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What is - and why - prototyping? 

Prototyping is strictly speaking the art of developping prototypes. Prototypes are by definition 
experimental versions of presumably complex systems. They are developped to help in assessing 
the intricacies and virtues of projects : it is accepted that beyond very simple or well-known 
systems an abstract definition, though essential, is insufficient to understand and evaluate what a 
project represents, what are its consequences : an abstract system may not be understood or 
evaluated without being 'seen and touched and experimented'. Presented in this way, 
prototyping is just a cautious way of proceeding with projects and innovation. 

This argument could be turned over: why not systematically look at every new idea with the eyes 
of a 'doctor' or an 'expert' ausculting a prototype? For those who, pushing such new ideas, 
would'nt be building a prototype, the affirmation of the feasibility and relevance of these ideas? 
Viewed in this way, prototypes rhyme with audacity, cleverness and seriousness. Ideally, 
prototypes should be low cost and developped swiftly : this is why often prototyping is 
assimilated with 'quick and dirty' and 'throw away' developments. Instead we suggest that 
prototyping is very much like experimenting, that it requires a scientific frame of reference, so 
that, when the experience comes to an end, valid and arguable conclusions can be made. 

What are, in the software technologies, possible scientific frames of reference? 

Whenever a craft develops into a method with a specific technology, there is a formal reference 
frame. Often, companies, laboratories, individuals develop skills which are partly build on 
established technologies, partly on their own personal experience. 
Beyond 'sculpting' and refining with the possible assistance of powerful machinery (tools and 
established methods), prototyping is an attempt at formalizing the skills and their use of 
machinery into a method 1. Such methods are domain dependent and attached to a class of 
applications. The most elementary examples are the so-called 'application generators'.By 
analogy, we call 'generic' these experimental methods or tools. 

To illustrate this notion of generic tool, let us imagine the case of a company developping software for a 
specific chip on a custom made board. This software is developped on a standard host, say a Macintosh. There is 
a need for: 
-compiling programs on the Macintosh 
-transfering programs compiled on the Macintosh to the board, 

1 Very often these methods represent the integration of a relatively large number of standards, established methods 
and tools. 
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-emulating the board on the macintosh for preliminary debugging 
The interface software meeting these essential needs is what is usually called an application generator. This is 
the lowest level generic tool. Let us suppose, that this board is a Digital Signal Processing board, for 
processing pictures in some standard format A number of specific processing functions -using the hardware 
configuration ressources of the board- could be defined, and calls to these functions made possible, in the 
application generator. This extension of the interface software would be a more advanced generic tool, tailored to 
the DSP needs and the specific board. One could imagine many extensions expanding the capability of this 
interface software, but remaining generic, i.e. suited for a wide class of applications. 

We picture the prototype production process as the 'pure prototyping' feed-back loop (cf. fig. 1): 
-methods are represented by generic tools, 
-prototypes are models obtained by application of these tools 

Deficiencies in prototypes may be the result either of an inadequate application definition and/or 
parametrization of the available methods, or of a deficiency of the methods themselves. 
Developping prototypes therefore entails a progressive improvement of the methods' adequacy. 

'Pure prototyping' instead of ad'hoc developments, means the adaptation and systematic use of 
generic tools. Thus prototyping becomes synonymous with capitalisation of know-how! 

This requires therefore the ability of using existing formal methods as well as developping new 
ones. Whence prototyping tools are either powerful formal generic tools or tools for creating 
'easily' new ones. It is for the sake of modeling complex abstractions and creating new formal 
methods, that set theory, the most expressive and general-pmpose form of mathematics has been 
selected as the mathematical foundation for a software prototyping environment. 

rototype 
(models) 

adjust methods 

methods 

parametrize & apply 
methods 

fig. 1 the 'pure prototyping' feed-back loop 

Why sets and set theory? 

Imagine an old man, late at night, on a sidewalk under the only street light of the block, watching 
carefully the water running in the curb. A neighbour, passing by recognizes the man: "what are 
you doing here so late in that dark street? -I am looking for my watch! -what happened to your 
watch? - It's lost, may be it slipped into the curb, will be pushed by the water and will show up 
here sometimes. -Where did you lose your watch? -Well, two blocks away, near the fruit­
store ... - why then look for it here? - you see, the other street is dark, there is no street light!" 

This story describes a common situation when dealing with the search for a convenient and 
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appropriate solution for specific problems : you don't need to be an expert to recognize what is 
essential and what is secondary in a proposed solution, and that, when you need a watch, a 
watch-less street is just as good as a screw driver, a french english dictionnary or a street light, 
and is not the solution. In the programming world, you don't always need to be an expert to 
recognize whether a given data representation is adequate or not, even though it displays some 
relevant parts. We are not discussing at this point optimisation, just basic adequacy. 

Often, programming problems deal with collections. Not all collection models will be adequate to 
represent the collection(s) you have to deal with. However, sets represent the most flexible 
known model for collections (all the imaginable models derive from that one; necessarily one of 
its derived model will adapt to your problem). 

Set theory is an intricate mathematical theory, which will not be discussed here. Actually Cantor, 
has a bias toward a specific branch of it: hereditarily finite set theory. But this is beyond our 
point now: we are only concerned with providing a correct and rich basis for a simple, rigorous 
and clear formulation for a very wide class of abstract data models and their algorithms. Our 
objective now is to introduce the basic set theoretic data representations, and discuss their 
applicability. 

We are now presenting a set of examples which should be seen as a gradual introduction to 
Cantor and its set-oriented constructs. The companion volume "a Cantor User's Guide" is 
refered here as the Cantor manual, since it contains a systematic presentation of Cantor essential 
features, as well as elemntary examples and illustration exercises : it is inseparable from this 
tutorial. 

In the first example the most common set-oriented constructs are introduced: set, tuples and 
maps, including maps associating ordinary data-structures to user-defined functions. In the 
second example we introduce tabulation, a simple technique to speed-up many computations. In 
the next example, we discuss data representations in Cantor and compare them with the relational 
model -probably nowadays the most widespread representation of large data sets and databases. 
In the fourth example, we consider simple graph problems, and present elements of an algorithm 
design methodology based on fixed-points, finite differencing and a simple complexity model for 
a set machine. Finally, in the last example, we use Cantor constructs to represent unusual set 
organisations (hypergraphs) and their use in modeling real-time systems. We have not included 
other topics, quite relevant both to Software Engineering and set abstraction, like parsing and 
compiling, graphic representation of abstract structures (the converse of what is done here in 
example 5), data-flow analysis : these topics are perhaps too advanced for this modest tutorial 
introduction to the interplay of (set-oriented) mathematics, prototyping and programming. 
Indeed, as was stated in our introduction to prototyping 1, other branches of mathematics and 
other established methods would have to be integrated in the exposition of these subjects. 

Example 1: a line at a bank or at the post office 
This example deals with two collections: 
1- the collection of customers, waiting on a line 
2- the collection of service counters 
The two collections are not organized along the same principles. The waiting line obeys a FIFO 
(First-In-First-Out) discipline: one joins the line at the tail, one is served at the head, one could 
quit the line 'in the middle' -this shortens the line- but one cannot join the line in the middle. This 
is typical of an ordered collection. The counters are organized along very different principles: a 
customer at the head of the waiting line is directed to any open and free (not busy) counter. If 
there is a 'counter discipline' it has nothing to do with the 'line discipline': it is based on 
availbility not on order. 
To model this example one needs to formalize the following operations: 

-line operations: joining a line, quitting a line 'in the middle' (elsewhere than at the head), 
quitting a line at the head, 
-set operations on service counters: defining a subset by criterias (here 'available', 'busy','not 
operating', etc), selecting an arbitrary element in one of the subsets 
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Example 2: function tables 
The table is a number table, for a function defined by a recurrence equation. This the case of the 
factorial function 

n! = n * (n-1) ! 
or of the Fibonacci numbers defined by: 

Fo = 0 F1 = 1 F n+2 = F n+l + F n 
Computing 10!, involves computing 9!, which involves computing 8! etc. If after having 
computed 10! the user requests 11!, then again, the same values have to be computed again. It 
would be simpler to store them all in a function table, and retrieve their values rather then re­
computing them, if possible. 

Example 3: a data table 
The table has four columns: item name, sales price, quantity sold since 1st of the month, quantity 
in stock. The 'key' of an entry into this table is the item name. 

This example deals with a single collection. Each member of the collection may be regarded as a 
4-uple (name, price, #sold, #in stock). This collection does'nt have a well defined ordering. It 
could be presented sorted by item name, or by price, or by quantity sold, or by quantity in stock, 
or by some other rule, e.g. by cash-flow (price* #sold). What determines its structure is more 
the fact that it should be seen as a mapping (a function) associating to each item name a 3-ple 
(price, #sold,#in stock). This model is that of a set of pairs where each pair is [item name, 
(price, #sold,#in stock)]. Note that the second element of each pair in this model is a 3-ple 
(price, #sold,#in stock). To actually formalize this model one needs to formalize the following 
operations: 

-representing tuples (pairs, 3-ple, 4-uple, etc .. ) of various length, with items of many 
different types 
-nesting of ordered sets (e.g. nesting a 3-ple within a pair) 
-nesting of ordered sets within unordered sets 
-computing the value associated to a 'key' 
-accessing the i-th element of a tuple for reading or writing (i.e. update) 

A possible visual presentation could be in a table, one row per item: 

... 
itemNamei priCei nbr soldi nbr in stocki 
... 

This example could be made more realistic in the following way: 
Associated to the item name are not only the informations (price, #sold,#in stock) but for each 
item a list of suppliers, for each supplier its current price. That is, associated to the item name is 
a 4-uple (price, #sold,#in stock, supplier_table) where the 4-th item in the 4-uple is itself a table, 
associating to a supplier, its current price for this item. Since the same supplier may supply 
different items, one could assume that the same supplier name appears associated to different 
item names. A possible table presentation including nested supplier information tables could be: 

... 
itemNamei pricei nbr_soldi nbr_in_stocki supplier_a price_a 

supplier_b price_b 
.... 

... 

The same information could be obtained by a different data organization, in which all the supplier 
prices are grouped in a supplier_price table, one per supplier, and the 4-th item associated to an 
item name is just a set of suppliers names. In this model we have two main collections, actually 
sets: 

1-an item data table whose visual presentation could be : 
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... 
itemNamei pricei nbr_soldi nbr_in_stocki supplier_a 

supplier_b 
.... 

... 

2-a supplier table : 

.... 
supplier_x ... 

itemNamei supplier_pricei 
itemN amei+ 1 supplier_pricei+ 1 
.... 

.... 

We see here two solutions which are obviously adequate to the problem description, and for 
discriminating between them, an expert advice on 'normal forms' may be needed (normal forms 
are rules for organising data models in the relational approach). But abstractly these two 
solutions are almost equivalent. 

Example 4: pre-requisites 

Let us consider the following graph describing the dependencies among the chapters in a text 
book. 

9 

fig. 2 chapters dependency graph in a text book 

Each arrow describes a direct dependency. For instance, since two arrows are ending at box 5 
(the arrows 2->5, 4->5) this means: chapter 5 depends directly upon chapter 2 and chapter 4 : 2 
and 4 are the ancestors of 5. Finding all the direct and indirect dependencies, involves 
accumulating into a single collection all the ancestry. Thus let us state our problem: determining 
all the pre-requisites to chapter 7. 

Quickly, looking at the graph, one sees that {2,1,4,6} is the pre-requisite set for 7. 

This presentation however misses a point: in what order should one read the pre-requisites to 
chapter 7? The ordering is certainly not (2,1,4,6). However, (1,2,4,6) or (1,6,2,4) seem 
equivalent. 

Example 5: a simple real-time system: a digital watch 

This example is inspired by D. Harel's presentation of hypergraphs and statecharts in the 
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Communication of ACM in 19882. In this paper Hare! proposes a formal representation for 
representing the behaviour of reactive systems, an important class of real-time concurrent 
systems. He illustrated his discussion with the case of a digital watch. The working of Harel's 
digital watch is described by the following diagram, which we will explain thereafter below: 

dead 

main 

displays 

2-min 
[not in<stopwatchll 

I 

I 

I 
I 

I 
I 

I 

I 

Power 

L __ _ 
I light 

I 

I 

I 

I 

I 

I 
I 
I 

-------r:: _______ _J __ _ 
alarm-st I chime-st 

d[in(alarmll I c-enab d[in<chimell 
I ~c-:--be-ep::---~=-✓:-,"."".:-"\,,,it---.f:"c-~d1~·sa::b'.""""'I 

I 

fig. 3 A State Chart for the Digital Watch (reproduced from CACM) 

Before describing further this formalism, let us emphasize that (industrial) Software Engineering 
is using systematically visual formalisms to assist in the specification process. Harel's formalism 
is perhaps the most intricate one, it is quite widespread and anyway one of the most expressive. 
This is what motivated our choice. 

The key feature of a Statechart, as a diagram, is the 'blob', a labelled rectangle: blobs are the 
main components of Statecharts; blobs may be nested; 'atomic' blobs contain no other blobs. 

There are three main collections in Statecharts: 
- the set of blobs, representing the individual states of the system being described, as well as the 
groupings of such states 
- the set of subsystems, representing the breakdown of a blob into concurrent subsystems (a 
subsystem blob is a block in a partitioned blob; the boundary between two adjacent blocks in a 

2D. Hare!: On visual Fonnalisms, CACM, 31,5, 1988,pp 514-530. 
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partitioned blob is a dashed line) 
- the transitions (labelled arrows) 
Ordering by inclusion is the only natural ordering for the blobs and subsystems: these inclusions 
are represented as nestings on the Statechart diagram, inspired by Venn Diagrams. 

Each of the rectangles is a 'blob' representing a set of states for the system. Nested blobs -within 
a given blob, at the same nesting depth- corresponds to mutually exclusive states: e.g. the whole 
system comprises two blobs dead, alive; the blob up-alarm comprises three mutually exclusive 
states: hour, min, t-min. These states represent different ways of displaying the time 
information. The same states may appear in another grouping: actually, hour, min, t-min. are 
also states in the update blob. Thus even though the time-update and the alarm-update states are 
distinct and mutually exclusive states, they are not disjoint as sets! The blob alive is subdivided 
too. This time, the subparts are separated by dashed lines: the dashed lines create a partition, here 
the partition is 

alive -> main, power, light, alarm-st, chime-st 
into five blocks. Each of these blocks may then be further subdivided into states or subsystems. 
In the example, the decompositions are: 

main -> displays, beep 
power -> ok, weak 
light -> on, off 
chime-st -> c-disab, c-enab 
alarm-st-> disab, enab 

Harel calls such partitions a cartesian product, since each element (state) of the partitionned blob 
alive is itself a collection of elements (states) containing a representative member of each block of 
the partition. Since 'alive' is partitionned into 5 subsystems, each state of alive is represented by 
its decomposition into 5 states. E.g. : 

main 
displays 
beep 

power 
ok 
ok 

light 
off 
off 

alarm-st 
disab 
disab 

chime-st 
disab 
disab 

are two examples of valid elements (states) of alive with for each one its state decomposition into 
alive's member blocks. It is sufficient that they differ in only one of the member blocks 
components (i.e. subsystems) -here in the main block- to correspond to different states of alive. 
Note that, the same state (blob) may not appear in different blocks: the blocks are really disjoint 
sets. The arrows represent event-triggered transitions between states (i.e. between blobs). 

The notion of default state is clear: if the device described by the statechart has to activate, for a 
given blob, any state among all the blob's members, it will select the default state for activation. 
When is it the device's responsability to activate a state: when a blob, subdivided into several 
states, is activated, the device has to select which state among its substates should be activated; 
the default state represents that active state by default. In the example of the watch, the top-level 
blob which describes the most general condition of the watch is supposed to be always active, it 
can be either in the dead state or in the alive state. How is the choice between those two states 
being made? In the Statechart in fig. 3 by default, the watch is in state dead: An arrow coming 
from a dot within the top-level blob, indicates the default state. Similarly, when the blob alive is 
activated -as a consequence of the bt-in event- then the watch device is simultaneously in 
subsystems main, power, light, chime-st, alarm-st. For each of these a decision has to be made: 
which state should be activated? In the Statechart in fig. 3, by default, the subsystem power is in 
state ok, the subsystem light is in state off, etc. 
Notice that in the partition main, there is no default state: the system could arbitrarily be found in 
beep or in displays ! The same event, e.g. b, may occur in various subsystems (sub-partitions) 
simultaneously : partitioning a blob into subsystems means actually defining concurrent 
subsystems. 

Is Cantor, equipped with its set constructs a convenient framework to describe this kind of 
formalism? Our problem is to simulate properly the watch described by this diagram: how should 
the blobs, their nesting and partitioning be represented, and how would the watch simulation of 
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the various concurrent subsystems go? 

Giving life (prototyping) to sets 

This is what Cantor is all about. In the above examples, several forms of set organization are 
used. What Cantor provides are immediate concrete models for all such set organizations. We 
will here prototype the above examples. 

Example 1: a line at a bank or at the post office -revisited 

This example, which we call the simpl_server example, will provide an opportunity to introduce 
the main Cantor collection representations: sets, tuples, maps. 

Cantor represents both ordered and unordered collections . In Cantor, an ordered collection is 
called a tuple, an un-ordered collection is called a set. Curly brackets { } surround unordered 
collections, and square bracket [] ordered ones. 

The abstractions of each problem modeled in Cantor, as in most programming languages, are 
represented by variables. They receive a value through assignement operations: 

variable:= expression; 
which should not be confused with equality expressions like 

variable= expression 
which are either true or false. To observe a variable value, if the value is not hidden, (a hidden 
variable is a private object 'local' to the computation of a func; this will be discussed later) one 
simply requests its evaluation: 

> variable; 
Here '>' is the Cantor prompt. Type the variable name on the right of the prompt, followed by a 
semi-colon, and a carriage return. The value is displayed on the following line. 

In this example we have at least the following non-hidden variables: theQ and theServers 
representing respectively the waiting line and the service counters. 

A snapshot of a configuration with a waiting line of customers and 5 service counters could be: 
> theQ; 
[] ; 

theQ represents here an empty waiting line. 
> theServers; 
{["b", ["avail", !6!]], ["e", ["avail", !3!]], 

["c", ["busy", !5!]], ["d", ["busy", !7!]], 
["a", ["busy", !8!]]}; 

theServers is a set whose elements are pairs [ server_name, [status, customer_id]]. In this 
model, each individual customer is represented by a unique id number, e.g. !7 ! . Each service 
counter is similarly represented by a name and a status indication ('avail' or 'busy'), and the id 
of the (last) customer being served. 

theQ is a variable representing the waiting line and theServers represents the set of service 
counters. At this point in the simulation, the line is empty, and two service counters (the ones 
named 'b' and 'e') are idle. 

Another snapshot is: 
> theQ; 
[!26!, !27!]; 
> theServers; 
{["e", ["busy", !19!]], ["b", ["busy", !24!]], 

["c", ["busy", !13!]], ["d", ["busy", !25!]], 
["a", ["busy", !21!)]}; 

The variable the Servers is a set representing the collection of all service counters. It is also an 
association between a well-defined server name and information items: [server_status, cust_id]. 
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Since this is a well-defined association -there is no server name which is associated with two 
different collections of information items-, one could consider theServers as a function to 
access the information items: 

> theServers("a"); 
["busy", !21! l; 

Set of pairs are known as maps. When a map represents a well-defined association it is called a 
single-valued map or smap. 
Similarly, theQ may be used as a function, associating to an integer representing a rank in the 
ordered collection, the element at that rank: 

> theQ (1); 
! 26!; 
> theQ (2); 
! 27 ! ; 
> theQ (5); 
OM; 

Note that since there is no one in rank 5 in theQ, the value returned is OM the undefined. The 
undefined could be called om too. 

The development of a software model for this example is rather simple. And we will describe it. 
The basic data model should be defined and initialized: 

$ create servers: initialized to 'avail' status, 
$ and without customer 
theServers := {['a', ['avail']], ['b', ['avail']], ['c', ['avail']], 
[ 'd' , [ 'avail' ] ] , [ 'e' , [ 'avail' ] ] } ; 
$ create a line, empty 
theQ := []; 

Note that Cantor allows a more elegant way of defining those servers: 
theServers := {[x, ['avail']]: x in 'abcde'}; 

A software model has to consider the possible events in this simple system: 
-join: a customer joins the line 
- serve: a service counter starts servicing the customer which is at the head of the line 
- complete service : a service counter completed its task for a customer: that customer leaves the 
system, the service counter becomes 'avail', unless it has a customer to serve. 
For this initial version we omit the possibility of a customer leaving the line before being 
serviced. 

To each of these events is associated a corresponding function. We will explicitly define these 
functions in our model. But we need quickly to introduce function syntax and semantics. 

Functions in Cantor are ordinary objects. They may be used as auxiliary in computations, as in 
traditional mathematics: e.g. a function to compute the speed of a sweet pea falling from a 
satellite as a function of the altitude above the sea level, or the installments for a loan at a given 
interest rate. A function, given a list of arguments returns a value. The list may be empty: i.e.the 
value returned is independant of any input value. A function may be invoked not only for 
computing a value, but also for 'doing things', e.g. sorting a collection, deleting a file, copying a 
file to another file, etc. When the value returned by a function is irrelevant, it is convenient to 
make this returned value OM, the undefined. 

It is possible for the user to define her/his own functions. This is done with the following 
syntax: 

func(list-of-parameters); 
local list-of-local-ids; 
value list-of-global-ids; 
statements; 

end 

$ optional 
$ optional 
$ at least one statement 

(Notice the use of comments: everything on a program line on the right of a $-sign is ignored by 
the Cantor interpreter.) 
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Since functions are ordinary objects, functions themselves can be the value of a variable. Thus 
the most common way of defining a function is as an assignment: 

f := func(x); return x+l; end; 
This assignment makes the function which returns its arguments augmented by 1, the value of 
the variable f. Then the assignment: 

g := f; 
makes that function the value of the variable g too. Thus: 

> f(lO); 
11; 
> g(-45); 
44; 
> f = g; 
true; 

In our functions we will not use value declarations. However we will often use local 
declarations. Variables declared local to a func, are accessible only within the scope of that func, 
i.e. to the program statements defining the func, including possibly other nested func definitions. 
However, they are not accessible (i.e. hidden) to other parts of the program, or to the console. 
For instance, a declaration: 

local x; 
within a func, creates a variable x to which assignements could be made. However, any variable 
called x in other parts of the program -outside the scope of that func - will not be changed, when 
the code associated to that func is executed. Parameters are considered local variables. 
The first functions we will introduce have no arguments, i.e. they carry out a computation with 
no explicit argument. However they may work on -and modify- the common (global) data 
structures of the problem: theQ and theServers. Notice again the generous use of comments 
(everything on a program line on the right of a $-sign). 

the join function: 
func(); local cust; 

cust := newat; $ identify a customer with a new atom 
theQ := theQ with cust; $ add the customer at the tail 

end; 
This function uses a single local variable: cust. 
An atom is a data type, much like an integer or a real number. Its specificities are: 
- each atom is created during a session by the built-in operation newat 
- all the created atoms (within a given session) are distinct. 
- the only operation on atoms are the comparison for equality or inequality of two atoms. 
Atoms are like identification numbers. There is no arithmetics on identification numbers. What 
matters, is to be able to use them for identification and garantee that no two system generated id 
numbers are identical. 

The variable cust is assigned as value an atom. 

The with operation is the standard way to add an item to a collection. If the collection is an 
ordered collection that item is added at the end (as the last element) of the collection. If the 
collection is a set, and if that item is not already a member of the collection, that item is added to 
the collection. There is an inverse operation, for unordered collection, the less operation. 

The variable theQ is an ordered list which is augmented with the value of cust. 

the serve function: 
func(); local srvr,cust; 

if #theQ = 0 then return end; $ no business: stay idle 
$ select a server among the available ones 

srvr := arb({x: x in theServers I x(2) (1) = 'avail'}); 
if is om(srvr) then return end; $ all the servers are busy 

$ cust is removed from the begining of theQ 
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end; 

take cust fromb theQ; 
$ srvr(l) is the server name 
printf srvr(l)+' serves '+itoa(cust)+'\n'; 
$ update the theServer map 
theServers(srvr(l)) := ['busy',cust]; 

This function uses two private (i.e. declared local) variables: srvr, which corresponds to a 
service counter, and cust which correponds to a customer, the one at the head of the line. 
The# operation is the cardinality operation. Given a collection coll, #coll is the number of 
elements in the collection. In our case, the cardinality of theQ represents the waiting line length. 
If the line is empty, its cardinality is 0, and there is no service to perform: the serve function 
should return without doing anything. This is stated with an if-statement: 

if :/1:theQ = 0 then return end; $ no business: stay idle 
We have already indicated that each server is a pair: [server_name, [server_status,cust]]. In an 
ordered collection s, s(i) represents the i-th element of the collection ( i ~ 1). Therefore if x 
represents an element of theServers, 

x(l) is a string (the server name) 
x(2) is the pair [server status,cust] 

Since the status may be 'avail' or 'busy', either 
x (2) (1) = 'avail' 

or 
x(2) (1) = 'busy' 

Finally, x(2)(2) is either the current or the last customer. When the service counter starts 
working, there is no customer, whence 

x(2) (2) = om, $ the undefined value 
Later on, the server x having serviced a customer with id cust, x(2)(2) becomes cust. 
The model of the serve function is: the customer at the head of the waiting line is sent to anyone 
of the available service counters. Therefore, to actually start a service, one has to compute the set 
of available service counters: 

{x: x in theServers I x(2) (1) = 'avail'} 
select arbitrarily an element, and assign this element to the variable representing the service 
counter: 

srvr := arb({x: x in theServers I x(2) (1) = 'avail'}); 
The arb functions, a choice function, performs the arbitrary selection. As a result of this 
assignment, if the collection {x: x in theServers I x (2) (1) = 'avail'} is not empty, 
one of its members is assigned to the variable srvr. However if this collection is empty, arb 
returns OM, the undefined. If at this point srvr has value om, all the service counters are 'busy'. 
The serve function should return without doing anything. 

if is om(srvr) then return end; $ all the servers are busy 
In -

take cust fromb theQ; 
take and fromb are Cantor keywords. This operation assigns the element at the 'begining' (the 
b in fromb) of the ordered collection theQ to the variable cust, and then removes that element 
from the collection, thus shortening it by one element. Similarly one could have 

take var frome aTuple 
take var from aSet 

frome, acts on the end element of the ordered collection aTuple (assigns it to var and then 
removes it from aTuple), from acts by selecting an arbitrary element in the unordered collection 
aSet (assigns it to var and then removes it from aSet) 
The next statement prints a message to the console: 

printf srvr(l)+' serves '+itoa(cust)+'\n'; 
The message is obtained by concatenating several strings together by means of the + operation. 
For instance, itoa() is a built-in function which converts an integer or an atom into a string 
corresponding to the decimal representation of the number passed as argument (see in the user 
manual, if you have any difficulty with this, section 3.4 on strings). Note the new-line symbol: 
'\n', which is the equivalent to the key-board carriage return symbol. The printf command 
allows a programmable output (i.e. display on the console, or output to a file) format. The 
default print command has a default output format. (cf. section 7.4 of the user manual) 
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The data structure representing the service counter [server_name, [server_status,cust]] has to be 
updated to reflect the status change (from 'avail' to 'busy') and the association with the customer 
with id cust. This is done by the assignment statement: 

theServers(srvr(l)) := ['busy',cust]; 
In absence of an explicit return from the serve function as the last statement, the function 
returns a value OM (undefined). 

the complete service function: 
func(); local srvr; 

end; 

srvr := arb({x: x in theServers I x(2) (1) = 'busy'}); 
if is om(srvr) then return end; $ all servers are idle 
$ srvr(l) is the server name 
printf srvr(l)+' completes service of'+ 

itoa (srvr (2) (2)) +' \n •; 
$ update the theServer map 
theServers(srvr(l)) (1) := 'avail'; 

In our discrete event simulation model, a complete service event directs the program to stop 
service at an arbitrary service counter: this applies only to 'busy' servers. A busy server is 
selected among all the busy servers. If the selected server is OM, the undefined, the set of busy 
servers is empty. Otherwise, one should print a message and update the server status. This is 
very much like the serve function. 

the mappini:: event-> service: 
We could now introduce the set of functions, associating an event name to its function: 

event map:= { r join I , func () ; local cust; 

} ; 

cust := newat; $ identify a customer with a new atom 
theQ := theQ with cust; $ add the customer at the tail 

end], 
['serve',func(); local srvr,cust; 

end], 

if #theQ = 0 then return end; $ no business: stay idle 
$ select a server among the available ones 
srvr := arb({x: x in theServers I x(2) (1) = 'avail'}); 
$ are all the servers busy? 
if is om(srvr) then return end; 
$ cust is removed from the begining of theQ 
take cust fromb theQ; 
$ srvr(l) is the server name 
printf srvr(l)+' serves '+itoa(cust)+'\n'; 
$ update the theServer map 
theServers(srvr(l)) := ['busy',cust]; 

['complete service', func(); local srvr; 

end ] 

srvr-:= arb({x: x in theServers I x(2) (1) = 'busy'}); 
if is om(srvr) then return end; $ all servers are idle 
$ srvr(l) is the server name 
printf srvr(l)+' completes service of '+ 

itoa (srvr (2) (2)) +' \n •; 
$ update the theServer map 
theServers(srvr(l)) (1) := 'avail'; 

The set event_map is a collection of pairs [anEventName, aFunc]. It is therefore a map, just like 
the collection theServers which is a set of pairs [server_name, [server_status,cust]] . The set 
event map is a well-defined association, since the same anEventName is never associated with 
more than one function. It is therefore an smap, and event_ map may be considered a function: 
e.g. the expression event_map ('serve') is exactly the serve function. To execute the serve 
function, one has to invoke that function with the required argument list which, in our case, is 
the empty list; the invocation of the serve function is therefore event_ map ( •serve• ) () . A map, 
being a set of pairs relates always two sets: 
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- the domain of the map, i.e. the set of all 1st elements in the pairs 
- the mage or the range of the map , i.e. the set of all 2nd elements in the pairs (both names are 
used indifferently) 
For instance, in the case of event_map: 

> domain(event map); 
{'serve', 'complete service', 'join'}; 

the domain is the set of event names. 

the simulation scheme: 
A simple simulation consists in generating (pseudo-)randomly events and requesting the program 
to execute each time the corresponding function. This may be achieved by this simple loop: 

$ make customer arriving, and being served 'random' 
events:= domain(event map); 
$ events is {'join', 'serve', 'complete service'}; 
nSteps := 150; -
for i in [1 .. nSteps] do 

end; 

anEvent := arb(events); 
event_ map ( anEvent) () ; 

In the case of event_map, domain(event_map) is preciseley the set {'join', 'serve', 
'complete_service'} of event names. and range(event_map) is the set of corresponding 
functions. 
To run this simple simulation, one needs to decide the number of simulation steps, i.e. the 
number of events to generate. We consider here, a trial with 150 steps. To define a loop we 
define a collection [1..150], comprising all integers from 1 to 150. In the for-loop statement we 
name a loop index i which will take in turn all the values in that collection. Each time through the 
loop, all the statements between the for-loop opening and end statements will be executed. The 
first of these calls for the arbitrary selection of an event name, this name is then assigned to the 
variable anEvent: 

anEvent := arb(events); 
The second statement determines the function corresponding to that event name: 
event_map(anEvent), and then invokes that function without argument: 

event_map(anEvent) (); 

the whole example as a text file: 
We could regroup all of these pieces together into a single program text: 

$ this portrays a queue and a mutliserver 
$ connguration 

$~,---- ____ global data 
theServers := (); 
possible_status := {'avail','busy'}; 
$ 'avail'(-able) means actually: idle 

$ create servers: initialized to 'avail' status, 
$ and without customer 
theServers := {('a',['avail')), ['b',['avail')), 

['c',['avail']), ['d',('avail']], ['e',['avail'))); 
$ create a line, empty 
theQ := □; 

$-----~~~=model_simpl 
$ model_simpl: a kind of s1mplfied discrete event simulation: 
$ all the possible events have associated 
$ processing functions; 
$ they are all described in event map. 
$ -
$ A simulation consists in generating 'randomly' events 
$ and processing the generated events as they arrive. 
$ 

$ observe that the system memorizes always 
$ he last customer of a given server 
event_map := { 

(1oin', tune(); local cust; 
cust := newat;$ identify a customer with a new atom 
theQ := theQ with cust; $ add the customer at the tail 

end), 

['serve',func(); local srvr,cust; 
if #theQ = 0 then return end; $ no business: stay idle 
$ select a server among the available ones 
srvr := arb({x: x in theServers I x(2)(1) = 'avail'}); 
$ are all the servers busy ? 
if is_om(srvr) then return end; 
$ cust is removed from the begining of theQ 
take cust fromb theQ; 
$ srvr(1) is the server name 
printf srvr(1 )+' serves '+itoa(cust)+ '\n'; 
$ update the theServer map 
theServers(srvr(1)) := ['busy',cust); 

end), 
['complete_service', tune(); local srvr; 

srvr := arb({x: x in theServers I x(2)(1) = 'busy')); 
if is om(srvr) then return end; $ all servers are idle 
$ srvr(1) is the server name 
printf srvr(1 )+' completes service of'+ 

itoa(srvr(2)(2))+ '\n'; 
$ update the theServer map 
theServers(srvr(1 ))(1) := 'avail'; 

end) 
}; 

$ make customer arriving, and bein9 served 'random' 
events:= domain(event_map);${'join','serve','complete_service'}; 
nSteps := 20; 
for i in [1 .. nSteps) do 

anEvent := arb(events); 
event map(anEvent)(); 

end; -

$ display a snapshot: 
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lheQ· theServers; 

Note the last two statements, which call for the evaluation -and display of the values- of the two 
main collections theQ and theServers. 

treating a text file as an include file = compiling and running a program 
To actually run this program you should: 
-type in the text into a file, which we could call 'serverO' 
-launch Cantor 
-use the cmd-I command in Cantor to include the file 'serverO'. 
Including a file is precisely requesting the cantor system to take its input from that file instead of 
the console (see section 1 of the Cantor user manual). 
You will get something like this (the pseudo-random generation of server names used may yield 
a different ordering for the server selections) : 

> c serves 1 
e serves 2 
b serves 3 
d serves 4 
d completes service of 4 
d serves 5 
e completes service of 2 
b completes service of 3 
a serves 6 
b serves 7 
e serves 8 
[] ; 
{["a", ["busy", !6!]], ["b", ["busy", !7!]], 

["d", ["busy", !5!]], ["e", ["busy", !8!]], 
["c", ["busy", !1!]]}; 

!include server0 completed 
Since join events are not reported via a message on the console, the output remains of limited 
size. To run more steps, say another 50 steps, type in at the prompt in the Cantor console: 

> nSteps := 50; 
Then copy from 'server()' the loop statements: 

for i in [1 .. nSteps] do 

end; 

anEvent := arb(events); 
event_map(anEvent) (); 

and paste them, at the prompt in the Cantor console. Then select the pasted text (the pasted text 
changes color) and key-in the ENTER-key or the RETURN-key on your keyboard. You direct in 
this way your Cantor system to execute the selected statements. (Warning: when selecting text in 
the console for execution, beware of avoiding all prompts: the Cantor parser will consider them 
as part of your command text, and will most certainly generate an error!). Here is what you'll get 
at the console: 

> for i in [1 .. nSteps] do 
anEvent := arb(events); 
event_map(anEvent) (); 

end; 

>> 
>> 
>> d completes service 
e completes service of 
c completes service of 
d serves 9 
b completes service of 
b serves 10 
c serves 11 
c completes service of 
c serves 12 
d completes service of 
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a completes service of 6 
b completes service of 10 
a serves 13 
C completes service of 12 
d serves 14 
d completes service of 14 
b serves 15 
a completes service of 13 
e serves 16 
b completes service of 15 
e completes service of 16 
d serves 17 
d completes service of 17 
d serves 18 
d completes service of 18 
> 

This completes the introduction to the fundamental set constructs: set, tuple, map. Other essential 
features of Cantor have been introduced: variables, atoms, and funcs. 

Exercises 
- modify the simpl_server example by requesting that whenever a customer joins the waiting 
line, or a server completes the service of a customer, a serve event be generated and immediately 
executed 
- modify the simpl_server example by requesting that, when a server completes its service with 
agiven customer, it removes any indication of the last customer being served. (N.B. usually, it is 
a good idea to keep a record of the last thing that was made, and not to erase or dispose of it. 
Only by keeping this information it is possible to undo a previous action!) 
- modify the simpl_server example by allowing a customer to leave the line before being served. 
This implies that the line is re-organized. Hint-1: Introduce a new event. Hint-2: Use the 
following technique on tuples for removing the i-th element of a tuple t 

if is integer(i) and i >= 1 then 
t:= t( .. i-l)+t(i+l .. ); $ remove t's i-th element 

end; 
- Complexify the simpl_server model by introducing a new server status: 'non-operating', and 
new events for switching on or off a server from a 'non-operating' status to an 'avail' status. 

Example 2: function tables - revisited 

In all languages which support recursion -which is the case of Cantor- it is possible to write 
functions corresponding faithfully to recursive definitions: 

fact := func(n); 
if not is integer(n) or n<l then return om; end; 
elseif n ;;- 1 then return l; 
else 

return n * fact(n-1); $ n! = n * (n-1) ! 
end; 

end; $ end fact 
or similarly for the Fibonacci sequence: 

Fibonacci := func(n); 
if not is integer(n) or n<O then return om; end; 
elseif n ;;- 0 then return 0;$ Fo = 0 
elseif n = 1 then return 1;$ F1 = 1 
else 

return Fibonacci(n-l)+Fibonacci(n-2);$ Fn+2 = Fn+l + Fn 
end; 

end; $ end Fibonacci 

But observe, that since computing f(n) requires the values of some or all fG) for j<n, it would be 
simpler to keep them actually in a table -i.e. in a map- and consult the table -a collection again. 
As we will see Cantor supports function tables in a transparent and efficient way, derived from 
maps. 
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redefining a function at a point 
Defining function tables is possible in Cantor, with the 'function redefinition at a point feature' 
(see section 5.2 of the user manual): given a func f, it is possible to assign a specific value to f 
for a specific value of its argument. This is similar to a map assignment: 

f (nO) := qO; 
assigns the value qO to f when its argument is nO : this is recorded in an auxiliary map owned by 
the func f, called the override map or table for f. When a func expression is evaluated, Cantor 
always attempts to see if the function argument is in the domain of the override map for that 
function: if the argument is found, the func returns the corresponding image value, otherwise the 
code for f is executed. 

tabulating a function 
In our case, we could store in the override map precisely the correct value: upon a subsequent 
call, the recursive function, instead of going again through the whole computation will attempt to 
retrieve the value from the override map, if this value has already been computed, otherwise it 
will compute the missing elements in the override table. The changes to the previous code is 
minimal: 

fact := func(n); 
if not is integer(n) or n<l then return om; end; 
elseif n;; 1 then return 1; 
else $ one arrives here only if fact(n) has not been 

$ recorded yet in the override table 

end; 

fact(n) := n * fact(n-1); $ update the override table 
$ return the value stored in the override table 
return fact (n) ; 

end; $ end fact 
and for Fibonacci: 

Fibonacci := func(n); 
if not is integer(n) or n<O then return om; end; 
elseif n;; 0 then return 0; 
elseif n = 1 then return 1; 

else $ one arrives here only if Fibonacci(n) has not been 
$ recorded yet in the override table 
Fibonacci(n) := Fibonacci(n-l)+Fibonacci(n-2); 
return Fibonacci(n);$ return the value in the override table 

end; 
end; $ end Fibonacci 

This technique is described in the Cantor manual, and example runs are given there (see sections 
5.2 and 8.2 of the user manual). 

function tabulation is not always meaningful 
Not all recursive function lend themselves to tabulation. It makes sense only if the functions keep 
re-using previously computed values again and again. It is easy to exhibit an example where that 
is not the case: 
consider the merge function. It takes as input two ordered collections (say, of numbers). And 
that function merges them into a single ordered collection: 

merge := func(tl,t2); 
if #tl = 0 then return t2; 
elseif #t2 = 0 then return tl; 
elseif tl(l) < t2(1) then $ put the smallest 

return [tl(l)] + merge(t1(2 .. ),t2); $ in front 
else $ and merge what's left 

return [t2(1)] + merge(tl,t2(2 .. )); $ behind 
end; 

end; $ end merge 

It is quite 'legal' to introduce tabulation in this func: 
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merge:= func(tl,t2); 
if #tl = 0 then return t2; 
elseif #t2 = 0 then return tl; 
elseif tl(l) < t2(1) then $ put the smallest in front 

merge(tl,t2) := [tl(l)] + merge(t1(2 .. ),t2); 
return merge(tl,t2); 

else $ and merge what's left 

end; 

merge(tl,t2) := [t2(1)] + merge(tl,t2(2 .. ));$ behind 
return merge(tl,t2); 

end; $ end merge 

but it is unlikely to result in any speed-up, since the pairs (tl,t2) exhibit no a priori pattern which 
could be re-used, unless this is a specific consequence of a given problem definition. 

Exercise 
- create a func to compute all the permutations of a given set 

Example 3: a data table - revisited-I 

We have already seen the visual presentation in a table, one row per item: 

... 
itemNamei priCei nbr soldi nbr in stocki 
... 

The generic term for that table could be formally written: 
{ ... , [itemNamei, [pricei, nbr_soldi, nbr_in_stocki]l, ...... } 

where curly brackets {} surround unordered collections, and square bracket[] ordered ones, as 
in: 

food store := 
{ -['lettuce', [0.75,24,21]], 

['sour cream', [0.63,27,23]], 
['milk', [0.82,82,46]], 
['skimmed milk', [0.64,76,52]], 
['grapefruit', [0.25,45,68]] 

} ; 

the data table as a map 
This map representation lends itself to data retrieval forms in the style of function calls: 

> food store('milk'); $ milk data 
ro. 820; 82, 461: 

food_store is as-map, i.e. a function associating to each element of its domain (here the keys i.e. 
the collection of item_names) a well defined value, actually the 3-ple [price, #sold, #in_stock]. 
The information may be analyzed, as in the following examples: 

>$all the food store items have a price less than 1.0? 
> forall item in domain(food store) I food store(item) (1) < 1.0; 
true; - -
>$there is a food store item whose price is less than 0.5? 
>$each food store(item) is a tuple [price, #sold, #in stock] 
> exists item-in domain(food store) I food store(item) (1) < 0.5; 
true; - -

Note that outside the quantifier expressions item has retained its previous value (or lack of, if it 
was undefined in the first place). This variable is a 'bound' variable in the quantifier expressions: 
it is known only within the scope of the expression where it is introduced. 
Derived computations may be defined. In the following example, we define a collection of 
expressions using one of the iterative syntactic forms, on the entire data set: 

{price*nbr sold: [price,nbr sold,~] = food store(item)}; 
consisting of tne values of products:- -

{17.010, 11.250, 67.240, 48.640, 18.000}; 
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Then we add all of these values. The sum operation, over a collection is denoted %+aColl. 
Similarly a product operation could be defined %*aColl . For instance the factorial function n! 
could be defined%* [1..n]. The desired operations may be described in a single expression: 

>$generated cash-flow is: 
> %+{price*nbr sold: [price,nbr sold,~] = food store(item)}; 
162.140; - - -

Derived computations may be defined on a subcollection: 
>$generated cash-flow for the products selling less than 0.80 
>$and at more than 40 units is: 
> %+{price*nbr sold: [price,nbr sold,~] = food store(item) 
>> price < 0 :-So and nbr sold > 40}; -

59.890; -
The iterator [price,nbr_sold,~] = food_store(item) requests that each food_store item be 
identified with a triple, and auxiliary variables are assigned the corresponding values: price for 
the 1st, nbr_sold for the second.Observe the role played by the tilda sign(~) : it substitutes for 
an irrelevant item. In the above example, we don't need the 3rd item (#in_stock): thus avoiding 
an assignement to an unused variable, we indicate the presence of an item, and its uselessness by 
the tilda. Note that outside the scope of the set expression the variables price, nbr_sold, 
item have retained their previous value (or lack of, if they were undefined in the first place). 
These variables are the 'bound' variables in the set former. 

These formers are extensively described in sections 4.4 and 7.6 of the Cantor user manual. 
When a food store customer buys an extra lettuce, the food_store map should be updated by 
incrementing by one the nbr_sold field associated to lettuce, and decrementing the corresponding 
stock. This is illustrated as follows: 

>$update following the sale of a lettuce 
> food store('lettuce') (2); $ the current value of nbr sold 
24; -
>$increment nbr sold by 1 
> food store('lettuce') (2) := food store('lettuce') (2)+1; 
> food-store('lettuce') (2); $ the current value of nbr sold 
25; - -
>$decrement the nbr in stock by l! 
> food_store('lettuce') (3) := food_store('lettuce') (3)-1; 

A new delivery of 45 bottles of milk is registered by: 
>$update following the delivery of 45 milk bottles 
> food store('milk') (3); $ the current value of #in stock 
46; - -
> food store('milk') (3) := food store('milk') (3)+45; 
> food-store('milk') (3); $ the current value of #in stock 
91; -

Now the cash value of the stock is evaluated at: 
> %+{price*stock: [price,~,stock] = food store(item)}; 
154.390; -

There is more than one way of defining this expression. Here is another one: 
> %+{price*stock: [~, [price,~,stock]] in food store}; 
154.390; -

The iterator in the last expression emphasizes the set representation of food_store: each member 
in that set should match a pair, the 1st element in the pair is ignored because of the~, and the 
second element should match a triple - and we ignore the 2nd element of that triple. 

saving the data table on a file and restoring it 
This data set may then be saved in a file - let us call it 'food_store_01_nov _90', for later 
retrieval: 

> save('food store', 'food store 01 nov 90'); 
! Compiling on 'food store 01 nov 90' -
OM; 
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In that case a new session, proceeding with the saved values will start by re-installing that data 
set: 

> restore('food store 01 nov 90'); 
food store 01 nov 90 loaded!-
{ ["milk", [0.820,-82, 91]], ["lettuce", [0.750, 25, 20]], 

["skimmed milk", [0. 640, 76, 52]], 
["sour cream", [0. 630, 27, 23]], 

. ["grapefruit", [0.250, 45, 68]]}; 
This restore() instruction, wipes out any existingfaad _store variable and defines a new one with 
the given value. Indeed, the save() instruction records not only the value but the variable name 
(which is the 1st argument in the save function call) too. 

the example as an include file 
You may reproduce this session by typing in a Cantor console the following instruction script, or 
by typing in this script into a text file and, using the !echo on switch, include this text file into a 
Cantor console (e.g. by means of the crnd-1 menu invocation): 

food store := 
{ ('lettuce', (0.75,24,21Il, 

%+{price*nbr_sold: [price,nbr_sold,~) = food_store(item)I 

'sour cream', (0.63,27,23Il, 
'milk', (0.82,82,46)), 
'skimmed milk', (0.64,76,52Il, 

}; 
'grapefruit', (0.25,45,68)) 

food_store('milk'); $ milk data 

$ all the food store items have a price less than 1.0 ? 
forall item in domain(food_store) I food_store(item)(1) < 1.0; 

$ there is a food store item whose price is less than 0.5 ? 
$ each food_store(item) is a tuple [price, #sold, #in_stock) 
exists item in domain(food_store) I food_store(item)(1) < 0.5; 

$ generated cash-flow is: 

price< 0.80 and nbr_sold > 40}; 

$ update following the sale of a lettuce 
food_store(1ettuce')(2); $ the current value of nbr_sold 
$ increment nbr_sold by 1 
food_store('lettuce')(2) := food_store('lettuce')(2)+ 1; 
food_store(1ettuce')(2); $ the current value of nbr_sold 
$ decrement the nbr in stock by 11 
food_store('lettuce')(3) := food_store('lettuce')(3)-1; 

$ update following the delivery of 45 milk bottles 
food store('milk')(3); $ the current value of #in_stock 
fooc[store('milk')(3) := food_store('milk')(3)+45; 
food_store('milk')(3); $ the current value of #in_stock 

%+{price*stock: [price,~,stock) = food_store(item)}; 
%+{price*stock: [~,[price,~,stock)] in food_store}; 

{price*nbr_sold: fprice,nbr_sold,~J = food_store(item)}; 
%+{price*nbr_sold: [price,nbr_sofd,~] = food_store(item)}; save('food_store','food_store_01_nov_90'); $ adapt with the proper 

date 
$ generated cash-flow for the products selling less than 0.80 
$ and at more than 40 units is: 

the relational version of the data table 

$ start a new session with: 
$ restore('food_store_01_nov_901; 

Getting familiar with data processing in Cantor is one thing. What would be more interesting is 
to compare this kind of data representation with for example the relational model. In that model, 
food_store is a 4-ary relation, i.e. a relation with 4 columns: item_name, price, nbr_sold, 
nbr_in_stock. 

itemName price nbr sold nbr in stock 
'lettuce' 0.75 24 21 
'sour cream' 0.63 27 23 
'milk' 0.82 82 46 
'skimmed milk' 0.64 76 52 
'grapefruit' 0.25 45 68 

This relation, is a set of quadruple, with generic term: 
{ .... , [itemName,price, nbr_sold,nbr_in_stock], .... } 
instead of being a map from item names into triples [price, nbr_sold,nbr_in_stock]. I.e. the 
relational version of this data table example is 

{ ['lettuce', 0.75,24,21], 
['sour cream', 0.63,27,23), 
['milk', 0.82,82,46), 
['skimmed milk', 0. 64, 76, 52), 
['grapefruit', 0. 25, 45, 68) 

}; 
By definition, the relational representation of a n-ary relation is by a set of n-uples. 
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If we assume that each tuple is well identified by its itemName, without ambiguity, then 
itemN ame may be considered as the primary key of this relation. When a primary key is 
insufficient, it is possible to introduce a 2nd-ary key, a ternary key, ... to arrive at a single­
valued map [primary-key, 2nd-ary key, ... ] -> tuple in the relation : each tuple should be 
uniquely associated with its keys. 

Exercises 
-write a func fo transform food_store into its corresponding relational version 
-write a func to transform the relational version of the food store data table into a map having as 
domain the prices 
-write the expressions or funcs which in the relational representation would compute the same 
values or updates as the ones shown in the above food_store example 
-write a func to transform the Cantor map representation of a data table into the relational 
representation. Do this for an arbitrary n-ary relation, assuming that each of the columns is a 
plain data item ( a string, a boolean or a number, but not a set, a tuple, a func) 
-we indicated that the generated cash-flow was the value of the expression: 

%+{price*nbr sold: [price,nbr sold,~] = food store(item)} 
Is this correct? Would'nt - -

%+[price*nbr sold: [price,nbr sold,~] = food store(item)] 
be better? What is the correct expression for the cash-value of the stock? 

Example 3: a data table - revisited-2 

We intend to show in this section that the relational data model is strictly a subset of the possible 
data representations available in Cantor. 

We discussed earlier an extended model of the food store example; we have two main 
collections, actually sets: 
1-an item data table whose visual presentation could be: 

... 
itemNamei pricei nbr_soldi nbr_in_stocki supplier_a 

supplier_b 
.... 

... 

and whose generic presentation as a map could be: 
{ ... , [itemNamei, [pricei, nbr_soldi, nbr_in_stocki, {supplier_a, supplier_b, .. } ]], ...... } 

Observe that in this representation, the 5th column is not made of basic data items, instead, each 
is a collection 'supplier_list' represented by a set of supplier names. 
2-a supplier table which could have a visual representation as follows: 

.... 
supplier_id ... 

itemNamei supplier_pricei 
itemN amei+ 1 supplier_pricei+ 1 
.... 

.... 

which corresponds, in Cantor, to a map having as generic term: 
{ ... , [supplier_id, { ... ,[itemNamei, pricei], ...... }], ......... } 

representing a map with a range of maps. 

In this extended example the item data table could be: 
food store ext := 
{ -['lettuce', [0.75,24,21,{'joe', 'max', 'mike'}]], 

['sour cream', [0.63,27,23,{'liu','mike'}ll, 
['milk', [0.82,82,46,{'liu', 'mike'}]], 
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}; 

[ 'skimmed milk', 
[ 'grapefruit' , 

[ 0 . 6 4 , 7 6, 5 2 , { ' 1 i u ' , 'mike ' } ] ] , 
[0.25, 45, 68, { 'joe', 'max', 'mike'}]] 

Assuming that ordinary names are sufficiently well-defined - and uniquely defined - to qualify as 
identifications for suppliers, a snapshot of the supplier table could be represented by: 

suppliers:= { 

}; 

[ ' joe' , { [ 'lettuce' , 0. 30 l , 

l , 
['max', 

l , 
[ 'liu', { 

l , 
['mike', { 

['grapefruit', 0.18]} 

['lettuce', 0.32], 
['turnip', 0.11], 
['apple', 0.05], 
['grapefruit', 0.19]} 

['milk', 0.30], 
['skimmed milk', 0.18], 
['butter 1st qual', 0.40], 
['salty butter', 0.32], 
['whipped butter', 0.45], 
['whipped cream', 0.29], 
['sour cream', 0.23]} 

[ 'milk', 0. 31] , 
['skimmed milk', 0.18], 
['lettuce', 0.29], 
['banana', 0.12], 
['grapefruit', 0.20], 
['sour cream', 0.24]} 

The domain of suppliers is a set of supplier_names. Its range is a set of s-maps, each associating 
to an item name its (supplier-) price. To know the price used by 'mike' on the banana item one 
evaluates the expression suppliers ( 'mike' ) ( 'banana' ) . Indeed: 

> suppliers('mike'); 
{["skimmed milk", 0.180], ["milk", 0.310], ["lettuce", 0.290], 

["banana", 0.120], ["sour cream", 0.240], ["grapefruit", 0.200]}; 
> suppliers('mike') ('banana'); 
0.120; 

To find the best price on milk: 
> %min {x('milk'): [~,x] in suppliers}; 
0.300; 

Note that if no one sells milk, x('milk') is always undefined, and the set {x('milk'): [~,x] in 
suppliers} is empty, therefore its min is also undefined: the best price for 'milk' is undefined if 
'milk' is not available! 

This could be turned into a function: 
best_yrice := func(item); 

return %min {x(item): [~,x] in suppliers}; 
end; $ end best_yrice 

and tested: 
> best _yr ice ( 'milk' ) ; 
0.300; 
> best_yrice('cow'); 
OM; 

This func may be improved to compute the suppliers which deliver at the best price: 
$the suppliers giving the best price on a given item 
best_suppliers_yrice := func(item); 

local best; 
best := %min {x(item): [~,x] in suppliers}; 
if is om(best) then return; end; 
$ return both the best price and the list of suppliers 
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$ selling at that price 
return [best, {supl: [supl,x] in suppliers I [item,best] in x}]; 

end; $ end best_suppliers_price 
and tested: 

> best_suppliers_price('milk'); 
[0.300, {"liu"}]; 
> best_suppliers_price('cow'); 
OM; 

In relational calculus, the suppliers is a 3-ary relation with three columns whose generic term is 
{ ... , [supplier_name,item_name,item_price], ... } 

and whose visual representation is 

supplier name item name item price 
'joe' 'lettuce' 0.30 
'joe' 'grapefruit' 0.18 
'max' 'lettuce' 0.32 
'max' 'turnip' 0.11 
'max' 'apple' 0.05 
'max' 'grapefruit' 0.19 
'liu' 'milk' 0.30 
'liu' 'skimmed milk' 0.18 
'liu' 'butter 1st qual' 0.40 
'liu' 'salty butter' 0.32 
'liu' 'whipped butter' 0.45 
'liu' 'whipped cream' 0.29 
'liu' 'sour cream' 0.29 
'mike' 'milk' 0.31 
'mike' 'skimmed milk' 0.18 
'mike' 'lettuce' 0.29 
'mike' 'banana' 0.12 
'mike' 'grapefruit' 0.20 
'mike' 'sour cream' 0.24 

in contrast with the nested map representation we have used in our examples. 

Exercises 
- what is the arity of the relation associated to the item data table in the extended food store 
example and represented by food_store_ext ? what is its relational representation? 
- are relations s-maps? m-maps? 
- what is the generic term representation for an integrated food store model with visual 
representation: 

... 
itemNamei pricei nbr_soldi nbr_in_stocki supplier_a price_a 

supplier_b price_b 
.... 

... 

provide its explicit map representation, corresponding to the data in food_store_ext and 
suppliers in the above examples; what is the arity of this relation? provide its relational 
representation. 
- write the expressions or funcs which in the relational representation would compute the same 
values as the ones shown in the above suppliers example 
-how could best_suppliers_price be modified to avoid re-traversing the entire data set each 
time it is invoked? (Hint: use function tabulation) 
- write a func for updating suppliers, when a supplier changes its price. How should this be 

a Cantor Tutorial 22 



reflected in best_suppliers_price? 
- the above example represents a food store a the current supplier prices. Since suppliers item 
prices may vary from supplier to supplier and from day to day, how should one represent the 
supplier price history? the stock and the stock value? 
- write a func which will transform a homogeneous map into a relation. Beware that a map could 
have nested sets and tuples in its range or domain. Apply this to transform the maps food_store, 
food_store_ext and suppliers in the above examples into relational representations 
- write a func which transforms a relational representation of a data table into a map-oriented 
representation, where the domain is the primary key. 
- write a func which transforms a relational representation of a data table into a map-oriented 
representation, taking into account the primary, the secondary, ... the n-ary keys. 
- the Entity Relationship Diagrams (ERD) are used to describe conceptual data models. An ERD 
consists of the following objects: 

Ian entity setl 

Unlabelled edges link the entity attributes to their entity, and a relationship to its entities. An 
entity set is in the relational data model an n-ary relation, and its entity attributes are the column 
names. A relationship represents a relation between two or more relations . Draw the Entity 
Relationship Diagrams for the food store and its suppliers, corresponding to the two examples of 
'extended food store'. 

Example 3: data tables - revisited-3 

We have seen that Cantor allows data representations which are more expressive than those 
allowed by the relational model. However, what is gained in expressiveness, is lost in 
uniformity. This point will be made clear in the systematic review of the operations in the 
relational algebra presented in this section. 

In the previous discussion of the data tables we never investigated the questions relating to the 
interaction between data tables. A good introduction to this is to expose, and illustrate, the 
relational operations. 

Therefore in what follows, in this section, we assume that n-ary relations are sets of n-tuples 
(tuples of cardinality n). Then the arity of a relation R is #arb(R). Indeed, all the tuples in Rare 
assumed to have the same cardinality. 

The main relational operations 3 on relations are: union, set difference, cartesian product, 
projection, selection, intersection, quotient, join, natural join. 

formal Cantor definion of the relational operations 
Each of these has a relatively simple definition. 
1- union : the union of relations Rand S is R+S, the standard set union. Note that the union 
makes sense only if both relations have the same arity 
2- set difference: again, if Rand Shave the same arity, this is R-S, the standard set difference 
3- cartesian product : the cartesian product of R and S is 

{ r+s: r in R, s in S } ; 
thus if R has arity kl and S has arity k2, the cartesian product is made of (kl +k2)-tuples, the 1st 
kl components of which form a tuple in R and the last k2 components, a tuple in S. 
4- projection : a projection is defined by a pair (R, sub_col) where R is a relation and sub_col is 
a tuple of distinct integers in the range [1..arity(R)]. The projection defined by (R,sub_col) is 

3See for instance Principles of Database Systems, J.D. Ullman, Computer Science Press 

'.K.epl:er a Cantor Tutorial 23 



{ %+[ [x(i)]: i in sub_col]: x in R} 
The compound concatenation operation %+[ [x(i)]: i in sub_col] concatenates together the 
components x(i) for all the i's in sub_col, in the specified order. Sometimes, instead of a list of 
component number, a relation is specified by its column names or 'attributes'. In that case there 
is a map col_attr -> col_rank Lets us call such a map, col_map. If sub_col is specified by column 
names, the projection is defined, by recomputing the column rank from its name : 

{ %+[ [x(col_map(name))]: name in sub_col]: x in R} 
5- selection : let R be a relation and let F be a formula involving 

i) operands that are string constants constants or component numbers 
ii) the arithmetic comparison operators>,<,=,>=,<=,/= 
iii) the logical operators and, or, not 

We assume that F is a string and has a valid syntax. 
A selection defined by the pair (R,F) is the set of all tuples in R satisfying FR, where FR is 
obtained from F by replacing i by t(i): for instance if Fis 

'1>3 or "joe" = 2' 
then FR is 

't (l)>t (3) or "joe" = t (2)' 
and the selection is 

{ t: tin RI FR} 
in our example this would be: 

{ t: tin RI t(l)>t(3) or "joe" = t(2)} 
Let us examine step by step how this may be obtained in Cantor. 
Let F be as follows: 

> F := '1>3 or "joe" = 2'; 
i) scan a decompose F into its token stream: 

>tf := scan(F+"",1,1); 
>tf; 
[1, ">", 3, "or", "\q", "joe", "\q", "=", 2]; 

Note that adding an empty string to F does not change the value of the 1st argument to the scan 
function. However, since scan 'destroys' its arguments. It is the copy F+"" of F which will be 
destroyed, but not the original ... 
ii) replace each integer i, which represents a column number by x(i) as a string 

> tf := 
[if is integer(u) then 'x('+itoa(u)+')' else u end: u in tf]; 

Since itoa(u) convert an integer into its decimal string representation 'x('+itoa(u)+')' is just the 
concatenation of three strings 

> tf; 
["x(l)", ">", "x(3)", "or", "\q", "joe", "\q", "=","x(2)"]; 

iii) reconstitute a transformed formula by just concatenating all the pieces, (add a space in 
between each part): 

> zf := %+ [u+' ': u in tf]; 
> zf; 
"x(l) > x(3) or \q joe \q = x(2) "; 

iv) this is a parsable expression, let us parse it 
>Fr:= analyze(zf); 
> Fr; 
x(l) > x(3) or joe = x(2);; 

Here Fr is not a string, it is an abstract syntax tree. Its structure may be revealed by an ugly-print 
(default output is by pretty-print) (see section 6 of the user manual) : 

> ugly (Fr); 
( CALL : 

( or : 
( > : 

SELECTOR: 
( T Id x ) 
( ( : 

( T_Integer 1) 
SELECTOR: 

( T Id x ) 
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( ( 

( T_Integer 3) 

T_String: joe 
SELECTOR: 

( T Id x ) 
( ( : 

( T_Integer : 2 )OM; 
> 

v) in fact we are not concerned with the top node in this parse tree, which CALL's for 
evaluation. This is a technicality! 

>Fr:= Fr(l); $ let af be its own 1st (i.e. left) subtree 
> Fr; 
x(l) > x(3) or joe = x(2); 

vi) the selection is just 
{x: x in RI eval(Fr) } 

We use here the built-in eval function which evaluates (i.e. computes the set value, or the integer 
value, etc. of- ) the abstract syntax tree form of an expression. 

> R; 
{ [54, 64, 65, 16], [90, 3, 58, 1], [41, 90, 23, 25], 

[5, 16, 86, 0], [42, 24, 42, 39], [36, 54, 49, 43], 
[90, 2, 50, 49], [63, 88, 25, 63], [78, 86, 28, 98], 
[95, 42, 53, 58]}; 

> {x: x in RI eval(Fr)}; 
{ [95, 42, 53, 58], [78, 86, 28, 98], [41, 90, 23, 25], 

[90, 3, 58, 1], [90, 2, 50, 49], [63, 88, 25, 63]}; 

The selection operation involves the formula transformation operations i) - v) captured by the 
following func: 

fla_transf := func(F); 
local tf,Fr; 
tf : = scan (F+ 1111

, 1, 1) ; 
tf := [if is integer(u) then 'x('+itoa(u)+')' else u end: 

u in tf]; 
F := %+ [u+' ': u in tf]; 
Fr:= analyze(F) (1); 
return Fr; 

end; $ end fla_transf 

Under those conditions, selection (R,F) is defined by 
{x: x in RI eval(fla_transf (F)) } 

6- intersection : (if Rand S have the same arity) this is just 
R*S 

7- quotient: Let Rand S be relations of arity rands, respectively, with r > s. The quotient R:S 
is 

{t( .. r-s): tin RI forall u in SI t( .. r-s)+u in R} 
Given an arbitrary tuple t, the expression t(i..j) represents the tuple of length j-i consisting of all 
the elements oft between ranks i and j (included). If the lower bound -here i - is omitted, it is 
assumed to be 1. If the upper bound -here j- is omitted, it is assumed to be #t. Therefore the 
quotient expression is equivalent to { t(l..r-s): tin R I forall u in S I t(l..r-s)+u in R}. 

It may be more efficient to define the quotient in several steps: 
R_quot := {t( .. r-s): tin R}; $ this is just a projection 
quotient := {u: u in R quot I forall v in S I u+v in R}; 

Indeed the forall is evaluateaonce for each element in R_quot, which may have a cardinality 
much smaller than that of R. 
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8- join: (often called the 0-join) Let 0 be an arithmetic comparison operator(<,>,<=,>=,=,/=). 
Let R, S be relations of arity rands respectively. Let i,j be positive integers i ~rand j ~ s Then 
the join is defined by (R,S, i 0 j) to be the selection on the cartesian product Rx S defined by the 
formula i 0 r+j : 

{x+y: x in R, yin S I eval(fla_transf ('i 0 r+j')) } 
When q is '=' then this called an equijoin. Column names are sometimes used instead of ranks, 
requiring the interposition of the col_maps for both R and S to transform the names into column 
numbers. For instance the join (R,S, A e B) is defined as (R,S, col_map_R (A) 0 col_map_S 
(B)). 

9- natural join : Let R, S be relations with named columns. Let col_map_R, col_map_S be their 
respective col_maps. Consider all the columns with the same names in R and S, i.e. 

common attr := domain(col map R) n domain(col map S ); 
The natural join is best defined in two steps: - -
i) compute the intersection of all the equijoins (R,S, A = A) over all the attributes A in 
common_attr : 

equi joins := %* {{x+y: x in R, yin S I 
eval(fla transf ('col map R (A)= r+col map S (A)')) } 

A in common attr } ; - - -
ii) project out all the columns of S correponding to the common attributes 

S common rnks := {col map S (attr) : attr in common attr }; 
is tne set of column numbers1n Sror the attributes common to Rand S, and 

S cols := [j: j in [1. .s] I j notin S common rnks ] ; 
is tne ordered set of all other column numbers in"""'S, correponding to the attributes of Snot in R. 
Therefore the projection list, is the concatenation of all r columns of R, and of the columns in 
S_cols, shifted by r in the cartesian product, and therefore in equijoins as well: 

sub col := [1 .. r]+[j+r: j in [1 .. s] I j notin S common rnks ]; 
The natural join is then 

{ %+[ [x(i)]: i in sub_col]: x in equijoins } 
We could put this together in a simple func: 

natural join:= func(R, col mapR, S, col map S); 
local common attr, equijoins, S commonrnks, sub col; 
common attr := domain(col map RT n domain(col maps); 
equi joins := %* {{x+y: x-in R, yins I - -

- eval(fla transf ('col map R (A)= r+col map S (A)'))}: 
A in cormnon attr } ; - - -

S common rnks := {col maps (attr) : attr in common attr }; 
sub col:= [1. .r]+[j+r: j-in [1. .s] I -

- j notin S common rnks ]; 
return { %+[ [x(i)]: i in sub col]: x in equijoins }; 

end; $ end natural_join -

Exercises 
- let R be {[l,2,3], [4,1,6], [3,2,4]}, and S be {[2,7,1], [4,1,6]}. Compute Rx S, the 
projection (R, [1,3]), the selection (R, 2 = 2). 
- let R be {[1,2,3,4], [1,2,5,6], [2,3,5,6], [5,4,3,4], [5,4,5,6], [1,2,4,5]}, and let S be {[3,4], 
[5,6]}. Compute the quotient R:S. 
- let R be {[1,2,3], [4,5,6], [7,8,9]}, let S be {[3,1],[6,2]}. Compute the join (R,S, 2 < 1). 
- let R be {[l,2,3], [4,2,3], [2,2,6], [3,1,4]}, and S be {[2,3,4], [2,3,5], [l,4,2]}. Let the 
attribute map for R and S be defined by: 
col_map_R := {['A',1], ['B',2], ['C',3]}; 
S by col_map_S := {['B',l],['C',2]}; 
Compute the natural join of R and S. 
- express by means of the relational operations on the food_store, and the suppliers 
(assumed to be in relational presentation, instead of map-oriented presentation) the following: 

i- the two suppliers who could supply most if not all the products sold by the food store 
ii- the margin computed from the difference between the food store sales price and the worse 
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supplier price 
iii- the stock value computed from the suppliers best price for each item 

Example 4: pre-requisites - revisited-I 

To address the pre-requisites problem a convenient representation of the dependency structure 
represented in fig. 2 is needed. A common way is to represent this graph as the collection of its 
edges, each edge being the representation of an arrow. An arrow is an ordered collection, e.g., 
1->2 may be represented by the pair [1,2], and the whole dependency graph by the set 
(unordered collection) of all these arrows: 

dependence := { [l, 2], [l, 4], [l, 6], 
[2,3], [2,5], [2,7], 
[4,5], [4,7], 
[6, 7], [6, 8], [6, 9] 

} ; 
dependence is a set of pairs, therefore it is a map. However, this is clearly not a s-map: for 
instance, three possible values are associated to (chapter) 1. This map is a multi-valued map or 
m-map having as domain (set of 1st elements in the pairs) { 1,2,4,6} and as range (set of second 
elements in the pairs) {2,3,4,5,6,7,8,9} 

> domain(dependence); 
{4, 6, 1, 2}; 
> range(dependence); 
{7, 9, 8, 5, 6, 2, 3, 4}; 

The set of all the dependents or successors of a given chapter is 
dependence{aChapter}; 

a naive problem definition 
To establish the set of prerequisites, one uses the following idea: a chapter chi is a pre-requisite 
to the chapter cho if 
cho c dependence{chi} or dependence{chi} n prerequisites :;t: 0 
where prerequisites is the set of already computed prerequisites. This computation stops 
when no new chapter is added to prerequisites .I.e., prerequisites satisfies the equation: 

prerequisites = { ch : ch in domain(dependence) I 
cho c dependence{ch} or dependence{ch} n prerequisites :;t: 0} 

where cho is in our case 7. 

a naive fixed-point solution 
There are many ways to formalize the search for a solution to this equation. The above equation 
is a fixed-point equation of type: 

X = { u: u c S I K(u,X)} 
A standard solution consists in computing a sequence 

Xo = {} 

Xn+l = {u: u in SI K(u,Xn)} u Xn 
This sequence forms a increasing chain of subsets of S: 

Xn <; Xn+l 
This chain has an upper bound: S. Therefore, eventually this sequence will stop growing: either 
Xn becomes the whole set S, or Xn+l = Xn. 
This could be programmed in Cantor as follows: 

X := {}; 
T := {u: u in S I K(u,X)}; 
while T /= X do 

X := X + T; 
T := {u: u in S I K(u,X)}; 

end; 
In our example S is domain(dependence) and K(u,X) is: 

7 in dependence{u} or dependence{u} * X /= {} 
Actually running this program yields: 

> K := func(u,X); 

'.JGepCer a Cantor Tutorial 27 



>> return 7 in dependence{u} or 
» dependence{u} * X /= {}; 
>> end; 
> 
>X:={}; 
> 
> S := domain(dependence); 
> T := {u: u in S I K(u,X)}; 
> while T /= X do 
>> X := X + T; 
>> T := {u: u in S I K(u,X)}; 
>> end; 
> X; $ the fixed point 
{6, 4, 1, 2}; 

This solution is an example of least fixed point solution. Actually, all the iterative problems in 
computer science may be stated as fixed point problems. 

Here we did not really touched the specifics of the problem: we translated a naive problem 
definition into a naive fixed point solution. 

an ideal complexity model for a set machine 

We are using here the usual notation for complexity -in its simple version. We are concerned 
with size complexity: e.g. the number of elements in a collection, and with time complexity, i.e. 
the number of time units necessary to perform a given computation. When we say: 

the (asymptotic ) size complexity of a problem is O(f(n)) 
we mean for a specific kind of size , e.g. memory or disk space, 

there is a constant c > 0 such that, for all sufficiently large n, 
the problem size < c*f(n) 

When we say: 
the (asymptotic ) time complexity of an algorithm or function is O(f(n)) 

we mean for any specific specific measure of time , e.g. seconds, micro-seconds, years, used to 
evaluate the duration of the computation of that algorithm, operation or function evaluation 

there is a constant c > 0 such that, for all sufficiently large n, 
the (asymptotic) time< c*f(n) 

For instance a time complexity of 0(1) characterizes a process which has a constant time 
upperbound. When a time complexity estimate O(f(n)) is used, generally, n characterizes the 
problem size. 

In the table below we present the definition of the asymptotic time cost for executing some 
elementary operations on an ideal set machine. It is understood that most set machine operations 
could be coded cleverly as collections of these elementary operations. 

operation 
) s 
3 x c s I K(x) 
Vxc slK(x) 
for x c s do .. end 
m:= .. . 
t := .. . 
s with x 
s less x 
X C S 

f(x) 
f(x) := ... 

description 
arbitrary choice 
existential quantifier 
universal quantifier 
for-loop supervision 
map or set assignment 
tuple assignment 
collection addition 
set element deletion 
membership test 
value off ( only if f is a smap) 
index assignment to a function or a 
map of a pre-computed term 

a Cantor Tutorial 

complexity 
0(1) 
#s * cost(K(x)) 
#s * cost(K(x)) 
O(#s) 
0(1) 
0(1) 
0(1) 
0(1) 
0(1) 
0(1) 
0(1) 
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The following simple example will illustrate these complexity notions. 

Given the above complexity table, one could infer that the complexity for computing a slice 
{ 1..n} or [l..n] is O(n). Indeed, this is the complexity of the following program, which could 
be considered as the micro-code for slices: 

aSlice := {}; $resp .. :=[]; 
for x in [1 .. n] do 

aSlice := aSlice with x; 
end; , 

The initialization cost for aSlice is 0(1), i.e. c0. The loop supervision cost is proportional to the 
number of iterations in the loop: it is O(n) cl *n. The loop is repeated n times. Each time the 
executed code requires 0(1) i.e. c2 for an element addition to the collection aSlice, and time 0(1) 
i.e. c3 for assignment of this new value to aSlice. Summarizing the execution time for this 
micro-code is bounded, for sufficiently large n by 
c0 + cl *n + (c2+c3)*n 
Taking C = c0+c 1 +c2+c3 it is easy to verify that for sufficiently large n the execution time is 
bounded by C*n, i.e. is O(n). 

We said, that these are complexities of an ideal machine. Indeed, most implementations do not 
meet these requirements. For instance, if a set has N elements, in practice, the complexity of a 
membership test is O(log N). Very often actual complexities are even worse: if a data structure 
can accomodate upto N elements, then each access has complexity O(log N). But if N is much 
larger than all other size parameters in the problem, N is actually a problem constant: in that case, 
O(log N) is a uniform bound for each individual access and this may be considered as a constant 
overhead, i.e. a 0(1) complexity!!! 

Conversely, it is possible to prove that every set algorithm of a large class may be implemented 
with suitable data structures which will meet the requirements indicated in the above table5. But 
this implementation is not a Cantor implementation : it is an implementation in an actual machine 
language, e.g. C, Pascal, an assembler language. 

Despite the fictitious character of 'the ideal set machine' it is a very useful model for elaborating 
algorithms and seeking optimisations. 

designing a more efficient algorithm with finite differencing 
To achieve a more efficient solution, it seems reasonable to replace the costly expression 
evaluations by simpler or 'more economical' ones, according to the just exposed complexity 
model. The following observations are major guiding principles: 

- just like tabulation could be a remarkable speed-up in recursive function evaluation, one 
should separate in a fixed-point loop all the data which need no longer be re-examined, from 
the 'new' data to process, to avoid reprocessing always the same data. Since we are 
constructing a chain of sets Xo <; ... <; Xn <; Xn+l <; ... , at step n, the new elements are those 
in ax 0 = Xn+ 1 - Xn . Since Xn+ 1 = Xn + ax 0 , we are looking for a method to involve only 
these new elements in the next computation step. 
- while computing the re-assignment Xn+2 := f(Xn+l), we want to exhibit an incremental 
computation for f(X0 +aX0 ), e.g. of incremental cost 0(#dXn). 
- complex operations are those involving the processing of at least one entire collection each 
time: these operations cannot be carried out at a fixed cost! For instance A n B has a cost of 
O(min(#A,#B)) , A u B has a cost of O(#A+#B) and testing A/= B (or A = B) has a cost of 
O(min(#A,#B)) . As abstract operations they play an essential role in defining a solution; 
however, they should be eliminated, if possible from optimized versions, and replaced by 
loops of incremental operations each with a fixed cost 

To apply these principles one operate on the symbolic definition of the (set and loop) 
expressions, rewriting them and substituting in provably equivalent ones. The search for 
incremental operations is in essence inspired by the XVII century technique of formal polynomial 
differentiation, used in the making of polynomial tables, and called finite differencing. 

Rather than providing here a systematic presentation of this technique, we will just introduce the 
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scheme, and show its effectiveness. This technique has been established and developped by R. 
Paige4. 

step-wise refinement guided by finite differencing 
We could consider the inverse graph of dependence: 
dependence_inv := {[x,y]: [y,x] in dependence}; 
Then the problem is to compute the reacheability set of node 7, in this (inverse) graph, i.e. all the 
nodes in the graph which could be reached, following dependence_inv's edges starting from 
the source node 7. This set could be defined as a fixed-point : ' 

X = dependence inv[X] 
where the notation g[A] means, as usual, the union of all the image sets g{a}: a in A, that is in 
Cantor notation: 

%+{g{a}: a in A}= (by definition) g[A] 
A fixed-point sequence converging to the set X satisfying X = g[X] is 

XO := { s}; $ s is the source, here it is 7 
Xi+l :=Xi+ g[Xi]; $ where g[Xi] = %+{g{x}: x in Xi} 

This may be implemented in the following loop: 
X := {s}; 
f := func(d); return d%+{g{x}: x ind}; end; $ f(D) is D+g[D) 
T := f (X}; 
while X /= T do 

X := T; 
T := f(X); 

end;· 
$ at this point Xis the fixed-point 

where s is 7 and g is dependence_ inv . Actually running this program yields: 
>$the inverse relation 
> dependence inv := {[x,y]: [y,x] in dependence}; 
> dependence-inv; 
{ [8, 6), [9,-6), [7, 2), [7, 6), [7, 4), [6, 1), [5, 2), 
[5, 4), [4, 1), [3, 2), [2, 1) }; 
> g .- dependence inv; 
> X := {7}; -
> f := func(d); return d%+{g{x}: x ind}; end; $ f(D) is D+g[D] 
> T := f (X); 
> while X /= T do 
>> X := T; 
>> T := f(X); 
>> end; 
>$at this point Xis the fixed-point 
> X; 
{6, 7, 2, 1, 4}; 

This loop may be optimized. Note that within this loop the expressions T and f(X) are kept 
equal, this is why one says 'the invariant T= f(X) is maintained throughout that loop'. In fact to 
maintain that invariant, it is not necessary to fully recompute f(X) each time. 
We introduce intermediate expressions to clarify the steps in the computation, and possibly 
uncover incremental steps: 

X := {s}; 
T := g{s} withs; $ T = X%+{g{x}: X in X} i.e. T = X + g[X] 
dN := T-X; $ introducing the invariant dN = T-X 
while dN /={}do $ this is equiv to X /= T 

NO := {y: u in T, yin g{u} I y notin T}; $ this is g[T) - T 
x := T; $ X changes to X + dN 
T := T+ NO; $ maintain T = X + g[X), after X's change 
dN := NO; $ maintain the invariant dN = T-X 

end; 

4See for instance, Paige R., Krenig S. : Finite Differencing of Computable Expressions, ACM Trans. Prog. 
Lang. Syst. 4,3,1982 pp 402-454. Or the chapter on Program Transformation, strongly influenced by that paper, 
pp 130-185 in the remarkable book: Software Prototyping mit SETL, by E.E. Doberkat and D. Fox, Teubner 
pub. Stuttgart, 1989. 
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$ at this point Xis the fixed point 

Within the expression NO, Tis identical with X+dN, i.e. NO is just 
{y: u in X+dN, yin g{u} I y notin T} 

Whenever u in X, then, by construction g{ u} is a subset of T = X+dN. Therefore: 
{y: u in X, yin g{u} I y notin T} = {} 

Therefore NO may be simplified to 
{y: u in dN, yin g{u} I y notin T} 

The fixed-point loop then becomes: 
X := {s}; 
T := g{s} withs; $ T = X%+{g{x}: X in X} i.e. T = X + g[X] 
dN := T-X; $ introducing the invariant dN = T-X 
while #dN /= 0 do$ X /=Tiff T-X /= {} iff g[X] - X /= {} 

end; 

$ achieve dN = T-X 
$ achieve T = X + g[X], upon X := X+dN 
NO := {y: u in dN,y in g{u} I y notin T}; $ g[T] - T 
X := T; $ X+dN; 
T := T + NO; 
$ assert T = X + g(X] 
dN := NO; 
$ assert dN = g[X] - X = T-X 

$ at this point X = X + g[X], T = X 

mechanical refinement by finite differencing 
We have been 'lucky' in identifying a computational increment dN. In general, one proceeds as 
follows, for a fixed point computation: 

X := {s}; 
while f(X)-X /={}do 

z := arb(f(X)-X); 
X := X with z; 

end; 
$ at this point x = X + g[X] 

We introduce an invariant for each subexpression which occur within the loop and would need to 
be recomputed as a consequence of the change of one of its terms. We thus have an invariant for 
the expression f(X)-X, to avoid recomputing it each time through the loop 
E := f(X)-X; 
We will store this value upon entry to the loop, and we will update E, within the while loop just 
before Xis modified, so that the invariant E = f(X)-X is maintained, at the point where the 
expression f(X)-X is needed. This update code is called difference code for E with respect to the 
modification X := X with z; 

X := {s}; 
E := %+{g{u}: u in X}; $ introduce E = g[X] 
while E-X /={}do $ while g[X] - X /= {} iff #(E-Z) /= 0 

z := arb(E-X); • 
X := X with z; 
E := E + g{z}; $ maintain E = g[X] 

end; 
$ at this point X = X + g(X] 

Mechanical maintenance of an invariant of kind U = V +S, where S is subject to changes, 
involves difference code of the following kind, for each increment dS 

U := U + {x: x in dS I x notin U} 
Therefore the difference code for E should actually be: 

E := E + {x: x in g{z} I x notin E}; 
or the strictly equivalent loop 

for x in g{z} I x notin E do 
E := E with x; 

end; 
Clearly another invariant becomes necessary: N = E-X. The result is now 
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X { s}; 
E .- %+{g{u}: u in X}; $ introduce E = g[X] 
N .- E-X; $ introduce N = E-X 
while #N /= 0 do $ while g[X] - X /= {} 

z := arb (N); 
X := X with z; 
E := E + {u: u in g{z} I u notin E}; $ maintain E = g[X] 

$ maintain N = E-X 
N := (N+ {u: u in g{z} I u notin X}) less z; 

end; 
$ at this point X = X + g[X] 

In the above code it is easy to see that the invariant Eis never used after N's initialization, and 
should be removed: 

X := {s}; 
N := g{s} less s; $ %+{g{u}: u in X}-X = g[X] - X 
while #N /= 0 do $ while g[X] - X /= {} 

z := arb (N); 
X := X with z; 

$ maintain N = g[X]-X 
N .- (N + {u: u in g{z} I u notin X}) less z; 

end; 
$ at this point X = X + g[X] 

This 'mechanical' version of the reachability algorithm is slightly less performant -in Cantor­
than the previous 'hand coded' one, also inspired by the finite differencing method. 
The finite differencing technique, consisting of replacing costly repeated computations by 
simpler ones, may have an initial overhead which masks its real effect on small data sets. This 
technique has been extensively studied by R. Paige and is now automated in his APTS system. 
The tests sets used at the end of this section show the remarkable improvement derived from this 
technique. 

the include file for the prerequisite problem 
To compare all of these versions, the following include file has been created 

$ .................................................. . 

!memory 2000000 
!echo off 
!recordOutput fd_reach.tr 

[t1 ,t2,t3,t4,t5,t6J := ID,□,□.□.□.lll ; 
x_size :=~; 
n_s\ze := ; 
e_sIze := ; 
m_size := □; 

$--demo_fd, prepare_data 
$ given a graph gr, an experiment index i 
$ and optional sources, and maximum arity 
$ compute, under various refinements 
$ the same set: the set of all nodes 
$ reachable from source s in graph gr 
demo_fd := func(gr,i opt s,m); 
local X,T,E,z; 
local N,dN,NO; 
local in time.out time; 
local g,h,prepare=data; 

$ prepare_data : compute gr's inverse graph 
$ and the maximum arity m. If source s 
$ is not defined, let it be any node having 
$ maximum arity 
prepare_data := func(gr,i opt s,m); 

g := {[x,y): [y,x) in gr}; 
if is_om(m) then 

h := {[x,#g(x}): x in domain(g)); 
m := %max range(h); 

end· 
if is~om(s) then 

s := arb((x: x in domain(g) I h(x) = ml); 
end; 
n_size(i) := #(domain(g)+domain(dependence)); 
e_size(i) := #g; 
m_size(i) := m; 
printf inn_size(i): '; print n_size(i); 

printf 's : '; prints; 
printf 'm : '; print m; 
printf '9(s} : '; print g(s}; 
return [s,m); 

end;$ end prepare_data 

[s,m) := prepare_data(gr,i,s,m); 

$ -1 the naive fixed point definition 
in_time := clock(); 

X :=(s}; 
T := X%+(g(x): x in X); $ T = X + Q[X) 
while XI= T cfo $XI= Tiff T-X I= 0 iff g[X] - XI={) 

X·=T· 
T := Xo/o+(g(x): x in X); $ maintain T = X + g[X) 

end· 
$ at this pointX = X + g[X], T = X 
out_time := clock(); 
X1 ·=X· 
prin·tf 'duration:', (out_time-in_time)/60,in'; 
printf 'size: ', #X, in'; $ the fixed point size 
print X; 
t1(i) := (out_time-in_time)/60; 
x_size(i) := #X; 

$ -2 let us exhibit the main iteration condition in detail 
in_time := clock(); 

X :=(s); 
T := g/s) withs; $ T = X%+(g(x}: x in X) i.e. T = X + g[X] 
dN := 'r-X; $ introduci~ the invariant dN = T-X 
while dN I= (} do $ this Is equiv to XI= T 

NO:= (y: u in T, yin ~(u} I y notin T}; $ this is g[T]- T 
$ observe that T Is X+N 
$ by construction u in X ==> g(u} subset X+N 
$ whence (y: u in X,y in g(u} I y notin T} = (} 
$ therefore: (y: u in T,y in g(u} I y notin T) is 
$ (y: u in N, yin g(u} I y notin T) 

X := T; $XchangestoX +dN 
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T ·= T + NO· $ maintain T = X + g(X], after X's change 
dN ·= NO· ' $ maintain the invariant dN = T-X 

end· • ' 
$ at this point X is the fixed point 

out_time := clock(); 
X2·=X· 
prin·tf 'duration:', (out_time-in_time)/60,'\n'; 
erintf 'size: ', #X, '\n'; $ the fixed point size 
if X2 I= X1 then 

print! 'lndiscrepancy between 2 and 1\n'; 
print X; 

end; 
t2(i) := (out_time-in_time)/60; 

$ -3 the naive fixed point re-definition 
$ includes maintenance of N, X, T 
in_time := clock(); 

X :={s}; 
T :_= g/s} _with s; $ T = X%+{g{x}: x in X} i.e. T = X + g[X] 
N .= T-X, 
while #NI= 0 do$ XI= Tiff T-X I= I) iff g[X] - XI= I) 

NO:= /y: u in N,y in g{u} I y notin T}; $ g(T}- T 
$ acliieve T = X + g(X] 
X := T; $X+N; 
T := T + NO; 
$ assert T = X + g[X] 
N ·=NO· 
$ • ass~rt N = g[X]- X = T-X 

end· 
$ at this pointX = X +g(X], T =X 
out_time := clock(); 
X3:=X; 
print! 'duration:', (out_time-in_time)/60,'\n'; 
enntf 'size: ', #X, '\n'; $ the fixed point size 
if X2 I= X3 then 

print! 'lndiscrepancy between 2 and 3\n'; 
print X; 

end· 
t3(i) := (out_time-in_time)/60; 

$ -4 maintain as invariant %+{g{u): u in X} 
$ note that E +g{z} is E + {u: u in g{z} I u notin E} 
in_time := clock(); 

X :={s}; 
E := %+{g{u}: u in X}; 
while E-X I= I) do $ while g(X] - XI= I) iff #(E-Z) I= 0 

z := arb(E-X); 
X :=Xwith z; 
E := E + {u: u in g{z} I u notin E}; $ maintain E = g(X] 

end· 
$ at this point X = X + g[X] 

out_time := clock(); 
X4·=X· 
prin.tf 'duration:', (out_time-in_time)/60,'\n'; 
erintf 'size: ', #X, '\n'; $ the fixed point size 
If X4 I= X3 then 

print! 'lndiscrepancy between 4 and 3\n'; 
print X; 

end· 
t4(i) := (out_time-in_time)/60; 

$ note that E +g{z} is E + {u: u in g{z} I u notin E} 

$ -5 maintain as invariant %+{g{u}: u in X} - X 
in_time := clock(); 

X :={s}; 
E := %+/~{u}: u in X}; 
N .= E-X, 
while #NI= 0 do $ while g(X] - XI= I) 

z := arb(N); 
X ·=Xwith z· 
E := E + {u: u in g{z} I u notin E}; $ maintain E = g(X] 
N := (N+ {u: u in g{z} I u notin X}) less z; $ maintain N = 

E-X 
end· 
$ at this point X = X + g[X] 
out_time := clock(); 
X5:=X; 
print! 'duration:', (out_time-in_time)/60,'\n'; 
print! 'size: ', #X, '\n'; $ the fixed point size 
if XS I= X4 then 

print! 'lndiscrepancy between 4 and 5\n'; 
print X; 

end; 
tS(i) := (out_time-in_time)/60; 

$ -6 eliminate E, which is never used, except for its own 
maintance 
in_time := clock(); 

X := {s}; 
N := g{s} less s; $ %+{g{u}: u in X}-X == g[X] - X 
while #N I= 0 do $ while g[X] - X I= I) 

z := arb(N); 
X :=Xwith z; 
N := (N + {u: u in g{z} I u notin X}) less z; $ maintain N = 

f]:-X 
$ at this point X = X + g(X] 
out_time := clock(); 
X6:=X; 
print! 'duration:', (out_time-in_time)/60,'\n'; 
erintf 'size:', #X,'\n'; $ the fixed point size 
if X6 /= XS then 

print! 'lndiscrepancy between 5 and 4\n'; 
print X; 

end; 
IS(i) := (out_time-in_time)/60; 

end;$ end derno_fd 

display results := tune(); 
aUJddata := (n_size,e_size,m_size,x_size, t1 ,t2,t3,t4,t5,16]; 
print! '\n','_ .. 63, '\n'; • 
print! '\n n_size,e_size,m_size,x_size, t1 ,t2,t3,t4,t5,16\n'; 
print all_fddata; 

print! '\n',' .. 60, '\n'; 
printf '\n',Fn','e','m','x', 't1','t2','t3','t4\'t5','t61:6, \n'; 

print! '\n',' .. 60,'\n'; 
print! '\n',1ln_size(i},e_size(i),m_size(i),x_size(i), 

t1(i),t2(i),t3(i),t4(i), tS(i), t6(i)]: i in (1..71] : 10*((6.02,' 1 
with '\n') ; 

print! '\n','_ .. 60,'\n'; 
end;$ end display_resul1s 

!echoon 

dependence :=~ [1,2], (1,4), (1,6], 

!2,3 , {2·~· (2, 7), 
4,5, 4, , 
6, , 6,8 , (6,9] 

}; 

domain(dependence); 
range(dependence); 
s := 7; 
m ·-3· 
~o~fd(dependence, 1,s,m); 

dd1 := {[random(100),random(100)]: i in (1 .. 100D; 
demo_fd(dd1 ,2); 

dd2 := /[random(200),random(200)]: i in [1 .. 2001); 
demo_fd(dd2,3); 

dd3 := /(random(SO),random(SO)]: i in (1 .. 200]}; 
demo_fd(dd3,4); 

dd4 := /[random(150),random(150)]: i in [1 .. 5001); 
demo_fd(dd4,5); 

dd5 := /[random(450),random(450)]: i in (1 .. 10001); 
demo_fd(ddS,6); 

dd6 := /[random(1000),random(1000)]: i in (1 .. 10001); 
demo_fd(dd6,7); 

display _results(); 

$ save('all_fddata', 'all_fddata'); 
!recordOutput 
!echo off 
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the execution trace 
The execution is quite instructive. The first observation is that these fixed-point methods 
compute exactly the desired set augmented with the source node. The second observation is the 
noticeable improvement of the efficiency of the algorithm, from the naive version to the elaborate 
finite differencing solution, both in the mechanical and the intuitive approaches. Even though 
Cantor's implementation of the collection data structures is far from meeting the criterias of that 
of an ideal set machine, the experimental results indicate, an 'average behaviour' compatible with 
that of such a machine. The lack of talent of the Cantor designers is not the only thing to blame: 
there are some significant theoretical limitations; a fixed data structure for representing sets 
cannot satisfy always the requirements of the ideal set machine. Actually, each algorithm may 
require a different implementation of that ideal set machine, since each algorithm uses sets in 
specific ways. Cantor being an interpreted language, has to interpret each instruction, each 
expression evaluation request, without taking in consideration the algorithm as a whole and 
possible optimisation information. However Paige technique of Real-Time Simulation of a Set 
Machine on a RAM5 may be in the not too distant future available to compile Cantor programs 
into an appropriate target development language (e.g. C or C++) using the appropriate set 
implementation, meeting each time the requirements of an ideal set machine. 
In what follows, durations are in seconds. They have been evaluated on a Macintosh LC475 by 
dividing a tick count by their frequency ( 60 per sec). The reported execution time includes the 
time spent by the Cantor system 'garbage collecting', i.e. performing essential asynchronous 
dynamic memory management functions, not specific to any particular algorithm. Here are the 
execution results: 

5See for instance Paige R. : Real Time Simulation of a Set machine on a RAM in ICCI '89, ed. W. Koczodaj, 
Computing and Information, 2, 1989. 
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> dependence := ~ !1,2), [1,4), [1,6), 
>> 12,3' 2,SJ, [2,7J, 
>> 4,5, 4,7), 
» 6, , 6,8), [6,9) 
» }; 
> 
> domain(dependence); 
{4, 6, 1, 2}; 

> range(dependence); 
{7, 9, 8, 5, 6, 2, 3, 4}; 

>S := 7; 
>m ·=3· 
> demo 

0

fd(dependence, 1,s,m); 
n_size(i): 
9; 
s· 7· 
m··s-
g{s} :' {4, 2. 6J; 
duration: 0.03333 
size: 5 
{7, 6, 2, 1, 4}; 
duration: 
size: 
duration: 
size: 
duration: 
size: 
duration: 
size: 
duration: 
size: 
OM; 

> 
> 

5 

5 

5 

5 

5 

0.06667 

0.01667 

0.01667 

0.06667 

0.03333 

> dd1 := l[random(100),random(100)): i in [1 .. 100)}; 
>demo_kl(dd1,2); 
n_size(i): 
57· 
s -'57-
m

0

·5-' 
g{sJ :

0

{42, 48, 49, 12. 251; 
duration: 0.26667 
size: 20 
{70,59,80,88,57,53,52,49,43,48,46, 12, 14, 15,25,29, 
35, 38, 41, 42); 
duration: 0.20000 
size: 20 
ck.Jration: 0.05000 
size: 20 
dJration: 0.41667 
size: 20 
ck.Jration: 0.16667 
size: 20 
ck.Jration: 0.23333 
size: 20 
OM; 

> 
> dd2 := {[random(200),random(200)): i in [1 .. 200)); 
> demo_fd(dd2,3); 
n_size(i): 
124· 
s • 1'52-
m.: 5;' 
g{s): {158, 103, 118, 6, 86); 
duration: 1.18333 
size: 38 
{114,118,105,123, 129,96, 103,87,94, 137,142,152,131, 
135,186,184,192,187,158,160,179, 163,9, 11, 7,6,26, 
38, 44, 47, 75, 81, 86, 84, 69, 65, 64, 54); 
cu ration: 1.30000 
size: 38 
duration: 0.26667 
size: 38 
dJration: 1.53333 
size: 38 
dJration: 0.70000 
size: 38 
duration: 0.46667 
size: 38 
OM; 

> 
> dd3 := {[random(50),random(50)): i in [1 .. 200)); 

> demo fd(dd3,4); 
n_size(l): 
50· 
s :

0

5; 
m·7· 
g{s1 :'131, 11. 9, 1. 50, 35, 33); 
ck.Jration: 0.88333 
size: 50 
{34,35,33,32,38,36,37,50,49,48,47,46,43,44,45,41, 
42,39,40, 11, 10, 12,9,8,6, 7,2,3,5,4, 1,0,31,30, 
29, 21, 22, 23, 26, 28, 24, 25, 20, 19, 18, 17, 16, 14, 15, 13}; 
ck.Jration: 1.08333 
size: 50 
ck.Jration: 0.51667 
size: 50 
ck.Jration: 2.96667 
size: 50 
cu ration: 1.68333 
size: 50 
ck.Jration: 0.96667 
size: 50 
OM; 

> 
> dd4 := l[random(150),random(150)): i in [1 .. 500)); 
> demo_fd(dd4,5); 
n_size(i): 
147· 
s :55; 
m·11· 
g{sJ :1s2. 113,126,121.138, 129,49, 11. 75, 18, 11; 
duration: 4.15000 
size: 143 
{147, 148, 149, 150, 145, 143, 144, 142, 141, 140, 139, 127, 
128, 129, 131, 132, 133, 134, 138, 137, 135, 136, 117, 116, 
115,114,119,118,123,121,120,124,125,126,109,110, 
112, 113, 108, 107, 106, 105, 104, 101, 102, 103, 96, 98, 97, 
100,99,93,94,95,83,82,80,78, 79, 77, 76,84,85,86, 
87,90,89,88,91,92,48,49,50,52,51,54,53,55,45,47, 
46,43,44,42,40,41,38,39,56,57,58,59,62,63,61,60, 
72,73, 75, 74, 70, 71,69,67,68,66,64,0, 1,2,6, 7,8, 
9,5,3,4, 18, 16, 17, 14, 15, 10, 11, 12, 13,26,27,25,24, 
23, 21, 22, 20, 19, 31, 30, 28, 29,34, 33, 35, 36); 
ck.Jration: 5.18333 
size: 143 
duration: 1.53333 
size: 143 
duration: 38.98333 
size: 143 
dJration: 5.33333 
size: 143 
ck.Jration: 2.86667 
size: 143 
OM; 

> 
> dd5 := l[random(450),random(450)]: i in [1 .. 1000)}; 
> demo kl(dd5,6); 
n_size(i): 
398· 
s:375; 
m:7; 
g{s}: {35,174,278,222,375,372,305); 
duration: 22.28333 
size: 391 
{113,112,107,106,111,109,120,121,119,118,115,117, 
116,90,91,89,88,92,93,95,94,98,97, 103,104,101, 
102,99, 100,124,125,122,123,128,127,126,132,131,130, 
133, 134, 135, 139, 138, 137, 136, 164, 163, 162, 161, 160, 
159,167,166,165,171,170,169,168,172,174,173,142, 
143, 140, 141, 145, 144, 146, 147, 149, 148, 150, 151, 154, 
152,153,158,157,155,156, 75, 76,73, 74, 71, 72,70,69, 
67,66,61,60,63,64,62, 77, 78,81,80,82,84,86,87,85, 
23,25,22,31,28,26,27, 13, 15, 17, 16, 19, 18,20,21, 12, 
11, 10,9, 7,6,0, 1,5,3,2,57,59,56,55,52,51,53,45, 
46,42,44,43,48,47,50,49,36,37,38,39,40,35,34,33, 
32,298,297,300,299,301,302,305,304,303,312,311,314, 
310,309,308,306,316,317,320,321,319,322,323,325, 
324,283,282,279,280,281,287,285,286,291,289,290, 
295,296,294,293,292,274,272,275,278,277,269,271, 
268,266,267,252,250,251,249,248,246,245,257,256, 
255,262,261,265,264,258,260,259,176,177,178,182, 
184, 183, 180, 181, 186, 185, 187, 190, 189, 188, 194, 192, 
196,197,195,198,199,201,200,207,206,203,204,202, 
210,208,212,213,215,230,231,229,228,227,226,225, 
223,224,222,221,219,220,218,216,217,239,238,242, 
241,243,244,232,233,235,236,237,372,370,371,367, 

'.K.ept:er a Cantor Tutorial 35 



369,368,359,358,361,360,352,353,355,364,363,366, 
365,350,349,346,342,341,343,345,340,339,338,337, 
331,332,333,334,335,336,326,327,329,330,328,373, 
375,379,377,389,388,387,386,383,380,384,385,391, 
390,392,393,395,394,399,398,396,397,400,401,402, 
403,404,405,407,406,409,408,411,412,410,413,414, 
415,417,416,429,428,426,427,424,425,419,418,421, 
422,420,432, 435, 431, 430, 437, 436, 441, 444, 438, 440, 
439, 449, 450, 448, 446, 445,447); 
duration: 25.21667 
size: 391 
duration: 3.76667 
size: 391 
duration: 187.05000 
size: 391 
duration: 10.43333 
size: 391 
duration: 6.73333 
size: 391 
OM; 

> 
> dd6 := {[random(1000),ranoom(1000)): i in (1 .. 1000)}; 
> demo_fd(dd6,7); 
n_size(i): 
629; 
s :614; 
m·5· 
g{sJ :

0

{106. 112. 522,754.807); 
duration: 2.50000 
size: 94 
{774,782,771,763,765,544,555,561,560,562,565,622, 
614,638,636,703,715,754,875,871,886,895,908,909, 
911,931,939,932,961,949,988,974,813,832,814,807, 
794,858,857,847,849,281,283,280,296,284, 188, 182, 
232,210, 197,252,263,270,273,97, 78,34, 106,98,33,30, 
4,28, 168,170,172,156,163,125,121,110,112,300,304, 
311,369,370,344,350,397,391,382,411,427,459,476, 
474,515,522, 496, 514,493,485}; 
duration: 2.40000 
size: 94 
duration: 0.40000 
size: 94 
duration: 4.03333 

comments on this execution trace 

size: 94 
duration: 1.20000 
size: 94 
duration: 0.80000 
size: 94 
OM; 

> 
> display_results(); 

n_size,e_size,m_size,x_size, t1,12,t3,t4,t5,t6 

9, 57, 124, 50,147,398,629), 
11, 99,200,191,493,996, 1000), (3, 5, 5, 7, 11, 7, 5], 
5, 20, 38, 50, 143, 391, 94), 
0.033, 0.267, 1.183, 0.883, 4.150, 22.283, 2.5001, 
0.067, 0.200, 1.300, 1.083, 5.183, 25.217, 2.400 , 
0.017, 0.050, 0.267, 0.517, 1.533, 3.767, 0.400), 
0.017, 0.417, 1.533, 2.967, 38.983, 187.050, 4.033), 
0.067,0.167,0.700, 1.683,5.333, 10.433, 1.200), 
0.033, 0.233, 0.467, 0.967, 2.867, 6.733, 0.800fl; 

n em xtlt2t3t4t5t6 

9 11 3 5 0.03 0.07 
57 99 5 20 0,27 0.20 

124 200 5 38 1.18 1.30 
50 191 7 50 0.88 1.08 

147 493 11 143 4.15 5.18 
398 996 7 391 22.28 25.22 

Q1; 

> 
> 

629 1000 5 94 2.50 2.40 

> $ save('all_fddata','all_fddata'); 
> !recordOutput 
! Recording Output is off 
> !echo off 
> 

0.02 0.02 0.07 0.03 
0.05 0.42 0.17 0.23 
0.27 1.53 0.70 0.47 
0.52 2.97 1.68 0.97 
1.53 38.98 5.33 2.87 
3. 77187.05 10.43 6. 73 
0.40 4.03 1.20 0.80 

Just for the sake of legibility, we have used for displaying the formatted results derived from 
invoking display _results() the standard Cantor console font (monaco) . 
The following will help you understand these results: 

col. label description 
n number of nodes in the graph 
e number of edges in the graph 
m max. nbr. of children at any node 
x cardinality of the fixed point set 
tl run-time for naive fixpoint algorithm 
t2 run-time for naive finite diff. algorithm 
t3 run-time for hand-crafted finite diff. algorithm 
t4 run-time for 1st level mechanical finite diff.- algorithm 
t5 run-time for 2nd level mechanical finite diff.- algorithm 
t6 run-time for mechanical finite diff.- algorithm, with dead code elimination 

From the displayed results it is clear that the best version of the algorithm is the one 
corresponding to column t3, i.e. the hand-crafted finite differencing version, which made use of 
an identity, which an automated program transformation system could not derive from the naive 
fixed point definition of the problem. The algorithm derived from a mechanical application of 
finite differencing with dead-code elimination displays comparable results (in column t6), within 
a constant multiplicative factor. 

Exercises 
- what happens if one adds an arrow 7->1, represented by the pair [7,1] in the dependence 
graph. Hint: Compare the pre-requisites of 7 with those of 1,2, 4 ,6 or any other node. 
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- the pre-requisite analysis was carried out for a single source situation: find the pre-requisites for 
a single chapter, find the reacheability set for a single source node. Restate this analysis and the 
algorithms for multiple sources 
- could the algorithms be made more efficient, if instead of computing the whole reachability or 
pre-requisites set of a given source, the problem was to test whether a specific node belongs to 
that set? 
- let #X be the cardinality of the prerequisites set. Show that the optimized versions of the 
algorithm have an asymptotic time complexity O(#X), thus may only be improved by constant 
factors - complexity wise, a marginal improvement. Verify this by testing with numerous graph 
configurations. 

Example 4: pre-requisites - revisited-2 

Here we will look into the issue of presenting correctly, the prerequisites, in an order compatible 
with that of the given dependence graph. This compatible order could be defined as follows: 
let S be the given set, let D be the dependence graph, let T be the sorted collection. 
If a, b are elements of S and a is a pre-requisite of b according to D, then a should precede b in 
T. 
In example 4, Sis {2,1,4,6}, and Dis dependence, the graph represented by 

{ (1,2), (1,4), [1,6), 
[2,3), [2,5), (2,7), 
[4,5), [4,7), 
[6, 7), [6, 8), [6, 9) 

}; 
Since 2 is not a prerequisite to 4 or 6, nor 6 a prerequisite to 2 or 4 , nor 4 a prerequisite to 2 or 6 
then 2, 4, 6 may be put into T in any order relative to one another. However 1 is a prerequisite to 
2, 4 and 6. Therefore 1 should be placed ahead of 2,4,6. Therefore [1,2,4,6] or [l] followed by 
any permutaion of { 2,4,6} is an acceptable solution. 

Any such acceptable ordering of S is called a topological order of S (relative to the order 
specified by D). 

partial orders. transitive closures 
A relation R is a partial order relation if: 
-it is antisymmetric: a Rb & b R a imply a= b 
-it is transitive: a R b & b R c imply a R c 
The dependence graph of example 4 is closely related to a partial order relation but is not a partial 
order. Indeed, one has 1->2 and 2->3 in the graph, but not 1->3: transitivity is violated. Adding 
all the missing edges, to meet the transitivity requirement is called 'computing the transitive 
closure'. This is easily done, e.g. by means of any of the single source graph reachability 
algorithms we have seen, for instance the naive one: 

X := {s}; 
f := func(d); return d%+{g{x}: x ind}; end; $ f(D) is D+g[D] 
T := f (X); 
while X /= T do 

X := T; 
T := f(T); 

end; 
X := X less s; $ remove the source from X 
$ at this point Xis the fixed-point i.e. 
$ the set of all non-trival nodes 
$ in g reachable from the single sources 

One could augment g by adding all the edges from the source s to the reachable nodes: 
g := g + {[s,u]: u in X}; 
And then doing this for every possible source node in g, i.e. in domain(g): 

for sin domain(g) do 
X := {s}; 
f := func(d); return d%+{g{x}: x ind}; end;$ f(D) is D+g[D] 
T := f (X); 
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end; 

while X /= T do 
X := T; 
T := f(T); 

end; 
$ at this point Xis the fixed-point i.e. 
$the set of all non-trival nodes 
$ in g reachable from the single sources 
X := X less s; $ remove the source 
$ augment g with edges linkings to each reachable node 
g := g + {[s,u]: u in X}; 

$ at this point g contains its transitive closure 

A map g representing a binary relation is a pre-partial order if when it is augmented by its 
transitive closure it is a partial order. 

topological sort 
We need, for computing the topological sort, to be sure that our dependence graph D is a pre­
partial order. However, we will see that we don't need to compute the transitive closure. 

If Dis really a pre-partial order, all we need is to find the elements of S which have no pre­
requisites (in S), according to D, put them into an ordered collection T, and remove them from 
S. And we do this until S becomes empty. 

$ given graph D, input set S 
T := []; $ an empty ordered collection 
g := {[y,x]: [x,y] in D}; $ g is the inverse graph of D 
$anode has no predecessor in D iff it has no successor in g 
no_predecessors := {x: x in S I #(g{x}*S) = 0 }; 
while #S /= 0 and #no_predecessors /= 0 do 

end; 

T := T+[x: x in no_predecessors ]; 
S := S - no_predecessors; 
no_predecessors := {x: x in S I #(g{x}*S) = 0 }; 

$ at this point S should be empty 
$ and Tis the sorted collection 

This is of course a much simpler algorithm, which lends itself to numerous improvements. 

Exercises 
- we exposed in a previous section 4 algorithms for the pre-requisite problem. Adapt them all to 
the computation of the transitive closure. What can be said about their efficiency? 
- compare this presentation of a transitive closure algorithm with that of Warshall algorithm in 
your prefered text book. 
- carry out, on the exposed topological sort algorithm, the finite differencing analysis. Propose 
an efficient algorithm, test and compare the results. 
- what is the fixed-point computed by the topsort algorithm? 
- given a dependence graph D as above, how can we test if it is a pre-partial order or not? Hint 1: 
produce an algorithm derived from that of the topological sort Hint 2: prove that Dis in pre­
partial order iff D has no cycle, i.e. there is no node in D which is contained in its own pre­
requisites set. 
- define 'sorting' (i.e. re-arranging a collection of strings or numbers in ascending order) as a 
fixed-point problem. Hint: use the merge function exposed in example 2. 

Example 5: a simple real-time system: a digital watch-revisited 

We have already identified the three main collections in Statecharts: 
- the set of blobs, representing the individual states of the system being described, as well as 
groupings of such states 
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- the set of subsystems, representing the breakdown of a blob into concurrent subsystems 
- the transitions (labelled arrows) 
What is essential is the representation of state groupings, nestings and decompositions. We will 
therefore concentrate on the maps describing these relations: 
- blobs represents the blobs nesting association 
- subsystems represents the blobs decomposition into susbsystems, i.e. partitions 
- transitions is the map representing the associations drawn by the arrows 
Initially these maps are empty: 

blobs := {}; 
subsystems:={}; 
transitions:={}; 

More collections will be needed. For instance there is a collection which plays an important 
pragmatic role, but not a conceptual one: the collection of identifications for all the objects in the 
Statechart. We assume that each object is assigned a unique atom, and that each atom is 
associated to a text string providing a name for that object. As a matter of fact we will separate 
state names from event names. E.g. whenever a new blob A is introduced we will need the 
following instructions (or equivalent): 

A:= newat; $ create an atom 
state name(A) := 'A'; $ associate a name 

and analogously for each new event, an atom will be associated with an event_name. 

The set blobs reproduces the blob's hierarchy and the set subsystems reproduces the 
subsystem hierarchy as in the following diagram examples: 

A 
[ill ~ 

~ 

B 

f71 s21 
·-------------------------------

tJq s4 
'• '• '• '• '• '• .. 
'• . _____ ___, 

blob A contains blobs al,a2,a3 
[al,a2,a3] := [newat,newat,newat]; 
state name(al) := 'al'; 
state-name(a2) := 'a2'; 
state-name(a3) := 'a3'; 
$ reproduce the membership ai in A 
blobs{A} := {al,a2,a3}; 

blob Bis partitionned into subsystems sl,s2,s3,s4 
[sl,s2,s3,s4] := 

[newat,newat,newat,newat]; 
state name(sl) := 'sl'; 
state-name(s2) := 's2'; 
state-name(s3) := 's3'; 
$ reproduce the membership si in B 
subsystems{B} := {sl,s2,s3,s4}; 

The following diagram mixes both kind of hierarchies: 

C 

d3 

d2 

C := newat; 
state name(C) := 'C'; 
[dl,d.2,d3] := [newat,newat,newat]; 
subsystems{C} := {dl,d2,d3}; 
[fl, f2, el, e2] := 

[newat,newat,newat,newat]; 
[gl,g2,g3] := [newat,newat,newat]; 
blobs{dl} := {el,e2}; 
blobs{d2} := {fl,f2}; 
blobs{d3} := {gl,g2,g3}; 
state_name(dl) .- 'dl'; 

state_name(g3) .- 'g3'; 

Observe that the set of all individual states is exactly 
states := domain(blobs)+range(blobs) + domain(subsystems) + 
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range(subsystems); 
Another - should be equivalent - definition is: 

states:= domain(state_name); 

These examples illustrate the straightforward use of maps to represent blobs and subsystems 
hierarchy. 

the different types of transitions 
We will consider the following different kind of transitions: 

1-the ordinary case : an arrow labelled by an event name between an origin state and any number 
of target states (N.B. in fig. 3 there is one instance of an arrow pointing to more than one target 
state: in blob stopwatch from state zero to states reg and on, labelled by event b). A transition 
means : if the origin state is active, then it is de-activated, and the target states become active. An 
ordinary transition from state a to state b labelled bye is represented by a term [[a,e],b] i.e., if 
there is no other transition from state a, labelled bye, [a,e] is uniquely associated to the target 
state b: 

transitions([a,e]) := b; $ assume no other transition from [a,e] 
An ordinary transtition from a to a set of states {bl ,b2, ... } labelled by event e is similarly 
represented by: 

transitions{[a,e]} := {bl,b2, ... }; 

2-the conditional transition : the transition label has a part surrounded by [] which specifies a 
boolean condition on specific state activation : the condition in(s) holds whenever the states is 
active; this is implemented by the predicate in_state(s) where in_state is a boolean valued map. 
This means transition may take place only if the condition holds. A conditional transition from 
state a to state b labelled bye under condition in_state(s) is represented by a term [[a,e],[b, 
'in state( s) 1] i.e. if there is no other transition from [ a,e] then: 

transition([a,e]) := [b, 'in state(s)']; 
The condition may be complex, e.g., Tn_state(s) and not in_state(u), and other atomic predicates 
than in state may be considered. The string will be analyze-d(see section 6.3 of the user 
manual), the resulting abstract syntax tree will be evaluated, and depending upon the value the 
transition will yield an activation change or not. 

Another collection has been introduced: the map in_state: states->boolean. Actually this map 
maintains the activation status. Thus, the 'current state' -which comprises the activated blob and 
all the derived states in nested blobs and subsystems is defined as: 

curState := {x: x in states I in state(x)}; 
When a transition from a to b takes place, ft is because in state(a), i.e. a c curState, then the de­
activation of a takes place and is followed by an activation of b: 

in state(a) := false; $ de-activation of a 
in-state (b) := true; $ activation of b 

A transition represents an explicit activation request. It should be followed by the activation of all 
the derived states, all the states which are implicitly activated. 

3-the transition with broadcasting of an event : the transition label is of the form trigger_ event I 
broadcast_ event. This transition behaves like an ordinary transition. As the target state becomes 
active, the event broadcast_event is sent to all the blobs and subsystems, and therefore could 
trigger other transitions. Broadcasting could generate chain-reactions, since event propagation 
follows immediately the target events activation. In fig. 3 there is only one example of a 
broadcast, the transition labelled bt _ rmlclh (battery removed/ clear history) between the blobs 
alive and dead. There is however no way of knowing the effect of the event clh, since it is not 
described in fig. 3. 

4-the transition to a H * point inside a blob : this symbol represents the last active state in the blob 
before it was last de-activated. If that blobs comprises subsystems, this 'most recently active' 
state contains the 'most recently active' state of each of the subsystems partition, and so on, until 
all the nested individual states which were 'most recently active' sub-parts of the given blob are 
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detailed. The record of this 'most recently active' state and of its 'most recently active' sub-parts 
is kept in a history structure. When a transition having as target a H * point is taking place, that 
'most recently active' state is re-activated along with its 'most recently active' sub-parts. 

E.g. there is a transition triggered by event a from chime to H*-stopwatch. That 'most recently 
active' state may be one of the following five: zero, {reg, on}, {reg, off}, {lap, on}, {lap, off}. 

We introduce here another map history states -> 2 states to record, before the de-activ,ation of a 
state its 'most recently active' state and embedded states. For instance that map always satisfies: 

history(stopwatch) in {zero, {reg, on}, {reg, off}, {lap, on}, 
{lap, off}}; 

5-the transition to a default state : When a blob is getting activated by a transition -the arrow 
points at the border of the blob rectangle- no specific state inside that blob is the target of the 
transition, then the state which gets that activation is the default state. The default state is 
indicated by a non-labelled arrow originating at a dot, and pointing to the default state. For 
instance, the default state of the watch is dead, the default state of the power is ok, the default 
state of light is off, etc .. Unlike transitions to a H* point inside a blob, a transition to a default 
state has no specific denotation in our map transitions; it is while calculating where and how 
an activation propagates that a default state activation is uncovered. 

The map default: states-> states records these association between a blob and its default state: 
default(watch) := dead; 
default(power) := ok; 
default(light) := off; 

propagation of activation and de-activation 

We have already been alluding to activation or de-activation propagation. We will try to be 
exhaustive: 
- whenever a transition gets a target state b activated, then implicitly, all the blobs containing b 
are activated, and this propagates to all the blobs containing a blob including b, and so on. We 
call this state membership propagation up the blobs. 
- whenever a transition gets a target state b activated, then implicitly, b's default state gets 
activated, and this propagates to the default state of b's default state, and so on. We call this 
default state activation propagation. 
- whenever a transition gets a target state b activated, if b is actually a blob partitioned into 
subsystems, then implicitly, each of the subsystems default state gets activated, and so on down 
the default states and subsystems. We call this the full default state activation propagation. 
- whenever a transition from state a gets a target state b activated, then state a gets de-activated, 
and all the states and subsystems of a which are not contained directly or indirectly in b should 
be de-activated too. We present here two different situations: 

A 
al 

[ill@] b3 

a2 

a transition represented by [[al,e],b3] : 

all the states contained in al and not 
contained in b3 should be de-activated. 
We call this deactivation propagation 
across states 
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A 

@] 

[ill [g] 
bl b2 

a2 

[j 

a transition represented by [[cl,e],a2] : 

it is insufficient to de-activate all the 
states in c 1 not contained in a2. This 
transition leaves completely the 
partitionned blob al, whence all the 
subsystems of a 1 should be de­
activated. Since they are disjoint sets of 
states, all the states contained in a1 
should be de-activated 
We call this deactivation propagation out 
of subsystems 

An actual transition may require a combination of these two kinds of de-activation processes. 
This will be the case of a transition from a deeply nested state, whithin a subsystem, to one of 
the top states in the blobs hierarchy. Fig. 3 exhibits all kinds of combinations of these de­
activation schemes: e.g. the transition represented by the arrow from displays to beep labelled 
t_hits_tm [in(enab)J. 

propagation and closures 
All the above propagation processes are instances of the 'pre-requisites' problem or of its 
inverse, the reacheability problem. In each case the main computational tool is the efficient 
function for computing all the nodes reachable in a graph g from a given source s: 

$-------------------------------reach 
reach := func(g,s); -
local-X,T,dN,NO; 

X := {s}; 
$ T = X%+{g{x}: X in X} i.e. T = X + g[X] 
T := g{s} withs; 
dN := T-X; 
$ X /=Tiff T-X /= {} iff g[X] - X /= {} iff #dN /= 0 
while #dN /= 0 do 

$NO= g[T] - T 
NO := {y: u in dN,y in g{u} I y notin T}; 
$ achieve T = X + g[X] 
X := T; $ X+dN; 
T := T + NO; 
$ assert T = X + g[X] 
dN := NO; 
$ assert dN = g[X] - x = T-X 

end; 
$ at this point X = X + g[X], T = X 
$ the set of all non-trival nodes 
$ in g reachable from the single sources 
return X less s; 

end; $ end reach 
The main design problem is to define each time what is exactly the graph g, and how it is related 
to the already identified collections. 
Let us consider all the above listed cases: 
-state membership propagation up the blobs.: we need to find, given a target state b, which blobs 
x satisfy b in blobs{x} orb in subsystems{x}. We have to find which are the pre-requisites or 
predecessors of b in the graph blobs u subsystems. The solution consist in introducing the 
inverse of graph blobs u subsystems. Let it be called blobs_of: 

blobs of:= {[y,x]: [x,y] in blobs+ subsystems}; 
the propagation set 'up the blobs' from a given state b is then exactly: 

reach (blobs of ,b); 
-default state activation propagation. has seemingly a very similar solution: given a state b the set 
of all the directly or indirectly default states to activate would be 

reach_(default,b); 
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However this is true only if there are no partitioned states and subsystems in this set. If c is a 
partitioned state in the collection of direct or indirect default states of blob b, c has no 
default_state, only its subsystems may have default states. The computation of the propagation 
set continues by adding all the default states of the blobs in 

subsystems{c} 
and the indirect ones derived from them. The difficulty here is that the default map disconnects 
simple blobs from partitioned ones. For instance, in the example fig. 3, the state alive has no 
default state, thus the reach_ function cannot find default states corresponding to a partitionned 
state. 
The solution is to redefine the map default by adding associations between all the partionned 
state and the default state in each subsystem. In the example of fig. 3 this would imply adding 

default{active} := {ok, off, c disab, disab}; 
and an arbitrary state to select from {displays, beep} - since this was omitted from the chart. 
Formally the change is defined by, 

for x in domain(subsystems) do 
default{x} := {default(y): yin subsystems{x}}; 

end; 
And if we want to take into account the omission of defining sometimes default state: 

for x in dornain(subsysterns) do 

end; 

default{x} := {default(y)?arb(blobs{y}): 
yin subsystems{x}}; 

I.e., for a given subsystem y, if default(y) is undefined, then take an arbitrary element in the 
blob y, and let it play the role of the default. 

With this modification, the full default state activation propagation. set for a given target state b is 
exactly reach_ (default, b). 

-deactivation propagation across states : all the states which directly or indirectly are contained in 
the origin_state, and are not directly or indirectly contained in the target_state, need to be de­
activated. It is easy to see that all the direct or indirect members of a given state x are in 

reach (blobs+subsysterns,x); 
Thus, for a transition from state a to state b, the states which need to be de-activated are those in: 

reach (blobs+subsysterns,a) - reach (blobs+subsystems,b); 
An important subcase, is when the origin and the target state are the same. In that case, the 
solution is to de-activate all the member states, and let the full default state activation 
propagation. mechanism activate the default states. 

-deactivation propagation out of subsystems : we have to be able to compare the partitioned 
blobs in which the origin and the target states belong. Let us assume we have been able to 
identify that the origin state a was in a partitioned blob s, and that the target state b is not a direct 
or indirect member of s, i.e. if b notin reach ( blobs + subsystems, s) then the 
deactivation concerns all the members of: -

reach_(blobs+subsysterns,s) - reach_(blobs+subsysterns,b); 

We have now to explain how the partitioned blob containing a given state is determined. This is a 
variant of the above determination of blobs of. 
For convenience, let us call a 'partitionnedblob' a 'system'. We have to compute syst_of, the 
map which associates to a blob the system which cantains it. The set of systems is exactly 
domain(subsystems). To determine to which system a given state x belongs, one has to find if 
there is a blob y, in domain(subsystems), such that 

x in reach (blobs+subsystems,y); 
Since subsystems may be nested too, there may be more than one such element. All we need, is 
to find, if there is a y in domain(subsystems), having a subsystem u such that: x in reach_(blobs, 
u). Since we are searching all the subsystems of y, this is stated formally: 

x in %+{reach (blobs, u) : u in subsysterns{y}} 
We have to add the possibility that x itself is a subsystem, i.e. one of these u in subsystems { y}. 
The full expression is therefore: 

x in %+{reach_(blobs, u) with u: u in subsysterns{y}} 
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We have defined a map: 
syst blob := {}; 
for yin domain(subsystems) do 

syst blob{y} := {}%+{reach (blobs, u) with u: 
- - u in subsystems{y}}; 

end; 
which associates to any system all its direct or indirect members, which are not part of another 
system. The map syst_of is therefore its inverse: 

syst_of := {[y,x]: [x,y] in syst_blob }; 

Observe that during this investigation, we have been applying the reach_ function over and over 
again to well-defined graphs: blobs, blobs+subsystems, blobs_of, default. The only change 
was in the source node used. We could instead compute the transitive closures of these graphs, 
as was indicated in the pre-requisites example, using the func: 

closure := func(g); 
local X,s,T,PrevNew,New,changed; 

for sin domain(g) do 
X := reach (g,s); 
$ augment g with edges linkings to each reachable node 
g := g + {[s,u]: u in X}; 

end; $ end for 
$ at this point g contains its transitive closure 
return g; 
end; $ end closure 

We will therefore introduce the following closures: 
Blobs:= closure (blobs); 
Blobs n subs := closure (blobs+subsystems); 
Blobs-of:= closure(blobs of); $ blobs of is the inverse of 

- - $ blobs+subsystems 
Default := closure(default); $ default is extended with 

$ subsystems defaults 
These closures are computed once and for all, for a given statechart. Then the various 
propagation sets have very simple forms: 
- -state membership propagation up the blobs.: for target state b: 

Blobs of{b} 
- -(full ) aefault state activation propagation. : for target state b: 

Default {b} 
- -deactivation propagation across states : for an origin state a and a target state b: 

if a/= b then 
Blobs n subs {a} - Blobs n subs {b} 

else -Blobs_n_subs {a} - -
end; 

- -deactivation propagation out of subsystems : we introduce another map syst_of defined as 
follows: 

syst blob := {}; 
for yin domain(subsystems) do 

syst_blob{y} := {} %+ {Blobs{u} with u: 
u in subsystems{y}}; 

end; 
syst of := { [y,x]: [x,y] in syst blob }; 

The detection test, to check if a transition from state a to state b is actually 'out of a subsystem' is 
is defined(syst of(a)) and 

- (syst of (a)-/= syst of (b)) 
and b-notin Blobs n-subs {syst of(a)} 

If this expression is true, the propagation set is then 
Blobs_n_subs {syst_of(a)} - Blobs_n_subs {b} 

the include file of the statechart interpreter 

a Cantor Tutorial 44 



$ 
$ 
$ 
$ 
$ 
$ 

statechart representation 
ex: a digital watch according 

to D. Hare!, CACM 31, 5, 1988, pp 514-530 

$, ___________________ _ 

$1,-----global data 
$:i.------ssimul init 
$:i.-----transitions: detailed prescription 
$:i.------reach 
$:,,.-----<closure 
$1>-----naming 
$:,,-----broadcast 
$i,-------1perform 
$ .... -----simul 

$ global data 
$ several maps to descnbe the system decomposition 
subsystems := O; 
blobs:={}; 
default := {}; $ default state in a blob 
history := {}; $ record the last state the blob was in 
transitions := {}; $ the event directed transition map: {[state, 
[event, state, ... n, .. } 

theVerb := true; $ the simulation mode: 
$ verbose (by default) or not verbose 

theEventQ := D; $ the broadcast event queue 

$ auxiliary map for trace execution 
$ give a name to each state suitable for a trace exec. 
state_name := state_name?{}; 
$ give a name to each event suitable for a trace exec. 
event_name := event_name?(); 
names_:={}; $ the union of event_name and state_name 

$ other auxiliary maps are created at init time: simul_init: 
$ states, blobs of, in state, Blobs n subs 
$ Blobs, syst_6iob, syst_of, Default -

$ ____________ __,.; processing: 
$ simul_nit 

simul_init := func(theSystem, theFirstEvent opt verb); 

$ define the whole set of states 
states:= domain(blobs)+range(blobs); 
blobs_of := {(y,x]: [x,y] in blobs};$ blobs inverse map 
in_state := {Ix.false): x in states}; $ all states are 

$inactive , 
in_state(default(watch)) := true; $ excepted 'dead' 
$ the current state is {x: in_state(x) = true} 

$ complete the default map by incorporating links between 
$ partitionned states and default states in subsystems 
for [x,y) in subsystems do 

$ tfnd or define a default state 
default(x} := 

default{x} with default(y)?arb(blobs{yl); 
end; 

$ pre-compute maps corresponding to membership relations 
$ or their inverse 

$ the closure of the 'contains' relation 
$ for states and blobs 
Blobs_n subs := closure(blobs+subsystems); 
Blobs_of := closure(blobs_on; 
Default := closure(default); 
$ given a state, find which system it belongs to: 
Blobs := closure(blobs); 
$ which blobs belong to which syst? 
syst blob := {}; 
for x7n doma1n(subsystems) do 

syst_blob{x} :={I%+ {Blobs{y}: yin subsystems{xl}; 
end; 

$ add to syst_blob the sussystems themselves 
syst_blob := syst_blob+subsystems; 

$ find out in which syst a blob is: 
$ given a state st, it belongs to syst syst_of{x} 

$ syst_o is syst_blob inverse map 
syst_of := {[x,y]: (y,x] in syst_blob}; 

theEventQ := D; $ the broadcast event queue 
names_:= state_name+event_name; $ used by naming 

theVerb:=verb?theVerb; 
$ start by launching the theSystem sencing it theFirstEvent 
perform(theFirstEvent,theVerb); $ verbose! 

end; $ end simul_init 

$ ________________ blobs & 
subsystems 

$ as blobs are introduced, arbitrary ids are 
$ assigned to them: these ids are atoms 
$ created by newat. 

$ The layout of the system described by a statechart 
$ is captured by two maps: 
$ blobs, subsystems 
$ for documentation and visibility another map is essential: 
$ state_name 

$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 

For instance if a new blob A is introduced: 
A :=newat; 
state_name(A) := 'A'; 

If A is supposed to contain a 1,a2,a3 as sub-blobs 
[a1,a2,a3) := [newat,newat,newat); 
state_name(a1) := 'a1'; 
state_name(a2) := 'a2'; 
state_name(a3) := 'a3'; 
blobs{A} := {a1,a2,a3}; 

this captures the membership ai in A 

If however, A is decomposed into 'orthogonal' 
or concurrent subsystems 
capture A as Harel's 'cartesian product' a1 x a2 x a3 

subsystems{A} := /a1,a2,a3}; 
Then a 1,a2,a3 may be further decomposed into 
blobs and subsystems 

$:.__ _____________ __:transitions 

$ the transition map is a set of items 
$ fiorig_state, event],target_state] 
$ (this is the most common case) 
$ fiorig_state, event],[target_state, conditionll 
$ fiorig_state, event],[target_state, action_eventD 
$ in these item representations, 
$ target state may be one of the following: 
$ an atom (this is the most common case) 
$ 'an exprn strin~ defining target_state(s)' 
$ ast_expm_def1nin1Ltarget_state(s) 
$ when the target_state is not an atom, the eval function 
$ is invoked to compute, at simulation time the value 
$ of the string or ast expression. This value should be 
$ either a single atom or a set of atoms representing each 
$ an individual state 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 

a string is used to designate a target state as the 
'history' 

of a given blob, i.e. the last known state 
in which that blob has been seen active 

[state_a, event_a), 'history(blob_m)'] 
represent a transition from state_a, under event_a to the 
state in which blob_m was left, the last time it was active 

conditions are represented by 
'an expm string expressing a boolean' 
ast_expm expressing a boolean 

when a condition is encountered, it is evaluated 
by the eval function, at simulation time. Only if the 
boolean is true, the corresponding target state(s) is (are) 
added to the actual transition set from the given 
orig_state. 

$ a priori transition is not a smap .... 

$_-,-- ______________ main processing 
functions: 
$ compute the dosure of the relation state in blob so&so 
$ to compute this closure, there is no diff. betw blobs 
$ and subsystems 
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$ compute the closure of blobs+subsystems: 

$------------------reach_ 
reach := func(g,s); 
local X,T,dN,NO; 

X :=/s}; 
$ T = X%+{g{x}: x in X} i.e. T = X + g[X] 
T := g/s} with s; 
dN ·= 'r-X· 
$Xi= Tiff T-X I={} iff g(X] - XI= 0 iff #dN I= 0 
while #dN I= 0 do 

$NO= g[T]-T 
NO:= {y: u in dN,y in g{u} I y notin T}; 
$ achieve T = X + g[X] 
X := T; $ X+dN; 
T := T + NO; 
$ assert T = X + g[X] 
dN := NO; 
$ assert dN = g(X] - X = T-X 

end; 
$ at this point X = X + g[X], T = X 
$ the set of all non-trival nodes 
$ in g reachable from the single source s 
return X less s; 

end;$ end reach_ 

$-------------------------------closure 
$ computes the transitive closure of 
$ the graph g 
closure := func(g); 
local X,s,T,PrevNew,New,changed; 

for s in domain(g) do 
X := reach_(g,s); 

$ augment g with ~es linking s to each reachable node 
g := g + {[s,u]: u in X]; 

end; $ end for 
$ at this point g contains its transitive closure 
return g; 

end; $ end closure 

$-------------------------------naming 
$ in all the global data, atoms 
$ are used to designate states, blobs, systems, events 
$ invoking naming(g) allows a display of the same information 
$ where atoms are replaced by strings 
naming := func(g); 

local gn; 
if is_atom(g) then return names_(g); 
elseif is_stnng(g) or is_number(g) 

then return g; 
elseif is_tuple(g) then return [naming(x): x in g]; 
elseif is_set(g) then return {naming(x): x in g}; 
else 

end; 

print! 'Vlinvalid type\n'; 
return g; 

end; $ end naming 

$ broadcast 
$ the interpreter: 
$ for each event, computes all the possible transitions 
$ from the current state 

$ simple broadcasting actions consists in: 
$ storing the events in a queue expectin~ that 
$ at the end of each perform-ance, the interpreter will 
$ empty the queue 
broadcast := func(anEvent); 

theEventO := theEventO with anEvent; 
return· 

end; $ end broadcast 

$-------------------------------perform 
$ the interpreter: 
$ for each event, compute all the possible transitions 
$ from the current state 

$ perform is a very simple interpreter: 
$ -it computes the current state 
$ -it computes the transitions in all the sub-systems 
$ of the current state to another ste 
$ perform supports the conditional events: conditions 

$ are expressed as strings or ast's, which are evaluated 
$ on demand, 'dynamically' 

perform := func(anEvent opt verb); 
local rurState, allTrans,v_state,cond; 
local di, orig; 
curState := {x: x in states I in_state(x)}; 
for x in domain(history) do 

$ record history if there is something to record 
di:= Blobs_n_subs {x}*curState; 
if di I={} then 

history(x) := di; 
end· 

end; ' 
if verb then 

end; 

printf 'Vlevent: ',event name(anEvent), 'VI'; 
print! ' current_state :"; 
{ ~tate_name(x): x in curState}: 5*[9] with 'VI'; 
pnntf '\n'; 

for x in curState I in state(x) do 
$ enumerate alfthe transitions from the current state 
allTrans := transitions{lx,anEvent)}; 
$ sort out all the possible cases and 
$ compute accurately the set of transitions 
for u in allTrans do 

cond :=om; 
if is_tuple(u) then 

(v_state,cond] := u; 
else 

v_state := u; 
end· 
if is' string(v state) then 

$ compute the state from the expression 
v state:= eval(analyze(v_state)(1)); 

elsetf is ast(u) then 
$ compute the state from the expression 
v_state := eval(v_state); 

end; 

if is_string(cond) then 
$ compute the condition from the expression 

cond := eval(analyze(cond)(1 )); 
elseif is_ast(cond) then 
$ compute the condition from the expression 

cond := eval(cond); 
elseif is atom(cond) then 
$ cond is not a condition but an action event! 

broadcast(cond); 
cond := true; 

end; 
$ update the definition of the set of 
$ all simultaneaous transitions 
if is om(cond) or cond then 

ifls_set(v_state) then 
$ this is the case when history 
$ is getting 'rich'! 

allTrans := (allTrans less u) + 
v_state; 

elseif u I= v state then 
allTrans :;;;-(allTrans less u) with 

v_state; 
end; 

elseif not cond then 
allTrans := allTrans less u; 

end· 
end;$ end for u in allTrans 
$ now the syntactically aspects of allTrans have been 
$ completely processed 
if #allTrans I= 0 then in_state(x) := false; end; 
for v state in allTrans do 

rn_state(v state) := true; 
$ update all derived states 
$ is x->V state is a transition 
$ out of a subsystem? 
if x = v state then 

$ de-:activate all the members of x 
$ the default states will be re-activated 
for v in Blobs_n_subs {x}*curState do 

in_state(v) := false; 
end· 

else ' 
orig '.=X; 
$ compare syst_of(x) and syst of(v_state): 
$ is this an out-going transibon? 
$.an in transition satisfies: 
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$ v_state in Blobs_n_subs /syst_of(x)} 
if is_defined(syst_of(x)) and 

(syst_of(x) I= syst_of(v_state)) 
and v state notin 

BTobs_n_subs {syst_of(x)} then 
$ de-activate all the sates in 
$ Blobs_n_subs {syst_of(x)} 
orig:= syst_of(x); 
in state(orig) := false; 

end; 
forv in Blobs_n_subs{orig}*curState -

Blobs_n_subs {v_state}*curState do 
in state(v) := false; 

end: 
end; ' 
if blobs_of{x} I= blobs_of{v_state} then 

$ propagate state membership up the blobs 
df := Blobs of{v_state} with v_state; 
forv in df do 

in_state(v) := true; 
end· 

end· ' 
if verb then 

printf 'transition from : ', 
state_name(x),' to ', 
state_name(v_state),\n'; 

end· 
$ is 'there a default state? 
$ since default is augmented with the subsystem 

$ the reachability closure contains all that is 
$needed! 
df := Default{v_state}; 
for xf in df do 

in_state(xf) := true; 
if verb then 

printf '\lcascade to default state: ', 
state_name(xf), '\n'; 

end· 
end; ' 

end;$ for v state in allTrans 
end; $ for X in curState 
$ process broadcasted events: chain reactions are allowed 
while #theEventO I= 0 do 

end; 

take anEvent fromb theEventO; 
perform(anEvent, verb); 

end; $ end perform 

$-----------------------si m ul 
$ simple simulation: create random events 
$ and req.iests their interpretation 
simul := func(n); 

for i in 11 .. n) do 
anEvent := arb(events); 
perform(anEvent, theVerb); 

end· 
end; $ end simul 

$ 
$ 
$ 
$ 
$ 
$ 

the include file of the digital watch specification 

statechart representation 
a digital watch according 

to D. Harel, CACM 31, 5, 1988, pp 514-530 

$:----,-_blobs and subsystems 
$ ___ watch 
$ alive 
$ power light chime_st c_enab alarm_st main 
$ cisplays up_alarm update_ stopwatch 
$ cisp run 
$ disprun -
$'--- ___ events 
$ _____ transitions 
$ _____ initializations, activation 

$. ___________________ _ 

!include statechart.cntr 

$ N.B. as blobs are introduced, arbitrary ids are 
$ assigned to them: these ids are atoms 
$ created by newat 

$ several maps to describe the system decomposition 
subsystems:={}; 
blobs:={}; 
default := {}; $ default state in a blob 
history := {I; $ record the last state the blob was in 
transitions := {}; $ the event directed transition map: {[state, 
[event, state, ... n, .. } 

$ auxiliary map for trace execution 
$ give a name to each state suitable for a trace exec. 
state_name := state_name?{l; 
event name:= event name?{}; 
$ - -
$ 
$:---- blobs and subsystems 
$ $ 

$ 

$ _________________ _ 

$_-,.--...,....,..~-,-,--,--,--,-,---..---,-,,---wmch 
$ the waid-i is a blob made of dead and alive 
watch := newat; 
dead := newat; 
alive := newat; 
blobs\watchl :".' {dead,_alive}; 
defau !(watch) .= dead, 

$ 

$ 

state_name(watch) := 'watch'; 
state_name(dead) := 'dead; 
state_name(alive) := 'alive'; 

$ dead is not decomposed 

$ alive 
$,...a..,.,hv-e~is-parll___,,.,..110-ned---,,.,.1n_s_u"Tb-s-ys....,te-m-s:-------' 
$ main, power, light, chime_st, alarm_st 

[ma(n,_power, light, chime_st, alarm_st). 
.= [newat,newat,newat,newat,newat], 

state_name(main) := 'main'; 
state_name(power) := 'power'; 
state_name(light) := 1ight'; 
state_name(chime_st) := 'chime_st'; 
state_name(alarm_st) := 'alarm_st'; 

subsystems{alive} := {main, power, light, chime_st, alarm_st}; 

$ let us first deal with the 'small' subsystems 

$-,---,,-----'power 
[weak, ok] 

:= [newat,newat); 
blobsjpowerj := {weak, ok}; 
defau !(power) := ok; 

state_name(weak) := 'weak'; 
state_name(ok) := 'ok'; 

$ light 
[on,off] 

:= [newat,newat); 
blobsjlighij := {on, off}; 
defau !(light) := off; 

state_name(on) := 'on'; 
state_name(off) := 'off'; 

$__,,,_.,..--.....--chime st 
[c_disab, c_enabj -

:= [newat,newat); 
blobs\chime_st} := {c_disab, c_enab}; 
defau t(chime_st) := c_disab; 

state_name(c_disab) := 'c_disab'; 
state_name(c_enab) := 'c_enab'; 

$ C enab 
[c·-_-r-bee-p-, qu~ie"""t] __ • 
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:= [newat,newat); 
blobs{c_enab} := {c_beep, quieij; 
$ default(c_enab) := om; 

state_name(c_beep) := 'c_beep'; 
state_name(quiet) := 'quiet'; 

$~~----alarm st 
[disab, enab) -

:= [newat,newat); 
blobs{alarm_st} := {disab, enab}; 
default(alann_st) := disab; 

state_name(enab) := 'enab'; 
state_name(disab) := 'disab'; 

$.,,.--,-----,---.----·main 
[cisplays, beep) 

:= [newat,newat]; 
blobs{main} := {displays, beep}; 
$ default(main) := om; 
state_name(displays) := 'displays'; 
state_name(beep) := 'beep'; 

$~ _____ displays 
[time_, date_, chime_, alarm_, up_alarm, update_, stopwatch] 

:= [newat,newat,newat,newat,newat,newat,newat); 
blobs{displays} := {time_, date_, chime_, 

alarm_, update_, stopwatch}; 
default(displays) := time ; 
$ as a default: h1Story is the same as default state 
history(displays) := time_; 

state_name(time_J := 'time_'; 
state_name(date...) := 'date_'; 
state_name(chime_J := 'chime_'; 
state_name(alarm_J := 'alarm_'; 
state_name(up_alarm) := 'up_alann'; 
state_name(update...) := 'update_'; 
state_name(stopwatch) := 'stopwatch'; 

$~~~--.--.-up alarm 
[min_, t_min_, hour] -

:= [newat,newat,newat); 
blobs{up alarm} := {min_, t_min_, hour_J; 
$ defauft(up_alarm) := om; 

state_name(min~ := 'min_'; 
state_name(t_m,n_J := 't_min_'; 
state_name(hour_J := 'hour_'; 

$~~---update_ 
$ the following states are 'shared': date, min_, t_min_, hour_ 
$ with other blobs 
I day_, secJ 

:= [ newat, newatj; . 
blobs{update_J := {min_, sec_, t_m1n_, 

hour_, date_, day_J; 
$ default(update...) := om; 

state_name(sec_J := 'sec_'; 
state_name(day_J := 'day_'; 

$~ _____ s.topwatch 
[disp_run, zero) 

:= [newat,newat); 
blobs{stopwatch} := {disp_run, zero}; 
default(stopwatch) := zero; 
$ as a default: history is the same as default state 
history(stopwatch) := zero; 

state_name(disp_run) := 'disp_run'; 
state_name(zero) := 'zero'; 

$'---,,--~------~-----'~-run 
$ disp and run are disp_run subsystems 
[disp,run] 

:= [newat,newat); 
subsystems{disp_run} := {disp,run); 

state_name(disp) := 'disp'; 
state_name(run) := 'run'; 

$_'T""""1.------cf1Sp 
[reg, lap] 

:= [newat,newat]; 

blobs{disp} := {reg, lap}; 
$ default(disp) := om; 

state_name(reg) := 'reg'; 
state_name(lap) := 'lap'; 

$.-----. ......... --~run 
[on_r, off_r] 

:= [newat,newat]; 
blobs{runl := {o~_r, o~_rj; 
$ defau t(run) .= om, 

state_name(on_r) := 'on_r'; 
state_name(off_r) := 'off_r'; 

$;..._~~--------~-----'events 
$ consider events as an enumerated set 

$ battery events: in-sert, dy-ing, rm (remove), wk (weakening) 
[bt_in, bt_dy, bt_rm, bt_wk] 

:= (newat,newat,newat,newat]; 

$ a,b,c,d: button events : the pressing event 
$ b up = de-pressing (releasing) button b 
[a, b, b_up, c, d) 

:= [newat,newat,newat,newat,newat]; 

$ two_min 2 min elapsed time since a button was pressed 
$ I hits hr internal time reaches chime-alarm time 
$ 6eep_:-r1 beep return, i.e. return from beep state 
$ (occurs at most 2 min after entering beep state) 
$ beep_st occurs 2 seconds after entering c_beep state 
$ clh clear history 
[two_min, t_hits_hr, beep_rt, beep_st] 

:= [newat,newat,newat,newat); 

$ all the events: 
events := { bt in, bt_dy, bt_rm, bt_wk, 

a,li, b up, c, d, 
two_m"Tn, t_hits_hr, beep_rt, beep_st 
}; 

event_name := { [bt_in,'bt_in1, [bt_dy,'bt_dy1, 
bt_rm,'bt rm1, [bt wk,'bt_wk1, 
a,'a1,[b,'b'l, [b_up,'6_up'), 
c,'c'], (d,'d'J, 
two_min,'two_min1, [t_hits_hr,'t_hits hr1, 
beep_rt,'beep_rt1, (beep_st,'beep_stf 

$. ______________ ~transitions 

$ a priori transition is not a smap .... 

transitions([dead,bt_in)) := alive; 
transitions(~alive,bt_rm]) := [dead,clh];$ clh: clear history 
transitions( weak,bt dy)) := dead; 
transitions( ok,bt_wk)) := weak; 
transitions(~off,b]) := on; 
transitions( on,b_up)) := off; 
transitions( c_disab,d]) := [quiet,'in_state(chime_J1; 
transitions(lc enab,d)) := [c disab,'ln_state(chime_J1; 
transitions( c]leep,beep_si!) := quiet; 
transitions( quiet,t_hits_hr]) := c_beep; 
transitions( disab,d]) := [enab,'in_state(alarm_J1; 
transitions( enab,d)) := [disab,'in_state(alarm...)'); 
transitions( displays,two_min]) := 

[displays,'not in_state(stopwatch)']; 
transitions([displays,t_hits_hr]) := [beep,'in_state(enab)1; 
transitions([beep,beep_rt)) := 'history(displays)'; 
transitions([chime_,a)) := 'history(stopwatch)'; 
transitions( time_,a]) := alarm_; 
transitions( time_,c]) := sec_; 
transitions([time_,d)) := date_; 

transitions{alarm_J := {[c,minj, [a,chimej}; 

transitions(falarm_,cj) := min_; 
transitions( alarm_,a ) := chime_; 
transitions({up_alarm,bl) := alarm ; 
transitions( date_,c]) := day_,'in_state(update...)1; 
transitions( date_,d)) := time_; 
transitions(lsec_,c]) := min ; 
transitions( min ,cl) := t mTn_; 
transitions( t_mm_,c]) :=hour_; 
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transitions{[hour-r:!c]} := {[date_,'ln_state(update_)1, 
talarm_,'in_state(up_alarm)')}; 

transitions( on_r,b ) := off_r; 
transitions([day_,cfj) := time_; 

~-
11
,-.va-.ti~on-------------'inilializalions, 

$ initialization: 
transitions( off_r,b) := on_r; 

transitions{[zero,b]} := {on_r, reg}; 

transitions{[reg,d]} := {(lap,'in_state(on_r)1, 
[zero,'in_state(off_r)1}; 

transitions(Pap,d]) := 1'9Q; 
transitions([stopwatch,a]) := time_; 
transitions([update_,b]) := time_; 

Exercises 

$ start by launching the watch: 

$ theRrstevent := bt in; 
$ theSystem := watcli; 
$ verb := true; $ be verbose 

simul_init(watch,bt_in,true); 

simul(10); 

- is the process of actually changing the internal time settings described in the fig. 3 chart? What 
about the alann time settings? 
- one should be able to 'zoom in' and 'zoom-out' in a statecharts. Zooming out of a specific blob 
means neglecting the internal structure of that blob. 

For instance, zooming out of 'alive' the 
statechart in fig. 3 may be represented 
by the chart in the opposite column. 
Zooming in 'alive' in this chart will 
restitute only one level. Each Zoom 
operation modifies the reference data 
structure for the blobs, the subsystems, 
and the transitions. Define the zoom 
operations. 

- the Entity Relationship Diagrams (ERD) have been described in an exercise concerning data 
models (see the exercises following a data table-revisited-2). These diagrams are used to 
define actual data organizations. By processing one of these diagrams one should be able to 
suggest (automatically) possible data organizations. 

analysing and processing the diagram in 
the opposite column could yield a data 
organization using the following generic 
terms: 

A: { ... , [ida, val], ... } 
B: { ... , [idb, [val1,val2]], ... } 
R: { ... , [ida,idb], ... } 

representing by maps the data model 

Define a set-oriented representation of ERDs (e.g. by analogy to our blobs, subsystems and 
transitions maps) which could be used for ERD diagram analysis. 
- could one represent ERDs by statecharts? (Hint: forget about the interpretation of statecharts as 
finite state automata representation) 
- the Data Flow Diagrams (DFD) are commonly used in the user requirement definition 
documents. DFDs are based upon the following iconic representations: 

extrn 
enti 
label 

a process 
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this represents an agent 
outside the scope of the 
model, usually an input 
source or the target of 
an outgoing information 
stream 

this represents usually a 
computing or 
engineering process 

This represents a file, a 
database, or a part of it 

Directed arrows link these items. They are labelled with a definition of a data stream. The 
following is a typical (though extremely simple) DFD: • 

claims for 

§ insurance 
d claim r--:--:--,~r.::e.::,:co:::,:r~d~in:.:.:g~..,►r::;--r---:----::--:--:--

n ------~ 2 I received claims 
claims being 

refund processed 

claim reject. letter 

Define a representation of the DFD, and an interpreter. Usually a DFD presentation of a system 
is made of several diagrams providing more and more details on the processes. Unlike 
statecharts these diagrams are not nested: the details of a process with id i is given in a diagram 
labelled i, and involves new processes with distinc ids. The uniqueness of the identification is 
across all diagrams for a given system. 
- In a realistic use of diagrams like DFD, labelled arrows and data stores are also represented by 
detailed diagrams, using a data representation like ERD. Draw a simple set of DFD and ERD 
diagrams for providing a better understanding of the insurance claim recovery process. Identify 
the verifications that the computer system processing these diagrams should make to insure their 
consistency. 
- draw a statechart to describe the behaviour of an automated teller machine 
- draw a (set of-) statechart(s) describing the workings of a meteorological captor. This 
automated meteo station is recording temperature every minute, atmospheric pressure every 3 
minutes, wind speed every 30 seconds in a database, and unloading via a teletransmission 
network, every 24 hours, but also upon request all the accumulated data. 
- modify the above meteo specification so that the meteo station displays on distinct digital 
displays the average temperature, atmospheric pressure and wind speed over the last 10 minutes 
as well as the last recorded values. 
- transform the data for the digital watch into n-ary relations, for the relational calculus: in this 
form are they suitable for interpreting the statechart? provide a ERD representation for the digital 
watch data, suitable for recording this data in a standard (relational?) database. 
- a text processing system is a simple real-time system, consisting of a keyboard, a pointing 
device (e.g. a mouse) a display window. Represent by a statechart the main functions: adding 
text from the keyboard, selecting text, copy-pasting, deleting, scrolling. 
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