
A Proposal for
Integrating Persistence into the
Prototyping Language SETL /E

Ernst-Erich Doberkat
Informatik/Software Engineering

Universitat - Gesamthochschule - Essen

April 18, 1990

Abstract

SETL/E is a prototyping language based on SETL having sets, maps, tuples, and procedures as basic
data types. We propose introducing a mechanism for making data persistent into SETL/E, thus
creating the possibility of working with data that outlive the execution of programs which created
them. This makes SETL/E resemble a data base programming language. Since procedures are first
class objects in SETL/E, this applies in particular to modules as collections of procedures, hence
we propose a mechanism for separate compilation for the language. The corresponding linguistic
mechanisms are discussed.

CONTENTS

Contents

1 Introduction

2 A Brief Introduction to SETL/E

3 The Basic Mechanism for Persistence

3.1 Persistent values

3.2 The ADT P-file .

3.3 Handling and Practical Issues

4 Modules

4.1 Defining Modules

4.2 Other Approaches

4.3 Dr. King's Cat is Object-Oriented

5 Further Research

5.1 Database Issues .

5.2 Modules

5.3 Transformations

References

A Appendix: The Atkinson & Buneman Test Case

1

2

4

6

7

8

9

11

12

15

15

18

18

18

19

19

22

2 1 INTRODUCTION

1 Introduction

The classical model of software production using the life cycle approach has severe deficiencies
indicating the desirability of complementing this model by other approaches. One of the more
recent approaches for this is rapid prototyping. I-laving a look at the literature it seems that this
term is used as an umbrella notion for a multitude of activities, and it is not always too easy to find
some sort of common denominator, see [18, 7, 13). We stick here to Christine Floyd's definition
given in [16), according to which prototyping refers to the welldefined phase in the production
process of software in which a model is constructed which has all the essential properties of the
final product, and which is taken into account when properties have to be checked, and when
further steps in the development have to be determined.

This does not only apply to programs, but also to data: in the process of developing an application
not only the algorithms have to be explored, but the data and data structures on which the
algorithms are to work may emerge from this explorative activity as well. Semantic data models
working with objects, attributes, and /SA-relationships investigate ways of modelling data according
to their semantic contents (cp. [19)). They are used for designing record-oriented schemata where
the approach is somewhat similar to the one used in software prototyping, but rather than modelling
programs high-level representations of data are modelled. This model is mapped into a lower-level
structure (see [19), 1.4). Khoshafian and Briggs point out that data modelling should accomodate
the user by making the representation and manipulation as close as possible to the user's perception
of the problem (cf. (21], p. 606). Hence it is desirable to

• model data according to the user's needs,

• iteratively refine data representations (which requires access to previously formulated data
models),

• reuse patterns or templates of previously formulated data models,

• share data either between different users and different prototyping sessions.

We see that there are in fact striking similarities between prototyping programs and modelling
data. Both construct a model to be experimented with and eventually to be transformed into a
production version. Thus it would be valuable to have a programming language which is able to
serve both sides,

• the software engineer who wants to model programs

• the data engineer who wants to construct a semantic model of her data.

Persistence is interesting when considered in the context of software prototyping. Since prototyping
combined with support for a semantic data model allows formulating data on a very high-level for
modelling purposes, it is simply a matter of economy to make data persistent: once data are
modelled it is not necessary to compute them each time they are used. Hence reusing data in a
program does not necessarily mean recomputing them. A related concern for reusing data comes
from the observation that more than one program may want to access them. Thus one program
may generate data and another one may want to access these data. Consequently one may have
to face a situation where programs communicate through persistent data. We do not address the

3

problem of concurrent access to these data in this paper, but the reader should have in mind that
such a communication is possible and hears specific problems.

Once the protoype becomes stable, it may be transformed into a production program, see e.g. [14].
The data which have been modelled using the prototype, however, are usually not affected by thjs
transformation. Thus we may experience the situation that we have high level data structures
formulated in a prototyping language, following its data structuring principles and accessible in
binary form in it, but not acccessible in the production language. Consequently, reusability of code
may be intertwined with reusability of data. Reusing code by program transformations 1 ought to
be complemented by a method of making data reusable by transformations. A first attempt to
solving this problem in the context of transforming SETL programs to Ada may be found in (26].

Now consider a prototyping language like SETL; it has proven its ability to model programs in many
applications, but the ability to provide a semantic data model with persistent data is confined to
write binary data to external files. Although the possibilities of representing data in SETL a.re
powerful because sets, tuples, and maps are available, binary files are somewhat insufficient to
serve the purpose of data modelling sufficiently. What is missing is

• the ability to use procedures as first-class objects, thus making procedures available for data
modelling purposes,

• a mechanism for accessing persistent data,

• a mechanism for controlling the namespace of persistent data.

All this requires a mechanism making data outlive the program that generated them. Persistence
has been discussed mainly in the data base community (e.g. [2, 8, 21, 6)), but research in program
ming languages becomes increasingly aware of this problem, see e.g. (4, 5, 9).

SETL/E2(see [15]) is a prototyping language supporting sets, maps, tuples, and procedures as the
primitive data structuring facilities, the primitive datatypes being integer, real, strings, boolean,
and atoms. It is based on SETL ([27, 13]). The compound data types sets, tuples, maps, and
procedures can be freely mixed, in particular sets or tuples need not be homogeneous, thus we may
construct e.g. sets which contain procedures, integers, strings, tuples, or maps as elements. This
is the basic language we are working with.

We propose extending the basic language to support persistence. Persistence is intended to come
as an orthogonal property, hence each and every datatype may be made persistent. In conformance
with the idea of SETL not to bother the user with low-level details and to have the machine ca.re
about these details, we have made an attempt to make use of persistent structures as unobtrusive as
possible. Thus there is not an explicit operation of transferring persistent data from some external
medium into an executing program. Hence persistent values are available whenever the user needs
them. Since the system cannot determine, however, whether the user wants to make use of a value
later on in a persistent fashion there has to be an indication for storing the value; we have tried to
make this as easy as possible.

1
" •.• programs in any concrete high level programming language are the result of a mapping from some conceptual

or abstract specification of what is to be accomplished into various specific data representations and algorithms which
provide an efficient means for accomplishing the task at hand", see [11]

2Set-Theoretic Language/Essen

4 2 A BRIEF INTRODUCTION TO SETL/E

The containers for persistent values are called P - files; they are abstract data types supporting
an1ong others the straightforward operations of inspecting, inserting, and deleting values, and they
fonn a separate scope. These P - Jiles are modelled somewhat after UNIX's archives.

A special case deserves separate discussion: procedures are first-class objects in SETL/E, thus
procedures may be made persistent. As Atkinson et al (see [51) have shown persistent procedures
may be used for introducing modules and consequently for introducing separate compilation and
(dyna1nic) binding. There is a small catch, though: SETL/E uses static binding for its procedures,
1nodules use some weak form of dynamic binding. This is so since all the variables which are visible
to the procedures of a module should be static: entering a module should find all these values
unchanged from the last time the module was left. Hence we have to introduce with our module
facility a possibility of dynamic binding in the sense just indicated. Using this facility, it may be
shown that the basic principles of object-oriented programming (in particular inheritance) may be
iinplemented using the augmented language.

Organization of the paper The next section will give a brief introduction to SETL/E mainly
by discussing an example. We then discuss in section 3 the basic mechanisms for persistent data.
structures in SETL/E, and apply these considerations in section 4 to issues of separate compilation;
this section discusses also an example for object-oriented programming. Section 5 indicates some
open problems, and gives further directions for research, and appendix A displays a solution to a.
test case for persistent programming languages provided by Atkinson and Buneman.

Acknowledgements The author would like to thank J. Biskup, U. Gutenbeil, W. Ha.sselbring,
and M. Schunk for some useful discussions, and Ingrid Kleinstoll for typesetting this manuscript.

2 A Brief Introduction to SETL/E
•

SETL/E is a decendant of the procedural language SETL ((27, 13]). It makes sets, maps and tuples
available; these structures do not have to be homogeneous. In addition, procedures are first class
objects, and a mechanism for exceptions is provided. The control structures show that the language
has ALGOL as one of its ancestors; both SETL and SETL/E are weakly typed, freeing the user from
specifying the data structure respresentations of the objects used in a program. SETL provides a.
Data Representation Sublanguage which allows giving hints to the compiler as how to represent the
data in a program; since this sub-language is seldom used, SETL/E does without it. SETL provides a
mechanism for separate compilation using modules and libraries. This mechanism is conceptually
quite elegant (e.g. it allows circular dependencies) but is implemented in a rather impractical way.
Its successor SETL/E merely provides a mechanism for monolithic programs, so a mechanism for
specifying modules still has to be provided. SETL/E is described in [15]; the language is currently
being implemented.

The program in Figure 1 for topologically sorting a directed graph provides an example. The graph
is input by reading the set edges which contains pairs, i.e. tuples of length 2. An edge between the
nodes x and y is indicated by listing the pair [x, y] in the set edges. The variables nodes and edges
are declared as visible, hence are accessible in all scopes subordinate to the one containing the
declaration (variables and constants are by default local to the scope in which they occur). The
set edges may be interpreted as a set valued map, assigning each node x the set edges{ x} of its
neighbors. The set nodes is the domain of edge8, i.e. the set of all first components of tuples in

program TopSort;
visible nodes, edges;
get ("%s", edges);
nodes := domain(edges);

--1 here!
if is..dag() then

SortTup := [];
vhile nodes < > { } do

x := select y in nodes I (notexists z in nodes I [z, y] in edges);
x into SortTup; ·
nodes less x; edges lessf x;

end vhile;
end if;
put("%x\n", SortTop(#SortTup .. 1]);

-- define the procedure is..dag
procedure is..dag;

-- returns true iff the graph does not contain a cycle
S := nodes;
shrinL.5: loop

z := select y in S I edges{y} * S = { } ;
if z = oa then quit shrink..S; end if;
S less z;

end shrink..S;
return (S = { });
end is...dag;
end TopSort;

Figure 1: Sorting a graph topologically

5

..

6

is..dag :=
lambda:

3 THE BASIC MECHANISM FOR PERSISTENCE

-- returns true if£ the graph does not contain a cycle
S := nodes;
shrink..S: loop

z := arb y in S I edges {y) • S = {) ;
if z = om then quit shrink..S; end if;
S less z;

end shrink..S;
return (S = { });
end lambda;

Figure 2: Alternative definition of procedure is..dag

edges (we could alternatively have defined nodes as {e(l): e in edges}). The procedure is_dag
tests whether or not the graph contains any cycles by repeatedly selecting and removing nodes
from the candidate set S. If there is no longer any z to be removed from S, the variable z gets the
va.lue om, indicating that it is no longer defined. The procedure is_dag returns true iff the graph
does not contain a cycle. The main program repeatedly selects a node x without a predecessor,
puts x into the tuple S ortTup of nodes already sorted, removes x from the set of all nodes as well
as all edges emanating from x. This is done until there are no longer any nodes to be processed.
The program terminates after writing the nodes in reverse order in which they have been found.

Since procedures are first class objects, they may be assigned as values, appear as elements in tuples
or sets, and they may occur in the domain or the range of a map. SETL does not allow for nested
procedures, but being first class in SETL/E, procedures may be nested to any depth. Procedures
may be anonymous akin to LISP's ,\. We feel that this is a useful device since it allows procedures
to be read in, and to be written out to external devices. The procedure isJ1ag could have been
defined in the line marked with the comment I here I as indicated in Figure 2. Parameters ma.y be
passed by value (rd parameters), by result (wr parameters), and by value/result (rw parameters).
N on•local variables in local procedures are bound statically to the innermost static predecessor in
which they occur.

SETL/E provides exceptions along the lines of Ada's model for exceptions: if an exception is not
handled in the scope in which it was activated, the scope is left and the dynamic predecessor is
searched for a handler. This is done until either a handler is found or the exception's nan1e is no
longer visible (in which case the exception UnDef_..Exception is activated). Exceptions n1ay be
parametrized, though. In contrast to procedures, however, exceptions are no first class objects,
hence they may not be passed as parameters or returned as results.

3 The Basic Mechanism for Persistence

In this section we describe the structure of persistent objects and of their containers, the abstract
data type P - file. We then will discuss practical issues of handling persistent data. These
considerations will be applied in the next section when we are going to discuss modules.

3.J Persistent values 7

3.1 Persistent values

A persistent value p has the following structure: it consists of

• name

• type

• time stamp

• condition

• lock

• file (name of the container)

• the value itself.

We are going to discuss these data in turn.

Name. The name for the persistent value is syntactically an identifier, and the value will be
identified by its name. Ac.cess mechanisms will be discussed below.

Type. Before discussing the type attribute of a persistent value, we introduce a total order among
all values on which the representation of the attribute will be based. Define first an order re]a.tion
~ on the set of predefined types (hence the range of the type operator) by saying a ~ f3 iff the
name for type a is lexicographically smaller than the name for type f3 (thus map ~ set). Let C be
the lexicographic order on the set of strings. Now define for two arbitrary SETL/E-values a and b
the order relation a < b iff either one of the following cases applies

• a= om

• type a < type b

• type a = type b and

- type a = tuple: a is lexicographically smaller than b taking < as the order relation on
the components

- type a = set: ii < b, where a is a tuple, the elements of which are arranged in asc~nding
order given by C on the str-values 3 of the elements of a '(i.e. if a = { x1 , ... , xn}, then
a = [Xii, .•• ,Xin] with {Xii, .•• ,Xin} = a, and str Xik C str Xik+l for 1 < k < n).
Similar for b.

- type a = map: maps are treated as sets of pairs

- type a = proctype: str a C str b

- type a = optype: similarly using str and C

- in all other cases, the "natural" order on the type of a is applied.

3 for each SETL/E value x, str x is a string containing the print image of x

8 3 THE BASIC MECHANISM FOR PERSISTE1'lCE

This order relation is rather crude and looks somewhat arbitrary (it is, in fact). It basically follows
the type structure of the values, gluing components together whenever necessary (an old trick in
order theory). It is not difficult to show that < defines a total order on the set of all SETL/E-values.

The type tree for the SETL/E-value a is an ordered tree having the type tag for a as the label for its
root. If a is a simple value, then the root has this .value as its only offspring. If a is a compound value
with offsprings a 1, ..• ,an, however, order the components obtaining the chain a1 < a2 < ... <an,
then the type tree for ai is the i th offspring of the root. This yields a unique description of a's type,
and the type tree is the value for the type attribute (actually, a linearized version is stored).

Time stamp. The time stamp is a string indicating either the date of the persistent value's
creation or of the last update for the value. The time stamp is a string of the form

YY : MM : DD : hh : mm: ss : µ

It may be used e.g. for version control purposes.

Condition. The condition may be used for formulating integrity checks on the value it refers to
or it may be used for formulating the relationship between the value under consideration and other
values. It is formulated as an anonymous function (lambda), which may have arbitrary parameters.
The value under consideration is available through the preserved identifier TheValue. Binding of
non-local identifiers is done relative to the scope which is provided by the P - file. This will be
discussed below.

Lock. The lock is an indicator whether or not the value may be overwritten.

File. p.f ile indicates the identifier for the P - file in which the value is stored; it is set when
the persistent value is actually written to the P - file, and it may be inspected by the user of the
persistent value.

The value. The value itself is stored in a binary format which allows fast and easy access in a
SETL/E-program.

Given a persistent value p, we indicate its name by p.name, its type by p.type, its time stamp by
p.time, the corresponding condition by p.cond, the default value of which is set lo

lambda; return true; end lambda;

The value p.lock is initially set to false indicating that the value may be overwritten.

3.2 The ADT P-file

Persistent values will usually be stored in files, but this may be implementation dependent, e.g.
it may happen that cache memory is large enough to hold the contents of a small file a.t least
partially at run time. Thus instead of describing the operations on such a file it is more adequate
specifying only the operations one wants to perform with persistent values and to leave the concrete

3.3 Handling and Practical Issues 9

realization of these operations together with these specific management of (internal oder external)
storage to an implementation.

P - files may roughly be compared to archives under UNIX, see [20], Sec. 3.8. An archive consists
of a table of contents and of the files (mostly binaries) which are stored in it. Archives may be
accessed in a number of ways: one can read the table of contents, one may insert or delete an
element from an archive and one may extract named elements from it. In addition, the archive is
a UNIX-file, thus it may be identified through an identifier which is admissible under a particula.r
shell.

The abstract data type P - file is represented to the outside world by a string as an identifier.
This identifier is used to access the P- file in the same way we gain access to a file using its name.
Let x be an identifier denoting a P - file. Then the following operations are defined for x:

1. Create(x), creating a P - file with the name x; initially the table of contents of x is empty,

2. Discard(x), removing the P - file with the name x,

3. TableO f Contents(x), yielding a set with all the identifiers for the persistent values which are
stored in x.

These procedures may be accessed in a SETL/E-program. The ADT P - file requires some other
operations which may be used only implicitly by the programmer. We will discuss using these
operations in a program in a moment, right now we will just make a list of these operations. Let
x be a P - file, then these operations may be applied:

• Insert an element in to x

• Remove an element from x

• Compress x, i.e. collect the garbage in x.

• Dismantle(x,y,z): ify in TableOJContents(x) holds, create a new P- file named z with
an initially empty table of contents, instert y, into it, and remove y from x; otherwise, do
nothing.

Other operations may be necessary, and it is desirable to have a box of tools allowing to access
P - files.

Scoping Each P- file is regarded as a scope of its own. This means that all the names contained
in the table of contents are visible throughout the P - file and that each value stored in it 1nay
entertain its own namespace. This applies of course to all the -X's that are stored in a P - file.
These functions have access to the names stored in the table of contents as if these na111es would
be visible throughout this scope of the .X.

3 .3 Handling and Practical Issues

Atkinson and Buneman coin the phrase persistent programming language for "languages that pro
vide for longevity for values of all types and that do not require explicit organization of, or even

10 3 THE BASIC MECHANISM FOR PERSISTENCE

1nention of, data movement by the programmer" ([3], p.110). In designing the persistent mechanism
for SETL/E, we hold that this maxim is in particular important for those programming languages
which deal with persistence in the context of prototyping issues. Since one tends to neglect details
of data representation or declarations of variables in a prototyping language, one should not have
to take care of explicit data movement to and from external files. With this in mind we are going
to discuss handling of persistent values and other practical issues now.

A persistent value is used in SETL/E just as every other value is, in particular it is not necessary
to declare this value as persistent. When the value is needed, it is mentioned, and consequently
the value is retrieved from a suitable P - file. The names of the eligible P - Jiles are stored in a
tuple called @SearchPath, which is initialized upon program start as [$StdLib]. $StdLib denotes
the P - file for the standard library provided with the SETL/E-system. It contains among others
the operations for input and output, and the operations relevant for handling P - Jiles (Commit,
TableO /Contents, Create, and Discard) may be found there, too. The tuple @SearchPath is
declared in the program's environment, hence it may be accessed throughout a program; its actual
value is visible in each P - file, thus persistent procedures may use it. In addition, this tuple may
be manipulated by the programmer. This is necessary when names for P - files are inserted or
deleted or when the programmer wants to change the order in which the P - Jiles are searched.

\,\Then the program encounters a name y on the left-hand side of an expression or a statement,
and this name is not yet associated with a value, then by default the value of y would be set to
om, the undefined value in SETL/E. In the presence of persistent values this strategy is modified as
follows: The P - Jiles associated with the identifiers in @SearchPath are searched in order for the
occurrence of a persistent value associated with the identifier under consideration. The first value
found is then bound to y, in particular the corresponding value is loaded from the P - file into
memory.

Since the search path may be set and modified by the programmer this is a rather flexible wa.y of
making persistent values available to a program. If the programmer insists on taking a persistent
value from a particular P- file, then she may use qualified notation: P.x indicates that the P- file
represented by Pis searched for a value associated with name x.

If searching for a value does not succeed in any of the P - files given in @SearchPath, only then
the variable is indicated as being undefined, and its value is set to om. It should be noted that this
handling of persistent value generalizes the canonical approach used by SETL/E in which a value
is undefined if it did not receive a value either by an explicit assignment or by being an actual
parameter written by a procedure. Variables in SETL/E are by default local in the scope in which
they occur. Thus a variable which is defined in an outer scope is not visible in an inner scope
unless explicitly declared as visible in the outermost scope. An attempt to access the variable in
an inner scope ends up in setting the variable's value to the undefined value om. In the presence of
persistent values om is taken only as a value if a corresponding persistent value cannot be found.
Hence looking up the symbol table for checking the scope of a variable is augmented by looking up
the table of contents of .all the P - files which are listed in @SearchPath.

This may result in inefficiencies, and the alternative here is either to resort to setting the global
tuple @SearchPath to the empty tuple (thus preventing any search beyond the program's symbol
table), or to setting a particular compiler option when compiling the program (thus prohibiting the
use of P - Jiles and hence the use of persistent values altogether). It will have to be seen which
approach is more practical - for "small" programs it may be practical not having to bother with
the management of persistence, and the explicit manipulation of the tuple @SearchPath may turn
out to be clumsy.

11

This approach to persistence (which may be called silent persistence) is appropriate to using a
prototyping language e.g. for purposes of exploring a situation: the leitmotif here is helping the
system to take care of as much as possible without the programmer's intervention. Our approach
is in line with this philosophy.

Names destined to hold persistent values are treated as any other identifier in SETL/E, hence such
a name may be declared as visible or as being a constant. Constants in SETL/E are dynamic (and
not manifest as in the predecessor SETL). Their value may be determined dynamically, so a constant
may have different values in different invocations of a procedure. Being a constant in SETL/E <loes
not mean that its value may be determined at compile time but rather that the value is protected
against changes. Normally a constant has to be given its value in the constant-declaration, but
persistent values will be taken from the environment when such an initialization is missing.

Accessing a persistent value can be done silently, but we have more than one option for what to do
with a value when leaving a program. One possibility is discarding the value as ephemeral, just as
one would do in the absence of persistence. If, however, a value is to be saved as persistent, it has
to be moved from the program to a P- file. Supposed we want to make p persistent. First we may
want to set the attributes p.time, p.cond or p.lock if we do not want to rely on the default values.
Let q be a string valued identifier representing a P - file, then a call to commit(p, q) transfers
the actual value of p to the P - file associated with q. If something goes wrong (e.g. if the value
already contained in q must not be changed, or if the P - file does not exist, could not be opened
for writing etc.), suitable exceptions are activated.

We prefer this archival approach to approaches like the one used in Napier (cp. (6]), or the one used
in Galileo (cp. [1]). In those approaches a value is considered to be persistent iff it is reachable
through a path from the persistent root. This means that a value is made persistent by connecting
it to a value which is already persistent, thus putting pinto the persistent store (as the a.naloga to
P - files are called) amounts to finding an already persistent element and connecting p to it.

Conceptually our approach is not too far away from this since the program making use of persistent
values may be considered the persistent root having all the P- files in @SearchPath as offsprings,
which have all the objects displayed in the table of contents as offsprings in turn. In this sense a
P - file may be considered as a flat tree. Conversely a tree in the sense of Napier's persistent
store may be turned into a flat tree by path compression. We feel that the approach used here
is more natural to SETL/E, in particular it is easier to deal with questions of scoping in a more
natural way. Our approach seems to be more flexible when more than one repository for persistent
objects is to be used. The counterpart of a set of P - files in Napier's model would be a set of
persistent stores amounting to .a forest of rooted trees. This forest would have to be 1na.de in to
one single tree. In addition, making @SearchPath available as a global value to the programn1er
provides additional flexibility which in the persistent store model would have to be achieved by
manipulating the persistent tree as a whole.

4 Modules

The introduction of persistent structures allows introducing modules, thus making separate co1n
pilation of larger program units and hence programming in the large feasible. The relationship
between persistence of procedures as first class objects and modules has been pointed out e.g. in
(5] from which a line of development may be traced to the language Napier (see [6]) paralleling the
approach found in ML (see [10]).

12

module
gensym := lambda (symb):

visible i := O;
return g;

-- define the routine g
procedure g;

i + := 1;
return str symb + str i;

end g;
end lambda;

end gensym;

4 MODULES

Figure 3: Module gensym

Capitalizing on the simplicity of persistent structures for making modules available avoids introduc
ing a separate mechanism for describing modules and separate compilation. That was done e.g. in
Ada, where ·a package is told explicitly which other packages to use, and in SETL, where interactions
between modules have to be described separately in a directory. Similarly, using packages in Ada
usually requires a particular library format and a separate mechanism for binding, all outside .the
language itself, hence dynamic loading o·f packages is not possible. In addition, packages suffer from
other drawbacks that are implied by this approach, e.g. they must not be circular with respect to
their import/export behavior. SETL on the other hand allows circularity, since modules are linked
early enough to the programs using them, but there are some other drawbacks, e.g. changing the
externally visible behavior of a module requires changes in the directory (where this behavior ist
posted) and thus recompilation of the entire program.

The straightforward way of making a procedure persistent and loading it when it is required does
not work in SETL/E since the intent of a module is not fully in accordance with this approach. A
module is usually thought of as a collection of routines having access to common data structures.
This requires static variables, i.e. variables maintaining their value between different invocations to
a routine in the module from the outside. SETL/E binds statically, thus always the value fro1n the
static environment at definition time is taken. Hence we have to expand the binding rnechan ism

by introducing dynamic bjnding.

4.1 Defining Modules

A module is defined between module and end followed by the module name. This is the sin1plest
case, we will discuss particular cases shortly. The definition proper looks like the assignment of a
lambda to an identifier. So upon defining gensym as in Figure 3, we make gensym as a module
available; with h := gensym("g.'') the invocations x := h(); and y := h(); generate the strings g.l
for x and g.2 for y, resp.

4.1 De-fining Modules

module
sta.ck(crea.te, is.empty, push, pop);
sta.ck.specifica.tion { rea.ds} := { } ;
stack.specification {writes} := { create, is.empty, push, pop};
profile(crea.te) := [];
profile(is..empty) := [];
profile(push) := [rd];
profile(pop) := [vr];

end stack;

Figure 4: Stack specification

13

Usually one is interested in the interface of a module expressed in the specification part. Since the
implementation of the module is given explicitly, the specification part may be derived from the
implementation. The specification part indicates which items are imported (or read) or exported
(i.e. written) by the module; this is indicated by the set of the corresponding formal parameters.
Thus

gensym.specif ication{ reads} { symb}

gensym.specif ication{ writes} = {}.
Conceptually, gensym.specification is a relation, relating each formal parameter to the way it

communicates with the caller. Thus it is represented in SETL/E as a (multivalued) map. For ea.ch
procedure read or written by a module the built-in map profile indicates the way parameters are
passed: profile(a) yields a tuple the i th component of which gives rd, rw, or wr depending on how
the ith parameter is transmitted.

Modules may be specified in two parts, as usual: first the specification is given, and the imple
mentation may be defined at a later time (but in the same scope) as in Figure 4. This specifies a
module stack, and makes it usable right away: the invocation

stack(ThisCreate, I sEmpty, This Push, ThisPop);

defines the corresponding operations, hence

ThisCreate();

creates and initializes a stack, and

for i in [I ... 10] do ThisPush(i); end . for;

pushes the elements 1, ... , 10 onto the stack. Finally,

while not J sEmpty() do ThisPop(k); end while;

pops the elements off the stack. Note that IsEmpty() is supposed to return a Boolean value, but
that this is not visible from the specification (in accordance with SETL/E's philosophy of typecheck
ing at runtime).

The implementation of this module is done in a straightforward way, see Figure 5.

Note that this mechanism displays all the properties usually associated with modules:

14

module
stack.implementation :=

lambda (create, is...empty, push, pop):
visible LocStack; -- Thus LocStack is visible throughout this ~
create := lambda:

LocStack := [];
end lambda;

-- similar for is_empty and push
pop := lambda (vr t):

if LocStack = [] then
raise Stack_Underflow;

else
t frome LocStack;

end if;
end lambda;

exception Stack_Underflow;
-- whatever has to be done

end Stack_Underflow;
end lambda;

end stack;

Figure 5: Stack implementation

4 MODULES

l. a module has a specification and an implementation part; both parts may be separated
from each other, in particular is it possible to access the specification independently of the
implementation,

2. a module may have variables which are global to all routines provided by it, but not visible
to the outside. In particular, a module may have local routines not visible to the caller,

3. items may be imported and exported from a module,

4. a module may execute initialization code. This happens when the corresponding lambda is
executed,

5. a module may interact with other modules, and this may be done dynamically.

The usual mechanisms for persistent values apply: a module is loaded silently after its name is
mentioned from the first P - file on the search path having the module name in its table of
contents.

The specification of a module may be used as any other SETL/E-value. Suppose we have set

stack.cond :=lambda: return "purpose: maintains stacks"; end lambda;

Assume further that we want to identify a module for maintaining stacks in a set of persistent
values stored in the P- files or the search path. This module should not read anything, but write
four different procedures. The following piece of code displayed in Fig. 6 performs this task. A
module m may be distinguished from a persistent routine r by the fact that in the former case
specification and implementation are defined, and that neither of these items is defined for r. Thus
we have e.g. r.specification = om, and trying to access it will usually result in a run time error (if
it is not detected at compile time).

4.2 Other Approaches

for Pf in @Search Path do
for t in TableofContents (Pf) do

if t.cond() = "purpose: maintains stacks" then
if t.specification {reads} = { }

and -- short circuit
#t.specification {writes} = 4
and
forall q in t.specification {writes} I type q = proctype

then -- whatever needs to be done
end if; -- innermost if

end if;
end for; -- innermost for

end for;

4.2 Other Approaches

Figure 6: Searching for a module

15

PS-algol seems to have been the first language to implement separate compilation using persis
tence. The approach used here is similar to the one outlined in [5], although there are differences,
some of a syntactic nature, some not. PS-algol first defines a structure in which the signatures of
the objects involved are specified; then a let-environment is used to establish the respective func
tionalities. There is a more serious difference, however, in the way dynamic binding is achieved: in
the present proposal dynamic binding is confined to the module-environment, and the rest of the
language is statically bound, whereas PS-algol binds statically without any exceptions. The effect
of dynamic binding, however, is achieved by the pointer type available there: the type of an object
being pointed at is not determined at compile time but rather at run time; pointer types are used
heavily in PS-algol 's module facility.

Napier (cp. (6, 24]) introduces a construct called a namespace for controlling bindings. A names
pace is introduced as the abstraction of "store of arbitrary permanence" ([6], p. 8). Binding of
names to objects (rather than to values) may be static or dynamic in a namespace. Since SETL/E
binds names to values (and the question of object identity does not arise), the binding strategy is
somewhat djfferent to the one used in Napier - a first approximation would classify static binding
in SETL/E as a special case to static binding in Napier. Since namespaces are a type of their own,
the approach used in Napier seems to be more general than the one used here.

ML uses structures and functors as basic linguistic units for separate compilation (see (17]). A
structure provides an encapsulated environment and is the building block for a ML program. Struc
tures may be composed using functors, so a functor may be used to build a new structure from its
arguments. Functors can be made persistent.

4.3 Dr. King's Cat is Object-Oriented

The discussion in [22] focusses on different aspects of object orientation vs. semantic modelling in
data bases. King distinguishes the structural abstractions provided by semantic models from the
behavoiral abs.tractions provided by object-oriented models. We are working here in the context
of set theory, thus structural abstractions (which are achieved through grouping, i.e. set valued
properties, attributes, i.e. named properties, and aggregations, Le. building up components) n1ay

16 4 MODULES

be described easily in this context. Since this requires a more careful discussion than the author
feels appropriate undertaking here, we move to the problem of object orientation.

There seems to be agreement that an object-oriented approach to problem solving requires the
programrrung language to support at least

• object creation

• encapsulation

• inheritance

• message passing

We claim the SETL/E supports these properties. To substantiate this claim, consider the following
example from geometry. An ellipse is characterized by its semiaxes a, b (with a 2: b), analytically,
it is described by

Such an ellipse has the area
S(a,b):=1r·a·b

and the circumference

C(a,b) := 4 •a• 11r/2

J1 - e2(a,b)sin 2 <p d<p,
0

where e(a, b) denotes the numerical excentricity

g
The case a = b = r specializes the ellipse to a circle with radius r that has the area S(r, r) = r 2

• 1r
and the circumference C(r,r) = 2 • r • 1r, since e(r,r) vanishes. When specializing one may want
to inherit the computation for the area, but rather not the one for the circumference, since it is
apparently impractical to approximate the integral in this case.

Since objects are supposed to have a local state which may change as the object interacts with its en
vironment, we formulate the objects in question as modules in Fig. 7 Thus invoking Ellipse(fl, ci),
we have created procedures fl and ci such that fl(a,b) yields the area of an ellipse with semiaxes
a and b. In the same way we may create an ellipse by saying yo := Ellipse. Then yo(!, c) will
produce the same functions J and c.

A circle is a special case, see Fig. 8. Thus Circle inherits ar from Ellipse and turns it by
specialization into area; the computation of the circumference for Ellipse is discarded and replaced
by a local procedure circumf. If we would be willing to pay the price for computing an elliptic
integral, we could modify the call to Ellipse by saying Ellipse(ar,circumf) and remove the>..

Hence inheritance may be represented through passing parameters: an object A inherits 8 from an
object B if A.A invokes >.o, and 8 is one of the parameters to this call. Message passing is implemented
by invoking procedures: putting ka := Circle(ar,ci) and invoking ar by the assignment fl :=
ar(17.4) may be thought of as passing the message area with parameter 17.4 to the object Circle.
Object creation is done by copying prototypes rather than by sending the message new to a class.

Some models for object oriented programming allow for multiple inheritance. So does SETL/E.
Since the name of a method in the present model is determined by the caller and not by the callee,
naming and the possible duplication of names does not present a problem.

4.3 Dr. King's Cat is Object-Oriented

module
Ellipse = lambda (vr area, vr circum):

visible constant 11" = 3.14159;
-- 11" is global throughout this scope

procedure excen(x,y);

return J1 ;};
end excen;
-- this is a local routine

area := lambda (a.,b):
return ,r * a * b;

end lambda
circum := lambda (a.,b):
return

4 *a* £ 12 ✓l - (excen(a, b) * sin(rp))2 drp;
end lambda;

end lambda;
end Ellipse;

Figure 7: 0 b ject ellipse

module
Circle := lambda (vr area., vr circumf):

visible constant ,r := 3.14159;
Ellipse (ar, ci);
area : = lambda (r):

return a.r (r ,r);
end lambda;

circurnf := lambda (r):
return 2 * r • r;

end laabda;
end laabda;

end Cirtle;

Figure 8: Object circle

17

18 5 FURTHER RESEARCH

5 Further Research

The previous sections laid out the basic mechanisms for persistence of data and for the handling
of separate compilation using modules. This is a rather complex area, and only a first step could
be done. We give a list of some of the research issues which further work will have to address.

Roughly three areas where more work is needed can be identified:

• questions concerning database issues,

• the proposed module structure for SETL/E,

• problems concerning the transformational paradigm which is directly related to the usefulness
of SETL/E as a prototyping language.

We are going to discuss each of these points in turn, but the reader should be aware of the fact that
not all questions can be answered in an isolated way, because some of them are heavily intertwined.

5.1 Database Issues

The ADT P - file has to be represented efficiently both in terms of space utilized and in terms of
time making use of persistent structures. A first approximation to the representation of this ADT
is an archive under UNIX. Although this representation may serve the immediate needs for making
these ideas work, it is insufficient for obvious reasons. Thus for making things work out smoothly
and efficiently it may be necessary to find an effective balance between storing persistent structures
on an external device, and caching portions of a P - file in primary memory. Since fast local
interconnections between machines become more and more feasible the question of maintaining a
P - file in a distributed way has to be investigated.

It may well be possible that two or more persistent values share a common substructure. Th us it
is natural to ask for a possibility of isolating that substructure, storing it separately and giving the
superstructure access to the substructure using a surrogate. This question arises also in object
oriented databases and shows a connection between persistence in our context of prototyping and
these databases. In this context the problem of object identity arises.

From a practical point of view it is desirable to visualize the data sitting in a P - file. This may
e.g. entail the representation of mutual dependencies and the like. Such a visual tool may be
complemented by a visual editor allowing to browse, modify, and manipulate the data represented
on the screen.

Is an SQ L-interface desirable?

5.2 Modules

Modules may be represented within SETL/E, hence it may be practical describing module intercon
nections in this same language, too. Thus it may be desirable to develop a module interconnection
language as a level of description which would minimally allow (cp. [25], p. 119):

• specify the way modules are composed to form larger structures

5.3 Transformations 19

• describe the dependency structure between modules

• make sure that the proper versions for the modules are used

• perform checks concerning types and signatures (note that since SETL/E is wea.kly typed a
strong type checking in the sense of Ada is not feasible).

This means that a module interconnection language may help in the composition process of a
complex program and may in this way support programming in the large.

Quite related to that is the question of version control; here a mechanism needs to be implemented
which checks the version of persistent data and makes sure that compatible versions are used. This
does not need to be confined to modules. In particular, substructures may have to be checked, and
it may be useful to have the possibility of storing a sequence of As.

5 .3 Transformations

As indicated in the Introduction the transformation of programs has to go hand in hand with the
transformation of data when it comes to derive a production efficient version of a prototype. This
means in particular that for the persistent values of SETL/E a semantically equivalent counterpart
has to be found. A first step in this direction is described and implemented in [26]. This tool
addresses a subset of the data which may be described in SETL. For a full treatment a proper type
theoretical foundation is necessary. Thus we need an adequate type system both for SETL/E and
the production language (e.g. Ada), and in addition we need a semantics preserving transformation
between these type systems. Since recursive data structures are involved it may be attractive to
use the Mac Queen-Plotkin-Sethi model of er-ideals as types (cp. [23]) together with a suitable topo
logical or uniform structure which necessarily would have to impose some continuity assumptions
on the transformation (cp. (12]).

References

[1] Albano, A., Giannotti, F., Orsini, R., Pedreschi, D.: The Type System of Galileo. In [4], 101
- 120

[2] Atkinson, M. P., Bailey, P. J., Chisholm, K. J., Cockshott, P. W., Morrison, R.: An Approach
to Persistent Programming. The Computer Journal 26, 4, 1983, 360 - 365

[3] Atkinson, M. P., Buneman, P.: Types and Persistence in Database Programming La.ngua.ges.
ACM Computing Surveys 19, 2, 1987, 105 - 191

[4] Atkinson, M. P., Buneman, P., Morrsion, R. (Eds.): Data Types and Persistence. Springer
Verlag, Berlin, 1988

[5] Atkinson, M. P., Morrsion, R.: Procedures as Persistent Data Objects. ACM Trans. Prog.
Lang. Syst. 7, 4, 1985, 539 - 559

[6] Atkinson, M. P., Morrsion, R.: Types, Bindings, and Parameters in a Persistent Environment.
In [4], 3 - 20

20 REFERENCES

[7] Budde, R., Kuhlenkamp, K., Mathiassen, L., Ziillighoven, Ji. (Eds.): Approaches to Prototyp
ing. Springer-Verlag, Berlin, 1984

[8] Buneman, P., Atkinson, M. P.: Inheritance and Persistence in Database Programming Lan
guages. In Proc. ACM SIGMOD '86, International Conference on Management of Data, Wash
ington D.C., 1986, 4 - 15

[9] Buneman, P.: Data Types in Database Programming. In [4], 91 - 100

[10] Cardelli, L., Wegner, P.: On Understanding Types, Data Abstraction and Polymorphism.
ACM Computing Surveys 17, 4, 1985, 471 - 522

[11] Cheatham, T.: Reusability Through Program Transformations. IEEE Trans. Softw. Eng. 10,
5, 1984, 589 - 594

(12] Doberkat, E.-E.: Topological Completeness in an Ideal Model for Recursive Polymorphic
Types. SIAM J. Comput. 18, 5, 1989, 977 - 989

(13] Doberkat, E.-E., Fox, D.: Software Prototyping mit SETL. Teubner-Verlag, Stuttgart, 1989

[14] Doberkat, E.-E., Gutenbeil, U.: SETL to Ada - Tree Transformations Applied. Information
and Software Technology 29, 1987, 548 - 557

(15] Doberkat, E.-E., Gutenbeil, U., Hasselbring, W.: SETL/E Sprachbeschreibung. Essener
Informatik-Berichte, Universit"at - Gesamthochschule - Essen, April 1990

(16] Floyd, Ch.: A Systematic Look at Prototyping. In (7], 1 - 18

[17] Harper, R.: Modules and Persistence in Standard ML. In (4], 21 - 30

(18] Hekmatpour, S., Ince, D.C.: Rapid Software Prototyping. Oxford Surveys in Information
Technology 3, 1986, 37 - 76 (an expanded version has been published in 1988 under the title
Software Prototyping, Formal Methods and VDM by Addison-Wesley)

(19] Hull, R., King, R.: Semantic Database Modelling: Survey, Applications and Research Issues.
ACM Computing Surveys 19, 3, 1987, 201 - 260

(20] I{ernighan, B. W., Plauger, P. J.: Software Tools in Pascal. Addison-Wesley Publishing C01n
pany, Reading, MA, 1981

(21] Khoshafian, S., Briggs, T.: Schema Design and Mapping Strategies for Persistent Object
Models. Information and Software Technology 30, 1988, 606 - 616

(22} King, R.: My Cat is Object-Oriented. In Kim, W., Lochovsky, F. (Eds.): Object-oriented
concepts, databases, and applications. Association for Computing Machinery, New York, 1989,
23 - 30

[23J MacQueen, D., Plotkin, G., Sethi, R.: An Ideal Model for Recursive Polymorphic Types.
Information and Computation 71, 1986, 95 - 130

(24) Morrison, R., Brown, A. L., Carrick, R., Connor, R. C. H., Dearle, A., Atkinson, M. P.: Poly
morphism, persistence and software re-use in a strongly typed object-oriented environment.
Software Engineering Journal, November 1987, 199 - 204

-
REFERENCES

21

[25] Prieto-Diaz, R., Neighbors, J.: Module Interconnection Languages. J. of Systems and Software
6, 1986, 307 - 334

[26] Schunk, M.: Austausch persistenter Datenstrukturen zwischen Ada und SETL. M.S. Thesis,
Dept. of Computer Science, University of Hildesheim, 1990

(27] Schwartz, J. T., Dubinsky, E., Dewar, R., Schonberg, E.: Programming With Sets, An Intro-
duction to SETL. Springer-Verlag, New York, 1986 .

22 A APPENDIX: THE ATKINSON & BUNEMAN TEST CASE

A Appendix: The Atkinson & Buneman Test Case

In their survey on persistence in database programming languages Atkinson and Buneman present
a test case ([3), p. 115f) for illustrating some issues. This test case consists of a fragment of a
manufacturing company's parts data base. The data base represents the inventory consisting of
parts. Parts may be basic or composite; if they are basic, they are not manufactured out of other
parts. This information is supplied for basic parts:

• the name,

• the supplier and the cost of purchasing.

If parts are composite, they are manufactured out of other parts, and for each part it should be
recorded

• the subparts that are involved in its manufacture,

• the cost of manufacturing a parts from its subparts,

• the mass increment that occurs when the parts are assembled.

The following tasks are presented ([3), p. 115f):

1. Describe the database.

2. Print the names, cost and mass of all imported parts that cost more than $ 100.

3. Print the total mass and total cost of a composite part.

4. Record a new manufacturing step in the database, that is, how a new composite part 1s
manufactured from subparts.

We describe a solution to the problem and to the four tasks now in SETL/E. Parts are represented
as atoms, and partSet is the corresponding set. The following maps are defined:

P _name : partSet ~ string

P ..simple : partSet ~ boolean

P_name(x) is the name of part x, and P..simple(x) indicates whether or not xis composite.
Abbreviating

partSettrue := { x E partSet; P ..simple(x) = true}

partSettalse := {x E partSet; P ...simple(x) = false}

(partSettrue and partSettalse is the set of all basic and composite parts, resp.), we define

P ...supplier : parts ettrue ~ string

P ..cost: partSettrue ~ real

P ...smass: parts et true ~ real

P ...suppcost: partSettalse ~ real

P_mass: partSettalse -+ real

P ..subparts : partS etfalse -+ :F(partSet)

lambda:
return

type TheValue = set
and -- short circuit
forall x in TheValue I

if P ..simple(x) then SimplePa.rt(x)
else CompositePart(x) end;

-- local functions
procedure SimplePart(t);

return
(type(P.Jtame(t), type P..cost(t), type P..smass(t))
=
(string, real, real);

end SimplePart;
procedure CompositePart(t);

return
(type P.suppcost(t), type P..mass(t);type P.subparts(t))
=
(real, real, map)
and
forall q in P .subparts(x) I

q in TheValue
and
type (P.subparts(t)(q)) = integer
and
P .subparts(x)(t) > O;

end CompositePart;
end lambda;

Figure 9: Condition for partSet

23

Thus Psupplier(x) yields the name of the supplier for the basic part x, it may be purchased for a
$-price of P ..cost(x), and has a weight of Psmass(x) grams. The composite part x incurs a $-price
of P....suppcost(x) for manufacturing it, and assembly increases its weight by P_mass(x) grams;
finally, P ...subparts(x) is a partial map from part Set to the naturals indicating that subpart y is
needed P....subparts(x)(y) times in the assembly of x.

The set partSet and the maps P _name, P ..simple, Psupplier, P _cost, Psmass, Psuppcost,
P _mass, and Psubparts(x) are made part of the database, thus need to be made persistent. The
condition partSet.cond for the persistent value partSet is described by the ,\ displayed in Fig. 9
This yields the description of the database and solves the first task. The second task is sol vcd

by the following straightforward code, which would look exactly the same if the data would be
ephemeral: we iterate over partSet, select the simple parts and check the condition: see Fig. 10
Note that partSet and the P-* o-maps are loaded into the program if they are not already there.

The third task requires interleaving arithmetic with recursion, since we have t9 descent the subparts
hierarchy. Its solution is displayed in Fig. 11 The procedure MassAndCost(x) returns a pair with
the mass as a first, and the cost as the second component. The case of a composite pa.rt first
computes M assAndCost(t) for each component t and collects then the intermediate results in
a map CompTup; the component t contributes P ...subparts(x)(t) * CompTup(t)(l) to the mass,
and Psubparts(x)(t) * CompTup(t)(2) to the cost (remember that P ...subparts(x)(t) indicates the
number of times t is a subpart of x). The compound operator + / applied to a tuple sums i t.s

24
A APPENDIX: THE ATKINSON & BUNEMAN TEST CASE

·n partSet I P..simple(x) do for x 1
. f p ..cost(x) > 100.00 then
1

put("name = %s, cost = %s, mass = %t\n", P ..name(x), P ..cost(x), P .smass(x));

end if;
end for;

Figure 10: Solution to the second task

procedure MassAnd Cost(x);
-- We raise an exception if the data is not appropriate

if x not in partSet then
raise partSetin..Error;

else
if P _c;imple(x) then -- that is easy
return [P .smass(x), P ..cost(x)];

else -- composite part
-- we collect mass and cost for the components in a separate map CompTup

CompTup := { };
for t in domain P _c;ubparts(x) do

CompTup(t) := MassAndCost(t);
end for; -- note that CompTup(t) is a pair
mss := P..mass(x) + (+/[P.subparts(x)(t) * CompTup(t)(l): tin domain P.subparts(x)];
est := P ..cost(x) + (+/[P .subparts(x)(t) * CompTup(t)(2): t in domain P .subparts(x)];
return [mss, est];
end if; -- innermost if
end if; -- outer if

exception partSetin..Error;
-- whatever has to be done here

end partSetin..Error;

end MassAndCost;

Figure 11: Solution to the third task

•

25

onents.

comP . t·on of the solution to the fourth problem, we assume that a new part is give descnp I • h . . d h n as a
for a the first component of whic 1s 1t~ name, a~ t e second component is a Boolean indicating
tuple, t it is compound. Dependmg on this value, we assume that in the next component h r or no . h d b s whet e . alues are stored m t e or er elow:
the followmg v

8 • supplier, cost and mass simple :::: tru .

. le :::: false: subparts, cost of manufacturing and mass increment; subparts is given as a map,
s1lllP. as a set of tuples 1.e.

. to this task is then described by the following lambda (Fig. 12), which is made
The_ solution d which has to be invoked whenever a new part is to be recorded in the data base. It
persiS

t
ent, an uments: the first, ThisPart, one is a tuple in the format just described, the second

takes two_ arg t •ng representing a p - file to which the corresponding values will be committed. one, pf' is a s n

26 A APPENDIX: THE ATKINSON & BUNEMAN TEST CASE

MakeEntry := lambda(ThisPart, Pf):
-- We first check some types in the first argument

if ThisPart assert tuple then
if not ThisPart(2) then
ThisPart{3) assert map;

end if; -- inner if
end if; -- outer if
-- having survived these typechecks, we may go on
-- create a new part and insert it into the set of all parts

NewPart := nevat(); New Part into partSet;
P ..name(NewPart) := ThisPart(l);
P ..simple(NewPart) := ThisPart{2);
-- commit the common parts

commit(partSet, Pf); commit(P ..name, Pf); commit(P ..simple, Pf);
if P ..simple(NewPart) then

[P ..supplier(NewPart), P ..cost(Ne~Part), P ...mass(NewPart)] := ThisPart(3 .. 5);
commit(P ..supplier, Pf); commit(P ..cost, Pf); commit(P ..mass, Pf);

else
[P ~ubparts(NewPart), P ..suppcost(NewPart), P ...mass(NewPart)] := ThisPart(3 .. 5);
commit{P ..subparts, Pf); commit(P ..suppcost, Pf); commit(P ..mass, Pf);

end if;

-- CJ8&ert needs to be defined
operator assert(obj, tpe);
-- checks obj's type against tpe

if type{obj) <> tpe then
raise Arg_Error;

else
return true;

end if;
end assert;

exception Arg_Errc;>r;
-- whatever has to be done here

end Arg_Error;

end lambda;

Figure 12: Solution to the fourth task

