PAL expression 

E aug F 

denotes an object that transforms precisely as does 

Aug E F 

However, whereas the specification of Aug leaves unanswered such questions as 

that raised by consideration of (4.1-4), we specify aug so as to answer them. 

Our objectives in introducing the functor aug are two-fold: first to 

enrich the class of structures \'Ti th \tlhich we can deal, and second to increase 

the efficiency with which we can manipulate them. The problem of efficiency in 

pure ~-calculus manipulation of structures is intimately related to the 

"copying" implici t in the reduction of A-expressions. Consider for example the 
reduction 

C3 
(~x. -x-x-) 5 ~ -5-5- (4.1-6 ) 

in which ~ may be an arbitrary AE. We have already pointed out (on page 

3.2-1'7) the enor~ous gain in efficiency afforded by evaluating ~ before 

substituting for the free occurrences of ~ within the body of the rator. But 

still another problem remains, namely the need for providing as many copies of 

the value of ~ as there are free occurrences of~. If the value of 5 is 

represented by only a few bits of information, as in the case where S denotes an 

integer, then the cost of inserting several distinct copies of this 

representation when carrying out the reduction is unimporta~t. On the other 

hand, when ~ denotes, say, a SOD-tuple, then the cost of maintaining multiple 

copies cannot be ignored. Thus we are motivated to substitute not a 

representation of the value of §. itself, but instead concise informa.tion telling 

us . how to access that representation. In common parlance, such information is 

called a "pointer": One elects to keep only one copy of the representation, 

stored away somewhere, and replicate as many copies of pointers to the place of 

storage as may be necessary. 
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Addresses and Contents: The possibility of "storing things away somewhere" 

leads Us to the question of the properties of the place where we might do the 

storing. such a place to store information we call a memory. We use the term 

address for the name of a location in a memory where an object may be stored, 

and we call the storage place itself a~. We must distinguish carefully 

between addresses and obs. However, once this distinction is made, a whole new 

panoply of manipulatory procedures becomes i~ediately available. The situation 

is i.llustrated in Figure 4.1-1, in which we Use circles to indicate addresses 

and dots with directed arcs emanating therefrom to indicate tuples whose 

components are addresses. Clearly, from Figure 4.l-la we can obtain 

Figure 4.l-lb by changing the contents of x to be the contents of 

(x 1); or 

Figure 4.l-lc by'changing the contents of (x 3) to be the contents of 

(x 1); or 

Figure 4.1-ld by changing the contents of (x 2) to be the one-tuple 

Ifni 1 aug (x 3)"; or 

Figure 4.1-le by changing the contents of (x 2) to be the 'one-tuple 

"(nil aug x)". 

In L-PAL these transformations may be effected respectively by the assignment 

conunands 

x := 

x 3 := 

x 2 .-
x 2 .-.-

x 1 

x 1 

nil 

nil 

aug (x 

aug x 

3) 

"-

(4.1-6a) 

(4.l-6b) 

(4.1-6c) 

(4.l-6el) 

It is clear from Figure 4.1-1 that 

affects efficiency but also introduces 

the concept of addresses not only 

the notion of sharing in structures: 
Specifically, we say that two constituents of a structure share if and only if 

they designate the same address. In Figure 4.1-1 we rely simply on location 

relative to the sheet of paper to indicate an address. That is, a location on 
the page corresponds to an address in a memory. 

The flexibility afforded by addresses, however, is not gained without cost 

in intellectual overhead. Stuely of the assi gnrrent commands in (4.1-6), for 
example, indicates a forfeiture of contextual independence (cf page 2.3-67). 
For example, in equation (4.l-6b) the expression "x 3" is to be interpreted as 

the address which is the third component of~, whereas the (syntactically 

equivalent) expression "x 1" is to be interpreted as the contents of the cell 

whose address is the first component of~. Thus the meaning of such expressions 

depends on the context in ~ they ~, in this case on whether they occur 

to the left or to the right of the ~ssignment operator ":=". This contextual 

dependence gives rise to the nomenclature "L-value" and "R-value" to indicate 

whether one means an address or its contents, respectively. But the contextual 

dependence in PAL is not always so simple, as careful study of (4.1-6c) 

indicates: Here comparison with Figure 4.1-ld reveals that both "x 2" anel "x 3" 
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Sec 4.1 Assignment, Structures and Sharing 

are to be interpreted as addresses, even though they occur on opposite sides of 

the ":=". We see later that this fact hinges on a design decision concerning 

the semantics of the infix operator "aug" -- it is not true in PAL that "aug" is 

just an infix version of the curried function "Aug". 

The Functors "aug" and "$": The semantics of PAL's infix functor aug is as 

follows: If B denotes a k-tuple and t is any expression, then the expression 

E aug F 

denotes that (k+l)-tuple whose first k components share with the ~ components of 

~, and whose (k+l) -st cauponent shares with F. '1'his is not the only way we 

might have defined aug, and other possibilities are suggested by Figure 4.1-2. 

Consider the two tuples t and ~ shown in Figure 4.l-2a, and the problem of 

extending ! to have s as a third component. The simplest procedure would be to 

draw a third arc, as indicated by the (crossed-out) dashed line; but this 

operation has the undesirable effect of altering structure !, so that if "aug" 

were defined this way the value of 

[Order t eq 2 -) t 1 1 , t 1 2] + [(t aug s) 3 1] 

would be ..2. or~, depending upon whether "t aug s" were evaluated before or after 

"order t". This violation of invariance to order of evaluation seems 

unwarranted, and was rejected in the design of PAL. 

Alternatively, as illustrated in Figure 4.1-2b, we could make complete 

copies of ! and ~, which is presumably the operation implied by the function 

"Aug". '.L'his leaves t and s uneffected, but implies possible monumental 

inefficiencies which we have already discussed. Of course copying structures 

such as those of (4.1-5) is a distinctly non-trivial task. 

An example of the use of the infix operator "aug" in PAL is illustrated in 

Figure 4.1-2c. Asswne that! and ~ are each associated with addresses, and that 

t's address references a memory cell containing a k-vector of addresses. Then, 

to evaluate lit aug s": 

1. Form a (k+l)-vector of addresses. 
(4.1-7) 

2. Copy the ~ addresses specified by t into the first ~ components 

of that vector. 

3. Copy the address of ~ into the (k+l)-st component. 

we say that "aug" evaluates its left argument in R-mode, and its right argument 

in L-mode. 

It may happen that the left argument of "aug" is already an R-value, as in 

-- nil aug s 

In this case step 2 of (4.1-7) is to be omitted. Alternatively, it may happen 

that the right argument of "aug" is an R-value, as in 
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t aug 7 

In this case we are to obtain a new address, store the given R-value into it, 

and use this address as the (k+l)-st component in step 3 of (4.1-7). In 

defining the L-machine we must be careful that transfer functions from L-values 

to R-values or from R-values to L-values are executed automatically whenever the 
context demands them. 

'.rhe sharing effects of n aug" are evident in Figure 4 .1-2c: The firs t two 
conponents of fIt aug s" share with the corre sponding components of !, and the 

third component shares with s. But it may happen that sharing with s is 

undesirable. In this case, a programmer may invoke PAL's "unsharing" operator 
"$", as illustrated in Figure 4.l-2d. "$" is a prefix operator which, when 

applied to an address, extracts its 

addresses) • Thus "$" is simply 

contents (in 
a transfer 

this case, a 2-vector of 
function from an L-value to an 

R-value, defined to be nugatory if its argument is already an R-value. 

Alternatively, we may think of "$" as making a one-level copy of its argument. 
(The mark "$" is mnemonic for a crossed-out "S", standing for "unshare".) 

'l'he distinction between an address and its contents (i.e. between L-values 

and U-values) is fundamental to the concept of structures in almost every 

programming language which deals with them. The design decision in PAL is to 

associate an address implicitly with every node of a structure: The effect is 

to permit every component of a tuple to be updated by an assignment command. An 

alternative design decision would have been to associate a node with an address 

only under explicit instruction by the programmer, in which case only nodes so 
designated would be updatable. Although in some sense less flexible, this 

alternative appears to have an advantage in the readability of programs which do 

not entail pervasive updating. With either alternative, a little thought should 
make it clear that PAL's "aug" and the postulated function "Aug" are 

indistinguishable ~ the absence of ~ assignment command. 

Nemories 

A major part of the task of specifying L-PAL's semantics is eXplication of 
the effects of sharing. To do this we find it useful to add a memory to our 

evaluating mechanism, as a fourth component. Although for the purposes of 
blackboard evaluation we can be fairly casual about the properties of memories, 

we must be more formal when it comes to specification of the L-PAL gedanken 

evaluator. Our objective now is to specify the memory to be used in the 

gedanken evaluator. 

There are two obvious ways to proceed: We can either postulate memories as 

abstract objects in the universe of discourse, or we can represent them by obs 

already available to us. Before investigating each of these possibilities in 

turn we consider intuitively what properties we want. We think of a memory as a 
collection of~. Each cell has an address which identifies it and a 

contents which is any ob. Given any memory, we can always find a second memory 

just like it but with another cell. (This property is rather a departure from 
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the rcal world.) We can find the contents of any cell in a memory, and given 

any memory we can create another memory just like it except that one cell has a 

different contents. 

~ostulated Memories: Although memories are rather different sorts of things 

from strings or integers, there is no reason why we cannot use the same 

technique to put memories into the universe of discourse that we used 

with strings. The fact that we start with less intuition about memories 

had about strings makes axiamatizing memories all the more useful: 

forced to be precise. 

snrt of 

earlier 

than we 

We are 

In choosing the postulates, we are guided more hy a desire to model the 

characteristics of a sheet of paper than by a need to mimic the characteristics 

of an actual computer memory. Specifically, we think of the paper as being 

marked off in squares, each of which (like a cell) may contain an ob. Since 

each square of paper is distinct, we do ~ envision the possibility that a 

square might contain another square, although it might contain the name <i.e., 

address) of one. By analogy, we do not permit a cell to contain another cell. 

In order to accommodate tuples, hm"e,'er, we 0.0 elect to permit a cell to contain 

a vector of addresses. These considerations lead us to adopt the following 

postulates for memories. We assume a universe of discourse 1Land a set a of 

addresses, of which we require only that they be distingui shable. ~ then ha,'e 

the 

oefinition: A memory system !~ ~, Contents, Extend, update} over a 

set..tt is composed of a set 'r1\ of memories and a set of ~ of 

addresses, along \-lith the three functions Contents, Extend and 

Update, such that the following hold: 

(a) There is a function Contents: }tf (l) a. .... .11. The address G'" is 

said to be encompassed ~ memory ~ if 

Contents (M, Q") 

is defined. 

(b) There is a memory M# that encompasses no addresses at all. 

It is called the empty memory. 

(c) There is a function Extend: OIt alll) ~ Cm(!) a.) 

1-1 '1( and x e- .n, and if 

such that if 

Extend (M, x) = (M', ~) 

then 2" is not encompassed by .t! and, for any b , a., 

Contents (M I, b) 
= [Cxontents (M, b) if b ':f 0-

if b = r:1' 

(d) There is a function Update: m ~Q.. (9fl. ~)f(. such that if M 

is a memory, 0' an address encompassed by it, and x ~ fl.., 

then the memory MI denoted by 
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Update(r-t, (1', x) 

satisfies, for any address £, 

Contents (M', b) 
= JcxontentS(M, b) if b # ~ 

1 if b U' 

(e) The set ~ of memories is the closure of the function Extend 

over the empty memory H# and the universe of discourse .It. 

Clearly the set of addresses is arbitrarily large, since we can use Extend 

as often as we like and each use must yield a "new" address. The essence of 

Lxtend is that it can always find still another address, distinct from any 

already encompassed by the memory supplied to it. These memories differ in 

another important way from those of real computers, in that the contents of a 

cell can be any ob whatsoever. In real 

specified size, such as 32 bits, and it 

in one. A problem to be solved by any 

memories such as those just described in 

computers, a cell is usually some 

is just not possible to store a 20-tuple 

implementer of PAL is to represent 

the memory of a real computer. 

Note the implications of the fact that the operation Update specifies one 

memory in terms of another one, just as the operation Succ specifies one number 

in terms of another. But Succ does not "destroy" its operand, and neither does 

Update. In this regard also our class of abstract memories differs 

significantly from the memory of an actual computer. In the latter case, a 

change in the contents of a memory cell destroys the previous contents of that 

cell: the transformational analogy is to erasing a square of paper and 

rewriting in it, with only one piece of paper ever being of interest. By 
contrast, in the abstract case the transformational analogy is to having a sheaf 

of papers each with slightly different inscriptions, and to specifying one sheet 

in terms of another by specifying how it differs in a particular square. 

In our L-machine, the role of memories is meta-linguistic. That is to say, 

we elect not to include memories as objects in the domain of discourse of the 

programmer. Instead, we use memories in the evaluator to represent objects 

(such as tuples and programmer-defined functions) which the programmer is 

allowed to manipulate. The rationale behind this philosophical decision is 

simple: By constraining the programmer, we bound him away from certain 

well-defined but disastrous transformations which would otherwise be legal. For 

example, in defining the L-machine we discipline ourselves to reflect reality by 

never requiring acce ss to more than one memory at a time. Specifically, we 

discipline ourselves not to write expressions such as 

Contents(m, a) + Contents(n, a) 

where n = Update(m, a, 5) 
(.4.1-8) 

in which "a" is an address, a~d "m" and "n" denote different memories. Such 

expressions are meaningful in the abstract, but are inconsistent with a picture 

of the real world wherein each instantaneous memory configuration represents a 

single distinct abstract memory. In terms of our analogy between memories and 

sheets of paper, we always "throwaway" one sheet of paper as soon as we have 
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defined another. 

lJefinition by Representation: ~ve are now in a position to define L-PAL's 

tuples. Formally, we replace the tuple axioms of section 2.2 by the simple 

defini tion 

~ tuple is ~ vector ~ addresses ~ ~ memory. 

'l'hus tuples are now defined indirectly by representation in terms of memories, 

which in turn are defined by axiom. Rather than being stated explicitly, the 

properties of tuples follow implicitly from the properties of memories and the 

operations to which memories are amenable. Consider for example the structure 

shown in Figure 4.1-le. We can describe the associated tuple as being stored in 

the memory ce 11 wi th address 0"', , where 

nil aug cr, 
(4.1-9a) 

0'", 'cat' 

Here our writing indicates that the cell with address ~ contains the 3-vector 

shown, cell ~~ contains Z, etc. A possible PAL program denoting this structure 

is 

let x = 7, nil, 'cat' 

in 

2 nil 
(4.1-9b) 

x := aug x; 

x 

'J.'here are of course other possible PAL programs. 

It is important to realize that definition by representation is equally as 

valid as definition by axiom. Indeed, the semant1cs of most programming 

languages is defined by representation, in the sense that the implementation in 
an actual computer is the principle definition. Horeover, even in prinCiple, 

recourse to definition by representation entails no loss of power: It is 

straightforward to show that the natural numbers are representable by 

~-expressions with no free variables, and conversely Godel has shown that all 

recursively definable functions are representable by the natural numbers. It 

follows that one's choice of definitional procedure must rest on questions of 

convenience and taste, rather than on more fundamental questions of mathematical 

validity. 

There is, however, one fundamental question which deserves ~omment, namely 

the distinction between strong and ~ representations. Consider the natural 

numbers: Peano's axioms enumerate properties that must be evidenced by any set 

if it is to qualify as a representation of the "natural numbers". Although 

various sets of X-expressions can be concocted which evidence these properties, 

such A-expressions also 

ab~ence of free variables 

A-expre ssion, so tha t 

have 

any 

the 

other properties as well: For example, in the 

A-expression can be applied to any other 

representation of l can be applied to the 
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representation of l even though this operation is not meaningful in arithmetic. 

Any representation that has properties beyond those required of it is called 

"weak", whereas a representation that has only the necessary and sufficient 

properties is called "strong". A problem inherent in definition by 

representation is avoiding the encroachment of unwanted additional properties. 

Represented Memories: 

defined memories by 

The preceeding discussion suggests that we could have 

representation rather than by postulate. We now show two 

different ways to define them via representation by obs already in our universe 

of discourse. Our first approach is to regard a memory as a function, and to 

represent addresses by integers. To implement Extend we arrange that "cellO" 

always contains tile next free address. We have then 

def l::mpty_memory = fn x. x eq 0 ..;.) 0 I error 

and Contents{M, a) = M a 

and Extend{H, v) = 
let a = 1 + H 0 II next free cell 

in 

(fn x. x eq 0 -') a , x eq a -) v , H x), a 

and Update(H, a, v} = 

fn x. x eq a -) v l-1 x 

(4.1-10) 

This representation is weak for several reasons: Representation of addresses by 

integers gives addresses unwanted properties. For example, we can add t\VO 

"addresses", which we could not do with postulated addresses. A second weakness 

is that postulated memories cannot be applied (i.e., they have empty domain), 

whereas these representations can be applied to some integers. On the other 

hand, we have the desired property of an arbitrarily large set of 

distinguishable addresses. Of course, there is the very practical objection to 

use of this representation in that it is disasterously inefficient if much 

updating is done. 

An interesting aspect of the preceeding discussion is that memories, which 

provide the essence of what distinguishes L-PAL from R-PAL, can be represented 

by purely applicative functions. It turns out that we could instead represent 

memories by R-PAL structures. Consider the structure definitions 
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A memory has two components: a 

nextcell, which is an integer, and a 

~. 

A mem is either 

empty, or it is 

non-empty and has three parts: an 

address ,and a 

~, and a 

~. 
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~hus a mem is much like an environment in the R-machine. (See (3.5-8) on page 

3.5- 'S~.) We select the rather obvious choice of representing a memory by a 
2-tuple and a non-empty mem by a 3-tuple, and we have 

def Empty_memory = 
0, nil 

and Contents (r'lernory, Address) = 

Look (Hemory 2) 

where rec Look Hem = 
Address eq ~~ 1 -> Mem 2 I Look(Mern 3) 

and Update(Memory, Address, Value) = 
Nemory 1, (Address, Value, Hemory 2) 

and Extend(Hemory, Value) = 
let NC = 1 + Memory 1 II next cell 

in 
let NextIvlemory = NC, (NC, Value, Memory 2) 

in 

NextHemory, NC 

(4.1-12) 

As in the functional representation, a memory that has been updated very often 

leads to serious inefficiencies in both time and space. This representation is 
of course also weak. It is the representation actually used in the L-PAL 

gedanken evaluator. 

r£he inefficiency of each of these representations arises from the fact that 

a structure in R-PAL, once created, can never be changed. One would expect that 
an L-PAL representation of memories in which assignment statements could be used 

would be more efficient, so we show that this is indeed the case. (Of course, 
there is no value to this particular definition as part of a formal definition, 

since we do not permit ourselves to define L-PAL via an L-PAL program.) Since 

we are writing in L-PAL we can exploit the fact that functions can be executed 

for their effect only, and we refrain from supplying the memory as a parameter 
or returning a memory as part of the result. We then have 
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def 

and 

N = nil II the memory 

within 

Initialize~emory() 

H := nil 

Contents A = 

MA 

and (4.1-13) 

and 

Extend V = 
M := H aug $V; Order H 

Update(A, V) 

H A := V 

Here there is only one memory rather than a set of them. Initialize_memory and 

Update are executed only for effect, contents has a useful value and no effect, 

and Extend has both a useful value and an effect. 

New Linguistic Constructs 

OUr purpose in developing abstract memories has been to provide a 

conceptual base in terms of which the ideas of seguence and assignment can be 

made precise. We now turn to this task, that is, to the formal definition of 

L-PAL. In defining the L-Nachine, we continue (as with the R-Hachine) to assume 

that the program to be evaluated has already been represented in the form of an 

abstract syntax tree. The new node-types incorporated into L-PAL are 

illustrated in Figure 4.1-3. The semantic intent of "aug" and of ":;;" has 

already been discussed, but we have still to 

variations on the conditional. First though 

converning the value of a sequence, say "El; E2". 

is· to be executed for its effect only, so 

discuss assignment and the 

we make an arbitrary decision 

Pre sumably, the expre ssion El 

its value is of no interest. 

Accordingly, we take the value of any such sequence to be the value of E2. 

Assignment: A second arbitrary decision concerns the value of an assignment 

cor(mand. 'l'hus far we have established the side-effect of an assignment: to 

update the value associated with a variable or with a component of a tuple. But 

Figure 4.1-3 implies that an assignment conwand can occur anywhere that an 

expression can occur -- and expressions have values. 

Two alternatives seem reasonable. The first is to introduce a new and 

distinct ob into our universe of discourse, say ~~, and adopt it as the value 

of a u:=" node; the second is to assume that the value of a ":=" node is the 

value of B2. Efficiency of computation slightly favors the latter alternative, 

since not infrequently a programmer may wish to re-use this value immediately. 

But the former alternative offers a correspondingly slight advantage in progr~\ 

explicitness, hence readability, and also eases tile task of program debugging, 

since it makes it less convenient to write programs such as 
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x + (x := E2) (4.1-l4a) 

whose value i5 50 obviously dependent on the order of execution. PAL opts in 

favor of the concept of 9urnm...l, and incorporates the identifier "dummy" to denote 

this ob and the predicate "Isdummy" to test for it. In order to retain the 

value of E2 with this decision, the programmer need only write code such as 

x + (x := E2: x) (4.l-l4b) 

Of course, the semantics of this is also undefined because of its dependence on 

order of evaluation. 

Figure 4.1-3 shows that the left son of a ":=" node may be any expression, 

but the examples used so far show only variables or components of a tuple used 

in that position. Fj,'he usual semantic intent is that the left side be evaluated 

to yield the location into which to do the store. Thus if T denotes a tuple, 

obeying 

T k := E (4.l-1Sa) 

updates the k-th component of T (providing that it exists). Similarly, obeying 

(x > y -> x I y) := 0 (4.l-1Sb) 

sets to zero whichever of ~ or ~ was previously greater. An exception to this 

general rule occurs if the left son of the ":=" node is a COMMA node, in that 

then it is the components of the tuple that are updated. Thus obeying 

x, y := x+l, y+l (4.l-l6a) 

causes both ~ and ~ to be changed. The rule is that, if there are k sons of the 

COlvlMA node which is the left son of the ": =" node, then the expression on the 

right must denote a k-tuple. The semantics is that the ~ R-values on the right 

are all evaluated before any updating is done. Thus obeying 

x, y := y, x (4.l-l6b) 

causes the values of x and :i to be interchanged. He later explain such 

simUltaneous assignment in terms of simple assignment, regarding (4.l-l6b) as 

sugaring for 

Assign# (x, y) (y, x) (4.l-l6c) 

where Assign# is an identifier already in the environment which denotes a 

function that does simUltaneous assignment by iteration of simple assignment. 

This function is given in Section 4.2 under the heading "Library Functions". 

A second use of dummy in PAL involves the function ~. The intent of 

~, of course, is to provide a side-effect on the world outside the computer 

itself, specifically to output (say, onto a piece of paper) a written 

representa tion of the argument to which Print is applied. As with assignments, 

the value of "Print E" is taken to be dummy for any expression ~. 

Variations on the Conditional: As do most other programming languages, PAL 

provides several syntactic variations on the conditional. Each of 
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test (B) ifso (El) ifnot (E2) 

test (B) ifnot (E2) ifso (El) 
(B) -) (El) I (E2) 

Sec 4.1 

(4.l-l7) 

has identical semantics, although they have different parsing rules. (See the 

PAL Nanual.) 

Decause of the L-PAL possibility of execution for effect, it is often 

useful to have a one-armed conuitional. The intent of the construct 

if El do E2 (4.l-l8a) 

is to execute E2 when and only when the value of El is~. We take (4.l-l8a) 

as syntactic sugaring for 

test El ifso E2 ifnot dummy (4.l-l8b) 

Similarly, the construct 

unless El do E2 (4.l-l8c) 

is syntactic sugaring for 

test El ifnot E2 ifso uummy (4.l-l8d) 

That is, (4.1-l8c) is equivalent to 

if not (El) do E2 (4.l-l8e) 

but it is more convenient to use where it is appropriate. Note that the value 
of an "if" or "unless" node is either that of E2 or ~unmJ" depending on the 
value of El. 

PAL also provides a feature somewhat akin to the iteration statements of 
other languages. 'l'he intent of the construct 

whi Ie El do E2 (4.l-l9a) 

is to execute E2 repeatedly, so long as the value of El remains lr~~. We take 

the value of the overall construct to be ~~. Using labels (as in J-PAL) we 

can say that (4.l-l9a) is sugaring for the program 

L: if El do (E2; goto L) (4.l-l9b) 

where!! is some identifier not otherwise used. However, this explanation, while 

perhaps helpful to the reader, cannot be used at this time as part of the formal 

definition of "while", since we must restrict our explanations to use only 

R-PAL. A conceptually simple (but somewhat inefficient) way to formalize the 

semantics of (4.l-l9a) makes recourse to the auxiliary function Loop# defined by 
the PAL program 

def rec Loop# x y = 
if x nil do (y nil, Loop# x y) 

( 4.1-20) 

Assuming that the function Loop# is known, we encapsulate the intent of 
(4.1-l9a) by considering it as sugaring for the combination 
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Loop# [)d). El] [,\ (). E2] 

in which the "}. () • .--w" construct is used to defer evaluation of El and E2 until 

(each) application of LOop#. Similarly, 

until El do E2 (4.1-21a) 

is equivalent to the J-PAL program 

L: unless El do (E2: goto L) (4.l-2lb) 

but is regarded for now as sugaring for 

LoOp# [A(). not (El)] [~(). E2] ( 4.1-21c) 

Note that for both "wHile" and "until" the boolean is evaluated before the first 

execution of the body, so that there is the possibility of executing the body 
zero times. 

It should be clear that the "if", "unless", "while" and "until" constructs 

add no new power to the language. On the other hand, as syntactic devices they 
can contribute significantly to program readability. In particular, "while" and 

"until" correspond to a specialized form of recursion (called iteration). We 

see in conjunction with J-PAL that the special nature of such iterations makes 

it possible to accommodate them efficiently without recourse to recursion. 
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4.~ M=chanical I::valuation of L-PAL Programs 

Just as the formal definition of R-PAL is provided by a gedanken evaluator 

whose algorithm is represented by a PAL program, so also the formal definition 

of L-PAL is provided by a gedanken evaluator whose algorithm is represented in 

R-PAL. And just as we gained familiarity with the R-PAL evaluator by simulating 

its operation with blackboard evaluator conventions, so also we develop an L-PAL 

blackboard evaluator. The strategy is a bit different for L-PAL, however, since 

certain aspects of the language (such as simultaneous assignment) are easier to 

explain in terms of tile gedanken evaluator than to carry out in the blackboard 

evaluator. We adopt in each case the more expedient mechanism for explanation. 

~lackuoard hvaluation 

~he principle distinction between L-PAL and R-PAL involves the use of 

memories to specify sharing. In addition to the three components (Control, 

stack and I::nvironment) of the CSE machine, we now introduce a fourth component, 

1~1, for memory. 'l'hus the gedanken evaluator for L-PAL is a CSEM machine. 

With L-PAL as with R-PAL, blackboard simulation provides insight into the 

evaluation of programs. In this section we extend the informal blackboard 

bookkeeping rules of Chapter 3 to accommodate the new constructs (":=", ",", and 

":;;") which occur in the control structure produced by L-PAL's "Translate" 

function, as well as show the control structure produced by the variations on 
the conditional. We must of course change the handling of "aug". 

lwlemory Conventions: For blackboard purposes it is convenient to use a separate 

column to keep track of the state of the memory, like this: 

(;ontrol stack Environment 

1::0 EO 0: PE 

Figure 4.2-1 Bropty Blackboard Evaluator 

'l'he memory we are using is similar to that of (4.1-12), page 4.l-~II, in which 

PAL structures are used to represent memories. For use by ~~~~Q§, the left 

column of the memory contains the index of the last cell used. Addresses as 

represented by O"J , 0'.1.' ••• , \'/hen they appear in the stack or elsewhere. (a-- may 

be thought of as' mnemonic for storage.) 

Any representation of memories must permit us to realize the three 

functions we need. Figure 4.2-2 shows a memory that has been extended and 

updated several times. On the first extension !£ was put into cell ~,. Then 

cell ~~ was created holding ~, and then~, was updated to hold l&. The rules 

are as follows: 
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'1'0 ex tend the memory, note the last integer used in column A. 

Write the next integer on the current line in column A, and make 

an entry for that cell in columns Band C. 

To update a cell, make a new entry for it in columns Band C. 

Find the last entry for that cell in column a, and cross out 

columns B and C on that line. 

To find the contents of a cell, look for an uncrossed-out instance 

of its address in column B. The corresponding entry found in 

column C is the value. 

If the rules are followed, column B can never contain more than one 

uncrossed-out instance of any given address. The purpose of the crossing out is 

to decrease the possibility of human error in the lookup operation. 

He have already noted the PAL design deci sion that all programmer-defined 

names should be variables, by which we mean that they should be updatable. The 

implication of this is that the environment s~ould couple a name with an address 

rather than with a value. Thus we have the transition 

.... 
, .. 

Here cell 4 contains the value of ~, shown as 2. Subsequent execution of the 

control corresponding to the PAL statement 

X 1= 3 
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would lead to the transition 

Q"" .:! ••• ... '!!::::1 ••• 'fa J -
At the same time this last line is obeyed, we would also cross out the earlier 

memory pairing of address 4 with ~. 

As an example, consider the L-PAL program 

let x = 2 

in (4.2-la) 

x := x + 3; 

x 

which was also shown in (4.1-2). This desugars to the AE 

(~x. x := x+3, x) 2 (4.2-lb) , ~ 

and to the control structure 

a ~~ 2 

6, bl,:: = x + x 3 (4.2-lc) 

S1 = X 

Note that the PAL sequence "Ell E2" leads to a control sequence consisting of 

the control for E2 followed by a semicolon followed by the control for El. We 

consistently abbreviate with a b that piece of control following a semicolon. 

hXecution in an L-PAL blackboard evaluator of this control is shown in Figure 

4.2-3. There are many new ideas in this evaluation, which we mention briefly 

here and explain in more detail in the next subsection. On line 2 we must apply 

a closure. Since we have agreed that environments associate names with 

addresses, we must extend the memory (as in line 3) and replace the ~ in the 

stack by ~I' the address of a cell that holds~. Then in line 4 we make a new 

environment in which x is associated with ~I. In line 5, Z is to be applied to 

~ and ~. Since ~ needs R-values, we replace ~I by the contents of that cell, 

so that.t can be applied to l. and 1 on line 6. On line 7 we update cell 1 to 

nold~. ~he memory entry on line 3 is crossed out at this time. The answer 

shown is ~I as the stack item left on completion of the evaluation. Of course 

the value we are interested in is 5, the contents of that cell • .... 

control Items: 

four items: 

The control items new to the L-PAL evaluator are the following 

statement separator 

:= assignment functor 

$ unshare functor 

aug tuple extender 

4.2-219 



Sec 4.2 Assignment, Structures and Sharing 
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Fi.gufe 4.2.-3: L-PAL Evaluatio" ot (1f,J.-I) 

Much of the processing required for these is implied by the discussion of 

Section 4.1 and the example just given. For example, we have agreed that the 

value of the sequence 

El; E2 

is to be that of 1::2 and that the value of El is to be discarded. 'rhus the 

for a semicolon in the control is simple: Discard the top stack item. 

rule was used on line B of Figure 4.2-3. 

rule 

This 

If := is the top control item, the top of the stack should be an address 

and the second stack item should be an ob. The effect of obeying the := is that 

the cell whose address is on top of the stack is to be updated so that its 

contents is the ob which is the second stack item. In going from line 7 to line 

ij of Figure 4.2-3 cell 1 is updated to hold i. Our blackboard convention is to 

wri te a new "memory layer" showing the new address-contents pairing for that 

cell, and to line out the last such pairing so as to reduce the possibility of 

human error. 

'.i'he unsharing functor "S" is of use when an address is the top stack item. 

Its effect is merely to replace the address on the stack by its contents. 

hilen aug is executed the top stack item is to be a vector of length n 

(where n is perhaps zero) of addresses, and the second stack item is to be an 

address. The effect is to remove these items and to leave in the stack a vector 

of length n+l of addresses, the first ~ of those being the addresses in the 

previous top stack item and the n+l-st being the old second item. 

4.2-220 



-~ 

tv.lechanical hvaluation of L-PAL Programs sec 4.2 

context Rules: Let the term ~, when used to refer to a stack item, refer to 

whether the item is an R-value or an L-value. The discussion of the previous 

subsection is predicated on the assumption that the top one or two stack items 

already have 

encoWltered. 

practice is 

example. 'l'he 

the correct mode before the control 

'l'hat this fortui tous situation does not 

shown in several places in Figure 4.2-3 

evaluation rule is simple: When the mode 

item under discussion is 

always come about in 

-- on lines 2 and 5 for 

of a stack item is not 

as needed, fix it, using either Contents or Extend as appropriate. (Contents 

was used on line 5 and Extend on line 2 of Figure 4.2-3.) Thus for example we 

require that, if the top of the control is ~ and the top stack item is a 

~-closure, the second stack item be an L-value. 'l'his is one instance of what we 

call a context rule, one which can be stated in English by saying that closures 

are always applied to L-values. All of L-PAL's context rules are summarized in 

the following table: 

Top of Control Top Stack Item 2nd Stack Item 

~ R 

~ ~-closure L 

~ tuple R 

¥ basic function R 

aug R L 

P R 

:= L R 

$ R 

; 

t'1< L L ••• L 

'l'able 4. 2-1 Context Rules 

here Hand L indicate respectively need for an R-value or an L-value, and "--" 

indicates "don't care". \vhenever a conflict with a context rule is detected in 

the course of a blackboard evaluation, the necessary "transfer function" is to 

be invoked. Some additional comments about this table seem noteworthy: 

It must be remembered that although an address is an L-value, a 

vector of addresses is an R-value. 

The context rules make nugatory all statements such as 

5 := 3 

'lbe effect of obeying such a statement is to get a new cell 

containing~, to update the contents of that new cell to 2, and 
tilen to return the value dummy. Since no reference to the address 

endures, the computational effect of the assignment is equivalent 

to that of 
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dummy 

In the L-PAL gedanken evaluator, this situation is detected (as it 

presumably would be by any alert blackboard evaluator) and the 

useless memory extension is not done. Of course the evaluation of 

the right side may have side effects. 

The design decision that requires an L-value as rand in an 

application whose rator is a ~-closure implies that x and r ~ 
during evaluation of the body (E) in program segments such as 

(let y = x in E) ••• 

~hus an assignment to either of x or ~ in L also updates the 

other. If such sharing is not desired, the programmer should 

write 

• • • ( le t y = $ x in E) ••• 

Note also that x and ~ share in 

let F x = P in ••• F Y ... 
Neglect of these sharing effects can lead to programming errors that are qui te 

hard to diagnose, so the programmer is advised to note carefully how he binds 

any variable which he plans to update. 

This use of PALls context rules is a process which, in the current 

literature, is often referred to as coercion. The idea is that the programming 

system, noting that the program has produced one sort of value in a context in 

which another sort is required, automatically invokes a suitable transfer 

function. PAL's only coercion is between R-values and L-values. A coercion 

common to many programming languages is to coerce the left operand of "+" in 

expressions such as 

3 + 7.2 

to be of type rational rather than integer. That is, a transfer function such 

as PAL's ItoR is invoked, so that the above is treated as sugaring for 

( ItoR 3) + 7 • 2 

An elaborate coercion scheme can be very advantageous to the programmer whose 

desires match closely those of the designers of the system which he is using. 

To the extent that this match fails in a system in which the design decisions 

cannot be overridden, the user suffers. PAL's designers have opted for minimal 

coercion, a decision that seems to be consistent with our pedagogical 

objectives. 

other Matters: Recursion in the L-PAL blackboard machine is to be handled just 

as in the R-PAL machine, using the Y-n method. We permit ~~ as a blackboard 

control item, although for the gedanken evaluator we desugar tuples to usages of 

aug, as in R-PAL. Simultaneous assignment is not handled in the blackboard 

evaluator, although the technique presented later for the L-PAL gedanken 
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evaluator would clearly apply. 

The conditional sugarings if and unless are not of concern in the 

blackboard evaluator, as each of them leads to a suitable 8 node in the control 

by the correspondences of (4.1-18). Although we could process while (and until) 

by regarding 

whi Ie B do E (4.2-2a) 

as syntactic sugaring for 

Loop # ( ~ (). B) ()d). E ) (4.2-2b) 

where Loopif is the function shown in (4.1-20), and in fact do that in the 

gedanken evaluator, there is a more efficient method for blackboard evaluation. 

It hinges on the observation already made that (4.2-2a) can be regarded as 

sugaring for 

L: if B do (E; goto L) (4.2-2c) 

where L is same identifier not appearing elsewhere. Of course this is a J-PAL 

program, but it turns out we can get its effect by sui table de sugaring. \ve 

standardize the tree shown in (a) of Figure 4.2-4 into that shown in (b). As in 

~ 
B E. 

Figure 3.5-7, B* stands for the standardization of Band E* for that of E. The 

control structure is shown in (c), in which B** and E** are the flattened B* and 

E*. For blackboard purposes, assume that the control of (c) is abbreviated by 

Sk. Then the control Sk is 

SIC ; E** (4.2-3) 

= 'dummy 

We are unable to build a control like this in the L-PAL gedanken evaluator, 

since it involves a structure with a loop and it is not possible to write in 

~-PAL a program which produces such a structure. We can (and do) use this 

technique in the J-PAL gedanken evaluator, since it is written in L-PAL. Its 

efficiency for blackboard evaluation is suggested by the example shown below. 

'.l'o see the gain, the reader should try desugaring the while as shown in (4.2-2b) 

and starting the blackboard evaluation. (The definition of (4.l-2a) is needed 
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as part of the program to be evaluated.) It takes many more steps. 

It seems worthwhile to comment on introducing while (and until) into L-PAL, 

since they seem to be J-PAL constructs. Doing so gives us the advantage of 

being able to use while and until in the code for the J-PAL gedanken evaluator, 
with two gains: 

The programs are more perspicuous, since we may use a simple while 

construct instead of a recursive function to accomplish 

iteration. 

There is the pedagogic advantage of exhibiting contrasting 

techniques to accomplish the same task. 

This latter point manifests itself in two ways: Firstly, we see that while can 

be regarded either recursively (with Loop#) or iteratively (via a loop in the 
control structure). Secondly, some tasks which are programmed recursively in 

the R-PAL and L-PAL gedanken evaluator are programmed iteratively in the J-PAL 
evaluater. 

An Extended Example: we give now a fairly long example of an L-PAL blackboard 

evaluation, showing most of the techniques introduced in this section. Consider 

the -program 

let k, T = 1, nil 

in 
while k Ie 2 do (T z= T aug k; k z= k+l); 

T 

(4.2-4) 

This program clearly builds a 2-tuple and returns it as its value. Defore 

examining the evaluation, the reader is advised to decide in his own mind the 
value of this program. It is E2! (1,2), nor is it (2,2). 

~e program (4.2-4) desugars as 

[,\ (k, t). .J., ] (1, nil) 
while k Ie 2 do (T := T aug k; k := k + 1; T 

(4.2-5) 

in which the down arrow indicates that the AE on the next line is to stand at 

that point. We then get the control structure 

6 A tc,T 
I 1'2 1 nil 

~ , = ~6 ~.z 

b~ 6J b.r ~ Ie k 2 

bJ = b", . 1= T aug T k (4.2-6) , 
&., ~l.. , := k + k 1 

bs = dtunmy 

S, = T 

Here we have used consistently the convention that the right son of a semicolon 

node is to be abbreviated. Note the loop: S~ is used in ~f. 
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hValuation in an L-PAL blackboard evaluator is shown in Figure 4.2-5. We 

need a way to represent tuples. Since a tuple is an R-value, we use a vector of 

address with a wiggly underline. Thus the I-tuple whose component is cr, is 
written 0'", , as for example in the memory on line 14. Note the use of the 

---context rules, on lines 2, 7, 12and elsewhere. As is our usual practice, we 

have elided many uninteresting lines. 

Hote that the answer is that 2-tuple whose components are each cr,. Thus 

the value of (4.2-4) is (3,3), since cellI holds 1 at the end. Because of 

PALls context rules -- in particular the one that requires an L-value as the 

second stack item under aug -- all of the components of the tuple share with k. 

(Changing the "2" in (4.2-4) to a "5" would produce the 5-tuple (6,6,6,6,6) as 

value.) The easiest way to change the original program to cause it to produce 

(1,2) is to change the assignment to T to read 

T := T aug ($ k) 

('l'he parentheses are not needed.) The "$" forces the R-value of k to be taken, 

and then a new cell holding that R-value will be "aug"ed onto the tuple. 

The L-PAL Gedanken Evaluator 

Having gained intuitive understanding of L-PAL through the blackboard 

evaluator, we proceed now with the formal definition of the language, using the 

L-PAL gedanken evaluator. The mechanism is very similar to that of R-PAL, the 

addition of a memory being the biggest change. The main program is 

def Gedanken_evaluator Program = 
let Control structure = Translate Program 

and HO = Initial_memory nil 

in 

bValuate (Control_structure, Empty-stack, PE, MO) 

As before, Evaluate is quite simple: 

def rec Evaluate (C, S, E, M) 

Null C -) (Rval(M, t S), M) 

Evaluate (Transform(C, S, E, M» 

(4.2-7) 

(4.2-8) 

our task now is to explain Translate and Transform, as well as the details of 

the final answer returned. 

Translate: As in the R-machine, Translate involves the composition of 

standardization and flattening, so that we have 

def Translate Program = FF (ST Program, nil) (4.2-9) 

Here Program is an abstract syntax tree representation of a PAL program, and ST 

and FF, which differ only slightly from their R-PAL counterparts, have yet to be 

discussed. All the cases for ST for R-PAL as shown on page 3.5-,93 remain 

unchanged, but we replace the last line (the "Error" line) by the following 

code: 
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Type IF 

-) BETA (m' (x 1» (ST (x 2» DUHMY 

Type WHILE 

-') (let u = LAHBDA nil (ST (x 1» 
and v = LAMBDA nil (ST (x 2» 
in 

Type ASSIGN 

- > ( let u = ST (x 1) 

and v = ST (x 2) 

in 

Is_tag (x 1) Co-1MA 

-> GAtoJ1.1A_ (GAX>H-1A_ Assign_VAR u) v 

ASSIGN u v 

'l'ype DOLLAR -') DOLLAR (ST (x 1» 
Type ALPHA -) ALPHA (ST (x 1» (ST (x 2» 
error 

Sec 4.2 

(4.2-10) 

Here Loop_VAR and Assign_VAR denote representations of the variables we have 

been calling Loop# and Assign#, respectively; ALPHA is the tag used for 

semicolon nodes1 IF, WHILE, ASSIGN and DOLLAR are tags; and DOLLAR_, ALPHA 

and ASSIGN_ are the obvious tagging functions. Code for unless and ~ is not 

shown here; it is of course similar to that for if and~. As in Chapter 

3, we defer till later any discussion of these representation issues. Complete 

programs are given at the end of the chapter. A graphical representation of the 

transformation of ST is shown in Figure 4.2-6. 

The code for FF differs from that shown for R-PAL on page 3.5- ''11f in that 

too last line there (the "Error" line) is to be replaced by the code 

Type ALPHA -> FF ( x 1, FF (x 2, c) ) (4.2-11) 

Sons x eq 2 -) FF (x 2, FF (x 1, (Get-tag x, c) ) ) 

Sons x eq 1 -> FF (x 1, (Get_tag x, c) ) 

error 

Note that the code for ALPlm insures that the control structure for the left 

son is evaluated before that for the right son, corresponding to the fact that 

we execute first that which appears before a semicolon an~ then that which 

appears after it. 

4.2-7. 

The transformation of FF is shown graphically in Figure 

Transform: The function Transform, which transforms one (C, S, E, M) state into 

another, is all that is needed to complete the specification of the L-PAL 

gedanken evaluator. It is similar to R-PALls Transform: 
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def TransfoDm (C, S, E, M) = 
let A = C, S, E, M 

and x = t C II Top of control. 

in 
Is constant x -> 
Is variable x -) 

Is_lambda_exp x -) 

x eq ALPHA -> 
x eq ASSIGN -> 
x eq DOLLAR -) 

Is_address(t S) -> 
x eq BE.~A -) 

x eq AUG -> 
x eq RETURN -> 
x eq GAMMA -) 

( let r = t s 
in 

Is closure r 
Is constant r 

Is_tuple r 

error 

Is Y r 

Is eta r 

error 

Eval constant A 

Eval variable A 
Eval_lambda_exp A 

Do_alpha A II semicolon 
Do_assign A 

Do dollar A 
LtoR A 

Do conditional A 
Do_aug A 

Do_return A 

-) Apply_closure A 
-) Apply_constant A 

-) Apply_tuple A 
-) Apply_Y A 

-) Apply_eta A 

(4.2-12) 

For the most part, the routines called to do the work are similar to those with 

the same name in the R-PAL evaluator. Thus evaluation of constants, variables 
and A-expressions, as well as handling of RETURN and conditionals, is the same 

in L-PAL. Of course we must add the fourth component, ~, to the machine state, 
but in each case M is unaffected by the transformation. The relevant code is 

shown at the end of the chapter. 

Mlen the top of the control is ALPHA, corresponding to a semicolon in the 

or.iginal program, we wish merely to discard the result stored in the top of the 

stack. This is accomplished as shown: 

def Do_alpha (C, S, E, M) = 
r C, r S, E, M 

(4.2-13) 

When ASSIGN is the top control i tern, we wish to update the memory. We have 

def Do_assign (C, S~ E, H) = 
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let Val = II Right side of := 

Is_address (2d S) 

in 

-) Contents (H, 2d S) 

I 2d S 

let New M = IINew memory 
(4.2-14) 
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in 

Is_address (t S) 

-> Update (M, t S, Val) 
, M 

r C, Push (DUMMY, r2 5), E, New M 

Sec 4.2 

Here Val is the R-value to the right of the ":=". If the top stack item is not 

an address, the assignment is nugatory. As we decreed earlier, we take the 

value of the assignment to be ~~~. DUMMY has a suitable value. 

The control item DOLLAR signifies the programmer's intent that an R-value 

be the top stack item. The code 

def Do_dollar (C, 5, E, M) = 

r C, Push ( Rval(M, t S), r S) ), E, M 
(4.2-15) 

has the desired effect. 

Each of the remaining cases requires that the top of the stack be an 
R-value. In order to guarantee this, we want the function LtoR defined by 

def LtoR (C, 5, E, M) = 
let New S = Contents (M, t S) 
in 
C, Push (New_S, r S), E, M 

to be called when needed. It follows from the placement of the test 

Isaddress (t 5) -) LtoR A 

(4.2-16) 

in (4.2-12) that this transformation is invoked whenever both of the following 

hold: 

(a) The top control item is "~", "aug" or "'1" J and 
(b) the top stack item is an L-value. 

on the next iteration of Transform, the control item of (a) governs and 
evaluation proceeds as usual. 

The control item "aug" signifies that a vector of addresses (at the top of 

the stack) is to be extended by the addition of another component: 

def Do_aug (C, S, E, M) = 
let New_M, x = 

in 

Is address (2d S) 

-) (M, 2d 5) 

Extend (M, 2d S) 

let V = Augment_tuple (t 5) x 

in 
r C, Push (V, r2 5), E, New M 

(4.2-17) 
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Note the definition of "New M" and of x. PAL requires that the right side of 

this simultaneous definition evaluate to be a 2-tuple, and it should be clear 
that this will be the case whether or not the second stack item is an address. 

(The function Extend returns a 2-tuple.) The function Augment_tuple used knows 

how items in the stack are represented. 

Application of a closure is as follows: 

def Apply_closure (C, S, E, M) = 

let New_M, Rand = 
Is_address (2d S) 
-> (H, 2d s) 

Extend (M, 2d S) 
and R = t S II The rator 

in 
let New C = Prefix (Body R, Push (RETURN, r e» 
and New S Push (E, r2 S) 

and New E = Decompose (bV R, Rand, Env R, New_M) 

in 
New_c, New_S, New_E, New M 

(4.2-18) 

The differences from R-PAL all arise from presence of the memory. Note 

particularly that Decompose has a fourth parameter: the memory in effect when 

it in called. It needs this to be able to access tuple components in the case 
when the A-closure being applied has a structured bV-part. 

All other cases are enough similar to R-PAL that no further discussion is 

needed. 

order of Evaluation: In the last section of Chapter 3, starting on page 
3.5-180, we observed that the gedanken evaluator for R-PAL is over-specified in 

that a right-to-left order of evaluation of operands is forced, even though 
doing so is irrevelant to the semantic intent. A method of remedying this 

defect was proposed, having to do with a random selection in Translate between 
GAM~ and AHNAG for the control structure, the former leading to right to left 

evaluation and the latter to left to right. At the time, we mentioned that the 
whole discussion was rather irrevelant to R-PAL, since it is not possible to 

write in R-PAL a program whose value depends on order of execution. Now that we 
have L-PAL, it is easy to write such programs. A simple one, similar in spirit 

to (3.5-28), is 

let x = 1 

in 

2 * (x := x+11 x) + 3 * (x := x+l; x) 

whose value is either 12 or 13. Another example 
"""" ..-
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let x = 1 
in 

[x > 0 -) Ut.t) , (At.-t)] [x := -x; x] 
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clearly depends on whether the rator or the rand is evaluated first. The design 

decision taken in PAL is predicated on the belief that a program is 

unnecessarily obscure if its successful execution depends critically on such 

implicit implementational details as order of evaluation. The decision is that 

such programs should be undefined. 

As suggested in section 3.5, we could modify the gedanken evaluator by 

calling the random function Choice at suitable places to achieve the required 

undefinedness. \'le do not do so in our defini tion of the L-machine (or the 

J-maaline) simply to avoid obfuscating other important concepts with unnecessary 

detail. In a fonlal definition of PAL, however, Choice would be used as 

suggested above. Our present objectives are pedagogic rather than formal. 

Library Functions 

'l'here is some unfinished business still before us: We have yet to speci fy 

the function Assign# used in desugaring simultaneous assignments, and we must 

explain PAL's def construct which we have been using in our coding. The topics 

are related, since we can made Assign# available to the user by assuming a 

suitable def for it. 

The Function Assign#: Recall that an ASSIGN node whose left son is a COMMA node 

is desugared as follows: 

0SS;6N? 
E, E:J. 

Figure 4.2-8: Standardization of Simultaneous Assignment 

'rhus for example, the statement 

x, y := E (4.2-19) 

is desugared as if the programmer had written 

Assi gn# (x, y) E (4.2-20) 

The assumption is that the identifier Assign# is in the environment when the 

program runs. We see later how it gets there, but are concerned now with 

defining the function which it denotes. 

The function is a curried function which takes two arguments, the first of 

which must always be a tuple. (Calls for Assign# can only be produced by ST, 
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and then only when the left side of the assignment denotes a tuple.) The 

function requires that its second argument be a tuple of equal order. Since we 
require that all R-vaues on the right be determined before any assignment is 

done, the function makes a one-level copy (with "$") of each component of its 

second argument, and then the assignments are done. We have then the following 

code: 

def Assign# x y = 
let n = Order x 

and w, k = nil, I 

in 
unless n eq Order y do error; 

while k Ie n do 

( w : = w aug $ (y k); 

k := k + 1 

) ; 

k := 1; 

while k Ie n do (x k := w k; k := k+l) 

(4.2-21) 

Since this program is to be interpreted by the L-PAL gedanken evaluator, it may 

use all of the power of L-PAL. (But not simultaneous assignment. Why not?) 
Note how natural is the use of the one-armed conditional, and how convenient is 

the while construct for iterating through first the components of ~ and then 
those of~. The unsharing functor "$" in the assignment to w is critical, since 

without it the components of w would share with those of l, thus nullifying the 

effect of creating !. 

rfhis definition has an unfortunate property: It over-specifies PAL in 

terms of order of assignment to the components in a simultaneous 

Better in some sense would be a random choice of which way to go. 

is that statements such as 

x, x := 1, 2 

be undefined. 

assignment. 
The objective 

The fldef" Construct: The assumption underlying our exposi tion of simUltaneous 
assignment is that the identifier Assign# is somehow in the environment of the 

user's program before it starts to run. Of course this is not a new concept, 
since all of the postulated functions such as Stern, Null, Isstring as well as 

~ ~ ", .. , ~ .. 
those denoted by such functors as "+" and "not" are in the primitive environment 

PEe What is different here is that Assign# is written in PAL, and what is 

needed is an explanation of PAL's "def" construct. 

Hecall from the discussion of def at the beginning of section 3.5 (on page 

3.5-'S~J that a program of the form 

def (definition) 

has no defined semantics when taken in isolation but does when it appears in a 
suitable ·context. The PAL syntax, as given in Appendix 2.1 of the PAL Nanual, 

4.2-234 



\, 

~echanical Evaluation of L-PAL Programs Sec 4.2 

says 

(prog ram) : : = 

£ def <definition> !~ 
(expression") 

(4.2-22) 

This syntax defines that which may be submitted as input to a PAL compiler. It 

suggests the term "def-program" for a <program) consisting of one or more 

def's. \vhat we are concerned with now is how one can combine several 

def-programs with an expression. 

Let us think of the problem like this: Suppose that a prograrraner has a 

collection of one or more def-programs (such as the definition of Assign# in 

(4.2-21» as well as an expression. The def-programs are to be taken in some 

order and followed by the expression, and our task is to ascribe semantics to 

the result. We do so now in two different ways, and select one of them for 

inclusion in the formal definition. 

~he first explanation is in terms of textual modification. 

def-program is to be altered as follows: 

The first "def" in it is replaced by "let". 

Each 

All other instances of "def" which occur in it are replaced by "in 

let" • 

The word "in" is appended to the program. 

We then form one long program by concatenating together all of the modified 

def-programs, in order, followed by the expression. The result will be a 
syntactically correct PAL program (if all the original programs were correct) 

and its semantics are deducible from the rules already given. Note that the 

order of appearance of the def-programs is important, since each may refer to 

identifiers defined in previous ones. 

An alternate way to explain a collection of def-programs and an expression 

is in terms of input to the function Translate which is part of the gedanken 

evaluator. Assume that all of the programs exist as syntax trees suitable as 

input to Translate. For that purpose, we assume a new node type, def, whose 

single son is a definition. Now consider the last def node and the expression, 

and perform the transforn~tion 

~ 
E 

o 

which replaces them by a single let node. Since this latter is an expression, 

we can repeat the process on all of the def nodes in succession, until all that 

remains is a single let node which can be input to Translate. Figure 4.2-9 

shOWS successive steps of this transformation on two def-programs and an 
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expre ssion. 

'\ 
E 

A curried function Do def to do this task may be defined by the PAL 

program 

def rec Do def x 

Is_tag x DEF 

-) [ fn y. LET_ (x 1) (Do_def y) ] 
, x 

(4.2-23) 

Note that this function is to be applied to the def's in the order in which they 

are to be processed, and "eats up" arguments until it encounters one which is 

not a def. 

All of the preceeding discussion applies equally to R-PAL and to L-PAL, and 

we see in the next chapter that it applies also to J-PAL. 

The L-PAL Library: We have seen that standardization of L-PAL programs may 

produce calls for Assign# or Loop#. Thus it is assumed that definitions of 

these variables must precede the user's program. Since the code for Assign# 

contains while, which desugars into a call for Loop#, it is necessary that Loop# 

appear before Assign#. 

We can fix the formalization easily by modifying the definition of the 

function Gedanken_evaluator as given in (4.2-7) to read 

def Gedanken evaluator Program = 
let Tree = Do def Loop_T Assign_T Program 

in 

let Control structure = Translate Tree 

and loll = Initial_memory nil 

in 

E.valuate (Control_structure, nil; PE, NO) 

Here Do_def is the function defined in (4.2-23), and Loop_T and 

syntax trees which are def-nodes corresponding to (4.1-20) 

(4.2-24) 

Assign_T are 

and (4.2-21), 

respectively. The variable Tree is a syntax tree for the two library functions 

and the user's program, and the rest of the evaluation proceeds as before. 

An alternate approach is to leave the function Gedanken evaluator 

unaltered, and to make it the user's responsibility to include either or both 
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of Loop_T or Assign_T as needed. Suppose that User_T denotes the tree to be 

evaluated. Then instead of applying the function of (4.2-24) to User_T, one 

might instead apply the function of (4.2-7) to the tree denoted by 

The result is clearly the same. The advantage to the latter approach has to do 

with efficiency: The user need not include Loop_T or Assign_T unless they are 

needed. Although the issue of efficiency is not really relevant in connection 

with a formal definition, it nonetheless seems worth mentioning in these notes. 

This alternate approach is assumed in the formalization at the end of the 

chapter. 

4.3 Listings of the L-PAL Evaluator 

The following pages contain a complete listing of the gedanken evaluator 

for L-PAL, as it has actually run in a PAL implementation (on l1ultics). All 

necessary representational issues are faced up to. As in the R-PAL listings in 

Chapter 3, the only variable appearing here that is not defined (other than 

those in PAL's primitive environment) is Error. 

Any discrepencies found between the programs shown -here and those shown 

earlier in the chapter should be resolved in favor of those shown here. 
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II PRELIMINARY DEFINITIONS 

II Prel iminary definitions for the evaluator. 

II Selectors and constructors for the stack and control. 

def t(x, y) = x II Top of stack or control. 

and r( x, y) = y I I Re s t of stac k 0 r con t ro 1 • 

and Push(x, s) = x, s II Put new item on stack or control. 

def rcc Pref ix(x, y) = I I Put control x at top of cant rol y~ 
Null x -> y 
Push(t x, Prefix(r x, y) ) 

def r2 x = r(r x) II Rest of (rest of <stack or control». 

and r3 x = r(r(r x» II Rest of (rest of rest). 

and 2d x = t(r x) II Second element of stack or control. 

and 3 d x = t ( r( r x» I I Th i rd ••• 

clef Empty_stacl~ = ni 1 I I The empty stack. 

II * * * * * * * * * * * * * * * * * * * * * 

II Tagger and tag-checkers for structures. 

def Tag n s = s aug n II Tag structure s with tag n. 

and Is_tag s n 
Istuple s 

= II Does structure s have tag n1 
-> n eq s(Order s) false 

and Get_tag s = s(Order s) II Return the tag of s. 

and Sons s = Order s - 1 II neturn number of sons of s. 
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II Selectors, predicates and constructors for lambda-expressions 
II and lambda-closures. 

def LAMBDA = '_lambda' II Tag for lambda-expressions and closures. 

def bV x = x 2 
and Body x = x 3 
and Env x = x 4 

II Select bv-part of a lambda-exp or closure. 
II Select body part ••• 
II Select environment part ••• 

def Test(x, n) = 
I stuple x 
-) Order x eq n 

-) Isstring'Cx 1) 
-) x 1 eq LAMBDA 
I fa 1 se 

I fa 1 se 
I false 

within 

Is_lambda_exp x = Test(x, 3) 
a nd I s_c 1 os u re x = Te 5 t (x, 4) 

def Cons_lambda_exp(bV, Body) = II Construct a lambda-expression. 
LAMBDA, bV, Body 

and Cons_closure(L_exp, Env) = II Construct a lambda-closure. 
LAMBDA, bV L_cxp, Body L_exp, Env 

Sec 4.3 
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II Definitions and predicates for the left·hand evaluator. 

II * * * * * * * * * * * * * * 

II Items and p red i ca t es for con t rol structure 

def GAIM4A = 
, _gamma' 

and BETA = 
, beta' -and CONSTANT = 
, 

constant' 
and VARIABLE = 

, -variable' -and ADD RESS = 
, add ress' II Used only in 

and ASSIGN = '_assign' II . -. -
and DOL LAR = ' do ll·a r' 
and AUG = '=aug' 
and TUPLE = 

, _tuple' 1/ Used only in 
and ALPHA = '_alpha' 
and ETA = , eta' // Used in stack 
and RETURN = I _retu rn' 

def Test (x, y) = 
Istuple x 
-> 0 rde r x eq 2 

-> Isstring(x 1) 
-> x 1 eq y 
I fa 1 se 
fa 1 se 

fa 1 se 
Hithin 
Is_constant x = Test(x, 

and I s_ va ria b 1 e x = Test(x, 
and I s_a dd ress x = Test(x, 
and Is_eta x = Test(x, 

and Is_tuple x = 

CONSTANT) 
VARIABLE) 
ADDRESS) 
ETA) 

* * * * * 
and stack. 

stack. 

the stack. 

for recursion. 

* 

Test(x, TUPLE) -> 
Test(x, CONSTANT) 
false // Neither. 

true // Is it a constructed tuple? 
-> Nu1l(x 2) // Is it nil? 

and Is_identifier x = // Is x a constant or a variable? 
Test(x, CONSTANT) or Test(x, VARIABLE) 

def Same_var(x, y) = // Are x and y the same variable? 
x 2 eq y 2 
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II Call for Y_VAR is produced in Translate for rec-defs. 

def Y_NAME = 'Y#' II The name of "yli. 

Sec 4.3 

and Loop_NAME = 'Loop#' 1/ Used in evaluation of while expressions. 

and Ass i g n_N A r~1 E = 'Ass ign#' II Used in simultaneous assignment. 

def Y_VAR = 
VARIABLE, Y_NAME 

and Loop_VAR = 
VARIABLE, Loop_NAME 

and Assign_VAR = 
VARIABLE, Assign_NAME 

def Is_Y x = 
Isstring x -) x eq Y_NAME false 

and NIL = 
CONSTANT, nil 

and DUMMY = 
COr~STANT , '_dummy' 
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II Tags for abst ract syntax tree. 

def TEST = '_test' II test . . . ifso • •• i fnot 
and AHROW = 

, arrow' /1 -> I - . . . ... • • • 
and I F = , if' II i f do ••• • •• 
and ~~H I LE = '_wh i 1 e' II wh i 1 e ••• do • •• and AP = '_ap' II functional a pp 1 i ca t i on 
and Fr~ = 

, fn' lambda II 
and EQUAL = ':equa 1 ' II definition 
and HITHIN = 

, within' -and REC = 
, rec' -and FF = , ff' form definition II function 

and AND = , -and' II 'and' def in it ion 
and COf·1MA = ':comma l II tupl e maker 
and LET = , let' -and HHERE = 

, whe re' 
and BINOP = '-binop' 
and UfJOP = '_unop' 
and PE RCENT = '_percent' 

II Taggers for tags in abstract syntax tree. 

def TEST_ x y z 
and ARROW_ x y z 
and AP_ x y 
and IF_ x y 
and ~~ H I L E_ x y 
and Ff4_ x y 
and LET_ x y 
and ~~HERE x y 
and EQUAL_ x y 
and HITHIN_ x y 
and REC_ x 
and FF_ x y 
and AUG_ x y 
and ASS IGN_ x y 
and ALPHA_ x y 
and DOLLAR.- x 
and B I f40 P _ x y z 
and UNOP x y 
and PERCENT_ x y z 

and AfJD x 
and COMMA_ x 

= Tag TEST (x, y, z) 
= Tag ARROW (x, y, z) 
= Tag AP (x, y) 
= Tag I F (x, y) 
= Tag WHILE (x, y) 
= Tag FN (x, y) 
= Tag LET (x, y) 
= Tag WHE RE (x, y) 
= Tag EQUAL (x, y) 
= Tag WITHIN (x, y) 
= Tag REC (nil aug x) 
= Ta3 FF (x, y) 
= Tag AUG (x, y) 
= Tag ASSIGN (x, y) 
= Tag ALPHA (x, y) 
= Tag DOLLAR (nil aug x) 
= Tag BINOP (x, y, z) 
= Tag UNOP (x, y) 
= Tag PERCENT (x, y, z) 

= Tag AND x 
= Tag COMMA x 

••• 

II Note that the last two taggers are not curried, as are 
II all the others. 

II Taggers for standardized syntax tree. 

def GAMMA_ x y 
and BETA_ x y z 
and LAMBDA_ x y 
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= Tag GAMMA (x, y) 
= Tag BETA (x, y, z) 
= Tag LAMBDA (x, y) 

and Sharing 
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I I S orne use f u 1 fun c t ion s for t ra nsf 0 rm • 

def Value_of x = II Evaluate a control element, to put it on stack. 
x 

and Val_of x = II De-tag a stack element, to get its value. 
x 2 

def Apply x y = 
let t = (Val_of x) (Val_of y) 
in 
Is_address t -) t I (CONSTANT, t) 

and Augment_tuple x y = 

II 

II 

def 

def 

and 

and 

def 

Is_tuple x -) (TUPLE, Val_of x aug y) 
I Error 'first argument of aug not a tuple' 

* * * * * * * * * * * * * * * * 
M E M 0 R Y 

Initial_memory ( ) = 
0, nil 

Con tent s(fv1emo ry, Address) = 
let A = Address 2 
in 
Look(Memory 2) 
whe re rec Look m = 

Null m -) Error 'address not in memory' 
A eq m 1 -) m 2 II Found. 
Look(m 3) II Keep looking. 

Update(Memory, Address, Value) = 
tv1emo ry 1, (Add ress 2, Value, Memory 2) 

Ex tend( Memo ry, Value) = 
let Next_C = 1 + Memory 1 
in 
let Next_M = Next_C, Value, Memory 2 
in 
(Next_C, Next_M), (ADDRESS, Next_C) 

Rva 1 (f,1emo ry , X) = 
Is_address (X) -) Contents{Memory, X) X 

* * * * * 
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II E N V I RON MEN T 

II An envi ronment is either empty (nil), or a 3-tuple: 
II Name, Value, Environment 

II The primitive environment: 

II Define primitive environment, and provide function to look 
II up variables in the environment. 

def PE = II The primitive environment. 
Y_VAR, Y_NAME, II for recursion 
nil 

and Lookup{Var, Env) = II Look up a variable in the environment. 
L Env II Start looking in Env. 
whe re rec L e = 

Null e -) Error 'variable not found in environment' 
Same_var(Var, e 1) -) e 2 II Found. 
L (e 3) II Keep looking. 

II The following function is used in applying a lambda-closure. 
I I The names on the (poss i b 1 y st ructu red) bv-pa rt 'Names' are 
I I add edt 0 the en v i ron me nt' En v', ass oc i ate d wit h the co r re s -
II ponding part of 'Values'. The new environment is returned as 
II the value of the function. 

def rec Decompose(Names, Values, Env, Memory) = 
test Is_variable Names II Is it a single variable? 
ifso (r~ames, Values, Env) II Yes, so add it to environment. 
i fnot 

( let V = Contents{Memory, Values) 

) 
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in 
test 
i fnot 
ifso 
test 
i fnot 
ffso 

( 

) 

Is_tuple V 
E r ro r I con forma 1 i t Y fa i 1 u re ' I I T up 1 ea pp 1 i edt 0 sea 1 a r. 

Order Names eq Order{Val_of V) 
Error 'conformal ity failure.' II Differing tuple lengths. 
II Process a multiple-by part. 

Q 1 Env 
whe re rec Q n e = 

n > Order Names -) e I 
Q (n+1) (Decompose(Names n, Val_of V n, e, Memory» 
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def rec 0 X = II Standardize a definition. 
let Type = Is_tag x 
in 

Type EQUAL -) x II Already OKo 
Type ~~ I TH I N 

-) ( let u, v = O(x I), O(x 2) 
in 
EQUAL_ (v 1) ( GA~1MA_ (LAMBOA_ (u 1) (v 2» (u 2) ) 

) 

Type REC 
-) ( let w = O(x 1) 

in 

) 
Type FF 

EQUAL_ (w 1) ( GAMMA_ Y_VAR (LAMBDA_ (w 1) (w 2» ) 

- ) ( E QUA L_ (x 1 1) (Q (0 r de r (x 1» (x 2» 
wh ere re c Q k t = 

) 
Type AND 

k < 2 -) t 
I Q (k-l) (LAMBOA_ (x 1 k) t) 

-) ( EQUAL_ L (Tag COMMA R) 

) 

wh e re re c L , R = Q 1 nil nil 
where rec Q k s t = 

k ) Sons x -) (5, t) 
I (let w = O(x k) 

in 
Q (k+ 1) (s aug w 1) (t aug w 2) 

) 

Error' improper node found in 0' 

Sec 4.3 
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def rec ST X = II Standardize abstract syntax tree. 

let Type = Is_tag x 
in 
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Is_identifier x -) x 
Type BETA or Type TEST or Type ARROW 

-) BETA- (ST(x 1» (ST(x 2» (ST(x 3» 
Type IF 

-) BETA_ (ST(x 1» (ST(x 2» DUMMY 
Type WH I LE 
-) (let u = LAMBDA_ nil (ST(x 1» 

and v = LAMBDA_ nil (ST(x 2» 
in 
GAMt-1A_ (GAMMA_ Loop_VAR u) v 

) 
Type ASSIGN 
-) (let u = ST(x 1) 

and v = ST(x 2) 
in 
Is_tag (x 1) COMMA 

-) GAMtv1A_ (GAMMA_ Ass i gn_ VAR u) v 
I ASSIGN_ (ST(x 1»(ST(x 2» 

) 

Type LAMBDA or Type FN 
-) LAMBDA_ (x 1) (ST(x 2» 

Type COMMA 
-) ( Q 1 NIL 

wh e re re c Q k t = 
k ) Sons x -) t 
Q (k+l) ( AUG_ t (ST(x k» ) 

) 
Type PERCENT 

-) GAMMA - (x 2) ( AUG - (AUG_ NIL (ST(x 
Type LET 

-) ( let w = D{x 1) II Standardize the 
in 
GAMMA_ ( LAlvlBDA_ (w 1) (ST(x 2» 

) 

Type ~/HERE -) ST( LET (x 2) (x 1» 
Type AP .-) GAMMA_ (STex 1» (ST(x 2» 
Type B I NOP 

) 

1) ) ) (ST(x 3» 

definition. 

(ST (w 2» 

) 

-) GAMMA_ ( GAMMA_ (CONSTANT, x 3) (ST(x 1» ) (ST(x 2» 
Type UNOP 

-> GAMMA_ (CONSTANT, x 2) (ST(x 1» 
Sons x eq 1 -> Tag (Get_tag x) ( nil aug ST(x 1) ) 
Sons x eq 2 -> Tag (Get_tag x) ( ST(x 1), ST(x 2) ) 
Error I improper node found in ST' 
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II The function FF flattens a standardized tree into a 
II control structure. 

def rec FF(x, c) = II Flatten standardized tree x onto control c. 

let Type = Is_tag x 
in 

Is_identifier x -) (x, c) 
Type LAMBDA 

-) ( let Body = FF( x 2, nil ) 
in 
Cons_lambda_exp(x I, Body), c 

Type 
-) 

Type 
-) 

) 

BETA 
( let 

and 
in 
FF( 

) 
ALPHA 
( let 

in 
FF(x 

) 

TA = 
FA = 

x 1, 

Rest 

1, 

FF (x 2, nil ) II T rue arm. 
FF(x 3, nil ) II Fa 1 se arm. 

(BETA, (FA, (TA, c) ) ) ) 

= FF(x 2, c) 

(ALPHA, Rest) ) 

Sons x eq 2 -) FF( x 2, FF( x 1, (Get_tag x, c) ) ) 
Sons x eq 1 -) FF( x 1, (Get_tag x, c) ) " 
Error' improper node found in FF' 

II * * * * * * * * * * * * * * * * * * * * * 

def Translate Program = II The routine that does all the work. 
FF( ST Prog ram, nil )" 

Sec 4.3 
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II State transformations for the LPAL Evaluator. 

def Eval_constant(C, S, E, M) = 
r C, Push(Value_of(t C), S), E, M 

and Eval_variable(C, S, E, M) = 
let New_S = Lookup(t C, E) II Look up top of C in E. 
in 
r C, Push(New_S, S) I E, '-4 

and Eval_lambda_exP(C , S, E, M) = 
let New_S = Cons_closure(t C, E) 
in 
r C I Push (t~e\'I_S, S) IE, M 

and Do_alpha(C , 5, E, M) = 
r C, r S, E, M 

and Do_assign(e, S, E, M) = 
let New_M = Is_address(t S) -> Update(M, t S, Rval(M, 2d 5» 1M 
in 
r C, Push(DUMMY I r2 S), E, New_M 

and Do_dollar(C , S, E, M) = 
rei Pus h ( Rva 1 (1Y1 ,tS) ,rS ), E, M 

and LtoR(C, s, E, M) = II Replace L-value at stack top by R-value. 
let New_S = Contents(M, t S) II Look up stack top in memory. 
in 
C, Pus h ( N ew_S , r S) IE, M 

and 0 0_ con d i t ion a 1 (C, S, E, rvt) = 
1 et Se 1 ec te cLa rm = (Va l_of (t S) -> 3 d _ I 2d) C 
in 
Prefix(Selected_arm, r3 C), r S, E, M 

and Do_aug(C, S, E, M) = II aug 
let New_M, x = I s_address( 2d S) -> (M, 2d S) I Extend(M, 2d S) 
in 
let V = Augment_tuple (t S) x 
in 
r C, Push(V, r2 S), E, New_M 

and D 0_ re turn ( C, S , E , M ) = 
r C, Pus h (t S, r2 S), 2d ,5, M 
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and Apply_closure (C, S, E, M) = 
1 e t N e w_M , Ra n d = I s_a d d re s s ( 2 d S) - > (M , 2 d S) I Ext end ( M, 2 d S) 
and Rator = t S 

and 

and 

and 

in 
let New_C 
and New_S 

= 
= 

Prefix(Body Rator, Push(RETURN, r e» 
Pus h ( E, r2 S) 

and New_E = Decompose(bV Rator, Rand, Env Rator, New_M) 
in 
New_C, New_S, New_E, New_M 

Apply_constant(C, S, E, M) = 
let V = Apply (t S) ( Rva 1 (M, 2d S» 
in 
r C, Push(V, r2 S), E, M 

Apply_tuple(C, S, E, M) = 
let V = Apply (t S) (Rval (M, 2d S» 
in 
r C, Push( V, r2 S), E, M 

Apply_Y(C, S , E, M) = 
let V = ETA, 2d S 
in 
1 e t N ew_S = P us h (2 d S, Pus h ( V, r 2 S) ) 
in 
C, New_S, E, M 

and Apply_eta(C, S, E, M) = 
Push(GAMMA, C), Push(t S 2, S), E, M 
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/1 Main program for the LPAL Gedanken Evaluator. 

def Transform(C , 5, E, M) = // Do one step of an evaluation. 
let A = C, S, E, M 
and x = t C II Top of control. 
in 

Is_constant x 
I s va ria b 1 e x 
Is=lambda_exp x 
x eq ALPHA 
x eq ASSIGN 
x eq DOLLAR 
I s_a dd re ss (t S) 
x eq BETA 
x eq AUG 
x eq RETURN 
x eq GAMMA 

( 1 et r = t S 
in 

-) Eval_constant A 
-) Eval_variable A 
-) Eval_lambda_exp A 
-) Do_alpha A 1/ semicolon 
-) Do_assign A 
- ) Do_do 1 1 a r A 
-) LtoR A II R-value to top of stack. 
-) Do_conditional A 
-) Do_aug A 
-) Do_return A 
-) 

I s_cl osu re r 
Is_constant r 
Is_tuple r 
Is_Y r 

-) Apply_closure A 
-) Apply_constant A 
-) Apply_tuple A 
-) Apply_Y A 

Is_eta r -) Apply_eta A 
E r ro r limp rope r rat or' 

) 
E r ro r I ba d con t ro 1 I 

de f re c Eva 1 ua t e ( C,S I E I fv1) = 
I~ull C -) (Rval(M, t S), M) I 
Evaluate(Transform(C, 5, E, M» 

def Gedanken_evaluator Program = 
let Control_structure = Translate Program 
and MO = In it ial_memo.ry nil 
in 
Eval uate(Control_structure, Empty_stack, PE, MO) 
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Chapter 5 

JUMP 5 Alm LABBL5 

'.1.'he one remaining feature to be added to L-PAL to make it J-PAL (and 

therefore, complete PAL) is the "goto" statement. Note the PAL program with a 
label at the beginning of Chapter 4 in (4.l-lc). The idea is that, in a program 

such as 

L: 51; ••• ; goto L; (5.0-1) 

oueying the "goto L" statement causes the successor of tha"t statement to be the 

statement 51. We 
labels the statement. 

say that the appearance of ilL:" before 51 is a ~, which 
'I'hus the goto statement merely alters the "flow of 

control" through the program. 

ilut the problem is harder than this. Clearly in (4.l-lc) or in (5.0-1), 

obeying the goto changes only the control, since the stack is empty both before 

and after the goto and the environment at both places is the same. Consider 

instead the program 

51, 

M: 521 

let x 
in (5.0-2) 

53; if ••• do goto Mi 54 
) i 

55; 

here obeying the goto must change more than just C: It must also change E, 
since x is in the environment at the place where the goto appears and is not in 

the environment at the place in the program where the label M appears. Clearly 

this situation is more complex than that of the preceeding paragraph. To 

aistinguish them, we call the goto of (5.0-2) a skip, and that of (5.0-1) a hop. 

'J.'he distinction is that execution of a skip causes layers of the environment to 

be discarded, while in a hop the environment is left unchanged. 

There is an even more complex type of goto: one which we call a jump. 

Consider the following: 

1 let x = nil 
:2 in 

3 51, 

4 ( let y = 0 

5 in (5.0-3) 
b M: 52; x : = M; 53 
7 ) ; 

B 54, 

~ if ... do goto xI 

10 
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(r.l'he nunwers on the left are not part of the program but are for reference 

JJelow.) r.1,'he scope of x is clearly the entire program after line 2. Thus 
obeying the assignment statement on line 6 causes x to denote a value which is a 

label. (We have yet to say what sort of R-value a label is. This and the next 
few examples should give us more ideas of what is needed.) Thus on line 9 the 

goto leads to tile label M. The environment at M has more information in it than 
tioes the environment that exists on line 9. Normally, the environment layer for 

y would have disappeared (in sane sense) as we passed the right parenthesis on 
line 7. How somehow we must remember it, so that it can be reinstated as part 

of the goto. r.l'his requirement suggests that part of the value of a label must 
be an environment. 

We distinguish between skips and jumps to make one point: There exist many 

languages that implement skips, but very few which implement jumps. Skips, 

called "non-local gotos", are available in Algol, PL/I and related languages, 

while the only languages that implement jumps seem to be those which, like PAL, 
have been strongly influenced by the works of Strachey and Landin. 

J-PAL introduces one other linguistic facility -- the punctuations valof 
and res. We see later that they can be treated quite economically as sugarings 

of jumps and labels. Briefly, the value of the expression 

valof }:; (5.0-4a) 

(which may be read as "value of EIt) is that of E, with the proviso that an 

occurrence in }:; of the expression 

res F (S.O-4b) 

(\'lhich may be read as "result is F") causes the value of F to be taken 

inunediately as the value of the entire expression (5.0-4a), regardless of what 
other text may appear in E. The effect of a res is, in most cases, a hop, but 

it is quite possible to write programs in which res produces a skip or even a 
jump. 

~xample: Note the distinction between a skip and a jump: In the former, 

environment layers are discarded, whereas in the latter environment layers that 
normally would have been discarded earlier in the evaluation are reinstalled. 

Let us look at another example of a jump, a rather trivial one which nonetheless 
suggests some possibilities: 

1 let F () = 

2 true 

3 -> (Print 'A I, L) 

4 (L: Print I B I) 

5 in (5.0-5) 

ti let x = F nil 

7 in 

H if Islabel x do goto XI 

9 Print 'C' 
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'.L'his is a complete J-PAL program which runs on the computer, producing printed 

output. Before proceeding, the reader might want to attempt to deduce what that 

output will be. 

Lines 1 to ~ define a function F, and on the sixth line x is defined to be 

the value produced by applying F to nil. What will that value be? Actually, 

that is not quite the proper question, since applying F to nil may have a side 

effect as well as returning a value. The body of F (lines 2 through 4) is a 

conditional expression with "true" as the boolean, so the "true" arm on line 3 

is obeyed. Doing so causes 'A' to be printed (a side effect) and L to be 

returned as the value of the application, the value to be associated with x. On 

line 8 we ask if x denotes a label. (The predicate "Islabel" is in PAL's 

primitive environment with the obvious meaning. See Appendix 4.1 of the PAL 

~lanual.) Since x does in fact denote a label, the goto is executed. 

How the explanation gets sticky. 'rhe labe 1 L appears on line 4, and going 

to it certainly causes 'D' to be printed. But what happens next? That is, what 

aoes tile evaluator do after printing 'D'? It is evidently done with the body of 

F and about to do a return, but to what point of the program does it return? 

'I'he answer is this: Going to L reinstalls the complete machine state (CSE) that 

existed when L \-TaS "declared". That declaration took place after F was applied 

to nil in line 6, and tile state includes (in C and S) information that leads to 

return to that place on completion of evaluation of the body of F. Thus we are 

oack in the invocation of F that appears on line 6. Time seems to have been 

JJackeu up. Are we in a loop? No, since now F returns a different value I The 

value of the combination whose rator is Print and whose rand is 'B' • This 

value, 5Lumm~, is now associated with x on line 6. Since x does not denote a 

label, we do not do the goto on line 8 but instead print 'Cion line 9 and the 

program terminates, having printed 'ADC'. What could be simpler? 

~his example raises quite a few interesting questions, such as the 

followingz 

Just what sort of R-value is label? How can we get enough 

information into x so that going to it puts us back to the 

application on line 6? 

What is the scope of a label? Note that the L returned as a 

value on line 3 is the "same one" that appears before a colon on 

line 4. As it happens, LiS scope is all of the text on lines 2 

through 4, but we need rules. 

"L" has the syntax of a variable. Can it be updated? 

At what points in a program may we place a label? 

Answering these questions takes most of the rest of the chapter. 

organiZation of the Chapter: Our presentation of J-PAL differs from that of 

L-PAL in Chapter 4. \'le start off with an overview of the J-PAL gedanken 

evaluator, and then treat various points in terms of how they are handled by it 
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-- usually by showing differences from the L-PAL case. Section 5.1 shows how 

R-PAL and L-PAL constructs are processed by the J-PAL evaluator, and section 5.2 
1l0W jumps are done. The chapter ends with a cOI!\plete listing of the J-PAL 

gedanken evaluator. Blackboard evaluation, which was so very important to our 

presentation of R-PAL and was of interest in L-PAL, is less important for 

J-Pl\L. 'l'he reason is that it is difficult to find meaningful programs that bot.h 
exploit the power of jumps (as opposed to hops) and are sufficiently short that 

ulackboaru evaluation is feasible. The program in (5.0-5) is such a program, 

and a blackboard evaluation of it appears in section 5.2. 

~.l Changes to the Gedanken Evaluator 

Our presentation of J-PAL's semantics requires that we specify the J-PAL 

gedanken evaluator. Because the changes from the L-PAL evaluator are extensive, 

we discuss in this section how L-PAL constructs. are handled by the J-PAL 

evaluator, and in section 5.2 how to do jumps. 

overview of the J-PAL Gedanken Evaluator 

Our logical bootstrapping procedure permits us to specify J-PAL in terms of 

an L-PAL program, and \-/e take extensive advantage of this ability. The overall 

structure of the evaluator is as follows: 

II definitions for representational issues 
def e, S, E, M = nil, nil, nil, nil 

II definitions for memory 

def Print x = II user-callable Print routine 

II definitions for environment 
tief Translate P = II and also D, ST, LL, FF 

tief 1 
def j 

programs for Transform 

tief Transform () = 
clef Gedanken evaluator Program = 

(5.1-1) 

l~ote tha t e, S, l:: and M are variable s global to es sentially all of this. 

For example, whereas in L-PAL we had 

def l::val constant (C, S, E, r-i) = 
r e, Push (Value_of (t e), S), E, M 

the corresponding J-PAL program is 

def l::val_constant () 
C, S = r e, Push (Value_of (t e), $ S) 

(5.1-2) 

Since e and S are global to this definition (i.e., already in the environment), 

and since we are writing in L-PAL, we merely update them to hold the desired 

values. E and M, not being changed by this function, are not mentioned. The 

unsharing operator $ is needed to prevent a disasterous sharing: The second 
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component of the 2-tuple returned by Push (see (3.5-3) on page 3.5-15'j)!lhares 

with Push's seconu argument. Since S is updated in the normal operation of 

'.1'ransform, it is essential that no part of the stack (or of anything else) 

share with it. 

'.l.'he main program for the evaluator is· 

def Gedanken_Lvaluator Program = 

Initialize~emory nil: 

C := Translate Program; 

S := Empty_stack: 

Initialize_env nil: 

until Null C do Transform nil 

(5.1-3) 

This program looks quite different from that of (4.2-7) for L-PAL. For one 

thing, the function Evaluate is gone, all of its work being done by the until 

construct in the last line. 

that a Print program must 

initialized before the call 

Further, the entire evaluation is for effect, so 

evidently be provided. Note that memory is 

to Translate: We see later that parts of the 

control structure are stored in cells in the memory. 

demory: We start our discussion with the M component of the evaluator. 

hxtending memory in the L-machine was made somewhat awkward by the need to carry 

H along as an explicit argument in every machine state transformation. Having t>1 

as a global variable facilitates a simpler treatment. 

As before, we represent a memory by a 2-tuple, whose first component is 

that integer which is the last address used (initially zero), and whose second 
component is a Mem: 

A totem is either empty (nil) 

or it is a 3-tuple, whose components are 

an address, 

a contents, and 

a Hem. 

However, there exi sts only one memory: the one stored in the global variable 
M. The first function we consider serves to initialize that memory' 

uef Initialize_memory () = 

M := 0, nil 
(5.l-4) 

L-4ote that this function has no useful value but is executed solely for its 

effect. Now we need the tilree function Extend, Update and Contents, but we must 

first select a representation for audresses. The address for cell k (where k 

uenotes same integer) is represented by the 2-tuple 

(ADORES S, k) 

We have then 
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<.Ief Bxtend Va"lue I I Find a new cell to hold value. 

let k = 1 + M 1 II Address of next free cell. 

def 

def 

in 

H := k, (k, Value, H 2); II Create new memory. 
(ADDRESS, k) I I Return the new address. 

Update (Cell, Value) = 

H := M 1, (Cell 2, Value, M 2) 

Contents Cell = 

let c = Cell 2 

in 

Look (M 2) 

where rec Look m= 

Null m -> error 

m 1 eq c -> m 2 

Look (m 3) 

(5.1-5a) 

(S.l-Sb) 

(S.l-Sc) 

Canpare these definitions \,li th those in (4.1-13). Finally, the following two 

definitions are frequently convenient: 

def Rval x = 
Is address x -> Contents x I x 

and Lval x = 

Is address x -> X I Extend x 

(5.1-6 ) 

A function such as Lval could not be written for the L-Machine, since it would 

have to return the new memory and would thus be no more than Extend. 

Transform: The major change to Transfo~ has to do with the fact that we need 

no longer pass around the (C, S, E, M) state. We have 
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def 'l'ransform () = 
let x = t C 

in 

I s constant x -> Eval constant nil 

Is variable x -') Eval variable nil 

Is lambda _exp x -') I:: va 1_1 ambda_exp nil 

Is address x -> Hop nil 

Is delta x -> Make labels nil -
x eq ALPHA -) Do_alpha nil 

x eq ASSIGN -) Do_assign nil 

x eq RETURN -) Do return nil 

Is address (t S) -) LtoR nil (5.1-7) 

x eq BbTA -") Do conditional nil 

x eq GO TO -) Jump nil 

x eq DOLLAR -> Do dollar nil 

x eq AUG -) Do_aug nil 

x eq GAHMA 

-) ( let r = t S II The rator. 

in 

Is closure r -)0 Apply_closure nil 

I Is constant r -> Apply_constant nil 

\ Is_tuple r -) Apply_tuple nil , error 

error 

Hop, i'lake_labels and Jump are the only new functions. The former is needed 

because of the fact, alluded to earlier, that parts of the control are stored by 

Translate into the memory, so that an address may appear as a control item. The 

last two functions are used to declare labels and to implement goto, 

respectively, and are discussed in section 5.2. The code for Hop is quite 

simple: 

def Hop () = 
C := Prefix (Contents (t c), r C) 

(5.1-8) 

~val constant has already been given in (5.1-2), and Eval variable and 

hval_lanilida_exp differ similarly from their L-PAL counterparts. For assignment 

we have 

def Vo_assign () = 
if Is address (t S) do 

Update (t S, Rval (2d S»; 

c, S := r C, Push (DUMMY, r2 S) 

(5.1-9) 

~ote how much simpler this code is than that in the L-machine, because it is not 

here necessary to carry the memory around all of the time. 

Va return and LtoR are similar to their L-PAL counterparts. 

of conditionals differs slightly: 

The handling 
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uef Do_conditional () = 
let V = Contents «Val_of (t S) -> 3d I 2d) e) 

in 

c, S := Prefix (V, r3 C), r S 

(5.1-10) 

~he control structure produced by the J-PAL Translate for a conditional always 

has the code for each arm stored in memory cells, corresponding to our R-PAL and 

L-PAL blackboard decision to abbreviate each arm with a o. 
For Do_aug we have changes similar to those for Do_assign: 

def Do_aug () = 

let V Aug (t S) (Lval (2d S» 

in (5.1-11) 

C, S := r C, Push (V, r2 S) 

~'he three Apply functions are little changed, Apply_closure being slightly 

simplified in use of memory. The code is 

def Apply_closure () = 

let R = t S II the rator 

and Rand = Lval (2d S) 

in (5.1-12) 

let New C Prefix(Contents(Body R), Push(RETURN, r e» 

and New S = Push ($ E, r2 S) 

and New E Decompose (bV R, Rand, Env R) 

in 

C, S, E := New_C, New_S, New E 

Note that Apply_Y and Apply_eta are missing: Recursion is achieved through use 

of a library routine. 

Translate: In going from the R-machine to the L-machine, most of the changes 

made were to 'l'ransform, the changes to Translate being confined for the most 

part to providing straightforward processing for the new node types. 

must make extensive changes to Translate, the new main program being 

def Translate Program = 
FF (LL (ST Program), nil) 

Now we 

(5.1-13) 

ST differs from the L-PAL version only in that the present one processes four 

new node types: COLON, GO_TO, VALOF and RES. The kind of processing done is 

unchanged. The function LL solves the problem of scope of labels, and we defer 

discussion of it to section 5.2, in which we consider labels. 

One aspect of the J-machine's Translate is appropriately discussed here, 

and "that is its use of memory. In blackboard evaluation in R-PAL and L-PAL, we 

nave consistently abbreviated certain control structures: A-bodies, arms of 

conditionals, and (in L-PAL) the right sons of semicolon nodes. Although this 

use of abbreviation was only for convenience and did not affect the 

formalization, tile use of abbreviation in blackboard handling of the while 

construct is critical. (See (4.2-3) on page 4.2-l~3.) Since we want to make 
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loops in tile control to handle while, we now formalize the 

abbreviations. 

Sec 5.1 

idea of 

~he idea of an abbreviation is that a single mark, such as &3' stands for 

some complex item. The effect we want is that, on encountering S3 in a suitable 

context, we look it up in a table and replace it by what we find there. (That 

is precisely what we have been doing in blackboard evaluation, all along.) 

Although we could easily implement such a table of abbreviations, it turns out 

that the memory has all of the needed properties. Thus we choose to put pieces 

of control structure into memory and to permit an address as a control item. 

For example, the control structure for 

while B do E 

would be just like that shown in (4.2-3), except that each ~ would be replaced 

by a 0"'. 

Hops, Skips and Jumps 

In the introduction to the chapter, the trichotomy of hops, skips and jumps 

was introduced, in increasing order of complexity. Recall that execution of a 

hop involves changing only C and that execution of a skip or jump involves also 

changes in B. (He see later that S is also involved.) We wish now to study the 

uistinction in more detail. We start with consideration of iteration, leading 

to a discussion of hops. 

Iteration: 'l'he concept of iteration is a fundamental one in programming, and 

syntactic sugaring for it appears in one guise or another in almost every 

programming language. In PAL, iteration appears explicitly only as the while 

and until constructs, the syntax of which 

while El do E2 

until El do E2 

we have already encountered in L-PAL. Still other variants on the conditional 

and iteration occur in other languages, and it seems clear that program 

readability is greatly enhanced when a rich catalogue of possible syntactic 

forms is available. 

Uespite its importance, however, the concept of iteration seems difficult 

to define abstractly. The difficulty centers on restricting the concept in a 

meaningful way. ~'or example, the following PAL program (which we have 

encountered before as (4.1-1c) at the beginning of Chapter 4) involves looping 

to tile label L, and may be thought of as an "iterative" definition of the 

factorial function • 
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def f n = 
let r, k = 1, 0 

in 

L: if k eq n do goto M; 

k :=" k+l; 

r := r*k1 

goto L; 

M: r 

In its overall semantics, (5.l-l4a) equivalent to 

def f n = 

let r, k = 1, 0 

(5.1-l4a) 

in (5.l-l4b) 

until k eq n do 

k := k + 11 

r := r * k 

r 

In point of fact we have seen that labels" in PAL (and in many other 

lang~ages--for example, ALGOL) are more powerful than is necessary to 

accommodate iteration; in other words, (5.l-14a) exploits only a subset of the 

properties of labels, precisely that subset which we have referred to as hops. 

In tile same vein, recursion includes iteration as a special case; indeed, 
our initial explication of while and until in L-PAL was in terms of the 

recursive function Loop# of (4.l-20). Operational insight into the distinction 

between full recursion and iteration is provided by the two following programs, 

each of which again defines the factorial function. 

def rec f n = n eq 0 -) 1 I n*f(n-l) (5.l-l5a) 

def f n 

9 (1, 0) 

where rec g (r, k) = 
(5.l-15b) 

k eq n -> r g r* (k+l) , k+l 

nere (5.l-l5a) depends upon the full power of rec, in the sense that every 

intenllediate result (one for each call to f) must be stored until the escape 
condition "n eq 0" is met, at Which, point evaluation unwinds. By contrast, on 

calls to 9 in (5.l-l5b) the results of previous calls are irrelevant: All 

necessary infornlation is carried from one call to the next by means of the 

iJound variables rand k. Thus (S.1-15b) -- which resembles closely (5.l-l4b) in 

effect and thus can be considered to be iterative represents a 

case of recursion in which the full potential of rec is not required. 

the degeneracy hinges upon the fact tilat the recursive variable f in 

degenerate 

Evidently 

(5.l-15a) 

is encountered as part of a ~ (in this case of the operator n*n), whereas in 

(S.l-lSb) the recursive variable g occurs only in the role of a ~ in a 

combination which is itself the entire value of a recursive call. We conclude 

that any abstract distinction between recursion and iteration depends critically 
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on the constraints in terms of which the discussion is circumscribed, and pass 

on instead to study of how the distinction manifests itself in PAL. 

Conceptually at least, we can view the J-PAL 

being achieved by a loop in the control structure. 

while B do E 

leads to the control structure 

implementation 

Thus 

of while as 

Figure 5.1-1: Reentrant control 

for the construct 

while B do E 

It is more convenient to use abbreviations than to attempt actually to construct 

such a loop, so we produce instead something like 

cf 
. 
J 

Figure 5.1-2: Control for while, with abbreviations. 

Review the code for Hop in (5.1-0) and for Do_conditional in (5.1-10) to see 

that the effect is as desired. On encountering the control item crl(' indicated 

in tile figure by a circled 4, the J-machine prefixes onto the control that 

control structure stored in cell 4, and then obe~it. Thus the code for D is 

obeyed. If the result is ~, the code in ~, is loaded, leading to execution 

of L followed again by O'""'f. This continues until evaluation of B leads to 

false. 
~ 
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We have used the term hop to refer to that linguistic facility which 

requres no more than a reentrant loop in the control structure, in 

contradistinction to the more general linguistic facilities which we call 

"skips" or "jumps". The node of the control structure at which reentry occurs 

is called the entry point. 

Although while and until are the only examples of hops in PAL, it should 

not be concluded tilat hops are an unimportant construct. Indeed, in most 

languages hops are the only explicit facility whereby the programmer can specify 

deviations from the normal flow of control. For example, by our definition 

labels in FORTRAN are hop entry points. It would have been possible -- even 

preferable, from the point of view of efficiency -- to have chosen entry points 

as the value of labels in the design of PAL. Since our objectives are pedagogic 

rather than practical, however, the decision was made to opt for the full 

generality of jumps. 

!:'rom the point of vie\,l of use (as opposed to implementation), the principle 

distinction between a hop and a jump lies in the scope within which it is 

effective. . In the normal course of executing a PAL program, the J-machine 

creates a new enviroruuent each time a A-closure is applied. Conversely, on exit 

from a A-body the newly created environment is lost and the old control resumed. 

A little thought should make it clear that in tilese circumstances indeed 

whenever one is dealing with a language that entails variables whose scope is 

limited -- it is not meaningful to hop to an entry point from outside the A-body 

that contains it. For example, consider the (defective PAL) program 

let x = 5 

in 

[let y = 7 in L: x := x+yl; 

if x Ie 15 do goto L; II Error 

x+l 

(5.1-16) 

and assume that the value of the label L were an entry point. The execution of 

the "goto L" conunand would involve hopping into the scope of y after having 

discarded its definition, so that the evaluation of y in the assignment to x 

would abort. 

A second difficulty with (5.1-16) is that in 

label L is itself unknown at the point of call, so 

on two counts rather than one. That is, the scope 

goto statement. But the first difficulty can 

PAL 

that 

of L 

occur 

the definition of the 

the program is defective 

docs not include the 

without the second when 

assignment of labels is allowed. As an example, consider the valid program 

let x, M 5, nil 

in 

[let y = 7 in 11 := L; L: x .-.- x+y]: (5.1-17) 

if x le 15 do goto M; 
x+l 

l1ere H is known at the point where the gete appears, and its value is updated 

earlier by the assignment "M: = L". If the value of the label L consisted 
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merely of an entry point (which in PAL it does NOT), then executing the goto 

woula again entail hopping into the scope of y after its definition had been 

lost, with ensuing chaos. 

r'rom the foregoing examples it might seem at first that hops are meaningful 

provided only that they occur within a single >a-body. But trouble can arise 

even when this constraint is met, as witnessed by the (again, defective PAL) 

program 

let y = 4 

in 

test (L: y) < 3 

ifso y 

ifnot (y := y-2 ; goto L) II Error 

(5.1-18) 

The reader should see that the stack is empty just before the interpretor begins 

execution of "goto L". If the effect of this command were merely to reenter the 

control structure, evaluation would abort because there would be no second 

argument for the operator "<" on the stack. We conclude that the value of a 

label must comprise more than just an entry point if the programmer is to have 

freedom to label arbitrary subexpressions, even if all flow of control is 

confined within a single A-body. 

Like (5.1-16), the example just given is defective because of PAL's scope 

rules for labels (which are discussed later). It suffices for the moment to 

(5.1-19) 

is correct PAL and would also abort if the value of a label in PAL were an entry 

point. 

~he limitations of hops which we have just explored are not encountered in 

languages such as FORTRAN by virtue of several constraints imposed by the 

language designers. Typical constraints are: 

(a) A label cannot be assigned, be passed as an argument, or be the 

value of a function. 

(b) The scope of all variables is the entire program. 

(c) Labels may only be placed in restricted contexts. 

duch of the time such constraints are innocuous, but they are occasionally 

troublesome. The alternative, which is to generalize the concept of a hop to 

the concept of a jump, is explored in the next section. It appears that both 

hops and jumps deserve a place in our catalogue of linguistic facilities, but 

that the latter should be used sparingly. 
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It should be acknowledged at the outset that very little guidance, either 

in mathematical theory or in computational practice, is at hand to guide a 

language designer in establishing what ~le semantic intent of a generalized 

jumping construct should be. \'lithout apology but also without much 

confidence that a more restrictive formulation may not ultimately prove more 

acceptable -- we therefore proceed on the basis of remedying the limitation of 

hops. 

llefore starting, we should make one point. Programs involving a maze of 

junps tend to be hard to read and understand, as anyone who has encountered 

FORTRAU-2 will surely attest. (The language has .!!£ sugaring for conditionals.) 

Indeed, it has been suggested by E. W. Dijkstra (1968) that labels should be 

abolished entirely from programming languages. Nonetheless, there are instances 

in which the full power of jumps as they are available in PAL seems to be called 

for, although simple examples illustrating such a need are hard to come by. The 

modern trend in programming language design is toward providing enough syntactic 

sugaring for hops so that labels are rarely needed, and this trend has been 

followed in PAL. In addition to the various sugarings discussed so far, the 

~-~ construct discussion later in this section is available. 

Having made these points, let us adopt a set of desidarata regarding the 

use of labels in PAL: 

(a) A label identifier should be a variable. 

(b) A label should be allowable on any sUbexpression of a program. 

'l'hat is, programs such as (5.1-19) should be allowed. 

(e) The labelling of any sUbexpression should not affect the meaning 

of a program if the label is not jumped to during execution. 

(d) If the label on a subexpression is L, then execution of the jump 

conunand "goto L" with the memory in some state should be 

equivalent to entering the subexpression normally, but with 

memory as it is at the occurrence of the goto. 

(e) An R-value of type label may be used just as may any other value. 

Specifically, it may be assigned as the value of a variable, 

may be a component of a tuple, may be passed as an argument to a 

function, may be the value of a function, etc. 

By "entering the subexpression nonnally" in (d) we mean entering it NOT via a 

jump, but rather via the control structure which would exist if all labels (i.e. 

writinys of ~le form "(NAME): rt) were excised from the program. This point is 

discussed further later. 

These desiderata suffice to specify the semantics of jumps, but do not 

specify the scope of labels. We defer detailed treatment of label scope until 

after we have extended the state-transition function Transform to accommodate 

evaluation of, and jumping to, a label. 
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'l.'he Value of a Laue 1 

The examples we have seen make it clear that the value of a label is a 

complete machine state with three components: C, Sand E. Further, point (a) 

above makes it clear that the syntactic device "L:" declares L to be a variable 

whose initial value is of type label. Thus, for example, the segment 

let ••• in 511 L: 52; 53; M: 54 (5.2-la) 

is treated somewhat as if the programmer had written 

let ••• in lett L, M = (5.2-lb) 

Iere let# is written to suggest that this is a rather special sort of let, one 

which serves to define labels. The arrows emanating from the circles suggest 

that L labels 52 and that H labels 54. Of course the programmer cannot write 

lett -- (5.2-lb) is meant only to be suggestive. 

~he issue of scope of labels, which we defer until later, has to do with 

just where the lett is placed. The reader should rest confident that the 

examples we give are correct. 

Lxamples: We need now some examples of the use of labels, to see some of the 

implications of desiderata at the beginning of this section. The following 

program segment makes clear that labels really are variables, as suggested by 

(a) : 

A: Print • A' ; 
goto B1 

13: Print I I3 I ; (5.2-2) 

B := C; 

goto A1 

C: Print • C I 

In the absence of the assignment statement the program would loop, printing 

·J\13ABAB ••• •• However, the semantics of "goto B" involves transfer to whatever 

value the variable B has at the time the goto is obeyed. The second time 

around, that value is C, so the program prints 'ABAC ' and terminates. 

To get further insight, consider the fragment 

let x = 5 

in (5.2-3) 

(M := L1 L: x) + 3 

and assume that this lies within the scope of the variable M. The syntax tree 

for this fragment is shown in (a) of Figure 5.2-1. The new node here is COLON, 

whose left son is a label and whose right son is the tree that is labelled. The 

standardized tree is shown in (b) of tile figure. Note that the left son of the 

COLON node is a one-tuple whose component is L. Otherwise there is nothing new 

here. 
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Figure 5.2-1: Trees for (5.2-3) 
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Hhat we want now is a control structure for this. 

on the way to creation of control is shown in (c). 

function LL mentioned in (5.1-13) on page 5.1-.1.f1.) 

An intermediate result 

(This is the output of the 

This picture is somewhat 

simplifieu, but it is substantially correct for our present purposes. The ~ 
node is placed at the point where the label is to be declared. Its left son is 

(in this case) a 2-tuple whose components are the label and the place labelled. 

'rhe riyht son of the delta is that piece of tree which is the scope of the 

label. 

In dealing with A-expressions we have found it convenient to set off the 

body as a separate control item. A ~-body is then evaluated in the new 

environment created at the time the "-closure is applied, thereby clearly 

delineating the scope of its bound variable. Since the effect of obeying the 

control item DELTA includes creation of a new environment, it is consistent to 

set off the right son in a similar way. Thus, we are led to flatten the 

program representation as shown in Figure 5.l-l(d). By contrast, if the writing 

"L:" were deleted from (5.2-3) the flattened control structure would have been 

as shown in Figure 5.l-l(e). The distinction between (d) and (e) lies in 

insertion of the control item A, whose left son is the label name and entry 

point, and right son is the expression over which L is to be known. This latter 

we refer to hereafter as a label body. 

Uetails of how the control structure of (d) is generated from the abstract 

syntax tree of (a) are covered later during discussion of Translate. For the 

mon~nt, it suffices to observe that this control structure (however it may have 

been produced) exhibits certain important information in a convenient form: 

In 

may be 

(1) The control item 6 provides forewarning that a label is about to 

be declared. 

(2) The label name and entry point are readily accessible. 

(3) The label body is manifest. 

this program there is only one label declared at the delta node, but it 
the case that several are declared. For example, conventional 

programming practice permits the possibility of forward jumps, as in 

51; if ••• do goto L; S2, L: S3 

'1'he scope of L is the entire wri ting. 

consider the following example 

(4.l-lc) contains a forward jump. Let us 

let x 

in 

nil 

L: 51; M: 52; N: P: 53 

(5.2-4) 

Here 51, 52 and 53 may be any statements, including possibly the case that 51 is 

"goto N". Figure 5.2-2 shows successively the syntax tree, the standardized 

tree, the output of LL and the control structure for this program. (\-1e continue 

to simplify slightly.) Hote in (b) that the left son of the third COLON node is 

a 2-tuple, whose components are the two labels of 53. In (c) the ~ node is 
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placed so as to declare all of the labels on entry to the ~-body, and (d) 8ho\'15 

the control. Four labels being declared, the DELTA node has an a-tuple as the 

left son. 'l'he first, third, fifth and seventh elements are the variables to be 

declared, anti the even-numbered elements point to the relevant part of the 

control. 

Blackboard Bvaluation: We have seen some examples of control structures for 

labels, and we now concern ourselves with evaluation. We consider again the 

program of (5.0-5), which we repeat here for convenience: 

let F () = 
true 

in 

- > (P r in t 'A I: L) 

(L: Print 'B') 

let x = F nil 

in 

if Islabel x do goto x: 

Print 'c' 

(5.2-5) 

The abstract syntax tree, standardized tree and output of LL are shown as (a), 

(b) and (c) of Figure 5.2-3. (Much of (c) is not drawn, since it is identical 

to the corresponding part of (b). To the extent that COLON nodes are absent, 
the output of LL is identical to its input.) The intent of the circled 1 in (c) 

is that the node below it is stored in a memory cell -- 0"", in this case. 

Figure S.~-4 shows two drawings of the control structures produced by FF. 

Again, circled numbers denote addresses. The upper dra\'ling shows the control 

structure as a whole, and the lower drawing shows separately the contents of 

each cell. The reader should satisfy himself that the drawings are equivalent. 

Note the correspondence between the occurrences of <1'". in this figure and in 

Figure 5.2-3(c): This correspondence will be seen to be critical to the 

successful operation of Translate. 

Figure 5.2-5 shows the AE form of (5.2-5) and the control sequence for 

blackboard evaluation. So as to emphasize the relation between blackboard 

evaluation and the gedanken evaluator, each 0 refers to the same piece of 

control as the corresponding~. (Of course, the numbering of the 6's is 

arbitrary -- any eleven numbers in any order could be used. The numbering shown 

ilere happens to be that actually produced by FF.) 

Figure 5.2-6 shows blackboard evaluation in a J-PAL evaluator. The column 

at the riyht labelled P shows printed output, an entry being shown there each 

time the identifier Print is applied. The column headed J contains line 

nun~ers actually referred to as part of the blackboard evaluation, as opposed to 

the colunm to its left which appears only to facilitate reference to the 

evaluation in this text. Now note the appearance of 'A~ on line 6. The 

subscript indicates that the piece of control structure abbreviated as S 10 is to 

be executed next. The two superscripts indicate that identifier L is to be 

declared as a label, referring to the entry point SI. The line immediately 
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follO\~ing is labelled 7 in the "J" column, and this number is placed as a 

superscript on the value associated with L ~n memory cell ~~. A new environment 

layer, ~3, is created for L and connected to the environment (2) which was 

current when the 6 was encountered. The R-value ~: associated with L contains 

two items: The subscript 1 indicates that I. is to be obeyed if L is gone to, 

and the superscript 7 indicates that information on line 7 of the evaluator is 

to be used. Specifically, the intent of any future goto with S: as a target is 

to be as follows: 

(a) The control and stack are to be put back as they are on that line 

labelled 7, up to and including the innermost environment markers 

(E3 in this case), but not beyond them. 

(b) '£he control structure abbreviated by bl is then to be loaded into 

the control. 

This is just what happens on going from line 20 to line 21. Note that no 

special provision is needed for the environment in the blackboard evaluator, as 

opposed to the J-machine, because in the former putting environment markers back 

into the control (and stack) has the desired effect. 

\vere several labels to be declared at one place, as would be the case for 
.t,1 LJM • 

(5.2-4), a control item such as ~, m1ght be used. Obeying this would create 

two new environment layers, one associating L with a cell containing S; 
(assuming the J-entry to be 7) and the other associating M with a cell 

containing Sf. Line 7 must be a line in which the environment is such that ~ 
Land 1'1 are known, so that after a jump to one of these labels execution will be 

in an environment where' both variables are known. 

Conditionals: None of the control structures we have seen so far has included a 

conditional with a label placed on one arm and in which we are concerned with 

the successor of the conditional. An example of this idea is 

Sl; test B ifso 52 ifnot (L: 53); S4 . (5.2-6) 

If S3 is entered normally, by virtue of B having been evaluated as ~, its 

successor is clearly 54. Because of decision (d) on page 5.2-1.6'1, it follows 

that execution of 53 by virtue of a transfer to L must also be followed by 54. 

The rules we have been using' up to now suggest the control structure shown in 

Figure 5.2-7(a). The effect of a transfer to L will not be such that the 

successor of 53 is 54. (This may not be obvious at this point, but it is true. 

'l'here is no way to go "backwards" on the arrows in the figure.) Needed is a 

control structure which includes with each arm of each conditional the successor 

to that arm. For (5.2-6) proper control is shown in Figure 5.2-7(b). Clearly a 

transfer to L would lead to execution of 53 and then of 54. 

Let us. do a blackboard evaluation that illustrates this idea. Consider 
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let x, y, M = 5, 4, nil 

in 

x := 1 + ( H := L: 

L: y := y eq 

Y + 3 

) ; 

if x eq 10 do goto H; 

x 

4 -) 6 I 2· , (5.2-7) 

In sone sense this program is vacuous, since we have claimed that in J-PAL 

evaluation is for effect only and the program contains no Print statement. 

Nonetheless blackboard evaluation is illuminating. Note first what is going on: 

'1'he first time x is updated the value of y is .i, so that we assign .R. to y and 

then 1 + [y + 3] or lQ. to x. In the process the label 1-1 has been set equal to 

the value of the label L, so that obeying later "goto H" leads to evaluation at 

the entry point corresponding to L, in an environment in which x is 12 and y is 

6, and with a state wherein execution of "x := 1 + [ ••• ]" has been set up but ... --------
not yet completed. Evaluation of the bracketed expression this time assigns ~ 

to y, and returns (y + 3) or~. Resuming therefore updates x again, this time 

to i, and the evaluation ends. 

Figure 5.2-8 shows an AE form and blackboard control sequence for (5.2-7), 

and Figure 5.2-~ shows the evaluation. Figure 5.2-10 shows, for the sake of 

comparison, gedanken evaluator control structure. 

'l'ransform 

As in chapters 3 and 4, we have gained intuitive understanding through 

simulation of the gedanken evaluator using the conventions of the blackboard 

machine. Now we must complete the formal definitions. In this section we 

assume that control structure exists, discussing here only Transform. 

next section we finally address the issue of scope of labels 

specification of Translate. 

In the 

in our 

Jump: There are only two new transfoDmation functions in the J-machine for 

labels: Make_labels, which is called for a A node, and Jump, which is called 

for a goto. We look first at Jump, and then at Make_labels. Hop is also ne,." 

but it has already been discussed. 

Jump is called when the top control item is GO_TO, and expects the top 

stack item to be a label.. What Jump is to do is to effect a transfer to that 

label. (This is the action done in the blackboard machine when go is at the top 

of the control.) What we must now specify is just how the R-value of a label 

is to be represented. 

Look closely at the blackboard evaluations we have done. As mentioned, a 

label value such as ~: indicates that S, is to be obeyed in the situation that 

prevailed on line 6 of the evaluation. The effect of a goto, then, is to 

install a complete new machine state: all three of C, Sand E. Note that the 
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Figure 5.2-10: Control Structure for (5.2-7) 
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values of C, Sand E at the time of the goto do not take part in the next line. 

r'or gedanken evaluation, a different packaging than that suggested by the 

notation S~ is more appropriate. We thus decree that a label has three 
corLipOnents, corresponeling to the C, Sand E to be installed as part of the 

goto. Of course, it also must have some sort of tag indicating that it is a 

label, so we decree that a label is to look like this: 

UI~ 
c. S e 

Jump then is quite simple: 

de f Jump () = 
unless Is_label (t 5) do error1 

C, S, E := t S 2 

(5.2-8) 

The first line is a necessary check, and the next line is a simultaneous 

assignment whose right siele clearly denotes a 3-tuple. Our task now is to see 

how such an object is made. 

clakelabels: We have already seen that Make_labels is the function called in 
Transform when A is the top control i tern. We know from our discussion of Jump 

what it must do, and are now ready to look at the code: 

def Make _labe ls () 

let V = t C 2 

in 
let L, k = V 1, Order (V 1) II Labels 

and New C = Push(RETURN, r C) 

and New S = Push($ E, $ S) 

anel New E = $ E 

in (5.2-9) 
while k > 1 do 

) ; 

let Lab = LABEL, (Push (L k, New C), New_S, NeW_E) 
in 

New_E := L(k-l), Lval Lab, $ New_E1 
k := k - 2 

c, S, E := Prefix (Contents (V 2), New C), New_S, New_E 

This program requires son~ conwent. A delta node is a rather complex bundle of 

inforIl~tion. (Study Figures 5.2-2 or 5.2-4 or 5.2-10.) It is a 2-tuple, whose 
first component is DELTA (so that one can tell what it is) and·whose second 

component (V in the program) is the useful data. V has two components: A tuple 
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of labels to be declared, and the address of the control to obey upon completion 

of the act of declaration. ('l'his piece of control is precisely the scope of the 

label variables.) Note in the program that L is thc tuple of labels (the first 

con~onent of V) and k is its order. The first, third, ••• components of L are 

each variables, and the second, fourth, are each the (address of the) 

associated control. 

Hext New_C is calculated, to be used both as part of each label and as 

part of tIm control to be done next. We want to obey the control of (V 2) in 

an environment in which the labels are known, then to remove the labels from the 

environment, and then to continue with what was going on when the A was 

encountered. The expression 

Prefix (C~ntents (V 2), Push (RETURN, r C» (5.2-10a) 

has as value the desired control. (Compare with the code in Apply_closure in 

(5.1-12) on page 5.1-258.) The definition of New C along with the assignment 

at thc end of the code produce this value. 

As in Apply_closure we must save the current environment on the stack, so: 

New S = Push ($E, $5) (5.2-l0b) 

The new environment is to contain all of the current environment, along 

with the labels being declared. At first glance it appears that New_E is just 

an unshared copy of h. However, note the assignment to New E within the while 

loop: 

(5.2-l0c) 

Clearly, executing this statement creates a new environment layer on top of the 

existing one, a layer in which the label L(k-l) is associated with a memory cell 

(the one returned by Lval) whose contents is Lab, to be discussed next. The "$" 

is necessary to prevent a disasterous sharing. 

Note now the definition of Lab: 

(5.2-10d) 

This is precisely the right kind of value for a label: a 2-tuple whose first 

component is LABEL and whose second component is a (e, 5, E) 3-tuple. A 

subsequent transfer with this label as target will cause the control stored in 

the address (L k) to be obeyed, followed by resumption of the item after the A. 

\';e must still discuss the environment, Ne\l_E. It is clear that, after 

processing the ~ node, we are in an environment in which all of the labels 

declared are known. It follows from (d) on page 5.2-26~ that any transfer to 

such a label must also result in execution in such an environment. Thus the 

environn~nt associated with ~ label must include all of them. Fortunately 

this is easy: Each label is created by execu~ion of (5.2-l0d). (Recall that 

this definition appears within the iteration on k.) For each such label, the E 

canponent shares with New_E. Thus all of the labels share an E component, and 

it is this component that is updated in (5.2-10c). 
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'l'he reader is advised to study carefully this description. A.lthough 

sharing is a very important concept in PAL, this is one of the few instances in 

the formalization where it is used in such a critical way. The key idea is that 

we form a (C, 5, B) 3-tuple with an E component which we later update to hold 
the desired information. 

Scope of Labels 

A problem we have been deferring right along is this: A writing such as 

"L:" serves to def ine the variable L as a labe 1. What is the scope of L? That 
is, in just what part of the program is L to be known? It is this question that 

is answered so poorly in section 4.3/S of the PAL Manual, and it is time now to 

answer it. In doing so, we also specify Translate for the J-machine. 

Informal Scope Rules: The definition of the value of a label in PA.L is 

predicated on the stipulation that it be meaningful to jump to a label even in 
circumstances where a hop would be meaningless. ~10 instances in which hopping 

was inadequate were cited in (5.1-17) and (5.1-19); in the first case we could 
not hop into the scope of a local definition, and in the second we could not hop 

into the middle of a combination. To remedy these deficiencies we have defined 
the value of a label to comprise all information necessary to jump to it from 

any place in a program where its value is known. Specifically, we have included 
in a label value not only an entry point into the label-body, but also the 

environment and stack that are to be installed when a jump to the label is 

executed. 

The fundamental question to be answered \"hen establishing the scope of a 

label concerns the point in normal program execution at which the information 

requisite for constructing the label's value is at hand. We cannot declare a 

label outside of the smallest enclosing A-body without prejudicing its 
environment component, nor can we declare it outside the smallest enclosing 

functional application without prejudicing its stack component. Thus labels 
such as L in either of 

let x = 5 in (L~ x := x+l) (5.2-lla) 

x := 5 + (L: 7); (5.2-llb) 

cannot be declared until just before evaluation of the (parenthesized) 

subexpression in which "L:" appears. 

~he situation is distinctly different for sequences and for conditionals. 
Assume the following appears as the entirety of a A-body: 

A: 51; 
B: test ... 

ifso (c: S2, 0: S3) (5.2-12) 

ifnot O(E: S4, F: S5); 

G: S6 
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Figure 5.2-12: Control structure for (5.2-12) 
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Each of the seven labels shown has as scope the entire body, and each may 

meaningfuly be transferred to from anywhere in it. Thus it is necessary that 

~ ~ of the labels be declared on entry to the A-body. Figure 5.2-12 shows 

the control structure for (5.2-12). 

The situation when a label is attached to part of a premise of a 

conditional is different. Consider 

test (51; L: E) ifso 52 ifnot 53 (5.2-13a) 

Should L be known outside of the parentheses? t'le elect to say "no", but the 

rationale behind the decision is less clear cut. On the other hand, there is no 

loss of generality due to this decision, since the semantics of (5.2-13a) and of 

517 L: test E ifso 52 ifnot E3 (5.2-13b) 

are identical except for the scope of L. 

proved by appeal to Translate: Each 

structures. 

This should be obvious, and it can be 

of these produces equivalent control 

Tree Form of the Scope Rules: tfuat we have been discussing is how far from its 

position in the text a label is known, a discussion which is awkward because of 

our concern with tile textual representation of a program. This discussion 

becomes much simpler if formulated in terms of the ~ representation. For 

eX~lple, consider (a) of Figure 5.2-13. Our discussion has already indicated 

that any label whose scope includes all of either A or B is to be known in both 

of th~n, a fact that we can express by saying that the labe~'s scope propagates 

~ ¥L;HR~ 
A B 

( ca.) 

through the semicolon node. t'le thus draw the arrows shown in (b), indicating 

that labels known in either son are known outside. We can specify all of PAL's 

label scope rules this way, and do so in Figure 5.2-14. This picture shows, for 

example, that labels known in either arm of a conditional propagate through the 

BETA node, but that label~ in the premise do not. we apply the rules to the 

standardized tree which is the output of ST, thus restricting the number of node 

types needed. Labels propagate upward only through COLON, ALPHA, BETA and WHILE 

nodes, and then only as shown. There is no propagation through GAMMA, LAMBDA, 

AUG, ASSIGN, GO_TO or DOLLAR. 

As an example of the use of these scope rules, let us consider the program 
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let x 5 

in 
7 + El; 

while E2 do L: E3; 

M: E4; 

test (N: E5; E6) 
ifso E7 

ifnot (E8; P: Q: E9)1 

x 

Sec 5.2 

(5.2-14) 

'l'he syntax tree standardized tree, output of LL and control structure for this 

are shown in Figure 5.2-15. The dashed arrows in (b) indicate the subtrees in 

which each of the labels is known. 

One final point needs to be made before we pass on to detailed treatment of 

Translate. In L-PAL we treated 

while B do E (5.2-15a) 

as sugaring for 

Loop # (,\ (). B) (A (). E) (5.2-15b) 

whereas we have already indicated our intent to do differently in J-PAL. 

Although the efficiency issues already discussed adequately justify the change, 

there is one other rather compelling reason for it. We want labels in E in 
(5.2-l5a) to propagate, an effect we achieve by the rule indicated in Figure 

5.2-14. Dut labels in E in (5.2-15b) do ~ propagate beyond the A-body of 

which they are part. 

Translate: The Translate functions for R-PAL and L-PAL are identical: 

def Translate P = FF (ST P, nil) 

The two step process consists of standardizing the input and then flattening 

it. For J-PAL we require (or, at least, find useful) an intermediate step which 

propagates labels in the standardized tree, so that.we have 

def Translate P = FF (LL (ST P), nil) (5.2-16) 
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Figure 5.2-15: Trees for (5.2-14) 
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/I 

7 

Figure 5.2-15(d)a control Structure for (5.2-14), as Produced by FF. 
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We have already seen what each of these three functions is to do, in several 

places including Figure 5.2-15, and we must now see how they do it. 

The Function ST: For the most part, the J-PAL standardizing function ST 
operates as does its R-PAL and L-PAL counterparts. The new node types in its 

input are COLON, GO_TO, VALOF and RES, and the two node types in the output are 

COLON and GO TO. VALOF and RES will be seen to be merely sugarings for other 

constructs. 

For GO TO the processing is simple: 

COLON is slightly trickier. For the most part, what we wa~t is something like 

(5.2-l7a) 

NRME e 

However, the job of LL is eased if multiple labels on a single place are checked 
for by ST. Recall that PAL's syntax per.mits multiple labels, as in 

••• , L: M: S 1 ... (5.2-l7b) 

(we saw in (5.2-4) another example of this.) The tree form of (5.2-l7b) and the 
standardized tree are 

L 

L M (S.2-l7c) 

It eases subsequent processing if in the output of ST the left son of COLON 
nodes is always a tuple. Thus in the case in which there is only one label, we 

decree that the output COLON node is to have a l-tuple as its left son, so 
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(5.2-l7a) should be replaced by 

lO;ON~ 
NRnE E (5.2-l7d) 

HAnE" 

l.'he code in ST that does the work is 

let w = ST (x 2) 

in. 

Is_tag w COLON (5.2-18) 

-) COLon (w 1 aug x 1) (w 2) -
I COLON (nil - aug x 1) w 

The effect is that the right son of the COLOn is standardized and then checked 

to see if it too is a COLOn node. If not, the output COLON node has as its left 

son a l-tuple which is the label. Otherwise the two nodes are coalesced into 

one. 

It is necessary that this code \,lork for more than two labels at the same 

place. It is worth looking closely at it to see why it does work, since the 

technique used here in a rather simple way is used in a critical way in LL. 

Note that to standardize a COLON node we first standardize its right son and 

then ask if that is also a COLON. If it is, we agglomerate the labels 

together. The point that needs careful study is just how the recursive calls to 

ST are organized. 

'I'he Function LL: LL is applied to a standardized tree possibly containing COLON 

nodes and returns a tree containing appropriate DELTA nodes. Each DELTA node 

has two sons: a (2 k)-tuple and a tree, where the tuple contains alternately 

labels and pointers into the tree. He call such a tuple a label-list. Consider 

again (5.2-14) and its standardized tree and output of LL as shown in (b) and 

(c) of Figure 5.2-15. Note that each label has been propagated as far up the 

tree as possible, as indicated by the upward arrows in (b). (These arrows are 

drawn as dictated by the rules of Figure 5.2-14.) Note further that each 

labeled tree is stored in a memory cell, as indicated by the small circles in 

(c). The reason is this: The DELTA node provides an association between a 

label variable and a piece of the tree, and it is necessary that this 

association be preserved in FF. To achieve this, we elect to associate a label 

with an address, and store in that address the tree that is labeled. FF will 

then 

~. 

flatten that piece of tree and store the flattened tree ~ ~ ~ ~ 

This point was aluded to earlier on page 5.2-26~ in the discussion of 

Figure 5.2-3. 

The code for LL is shown in Figure 5.2-16, and it is not very transparent 

code. The validity of the label propagating scheme turns on the fact that for 
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II The function LL processes labels, bringing each label as far 
II up the tree as possible. The effect Is that each label is 
II declared by a DELTA node as soon as its scope is entered. 

def Combine(x, y) = Q 1 x 
where rec Q k s = 

k > Order y -> s I Q (k+l) (s aug y k) 
with in 
Proc_label s x = 

Is_tag x DELTA 
-> (x 1, x 2) 
I (nil, x) 

within 
Combine_labels(u, v) = 

let U = Proc_labels u 
and V = Proc labels v 
in -
Combine(U 1, V 1), (U 2, V 2) 

within 

rec LL x = 

5.2-290 

let Type = Is_tag x 
In 

lsi de n t i fie r x - > x 
Type ALPHA 

-> ( let s, w = Comblne_labels( LL(x 1), LL(x 2) ) 
in 
DELTA_ 5 ( ALPHA_ (w 1) (w 2) ) 

) 
Type BETA 

-) ( let 5, w = Comb Ine_l abel s( LL(x 
in 
DEL TA_ s ( BETA - (LL(x 1» (w 1) 

) 
Type \~H I LE 

-> ( let 5, w = Proc_l abel s( LL(x 2) 
in 
DELTA_ s (HH I L E_ (LL (x 1» w) 

) 

Type COLON 
-) ( let L, z = Proc_labels(LL(x 2» 

in 
1 et w = Lva 1 z 
in 
DELTA_ (Q 1 L) w 
whe re rec Q k t = 

2), LL(x 3) ) 

(w 2) ) 

k > 0 rdc r (x 1) - > t I Q (k+ 1) (t a ug x 1 k aug w) 
) 

Type LAMBDA -> 
Sons x eq 1 -> 
Sons x eq 2 -> 
error 

LAMBDA (x 1) (LL(x 2» 
Tag (Get_tag x) ( nll,aug LL(x 1) ) 
Tag (Get_tag x) ( LL(x 1), LL(x 2) ) 

Figure 5.2-16: The Function "LL" that Propagates Labels 
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any standardized subtree x, LL(x) will be a subtree in which all labels that 

are candidates for further propagation are agglomerated into a single ~ node at 

the root. Thus LL (x) will have the form illustrated in (a) of Figure 5 •. 2-17 if 

candidate lauels exist, and the form illustrated in (b) otherwise. It follows 

then that we can determine whether or not to propagate labels through any node 

by testing its type and tile type of the result of applying LL to its sons. 

The effect of label agglomeration is illustrated in (c) of Figure 5.2-17 in 

which we have a node x of type A. Applying LL to its second son will by 

hypothesis return a ~-node, called v in the picture, with candidate labels 

already agglomerated as shown. To continue the agglomeration we wish to produce 

a single ~-node whose left son contains both sets of label-entry point pairs. 

This is accomplished with the help of the three functions Combine, Proc_labels 

and Combine_labels, as shown in Figure 5.2-16. (PALls syntax of "rithin 

definitions is such that each of these is known within the following ones, and 

all three of them are known within LL.) One other rather interesting 

programming artifice is used to simplify the code: 

def DELTA_ x y = 
Null x -> Y Tag DELTA (x, y) 

(5.2-19) 

~his variation on the usual tagging function makes the code for LL simpler, 

since it permits applying DELTA to 

checking that the list is non-empty. 

nil. ) 

a label-list and a tree without first 

(If there are no labels, the label-list is 

Let us look at the three auxiliary functions. The value of 

Combine (x, y) 

where x and yare each tuples is a single tuple containing the components of x 

follmved by those of y. It. is used to combine two label-lists, and works 

properly if either or both is empty. Proc labels is applied to a node and 

returns a 2-tuple "'hose first component is the label-list for the labels 

declared at that node and whose second component is the tree at that node. 

Combine labels is applied to two nodes and returns a 2-tup1e whose first 

component is the label-list and whose second component is a 2-tuple whose 

components are the two trees. 

l~ow examine again the code for LL. For each of ALPHA, BETA and WHILE, we 

calculate in s the label-list and in w the tree(s), and then build the 

appropriate DELTA node. The trick in the definition of DELTA in (5.2-19) saves 

the necessity of checking for an empty label-list in each of these. Note that 

in the BE'l'A and WHILE cases LL is applied to the booleans, but any labels found 

are not propagated. 

How note the code for COLON. Proc labels is called to store into L the 

label-list for the right son of the colon node and into z the tree for it. \'Je 

then call Lval (see (5.1-6» to get a new memory cell, a cell that contains z. 

We then call the recursive function Q to build a new label-list by "aug"ing onto 

L (which will be nil if no labels propagated to the top of the right son of the 
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LL (x) 

( a..) 

Fo')'~ ~f r",flh-c~t' p"orl",c~J ~y 1-1.. 

H ( ,...~ (..._) , s ~ ., r tt rJ , e J 'I P< 0 f-( C r 

t ha.)1 \)e I- Til. 

x 

Figure 5.2-17: Operation of the Function "LL" 
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original COLON node x) the label(s) being declared at this point. Note that 

each label thus declared is associated in the label-list with the same cell: 

w. 

'l'he Function FF: The J-PAL version of FF differs from the R-PAL or L-PAL 

versions in one important way: It stores pieces 

memory in a way similar to the abbreviation 

blackboard evaluation. For example, we have always 

A-bodies, so the corresponding code is 

of control structure into 

scheme we have been using in 

used a S to abbreviate 

Type LAHBDA 

-) ( let Body = Lval (FF (x 2, nil» 

in 

Cons_larnbda_exp (x 1, Body), c 

It differs from the L-PAL version only through the presence of the call to 

Lval. 

For the case where LL produces a piece of tree in a memory cell, FF will 

encounter the address of that cell in its input. The relevant code is 

Is_address x -> 
Update (x, FF(Contents x, c»; (x, nil) 1 

~'F does have one new problem: constructing the loop needed in the control 

for while. We have 

~ype 

( 

WHILE -> 
let w = Lval NIL 

in 

let TA = Lval(FF(x 2, (ALPHA, (w, nil»» 

and FA Lval(DUHNY, c) 

in 

Update (w, FF (x 1, (BETA, (FA, (TA, nil»»); 

(w, nil) 

The key fact here is that the address w is used in constructing TA, and then the 

contents of cell w is updated to hold a reference to TA. Suppose that the three 

calls to Lval return 0"'" O"'r and 0'"6. Then the effect of this processing is: 

c. 

FF(~.) 

n 
nil) 

B t: 
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Note the similarity between this drawing and that in Figure 5.1-2. 

'l'he Constructs "valof" and "re sIt 

Although jumps afford facilities for resuming any CSE state, they do not of 

themselves provide for carrying back a value calculated at the place from which 
the jump is made. This latter capability is provided in PAL by the valof and 

res constructs. 

The easiest way to specify the semantics of valof and res is to view them 
as syntactic sugar for other expressions whose effects have already been 
defined. For preliminary purposes, we may say that for any expression E1 

is equivalent to 

and that for any expression E2 

is equivalent to 

valof El 

let 11' = nil 
in 

Tr := El; 

f: rr 

res E2 

rr := E2; goto p 

(S.2-20a) 

(S.2-20b) 

(5.2-21a) 

(5.2-21b) 

The intent is that (res E2) appear as a subexpression of E1, so that the name rr 
and the label r of (5.2-2lb) refer to the entities defined in (5.2-20b). The 

same names 11' and p are used in all instances of va10f and res that are 

encountered. PAL's normal scope rules serve to associate each res with the 

proper valof. 

Analysis of the effect of writing 

valof [-vYV'(res 5)---1 

is straightforward. If res is not encountered. during evaluation of the 

bracketed expression, the effect of the valof is nugatory: We merely waste 
effort by setting up the dummy variable w, assigning the value of the bracketed 

expression to it, and then returning this via the evaluation of n. On the other 
hand, if res is encountered during the evaluation, then we assign ~ to W. All 
further evaluation is terminated by jumping immediately to the label p, thereby 
returning the value of ~ which in this case is~. It should be clear from 

(5.2-20) and (5.2~2l) that in the case of nesting, res will cause a return to 

the first va10f above it in the syntax tree representation of a program. 

These constructs can be useful in providing an error exit from deep within 

the evaluation of a recursive function. Consider for example the program 
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let f n = valof 

9 n 

where rec 9 k = 
k eq 0.0 -> 1.0 (5.2-22) 

I k * (k < 0.0 -> (res k) , g(k-l.O» 

in 

f(3), f(2.6), f(-2.3) 

Here f is analogous to the factorial function, except defined on real numbers 

rather than on integers. If n is a whole non-negative number, 9 returns n 

factorial; if n is negative, g returns n; and if n is a fractional positive 

number, 9 returns the non-integral part of n, minus 1.0. Thus the value of 
(5.2-22) is the 3-tuple (6.0, -0.4, -2.3). 

There may be several instances of res within a single valof. Thus 

valof (-- res 5 - res 6 -res 7 -) 

returns §, 6 or 1, depending on which res is first encountered during 

execution. 

Since it is impossible to prevent tlle writing of obscure programs in any 

non-trivial progranuning language, the proper objective in language design \'lOuld 

seem to be provision of facilities that are at least adequate for \olriting 

perspicuous ones. In this regard valof and res appear meritorious -- certainly 

it is desirable to avoid the use of explicit jumps and labels whenever 

possible. ~~ith the inclusion of every new linguistic facility, however, come 

new opportunities to lapse into obscurity. Consider 

let f = valof (fn t. res t) 

in 

Isinteger f -> f - 3 f 4 

(5.2-23) 

Verification that the value of (5.2-23) is 1 is left as an exercise for the 

reader. It is an easy blackboard evaluation and an instructive one. 

Our sole remaining task is to remedy a small defect in our preliminary 

definitions of valof and res. The assignment command "rr :.= E2" in (5. 2-20h) 

evaluates E2 in R-mode, and stores the reSUlting value in memory address rr. A 

more general facility can be provided by redefining valof and res in such a way 

that the result of "valof El" is the L-value of E2. Accordingly, we adopt the 

equivalences 

valof 1::1 (=) let TT' = nil 

in 

TT := nil aug (El) ; 

f: TT 1 

and 

res E2 <=) II .- nil aug E2; goto f .-
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as the actual definitions of valof and res in PAL. There is a rather pleasant 

return from the effort taken for this more complicated definition. It seems 
reasonable that, for any expression E not containing res, the expressions 

"valof(res ~)" and liE" be identical in their semantics. But "valof(res x)" does 
not share with x if the first definition is used, while it does if we use the 

second. 

All of the formal definition of valof and res appears in the function ST, 

where they are desugared as indicated. See the definition of ST at the end of 

this chapter. 

5.3 Listings of the J-PAL Evaluator 

The following pages contain a complete listing of the gedanken evaluator 

for J-PAL, as it has actually run in a PAL implementation (on Multics). All 
necessary representational issues are faced up to. As in the R-PAL listings in 

Chapter 3, the only variable appearing here that is not defined (other than 

those in PAL's primitive environment) is Error. 

Any discrepencies found between the programp shown here and those shown· 

earlier in tile chapter should be resolved in favor of those shown here. 
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II PRELIMINARY DEFINITIONS 

I I P re 1 i min a ry de fin i t i on s for the eva 1 u at 0 r • 

II * * * * * * * * * * * * * * * * * * * * 

II Selectors and constructors for the stack and control. 

def t(x, y) = x II Top of stack or control. 

and rex, y) = y II Rest of stack or control. 

and Push(x, s) = x, s II Put new item on stack or control. 

def rcc Preftx(x, y) = II Put control x at top~of control y. 
Null x -> y 
Push(t x, Prefix(r x, y) ) 

def r2 x = r(r x) II Rest of (rest of (stack or control». 

and r 3 x = r ( r (r x» I IRe s t 0 f (re s t 0 f re s t ) • 

and 2d x = t(r x) II Second element of stack or control. 

and 3d x = t(r(r x» II Third ••• 

def Empty_stack = nil II The empty stack. 

II * * * * * * * * * * * * * * * * * * * * 

II Tagger and tag-checkers for structures. 

def Tag n s = 5 aug n II Tag st~ucture s with tag n. 

and Is_tag s n 
Istuple s 

= II Does structure 5 have tag n1 
-> n eq s(Order s) false 

and Get_tag 5 = s{Order 5) II Return the tag of s. 

and Sons s = Order s - 1 II Return number of sons of s. 
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II Selectors, predicates and constructors for lambda-expressions 
II and lambda-closures. 

def LAMBDA = '_lambda' II Tag for lambda-expressions and closures. 

def bV x = x 2 
and Body x = x 3 
and Env x = x 4 

II Select bv-part of a lambda-exp or closure. 
II Select body part ••• 
II Select environment part ••• 

def Test{x, n) = 
Istuple x 
-) Orde r x eq n 

-) I sstring{x 1) 
-) x 1 eq LAMBDA 
I false 

I fa 1 se 
I fa 1 sc 

within 

Is_lambda_exp x = Test{x, 3) 
and Is_closure x = Test{x, 4) 

def Cons_lambda_exp(bV, Body) = II Construct a lambda-expression. 
LAMBDA, bV, Body 

and Cons_closure(L_exp, Env) = II Construct a lambda-closure. 
LAMBDA, bV L_cxp, Body L_exp, Env 
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) II DefinItions and predjcates for the jumping evaluator • 
. ~ 

\ 

II * * * * * * * * * * * * * * * * * * * * * 
II Items and predicates for control structure and stack. 

def GA~H~A 
and BETA 
and DELTA 
and CONSTANT 
and VAR IABLE 
'and ADDRESS 
and A5SIClU 
and GO_TO 
and DOLLAR 
and AUG 
and TUPLE 
and ALPHA 
and LABEL 
and RETURN 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

'_garrrna' 
'_beta' , 
_de 1 ta ' 

, constant' 
'=va r iabl e' , 
_add re ss ' , _assign' 
'_gata' , _dollar' 
'_aug' , _tuple' 
'_alpha' 
I 1 a be 1 ' 
':return' 

II Used only in stack. 
II : = 

II Used only in the stack. 

II Used only in stack. 

and BASIC = '_ba sic' II Tag built-In functions, as Print_. 

def 

and 
and 
and 
and 

and 

Test(x, y) = 
Istuple x 
-) Orde r x eq 2 

-) I 55 t ring (x 1) 
-) x 1 eq y 
I false 

I fa 1 se 
fa 1 se 

Hithin 
Is constant x = Test(x, 
I s_variable x = Test(x, 
Is_add re ss x = Test(x, 
IS_label x = Test(x, 
Is_delta x = Test(x, 

15_ bas ic x = Test(x, 

CONSTANT) 
VAR I ABLE) 
ADDRESS) 
LABEL) 
DELTA) 

BASIC) 

or Test(x, BASIC) 

and Is_tuple x = 
Test(x, TUPLE) -) 
Test(x, CONSTANT) 
false II Neither. 

true II lsi t a const ructed tuple? 
-) Null(x 2) II Is it nil? 

and lsi dent i fie r x = II I 5 X con stan t or va ria b 1 e ? 
Test(x, CONSTANT) or Test(x, VARIABLE) or Test(x, BASIC) 

def Same_var (x, y) = II Are x and y the same variable? 
(x 2) eq (y 2) 
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II Variables and Constants 

II Call for Y_VAR is produced in Translate for ree-defs. 
II PI, RHO, 1_ and NIL are used for "valof ll and "res". 

def Y_NAME =' yy' I I The name of "yll. 

def Y_VAR = 
VARIABLE, Y_NAt4E 

and Assign_VAR = II Routine for simultaneous assignment. 
VARIABLE, 'Assign" 

and PI = II Used in desugaring 'valof' and ·res'. 
VARIABLE, 'p i' 

and RHO = 1/ Used in desugaring 'valof'and ·res'. 
VAR IABLE, 'rho' 

and PRINT = II Print routine for user. 
VARIABLE, 'Print_' 

and 1 = II The constant '1'. 
COfJSTANT, 1 

and NIL = 
CONSTANT, nil 

and DUMt4Y = 
CONSTANT,· '~dummy' 
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II Tag s and Tagge rs 

II Tags for abstract syntax tree. 

def 
and 
and 
and 
and 
and 
and 
and 
and 
and 
and 
and 
and 
and 
and 
and 
and 
and 
and 
and 

TEST 
AI~ROH 
I F 
AP 
FtJ 
EQUAL 
HITHIN 
REC 
FF 
ArlD 
COMt·1A 
LET 
WHERE 
COLON 
VALOF 
RES 
HHILE 
BINOP 
Ur-JOP 
PERCENT 

= , te st ' 
= '-a rrow' 
= ,- if' 
= '=ap' 
= , fn' 
= ':equa 1 ' 
= , \'Jithin' 
= ,- rec ' 
= ,-ff ' 
= '-and' 
= ,-contna ' 
= '-let' 
= ':\'~he rc ' 
= , colon' 
= '-valof' 
= .- res I 

= ,-wh 11 e ' 
= ':b I nap' 
= , unop' 
= ':pe rcen t ' 

II test ••• ifso ••• Ifnot 
1/ ••• -) ••• I ••• 
// if... do ••• 
1/ functional appl ication 
1/ 1 ambda 
I / de fin i t i on 

// function form definition 
I I 'and' def in i t ion 
I I t up 1 e ma ke r 

Sec 5.3 

it •• 

'J II Taggers for tags In abstract syntax tree. 

j 

def TE5T_ x y z 
and ARROH_ x y z 
and IF_ x y 
and AP_ x y 
and FfJ_ x y 
and LET_ x y 
and WHERE_ x y 
and EQUAL_ x y 
and \~ I TH I N_ x y 
and REC_ x 
and FF_ x y 
and AUG_ x y 
and AS5IGN_ x y 
and ALPHA_ x y 
and DOLLAR_ x 
and GOTO_ x 
and COLON_ x y 
and VALOF _ x 
and RES_ x 
and HHILE_ x y 
and BINOP_ x y z 
and UtJOP_ x y 
and PERCENT_ x y z 

= Tag TEST (x, y, z) 
= Tag ARROW (x, y, z) 
= Tag I F (x, y) 
= Tag A P (x, y) 
= Tag FtJ (x, y) 
= Tag LET (x, y) 
= Tag WHERE (x, y) 
= Tag EQUAL (x, y) 
= Tag WITHIN (x, y) 
= Tag REC (nil aug x) 
= Tag FF (x, y) 
= Tag AUG (x, y) 
= Tag ASSIGN (x, y) 
= Tag ALPHA (x, y) 
= Tag OOLLAR (nil aug x) 
= Tag GO_TO (nil aug x) 
= Tag COLON (x, y) 
= Tag VALOF (nil aug x) 
= Tag RES (nil aug x) 
= Tag \'JH I L E ( x , y) 
= Tag BINOP (x, y, z) 
= Tag UNOP (x, y) 
= Tag PERCENT (x, y, z) 

// AUD_ and COMMA_ wou 1 d have to be n-a ry tagge rs, and hence 
II are not provided. 
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II Taggers for standardized syntax tree. 

def GAt·1MA_ x y = Tag GAMMA (x, y) 
and BETA_ ·x y z = Tag BETA (x, y, z) 
and LAMBDA_ x y = Tag LAMBDA (x, y) 

and DELTA_ x y = Null x -> y I Tag DELTA (x, y) 

II * * * * * * * * * * * * * * * * * * * * * 

II Some useful functions for transform. 

def Value_of x = II Evaluate a control element, to put it on stack. 
x 

and Val_of x = 1/ De-tag a stack element, to get its value. 
x 2 

def Apply x y = 
let t = (Val _of x) ( I s_ba sic x -> y I Val_of y) 
in 
Is_address t -> t I (CONSTANT, t) 

and Aug x y = // Aug rre n t x wit h y. 
Is_tuple x -> (TUPLE, Val_of x aug y) 

E r ro r I firs t argument of aug not a tuple' 

1/ * * * * * * * * * * * * * * * * * * * * * 

1/ Define the five components of the evaluator. E and M are used 
/1 as global variables in the following functions o 

def C, 5, E, M = nil, nil, nil, nil 
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II 

II 
II 
II 

II 
II 
II 
II 
II 

def 

and 

and 

and 

M E M 0 R Y 

A rrernory is a 2-tupl e, whose fi rst component Is that integer 
which is the last address used (initially zero), and whose 
second component is a Mem, 1 ike this: 

A Mem is either empty (nil) 
or it is a 3-tuple, whose components are 

an address, 
a contents, 
a Mem. 

Extend Value = II Find a new cell to hold Value. 
let k = 1 + M 1 II Address of next free cell. 
'j n 
M := k, (k, Value, M 2); II Create new memory. 
(ADDRESS, k) II Return the new address. 

Update(Cell, Value) = 
M := M 1, (Cell 2, Value, M 2) 

Contents Cell = 
1 etc = Cell 2 
in 
Look (N 2) 
wile re rec Look m = 

Null m -> Error 'address not in memory' 
m 1 eq c -> m 2 
Look (m 3) 

In i t i ali ze_memo ry () = 
r~ : = 0, nil 

II Two useful functions used by the evaluator. 

II Return argument if not an address, and contents otherwise. 

def Rva 1 x = 
Is_address x -> Contents x x 

II Return argument if an address, and new cell containing it 
I lot h e rw i s e 0 

and Lva 1 x = 
I s_address x -) x Extend x 
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II Print_ -- User-callable Print rout ine. 

I I I f the user incl udes in his program appl icat ion of the variable 
II PRINT, this routine will be applied to its argument." It will 
II print the argument on 1 ines starting with I»~ " and will do 
II tuples by indent ing. 

def Max_D = 4 II Maximum depth of tuples to print. 

def Print_ x = 
let rec F{T, s, d) = II Print T with indent s at depth d. 

1 e t V = Val _0 f T I I T he val ue • 

in 

Print 
F{ x, 
Pr int 
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in 
test Is_tuple T II Are we printing a tuple? 
i fno t \'J r i to ( s, T, '*n') II No, so p r in tit 0" 

i fso / / \~e a re p r in t i ng a t up 1 eo 
test Null V II Is it the O-tuple? 
ifso Hrite{s, T, '*n') II Yes, so print it. 
ifnot II It's a long tuple. 
test d ge Max_D II Is depth too great? 
i f s 0 \~ r i t e ( s, T UP L E , '* s ',Or de r V, 1 etc * n 1 ) 

ifnot II Now we can print the long tuple. 
( 1 et k, N = 1, 0 rde r V 

) 

and S = Conc{s, I*S*S*S') II The new indent. 
and 0 = d + 1 II The new deptho 
in " 
while k le N do II Iterate through the thing. 

( F{ Contents{V k), S, 0 ); k:= k + 1 ) 

I*n'; 
I»~ 

, 
0 ) ; , 

'*n' 
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II E N V I RON MEN T 

/ I An env ironment is e ithe r empty (n i 1), or a 3-tuple: 
II Name, Value, Environment 

II The primitive environment: 

def Initial ize_env () = 
E := Y_VAR, Extend Y_VAR, 

(PRINT, Extend(BASIC, Print_), 
nil 

) 

II The function to look up a variable in the environment: 

def Lookup Var = 
L E II Start looking in the environment. 
Hh e re re c L e = 

Sec 5.3 

Null e -) Error 'variable not found in environment' 
Same_var(Var, e 1) -) e 2 II Found. 
L(e 3) II Keep looking. 

~ /1 The following function is used in applying a lambdaOelosure. 
II The names on the (possibly structured) bv-part 'Names' are 
II added to the environment 'Env', associated with the corres­
II ponding part of 'Values'. The new environment is returned as 
II the value of the function. 

def rec Decompose(Names, Values, Env) = 
test Is_variable Names II Is it a single variable? 
ifso (Names, Values, Env) II Yes, so add it to environment. 
i fnot 

( let V = Contents(Values) 

) 

in 
test 
ifnot 
ifso 
test 
ifnot 
i fso 

( 

) 

Is_tuple V 
Error 'conformal ity fai lure' 1/ Tuple appl ied to scalar. 

o rde rNa me seq 0 rde r (Va 1_0 f V) 
Error 'conformal ity failure.' II Differing tuple lengths. 
1/ Process a multiple-bv· part. 

Q 1 Env 
where ree Q n e = 

n ) Order Names -) e 
I Q (n+1) ( Decompose(Names n, Val_of Vn, e) ) 
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rec 0 x = II Standa rd i ze a deflnitiono 
let Type = Is_tag x 
In 

Type EQUAL -) x II A 1 ready OK. 
Type \~ I TH IN 

-) ( 1 et u, v = O(x 1), O(x 2) 
in 
EQUAL_ (v 1) ( AP_ (FtJ_ (u 1) (v 2» (u 2) ) 

) 

Type REC 
-> ( 1 et w = D (x 1) 

in 
E Q UA L_ ( wI) ( A P _ Y _VA R ( F N_ ( w 1) (w 2» ) 

) 
Type FF 

-> ( EQUAL_ (x 1 1) (Q (Order(x 1» (x 2» 
where rec Q k t = 

) 
Type AND 

k < 2 -) t 
I Q (k-l) (FtJ_ (x 1 k) t) 

-) ( EQUAL_ L (Tag CO~-1t1A R) 

) 

w here r eeL, R = Q 1 nil n t 1 
where rec Q k s t = 

k ) Sons x -) (s, t) 
I (1 at w = D(x k)· 

in 
Q (k+ 1) (s aug w 1) (t aug w 2) 

) 

Error' improper node found in 0' 

• 

def rec ST x = II Standardize abstract syntax tree. 
let Type = Is_tag x 
in 
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Is_identifier x ~). x 
Type TEST or Type ARROW 

-) BETA (ST(x 1» (ST(x 2» (ST(x 3» 
Type IF -

-) BETA_ (ST(x 1» (ST(x 2» DUMMY 
Type FN 

-) LAMBDA_ (x 1) (ST(x 2» 
Type COI'·1MA 

-) ( Q 1 NIL 
where rec Q k t = 

k > Sons x -) t 
Q (k+1) ( AUG_ t (ST(x k» ) 

) 
Type PE RC ENT 

-) GAt.1MA_ (x 2) ( AUG_ (AUG_ NIL (ST(x 1») (ST(x 3» ) 
Type COLON 

-) ( 1 et w = ST (x 2) 
in 

Is_tag w COLON -) COLON_ (\'1 1 aug xl) (w 2) 
COLON_ (nil aug x 1) w 
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) 
Type LET 

-) ( let w = D(x 1) II Standardize the definition. 

Type 
Type 

-) 

Type 
-) 

in 
GAMMA.- ( LAMBDA_ (w 1 ) (ST(x 2» ) (ST (w 2» 

) 

\~H E RE -) ST(LET - ex 2) (x 1» 
VAlOF 
e let w = GAMMA PI 1 - -in 

let v = COlON_ en i 1 aug RHO) w II RHO: w 
in 
let u = ASSIGN_ PI eAUG_ NIL eST ex 1») 
in 
GAt.1MA_ e lAMBDA_ PI eAlPHA_ u v» 

) 

RES 
e let w = ASSIGN - PI (AUG - NIL eST 

in 
ALPHA_ w (GOTO_ RHO) 

) 
AP -) GAMMA_ eST(x 1» eST(x 2» 
BINOP 

NIL 

ex 1») 

Type 
Type 

-) GAr.1t~A_ ( GA.MMA_ (CONSTANT, x 3) (ST(x 1» ) (ST(x 2» 
Type 

-) 

Type 
-) 

UNOP 
GAt~MA_ (CONSTANT, x 2) (ST(x 1» 

ASSIGN 
( let u, v = ST(x 1), STex 2) 

in 
Is_tag (x 1) COMMA 
- ) GAt·,1t1A_ (GAt.1r~A_ Ass f g n_ VA R u) v 
I ASS I GN u v 

) 
Type GO_TO or Type DOLLAR 

-) Tag (Get_tag x) (nil aug ST(x 1» 
Type AUG or Type ALPHA or Type COLON or Type \'IHILE 

-) Tag (Get_tag x) (ST(x 1), ST(x 2» 
Error 'improper node found in ST' 
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II The function LL processes labels, bringing each label as far 
II up the tree as poss ible. The. effect is that each label is 
II declared by a DELTA node a~ soon as its scope is entered. 

def Combine(x, y) = Q 1 x 
where rec Q k 5 = 

k > Order y -> 5 I Q (k+l) (5 aug y k) 
within 
Proc_label s x = 

Is_tag x DELTA 
-> (x 1, x 2) 
I (nil, x) 

within 
Combine_labels(u, v) = 

let U = Proc_labels u 
and V = Proc_labels v 
in 
Combine(U 1, V 1), (U 2, V 2) 

with i n 

rec LL x = 

let Type = Is_tag x 
in 
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I s_i dent i fie r x -> x 
Type ALPHA • 

-) ( let s, w = Combine_lahels( LL{x 1), LL(x 2) ) 
in 
DELTA_ s ( ALPHA_ (w 1) (w 2) ) 

) 
Type BETA 

-) ( let 5, w = Comb ine_labe 1 5 ( LL(x 2), 
in 
DELTA 

) 

Type \'JH I LE 
- s ( BET A_ (L L (x 1» (w 1) 

-> ( 1 e t s , w = P roc _ 1 abe 1 5 ( L L ( x 2 ) ) 
in 
DEL T A_ s ( \~H I L E_ (L L (x 1» w) 

) 
Type CO LOfJ 

-> ('let L, z = Proc_label s( LL(x 2» 
in 
1 et w = Lva 1 z 
in 
DELTA_ (Q 1 L) w 
where rec Q k t = 

(w 

LL(x 3) ) 

2) ) 

k > Order(x 1) -> t I Q (k+1) (t aug x 1 k aug w) 
) 

Type LAMBDA -> LAMBDA_ (x 1) (LL(x 2» 
Sons x eq 1 -> Tag (Get_tag x) ( nil aug LL(x 1) ) 
Sons x eq 2 -> Tag (Get_tag x) ( LL(x 1), LL(x 2) ) 
Error I improper node in LLI 
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II The function FF flattens a standardized tree into a 
II control structure. 

Sec 5.3 

def rcc FF(x, c) = II Flatten standardized tree x onto control c. 

let Type = Is_tag x 
in 

Is_identifier x -) (x, c) 
Is_address x -) ( Update(x, FF(Contents x, c»; (x, nil) ) 
Type LAro~BDA 

-) ( let Body = Lval( FF( x 2, nil) ) 
in 

Type 
-) 

Cons_lambda_exp(x 1, Body), c 
) 

BETA 
( let TA = Lva 1 ( FF(x 2, nil ) ) 

and FA = Lva 1 ( FF(x 3, nil ) ) 
in 
FF( x 1, (BETA, ( FA, ( TA, e») 

) 

ALPHA 

II 
II 

) 

Type 
-) ( let Rest = Lval ( FF(x 2, c) ), nil 

in 
FF(x 1, (ALPHA, Rest» 

) 
Type DELTA 

True arm. 
Fal se arm. 

-) « DELTA, (x 1, Lval(FF(x 2, nil») ), e ) 
Type \'JH I LE 

- ) ( 1 e t \'oJ = Lva 1 r~ I L 
in 
1 etTA = L va 1 (F F (x 2, ( ALPHA, (w, nil»» 
and FA = Lval(DUMMY, c) 
in 
Up da t e ( w, F F (x 1 , { BETA, ( FA, ( T A , nil»» ); 
(VI, nil) 

) 
Sons x eq 2 -) FF( x 2, FF( x 1, (Get_tag x, c) ) ) 
Sons x eq 1 -) FF( x 1, (Get_tag x, e) ) 
Error' improper node found in FF' 

II * * * * * * * * * * * * * * * * * * * * * 

def Translate P = II The routine that does all the work. 
F F ( LL ( ST P ), nil ) 
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def Eval_constant () = 
C, S := r C, Push(Value_of(t e), $ S) 

and Eval_varlable () = 
C, S := r e, Push ( Lookup{t e), $ S ) 

and Eval_lambda_exp () = 
e, S := r C, PushCCons_closure(t C, $ E), $ S) 

and Hop () = . 
C := P.refix ( Contents(t C), r C ) 

and Make_labels () = 
let V = t C 2 II Value part of the DELTA node. 
in 
let L, k = V 1, Order(V 1) II Label s being declared. 
and New_e = Prefix(Contents(V 2), Push(RETURN, r C» 
and New_S = Push($ E, $ S) II Stack to go on with. 
and New_E = $ E II Environment that will have labels in it. 
in 
Hhile k) 1 do II Cycle through the labels. 

( let Lab = LABEL, (Push(L k, r C), $ S, New_E) II A label. 
in 

) ; 

New_E := L(k-1), Lval Lab, $ New~Ei II Update New_E. 
k := k - 2 

C, S, E := New_C, New_S, New_E 

and Do_alpha() = II Semicolon - discard top stack Item. 
C, S : = r C, r 5 

and Do_assign () = 
if Is_address(t S) do Update(t 5, Rval(2d S»; 
C, S :=. r C, Push(DUMMY, r2 S) 

and Do_return() = 
C, S, E := r C, Push(t S, r2 S)., 2d S 

and LtoR () = II Replace L-value at stack top by R-value. 
S := Push(Contents(t S), r S) 

and Do_conditional () = 
let Selected_arm = Contents( (Val_of(t S) -) 3d I 2d) C ) 
in 
C, S : = Pref Ix(Sel ected_aml, r3 e), r S . 

and Jump () = 
unl ess Is_label (t S) do Error 'goto to non-label'; 
C, S, E := t S 2 

and Do_dollar () = 1/ Do nothing -- Transform has done the work. 
C : = r C 
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and Do_aug () = 
let New_S = 
in 

/ / aug 
Aug (t S) (L va 1 (2d S» 

C, S : = r C, Pus h (New_S, r2 S) 

and Apply_closure () = 
1 et Rato r = t S 
and Rand = Lval(2d S) 
in 

Sec 5.3 

let New_ 
and New_ 

C 
S 

= 
= 

Prefix(Contents(Body Rator), Push(RETURN, r e» 
pushes E, r2 S) 

and Uew_E = Decompose(bV Rator, Rand, Env Rator) 
in 
C, S, E := New_C, New_S, New_E 

and Apply_constant () = 
let V = Apply (t S) (Rval(2d S» 
in 
C, S := r C, Push(V, r2 S) 

and Apply_tuple () = 
1 et V = App 1 y (t S) (Rva 1 (2d S» 
in 
C, S := r C, Push(V, r2 S) 
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II Main program for the jumping evaluator. 

def Transform () = II Do one step of an evaluation. 
let x = t C II Top of control. 
in 

Is_constant x -) Eval_constant nil 
Is_variable x -) Eval variable nil 
Is_lambda_exp x -) Eval_lambda_exp nil 
Is_address x -) Hop nil 
Is_delta x -) Make_labels nil 
x eq ALPHA -) Do_alpha nil 
x eq ASSIGN -) Do_assign nil 
x eq RETURN -) Do_return nil 
Is_address (t S> -) LtoR nil 1/ R-value to top of stack. 
x eq BETA -) Do_conditional nil 
x eq GO_TO -) Jump nil 
x eq DOLLAR -) Do_dollar nil 
x eq AUG -) Do_aug nil 
x eq GAMMA 

-) ( let r = t S II The rator. 
in 

Is_closure r -) Apply_closure nil 
Is_constant r -> Apply_constant nil 
Is_tuple r -> Apply_tuple nil 
Error 'improper rator' 

) 
E r ro r 'ba d con t r 01 ' 

de f Gedan ken_Eva 1 uato r P rog ram = 
In i t ia 1 i zc_memo ry nil; 
C := Translate Program; II Set up the Controlo 
S := Empty_stack; II Initial stack. 
In i t i ali ze_env nil; 
unt i 1 Null C do Transform nil; 
Rva 1 (t S) 
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