
NEW YORK UNIVERSITY
COURANT INSTITUTE - LIBRARY
251 Mercer St. New York, N.Y. 10012

NYO-1 480-11

8

'^^^nm

Courant Institute of

Mathematical Sciences

AEG Computing and Applied Mathematics Center

BALM -An Extendable

List- processing Language

C.
Malcolm (Sj. Harrison

AEC REsearch and Development Report

Mathematics and Computers
June 1969

New York University



NEW YORK UNIVERSITY

COURANT INSTITUTE - LIBRARY

25lMerc.rS.. N.w York, N Y lOOH



UNCLASSIFIED

AEC Computing and Applied Mathematics Center
Courant Institute of Mathematical Sciences

New York University

Mathematics and Computers NyO-l480-ll8

BALM — An Extendable List-processing Language

Malcolm C. Harrison

Contract No. AT(30-l)-l480

UNCLASSIFIED

NEW YORK UNIVERSITY

COURAMT INSTITUTE- LIBRARY





ABSTRACT

This paper describes an extendable list-processing

system currently implemented on the CDO 6600 which includes

the facilities provided by LISP I.5, and permits the

programmer to write in an Algol-like language.

Additional data-types include vectors^ strings, and entry-

points. The language can be extended by adding new operators,

and by specifying how expressions involving them should be

translated into an intermediate language.

• Ill-





1. Introduction .

The LISP 1.5 programming language has emerged as one

2
of the preferred languages for writing complex programs,

as well as an important theoretical tool. ^ Among other

things J
the ability of LISP to treat programs as data and

vice versa has made it a prime choice as a host for a number

S 6
of experimental languages. ^ However, even the most

enthusiastic LISP programmers admit that the language is

cumbersome in the extreme.

1 8
A couple of attempts'^ have been made to permit a more

natural form of input language for LISP, but these are not

widely available. The most ambitious of these, the LISP 2

project, bogged down in the search for efficiency.

The system described here is a less ambitious attempt

to bring list-processing to the masses, as well as to create

a seductive and extendable language. The name BALM is

actually an acronym (Block And List Manipulator) but is also

intended to imply that its use should produce a soothing effect

on the worried programmer. The system has the following

features.

1. An Algol-like input language, which is translated into

an intermediate language prior to execution.

2. Data-objects of type list, vector and string, with a

simple external representation for reading and printing

and with appropriate operations.

5. The provision for changing or extending the language

-1-



by the addition of new prefix or infix operators

^

together with macros for specifying their translation

into the intermediate language.

4. Availability of a batch version and a conversational

version with basic file editing facilities.

The intermediate language is actually a form of LISP I.5

which has been extended by the incorporation of new data-

types corresponding to vector^ string and entry-point. The

interpreter is a somewhat smoother and more general version

of the LISP 1.5 interpreter, using value-cells rather than

an association-list for looking up bindings, and no distinc-

tion between functional and other bindings. The system is

implemented in a mixture of Fortran ( !
) and MLISP, a

machine-independent macro-language similar to LISP which

is translated by a standard macro-assembler. New routines

written in Fortran or MLISP can be added by the user, though

if Fortran is used a certain amount of implementation

knowledge is necessary.

The description given here is of necessity incomplete

because of the flexible nature of the system. In practice

it is expected that a number of different versions will

evolve, with different sets of statement forms, operators,

and procedures. What is described here is a fairly natural

implementation of basic features of the intermediate

language which will probably form the basis from which other

languages will grow. We will illustrate the facilities by

example rather than by giving a formal description, which

g
can hopefully be obtained from the manual.

-2-



2. Overview of BALM features .

Variables In BALM do not have a type associated with

thsm^ so each variable can be assigned any value. If we

Imagine the user sitting at a teletype the following

conversation could ensue I

-A = 1.2;

-PRINT(A);

1.2

Lines starting with a dash are requests for the user to

type. The third line Is the result of the PRINT command.

The usual notation Is used for arithmetic operations!

-X = 2 4^ A + 3; PRINT(X);

with a quote symbol being used to allow the input of lists

-A = "(A (B C) D);

-PRINT(HD TL A);

(B C)

The operators HD and TL are synonymous with CAR and GDR

in LISP. Vectors can be input in a notation similar to

that for lists , but using square brackets Instead of

parentheses. Elements of vectors are accessed by indexing!

-V = "[A [B C] D]; PRINT(V[2]);

[B C]

Lists can be members of vectors, and vice versa:

-3-



-PRINT(TL"(A [B G] D));

([B C] D)

-PRINT(+[A (B G) D] [2])

(B G)

Arrays can be input as vectors of vectors , so a non-

rectangular matrix could be written

-W = "[1 [2 3] [4 5 6]];

and elements can be extracted either by the usual type of

indexing

-PRINT(¥[2]);

[2 5]

or by repeated indexing

-PRINT(W[2] [1]);

2

Assignments to vector elements are straightforwardj

-W[2][l] = "(A B); PRINT(W[2]);

[(A B) 3]

A whole vector or list can be assigned from one variable

to another variable in a single statement, of course, but

then any operation which changes a component of one will

change a component of the other. If this is not desired,

the vector or list should be copied before the assignment;

-z = copy(w);

Gharacter strings of arbitrary length can be specified:

-G = <EXAMPLE OF A STRINCi>;

They can be concatenated, or have substrings extracted:

-4-



-D = G CAT <AND ANOTHER>;

-E = suBSTR(D,9,i2); print(e);

<0F A>

There is complete garbage collection of all

inaccessible objects in the system^ so the user does not

need to keep track of particular lists or vectors .

Procedures are available for creating lists or vectors

with values of expressions as their elements, with storage

being allocated dynamically:

-LL = LTST(X+W, "ABC, S CAT<XY>);

-YV = VECTOR(X+W, "ABC, S CAT<XY> )

;

The equivalent of the LISP CONS operator can be written as

an infix colon associating to the right, so that the first

of the above statements could also have been written

-LL = X+W: "ABC : S CAT<XY>: NIL;

Note that NIL is the empty list.

A procedure in BALM is simply another kind of data-

object which can be assigned as the value of a variable.

Machine-language procedures are specified by a name (as

known to the loader) followed by Q> or I> depending on

whether they should have their arguments evaluated or not.

Thus

-FIRST = CARO>;

will assign the value of the variable FIRST as being the

ma chine -language routine whose name is CAR. In fact,

since the value of the variable CAR is also CARO)> this can

-5-



also be accomplished by

-FIRST = NOOP car;

where we have used NOOP to indicate that the subsequent

operator name CAR should be regarded as a variable.

Either CAR, CARO>j or FIRST can subsequently be used to

invoke this procedure .

A programmer-defined procedure is normally represented

within the system in the form of a list , and is executed

interpretively when invoked. The usual way of defining a

procedure is to assign it as the value of a variable:

-SUMSQ = PR0C(X,Y),X j 2+Yf 2 END;

The translator translates the PROC...END part into the

appropriate list , which would have the same effect as if

we had written

-SUMSQ = " (LAMBDA (X Y)(PLUS (EXPT X 2) (EXPT Y 2)));

Of course we could equally well have produced this list

as the value of some expressions.

Instead of assigning a procedure as the value of a

variable, we can simply apply it, so that

-X = 5 + PR0C(X,Y),X']' 2+Y'f 2 END(2,3) + O.5;

would assign 5 + I3 + O.5 = I8.5 as the value of X.

Note that procedures can accept any data-object as an

argument, and can produce any data-object as its result,

including vectors , lists , strings and procedures . Thus

it is possible to write

-M = MSUM(M1, MPR0D(M2,M3));

-6-



where Ml, M2, M^ , and M are matrices. Procedures can be

recursive, of course.

Analogous to procedures we can also compute with

expressions. The statement

-E = EXPR A + B END;

would assign the expression A + B, not its value, to E.

Subsequently, values could be assigned to A and B, and E

evaluated:

-A = i; B = 2.2; V = EVAL(E);

EVAL(E) could also have been written as ^E.

A procedure is essentially defined as an expression^

for more complicated procedures, more complicated expressions

can be used. The most important of these is the block, which

is similar to that used in Algol, but can have a value.

The statement;

-REVERSE = PROC(L), COMMENT <REVERSES A LIST>

BEGIN(x), COMMENT <X IS LOCAL VARIABLE>

COMMENT <FIRST TEST FOR ATOMIC ARGUMENT>

IF ATOM(L) THEN RETURN (L),

COMMENT <OTHERWISE ENTER REVERSING LOOP>

X = NIL,

COMMENT <EACH TIME ROUND REMOVE ELEMENT FROM L,

REVERSE IT, AND PUT AT BEGINNING OF X>

- NXT, IF NULL(L) THEN RETURN(X),

X=REVERSE(CAR X): COMMENT <: IS INFIX CONS

OPERATOR>X,

L = CDR L, GO NXT,

END end;
-7-



shows the use of a block delimited by BEGIN and END in

defining a procedure REVERSE which reverses a list at

all levels.

As well as the IF... THEN... statement there is an

IF. . .THEN. . .ELSE. . . as well as an IF. . .THEN. . .ELSEIF. . .THEN. .

.

etc. Looping statements include a FOR. .. REPEAT. . . as well

as a WHILE. . .REPEAT, . . . A label should be regarded just

as a local variable whose value is the internal representa-

tion of the statements following it. Accordingly assignments

to labels^ and transfers to variables or expressions are legal,

and can give the effect of a switch. A compound statement

without local variables or transfers can be written

DO. . . 5 . . .END. Of course any of these statements can be

used as an expression, giving the appropriate value.

Note that a comma is used to separate statements and

labels within a block and a compound statement. The

semicolon is interpreted as an end -of -command by the system

(unless it occurs within a string ), even if it occurs within

parentheses or brackets. Any unpaired parentheses or brackets

will be paired automatically, with a warning message being

issued

.

-8-



3^ Extendabi lity.

The TRANSLATE procedure used by BALM to translate

statements into the appropriate internal form is particularly

simple, consisting of a precedence analysis pass followed

by a macro-expansion pass. Built-in syntax is provided only

for aprenthesized subexpressions, comments, the quote operator

" the NOOP operator, procedure calls, and indexing. All

other syntax information is provided in the form of three

lists which are the values of the variables UNARYLIST,

IWFIXLIST, and MAGROLIST. The user can manipulate these

lists as he wishes, by adding, deleting, or changing operators

or macros .

Operators are categorized as unary, bracket , or infix,

and have precedence values, and a procedure (or macro)

associated with them. Examples of unary operators are

- (minus), CAR, and IF, while infix operators include

+, THEN, and =. Bracket operators are similar to unary

operators but require a terminating infix operator which

is ignored. Examples of bracket operators are BEGIN and PROG,

which both can be terminated by the infix operator END.

New operators can be defined by the procedures

UNARY, BRAGKET, or INFIX. These add appropriate entries

onto UNARYLIST or INFIXLIST. For example the statement*.

-IMARY(" PR, 150, "PRINT);

would establish the unary operator PR with priority I5O

as being the same as the procedure PRINT. Thus we could

-9-



subsequently write PR A instead of PRINT(A). Similarly

we could define an infix operator -> by

- INFIX ("->, 49, 50, "APPEND);

to allow an infix append operation. The numbers 49 and 50

are the precedences of the operator when it is considered

as a left-hand and right-hand operator respectively^ so

that an expression such as A -* B -^ C will be analyzed as

though it were A -» (B -^ C)

The output of the precedence analysis is a tree

expressed as a list in which the first element of each

list or sublist is an operator or macro. For example^

the statement:

-SQ = PROG(x), X ^ X end;

would be input as the list!

(SQ - PROG(X)j X * X END)

and would be analyzed into:

(SETQ SQ (PROG ( GOMMA X (TIMES X X))))

This would then be expanded by the macro-expander, giving:

(SETQ SQ (QUOTE (LAMBDA (X) (TIMES X X) ) )

)

the appropriate internal form. This would then be evaluated,

having the same effect as the statement!

SQ = "(LAMBDA(X) (TIMES X X));

which would in fact be translated into the same thing.

The macro-expander is a function EXPAND which is

given the syntax tree as its argument. It is actually

defined as:

-10-



-EXPAND - PROC(TR),

BEGIN(Y)

IF atom(tr) then return (TR),

Y = LOOKUP(CAR TR^MACROLIST) ^

IF null(y) then return (mapcar(expand,tr)),

return(y(tr))

END end;

That iSj if the top-level operator is a macro, it is

applied to the whole tree. Otherwise EXPAND is applied

to each of the subtrees recursively. Most operators will

not require macros because the output of the precedence

analysis is in the correct form. However, operators such

as IFj THEN, FOR, PROC ... etc. require their arguments to

be put in the correct form for the interpreter. For

instance, the IF macro can be defined!

-MIF = PROG(TR),

BEGIN (X),

x = gar gdr tr,

if eq (car xj "then) then return

("gond: list (expand (gar gdr x),

expand (car gdr cdr x))! nil),

returnC'cond: expand(x))

END end;

where recursive calls to EXPAND are used to transform

subtrees in the appropriate way. The statement:

-11-



-MACROC'iFjMIF);

would associate the macro MIF with the operator IF.

One particular outcome of this expansion procedure

is the ability to write other than simple variables on the

left-hand-side of assignment statements. These are

conveniently handled by a macro associated with the

assignment operator which checks the expression on the

left-hand-side and modifies the syntax tree accordingly.

It is this mechanism which permits an element of a vector

to appear on the left-hand-side^ and also such statements

as

:

-CAR(x) = y;

which will be translated as though it had been written!

-RPLACA(X,Y);

The assignment macro currently in use looks up the top level

operator found on the left-hand-side in the list LMACROLIST;,

applying any macro associated with the operator to the tree

representing the assignment statement. The set of expressions

which can be handled on the left-hand-side can easily be

extended by adding entries to LMAGROLIST. For example

the procedure:

-LMACRO( "PROP^MPROP)

;

could be used to add the left-hand-side macro MPROP to

permit assignments such as'.

-PROP("X/'P) = "v;

which establishes the value V for property P of atom X.

-12-



Note that the essential properties of the system are

those of the intermediate language, the most important of

which is its ability to treat data as program, and thus

to preprocess its program. Even the TRANSLATE procedure

described above can be ignored and the users own translator

substituted. Of course this will require a different level

of expertise on the part of the programmer than simply the

addition of new operators. However, the current translator

is only about 25O cards, and quite straightforward, so this

is not an unlikely possibility.

We have not yet had much experience with the extendability

features, but anticipate that we will be able to add the

equivalent of the PL /I and Algol 68 structures (as vectors

with named components), and at least some of the flavor of

the Snobol pattern match and substitution rule. At the very

least we will have a very flexible experimental language with

powerful list-processing facilities.

The translator currently takes of the order of 2000

words in the CDC 66OO, and we do not expect this to increase

much, if at all.

-15-



References

1. J. McCarthy et al.. Lisp I.5 Programmers Manual,

MIT Press, 1962.

2. M. Minsky, Semantic Information Processing, MIT Press, '68.

3. J. Painter, Semantic Correctness of a Compiler for an

Algol-like Language, A.I. Memo 44, Stanford Univ., '67.

4. P. Landin, The Mechanical Evaluation of Expressions,

Computer Journal, Jan. 1964.

5. D. Bobrow and J. Weizenbaum, List Processing and Extension

of Language Facility by Embedding, IEEE Trans, on Elec.

Comp., EC-13^ Aug. '64.

6. C. Engelman, ^athlab - A Program for On-line Machine

Assistance in Symbolic Computations, Proc. FJCC '65.

7. L. P. Deutch, 940 LISP Reference Manual, Univ. Cal.

Berkeley, Feb. '66.

8. P. Abrahams et al.. The Lisp 2 Programming Language

and System, Proc. FJCC '66.

9. M. Harrison, BALM Users Manual, Courant Inst. Math. Sci.,

New York Univ. (in preparation).

-14-



This report was prepared as an accoiint of
Government sponsored work. Neither the

United States, nor the Cominlsslon, nor any
person acting on behalf of the Commission:

A. Makes any warranty or representation,
express or implied, with respect to the
accuracy, completeness, or usefulness of

the Information contained In this report,
or that the use of any Information,
apparatus, method, or process disclosed
In this report may not Infringe privately
owned rights; or

B. Assumes any liabilities with respect to

the use of, or for damages resulting from
the use of any Information, apparatus,
method, or process disclosed In this
report.

As used In the above, "person acting on behalf
of the Commission" Includes any employee or
contractor of the Commission, or employee of

such contractor, to the extent that such em-
ployee or contractor of the Commission, or
employee of such contractor prepares, dis-
seminates, or provides access to, any Infor-
mation pursuant to his employment or contract
with the Commission, or his employment with
such contractor.

-15-





C.2NYU
NYO-
1480-118

Harrison
BALM - an ex^endab"l<- T-st-

e*2

\

NYU
NYO-

_148Q-n8

c.2

Harrison
'"^J^LM-an ex^Sfendable list-

iroof^ssing language.
iTte

N.Y.U. Courant Institute of

Mathematical Sciences

251 Mercer St.

New York, N. Y. 10012



':?#


