
Cantor: a Tutorial and a User's Guide

(prototyping, set tlieory ant£ a[[that)

, Jean-Pierre Keller

vofu1µe.fI

Xepl:er 8 nu ties liaits, !f-75020 Paris aec.1994

Cantor: a Tutorial and a User's Guide

(prototyping, set tlieory anti a[[tliat)

Jean-Pierre Keller

'.JGepCer

8 rue lies fiaies, '.f-75020 Paris

> wliat is prototyping?
tfe{iver (i.e. give {ife and sfiape to} an a6straction
> wliy set tlieory?
6ecause a[[tlie a6stractions we may tliinl of fiave models in set tlieory
> and wfiat is a[[tfiat?
tfiat wi{{ 6e discussed now

w

dJ

Volume II : a Cantor User's Guide

Cantor: a 'Tutorial anti a 'User's (juide - vo{ume I I I

Table of Contents

Cantor short history .. 1
Cantor technical profile .. 3
Cantor user's guide and overview .. 4.

1 Running Cantor .. 4
2 Characters, Keywords, and Identifiers ... 9

2.1 Character Set. ... 9
2.2 Keywords ... 9
2.3 Identifiers .. 9

3 Simple Data Types ... 9
3.1 Integers ... 10

operations on integers .. 10
predicates on integers ... 10
some primitive functions on integers 11
notes .. 11

3.2 Real (Floating_Point) Numbers ... 12
operations on floating point numbers (real numbers) 12
predicates on floating point numbers (real numbers) 12
some primitive functions on floating point numbers (real
numbers) ... 13
notes .. 13

3.3 Booleans .. 14
operations on booleans ... 14
predicates on booleans .. 14
some primitive functions on booleans 15

3.4 Strings .. 15
operations on strings .. 15
predicates on strings .. 15
some primitive functions on strings 15
notes .. 16

3.5 Atoms ... 19
operations on atoms ... 19

l predicates on atoms ... 19
some primitive functions on atoms 20
notes .. 20

3.6 Files ... 20
operations on files ... 20
predicates on files ... 20

-j
some primitive functions on files 20
notes .. 21

3.7 Undefined .. 21
operations on Undefined ... 21
predicates on Undefined .. 21
notes .. 21

4 Compound Data Types ... 22
4.1 Sets .. 22

set expressions .. 22
operations on sets ... 22

- l

predicates on sets .. 23
some primitive functions on sets 23
notes .. 24

4.2 Tuples ... 24
tuple expressions .. 24
operations on tuples ... 25
predicates on tuple .. 26
some primitive functions on tuples 26

Cantor: a 'Tutoria{ aruf a 'User's (juide - vo[ume I I II

·1

l
• i

j

J

7

notes .. 26
4.3 Maps .. 27

operations on maps ... 27
some primitive functions on maps 27
notes .. 28

4.4 Formers ... 28,
4.5 Compound operators .. 30
4.6 Quantifiers .. 31
4. 7 Sample session .. 32
4.8 Exercises ... 33

5 Funcs ... 33
5.1 func = I-expression + smap33
5.2 func specific semantics ... 34
5.3 the pointer operation:->, the scope designation: this35
5.4 some primitive functions of funcs and scopes37
5.5 Exercises ... 38

6 Abstract Syntax Trees .. 38
6.1 operations on ast objects .. 39
6.2 predicates on ast objects40
6.3 some ast analysis and interpretation primitive functions40
6.4 a sample tutorial session on Ast .. .42
6.5 pattern matching ... 43
6.6 Exercises ... 44

7 Grammar ... 44
7 .1 Terminology ... 44
7 .2. Interactive Input .. 45
7 .3 Program .. 45
7.4 Statements .. 45

assignment statement ... 45
call for expression evaluation46
if statement. .. 46
for statement ... 46
while statement .. 47
read statement .. 47
print statement ... 47
return statement. ... 48
take .. from statement ... 48
write statement ... 49
formats ... 49

7.5 Iterators ... 51
7.6 Formers ... 52
7.7 Selectors .. 52
7.8 Left Hand Sides ... 53
7.9 Expressions .. 54
7.10 User defined functions .. 58
7 .11 Precedence Rules .. 59

8 Directives .. 59
8.1 Cantor Commands .. 59
8.2 Cantor switches .. 61
8.3 !allocate and !memory .. 63
8.4 !watch and !unwatch .. 63
8.5 !record, !recordOutput .. 64

9. The Cantor Grammar: condensed .. 64
9.1 Interactive Input ... 64
9.2 Program .. 64
9.3 Statements .. 65
9.4 Iterators ... 65

Cantor: a 'Tutorial and a Vser's (juiae • volume II III

9.5 Selectors .. 66
9.6 Left Hand Sides ... 66
9.7 Expressions and Formers .. 66
9.8 User defined functions .. 67

10 Debugging ... 67,
10.1 Runtime Errors ... 68
10.2 Fatal Errors ... 68
10.3 Operator Related Messages ... 68
10.4 General Errors .. 69
10.5 Advanced trace and debugging facilities 69

inserting code instead of stopping at a breakpoint.. 70
setting, re-setting breakpoints according to their kind 70

appendix: Predefined Functions .. 72

Cantor: a 'Tutoria{ and a 'User's (juide • vo{ume I I IV

l

)

l

- l

l

Volume II a Cantor User's Guide

Jean-Pierre Keller, '.Kepfer

8 rue aes fiaies, :f-75020 Paris

w

~

Cantor short history

The history of Cantor belongs to that of set-oriented languages. The motto of this branch of
computer science could be "programming is part of creative mathematics, i.e. exploration,
formalization, design, modification, verification, ... and proof'. That history is not very old,
since its stone age is 1970.

ir72 SETL (@ NYU)

1983 Ada/Ed <@ NYU)

/"'
1985 SED (ESPRID iSetl (@ Clarkson)

1989 Setl2 (@ NYU) Cantor (@ Kepler) eSetl (@ Essen)

Cantor's history is much younger, since it starts in 1985. This is partly a personal story:

The first time I really witnessed the need for a prototyping tool, I worked within a Research
and Development Department of a large multinational corporation. The 'research' part of the
activity had little to do with fundamental research. It consisted mainly in prototype
developments for various applications. At that stage, applications were roughly identified

'.Kepfer Cantor: a User's Guide 1

with a few essential functions : these were either an evolution of an existing and well
experimented service, or new ones 'defined' by gluing together expectations, e.g. functions
offered by related applications and known only from hearsay or a demonstration, say, at a
conference. No one had a very precise idea of the exact requirements. There was a distinctive
need for a comprehensive exploration of the feasibility of building a coherent application or
system to satisfy fuzzy requirements. Practically, the goal was to build a prototype
application, identifying all the functions, subfunctions and parameters, of a real industrial
application; this prototype could then be used and reviewed by a selected group of users to
determine the adequacy of the proposed services. This goal combined several studies: that of
a comprehensive set of requirements, with that of the feasibility and validity of planning an
effort for an industrial version. The objectives included also the identification of all the
expected pitfalls of a real industrial application design. Of course, that part of the objectives
was a mere wish. All the applications shared a somewhat similar profile: heavy symbolic
processing, together with numeric computations which did not require extreme precision and
an extremely diversified need for manipulating collections, relations and graphs (e.g.
dependency- reachability- graphs and their transitive closures). From this profile emerged the
need for a robust, flexible, and easy to use set-oriented programming environment.

This coincided in part with the objectives of the SE1L programming environment. The SE1L
project, some 10 years after its inception attracted much attention in 1983, when less than 2
weeks after the final definition of the Ada language was agreed upon, a working Ada system
was certified by the US-DOD. This Ada system is known as Ada/Ed 1. This was by no means
an industrial version, however it was working and ready for experimenting with the real
language not only with paper examples. Ada/Ed was used for several months by a large
community of users developping the Ada Test Suite for the later industrial versions.
Ada/Ed's development effort was evaluated at ca. three man-years (at most). Ada/Ed's
volume of source code was equivalent to the size of the Ada definition manual.

This prompted several investigation efforts, among which the SED ESPRIT project (1227) to
evaluate the adequacy of SE1L as an industrial prototyping tool. This was a stimulating and
successful project which demonstrated several things, including how:
- complex computational geometry algorithms could be easily implemented and applied to
critically improve the working conditions of the personnel working on a specific cartography
application2
- automatically, SE1L code could be translated into a common programming language (Ada
was used as a target language, C would have been simpler)3

- improving (i.e. optimizing) an algorithm from a 'naive' abstract problem statement, stated
in SE1L, to an efficient solution was possible and could be automated as was done with the
RAPTS transformational system4.
- complex semantic properties (e.g. the type of an object) could be infered from a declaration
free algorithm (i.e. declarations may be useless in a prototyping environment)5

1Ed stands for 'Educational'. But many believe that this is just the first name of its Principal Investigator, Ed
Schonberg, from NYU.
2typically: manual processing of maps, consists in turning aerial or satellite pictures containing millions of
points into less than 2000 points. Picture processing tools are extremely helpful but no match to a human
operator for numerous tasks. SED developped an algorithm to reduce by a factor 10 to 30 the number of
interactive operations left to the human operator.
3this result is reported in Doberkat E-E., Gutenbeil U. : SETL to Ada - Tree Transformations Applied.
Information and Software Technology, 29, pp.548-557, 1987. When Doberkat and his team undertook this
translation research, all the experts told him: "this is impossible!".
4RAPTS was developped by R. Paige. Many difficult algorithms have been since designed in this way:
transforming an abstract problem statement into an efficient implementation in SETL, and than translated
mechanically into C, or directly implemented into C.
5This was the work of several people at CNAM and INRIA, including V. Donzeau-Gouge, C. Dubois, Ph.
Facon, and is reported in C. Dubois's Doctoral Dissertation: "Determination Statique des Types pour le
Langage SETL" (CNAM, juin 89)

Cantor: a User's Guide 2

SED produced several recommandations, which guided the design of Cantor whose current
status is summarized below.

Cantor technical profile

Cantor is a very high-level programming language built around mathematical notation and
objects,primarily sets and functions.

In its current version, Cantor has been derived from iSETL (copyright Gary Levin). Cantor
has the usual collection of statements common to procedural languages, but a richer and
simpler set of expressions. Primitive Cantor objects include:

integers,
floating point numbers,
funcs (sub-programs),
strings,
sets,
tuples (finite unbounded sequences).

Cantor objects include less traditionnal objects like:
Abstract-Syntax Trees (AST),

and also
Windows,
Buttons,
Menus,
Events.

The composite objects, sets and tuples, may contain any mixture of Cantor objects, nested to
arbitrary depths. Cantor is essentially a declaration-free, weakly typed set-based language.

Among the major advanced features are the availability of:
I-functions as first-class objects 6 and (dynamically constructable) lambda-expressions,
modularity, objects, classes, inheritance,
2-mechanisms to save (on a file) and restore objects of an arbitrary complexity (possibly
including executable functions),
3-mechanisms for analyzing and transforming programs,
4-(interactive) graphics and text objects for multiwindow menu-oriented applications with
their event processing mechanisms,
5-support to the 2-way interoperability with C-oriented applications.

The following comments will clarify these points:

1,2-Essential mechanisms for Software Engineering are available. For instance, the static
binding discipline allows retention of links between objects created in deeply nested blocks,
even beyond the exit of a higher level block. This implements in a very elegant and safe way
information hiding. Cantor supports several very clean and efficient representations for
objects, class properties, methods selection, inheritance.

3-The construction of the data-flow graphs is a rather simple program. Abstract Syntax Trees
being a native type, Cantor programs may be analyzed and transformed by other Cantor
programs: AST Pattern matching, unification and transformation primitives are available.

4-Cantor has both a traditional command console and a multiwindow menu-oriented user

6a major achievement by iSETL designers, inherited by Cantor

'.KepCer Cantor: a User's Guide 3

interface, and may be used for multi window applications. Cantor's event management allows
the development of reactive applications, in a very natural set-oriented way, mapping events
to their processing functions. Actually, all the computational resources may eventually be
captured as Cantor objects and subjected to set-based processing (e.g. to graph algorithms
for reachability, cycle-testing, topological sorting) or associated via maps to other object~ or
processing functions (e.g. mapping Events or Event types onto specific functions).

5-Cantor programs may invoke- or be invoked from- applications using parameter passing
conventions compatible with those of C. It is indeed relatively easy to link Cantor with such
applications or packages. Parameters passed may be individual data items or homogeneous
collections.

This combination of features make Cantor a truly multi paradigm language, where imperative
and object oriented programming styles can be used simultaneously. The relative ease of
development of a Prolog interpreter in such a context makes declarative programming with
sets accessible too.

This tutorial is an introduction to the main features. Graphics, event processing, menus and
interactive user interface are not covered here.

This document is divided basicaly into:
-what is Cantor?, i.e., what is its syntax and what are its constructs?
-how to use Cantor?, i.e., what are application domains where Cantor is relevant, and how
could one use Cantor?

To answer the first question we will provide an illustrated Reference Manual. To answer the
second question we will review a set of programming examples.

Cantor user's guide and overview7

Prerequisites are:
-a basic command of naive set theory
-the ability to understand grammars defined by their BNF (Backus-Naur Form)

This user's guide is concerned only with the basic methods and tools available with Cantor.
A number of advanced topics are not covered here. Mostly, event management, windowing
and graphics have been left out of the present guide, which concentrates on Cantor specific
algorithmic tools.

1 Running Cantor

Double-click the Cantor application icon or that of any already recorded Cantor document :

the Cantor application

a Cantor created Text document

a Cantor created binary document

7This section, as well as other part of this document has been borrowing in many occasions from G. Levin's
iSETL manual and test examples. Indeed, Cantor is a fully upward compatible extension of that of iSETL.
The following sections are those which owe the most to G. Levin's: §2,7,8,9

Cantor: a User's Guide 4

a Cantor created Pict image

This will create two windows, one titled 'console', and one titled 'stderr'. Copyright
information is displayed in the console window, followed by a prompt'>':

CANTOR interface alpha tests

**AEOpenDoc: BasicTest.r fdType(hex) 5854c538
Type(hex) 5854c538
macintosh environement installed
desired memory: 2048000
CANTOR v0.46.19 Kepler
based upon ISETL (1.9)
Last updated on 28/sept/94 at 18:17.
Copyright 1987,1988 (c):
=> Gary Levin, Clarkson University
This version was compiled with THINK C 6.0(c)
Macintosh version (68000) Kepler corp.1989,1990,1991,1992,1993
Copyright 1989,1990,1991,1992 (c):
=> Yo Keller, Emmanuel Viennet, Marc Keller, Kepler
Copyright 1993,1994 (c):
=> Yo Keller, Kepler
Enter !quit to exit.
constant buf preallocation: 191488 bytes
>

At this point the cursor is displayed idling on the right of the prompt. Cantor is an interactive
system: it is ready for commands and instructions, coming either from the keyboard or from
menu-selections.

When Cantor is running, it prompts for input with the characters>,? or%, depending upon
its operating mode. Input consists of :

i- a sequence of expressions (each terminated by a semicolon';'), statements, and
programs. These follow the Cantor syntax (see §7). Each input is acted upon as soon as it is
entered. These actions are explained below. In the case of expressions, the result includes its
value being printed. If you have not completed your entry, you will receive the double
prompt >> (resp ?? , % %), indicating that more is expected.

ii- directives
! <directive> [opt. par am]*

for such task as compiling, redirecting input, (re-)setting debug options, loading, quitting,
help etc. These directives are available as text oriented commands as well as menu options.
Some directives may be invoked as instructions from Cantor program (see §8).

We will illustrate now some of these features.

Type now on the right of the prompt
1+2;

(the text of the expression followed by a semi-colon) and hit the ENTER or the Carriage
Return key. The symbol ';' is the instruction terminator. Cantor understand this instruction
as:
-compute the value of the expression 1 + 2
-display the value of this expression
Here is this session:

> 1+2;
3;
>

Type at the prompt :
!help cos

'.K.epl:er Cantor: a User's Guide 5

this is intended to supply the list of all the built-in functions whose name contains 'cos'. Here
is this part of the session:

!help cos

$.. 1
r := cos(x)
$.. 2
r := acos(x)
$.. 3
r := cosh(x)
$.. 4
r := acosh(x)

>
The exclamation point introduces what is called a Cantor directive -in this example the help
directive. Most directives may be obtained as interactive command selection in one of the
menus in the Cantor menu bar. For instance, upon selecting help in the pulldown menu
Cantor, a small dialog window opens up. The user is requested to complete the command,
e.g. by typing in the dialog area cos and then the carriage return or enter key to validate that
information. The dialog window disappears, and on the console window is displayed the
same information as above. See §8 for a comprehensive list of directives. The most common
directives and associated commands have short cuts, and therefore may be activated by
typing only the short-cut at the key board (without an exclamation point). The most important
ones are:

interactive
menu

short cuts8
cmd-H

cmd-1

cmd-L
cmd-Q
cmd-R

cmd-S
cmd-W

full command

!help <pattern>

!include <filename>

!load <filename>
!quit
!record Output
<filename>
! save <filename>
!suspend

list all cantor primitives whose names match
<pattern>, together with simple help information
include (read in and compile) the text file
<filename>
load the binary file <filename>
quit Cantor
record all output to the console in the file
<filename>
save the session into the binary file <filename>
suspend current Cantor session, and return to
the user with a prompt

The parameter information <nnnn> is supplied by the user either on the directive line,
following the exclamation point and the directive name, or in the dialog window generated by
the menu selection process

The help primitive is extremely useful. It tells which primitive are available and how to
invoke them as in the following example :

> !help window

$.. 1
bool := is window(x)
$.. 2 -
id.Win:=
openwindow(anAttrMap);
$.. 3
closewindow(); $close current
window

8short cuts are case-insensitive, e.g., cmd-Q and cmd-q have the same effect: abort Cantor

Cantor: a User's Guide 6

$.. 4
win nbr := open_old_window(x, y, w, h);
$
.. 5
curwin nbr := window(win_nbr);
$.. 6
curwin nbr .-
set window(win nbr);
$. -:7 -
window attributes();$ the window
attribute map structure
$
.. 8
set window attributes(anAttrMap);
$.-:9 -
anAttrMap : =
get window attributes(anAttrSet);
$. -:10 -
clipwindow(region);
$
.. 11
win no:= get file window(pane file); $--> return -1 if
pane_file is a disk file -

> !help clock

$.. 1
tickCount := clock();$ approx. 1 Tick evry 16 msec

When Cantor is running, it prompts for input with the characters >, ? or % , depending upon
its operating mode. There are three operating modes

-the standard mode in which most user interaction will take place. The prompt is>.
At launch time Cantor is in standard mode

-the read mode in which Cantor is waiting for input at the request of a read
instruction. The prompt is ? .

-the nested mode, for which the prompt is % . The user may start a nested Cantor
session by executing the instruction interp("); or the command suspend (whose short cut is:
cmd-w)

In nested mode Cantor behaves like in standard mode. However, normally hidden data, e.g.
local variable values, may become visible if the nested mode is invoked when the execution
is taking place within the scope of these hidden objects (i.e. during the execution of afunc
sub-program). Cantor's interactive debugging facilities use the nested mode at each
breakpoint (see the watch and breakpoint directives). Following the detection of an execution
error, often -depending how severe the error is- the execution flow is interrupted, and Cantor
is placed in nested mode.

1. Cantor is exited by typing !quit. It may also be exited on the Macintosh by the quit
command in the 'compiler' menu or its short cut cmd-q .

2. To exit from a read mode session one needs to complete as many syntactically
correct expressions as are requested. Here is an example:

> read x,y;
? 10;{1,2 .. 10};
> y;
{5, 6, 10, 9, 7, 8, 3, 4, 1, 2};
> x;
10;
> read x,y;

Cantor: a User's Guide 7

? 'ask';
? 20;
> x;
"ask";
> y;
20;
>

3. To exit from a nested mode session one needs to enter a return; instruction.
4. A common mistake is omitting the semicolon after an expression. Cantor will wait

until it gets a semicolon before proceeding. The doubled prompt >> (resp ?? , % %) indicates
that Cantor is expecting more input

5. Cantor can get its input from sources other than the standard input.

(a) If there is a file with the name .cantorrc or cantor.ini in the current folder, then
the first thing Cantor will do is read this file and execute the directives and instructions stated
in it. These directives often require to include one or more files, defining an application (see
below)

(b) If there is an available Cantor text file --- say file.I --- and Cantor is given (at
any time), the following line of input,

!include file. I

then it will take its input from file.I before being ready for any further input. The contents
of such a file is treated exactly as if it were typed directly at the keyboard, and it can be
followed on subsequent lines by any additional information that the user would like to enter.

Consider the following (rather contrived) example: Suppose that the file file.2 contained the
following data:

5, 6, 7, 3, -4, "the"

Then if the user typed,

> seta := {
>> !include file.2
!include file.2 completed

>>, X };

the effect would be exactly the same as if the user had entered,
> seta := {5, 6, 7, 3, -4, "the", x};

The line !include file.2 completed comes from Cantor and is always printed after an !include.

(c) If there is an available Cantor database (binary) file --- say file.cntr --- and
Cantor is given (at any time), the following line of input,

!load file.cntr

then it will take its input from file.cntr before being ready for any further input. The
contents of file.cntr is assumed to be a collection of persistent Cantor objects: data, (sub
)programs or a combination of both. These objects are restored as a separate component,
with their Cantor identifiers (both global- and nested local- identifier scopes are restored).

Cantor: a User's Guide 8

6. Comments
If a dollar sign $ appears on a line, then everything that appears on the right of the $-sign
until the end of the line is a comment and is ignored by Cantor.

7. After a program or statement has executed, the values of global variables persist.
The user can then evaluate expressions in terms of these variables. (See section 5 for more
detail on scope.). However there is no automatic persistence in the sense: the variable values
are automaticaaly saved in a database. Instead, the user may organize for its own persistence
needs. The user may save a whole session (with the !save directive) or a specific expression
e.g. a map or a list of variables organized as a tuple, (with the save or store built-in
functions)

2 Characters, Keywords, and Identifiers

2.1 Character Set

The following is a list of special characters used by Cantor.

[];:=I{ }().#?*/+-_"<>%~,@'i,§

In addition Cantor uses the standard alphanumeric characters:
a --- z A --- Z O --- 9

and the following character-pairs .

.- ** I= <= >= ->

2.2 Keywords

The following is a list of Cantor keywords.

axi false iff not program true div for impl
cb forall in of rea:lf value else from inter om
fromb less opt subset while end frome local or
func mod print then write expr if newat printf to

2.3 Identifiers

notin real union
return where elseif
take with exists
writeln this

1. An identifier is a sequence of alphanumeric characters along with the underscore,
'_'. It must begin with a letter. Upper or lower case may be used, and Cantor preserves the
distinction. (I.e.: a_good_thing and A_Good_Thing are both legal and are different.)

2. An identifier serves as a variable and can take on a value of any Cantor data type.
The type of a variable is entirely determined by the value that is assigned to it and changes
when a value of a different type is assigned.

3 Simple Data Types

The type of an expression x may be obtained either from the type testing predicates
bool := is bignum(x); $.. .
bool := is-integer(x); $.. .
bool := is-floating(x); $.. .
bool .- is=number(x) ; $.. .

bool .- is_file(x); $.. .

Cantor: a User's Guide 9

bool := is atom(x); $...
bool := is=boolean(x); $

bool := is om(x); $...
bool := is=defined(x); $

bool := is_string(x); $...

bool .- is func(x); $
bool := is-ast(x); $...
bool := is=textpane(x); $

bool .- is_table(x); $ a map with domain and range
$ elements of simple type

bool .- is set(x); $
bool .- is-tuple(x); $...
bool := is=map(x); $

or from the type function
type(x);

3.1 Integers

A cantor expression x is of type integer if
is integer(x) = true;

holds:-Actually, in that case, type(x) may be
"Integer" or "Bignum"

one has is_bignum(x) = true when x >= 2**15:
> X := 2**15;
> is_bignum(x);
true;
> is bignum(x-1);
false;

operations on integers

Let x and y be Cantor expressions of type Integer or Bignum

x+y
x-y
+x
-x
x*y
x**y

xdivy

x/y

xmody

addition of x and y
subtraction of x and y
x, without change
sign change for x
product of x and y
x to the power y:

if y = 0 then 1
elseif y < 0 then om
else x * (x **(y-1))?1
end

integer division of x and y

real-precision division of x and y

remainder in the division of x by y

predicates on integers

all predicates are expressions evaluating to either true off alse

'.Kept:er Cantor: a User's Guide

> 2 ** 10;
1024;

>7 div 4;
1;
> 7 / 4;
1. 750;

> 7 mod 4;
3;

x=y
x/=y
x<y
x>y
x<=y
x>=y
even(x)

odd(x)

equality of x and y
inequality of x and y
comparison for less than
comparison for greater than
comparison for less than or equal to
comparison for greater than or equal to
test if x is a multiple of 2

test if x is odd

is_number(x) true if x is an integer or a real

some primitive functions on integers

abs(x)

ord(char)

char(n)

float(n)

absolute value of x

n := ord(char); $ integer value of a
character

s := char(n); $ (ascii) char value of an
integer

convert n to a real number

random(root) generate a random integer in the range
(0 .. root) when root is an integer > 0

randomize
(seed)
sgn(n)

max(x,y)
min(x,y)

notes

re-initialize the random number generator
with a new seed
sign of n

the largest of x and y
the smallest of x and y

1. There is no limit to the size of integers.9
> the following expression computes 222!

> even(65);
false;

> odd(65);
true;

> is_number(l0);
true;

> abs (-31);
31;

> ord ('a');
97;
> ord('b');
98;
> ord(char(l00));
100;

> char(97);
"a";
> char(ord('z'));
"Z";

> float (65);
65. 000;

> random (500);
492;
> random(500);
268;
> random(-500);
OM;

> sgn(-15);
-1;
> sgn(0);
0;
> sgn(74);
1;

>$apply the compound operator multiply= product
>$to all the numbers from 1 to 222
> fact 222 := %* [1 .. 222];
> fact-222;
112050755800644139182824657874288503316182344\

9No practical limit. Actually limited to about 15,000 digits per integer on a Macintosh

'.Kepkr Cantor: a User's Guide 11

836201072566418066442575170654489604988455473\
085891233152722255158215820835509118567770425\
555664949954615083500304129450159283620378895\
008790288025331140066449564826484508657579315\
925606917480955013780196392370141851418465252\
049263944145260911871147445328203745168510368\
854915637280099588264866194322947975660549095\
765165693992960000000000000000000000000000000\
0000000000000000000000;
>

2. An integer constant is a sequence of one or more digits. It represents an unsigned integer.

3. On input and output, long integers may be broken to accommodate limited line length. A
backslash ("\'') at the end of a sequence of digits indicates that the integer is continued on the
next line.

> 123456\
>> 789;
123456789;

3.2 Real (Floating_Point) Numbers

A cantor expression x is of type real or floating point if
is floating(x) = true;

holds-:-Actually, in that case, type(x) is
"Real"

this is illustrated here : .
> type(l.0e2);
"Real";
> is_floating(l.0e2);
true;
>

operations on floating point numbers (real numbers)

Let x and y be Cantor expressions of type real

x+y
x-y
+x
-x
x*y
x**y

x/y

addition of x and y
subtraction of x and y
x, without change
sign change for x
product of x and y
x to the power y:

if y = 0 then 1
elseif y < 0 then om
else x * (x **(y-1))?1
end

real-precisiondivision of x and y

> 2 ** 10.5;
1448.155;
> 2 ** 10.5 = 1024*sqrt(2);
true;

> 7.8/19.le-2;
40. 838;

predicates on floating point numbers (real numbers)

all predicates are expressions evaluating to either true of false

x=y
x/=y

'.K.epl:er

equality of x and y
inequality of x and y

Cantor: a User's Guide 12

x<y
x>y
x<=y
x>=y
is_number(x)

comparison for less than
comparison for greater than
comparison for less than or equal to
comparison for greater than or equal to
true if x is an integer or a real > is_number(l0.486);

true;

some primitive functions on floating point numbers (real numbers)

abs(x)

ceil(x)

fix(x)

floor(x)

round(x)

absolute value of x

n := ceil(real); $ int. approx. of a real, see
also floor, fix, round

n := fix(real); $ int. approx. of a real, see
also ceil,floor, round

n := floor(real); $ int. approx. of a real,
see also ceil,fix, round

n := round(real); $ int. approx. of a real,
see also ceil,fix, floor

random(root) generate a random real in the range
(O .. root) when root is a real > 0

randomize
(seed)
sgn(x)

max(x,y)
min(x,y)
trigonometry

sqrt(x)
logarithms

notes

re-initialize the random number generator
with a new real seed
sign of real expression x

the largest of x and y
the smallest of x and y
the trigonometric functions:
cos, sin, tan, acos, asin, atan, cosh, sinh,
tanh, acosh, asinh, atanh

the square root of x, equivalent to x **0.5
the In (neperian log),log (base 10 log),
exp (neperian exponentiation)

Cantor: a User's Guide

> abs(7.8/19.le-2);
40.838;
> abs(-7.8/19.le-2);
40. 838;
>
> ceil(l3.7);
14;
> ceil (-13. 7);
-13;

> fix(13.7);
13;
> fix(-13.7);
-13;

> floor(13.7);
13;
> floor(-13.7);
-14;

> round(l3.7);
14;
> round(-13.7);
-14;

> random(S00.0);
256.927;
> random(S00.0);
87.860;
> random(-500.0);
OM;

> sgn (-1.2);
-1.000;
> sgn (0. 0) ;
0.000;

> sgn(l.2);
1.000;

> sin(3.14);
0.002;
> acos (-1);
3.142;

13

1. The possible range and precision of floating_point numbers is machine dependent. At a
minimum, the values will have 5 place accuracy, with a range of approximately 103 .

2. A floating_point constant is a sequence of one or more digits, followed by a decimal point,
followed by zero or more digits. Thus, 2.0 and 2. are legal, but .5 is illegal. A floating_ppint
constant may be followed by an exponent. An exponent consists of one of the characters e,
E, f, F followed by a signed or unsigned integer. The value of a floating_point constant is
determined as in scientific notation. Hence, for example, 0.2, 2.0e-1, 20.0e-2 are all
equivalent As with integers, it is unsigned.

> 1. 0e-30 / 10;
1. 00000e-31;

3. Different systems use different printed representations when floating point values are out
of the machine's range. For example, when the value is too large, the Macintosh prints INF
(infinity):

> 1.0e+125 **10;
1.00000e+250;
> 1.0e+125 **100;
INF;

4. Cantor is weakly typed, and its primitive operations support polymorphic operations on
numbers. An expression x is a number if is_number(x) is true. All the standard arithmetic
operations (+,-, * J, **) as well as the basic mathematics primitives (max, min, trigonometric
functions) work with numbers:

> cos(2);
-0.416;
> cos(2.0);
-0.416;
> 1 .max 0.5;
1;
> 1 .max 1.5;
1. 500;

3.3 Booleans

A Boolean constant is one of the keywords true or false, with the obvious meaning for its
value.
A cantor expression x is of type boolean if

is boolean(x) = true;
holds:-Actually, in that case, type(x) is

"Boolean"

operations on booleans

Let x and y be Cantor expressions of type Boolean

xory
x andy
notx
x imply
X iffy

orof x and y
and of x and y
opposite of x
x imply y, i.e. (not x) or y
x impl y and y impl x

predicates on booleans

Let u and v be arbitrary Cantor expressions

:Kepl:er Cantor: a User's Guide 14

u=v
u/=v

equality of u and v
inequality of u and v

some primitive functions on booleans

random(root) generate a random boolean in the range if
root is a boolean

3.4 Strings

A cantor expression s is of type string if
is string(s) = true;

holds~Actually, in that case, type(x) is
"String"

operations on strings

> random (true) ;
false;
> random(true);
true;

Let s and t be Cantor expressions of type String and let i be an integer > 0

s+t

s(i)

s(i..j)

s(.. j)

s(i..)

s*i
or
i*s

s=t
s/= t
sin t

concatenation of s and t

extracts the i-th character of s

substring containing all chars from i-th to
the j-th

substring containing all the chars in s until
the j-th

substring containing all the chars in s
starting with the i-th

repeat -i.e. replicate - s i times. When i is
0, returns the empty string

predicates on strings

equality of s and t
inequality of s and t
true ifs is a substring oft

some primitive functions on strings

Cantor: a User's Guide

> 'to be ... '+' or not to be ... ';
"to be ... or not to be ... ";

> '123456789' (4);
"4";
> '123456789' (10);
OM;

> I 123456789 1 (4 • • 6);
"456";

> '123456789'(.. 6);
"123456";

> '123456789'(4 ..);
"456789";

> 'to be'*3;
"to beto beto be";
> 3*'to be';
"to beto beto be";
> 'to be'*0;
1111;

> 1 0 b' in ' or not to be ... ';
true;
> 'ob' in ' or not to be ... ';
false;

15

random(s)

rank(s,t)

ator

rtoa

atoi

itoa

ord

char

hash

date

uclcase

extracts randomly a character from the
strings

if s in t, returns the position of the 1st
char of s in the leftmost occurrence of s in
t, otherwise returns 0

real := ator(floatingNbrString);

str := rtoa(realNbr);

n := atoi(nbrAsString);

str := itoa(n);$ integer (or atom-value) to
string conversion
n := ord(char); $ integer value of a
character

s := char(s); $ (ascii) char value of an
integer

int = hash(x) $ hash value

str := date(); $ current date, with the
precision of a second

s := uclcase('(Uu)l(Ll)',string); $ convert
string into upper (resp. lower) case

strsubst string := strsubst(pat, string,by);$replace
all occurrences of pat in string with by

scan token_stream :=
scan(FilelfileN ameloml string,

textScanltextAndNumScan,strScan);
setScanStop aChar := setScanStop(aChar); $aChar

becomes the new scan stop char; default
Scans top is I l'

> random('123456789');
11911;

> random('123456789');
"2";
> random('123456789');
"7";

> rank('ia', 'miam-miam');
2;
> rank('foo', 'miam-miam');
O;

> ator ('1. 5') ;
1.500;

> rtoa(l.0e-1);
"0.100";

> atoi('125');
125;

> itoa(2*125);
"250";

> ord(char(l00));
100;

> char(ord('z'));
"z";

> hash ('abc') ;
489;

> date();
"Mon Oct 24 15:43:59 1994\n";

> uclcase('u',date());
"MON OCT 24 15:44:05 1994\n";
> uclcase('l',date());
"mon oct 24 15:44:18 1994\n";

> strsubst (' ', 'too foo is she?', ' -
_');

"too_-_foo_-_is_-_she?";
> scan(" on dee 14, it rains",1,1);
[''on'',''dec' 1 ,14,' 1

,'',
1'it'',''rains 11

];

> setScanStop ('£') ; $ change the
terminator char to '£'
"£";

The important string function is scan, is described in detail, below in the notes.

notes

1. A string constant is any sequence of characters preceded and followed by double quotes.
A string may not be split across lines. Large strings may be constructed using the operation
of concatenation. Strings may also be surrounded by single quotes. I.e.

"a sample string", 'another string'
are two valid strings. A single quote (resp. double quote) may be freely used within a
double-quote (resp. simple quote) bound string:

"a string quote: 'may be used", 'a string quote: "may be used'
are two valid strings.

The backslash convention may be used to enter special characters. When pretty-printing,

Cantor: a User's Guide 16

these conventions are used for output. In the case of formated output, the special characters
are printed.

\b
\f
\n
'q
\r
\t
'octal

backspace
formfeed (new page)
newline (prints as CR-LF)
double quote
carriage return (CR)
tab
character represented by octal
Refer to an ASCII chart for meaning.
other --- may be any character
not listed above.

In particular, ''\\" is a single backslash. You may type, ''\"" for double quote, but the pretty
printer will print as "'q". ASCII values are limited to \001' to '\377'.

> %+ [char(i): i in (1..127]];

"\001\002\003\004\005\006\007\b\t\n\013\f"
+"\r\016\017\020\021\022\023\024\025\026"
+"\027\030\031\032\033\034\035\036\037 !"
+"\qi$%&' ()*+,-./0123456789:;<=>?@ABCDEF"
+"GHIJKLMNOPQRSTUVWXYZ[\\)~_-abcdefghijk"
+"lmnopqrstuvwxyz { I } ~\177";

2. the scan function is used to decompose a text file or a string into its token, i.e. its basic
lexical components: words, operation symbols, punctuation, numbers. It always returns a
tuple. Multiple switches control the behaviour of the scan function
the input data: the 1st argument represents the input data. The second and third argument are
used to control the scanning mode and the interpretation of the 1st argument.

1st and 3rd arguments

1st arg is a File

1st arg is a String (3rd arg = om)

1st arg is a String (3rd arg -:f:: om)

1st arg is om

description

if that file is opened and is a text file, its
contents, until the end of file or the text
terminator -whichever comes first- is the
input data
if the third argument is undefined (om) that
string represents a file name. scan will
attempt to open that file as a text file for
reading, and if successfull, process it until
the end of file or the terminator
the first argument is the input text upon
which scan will operate, if the third arg is
different from OM
use the console standard input as the scan
input. The user should enter at the end of the
text the current terminator symbol (by default
it is I i,1

)

By default, the terminator is 'i,'. This terminator character may be changed by calling
setScanStop. If the terminator is encountered in the input data, the scan function stops
processing the data:

> s := "abrac cada bra";
> scan(s,1,1);
["abrac", "cada", "bra"];
> s .- "abrac ca@da bra";

Cantor: a User's Guide 17

> scan(s,1,1);
["abrac", "ca" J ;
> setScanStop('. ');
" "·
> s := "abrac ca"da bra";
> scan(s,1,1);
["abrac", "ca", "da", "bra"];
> scan("-1 .0675",l,l);
["-", l];
> setScanStop('"');
" . " . C. ,

> scan(om,om,om);
turlutut chapeau pointu!
C.
["turlutut", "chapeau", "pointu", "!"];

Ordinary simple or double quotes, e.g. "a beautiful house", or 'a beautiful house' are used as
string delimiters, and are considered ordinary special symbols:

> s := "a beautiful house";
> scan(s,1,1);
["a", "beautiful 11

, "house II J ;
> s := "'a beautiful house'";
> scan(s,1,1);
["'", "a", "beautiful", "house","'"];

One needs a different symbol, a kind of 'super'-quote, which will not be ignored by the
scan. That symbol is '§':

> s := "he sings §a beautiful house§ while riding";
> scan(s,1,1);
["he", "sings", "§a beautiful house§", "while", "riding"];

The second argument is used as a control switch:
2nd arg descritpion example
'l','L' the text is to be output in > scan('New York is a big CiTy','L',l);

'u','U'

om,""

1

" ", "ab"

'.K.epCer

lower-caseletters > ["new", "york", "is", "a", "big",
"city"];

the text is to be output m
upper-case letters

the text is to be output
rescpecting the input case

keep the settings used in the
previous scan

at least two characters: keep
correct number formats

> scan('New York is a big CiTy', 'u',l);
["NEW", "YORK", "IS", "A", "BIG",
"CITY"];

scan('New York is a big CiTy',om,l);
[''New'', ''York'', ''is'', ''a'', ''big'',
"CiTy"];

> scan('New York is a big CiTy', 'L',l);
> ("new", "york", "is", "a", "big",
"city"];
> scan('New York is a big CiTy',1,1);
> ["new", "york", "is", "a", "big",
"city"];

> scan("l.035",l,l);
(1.035];
> scan("-1.035",l,l);
["-", 1.035];
> scan("-1.035"," ",l);
(-1.035];

Cantor: a User's Guide 18

"U ","Ux"
"l ","ly"

combine settings for upper or
lower case and number
formatting

> s :=" a is -1.027 grams";
> scan(s+' 111

,
11U 11 ,l);

["A", "IS", -1.027, "GRAMS"];
> t :="bis -9.57 ";
> scan (t+"", 1, 1);
["B", "IS", "-", 9.570];

The Cantor system variable cantor _AlphaNumSet is by default undefined. The user may set
it to a string, or a set or tuple of strings. Each member of cantor_ AlphaNumSet is then
considered by the scan function as an ordinary alphanumeric symbol:

> cantor_AlphaNumSet;
OM;
> cantor_AlphaNumSet .- "+";
> scan("a+b","",1);
["a+b"] ;
> cantor AlphaNumSet := om;
> scan("a+b", "",1);
["a", 11+11

, "b"];
>

or even, demoting the ',' as a separator:
> cantor_AlphaNumSet := om;
> scan("a+b", 1111 ,l);
["a", "+", "b"];
> scan("a+l,b+2",om,1);
["a", "+", 1, 11

, ", "b", "+", 2];
> cantor AlphaNumSet := "+,";
> scan("a+l,b+2",om,1);
["a+l,b+2"];
> scan("a+l, b+2",om,1);
["a+l,", "b+2"];

When the 1st argument is the input string, it is destroyed by the scanning process:
> scan(s, 'l',1);
["abrac", "cada", "bra"];
> s;
"" . ,

To force the use of a copy, add an empty string, that is, force the creation of a temporary
expression which actually evaluates to the same value as the original string:

> s := "abrac cada bra";
> scan(s+'', 'l',1);
[

11 abrac 11
,

11 cada 11
, "bra 11

] ;

3.5 Atoms

A cantor expression at is of type atom if
is atom(at) = true;

holds-:-Actually, in that case, type(at) is
"Atom"

operations on atoms

newat atom creation. This atom is unique

predicates on atoms

Cantor: a User's Guide

> s := newat;
> t := newat;
> type(s) = type(t);
true;
> s = t;
false;

19

s=t equality of s and t
s /= t inequality of s and t

itoat

some primitive functions on atoms

atom(resp. int) := itoat(int(resp. atom));$
int (resp atom-value) to atom-value (resp
int) conversion

> at2;
! 5 ! ;
> itoat (at2);
5;
> itoat(7);

if there is no atom corresponding to the
given integer, returns an error

!break point: WARNING bkPt!

setBaseAtom setBaseAtom(atomlom); $ set Base_Atom
to atom I !O!

notes

%

1. Atoms are abstract points . They have no identifying properties other than their individual
existencelO. The only operation on atoms is comparing two atoms for identity.

2. The keyword newat represents a constructor, acting as a function. newat has as its value
an atom never before seen in this session of Cantor.

3.6 Files

A cantor expression f is of type File if
is file(f) = true;

holds:-Actually, in that case, type(t) is
"File"

operations on files

let f, g be expressions of type File, let nam be a string

predicates on files

f=g
f/=g
eof(t)

equality of sand t
inequality of sand t
true if file pointer is at the end of file

some primitive functions on files

close(t)
opena(nam)
openab(nam)
openr(nam)
openrb(nam)
openrw(nam)

close File f
f := opena(nam); $open append text file nam
f := openab(nam); $open append binary file nam
f := openr(nam); $open read only text file nam
f := openrb(nam); $open read only binary file nam
f := openrw(nam); $open read-write text file nam

10In the current version atoms may be saved and restored: their uniqueness may not be garanteed accross
sessions. The function setBaseAtom may be used to correct this situation.

Cantor: a User's Guide 20

openrwb(na
m)
openw(nam)
openwb(nam
)
fwrite
fread

fseek

ftell
rewind
toend
flen
le
fgets

notes

f := openrwb(nam); $open read-write binary file nam

f := openw(nam); $open write text file nam
f := openwb(nam); $open write binary file nam

fwrite(item,f);$ item type:integer, string, bignum
value_read := fread (File, 'int'l'str'l'big' , count); $ item
type: integer, string, bignum count: always 1 for int
fseek(f,f_position); $ move file pointer to given file
position
f_position := ftell(f); $ returns current file position
rewind(f); $ set file position to the begining of the file
toend(f);$ set file position to the end of the file
n := flen(flfileName); $ file size
n := lc(flfileNamelom); $ text file line count
string := f gets(n,f); $read a line of at most n char;

1. A file is generally a Cantor value that corresponds to an external file pointer in the
operating system environment. There are however two other kinds of files: the pane file
(corresponding to the data streams in a Cantor text-oriented window) and the data-base
(corresponding to files keeping persistent Cantor objects, including programs)

2. Common external files are created as a result of applying one of the pre-defined functions
openr, opena, openw, openrw for text files and openrb, openab, openwb, openrwb for non
text (binary) files.

3. Pane files are created by applying the predefined functions open _yane _file

4. Databases are created by the save, store or compile predefined functions.

3. 7 Undefined
A cantor expression x is of type Undefined if

is om(x) = true;
holds~ctually, in that case, type(x) is

"Undefined"
And the value of an undefined variable is OM

operations on Undefined

Let x, y be two arbitrary expressions

x?y this expression has value x if x /= om,
otherwise, has value y

predicates on Undefined

x=om true if is_om(x) = true
x /= om true if is_om(x) = false
is_defined(x) true if is_om(x) = false

notes

1. The data type undefined has a single value --- OM . It may also be entered as om.

XepCer Cantor: a User's Guide 21

2. Any identifier that has not been assigned a value has the value OM.

4 Compound Data Types

4.1 Sets

A cantor expression x is of type set if
is set(x) = true;

holds:-Actually, in that case, type(x) is
"Set"

set expressions

set in
extension

slices

set formers
(in
comprehen
sion)

Zero or more expressions, separated by
commas and enclosed in braces ({ and J)
evaluate to the set whose elements are the
values of the enclosed expressions. Note
that as a special case, the empty set is
denoted by { }
A set of integers, may be defined by a
slice { i..j } , meaning that its members are
exactly all the integers from i to j (incl.),
or by a slice with increment { i1 ,i2 .. j},
meaning all the integers i in increment k =
i2-il, starting at i1 and such that Iii ~ ljl.
Slices are arithmetic progressions

A set may be defined as the subcollection
of a given collection -set, tuple or string-,
containing all the elements satisfying a
given condition:
{t: tin XI K(t)}
or given a subcollection, as a derived set
of expressions:
{ exprn(t): tin x I K(t)}
the syntax supports very complex set
formers.(see § 4.4)

operations on sets

Let x and y be sets. Let t be an arbitrary expression

x+y
or
xunion y

x-y

x*y
or
x inter y

:K.epCer

union of x and y

set difference of x and y

intersection of s and y

Cantor: a User's Guide

> { 1, 'man' , 'ape' , 2, 4 5. 7 5,
>> newat, {}};
{!7!, 45.750, "ape", "man", 2, {},
1};

> (1. .5};
(2, 1, 3, 4, 5};
> (-3 .. 2);
(1, 2, 0, -1, -2, -3);
> (0,5 .. 25);
(10, 15, 25, 20, 0, 5};
> (0,5 .. 26);
(15, 10, 20, 25, 0, 5};

> {t: tin (1..15) It mod 7
» = 2};
{ 2, 9};
> { x+y : x,y in (-1,-3 .. -
>> 10) I x /= y };
(-8, -10, -4, -6, -14, -16, -12};

> (1) union {"a"};
{ 1, "a"};

> (1) + {"a"};

(1, "a"};

> {l,'a',2,'b'} - {'a','b'};
{ 1, 2};

> { 1, 'a', 2, 'b' } inter { 'a', 'b'};
{"a", "b"};
> {1,'a',2,'b'} * {'a','b'};
{"a", "b"};

22

x with t

x less t

#x.

form a new set by adding element t to the
setx

form a new set by removing t from x

cardinality of x

take t from x remove an arbitrary element of x and
assign it to variable t
observe that x has been changed

predicates on sets

x subset y

tin X

t notin x

true if x is a subset of y, i.e. , all the
members of x are members of y too

true if t is a member of x

true if t is not a member of x

some primitive functions on sets

arb(s)

pow(s)

if s is non-empty returns an 'arbitrary'
element from s, otherwise returns om

power set of a given set s: the set of all
subsets

Cantor: a User's Guide

> {l,'a',2,'b') with 'c';
{l, 2, "c", "b", "a"};
> {l, 'a',2, 'b') with
{l, 'a',2, 'b');

true;

> {l,'a',2,'b') less 'a';
{"b", 2, 1);
> {l,'a',2,'b')
{l, 'a',2, 'b');
true;

> #{-1,-3 .. -100);
50;

less

I a I

IC I

> #{ x+y : x,y in {-1,-3 .. -10) I x
/= y);
7;

> x := {1, 2, "c", 11h 11
,

>> "a"};
> x;
{"a", 11h 11

,
11 c 11

, 2, 1};
> take t from x;
> t;
"a";
> x;
{2, 1, "c", "b"};

>{1,2,3) subset (1 .. 5);
true;
> {1,2,3) subset {1,2, 'a');
false;
>(1,2,3) subset {1,2, 'a') with 3;
true;

> {) in { ' a ' , 'b ' , {)) ;
true;

> ' a ' in { l, 2, 3) ;
false;
> 'a' notin (1,2, 3);
true;
> 1 notin {);
true;

> s := {1..50);
> arb(s);
16;
> arb(s);
27;

23

npow(s,nma
x),
npow2(s,nm
ax)

random(s)

size(s)

notes

set_collection := npow(s,nmax); $ all the
subsets of s having exactly nmax
elements

npow2 is a faster algorithm for the same

extracts randomly a member from the set

n := size(s); $ size in byte of s and its
dependants

> s := {l. .10);
> cl := clock(); tl2 :=
>> npow2(s,#s-l) ;c2 ·=
>> clock();
> #tl2;
10;
> $ comput. time in sec
> (c2-cl) /60;
0. 3 67;

> s := {l. .50);
> random(s);
26;
> random(s);
9;

> s :={l. .10);
> tl2 := npow2(s,2);
> #tl2;
45;
> size(s);
864;
> size(tl2);
6384;

1. Only finite sets may be represented in Cantor. The elements may be of any type, mixed
heterogeneously. Elements occur at most once per set.

2. OM may not be an element of a set. However OM is considered a neutral element in most
set addition and deletion operations 11: e.g. if the variable x has a set value, x with om has the
same value.

3. The order of elements is not significant in a set and printing the value of a set twice in
succession could display the elements in different orders12.

4.2 Tuples

A cantor expression x is of type tuple if
is tuple(x) = true;

holds-:-Actually, in that case, type(x) is
"Tuple"

tuple expressions
Syntactically, the rules for defining sets and tuples are very similar. Their main difference is
the use of square brackets [....] as delimiters of a tuple expression instead of { ... } for sets.

11 iSETL users should be warned that in contrast, for iSETL, any set that would contain OM is considered to
be undefined. I.e. in iSETL x := { } with OM; has the effect of setting x to OM
12the sorted() predefined func allows some level of control over the enumeration ordering of sets. See §7.3

Cantor: a User's Guide 24

tuple in
extension

slices

tuple formers
(in
comprehen
sion)

Zero or more expressions, separated by
commas and enclosed in square brackets
([and]) evaluates to the tuple whose
elements are the values of the enclosed
expressions, in the given order. Note that
as a special case, the empty tuple is
denoted by []
A tuple of integers, may be defined by a
slice [i..j], meaning that its members are
exactly all the integers from i to j (incl.) in
that order, or by a slice with increment
[il,i2 .. j], meaning all the integers i in
increment k = i2-il, starting at i1 and
such that Iii~ ljl, in that order.
Slices are arithmetic progressions
A tuple may be defined as the ordered
subcollection of a given collection,
containing all the elements satisfying a
given condition:
[t: tin x I K(t)]
or given a subcollection, as a derived
tuple of expressions:
[expm(t): tin x I K(t)]
the syntax supports very complex tuple
formers. (see§ 4.4)

operations on tuples

> [l,'man','ape',2,45.75,
>> newat, { } l ;
(1, "man", "ape", 2, 45.750, !8!,

! l l ;

> [l. .5];
[1, 2, 3, 4, 5];
> [-3 .. 2];
(-3, -2, -1, 0, 1, 2];
> (-1,-3 .. -10];
[-1, -3, -5, -7, -9];

> [t: t in (1. .15} I t mod 7
» = 2];

[2, 9];
> [x+y : x,y in [-1,-3 .. -
» 10] I x /= y l;

[-4, -6, -8, -10, -4, -8, -10, -12,
-6, -8, -12, -14, -8, -10,

-12, -16, -10, -12, -14, -16];

Let x and y be tuples, let t be an arbitrary expression, let i be an integer

x+y concatenation of x and y > [2, 9]+[-1,-3 .. -10];
[2, 9, -1, -3, -5, -7, -9];

x*i new tuple obtained by the replication i > [2, 9] *3;

or times of tuple x [2, 9, 2, 9, 2, 9];

i*x > 3*[2,9];
(2, 9, 2, 9, 2, 9 J;

x with t form a new tuple by adding element t to > (2, 9] with 100;

the tuple x, as last element (2, 9, 100 l;

x(i) the i-the element of tuple x > [2,4 .. 10] (3};
6;

x(i..j) form a new tuple made of all elements > [2,4 .. 10] (2 .. 4);

from the i-th to the j-th included [4, 6, 8 l ;

x(.. j) form a new tuple made of all elements > [2,4 .. 10] { .. 4);

from the 1st to the j-th included [2, 4, 6, 8 l;

x(i ..) form a new tuple made of all elements > (2,4 .. 10] (2 ..) ;

from the i-th to the last one [4, 6, 8, 10];

#x. cardinality of x > #(2,4 .. 10];
5;

'.K.epCer Cantor: a User's Guide 25

take t fromb remove the first element of x and assign it
x to variable t

observe that x has been changed
(fromb is from the begining)

take t frome x remove the last element of x and assign it
to variable t
observe that x has been changed
(frome is from the end)

predicates on tuple

tin X true if t is a member of x

t notin x true if t is not a member of x

some primitive functions on tuples

rank(t ,x)

notes

if t is a member of x, the rank is i iff t(i) =
x, and i is the smallest integer having this
property, otherwise the rank is 0

> X := (2,4 .. 10];
> take tb fromb x;
> tb;
2;
> x;
(4, 6, 8, 10];

> X := (2,4 .. 10];
> take te frome x;
> te;
10;
> x;
(2, 4, 6, 8];

> 8 in [2, 4 .. 1 o J ;
true;

> 5 in [2,4 .. 10];
false;
> 5 notin [2,4 .. 10];
true;

> rank(8, [2,4 .. 10]);
4;
> [2,4 .. 10](rank(8,[2,4 .. 10])) = 8;
true;
> rank(",(2,9]);
O;

1. A tuple is an infinite sequence of components, of which only a finite number are defined.
The tuple members may be of any type, mixed heterogeneously. The values of tuple
members may be repeated

2. OM is a legal value for a tuple member.

3. The order of the tuple members is significant. By treating the tuple as a function over the
positive integers, you can extract individual components and contiguous subsequences
(slices) of the tuple.

4. The length or cardinality of a tuple is the largest index (counting from 1) for which a
component is defined (that is, is not equal to OM). It can change at run-time. It is obtained by
applying the unary# operation to a tuple expression.

[1,3 .. 100] a tuple of all positive odd integers less than 100
t := [OM,'a string',10,{ 1..20},'another string',OM,[]];

a tuple of length 7. t(4) is the set of all integers ranging from 1 to 20. t(#t) is the empty tuple.
For any integer i> 7 t(i) has the value OM.

5. The function arb(s) is polymorphic and apply to all collections: sets, tuples, strings.
Observe that #s and size(s), althgough related, are independant.
Similarly,

-the operations in, notin, # (cardinality) are polymorphic over all collections,
-the operations+ (concatenation), *(replication), the slice extraction operations and the
function rank(s,t) are polymorphic over ordered collections (tuple, strings)

Cantor: a User's Guide 26

-the functions size(s), hash(s), random(s) are polymorphic over all types

6. The cardinality #s is an abstraction of the collection s: the number of elements in s. The
size size(s) is the number of bytes, this implentation instance requires for representing s and
its dependants.

4.3 Maps

A cantor expression x is of type map if
is map(x) = true;

holds:-Actually, in that case, type(x) is
"Map"

Maps form actually a subclass of sets. Thus,
is map(x) =true--> is set(x) = true

A map is exactly a table representing a binary relation, i.e. a set of pairs, e.g.
{ [a,b], [c,d], }

operations on maps

letmbeamap

m{x}

m(x)

it is by definition the image set i.e. the set
of all images of x:
{y: [x,y] in m }
see notes 2,3 below

if exists u in m I m(l) = x, and if this u is
unique then
m(x) is u(2)
see notes 2,3 below

m{x} := aSet (re-)defining minx, i.e replacing the set
of all pairs [x,y] in m by { [x,u]: u in
aSet}

m(x) :=y (re-)defining m in x, by deleting from m,
if there are any, all the pairs with x as 1st
element, and adding to m the pair [x,y]

some primitive functions on maps

domain(m) it is by definition:
{x: [x,y] in m}
the set of all pre-images, or of all 1st
components of all the members of m

Cantor: a User's Guide

m : = { ['+' , 'binary op' J ,
>> [' - ' , 'binary op' l , [' - ',
>> 'unary>> op']};
> ffi{ I _I};

{"unary op", "binary op"};

> ffi(I +r);

"binary op";
> m(,_,);

! Error -- Bad mapping(multiple
images):
{ ! Set ! } (" - ") ;

> m{ 1 %1
} := {"unary op",

>> "binary op"};
> m;
{["%", "binary op"], ["%", "unary
op" J, ["+", "binary op"],

["-", "unary op"], ["-", "binary
op" J l;
> m{'-'} := {};
> m;
{ ["%", "binary op"], ["%", "unary
op" J, ["+", "binary op" J};

> s := { [1,2], [1,3], [2,4] };
> s{l};
(2, 3};

> s(l) := 5;
> s;
{ [l, 5], [2, 4] };

> m;
{["-", "unary op"], ["-", "binary
op"], ["+", "binary op"]};
> domain(m);
{ 11+11 I 11_t1};

27

range(m)
or
image(m)

notes

it is by definition:
{y: [x,y] in m}

> range (m);
{"binary op", "unary op"};

1. A map is a set that is either empty or whose elements are all ordered pairs. An ordered pair
is a tuple whose first two components and no others are defined.

2. There are two special operators for evaluating a map at a point in its domain. Suppose that
Fis a map.

(a) F(EXPR) will evaluate to the value of the second component of the ordered pair
whose first component is the value of EXPR, provided there is exactly one such ordered pair
in F; if there is no such pair, it evaluates to OM; if there are many such pairs, an error is
reported.

F(EXPR) should be used only if Fis a smap (see note 3).

> s := (['argl',10],['arg2',{}],['arg3', 'example']};
> s('arg3');
'example';
> s(arg4');
OM;

(b) F { EXPR} will evaluate to the set of all values of second components of ordered
pairs in F whose first component is the value of EXPR. If there is no such pair, its value is
the empty set.

> s : = { [' argl ' , 10] , [' arg2 ' , { }] , [' arg3 ' ,
>> 'example'], ['arg2',20]};

> s (' arg2 ') ;

! Error -- Bad mapping(multiple images):
{ ! Set ! } ("arg2") ;
> s { ' arg2 ' } ;
{20, {}};
> s (' arg3 ') ;
"example";
> s (' arg4 ') ;
OM;
> s { ' arg4 ' } ;
{};
>

F{EXPR} may be used both for smap and mmap (see note 3). However F{EXPR} is
undefined if F is not a map (i.e. a set of pairs)

3. A map in which no value appears more than once as the first component of an ordered pair
is called a single-valued map or smap otherwise, the map is called a multi-valued map or
mmap.
I.e., in the smap m, if [a,b] in m, then there is no member [a,c] of m with c * b.

4.4 Formers

Formers are syntactic expressions to express an enumeration or an iteration. Sets and tuples
being collections, it is useful to collect here all the formation rules. Former are used in
defining expressions:

EXPR --> [FORMER]

Cantor: a User's Guide 28

EXPR --> {FORMER}

FORMER --> c
empty, i.e. as in {}, []

FORMER --> EXPR-LIST
as in { expn 1,expn2,expn3}, [expn 1,expn2,expn3]

FORMER --> EXPR .. EXPR
i.e. a slice or arithmetic progression of 1, as in { 1.. 10}

FORMER --> EXPR , EXPR .. EXPR
i.e. a slice or arithmetic progression of expr2-exprl, as in { 1,-3 .. -10}

FORMER --> EXPR: ITERATOR
e.g. #x: x ins I 'a' notin x or x+y: x in s,y int Ix> y**2

The syntax for ITERATOR is extremely versatile:

ITERATOR --> ITER-LIST
ITERATOR --> ITER-LIST I EXPR

i.e. the expr here is a boolean expression, playing the role of a selection criteria as in
#x: x in s I 'a' notin x consider only the elements x in s which satisfy 'a' notin x

The most common form of ITER-LIST is:

ITER-LIST --> SIMPLE-ITERATOR+
separated by commas

SIMPLE-ITERATOR --> BOUND-LIST in EXPR
BOUND-LIST --> BOUND+

separated by commas
BOUND --> ID

in x+y+z: x in s,y,z int Ix> (y**2+z) the ITER-IJST has two elements: x ins and
y,z int. In the 1st SIMPLE-ITERATOR the BOUND-IJST has a single element: x. In
the 2nd SIMPLE-ITERATOR, the BOUND-UST has 2 elements : y,z . As a whole, the
bound variables in this example are x,y,z

However this is only the most common form. We provide here the full ITER-LIST grammar
and then a set of running examples.

ITER-LIST --> SIMPLE-ITERATOR+ separated by commas
SIMPLE-ITERATOR --> BOUND-LISTinEXPR
SIMPLE-ITERATOR --> BOUND= ID (BOUND-LIST)

SIMPLE-ITERATOR --> BOUND= ID {BOUND-LIST}
BOUND-LIST --> BOUND+

separated by commas

BOUND --> ~
BOUND --> ID
BOUND --> [BOUND-LIST]

We illustrate some of the possibilities of this with the following session:

> lt :={[i,j] : i,j in [1.. 5) I i < j};
> lt;
{ [2, 5), [2, 4), [2, 3), [1, 5),

[1, 4), [1, 3), [1, 2), [4, 5],
[3, 5), [3, 4] } ;

> sentence := "un exemple";
> [[i,c]: c = sentence(i) I c = 'e'];

1Gept:er Cantor: a User's Guide 29

[[4, "e"], [6, "e"], [10, "e"] l;

> [sentence(i .. j): c=sentence(i), j in [i .. #sentence] I c = 'e'];
["e", "ex", "exe", "exem", "exemp",
"exempl", "exemple", "e", "em", "emp",
"empl", "emple", "e"];

> po : = { [1, 2 l , [1, 3 l , [2 , 4 l , [2, 5 l , [3, 5 l ,
>> [3,6], [4,8], [5,7], [6,7], [7,8] };
>op:= {[x,y]: [y,x] in po};
> op;
{ [6, 3], [5, 2], [5, 3], [7, 6],

[7, 5], [8, 4], [8, 7], [4, 2],
[3, ll, [2, 1]};

> domain(op) = {x: [x,~] in op};
true;

> image(op)
true;

{ x: [~, x] in op} ;

> op graph:= { [y, x] : x=op{y} };
op graph;
{[2, {1}], [3, {l}l, (5, {3, 2}],

[4, {2}], [7, {6, 5}], [8, {4, 7}],
[6, {3}]};

4.5 Compound operators

Let us consider an operation op
op: A x B -> A' where A' <;; A

An operation like this could be one of the built-in binary operation, e.g.
***Id" d +, , , , 1v,mo

or any (built-in or user defined) 2-ary function f: Ax B -> A', e.g.
max, min, npow

In the above examples, A, A' and B are number sets (real R or integer N) or S, the collection
of all expressions of type set, T, that of tuples, Str that of strings, e.g.

tdiv: N x N -> N
/: (R+N) x (R+N) -> R where R <;; R+N
npow: S x N -> S

For any such operation or function, a repeated application over a given collection is possible.
Let a c A and let [b1,b2, , b0] be a tuple of elements of B. Then

a op b 1 op b2 op op bn
is well-defined and may be written, in Cantor as a compound operator, signaled by the %
(percent) sign:

a %op [b1,b2, , bn]
or

%op [a,b1,b2, , bnl
For instance:
%+ [1..j] is the sum of all integers from 1 to j and %**[2,2,2] is

222
Cantor allows the application of compound operators to unordered collection (sets):

a %op {b1,b2, , bn}
%op {a,b1,b2, , bn}

In that case the enumeration b1,b2, , b0 of the elements is in an arbitrary order. And
repeated computations of a %op {b J ,b2, ... , b,J or %op { a,b J ,b2, ... , b,J may yield
different results if the commutativity properties of the operation are not garanteed. If however

~pCer Cantor: a User's Guide 30

op is a well-defined and commutative operation Ax A-> A, than a %op {b1,b2, ... , b,J
may be written %op { a,b J ,b2, ... , b,J. In that case, the left most term in a op b J op b2 op
.... op bn i.e. the term playing the role of a, is selected arbitrarily in the argument set.
Formally:

%op[] is om
%op {} is om
%op [b] is b
%op {b} is b
%op (t with b) is:

(%op t) op b if op is a binary operation or
op (%op t,b) ifop is a function with 2 arguments

4.6 Quantifiers

Given the formation rules for composite expressions, it is a relatively easy task to introduce
the quantifiers exists (corresponding to 3) and forall (corresponding toV)

EXPR --> exists ITER-LIST I EXPR

EXPR evaluates to a Boolean. If ITER-LIST generates at least one instance in which EXPR
evaluates to true, then the value is true; otherwise it is false.

> p := [1 .. 100];
> exists j in p I j < 0;
false;
> exists j in p, i in [2 .. j] I j = i**2;
true;

Note that in this example, the values i and j which satisfy the conditions are not accessible:
these are bound variables. Previous settings for variables i and j has not been changed, by the
side-effect free execution of this quantifier. We will see later, in the section on funcs how to
create a side-effect to gain access to the values of the bound variables which meet the
condition.

EXPR --> forall ITER-LIST I EXPR

EXPR evaluates to a Boolean. If every instance generated by ITER-LIST is such that EXPR
evaluates to true, then the value is true; otherwise it is false.

>primes:= [i: i in [2 .. 1000] I forall j in [2 .. floor(sqrt(i))]
>> I i mod j /= 0];
> primes;
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127,
131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191,
193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257,
263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331,
337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401,
409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467,
479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563,
569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631,
641, 643, 647, 653, 659, 661', 673, 677, 683, 691, 701, 709,
719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797,
809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877,
881,883,887,907,911,919,929,937,941,947,953,967,
971, 977, 983, 991, 997];

Cantor: a User's Guide 31

4.7 Sample session

The following is a self-explanatory demonstration of bulk structures, i.e. entities of type set,
tuple and map: •

> $ bulk ~tructures don't have to be homogeneous
> t := twith {-12 .. 0};

>$basic bulk structures are: set, maps, tuples, 3>1~.;
> $ a holly trinity

>$ a set
> {1,5 .. 100};
{69, 65, 77, 73, 85, 81, 89, 93, 97, 1, 5, 9, 13, 29, 25, 21,
17, 61, 57, 53, 49, 37, 33, 41, 45};

> type({1,5 .. 100I);
·Ser;

> $ this is an unordered structure
> {1,5 .. 100};
{53,49,61,57,45,41,37,33,29,25, 17,21, 1,5, 13,9,
69, 65, 73, 77, 85, 81, 93, 97, 89};

>$a tuple, an ordered structure
>(1,5 .. 100];
(1,5,9, 13, 17,21,25,29,33,37,41,45,49,53,57,61,
65,69, 73, 77,81,85,89,93,97];

> type((1,5 .. 100]);
"Tuple";

> t := (1,5 .. 100];

> $ cardinality
>#I;
25;

> t(#t);
97;

> $ a tuple is an unbounded ordered structure
> 1(30) := -4;
>#t;
ro;

> t(#t);
-4;

>I·
(1,5,9, 13, 17,21,25,29,33,37,41,45,49,53,57,61,
65, 69, 73, 77, 81, 85, 89, 93, 97, OM, OM, OM, OM, -4];

>$bulk structures may be defined by set-fromers (or tuple
>$formers):
>$that is:

> pri!""es :=; [i: i in (2 .. 1000] I forall j in [2 . .floor(sqrt(i))]
»JI modJ I= O];
> primes;
(2,3,5, 7, 11, 13, 17, 19,23,29,31,37,41,43,47,53,59,
61,67, 71,73,79,83,89,97, 101,103,107,109,113,127
131,137,139,149,151,157,163,167,173,179,181,191:
193,197,199,211,223,227,229,233,239,241,251,257,
263,269,271,277,281,283,293,307,311,313,317,331
337,347,349,353,359,367,373,379,383,389,397,401°
409,419,421,431,433,439,443,449,457,461,463,467:
479,487,491,499,503,509,521,523,541,547,557,563,
569,571,577,587,593,599,601,607,613,617,619,631,
641,643,647,653,659,661,673,677,683,691,701,709,
719,727,733,739,743,751,757,761,769,773,787,797
809, a11, a21, 823, a21, 829,839,853,857,859, 863, an:
881,883,887,907,911,919,929,937,941,947,953,967,
971, 977, 983, 991, 997];

> #primes;
168;

> 1(#1);
{-1, 0, -2, -4, -3, -7, -8, -6, -5, -10, -9, -12, -11};

>I;
(1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61,
65, 69, 73, 77, 81, 85, 89, 93, 97, OM, OM, OM, OM, -4,
{-6, -5, -7, -8, -12, -11, -10, -9, -4, -3, -1, 0, -2}];

> s := {t,{},'a sample string'};
>#s"
3· '

> $ adding a member element does'nt change the set
> u := s with t;
>#u"
3; 1

> U=S;
true;

> $ maps are binary relations
> $ i.e. a set of pairs, a subset of a cartesian product

> aMap := {11, 'c'],[2, 'a'],(3,'n'],[4, 't'],[5, 'o1,[6, 'r']I;
> type(aMap);
"Map";

>aMap;
{11, "c"J, (2, "a1, (3, "n"], (4, "t"], (6, "r1, (5, "o1};

> $ the sets involved in the cartesian product are
> domain(aMap);
{3, 4, 6, 5, 1, 2};

> image(aMap);
ra·, ·c·, ·n·, ·o", "t", "r"};

> $ any cartesian product is a map
> u := {1..10};
> v := fa','b','c'}:
> uXv := {[x,y]: x in u,y in v};
>#uXv;
ro;

>uXv;
{110, "b1, (10, "c1, (10, "a"], (9, "b1, (9, "c1, (9, "a"],

1

7, "bl, [7, "ci, 17, "a"j• 18, "a"j• 18, ·c·1• 8, "bi, 5, ttc• , 5, "b" , 5, "a" , 6, "b" , 6, "c" , 6, "a" ,
1, "b , 1, "c , 1, "a" , 2, "a" , 2, "b" , 2, "c ,

(3, "a" , (3, "b"], (3, "c"], (4, "a"], [4, "c"], 4, "b"]I;

> type(uXv);
"Map";

> $ the relation represented by a map may be single-valued or
> $ multiply valued
> $ it depends upon the card of the image of each domain
element

>ell:= arb(domain(aMap));
>ell;
6;

> aMap{elt};
{"r"};

Cantor: a User's Guide 32

> uelt := arb(domain(uXv));
> uelt;
7;

> uXv{uelt};
{"c", "a", "b"};

> $ single-valued map (smap)
>A :=aMap;
> forall x in domain(R) I #R{x} = 1;
true;

> A ·=uXv·
> fo~all x in' domain(R) I #R{x} = 1;
false;

$ multiple-valued map (mmap)
> A :=aMap;
> exists x in domain(R) I #R{x} I= 1;
false;

>A:= uXv;
> exists x in domain(R) I #R{x} I= 1;
true;

4.8 Exercises

> $ single-valued map are functions defined over their domain
> aMap(elt);
·r·;

> uXv(uelt);
! Error - Bad mapping(multiple images):
{!Set!}(?);

> $ a tuple t has the semantics of a function defined over { 1 .. #t}
>I;
[1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61,
65, 69, 73, n, 81, 85, 89, 93, 97, OM, OM, OM, OM, -4,
{-4, -3, 0, -1, -2, -10, -9, -11, -12, -5, -6, -7, -8)];

>#t"
31; '

> domain(!);
{21,22,24,23,25,31,30, 17, 18, 19,20, 11, 12,9, 10, 13,
14, 16, 15, 2, 1, 3, 4, 7, 8, 6, 5};

>image(!);
{21, 17,25,29, 13,9,5, 1,-4,
{-3, -4, -1, 0, -2, -10, -9, -12, -11, -7, -8, -6, -5), 33, 37,
41, 45, 61, 57, 49, 53, 85, 81, 97, 93, 89, 73, n, 69, 65);

- write an expression which evaluates to the set of all multiples of 7 or 11 less then 1000.
What is the cardinality of that set
- compute the sum of all multiples of 7 or 11 less then 1000
- compute the product of all multiples of 7 or 11 less then 1000
- write an expression which evaluates to the list of all multiples of 7 or 11 less then 1000, in
ascending order
-verify that the following expression evaluates to the truth table of and:

{[[x,y],x and y]: x,y in {true,false} };
See section 7.4 for indications on formatted output: print out this expression in the format of
a truth-table
-write an expression which evaluates to the truth table of xor (exclusive-or is not a built-in
Cantor operator. It is defined as follows:

a xor b = (a and not b) or (band not a))
- are truth tables always maps? smaps? mmaps?
- is it possible to write a tuple former which evaluates exactly to the 1st 100 primes?
- write a set former { EXPR: x in m I } which evaluates to a largest smap contained
in m. Apply this to Rand uXv above.

5 Funes

A cantor expression x is of type func if
is func(x) = true;

holds:-Actually, in that case, type(x) is either
"Closure" or "Predef"

Whenever type(x) = "Closure", xis a user-defined function, otherwise, xis a Cantor built-in
or 'predefined' functions.

5.1 func = A-expression + smap

1. A func is a Cantor value that may be applied to zero or more values passed to it as
arguments. It then returns a value specified by the definition of the func. Because it is a
value, a Cantor func can be assigned to an identifier, passed as an argument, etc. A func is

'.K.epl:er Cantor: a User's Guide 33

what is often called a 1.-expression. Evaluation of a Cantor func can have side-effects
determined by the statements in the definition of the func. Thus, it also serves the purpose of
what is often called a procedure.

2. The return statement is only meaningful inside a func. Its effect is to terminate executio!]. of
the func and return a value to the caller. The form
return expr; returns the value of expr;
return; returns OM.

Cantor inserts areturn; statement just before the end of every func.

3. A func is the computational representation of a function, as a map is the ordered pair
representation, and a tuple is the sequence representation. Just as tuples and maps may be
modified at a point by assignments, so can funcs. However, if the value at a point is
structured, you may not access or modify individually the members of this structure, at that
point.

> x := func(i);
>> return char(i);
>>end;
> x(97);
"a";
> x(97) := "q";
> X (97);
"q";
> X (97) (1) := "abc";
! Error: Only one level of selection allowed

x may be modified at a point. The assignment to x(97) is legal. However, the following
assignment is not supported, because you are trying to modify the structure of the value
returned.

4. A number of functions (over four hundred) have been pre-defined as funcs in Cantor.
Their list and a short description, equivalent to that provided by the online help, is given in
section 9. These are not keywords and may be changed by the user. They may not be
modified at a point, however.

5. It is possible for the user to define her/his own funcs. This is done with the following func
syntax:

func(list-of-pararneters);
local list-of-local-ids;
value list-of-global-ids;
statements;

end

5.2 func specific semantics

1. The declaration of local ids may be omitted if no local variables are needed. The ids
declared in a value list represent global variables whose current values are to be remembered
and used at the time of function invocation; these may be omitted if not needed. The list-of
parameters may be empty, but the pair of parentheses must be present.

2. Parameters and local-ids are local to the func. See below, alinea #5, for a discussion of
scope.

3. The syntax described above is for an expression of type func. As with any expression, it
may be evaluated, but the value has no name. Thus, the definition will typically be part of an
assignment statement or passed as a parameter. As a very simple example, consider:

:KepCer Cantor: a User's Guide 34

cube_plus := func(x,y);
return x**3 + y;

end;

After having executed this assignment Cantor will be able to evaluate an expression such as
cube_plus(2,5) as 13.

4. Parameters are passed by value. It is an error to pass too many or too few arguments. It is
possible to make some parameters optional.

f := func(a,b,c opt x,y,z); ... end;

f can be called with 3, 4, 5, or 6 arguments. If there are fewer than 6 arguments, the missing arguments
are considered to be OM.

5. Scope is lexical (static) with retention. Lexical means that references to global variables are
determined by where the func was created, not by where it will be evaluated. Retention
means that even if the scope that created the func has been exited, its variables persist and can
be used by the func. By default, references to global variables will use the value of the
variable at the time the function is invoked. The value declaration causes the value of the
global variable at the time the func is created to be used

6. Here is a more complicated example of the use of func. As defined below, compose takes
two functions as arguments and creates their functional composition. The functions can be
any Cantor values that may be applied to a single argument; e.g. func, tuple, smap.

compose := func(f,g);
return

func(x); return f(g(x)); end;
end;
twice := func(a);

return 2*a;
end;
times4 := compose(twice,twice);

Then the value of times4(3) would be 12. The value of times4 needs to refer to the values off and g, and
they remain accessible to times4, even though compose has returned.

7. Finally, here is an example of functions modified at a point and functions that capture the
current value of a global.

f := func (x);
return x + 4;

end func;
gs := [func(x); value N; return x+3*N;end
f(3) := 21;

After this is executed, f(l) is 5, f(2) is 6, but f(3) is 21.
gs(2)(4) is 10 (4+3*2).

N in [l .. 3]] ;

5.3 the pointer operation: ->, the scope designation: this

Pointer expressions may be defined as follows:
f-> EXPR

the expression f on the left of the -> (pointer sign) designates the scope in which f was
created. The expression on the right of the pointer sign is an expression which must be
evaluated in that scope. Observe that the only expressions which might appear meaningfully
on the lhs of -> are expressions which evaluate to a func. For all other expression types,

Cantor: a User's Guide 35

since no scope creation is recorded, they refer to the outermost (global) scope.
> cf := carol('deposit');

$
$
$
$
$
$
$
$
$
$
$

the use of the pointer operation
to refer to hidden objects and data
is illustrated here
this ex. originates with an ex. taken from
Abelson & Sussman pp 167 et seq.
the use of maps make it far more readable
Note that the function make account returns
a map whose domain is a set of strings, and
whose range is a set of lambda ~xpressions
here the -> (pointer) let us get into the private scope
of these maps.

> make account :=
» func(name, balance);
>> return
» {
>>
>>
>>
>>
>>
>> end;

};

"deposir, func(n); balance:= balance+ n; end),
"withdraw", func(n); balance:= balance - n; end),
"balance", tune(); return balance; end],
"name", tune(); return name; end]

> gary := make_account("Gary Levin", 1000);
>carol:= make_accounl("Carol Simon Levin", 1000);

> gf := gary('deposit');

> gf->balance;
1000;

> gf->narne;
"Gary Levin";

> $ compare with:
> gf('balance')();
1000;

> gf('name')();
"Gary Levin";

> cf->balance;
1000;

> cf->name;
"Carol Simon Levin";

> cf->balance := 300;
> carol('balance')();
roe;

> cf->name := 'gribouille';
> carol('name')();
"gribouille";

The pointer operation may be used very efficiently to change any package (i.e. a set of nested
funcs sharing some private memory and functions) into a class structure with simple
inheritance.

The scope designation this is analogous to the object designation this in C++ or the self of
Smalltalk. When a func is designed to be invoked from many different scopes, the objects it
is referring to may change from invocation to invocation. Indeed, not only the actual
arguments passed participate in the computation but the whole scope, including its hidden
objects, may participate too. The way to refer explicitly to the variable scope is by means of
the scope designator this. For instance,

this->x
refers to the definition of x in the execution time scope.

The following example illustrates the role played by -> and this.
this->X := this->x + dh;
this->y := this->y + dv;

end; $ end translate $ a "class" point, its constructor and methods
figues := tune();

variables

local pointSet,segmentSet, dass,vars,methods;
vars:= {'class','vars','methods'};
methods:={};
class := 'figues';
new:={};
$.~ ___________ ..,,...·n1
pointSet := (};
point := tune();

local u,v, class,vars,methods; $ class

local translate,dist,homothetia; $ methods
$ par default les points sont a l'origine
u := 0; v := 0; class := "point";
$ vars, methods : could be computed with

refcollect ...
vars ·= {'u' 'v'} •
methods :a: {'translate','dist','homothetia'};
newP := func(opt x,y);

local zpt;
x ·= x?u·
y '.= y?v;
zpt := tune(); pass; end;
pointSet := pointSet with zpt;
return zpt;

end; $ end newP
new('point') := newP;
translate := func(dh,dv);

dist := func(pt); $ dist to a point
if pt->Class I= 'point' then return

om;end;
return sqrt((pl->x - this->x)**2 +

(pl->Y - this->y)**2);
end; $ end dist
homothetia := func(pt,factor);

$ homothetia: center is pt, factor
is scaling factor

$ make sure resuling
coordinates are integers

is_number(factor) then

pl->x)*factor);

if pl->class I= 'point' or not

return; end;
this->X := pl->X + fix((thiS->X -

this->y := pt->y + fix((this->y -
pt->y)*factor);

end; $ end hornothetia
end; $ end point
point();$ invoke the constructor of the class "poinr

end; $ end figues
$ 'figues' is the super class of 'point'

figues(); $ invoke the constructor of the class "figues"

$ random creation of points
for i in [1 .. 100) do

'.Ke.pCer Cantor: a User's Guide 36

end;
newP(random(500),random(500));

end;
lineto(pt->x,pt->y));

$ cqunt tho_se points
#pomt->pomtSet;

$ scale down the set of points around first_point and
redisplay

clearscreen();
$ display these point as a polyline
w := openwindow();

moveto(first_point->X, first_point->y);
for pt in point->pointSet less first_po1nt do •

pt->homothetia (first_point,0.2); $ scale
down to 20"/4 of original size

$ 'first point': picked arbitrarily
first_point := arb(point->pointSet);
$ display a polyline joining all the points
$ set the initial pen position at the first point
moveto(first_point->x,first_point->y);
for pt in point->pointSet less first_pomt do

lineto(pt->x,pt->y));
end;

To analyze this program, notice that the text indentation describes the actual nesting of scopes
at creation time. For instance, as a scope definition point is just an object which knows of all
the private(e.g. 'local') variables of figues. Thus

> point->class;
"figues";

While, as a func, point owns a private variable named class, whose value is not known in
point-scope, but is known within the scope of any other variable created within the func
point, e.g. :

> newP->class;
"point";
> arb(point->pointSet)->class;
"point";

Consider an arbitrary point pt in point->pointSet. When scaling is carried out by invoking
pt->homothetia (first_point,0.2);

the procedure homothetia within the scope of pt is invoked. While executing that procedure,
this refers precisely to the scope within which it is invoked, ie. the scope of pt, whence
this->x is pt->x, this->y is pt->y, at that time.

Try running this program. Some modifications will be suggested in an exercise.

5.4 some primitive functions of funcs and scopes

The term 'environment' designates a specific scope. Each user defined func is characterized
by its code, its environment, its redefinition (override) map. By default, the environment is
the largest possible scope granting access to all the global objects available in the current
session of Cantor.

applyEnv

applyNilEnv
hasNilEnv

detachEnv

codeof·
overrideOf
envOf
mkLocal

tellfunc

ref

fnl := applyEnv(fn opt optEnv); $set fnl env to
optEnv if specified, otherwise to the current env
fnl := applyNilEnv(fn); $set fnl env to the current env
bool := hasNilEnv(fn); $true if fn is a func with Nil
Env
env := detachEnv(); $unlink the current func's env ·
from creator's
code := codeOf(func);$ code is a non-printable object
aMap := overrideOf(func);$ aMap is as-map
env := envOf(func);$ env is a non-printable object
mkLocal(idName,aFunc);$ creates a local var in the
scope of aFunc
aFunc := tellfunc();$ attempts to tell within which func
is current progr ptr
ref(afunc); $ returns a map describing the list of the
identitiers referenced by afunc. If the afunc has not
been compiled under 'refcollect', returns only the
parameter list, and the local and value identifiers.
Under 'refcollect', the non-local identifiers used by
af unc re also produced

Cantor: a User's Guide 37

5.5 Exercises

-the factorial function may be defined by:
fact := func(n);

if not is integer(n) then return om; end;
if n <=1 then return 1
else return n*fact(n-1);
end;

end; $ end fact
It is better programming practice to tabulate than always re-evaluate:

tab fact := func(n);
-if not is integer(n) then return om; end;
if n <=1 then return 1
else

end;

tab fact(n) := n*tab fact (n-1);
return tab fact (n);-

end; $ end tab_fact

Compare the performance of fact and tab _fact for n = 5, 10, 15 ,20, 100. Use the date() or the
clock() primitives. Compare also with the expression %*[1..n] . See also §8.2, an execution
trace for tab_fact.

- Create a func for computing the Fibonnacci sequence:
1,2, Fibonnacci (n+2) = Fibonnacci (n+ l)+Fibonnacci (n) .

Create the associated tab_Fibonnacci func and compare the performance for n =
5, 10, 15,20, 100.

- Let Keep_ and gkeep() be defined as follows:
Keep_ := om; gkeep := func(x); Keep_ := x; return true; end;
Show how this may be used to inform on the status of bound variables in quantifiers.
Illustrate this by exhibiting the first pair [i,j] which given p := [1..100]; satisfies:

exists j in p, i in [2 .. j] I j = i**2;
or violates

forall i in p, j in [2 .. i-1] I i = j**2;

- Modify thefigues program above to include a rotate(center, angle) function among the point
functions
- Modify thefigues program to associate with each point a string. Use gputs(aStr) to display
a string at a given location in the graphics window
- Modify the figues program to include new 'classes' correponding to point groupings:
segments, triangles, as well as specific kinds of triangles: rectangular, isoceles, equilateral.
For each kind provide direct way of creating a new object of that kind, of displaying that
object in the graphics window, of translating, rotating, scaling the object.

6 Abstract Syntax Trees

A cantor expression x is of type Abstract Syntax Tree (ast) if
is ast(x) = true;

holds:Actually, in that case, type(x)
"AST"

Each syntactic category is characterized by its ast_kind:

ast
x+y
x*y
exists x in s I K(x)

ast kind
"+''
"*"
"exists"

Cantor: a User's Guide 38

'a text'
X

1
etc.

"T_STring"
"T_Id"
"T_Integer"

Given an ast expression af, its ast_kind (in string form) is the value of which_ast(af). The
ast_kind has an internal code: af('t'). The function which_ast converts all the forms into one
another.
In the table below the major syntactic categories are listed (as unquoted strings):

T_Pat < T_Of ->
T_Cmt <= I om ?
T_Spec = T_Missing opt #
T_Id I= take print [
T_Integer > to printf {
T_String >= do program (
T_Real INFIX else read
T_Boolean + elseif readf
CLEAR end return
- with exists then

where less false true
iff * for value
impl I forall while
or mod from write
and div fromb writeln
not ** frome MAP
In % func SELECTOR
notin UNARY if ITERS
subset CALL local this

6.1 operations on ast objects

let af be an ast, and ley i be an integer in [0 .. 2].

af(i)
or
ast(af,i)

subscripts indicate a filiation m the
abstract syntax tree:
- af(l) is the 1st or left subtree
- af(2) is the 12nd or right subtree
- af (0) is the ancestor tree, if af is an
internal node within an ast

the binary operation ast is aquivalent to
subscripting an abstract syntax tree

at a leaf node, the subtrees are either a
string or om

WARNING: ast is the name of a
predefined (built-in) function

Cantor: a User's Guide

> af;
X + y;;

> type(af);
"AST";
> is_ast(af);
true;
> which_ast(af);
"CALL";
> which_ast(af(l));
"+";
> b := af(l);
> which_ast(b(O));
"CALL";
> b (1);

x;
> b(l) (1);
"x";

39

l

- 1

1

J

af('t')
or
ast(af,'t')

af %ast [...]
or
%ast [af ...]

'typ' or any initial segment thereof, is the
subscript leading to the ast_kind code.
See also which_ast()

compound subscripting defines paths
from a tree root to a subtree

6.2 predicates on ast objects

is_ast_leaf(a) true if a is a leaf node: identifier, or a
constant node: identifier: "T_Id", integer:
"T _Integer", real: "T _Real", string:
"T_String", boolean: "true", "false"

> af (It I) ;

292;
> which_ast(292);
"CALL";
> af(l) ('t');

281;
> which_ast(281);
"+";

> af %ast [l;
X + y;;
> %ast [af,1,1];
x;
> %ast [af,1,1,1];
"x";

> af;
X + y;;
> is ast leaf(af);
false;
> is_ast_leaf(af %ast
» [1,1]);
true;
> which_ast(%ast [af,1,1]);
"T Id";

6.3 some ast analysis and interpretation primitive functions

which_ast(af)

analyze

construct

-if af is an ast, returns a string designating
the ast_kind of af,
-if af is an integer, it is considered as the
internal code for an ast_kind, and the
correponding string is returned
-if af is a string corresponding to a known
ast_kind, its corresponding internal code
is returned
analyze, either reads an input from the
stdin input stream, or from a string
argument , performs parsing and build an
ast

see also scan, construct

similar to analyze. However, if an
identifier in the parsed expression is the
identifier for an abstract syntax tree, that
tree is substituted in : ordinary Cantor
variables may be used as tree variables

see also scan, analyze

Cantor: a User's Guide

> af('t');
292;
> which_ast(292);
"CALL";
> which_ast(af);
"CALL";
> which_ast("CALL");
292;

$ take input from console
> af := analyze();
x+y;
> af;
X + y;;
> bf := analyze('x+y');
> af = bf;
true;
> af;
X + y;;
> af := construct('af*2');
> af;
(X + y) * 2;;

40

setAst

pretty

ugly

findAst

eval(af)

interp
(stmt_str)

scan

kwd

anAST := setAst(anAst,-11011121'type'l3,
modif);$ modify anAst: -1 :parent, 0:node
itself, 1 :left,2:right,>=3:more

N.B. unlike in ast subscripting, 0 does
not represent an ancestor node, but the
node itself

produces a string which is the pretty print
of the ast arg

displays the tree-like structure of its ast
argument, including the ast_kind of each
node

findAst(atyp,af); $ atyp =
intlstringlsetlom;\ produces a tuple of all
the af sub-trees with the given type
evaluate an ast as an executable
expression
interp is similar to eval, but takes as input
a text string, which is supposed to
represent a statement. That text is parsed
and evaluated. If the stmt_str is an empty
string, then Cantor suspends the current
session and enters a nested session
scan(Filel fileN ameloml string,
textScanltextAndN umScan, strScan);
$ produces a tuple -- ScanStop
(terminator) is ';,'
textScan /=om--> spec. symbols (eg $,
quotes) are parsed as tokens and returned
strScan /=om--> 1st arg = input string
char in cantor AlphaNumSet are
considered alpha-num

see also analyze, construct, setScanStop,
and the notes in section 3.4
kwd(opt key, token_val); $ if key= om
returns tuple of
all keys, if key = " (empty string) reset
all keywords to
default
$ if key = some_str returns the
corresponding token,
$ if token_ val = 0 resets the key, else sets
the key to the given token val

> af := analyze('x+y');
> af;
X + y; /
>af(l);
X + y;
> setAst(af(l),'t',
>> which_ast('*'));
X * y;
> af;
X * y;;

> af;
(X + y) * 2;;
> pretty (af);
"(x + y) * 2;";

> af;
(X + y) * 2;;
> ugly(af);
(CALL :

(* :
(+ :

(T_Id :
(T_Id:

(T Integer :

X)

y)
2) OM;

(see examples in session 6.4)

(see examples in session 6.4)

> tokenstream := scan('mix\
100g of sugar with',1,1);

("mix", 100, "g", "T Of", "sugar",
"wiih"]; -
> tk := scan('mixons\
le lait et 100g de beurre et 1. 5 l
d"eau', 1, 1);
> tk;
["mixons", "le", "lait", "et", 100,
"g", "de", "beurre", "et",

1.500, "l", "d", "\q", "eau 0];

N.B. the above mentioned variable cantor_AlphaNumSet is a global variable which is
accessed by the Cantor system, when parsing texts with scan, analyze, construct or scan.

Cantor: a User's Guide 41

6.4 a sample tutorial session on Ast

$
$
$
$
$
$
printer
$
$
$
AST
$
$
$
$
$
$
lune

we will present here a subset of the available
AST-processing
tools:

analyze
pretty, ugly

eval
(or an identifier string)

which_ast

the basic parser
pretty-printer.ugly-

evaluates an AST

to tell the type of an

to produce a tuple of findAst
sub-AST of a given type

refcollect a toggle for saving the
reference data obtained at compile-bme

ref to produce the
reference map of the variables referenced within a

$ chain a-;t to link AST-nodes to
their parent node -
$ use the built-in help to find how to use these primitives
!helppret
pr~ttyStrings(truelfalse);$ pretty print in mode: emphasize
stnngs quobng ...
sir := pretty(ast);$ pretty print the ast arg

!help naly
ast := analyze(Filel expression_string I om); $ File: the input
stream, om:the standard input,
expression_string: the expr to parse
analyze is a parser ...

!flex allocon
$ use undefined objects:
> a := om; b := om;

>at:= analyze("a+b");
>af·
a+b;:

> ugly(af);(CALL :
(+:

OM;

(T Id:
("Cid:

a)
b)

> $ keep the expr part:
>at:= af(1);
>al;
a+b;

> $ since a and b have no values
> $ the expr evaluates to an error:
> eval(af);
! Error - Bad arguments in:
OM+OM;

> a := 1 O; b := 2;
> eval(af);
12;

> a := 'the horse ';
> b := 'drinks vodka';
> eval(af);
"the horse drinks vodka";

>U ·=om·
> bi°:= an~lyze("u := a+b");
>bf·
u :='a+ b;;

> ugly(bf);(:= :
(T_ld: u)
(+:

OM;

(T_ld:
(T_ld:

> zz := eval(bf);

type(zz);
"Code";

>U;
"the horse drinks vodka";

> $ to navigate within a tree one may use findAst
> bf1 := analyze("u := (a+b)*(c+d)");
> v :=findAst('+',bf1);
>V;
[c+d, a+b];

> type(v);
"Tuple";

>IN·
2; '

> ugly(v(1));(+:
(T_ld: c)
(T_ld: d)
OM;

> ugly(v(2));(+ :
(T_ld: a)
(T_ld: b)
OM;

> v(1)(1)(1);
·c·;

> $ it is always possible to move within
> $ the tree downwards:
> v := v(1); $ look at the 1st AST
> v(1);
c;

>V(2);
d;

> v('t');
280;

> which_ast(v('t'));
·+·;

> which_ast(which_ast(v('t')));
280;

> $ if the AST is chained (i.e. each node is linked
>$to its father-node),it is possible to move within
>$the tree upwards:
>V(0);
(a+ b) * (c + d);

> v(0)(1);
a+b;

> v(0)(1) = bf(1);
false;

> $ when a tune is compiled, its internal documentation
> $ is computed and then
> $ discarded. It is possible to keep the variable
> $ reference info and look at it
> $ It has a natural presentation as a seVmap structure

> $ let us experiment with a realistic program
> $ to explore graphs

> $ start collecting references
> refcollect(true);
OM;

>explore:= func(g,s opt avoid);
>> local toUse,reach,access;
» reach := {s};
» toUse := {s};
» while #to Use I= 0 do
» v := arb (toUse);

Cantor: a User's Guide 42

» if avoid = om then
» access := {u(2): u in g{v}} - reach;
>> else > $ look at the ref
» access := {u(2): u in g{v} I u(1) notin avoid} - reach;
>> end;
» if #access I= 0 then

> ref_explore := ref(explore);
> ref_explore;

» w := arb (access);
>> reach := reach with w;

{FOpt", ["avoid1],
"all",

» toUse := toUse with w; ("w" "g" "access" "avoid" "arb" "v" "toUse" •s•
·reSch"Il, , r ' ' , ' >> else

>> toUse := toUse less v; !"Parameter", ["g", "s1],
» end;
»end;
>> return reach;
»end;

>$

"Local", ["toUse", "reach", "access"Il};

> $ in this case what are the references to
> $ non-local(global) objects?
> {x: x in ref explore('all') I x notin
» 0/<ri-[ref_explore(u): u in ("Local","Parameter","0pt1]};
{"arb", "'v", "w"};

> $ stop collecting references
> refcollect(false);
OM;

6.5 pattern matching and unification primitives

varsOf

varsln

match

parse_msg

'.KepCer

varsOf(af); $produces a tuple of all the
referenceable ids appearing in af

varsln(af); $produces a tuple of all the
variables appearing in af excluding
Selectors

match(astl,ast2); $true if astl, ast2 are
equal or if ast2 contains patterns matching
astl subtrees or if astl contains patterns
matching ast2 subtrees which will then be
subsituted into astl

The ast_kind T _Pat (internal code 100) is
for an ast playing the role of a joker,
matching any other ast. The pretty-print
of a T_Pat ast node is $@@@

parse_msg(bool); $ false->no parsing
msg, true->msg
suspends output of parse msgs

Cantor: a User's Guide

> af;
X * y;;
> varsOf(af);
[y, x];
> bf := analyze ('f (x+y) ');
> varsOf(bf);
[y, x, fl;

> af;
X * y;;
> varsln(af);
[y, x);
> bf := analyze('f(x+y) ');
> varsln(bf);
[y, x);

> af := analyze() (1);
>> exists x,y,z ins I K(x,z);
> af;
exists x ins, yins, z ins I K(x,
z) ;

> setAst (af (1) (2) (1), 't', 100);

$@@@;

> af;
exists x in s, $@@@, z in s I K(x,
z) ;

> bf := analyze() (1);

>> exists u,v,w in s I K(u,w);
> bf;
exists u ins, v ins, wins I K(u,
w);
> match(af,bf);
true;
> af;
exists u ins, v ins, wins I K(u,
w);

43

unify

ast_subs

[unified_S, unif_map] := unify(S opt
constants);
- S is a collection -set or tuple- of ASTs
- constants is a set or tuple (even a single
string is OK) of strings, or AST T_Id's,
representing constant symbol identifiers

specifying constants, prevents the
symbols in that collection from being
substituted by variables (forces the
unification, if possible, in the other
direction)

unified S is the unified collection (should
be a singleton, if successful): unification
is impossible if #unified_ S > 1

unif_ map is the corresponding unification
map-: which may be applied using the
ast _subs primitive
anAst := ast_subs(astl,subs_map I
[stringlt_idf,astt2]); $ subs_map map
strings or T_Id trees onto other ASTs -
all occurrences of T _Ids in the domain of
subs_map are subsituted

6.6 Exercises

> al :=
>> analyze ('p (x, f (x), y) ');
> a2 :=
>> analyze('p(g(z),w,y) ');

> a3 :=
>> analyze('p(x,u,u)');
> s := (al,a2,a3};
> sl := unify(S);
> sl;
[(p(g(z), f(g(z)), f(g(z)));},

([x, g(z)], [y, w], [u, yl, [w,

f(g(z))J}J;
> gl := analyze ('anc (x, W) •);

> hl :=
>> analyze("anc(ZO,y)");
> w :=
>> unify((gl,hl}, ['ZO', 'W']);
> w;
[(anc(ZO, W);}, ([y, W], [x, ZO]}];

> al;
p(x, f(x), y);;
> aMap;
([x, g(z)], [y, w], [w, f(g(z))],

[u, y]};
> ast_subs(al,aMap);
p (g (z) , f (g (z)) , w) ; ;

- write a func to list all the occurences of a given identifier, within a given ast
- write a func to list all the occurences of a given ast as subtree of another given ast
- write a func to list all the occurences of a matching subtree of a given ast as subtree of
another given ast (to subtrees are 'matchable' if they are unifiable)
- write a func to tranform a simple for-loop (with a single iterator) into a while loop
- a conjunction is a formula of type fl and f2 and f3 and ... fn; the conjuncts are fl,f2, .. fn.
Write a func to transform the ast of any conjunction into the set of its conjuncts.
- Write a func boundsOf to produce the set of all bound variables occuring in a quantifer ast,
e.g.
boundsOf(exists x ins, yin K(x) I F(y,0) = x+t) = {x,y}
- Write a func to produce the set of all bound variables occuring in (set, tuple) -formers
- Write a func to produce the set of all bound variables occuring in for-loops
- Write a func to produce the set of all local and value declared variables occuring in funcs
- Similar exercises, but instead with free or non-local variables occuring in the given scope

7 Grammar

7.1 Terminology

Here are some preliminary observations concerning our BNF presentation of Cantor
grammar.
1. In what follows, the symbol ID refers to identifiers, and INTEGER,
FLOATING_POINT, BOOLEAN, and STRING refer to constants of type integer,
floating_point, Boolean, and string, which have been explained above. Any other symbol in
capital letters is explained in the grammar.

Cantor: a User's Guide 44

2. Definitions appear as:

STMT --> LHS := EXPR ;
STMT --> ifEXPR then STMTS ELSE-IFS ELSE-PART end

indicating that STMT can be either an assignment statement or a conditional statement The
definitions for ELSE-IFS and ELSE-PART are in the section for statements, and EXPR in
the section for expressions.

3. Rules are sometimes given informally in English. The rule is then in smaller case or in
italic.

4. Spaces are not allowed within any of the character pairs listed in section 2, nor within an
ID, INTEGER constant, FLOATING_POINT constant, or keyword. Spaces are required
between keywords, IDs, INTEGER constants, and FLOATING_POINT constants.

5. Cantor treats ends of line and tab as spaces. Any input can be spread across lines without
changing the meaning, and Cantor will not consider it to be complete until a semicolon (;) is
entered.

The only exceptions to this are the ! directives, which are ended with a carriage return, and
the fact that a quoted string cannot be typed on more than one line.

The annotated grammar below is divided into sections relating to the major parts of the
language.

7.2. Interactive Input

INPUT --> PROGRAM

INPUT --> STMT

INPUT --> EXPR ;

The EXPR is evaluated and the value is printed.

7.3 Program

Programs are usually read (i.e. included or read at launch-time) from a file, only because they
tend to be long.

PROGRAM --> program ID ; STMTS end ;

Of course, it can appear on several lines. One may optionally close with end program.

7.4 Statements

STMTS --> STMT +
NB-> One or more instances of STMT. The final semicolon is optional.

assignment statement

Cantor: a User's Guide 45

STMT --> LHS := EXPR ;

First, the left hand side (LHS) is evaluated to determine the target(s) for the assignment, then
the right hand side is evaluated. Finally, the assignment is made. If there are some targets
for which there are no values to be assigned, they receive the value OM. If there are va~ues
to be assigned, but no corresponding targets, then the values are ignored.

Examples:

a := 4;

[a,b] .- (1, 2];

[x,y] := [y,x];

f(3) := 7;

a is changed to contain the value 4.

a is assigned 1 and bis assigned 2.

Swap x and y.

If f is a tuple, then the effect of this statement is to assign 7 as the value of the third component
off. If f is a map, then its effect is to replace all pairs beginning with 3 by the pair [3,7] in the set of
ordered pairs f. If f is afunc, -although not a predefined func- then f(3) will be 7, and all other values of
f will be as they were before the assignment.

call for expression evaluation

STMT --> EXPR ;

if statement

The expression is evaluated and the value ignored. This is usually used
to invoke procedures or to display the current value of a variable.

STMT --> ifEXPR then STMTS ELSE-IFS ELSE-PART end;

The EXPRs after if and elseif are evaluated in order until one is found to be true. The
STMTS following the associated then are executed. If no EXPR is found to be true, the
STMTS in the ELSE-PART are executed. In this last case, if the ELSE-PART is omitted, this
statement has no effect.

ELSE-IFS --> ELSE-IF*
NB-> Zero or more instances of ELSE-IF.

ELSE-IF --> elseif EXPR then STMTS

ELSE-PART --> else STMTS
NB-> May be omitted.

One may optionally close with end if. See the end of this section for the definitions of ELSE
IFS and ELSE-PART.

for statement

STMT --> for !TERA TOR do STMTS end;

The STMTS are executed for each instance generated by the iterator. One may optionally
close with end for.

Cantor: a User's Guide 46

while statement

STMT --> while EXPR do STMTS end ;

EXPR must evaluate to a Boolean value. EXPR is evaluated and the STMTS are executed
repetitively as long as this value is equal to true. One may optionally close with end while.

read statement

STMT --> read LHS-LIST ;

Cantor gives a question mark (?) (Cantor is then in read mode) prompt and waits until an
expression has been entered. This EXPR is evaluated and the result is assigned to the first
item in LHS-LIST. This is repeated for each item in LHS-LIST.
As usual, terminate the expressions with a semicolon. Note: If a read statement appears in an
!include file, then Cantor will look at the next
input in that file for the expression(s) to be read.

STMT --> read LHS-LIST from EXPR;

This is the same as read LHS-LIST; except that EXPR must have a value of type file, i.e.
designate an external file or a pane file (a file associated to a text window). The values to be
read are then taken from the external file or the pane stream specified by the value of EXPR.
If there are more values in the file than items in LHS-LIST, then the extra values are left to be
read later. If there are more items in LHS-LIST than values in the file, then the extra items are
assigned the value OM. In the latter case, the function eofwill return true when given the file
as parameter. Before this statement is executed, the external or pane file in question must
have been opened for reading by the proper pre-defined function (see section 3.6).

STMT --> readf PAIR-LIST;
STMT --> readf PAIR-LIST from EXPR;

> readf x;
1.34
> x;
l.34000e+OO;

> readf y;
123,456
> y;
"123,456";

Figure 1: readf example

The relation between these two forms is the same as the relation between the two forms of
read, with the second one coming from a file. The elements in the PAIR-LIST define the
formating used. See PAIR-LIST at the end of this section.

print statement

STMT --> print EXPR-LIST;

1Ge.pkr Cantor: a User's Guide 47

Each expression in EXPR-LIST is evaluated and printed on standard output. The output
values are formated to show their structure, with line breaks at reasonable positions and
meaningful indentation.

STMT --> print EXPR-LIST to EXPR;

As in read ... from ... , EXPR must be a value of type file. The values are
written to the external or pane file specified by the value of EXPR. Before executing this
statement, the external file in question must have been opened for writing by one of the pre
defined functions (e.g. openw or opena for external text files. See section 3.6).

STMT --> printf PAIR-LIST;
STMT --> printf PAIR-LIST to EXPR;

> printf 1/3: 15.10, 1/3:15.1, 1/3:15.01, "\n";
0.3333333135 0.3333333135 0.3

> printf 1/3: -17.10, 1/3:-17.1, 1/3:-17.01, "\n";
3.3333331347e-01 3.3333331347e-01 3.3e-01

Figure 2: printf example

The relation between these two forms is the same as the relation between the two forms of
print, with the second one going to a file. The elements in the PAIR-LIST define the
formating used. See PAIR-LIST at the end of this section. See write and writeln below.

return statement

STMT --> return ;

return is only meaningful inside a func. Its effect is to terminate execution of the func and
return OM to the caller. Cantor inserts return; just before the end of every func. If return
appears at the top level, e.g. as input at the keyboard, a run time error will occur.

STMT --> return EXPR;

Same as return; except that EXPR is evaluated and its value is returned as the value of the
func.

take .. from statement

STMT --> take LHS from LHS ;

The second LHS must evaluate to a set. An arbitrary element of the set is assigned to the first
LHS and removed from the set.

STMT --> take LHS frome LHS;

The second LHS must evaluate to a tuple (or a string). The value of its last defined
component (or last character) is assigned to the first LHS and replaced by OM in the tuple
(deleted from the string).

Cantor: a User's Guide 48

STMT --> take LHS fromb LHS;

The second LHS must evaluate to a tuple (or a string). The value of its first component
(defined or not) (first character) is assigned to the first LHS and all components of the tuple
(characters of the string) are shifted left one place. That is, the new value of, the
ithcomponent is the old value of the (i+ l)st component (i= 1,2, ..).

write statement

STMT --> write PAIR-LIST;
STMT --> write PAIR-LIST to EXPR;

STMT --> writeln PAIR-LIST;
STMT --> writeln PAIR-LIST to EXPR;

write is equivalent to printf, provided for the convenience of the Pascal user. writeln is
equivalent to write, with '\n' as the last item of the list. This is also provided for user
convenience.

formats

PAIR-LIST --> PAIR+
NB-> One or more instances of PAIR, separated by commas.

PAIR --> EXPR: EXPR
PAIR --> EXPR

When a PAIR appears in a readf, the first EXPR must be a LHS. The meaning of the PAIR
and the default value when the second EXPR is omitted depends on whether the PAIR occurs
in readf or printf. The second EXPR (or its default value) defines the format

> printf 3*[""]+[1. .30) : 7*[3] with "\n";
1 2 3 4

5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30
> X := [[i, j,i+j] : 1 1 J lil [1. .3)] ;
> printf x: 5*[[0,"+",0, "=", OJ, "\t"
>> with "\n", "\n";

1+1=2 1+2=3 1+3=4 2+1=3 2+2=4
2+3=5 3+1=4 3+2=5 3+3=6

Figure 3: printf with structure example

* Input: Input formats are integers.

The integer gives the maximum number of characters to be read. If the first sequence of non
white space characters can be interpreted as a number, that is the value read. Otherwise, the
first non-white sequence is returned as a string.

If the integer is negative (say -i) ,exactly i characters will be read and returned as a string.
Therefore c:-1 will read one character into c.

Cantor: a User's Guide 49

If no integer is given, there is no maximum to the number of characters that will be read. See
figure 1.

* Output: Output formats are: integers, floating_point numbers, strings, or tuples of
output formats.

format --> INT
format --> INT.FRACT

INT is an Integer (and the integer part of floating_point numbers). INT represents the
minimal number of columns to be used. FRACT, the fractional part of a floating_point
number is used to specify precision, in terms of hundredths:

precision = O.FRACT * 100
The precision controls the number of places used in floating_point numbers, and where
breaks occur in very long integers.

Negative values cause floating_point numbers to be printed in scientific notation. Notice that
there is a limit to the number of useful digits. Also notice that 15.1 is the same as 15.10;
hence, both would use 15 columns and 10 decimal places. See figure 2.

Strings should not be used as formats outside of tuples.

Compound objects (tuples and sets) iterate over the format. If the format is a number, it is
used as the format for each element. If the format is a tuple, the elements of the tuple are
cycled among, with strings printed literally and other items used as formats. See figures 3
and 4.

Default values are:

type
Float
Integer
String
Anything else

int part
20
0
0
10

fract.part
5
50 (for breaking large ints)

in the example of figure 4 the printf statement reads:

printf x:3*[10,' --- '] with '\n->', '\nfin';

Two items are printed: x and the string '\nfin'. x has its output format specifed by a tuple.
'\nfin' uses the default format. x's format tuple is

3*[10,' --- '] with \n->'
a tuple of seven (7) elements. In this tuple only 3 elements are numbers, i.e. the format

specification for 3 elements of x. Since in this example x has 17 elements, the format
specifaction is cycled over 6 times.

> x;
["there", "are", 5, "output", "formats", "in", "version", 0.410,
": ", "integers", "floating", "point", "numbers", "strings",
"or", "tupleof", "output"] ;

> printf x;
there are Soutputformatsinversion
0.41000:integersfloatingpointnumbersstringsortupleofoutput
> printf x:3*[10,' --- '] with '\n->', '\nfin';

there --- are --- 5 ---
-> output formats in
-> version 0.41000
-> integers floating point

'.KepCer Cantor: a User's Guide 50

-> numbers ---
-> tupleof ---
fin

strings --
output

or ---

> printf x:3*(10.2,'
there --

--- '] with '\n->', '\nfin';
are --- 5 ---

-> output ---
-> version ---
-> integers
->
->
fin
>

numbers
tupleof

formats --- in ---
0.41000000000000000000 ---

floating --
strings

output

point
or ---

Figure 4: printf with structure example

7.5 Iterators

These constructs are used to iterate through a collection of values, assigning these values one
at a time to a variable. Iterators are used in the for-statement, quantifiers, and set or tuple
formers.

A SIMPLE-ITERATOR generates a number of instances for which an assignment is made.
These assignments are local to the iterator, and when it is exited, all previous values of IDs
that were used as local variables are restored. That is, these IDs are bound variables whose
scope is the construction containing the iterator. (e.g., for statements, quantifiers, formers,
etc.)

ITERATOR --> ITER-LIST
ITERATOR --> ITER-LIST I EXPR

EXPR must evaluate to a Boolean. Generates only those instances generated by ITER-LIST
for which the value of EXPR is true.

ITER-LIST --> SIMPLE-ITERATOR+
One or more SIMPLE-ITERATORs separated by commas.

Generates all possible instances for every combination of the SIMPLE-ITERA TORs. The
first SIMPLE-ITERATOR advances most slowly. Subsequent iterators may depend on
previously bound values.

SIMPLE-ITERATOR --> BOUND-LIST in EXPR

EXPR must evaluate to a set, tuple, or string. The instances generated are all possibilities in
which each BOUND in BOUND-LIST is assigned a value that occurs in EXPR.

SIMPLE-ITERATOR --> BOUND= ID (BOUND-LIST)

Here ID must have the value of an smap, tuple, or string, and BOUND-LIST must have the
correct number of occurrences of BOUND corresponding to the parameters of ID. The
resulting instances are those for which all occurrences of BOUND in BOUND-LIST have all
possible legal values and BOUND is assigned the corresponding value.

SIMPLE-ITERATOR --> BOUND= ID (BOUND-LIST}

Same as the previous one for the case in which ID is an mmap.

'.K.ep~r Cantor: a User's Guide 51

BOUND-LIST --> BOUND+
one or more BOUND, separated by commas

BOUND --> ~
Corresponding value is thrown away.

BOUND --> ID
Corresponding value is assigned to ID.

BOUND --> [BOUND-LIST]
Corresponding value must be a tuple, and elements of the tuple are
assigned to corresponding elements in the BOUND-LIST.

7.6 Formers

Generates the elements of a set or tuple.

FORMER -->
Empty Generates the empty set or tuple.

FORMER --> EXPR-LIST
Values are explicitly listed.

FORMER --> EXPR .. EXPR

Both occurrences of EXPR must evaluate to integers. Generates all integers beginning with
the first EXPR and increasing by 1 for as long as the second EXPR is not exceeded. If the
first EXPR is larger than the second, no values are generated.

FORMER --> EXPR , EXPR .. EXPR

All three occurrences of EXPR must evaluate to integer. Generates all integers beginning
with the first EXPR and incrementing by the value of the second EXPR minus the first
EXPR. If this difference is positive, it generates those integers that are not greater than the
third EXPR. If the difference is negative, it generates those integers that are not less than the
third EXPR. If the difference is zero, no integers are generated.

FORMER --> EXPR: ITERATOR
The value of EXPR for each instance generated by the ITERATOR.

7. 7 Selectors

Selectors fall into three categories: function application, mmap images, and slices. A tuple,
string, map, or func (pre- or user-defined) may be followed by a SELECTOR, which has the
effect of specifying a value or group of values in the range of the tuple, string, map, or func.
Not all of the following SELECTORs can be used in all four cases.

SELECTOR --> (EXPR-LIST)

Must be used with an smap, tuple, string, or func.

If used with a tuple or string, then EXPR-LIST can only have one element, which must
evaluate to a positive integer.

If used with afunc, arguments are passed to corresponding parameters. There must be as

Cantor: a User's Guide 52

many arguments as required parameters and no more than the optional parameters permit.

If used with an smap and EXPR-LIST has more than one element, it is equivalent to what it
would be if the list were enclosed in square brackets, []. Thus a function of several
variables is interpreted as a function of one variable --- the tuple whose components ar~ the
individual variables.

SELECTOR --> { EXPR-LIST}

Must be used with an mmap. The case in which the list has more than one element is handled
as above.

SELECTOR --> (EXPR .. EXPR)

Must be used with a tuple or string, and both instances of EXPR must evaluate to a positive
integer.

The value is the slice of the original tuple or string in the range specified by the two
occurrences of EXPR. There are some special rules in this case. To describe them, suppose
that the first EXPR has the value a and the second has the value b so that the selector is
(a .. b).

a<=b

a=b+l
a>b+l

Value is the tuple or string with components defined only at the integers
from 1 to b ? a + !,inclusive. The value of the ith component is the
value of the (a+ i? l)stcomponent of the value of EXPR.
Value is the empty tuple.
Run-time error.

SELECTOR --> (.. EXPR)

Means the same as (1 .. EXPR).

SELECTOR --> (EXPR ..)

Means the same as (EXPR .. EXPR) where the second EXPR is equal to the length of the
tuple or string.

SELECTOR --> ()
Used with a func that has no parameters. It also works with an smap with [] in its domain.

7 .8 Left Hand Sides

The target for anything that has the effect of an assignment.

LHS --> ID
LHS --> LHS SELECTOR

LHS must evaluate to a tuple, string, or map. LHS is modified by replacing the components
designated by selector.

LHS --> [LHS-LIST]

LHS-LIST --> LHS+
One or more instances of LHS, separated by commas

Cantor: a User's Guide 53

Thus the input,
[A, B, CJ := [1, 2, 3);

has the effect of replacing A by 1, B by 2, and C by 3.

Any LHS in the list can be replaced by ~. The effect is to omit any assignment to a LHS 'that
has been so replaced.

Thus the input,
[A, ~, C] := [l, 2, 3];

replaces A by 1, C by 3.

7.9 Expressions

The first few in the following list are values of simple data types and
they have been discussed before.

EXPR --> ID
EXPR --> INTEGER
EXPR --> FLOATING-POINT
EXPR --> STRING
EXPR --> true
EXPR --> false
EXPR --> OM
EXPR --> newat

The value is a new atom, different from any other atom that has appeared before.

EXPR --> USER-FUNC
A user-defined func. See §5.

EXPR --> ifEXPR then EXPR ELSE-IFS ELSE-PART end;
See definition of if under STMT, page15. ELSE-PART is required, and each part contains an
expression rather than statements.

EXPR --> (EXPR)
Any expression can be enclosed in parentheses. The value is the value of EXPR.

EXPR --> [FORMER]
Evaluates to the tuple of those values generated by FORMER in the order that former generates
them.

EXPR --> { FORMER }
Evaluates to the set of those values generated by FORMER.

EXPR --> # EXPR
EXPR must be a set, tuple, or string. The value is the cardinality of the set, the length of the
tuple, or the length of the string.

EXPR --> not EXPR
Logical negation. EXPR must evaluate to Boolean.

EXPR --> + EXPR
Identity function. EXPR must evaluate to a number.

EXPR --> - EXPR
Negative of EXPR. EXPR must evaluate to a number.

Cantor: a User's Guide 54

EXPR --> EXPR SELECTOR

EXPR must evaluate to an Cantor value that is, in the general sense, a function. That is, it
must be a map, tuple, string, or func. See §4,5.

EXPR --> EXPR . ID EXPR

This is equivalent to ID(EXPR,EXPR). It lets you use a binary function as an infix operator.
The space after the "." is optional.

EXPR --> EXPR . (EXPR) EXPR

EXPR . (EXPR) EXPR
is equivalent to

(EXPR)(EXPR,EXPR)
It lets you use a binary function as an infix operator. The space after the "." is optional. In
general, arithmetic operators and comparisons may mix integers and floating_point. The
result of an arithmetic operation is an integer if both operands are integers and floating_point
otherwise. For simplicity, we will use the term number to mean a value that is either integer
or floating_point. Possible operators are:

+ - * I div mod **
with less

=I=<><=>=
union inter in notin subset

and or impl iff ->

See section 7 .11 for precedence rules.

EXPR --> EXPR + EXPR

If both instances of EXPR evaluate to numbers, this is addition. If both instances of EXPR
evaluate to sets, then this is union. If both instances of EXPR evaluate to tuples or strings,
then this is concatenation.

EXPR --> EXPR union EXPR

An alternate form of+. It is intended that it be used with sets, but it is in all ways equivalent
to+.

EXPR --> EXPR - EXPR

If both instances of EXPR evaluate to numbers, this is subtraction. If both instances of
EXPR evaluate to sets, then this is set difference.

EXPR --> EXPR * EXPR

If both instances of EXPR evaluate to numbers, this is multiplication. If both evaluate to
sets, this is intersection. If one instance of EXPR evaluates to integer and the other to a tuple
or string, then the value is the tuple or string, concatenated with itself the integer number of
times, if the integer is positive; and the empty tuple or string, if the integer is less than or
equal to zero.

EXPR --> EXPR inter EXPR

Cantor: a User's Guide 55

An alternate form of*. It is intended that it be used with sets, but it is in all ways equivalent
to*.

EXPR --> EXPR I EXPR

Both instances of EXPR must evaluate to numbers. The value is the result of division and is
of type floating_point.

EXPR --> EXPR div EXPR

Both instances of EXPR must evaluate to integer, and the second must be non-zero. The
value is integer division defined by the following two relations,

(a div b)? b+ (a mod b)= 0 for b> 0
a div(? b)=? (a divb) for b< 0.

EXPR --> EXPR mod EXPR

Both instances of EXPR must evaluate to integer and the second must bepositive. The result
is the remainder, and the following condition isalways satisfied,

O<=a modb < b.

EXPR --> EXPR ** EXPR

The values of the two expressions must be numbers. The operation is exponentiation.

EXPR --> EXPR with EXPR

The value of the first EXPR must be a set or tuple. If it is a set, the value is that set with the
value of the second EXPR added as an element. If it is a tuple, the value of the second EXPR
is assigned to the value of the first component after the last defined component of the tuple.

EXPR --> EXPR less EXPR

The value of the first EXPR must be a set. The value is that set with the value of the second
EXPR removed, if it was present; the value of the first EXPR, if the second was not present.

Pointer expressions may be defined as follows:
EXPR --> EXPR -> EXPR

the expression on the left of the -> (pointer sign) designates a scope. The expression on the
right of the pointer sign is an expression which must be evaluated in that scope.

EXPR --> EXPR = EXPR
The test for equality of any two Cantor values.

EXPR --> EXPR /= EXPR
Negation of EXPR=EXPR.

EXPR --> EXPR < EXPR
EXPR --> EXPR > EXPR
EXPR --> EXPR <= EXPR
EXPR --> EXPR >= EXPR

For all the above inequalities, both instances of EXPR must evaluate to the same type, which

'.K.ept:er Cantor: a User's Guide 56

must be number or string. For numbers, this is the test for the standard arithmetic ordering;
for strings, it is the test for lexicographic ordering.

EXPR --> EXPR in EXPR

The second EXPR must be a set, tuple, or string. For sets and tuples, this is the test for
membership of the first in the second. For strings, it is the test for substring.

EXPR --> EXPR notin EXPR
Negation of EXPR in EXPR.

EXPR --> EXPR subset EXPR

Both instances of EXPR must be sets. This is the test for the value of the first EXPR to be a
subset of the value of the second EXPR.

EXPR --> EXPR and EXPR

Logical conjunction. Both instances of EXPR should evaluate to a Boolean.

If the left operand is false, the right operand is not evaluated. Actually returns the second
argument, if the first is true. While the user may depend on the left-to-right evaluation order,
it is recommended that they not depend on the behavior when the second argument is not
Boolean.

EXPR --> EXPR or EXPR

Logical disjunction. Both instances of EXPR should evaluate to a Boolean. If the left
operand is true, the right operand is not evaluated. Actually returns the second argument, if
the first is false. While the user may depend on the left-to-right evaluation order, it is
recommended that they not depend on the behavior when the second argument is not
Boolean.

EXPR --> EXPR impl EXPR

Logical implication. Both instances of EXPR must evaluate to a Boolean.

EXPR --> EXPR iffEXPR

Logical equivalence. Both instances of EXPR should evaluate to a Boolean.

It actually checks for equality, like =, but it has a different precedence. It is recommended
that the user not depend on iff to work with arguments other than Booleans.

EXPR --> % BINOP EXPR

EXPR must evaluate to a set, tuple or string. Say that the elements in EXPR are xl,
x2, ... ,xN (N=#EXPR). If N=0, then the value is OM. If N=l, then the value is the single
element. Otherwise, % ? EXPR equals

xl ? x2? ???? xN

associating to the left.

If EXPR is a set, then the selection of elements is made in arbitrary
order, otherwise it is made in the order of the components of EXPR.

'.K.epCer Cantor: a User's Guide 57

EXPR --> EXPR % BINOP EXPR

The second instance of EXPR must evaluate to a set, tuple, or string. If the first EXPR is a,
BINOP is?, and the values in the second are xl, x2, ... ,xN as above, then the value is:

a ? X 1 ? x2 ? ??? ? xN

associating to the left.

EXPR --> EXPR ? EXPR

The value of the first EXPR, if it is not OM; otherwise the value of the second EXPR.

EXPR --> exists ITER-LIST I EXPR

EXPR must evaluate to a Boolean. If ITER-LIST generates at least one instance in which
EXPR evaluates to true, then the value is true; otherwise it is false.

EXPR --> forall ITER-LIST I EXPR

EXPR must evaluate to a Boolean. If every instance generated by ITER-LIST is such that
EXPR evaluates to true, then the value is true; otherwise it is false.

EXPR --> EXPR where DEFNS end

The value is the value of the EXPR preceding where, evaluated in the current environment
with the IDs in the DEFNS added to the environment and initialized to the corresponding
EXPRs. The scope of the IDs is limited to the where expression. The DEFNS can modify
IDs defined in earlier DEFNS in the same where expression.

BINOP --> Any binary operator or an ID or expression in parentheses whose value is a function
of two parameters. The ID and parenthesized expression may be preceded by a period.

A bl b• * ** • • I ct· od • h 1 d ccepta e mary operators are: +, -, , , umon, mter, , 1v, m , wit , ess, an , or,
impl.

DEFNS --> DEFN*
Zero or more instances of DEFN.

DEFN --> BOUND := EXPR ;
DEFN --> ID SELECTOR := EXPR ;

EXPR-LIST --> EXPR+
One or more instances of EXPR separated bycommas.

7.10 User defined functions

USER-FUNC --> FUNC-HEAD LOCALS VALUES STMTS end

This is the syntax for user-defined funcs. One may optionally close with end June.
VALUES and LOCALS may be repeated or omitted and appear in any order. See return in
section 6.2.3.

FUNC-HEAD --> func (ID-LIST OPT-PART);

In this case, there are parameters. The parameters in the OPT-PART receive the value om if
there are no corresponding arguments.

'.JGepfer Cantor: a User's Guide 58

FUNC-HEAD --> func (OPT-PART);
In this case, there are no required parameters.

OPT-PART --> optID-LIST
May be omitted.

LOCALS --> local ID-LIST;

VALUES --> value ID-LIST ;

ID-LIST --> ID+
One or more instances of ID separated by commas.

7.11 Precedence Rules

- Operators are listed from highest priority to lowest priority.

- Operators are left associative unless otherwise indicated.

- nonassociative means that you cannot use two operators on that line without using
parentheses to separate the scope of each.

->

CALL

#-+

?
%
**
* /mod div

left associative

anything that is a call
to a function
--- func, tuple, string, map, etc.

unary operators

nonassociative
nonassociative
right associative

+ - with less union inter

.ID infix use of binary function
in notin subset
< <= = I= > >= nonassociative
not unary
and

or
impl
iff
exists forall
where

8 Directives

There are a number of directives that can be given to Cantor to modify its behavior.

The other directives are ! commands. [a I b] indicates a choice between a and b. Most
directives are available as interactive , menu oriented commands

8.1 Cantor Commands

'.KepCer Cantor: a User's Guide 59

!quit--- Exit Cantor.

!reset ---Reset Cantor: it is useful for a fresh restart, without leaving Cantor; all
memory resident Cantor objects are destroyed. The memory allocated until then is kept for
the new Cantor session

! suspend --- it is a menu oriented directive, not a line-orientd directive: it is used as a
menu option to suspend the Cantor execution. It is very useful when one suspects a program
to be trapped into an endless loop. The suspend directive is invoked by selecting with the
mouse or cursor the suspend option in the menu. The cantor program is then suspended and
Cantor enters a nested session in the break mode (prompt %). To resume program execution
--perhaps after inspecting or changing some variables or funcs-- one executes the return;
instruction.

!include <filename> --- Replace <filename> with a file/pathname according to the
rules of your operating system. Cantor will insert your file. The same service is available
with the Cantor primitive include(filename);

!load <filename> --- Begins loading a Cantor component. A similar service is
available with the Cantor primitive restore(filename);

! save <filename> --- save the current status of the Cantor session as a component. It
is mainly used for creating compiled components: one performs a !include of some source
code, and one saves the result. It is recommended to make a !reset between any two
compilations, otherwise the compilation results accumulate.A similar service is available with
the Cantor primitives store(expr filename); and save(id _string filename);

!clear --- Throw away all input back to the last single prompt.
The user can edit whatever has been entered since the beginning of the current syntactic
object, in response to a syntax error message, or if the user wants to change something
previously typed. If the user prefers to start again, ! clear will clear the typing buffer and
allow you to start the input afresh.

!memory --- Shows how much memory has been allocated --and is subject to garbage
collection.

!memory <nnn> --- Change the legal upper bound to <nnn>. May not be lower than
the currently allocated memory: if <nnn>is lower than what is currently allocated, returns
how much memory has been allocated sof ar.

!allocate <nnn>---Increase the currently allocated memory to <nnn>. Will not exceed
the upper bound set by !memory, nor the actual limits of the machine.

!watch list-of-ids --- Traces assignment and evaluation of ids. Any watch-ed id, when
accessed, is considered a breakpoint, if the !breakpoint on switch has been set, and until it
has been reset (!breakpoint off)

!unwatch list-of-ids --- Turns off tracing for ids, and possible breakpoints.

!record <filename> --- Begins recording (i.e. echoing) all input to <filename> . This
lets you experiment and keep a record of the work performed.

!record --- the same directive, without argument, is used to turn-off recording

'.K.epCer Cantor: a User's Guide 60

!recordOutput <filename> --- Begins recording (i.e. echoing) all that is displayed on
i.e.output to- the console to <filename> . This lets you keep a complete record of the work
performed.

!recordOutput --- the same directive, without argument, is used to turn-off recor~g

!ids --- Lists all identifiers that have been defined. See also the Cantor primitive ids()

! oms --- Lists all identifiers that have been used, but not defined.

!work _ids --- upon this command, all user created variables, visible in the current
session are listed, if they are defined (i.e. 'i: OM)

! new _ids ---upon this command, all user created variables, visible in the current
session are listed, whether they are defined (i.e. 'i: OM) or not

!version --- upon this commands the version information and copyright notice is
displayed at the console.

!flex min size <nnn> --- When flex_alloc is on, the Cantor system optimizes the
size of the contiguous memory blocks available for new dynamic memory requests. The
default flex_ min _size is 64 bytes.

obsolete: 8086, oldRreal

8.2 Cantor switches

! breakpoint [on I off J ---When on all access to a watch-ed id becomes a breakpoint.
When arriving at a breakpoint, Cantor suspends the current execution and prompts with%
(break mode). Most Cantor services are available then. However: the currently watch-ed id
may not be unwatch-ed. After a break, to resume program execution --perhaps after
inspecting or changing some variables or funcs-- one executes the return; instruction.

! changes [on I off J ---When on, all the changes to any Cantor variable, in any scope
are recorded. Recording stops when the switch is reset. The changes keep accumulating in
the same structure when the switch is set again, unless the resetchanges(); instruction is
executed. (see the primitives allchanges, visiblechanges, resetchanges)

!code [on I off J --- When on, you get a pseudo-assembly listing for the program.
Default is off.

!echo [on I off J ---When on, all input is echoed. This is particularly useful when
trying to find a syntax error in an !include file or input for a read. It is also useful for
pedagogical purposes, as it can be used to interleave input and output.

! gc [on I off J ---When on, upon each garbage collection, statistics are displayed. It
is useful to parametrize correctly the initial allocation. Note the difference with the Cantor
primitive gc() which invokes the garbage collector.

!trace [on I off J ---When on, you get an execution trace, using the same notation as
!code. When desperate, this can be used to trace the execution of your program. Really
intended for debugging Cantor itself. Default is off.

!verbose [on I off J ---Controls the amount of trace information
runtime error messages. See section 11. Default is off.

provided by

I flex_alloc [on/off] --- Whenflex_alloc is on, the memory upper-limit, defined by the

Cantor: a User's Guide 61

!memory command may be bypassed in increments off[ex_min_size. See the !flex_min_size
command.

! passive_err [on/off] --- When passive err is on, Warnings issued by the Cantor
system no longer trigger an interactive process. Instead the message is issued to the console.
However, since a breakpoint is generated, the system is suspended, in a nested error session.
To avoid such suspension, insert the instruction:

ignoreallbreakpt();$ all breakpoint commands set to noop
before running the program sequence containing the Warning.

! annotate [on/off] --- When annotate is on, comments are added as annotations to
Abstract Syntax Trees. This is used when comments need to be processed.

! time [on/off] --- When time is on, along with the execution trace the time (date) of
accesses is displayed. This illustrated by the following example, run under the option
verbose on, and time on.

>fact:= func(n);
» if n <= 1 then return 1 ;
» else fact(n) := n*fact(n-1);
» return fact(n);
>>end;
»end;
> !watch fact
!'fact' watched
>
> fact(10);
! Evaluate: fact(10) eval time: Wed Oct 26 18:41:271994

i Evaluate: fact(9) eval time: Wed Oct 26 18:41:271994

! Evaluate: fact(8) eval time: Wed Oct 26 18:41 :27 1994

i Evaluate: fact(7) eval time: Wed Oct 26 18:41 :27 1994

i Evaluate: fact(6) eval time: Wed Oct 26 18:41:271994

i Evaluate: fact(S) eval time: Wed Oct 26 18:41 :27 1994

i Evaluate: fact(4) eval time: Wed Oct 26 18:41:281994

i Evaluate: fact(3) eval time: Wed Oct 26 18:41 :28 1994

Evaluate: fact(2) eval time: Wed Oct 26 18:41 :28 1994

Evaluate: fact(1) eval time: Wed Oct 26 18:41 :28 1994

fact returns: 1 return time: Wed Oct 26 18:41 :28 1994

fact(2) := 2;
Evaluate: fact(2) eval time: Wed Oct 26 18:41 :28 1994

I Yields: 2;
! fact returns: 2 return time: Wed Oct 2618:41:291994

i fact(3) := 6;
! Evaluate: fact(3) eval time: Wed Oct 26 18:41 :29 1994

I Yields: 6;
! fact returns: 6 return time: Wed Oct 26 18:41:291994

! fact(4) := 24;
! Evaluate: fact(4) eval time: Wed Oct 26 18:41:291994

I Yields: 24;
! fact returns: 24 return time: Wed Oct 26 18:41 :29 1994

I fact(S) := 120;
! Evaluate: fact(S) eval time: Wed Oct 26 18:41 :30 1994

I Yields: 120;

Figure 5:

obsolete: in_debug

! fact returns: 120 return time: Wed Oct 2618:41:301994

i fact(6) := 720;
! Evaluate: fact(6) eval time: Wed Oct 26 18:41:301994

i Yields· 720·
i fact reiurns: 720 return time: Wed Oct 26 18:41 :30 1994

i fact(7) := 5040;
! Evaluate: fact(7) eval time: Wed Oct 26 18:41 :311994

I Yields: 5040;
! fact returns: 5040 return time: Wed Oct 26 18:41 :31 1994

I fact(8) := 40320;
! Evaluate: fact(8) eval time: Wed Oct 26 18:41 :31 1994

i Yields· 40320·
i fact reiums: 40320 return time: Wed Oct 2618:41 :31 1994

I fact(9) := 362880;
! Evaluate: fact(9) eval time: Wed Oct 26 18:41 :31 1994

I Yields: 362880;
! fact returns: 362880 return time: Wed Oct 26 18:41 :32 1994

i fact(10) := 3628800;
! Evaluate: fact(10) eval time: Wed Oct 2618:41:321994

I Yields: 3628800;
! fact returns: 3628800 return time: Wed Oct 26 18:41:321994

3628800·
> fact(12);
! Evaluate: fact(12) eval time: Wed Oct2618:43:371994

! Evaluate: fact(11) eval time: Wed Oct 26 18:43:37 1994

i Evaluate: fact(10) eval time: Wed Oct 26 18:43:37 1994

I Yields: 3628800;
! fact(11) := 39916800;
! Evaluate: fact(11) eval time: Wed Oct 2618:43:38 1994

i Yields· 39916800·
i fact reiurns: 39916800 return time: Wed Oct 26 18:43:38 1994

lfact(12) :=479001600;
! Evaluate: fact(12) eval time: Wed Oct 26 18:43:38 1994

I Yields: 479001600;
! fact returns: 479001600 return time: Wed Oct 26 18:43:39 1994

479001600;
>

Tracing and timing

Cantor: a User's Guide 62

8.3 !allocate and !memory

The !memory directive adjusts the upper limit on permitted memory allocation. This is
mainly to protect mainframe systems, so that one user doesn't use all the available space. The
!allocate directive increases the amount of memory currently available for Cantor objects.
This space is automatically increased up to the limit set by !memory, but by allocating it
early, some large programs may run more quickly.

If you want to grab as much memory as possible, first, determine the amount of memory
available (e.g. by cheking 'About Finder'). Then subtract from that 250K for Cantor's
scratch area plus any other space you may wish to save for use by the !save and !load
directives or save(), store() and restore() instructions. A thumb rule is that a restore() or a
!load require a memory allocation of 1,4 times the file size. This memory is not freed, it is
used for the new objects restored. Its excess is just added to the garbage collectable memory.
You can then set the memory limit and pre-allocate in your .cantorrc files.
See figure 6. Having tried to allocate 800K, there was only room for 500K. Deciding to
leave 200K for other work, a limit of 300K was placed on Cantor, and 150K was pre
allocated. The lines below" ... " are in another session, because one cannot decrease the GC
(garbage collected) memory.

> !memory
Current GC memory 50060, Limit= 1024000
> !allocate 800000
Current GC memory 500600, Limit= 1024000

> !memory 300000
Current GC memory 50060, Limit= 300000
> !allocate 150000
Current GC memory= 150180, Limit= 300000

Figure 6: Finding memory limits

If you have enough memory available, don't worry about memory allocation, just use the
directive

!flex alloc on

8.4 !watch and !unwatch

The two commands !watch and !unwatch control which identifiers are traced during
execution. Tracing consists of reporting assignments and function evaluation. An identifier
is watched by the directive:

watch id idl id2 id3

where id (resp idl id2 id.3) is the name(s) of the identifier(s) to be watched. More than one
identifier may be listed, separated by blanks.

While being watched, any assignment to a variable named with that identifier is echoed on the
standard output. This includes assignments to slices and maps. If the identifier is used as a
function (smap, mmap, tuple, func), a line is printed indicating that the expression is being
evaluated and a second line is printed reporting the value returned.

It is significant that identifiers are watched, rather than variables. If i is being watched, then
all variables named i are watched. You can stop watching an identifier with the directive:

Cantor: a User's Guide 63

!unwatch id

See figure 7 for an example of the output.

> f := func(i);
return f(i-l)+f(i-2);

end;
> !watch f

! ' f' watched
> f(l) := 1;

f(l) := 1;

> f(2) := 1;

f(2) := 1;

> f(4);

3;

Evaluate: f(4);
Evaluate: f (3);

Evaluate: f(2);
Yields: 1;
Evaluate: f(l);
Yields: 1;

f returns: 2;
Evaluate: f(2);
Yields: 1;
f returns: 3;

Figure 7: !watch examples

8.5 !record, !recordOutput

The !record directive channels all input from standard input into a file. This allows you to
capture your work and later edit it for including. A directive of the form: !record test changes
to recording on file test. If you had been recording elsewhere, the other file is closed.

!record with no file name turns off recording altogether. The recording is appended to an
existing file. By combining this with the !echo directive, one can create terminal sessions.
The !recordOutput directive is similar to !record, but concerns only the output (!record only
the input)

9. The Cantor Grammar: condensed

9.1 Interactive Input

INPUT --> PROGRAM
INPUT --> STMT
INPUT --> EXPR ;

9.2 Program

'.K.epCer Cantor: a User's Guide 64

PROGRAM --> program ID ; STMTS end ;

9.3 Statements

STMT --> LHS := EXPR ;
STMT --> EXPR ;
STMT --> ifEXPR then STMTS ELSE-IFS ELSE-PART end;

ELSE-IFS --> ELSE-IF*

ELSE-IF --> elseif EXPR then STMTS
ELSE-PART --> else STMTS

STMT --> for !TERA TOR do STMTS end ;
STMT --> while EXPR do STMTS end ;

STMT --> read LHS-LIST ;
STMT --> read LHS-LIST from EXPR ;
STMT --> readf PAIR-LIST;
STMT --> readf PAIR-LIST to EXPR;

STMT --> print EXPR-LIST;
STMT --> print EXPR-LIST to EXPR ;
STMT --> printf PAIR-LIST;
STMT --> printf PAIR-LIST to EXPR;

STMT --> return ;
STMT --> return EXPR ;
STMT --> take LHS from LHS ;
STMT --> take LHS frome LHS ;
STMT --> take LHS fromb LHS ;

STMT --> write PAIR-LIST;
STMT --> write PAIR-LIST to EXPR;
STMT --> writeln PAIR-LIST;
STMT --> writeln PAIR-LIST to EXPR;

STMTS --> STMT+
The final semicolon is optional.

PAIR-LIST --> PAIR*
PAIR, separated by commas

PAIR --> EXPR : EXPR
PAIR --> EXPR

9.4 Iterators

ITERATOR --> ITER-LIST
ITERATOR --> ITER-LIST I EXPR

ITER-LIST --> SIMPLE-ITERATOR+
separated by commas

SIMPLE-ITERATOR --> BOUND-LIST in EXPR
SIMPLE-ITERATOR --> BOUND= ID (BOUND-LIST)

SIMPLE-ITERATOR --> BOUND =ID {BOUND-LIST}
BOUND-LIST --> BOUND+

Cantor: a User's Guide 65

separated by commas

BOUND --> ...,
BOUND --> ID
BOUND --> [BOUND-LIST]

9.5 Selectors

SELECTOR --> (EXPR-LIST)
SELECTOR --> { EXPR-LIST}

SELECTOR --> (EXPR .. EXPR)
SELECTOR --> (.. EXPR)
SELECTOR --> (EXPR ..)
SELECTOR --> ()

9.6 Left Hand Sides

LHS-LIST --> LHS+
separated by commas

LHS --> ID
LHS --> LHS SELECTOR
LHS --> [LHS-LIST]

9.7 Expressions and Formers

EXPR-LIST --> EXPR+
separated by commas

EXPR --> ID
EXPR --> INTEGER

EXPR --> FLOATING-POINT
EXPR --> STRING
EXPR --> true
EXPR --> false
EXPR --> OM

EXPR --> newat
EXPR --> USER-FUNC
EXPR --> if EXPR then EXPR ELSE-IFS ELSE-PART end;

the analyzer separates if-expressions from if-statements, by the context. In an if
expression each statement reduces to expr

EXPR --> (EXPR)
EXPR --> [FORMER]
EXPR --> { FORMER }

FORMER --> C

empty
FORMER --> EXPR-LIST

FORMER --> EXPR .. EXPR
FORMER --> EXPR , EXPR .. EXPR
FORMER --> EXPR: ITERATOR

EXPR --> # EXPR
EXPR --> not EXPR

Cantor: a User's Guide 66

EXPR --> + EXPR
EXPR --> - EXPR

EXPR --> EXPR SELECTOR
EXPR --> EXPR . ID EXPR

notice the period'.' preceding the 2-arg June identifier
EXPR --> EXPR . (EXPR) EXPR

notice the period'.' preceding the 2-arg. }.,-expression
EXPR --> EXPR OP EXPR

Possible operators (OP) are:
+ - * I div mod **
with less
=!= < > <= >=
union inter in notin subset
and or impl iff ->

EXPR --> % BINOP EXPR
EXPR --> EXPR % BINOP EXPR

EXPR --> EXPR ? EXPR
EXPR --> exists ITER-LIST I EXPR
EXPR --> forall ITER-LIST I EXPR
EXPR --> EXPR where DEFNS end

BINOP --> Any binary operator or an ID or expression in parentheses whose value is a
function of two parameters. The ID and parenthesized expression may be preceded by a
period.

Th bl b• * ** • • / di e accepta e mary operators are: +, -, , , umon, mter, , v,
mod, with, less, and, or, impl.

DEFNS --> DEFN*
DEFN --> BOUND := EXPR ;
DEFN --> ID SELECTOR := EXPR ;

9.8 User defined functions

USER-FUNC --> FUNC-HEAD LOCALS VALUES STMTS end
FUNC-HEAD --> func (ID-LIST OPT-PART);
FUNC-HEAD --> func (OPT-PART);

OPT-PART --> opt ID-LIST
May be omitted

LOCALS --> local ID-LIST;

VALUES --> value ID-LIST;
ID-LIST --> ID+

separated by commas

10 Debugging

This section covers both the general issue of debugging and that of run-time errors. The
basic debugging technique, involves watching (under the verbose on switch for a more
detailed reporting) variables and functions, and possibly setting a breakpoint. When a

Cantor: a User's Guide 67

breakpoint is reached, the system enters in a nested session. This is the case too when a
severe error is detected and a notification/corrective action is expected from the user. Let us
observe that almost all errors, except for syntax errors generate execution interruption.

A frequent problem is to find out where the error is detected. If it is detected whithin the
execution of a non-anonymous func, it is often possible to know which one, by the
instruction:

> tellfunc ();
which returns the name a variable which was assigned recently that func. When an error is
easily reproductible, a fine grain of breakpoints allows a relatively easy identification of its
origin.

10.1 Runtime Errors

The runtime error messages describe most problems by printing the operation with the
offending values of the arguments.
One possible problem is that some values are very big: { 1..10000} for instance when not
enough memory was set aside to accomodate for all the created data. Therefore, there are
several forms of the error messages, controlled by the !verbose and !passive_ err directives.
By default both switches are off. When passive_err is off severe errors and warnings
generate a special dialog, where the message is displayed into a warning window which
disappears when clicking inside. When verbose is off large values are represented by their
type. The directive !verbose on results in full values being printed. !verbose off returns you
to short messages. See figure 8 for an example.

> !verbose on
> { 1..3} + 5;

! Error -- Bad arguments in:
{3,1,2}+5;

> !verbose off
> {1..3} + 5;

! Error -- Bad arguments in:
!Set! + 5;

Figure 8: Runtime errors

10.2 Fatal Errors

The following errors cause Cantor to exit. Generally they indicate that the problem is larger
than Cantor can manage.

Allocated data memory exhausted
Use !memory to raise limit.

Includes too deeply nested Probably file includes itself.

10.3 Operator Related Messages

Most errors print the offending expression with the values (or types) of the arguments. A
few have additional information attached.

'.K.epCer Cantor: a User's Guide 68

+

*
<relation>
Boolean expected
or, ? , and iterators.

Can't iterate over
in LHS of assignment
Multiple images

May refer to union.

May refer to inter.
Refers to any of the relational operators.
May occur in if, while, and,

Error in iterator.
Error in selector on LHS.
Smap had multiple images.

10.4 General Errors

These errors do not provide context by printing the values involved, but they are generally
more specific.

* Used for self explanatory messages
internal Messages the user should never see: Please report to Kepler.

Bad arg to mcPrint internal
Bad args in low,next..high *
Bad args in low .. high *
Bad mmap in iterator MMap iterator over non-map
Can't mmap string Cannot perform selection
Can't mmap tuple Cannot perform selection
Cannot edit except at top level Edit not permitted withinan include
Divide by zero *
Input must be an expression *
Iter_Next internal

Only one level of selection allowed

Return at top level
RHS in mmap assignment
must be set
RHS in string slice assignment
must be string
RHS in tuple slice assignment
must be tuple
Slice lower bound too big
Slice upper bound too big
Stack Overflow
Stack Underflow
Too few arguments
Too many arguments
Top level return not allowed

See section 5

*
*

*

*

*
*
*
*
*
*
*

10.5 Advanced trace and debugging facilities

the following different kinds of breakpoints are available:
"NO_BREAK_PT_bkPt",
"RET_CLOSURE_bkPt",
"PARAM_DEFN_bkPt",
"OPT_PARAM_DEFN_bkPt",
"LHS_ASSIGN_bkPt",

Cantor: a User's Guide 69

"LOAD _ACCESS_bkPt",
"S_MAP _ACCESS_bkPt",
"M_MAP _ACCESS_bkPt",
"SLICE_DEFN_bkPt",

"W ARNING_bkPt",
"RT_ERROR_bkPt",
"FATAL_bkPt",

Each of these breakpoints represent either a specific mode, a specific phase or both, in the
execution process. The purpose of this section is to explain the versatility of breakpoint and
tracing facilities in Cantor.

inserting code instead of stopping at a breakpoint

It is possible to replace an execution suspension at a breakpoint by the execution of a
predefined collection of statements. Indeed, Cantor checks for each breakpoint kind, the
value of the variable having as identifier the kind name, e.g. checks the variable
RET_CLOSURE_bkPt upon the return of a func, or the variable S_MAP _ACCESS_bkPt
just before computing the value of an expression f(i), etc. Let us call these variables "break
variables" or bk_var . Let us assume a breakpoint has been set by combining a !watch
request a the breakpoint on option. Furthermore, let us assume the program execution is
entering the break-ing section:
-if the appropriate bk_ var is undefined (has value OM) or is a null string (""), program
execution is suspended in a nested Cantor session, waiting until the user exits from this
session by entering at the console a "return;" statement
-if the appropriate bk_ var is a string, the string text is considered as executable instructions
and wiil be executed unless it is the string 'noop'. The text of bk_var is what we call a break
point command.

Actually, the Cantor system executes interp(bk_var) unless bk_var = 'noop'.

setting, re-setting breakpoints according to their kind

The breakpoints are all potentially activated when a vraible is declared watched, and the
breakpoint option is on. However, none of them is actually active. Making them active
consists in setting the proper values for all the bk_ vars. This is entirely programmable, by
means of ordinary assignments to these 11 variables. The following primitives are helpful:

setallbreakpt();
ignoreallbreakpt();
allbreaktype();
breaktype();

$ all breakpoint commands set to OM
$ all breakpoint commands set to noop
$ all breakpoint types- this command is a help-command
$ current breakpoint type

Here is the text of an include file example to illustrate these possibilities:

!help break

ignoreallbreakpt();
RET_CLOSURE_bkPt;
S MAP ACCESS bkPt;
S-MAP-ACCESS-bkPt := 'entry time := clock();';
RET CLOSURE bkPt :='delta:= clock() - entry_time; print£ delta*16;';$
16ms = 1 Tick mesure par clock
f := func(x); return x+l0; end;
!watch f

!breakpoint on

Cantor: a User's Guide 70

f(lO);
entry time;
delta;
f(lS);

Here is now the recording of two distinct sessions, one with verbo~e off then with verbose
on. Note the use of the clock() primitive, which according to the on-lme help:
"tickCount := clock();$ approx. 1 Tick every 16 msec", . .
returns a tickCount, incremented 60 times a second. Whence, a duration m seconds may be
computed as (clock_end- clock_begin)/60

! Recording Output on bkPt_session_ out

> !help break
breakProcess() $ break current process ...
setallbreakpt();$ all breakpoint oommands set to OM ...
ignoreallbreakpl();$ all breakpoint oommands set to noop ...
allbreaktype();$ all breakpoint_types .. .
breaktype();$ current breakpoint ty~ .. .
break();$ force premature (loop) exit .. .

OM;

> ignoreallbreakpt();
OM;

> RET CLOSURE bkPt;
"noop;"; -

> S MAP ACCESS bkPt;
"noop;"; - -

> S MAP ACCESS bkPt := 'entry time := clock();';
> Rt:T C[OSURE bkPt :='delta:;;;-clock() - entry_time;'+
'printfdelta·'· -
> I := func(x); return x+ 1 O; end;

> !watch f
!'fwatched

> !breakpoint on

> 1(10);Var(444) 'f'

! Evaluate: f(1 0);
Var(444) 'f
!break point: S_MAP _ACCESS_bkPt!

lbreak point: RET _ CLOSURE_ bkPt!

if returns: 20;
20·

10
> entry_time;
1531779;

> delta;
10;

> f(15);Var(444) 'I'

! Evaluate: 1(15);
Var(444) 'I'
!break point: S_MAP _ACCESS_bkPt!

lbreak point: RET_CLOSURE_bkPt!

if returns: 25;
25;

10
!include bkPt_session completed

!verbose on

> !help break
breakProcess() $ break current process ...
setallbreakpt();$ all breakpoint ~mmands set to OM ...
ignoreallbreakpt();$ all breakpoint commands set to noop ...
allbreaktype();$ all breakpoint_types .. .
breaktype();$ current breakpoint ty~ .. .
break();$ force premature (loop) exit .. .

OM;

> ignoreallbreakpt();
OM;

> RET CLOSURE bkPt;
"noop;-;" -

> S MAP ACCESS bkPt;
"noop:": - -

> S MAP ACCESS bkPt := 'entry time := clock();';
> Rt:T C[OSURE_bkPt := 'delta :;;;-clock() - entry_time;'+
' print! delta;';
>f := func(x); return x+10; end;
! I:= !FUNC(33939a/341bba)!;

> !watch f
!'f'watched

> !breakpoint on

> f(10);Var(444) 'I'

! Evaluate: 1(10);
Var(444) 'I'
!break point: S_MAP _ACCESS_bkPt: entry_tirne := clock();!

!break point: RET _CLOSURE_bkPt: delta := clock() -
entry_time;
printf delta;!

if returns: 20;
20;

24
> entry_time;
1532863;

>delta;
24;

> f(15);Var(444) 'f'

! Evaluate: 1(15);
Var(444) 'f'
!break point: S_MAP _ACCESS_bkPt: entry_tirne := clock();!

lbreak point: RET _CLOSURE_bkPt: delta := clock() -
entry_time;
printf delta;!

i I returns: 25;
25;

13
!include bkPt_session oompleted

Cantor: a User's Guide 71

appendix: Predefined Functions

In this appendix find:
-the Cantor primitives list
-the Cantor primitives index

w
{!)

the Cantor primitives

release
basic math
trigonometry
basic set primitives
type testing
source & binary
misc
text-number conversion
basic file processing
advanced file primitives
scope control
drawing
windows
events
menus
regions
buttons
text pane
pane files
logo turtle
abstract syntax
interoperability types
interoperability functions
macintosh specific misc.
macintosh vector graphics
grids and cells
Cantor Global var
Cantor directives
experimental Cantor directives
pane & file experiments
Cantor primitives index

basic math

and directives

26 octobre-94
1
1
1
1
2
3
3
4
4
4
4
5
6
6
6
6
7
7
7
8
9

10
10
11
13
14

Cantor 46.19
trigonometry
basic set primitives
type testing
source & binary
misc

text-number conversion
basic file processing
advanced file primitives
scope control
drawing
windows
events
menus
regions
buttons
text pane
pane files
logo turtle
abstract syntax
interoperability functions
macintosh specific misc.
macintosh vector graphics
grids and cells
Cantor Global var
Cantor directives
experimental Cantor directives
pane & file experiments 14

15
15

Sorted Topic List
Sorted Item List

i
1

the Cantor primitives

1

i
i
1

i
1

1

i
i
i

ii
11

ii
ii
ii
11

ii
11

11

11

111

111

iii
iii
iii
iii
iii
111

IV

72

Cantor

primitive name

basic math

exp
In
log
max
min
abs
ceil
fix
floor
even
odd
random
randomize
round
sgn
sqrt

trigonometry

cos
sin
tan
acos
asin
atan
cosh
sinh
tanh
acosh
asinh
atanh

basic set primitives

arb
image
npow

pow
range

type testing

is atom
is_ast
is boolean

'.Kepl:er
a prototyping company

primitives list 1

arg
nbr

1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1

1
1
2

1
1

1
1
1

invocation, comment

r := exp(x);$ power of e (inverse: see In)
r := ln(x); $ neper. log (inverse: see exp)
r := log(x); $ base 10 log
x := max(a,b);
x := min(a,b);
y := abs(x); $ absolute value
n := ceil(real); $ int approx. of a real, see also floor, fix
n := fix(real); $ int. approx. of a real, see also ceil,floor
n := floor(real); $int.approx. of a real, see also ceil,fix
bool := even(n);
bool := odd(n);
n := random(root); $ type of root is the returned type
x := randomize(seed); $ set new seed for random gen.
n := round(x);
n := sgn(int); $ sign
r := sqrt(x); $ square root

r := cos(x);
r := sin(x);
r := tan(x);
r := acos(x);
r := asin(x);
r := atan(x);
r := cosh(x);
r := sinh(x);
r := tanh(x);
r := acosh(x);
r := asinh(x);
r := atanh(x);

x:= arb(set); $ choice function
set:= image(map); $ same as range
set_collection := npow(set,nmax); $ the subsets of
atmost nmax elts
power set := pow(set);
set:= range(map); $ same as image

bool := is atom(x);
bool := is ast(x);
bool := is boolean(x);

Cantor
a prototyping language

Cantor

is bignum
is defined
is integer
is file
is floating
is func
is map
is func
is number
is om
is set
is string
is_table

is textpane
is tuple
type

source & binary

interp

include

components

ids in
newids
newsymbols

allchanges

visiblechanges

resetchanges
ids

gc
restore

save

store

ref

refcollect
workComp

'.Ke-pi:er
a prototyping company

primitives list 2

1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1

1

1

0

1
0
1

1

1

0
1

0
1

2

2

1

1
1

bool := is bignum(x);
bool := is defined(x);
bool := is integer(x);
bool := is file(x);
bool := is floating(x);
bool := is func(x);
bool := is map(x);
bool := is_func(x);
bool := is number(x);
bool := is om(x);
bool := is set(x);
bool := is string(x);
bool := is_table(x); $ a map with domain and range
elements of simple type
bool := is textpane(x);
bool := is tuple(x);
str := type(x);

interp(s); $ interpret string s as a Cantor instruction or
directive
include(filename); $ program command for source
inclusion (see also the directive !include)
tuple := components(); $ tuple of currently restored
components name
id.List := ids in(component);
tuple := newids();$ list of defined obi and their type
tuple := newsymbols(x) $x= om: list of defined
obj
x= 0: list of defined and their type;
x>0 :list of defined obj their type and their value
tuple := allchanges(x); $ x means the same as for
newsymbols. tuple contains all ids which have changed
tuple := visiblechanges(x); $ x means the same as for
newsymbols. tuple contains visible ids
resetchanges();
tuple:= ids(x); $ids(om): tuple of defined ids,
ids(0): tuple of [type, defined-id]
ids(l): tuple of [type, defined-id, value]
gc(); $ garbage collection invokation
restore(filename1Filelom);$ restore var. identifier and its
value if file was 'save'-d or only a value if the file was
created by a 'store'
save(vamame,filename1Filelom);$ if filename is OM or
": interactive selection of file
store(expression,filename1Filelom);$ if filename is OM
or": interactive selection of file
ref(func); $ prints a list of the identitiers referenced by
func
refcollect(truelfalse); $sets-resp resets- ref collection
workComp(compName); $ cur env is that
compName

Cantor
a prototyping language

of

Cantor

misc

rank

sorted

size

blockcount

npow2

qsort

sort_index

break
setallbreakpt
ignoreallbreakpt

allbreaktype
breaktype
clock
pause
tellfunc

setBaseAtom

text-number conversion

ator
rtoa
atoi
itoat

itoa

ord
char
hash
date

uclcase

strsubst

max line
show_mode

show

1<£p£er
a prototyping company

primitives list 3

2

1

1

1

2

1

1

0
0
0

0
0
0
1
0

1

1
1
1
1

1

1
1
1
0

2

3

1
1

n

x := rank(x,L); $ x is an item in L (list or tuple), or a
substring if L is a string. returns 0 if x notin L
sorted(truelfalse); $ for displaying sets in h-sorted I
unsorted order
n := size(object); $ size in byte of the object and its
dependants
n := blockcount(object); $ size in # of basic elements in
the object and its dependants
x := npow2(set,nmax); $the set of all subsets with
exactly nmax elements! equivalent to npow, but much
faster
tuple:= qsort(collection); $ tuple contains the collection
in a sorted order
tuple := sort_index(collection); $ tuple contains the
permutation index map to sort collection
break();$ force premature (loop) exit
setallbreakpt();$ all breakpoint commands set to OM
ignoreallbreakpt();$ all breakpoint commands set to
noop
allbreaktype();$ all breakooint types
breaktype();$ current breakooint type
tickCount := clock();$ approx. 1 Tick evry 16 msec
pause(nb sec); $ suspend all procssing for nb sec
aFunc := tellfunc();$ attempts to tell within which func
is current progr ptr
setBaseAtom(atomlom); $ set Base Atom to atom I !0!

real := ator(floatingNbrString);
str := rtoa(realNbr);
n := atoi(nbrAsString);
atom(resp. int) := itoat(int(resp. atom));$ int (resp atom-
value) to atom-value (resp int) conversion
str := itoa(n);$ integer (or atom-value) to string
conversion
n := ord(char); $ integer value of a character
s := char(s); $ (ascii) char value of an integer
int= hash(x) $ hash value
str := date(); $ current date, with the precision of a
second
s := uclcase('(Uu)l(Ll)',string); $ convert string into
upper (resp. lower) case
string - strsubst(pat, string, by);$replace all
occurrences of pat in string with by
i := max line(int);$ control output line size in console
show _mode(intlbool); $ arg 1 or true sets raw mode,
i.e. w/o quotes,semi-colon
str := show(args); $ returns a string or a tuple of str. to
construct what would be printed by print args

Cantor
a prototyping language

Cantor

basic file processing

close
eof
opena
openab
openr
openrb
openrw
openrwb

openw
openwb
fwrite
fread
fseek
ftell
rewind
toend
flen
le
fgets

advanced file primitives

fcopy
finsert
panecopy

file_find_str

rename

fdelete

scope control

applyEnv

applyNilEnv
hasNilEnv
detachEnv

codeOf
overrideOf
envOf
mkLocal

drawing

clearscreen

X£pl:er
a prototyping company

primitives list 4

1
1
1
1
1
1
1
1

1
1
2
3
2
1
1
1
1
1
2

2
2
2

2

2

1

2

1
1
0

1
1
1
2

0

close(File);
bool := eof(File);
File:= opena(file name); $open append text file
File:= openab(file_name); $open append binary file
File:= openr(file name); $open read text file
File:= openrb(file name); $open read binary file
File:= openrw(file name); $open read-write text file
File := openrwb(file_name); $open read-write binary
file
File:= openw(file name); $open write text file
File:= openwb(file name); $open write binary file
fwrite(item,File);
value read := fread(File,'int'l'str',count);
fseek(File,f _position);
f_position := ftell(File);
rewind(File);
toend(File);
n := flen(FilelfileName); $ file size
n := lc(FilelfileNamelom); $ text file line count
string:= fgets(n,file); $read a line of at most n char;

n := fcopy(from,to); $ copy from a File to a File
n := finsert(from,to); $ copy from a File to a text pane
n := panecopy(from,to); $ copy from a text pane fo a
File
bool := file_find_str(aFile,string); $ find a string within
a file
bool := rename(from,to); $ rename from a File to a File;
returns true iff successfull
bool := fdelete(filename); $ delete a File; returns true iff
successfull

fnl := applyEnv(fn,optEnv); $set fnl env to optEnv if
specified, otherwise to the current env
fnl := applyNilEnv(fn); $set fnl env to the current env
bool := hasNilEnv(fn); $true if fn is a func with Nil Env
env := detachEnv(); $unlink the current func's env
from creator's
code := codeOf(func);$ code is a non-printable object
aMap := overrideOf(func);$ aMap is as-map
env := envOf(func);$ env is a non-printable object
mkLocal(idName,aFunc);$ creates a local var in the
environmen of aFunc

clearscreen(); $ clears the screen

Cantor
a prototyping language

Cantor

lineto
moveto

arc

fare
box

fbox
ellipse

fellipse
circle
fcircle
polygon
fpolygon
font

imuts
color
hascolor
alloccolor
set_gc

get gc
acquire
release
set cursor
hilite

compute rect text

windows

open window
closewindow
show_hide

window

set window
window _attributes

set window attributes
get_ window _attributes

ask_str

ask_real

ask_int

1Gepl£r
a prototyping company

primitives list 5

2
2

4

4
4

4
4

4
3
3
1
1
1

1
1
0
3
1

0
0
0
1
4

4

1
0
2

1

1
0

1
1

4

4

4

lineto(x,y); $ draws a line from current pen location
moveto(x,y); $ move pen loc to (x,y) in (horiz, vert)
coordinate system
arc([x,y,rx,ry],startangle,arcangle); $ frame an arc
within the (rx,ry)-box at (x,y) with the given angles,
fare([x,y,rx,ry],startangle,arcangle);$ fill arc
box([x,y,wx,wy] I x, y, wx, wy); $ frame a box at
(x,y) having: width = wx, height = wy
fbox([x,y,wx,wy] Ix, y, wx, wy); $ fill box
ellipse([x,y,wx,wy] I x, y, wx, wy); $ frame an oval
within the rect at (x,y) having: width= wx, height= wv
fellipse([x,y,wx,wy] Ix, y, wx, wy); $ fill ellipse
circle(x, y, r); $ center: (x,y) radius: r
fcircle(x, y, r); $ fill circle
polygon(poly); $ input is: poly := [[xl,yl], .. ,[xn,yn]]
fpolygon(poly);$ fill polygon poly: [[xl,yl], .. ,[xn,yn]]
font_nbr := font(font_name_size)$ e.g. "monaco9",
"helvetica12"
gputs(string); $ draws string at current pen location
color(gray color I RGB color)
bool := hascolor(); $ tells if current screen has color
alloccolor(r,b,g);$ color allocation: r,b,g: real numbers
set_gc(gcMap);$ restore graf context described in
gcMap
gcMap := get _gc(); $ save current graf context in gcMap
acquire();$ offscreen acquire
release();$ offscreen release
setcursor(cursor name);$ select a cursor by name
hilite(win_no, aCodeStr, [xl,yl], [x2,y2]); $ aCodeStr
is 'invert'l'rect'l'vector'l'ellipse'
[[x,y],[w,h]] := compute rect text(fontname, x, y, str);

idWin := openwindow(anAttrMap);
closewindow(); $ closes current window
win_no := show _hide(win_no I -1, truelfalse); $ if 2nd
arg = true then show window, otherwise hide it
curwin_nbr := window(win_nbr); $ win_nbr = -1: tells
which win ic current window, win_nbr >=0: change
curwin to win nbr
curwin nbr := set window(win nbr); $ see window()
window _attributes();$ help: the window attribute map
structure
set window attributes(anAttrMap); $ change win. attr
anAttrMap := get_ window _attributes(anAttrSet); $ get
anAttrMap with domain corresp. to anAttrSet
anAnswer := ask_str(x, y, aMsg, aQuestion); $ a
dialog returning a string
anAnswer := ask_real(x, y, aMsg, aQuestion); $ a
dialog returning a real nbr
anAnswer := ask_int(x, y, aMsg, aQuestion); $ a
dialog returning an integer

Cantor
a prototyping language

Cantor

ask_long

settitle
tell

events

wait_mask_event

check_mask_event

PostHEvent

interface_task

event mask
event map
event domains
event_convert

menus

install_menu

remove menu
popupmenu

getpopup

set_item

set_item_status

regions

clipwindow
create re!tion
rect re!tion
destroy region
union region

buttons

create button
set button attributes
get button attributes
destroy button

XepCe.r
a prototyping company

primitives list 6

4

1
1

2

2

2

0

0
0
0
1

4

1
3

1

3

3

1
0
2
1
2

1
2
2
1

anAnswer := ask_long(x, y, aMsg, aQuestion); $ a
dialog returning a bignum
settitle(title); $ change window title
tell(msg); $ open a warning window

win_no := wait_mask_event(win_no,event_mask_set);
$ nondiscriminating wait: wait mask event(-1, { });
anEventMap :=
check_mask_event(win_no, event_mask_set);
$check all events:check mask event(-1,{ });
PostHEvent(win_no, event_map);
$ post the event defined in event map:)
interface_task();$ insert everywhere to allow queued
events processing
event mask();$ help: the event type structure
event map();$ help: the event map structure
event domains();$ help: more on event map structure
event_typeN amelevent_typeNbr :=
event_convert (event_typeNbrlevent_typeN ame);
$ for CantorDrvrMap, convert type Nbr into name and
conversely

menuID := install_menu(win_no, ['iteml', .. ,'itemN'],
[ox,oy], [w,h]); $ ox,oy], [w,h] designates the active
rectangle
remove menu(win no, menuID);
itemID := popupmenu(win_no, menuID, [ox,oy]); $
[ox,oy] indicates where to display the menu
[[x,y],itemld] := getpopup(['iteml ', .. ,'itemN']); $
returns the selection within popu_p item list
set_item(menuID,menultem, item_string);$ replace in
menu menuID the item# menultem by item string
set_item_status(menuID,menultem, bool 10111om);$ 3rd
arg: bool->check (resp uncheck) item,
O(resp 1,om) -> disable(resp enable) item

clipwindow(region);
region := create region();
region:= rect region([ox,oy],[w,h]);
destroy region(region);
region:= union region(regionl, region2);

button := create button(anAttrMap);
set button attributes(button, anAttrMap);
anAttrMap := get button attributes(button, anAttrSet);
destroy button(button);

Cantor
a prototyping language

Cantor

draw buttons
get button value
button_attributes

text pane

create_text_ ane
delete_text_ ane

et_select
_set_select
_retum_select

-show _selection
_delete_selection

tp_insert

-
et_handler

_find_strin
text_pane_attributes

tp_set_handler

pane files

open_pane_file

get_pane_id

get_file_ window

echo _pane file
remove echo_file

logo turtle

cclearscreen,cs

round
set world
set_view
wtov
vtow
move_to
line to
dot

~pt:er
a prototyping company

primitives list 7

1
1
0

2
1
1
2
1
1
1
2

1
2
1
1
2

2
0

2

3

1

1

2
1

0

1
2
2
1
1
1
1
1

draw _buttons(win_no);
button value := get button value(button);
button_attributes();$ help: the button attribute map
structure

ds

ost 8000 char long

tp_set_ an er paneld,'console'l'edit'l'field'l'data'l'sel'
); $ set (c andler

text_pan _ the text_pane attribute map
structure
tp_set_handler(paneld,'console'l'edit'l'field'l'data'l'sel'
); $ set (chan _handler

pane_file := open_pane_file(panelD, win_no, mode);$-
-> mode == 'r' or 'w'
panelD := get_pane_id(pane_file); $--> return -1 if
pane file is a disk file
win_no := get_file_window(pane_file); $--> return -1 if
pane_file is a disk file
echo _pane file(pane file,echo file);
remove echo file(echo file);

clearscreen(); $ clears the screen
cs(); $ clears the screen
n := round(x);
set world([[x,y],[w,h]]); $ rect: [x,y],[w,h]
set_ view([[x,y],[w,h]]);
v _pt:= wtov(w _pt);
w _pt := vtow(v _pt);
move to(w _pt);
line to(w _pt);
dot(w _pt);

Cantor
a prototyping language

Cantor

cligne line
is _pendown
set _pendown
pendown,pd
penup,pu
pos
set _pos
stdpt
home
std dir
forward, fd
backward, bk
left, lt
right, rt
set turtle
ngon
init turtle
open_std_turtle
cngon

abstract syntax

parsetree
resetParses
scan

setScanStop

which_ast

is_ast_leaf

ast

COPY. ast
coref_ast

setAst

setCopyAst

construct

analyze

upd_chain_ast

'.JGepCer
a prototyping company

primitives list 8

2
0
1
0
0
0
1
1
0
1
1
1
1
1
3
2
0
0
2

0
0
3

1

1

1

2

1
1

3

3

1

1

1

cligne line(ptl,pt2);
bool := is _pendown();
set_pendown(bool);
pendown(); pd(); $ pd same as pendown
penup(); pu(); $ pusame as penup
w _pt := pos();
set _pos(w _pt);
w _pt:= stdpt(alfa _pt);
home();
dir := std dir(angle);
forward(dist); fd(dist); $ fd same as forward
backward(dist); bk(dist); $ bk same as backward
left(angle); lt(angle); $ lt same as left
right(angle); rt(angle); $ rt same as right
set_turtle(thePos, theDir,is_down);
ngon(n, edge);
init turtle();
open_std_turtle();
cngon(n, radius);

parsetree(); $ returns the accumulated parsetrees
resetParses(); $ set Parses to Nil
scan(FilelfileNamelomlstring,

' textScanltextAndNumScan, strScan);
$ produces a tuple -- ScanStop (terminator) is 'i,'
textScan /= om --> spec. symbols (eg $, quotes) are
parsed as tokens and returned
strScan /=om--> 1st arg = input string
char in cantor AlphaNumSet are considered alpha-num
aChar := setScanStop(aChar); $aChar
becomes the new scan stop char; default ScanStop is 'i.'
astType := which_ast(anAstl anlntegerl aString); $
produces an Ast Type
bool := is_ast_leaf(anAstl anlnteger);
$ id, int, real, spec, string are leaves
ast(anAST,011121'type'l3);$
O:father, 1 :left,2:right,>=3:more
aNewAST := copy ast(anAST);
an := coref_ast(anAST); $if an = om then anAST is
atree, else a DAG, and an is the 1st coref
anAST := setAst(anAst,-11011121'type'l3, modif);$
-1 :parent, 0:node itself, 1 :left,2:right,>=3:more
anAST := setCopyAst(Astl,-11011121'type'l3, modif);$
-1 :parent, O:node itself, 1 :left,2:right,>=3:more
ast := construct(Filel expression_string I om); $ File: the
input stream, om:the standard input, expression_string:
the expr to parse. construct is a parser
ast := analyze(Filel expression_string I om); $ File: the
input stream, om:the standard input, expression_string:
the expr to parse. analyze is a parser
upd chain ast(ast); $ link all nodes to their father node

Cantor
a prototyping language

Cantor

is_chained

chain ast
up
eval
evalref
findAll

varsOf

upTo

ugly
pretty
prettyStrings

find.Ast

match

well_defined

varsln

parse msg
unify

unif_step

ast_subs

ast_id_str_subs

kwd

interoperability types

~p[e.r
a prototyping company

primitives list 9

1

1
1
1
1
2

1

2

1
1
1

2

2

2

1

1
2

2

2

3

2

bool := is_chained(ast); $ test if there is a link from all
nodes to their father node
chain ast(ast); $ link all nodes to their father node
ast := up(ast); $ move up the tree to the father node
eval(ast); $generates the ast-code and executes
evalref(ast); $generates and analyzes the ast-code
find.All(atyp,ast); $produces a tuple of all the ast sub-
trees with the given type
varsOf(ast); $produces a tuple of all the referenceable
ids appearing in ast
anAst :=upTo(ast,atyp); $move up the ast from ast to
find a node with type atyp; produces om if no match;
otherwise returns the node whose parent matches
str := ugly(ast);$ ugly print the ast arg\n
str := pretty(ast);$ pretty print the ast arg\n
pretty Strings(true I false);$ pretty print in mode:
emphasize strings quoting
find.Ast(atyp,ast); $ atyp = intlstringlsetlom;\ produces a
tuple of all the ast sub-trees with the given type
match(astl,ast2); $true if astl, ast2 are eq or if ast2
contains pattern matching astl subtrees or if astl
contains patterns matching ast2 subtrees which will then
be subsituted into astl
bool := well_definedl(af opt sw);$ if sw = om: are all
the variables occuring free in af well-defined?$ if sw /=
om: is subtree a well-defined expression
varsln(ast); $produces a tuple of all the variables
appearing in ast, excluding Selectors
parse msg(bool); $ false->no parsing msg, true->msg
[unified_S, unif_map] := unify(S opt constants); $ S is
a collection of AS Ts, constants is a set or tuple (even a
single string is OK) of strings, or AST T_Id's,
representing constant symbol identifiers
match_tree_pair := unif_step(astl,ast2); $ if astl, ast2
are unifiable, returns the 1st non-matched term pair
anAst := ast_subs(astl,subs_map I [stringlt_idl,astt2]);
$ subs_map map strings or T_ld trees onto other ASTs
-- all occurrences of T_lds in the domain of subs_map
are subsituted
anAst := ast_id_str_subs(astl,set_of_str I tup_of_str I

str , om I anything); $ replace all occurrences of T _Ids
with name in the given collection by Strings into AST;
do the converse if 3rd arg is non-om
kwd(opt key, token_val); $ if key= om returns tuple of
all keys, if key=" (empty string) reset all keywords to
default
$ if key = some_str returns the corresponding token,
$ if token_ val = 0 resets the key, else sets the key to the
given token val

designates target Cantor types for C data or data
collections converted to or from Cantor (see below
mk cantor obj)

Cantor
a prototyping language

Cantor

type

C types

interoperability
functions

convert_cantor_id

convert_cantor_obj

mk_cantor_obj

mk_cantor_id

mk_local_id

invocation (from Cantor) of
C-procedures
invocation (from C) of Cantor

macintosh specific misc.

get_in_file_name

get_out_file_name

setfilecreator
add_mac_menu

check_menu_item

'.Ke-pkr
a prototyping company

primitives list 10

1

1

4

1

1

1

1

3
3

3

#define Boolean 2
#define Integer 3
#define Bignum 4
#define File 5
#define Real 6
#define Set 7
#define String 8
#define Tuple 9

#define SetOfShortlnt 72
#define SetOflnt 73
#define SetOfBn 74
#define SetOfFile 75
#define SetOfReal 76
#define SetOfStr 78
#define TupleOfShortlnt 92
#define TupleOflnt 93
#define TupleOfBn 94
#define TupleOfFile 95
#define TupleOfReal 96
#define TupleOfStr 98

C_ Val /* a structure for converting data types*/
Cantor Ptr /* the Cantor data structure pointer*/

C-primitives for C-to-Cantor or Cantor-to-C

C_ Val *convert_cantor_id(Pl(char *name));/* returns
the value of the Cantor variable name *I
C_ Val *convert_cantor_obj(Pl(Cantor_Ptr obj)); /*
returns the value of the Cantor object obj *I
Cantor_Ptr mk_cantor_obj(P4(char *name, short type,
void *value, int siz)); /* create a Cantor object
associated to the variable name, of the given type, value
(and size for arrays) */
Cantor_Ptr mk_cantor_id(Pl(char *name)); /* create a
Cantor object associated to the variable name * I
Cantor_Ptr mk_local_id(Pl(char *name));/* same as
mk cantor id but creates a non-global variable*/
a specific packaging is required

self interp (see interp)

filename := get_in_file_name(filetype); $ interactive
dialog to locate input file
filename := get_out_file_name(filetype); $ interactive
dialog to locate output file
setfilecreator(filename, creator, filetype);
menuID := add_mac_menu(title, ['iteml', .. ,'itemN'],
om I -1);$ 3rd arg is optional; if present menu is
hierarchical
check_men u_i tem(menuID,
check == 1 or 0

item_no, check); $-->

Cantor
a prototyping language

Cantor

openresfile

closeresfile
getnewdialog

closedialog

getditem

setditem

getitext
setitext
getctitle

setctitle

hidecontrol

showcontrol

getctlvalue

setctlvalue

getctlmin

setctlmin

getctlmax

setctlmax

hitdialog

dialog

macintosh vector
graphics

getobj

getrect

getvector

'.Kep~r
a prototyping company

primitives list 11

1

1
1

1

2

5

1
2
1

2

1

1

1

2

1

2

1

2

2

1

3

3

3

refnum := openresfile(resFileN rune); $ resFileN ame is a
string
closeresfile(refnum); $ refnum is an int
dialog:= getnewdialog(dialogResld); $ dialogResld is
an int
closedialog(dialog); $ dialog was returned by
getnewdialog(..)
[itemType,itemHandle,box] := getditem(dialog,itemNo);
$ dialog and itemHandle are Bignum; box is [x,y,w,h]
setditem(dialog,i temN o,itemType,itemHandle, box); $
dialog and itemHandle are Bignum; box is [x,y,w,h]
atext := getitext(itemHandle); $ itemHandle is a Bignum;
setitext(itemHandle,atext); $ itemHandle is a Bignum;
atext ·- getcti tle (Con trolltemHandle); $.-
ControlltemHandle is a Bignum;
setctitle(ControlltemHandle,atext); $ ControlltemHandle
is a Bignum;
hidecon trol (ControlltemHandle); $ Con trolltemHandle
is a Bignum;
showcontrol(ControlltemHandle); $ ControlltemHandle
is aBignum;
anlnt ·- getc tl value(Con troll temHandle); $.-
ControlltemHandle is a Bignum;
setctl value(Con trolltemHandle, anlnt); $
ControlltemHandle is a Bignum;
anlnt .- getctlmin(ControlltemHandle); $
ControlltemHandle is a Bignum;
setc tlmin (Con trolltemHandle ,an Int); $
ControlltemHandle is a Bignum;
anlnt .- getctlmax(ControlltemHandle); $
ControlltemHandle is a Bignum;
se tctlmax(Con trolltemHandle, an Int); $
ControlltemHandle is a Bignum;
hitdialog(dialog,itemHit); $ dialog is a Bignum; itemHit
is an int
dialog(dialog); $ dialog is a Bignum; itemHit is an int

QuickDraw graphics based: an experimental set of
primitives, not optimally operational
[x,y,w,h] := getobj(oml'r[ect]'l'e[llipse]', [a,b]lom,
scalelOl-ll-21om);
$ create interactively an object: if scale>O: h = w * scale,
$if -1: take [a,b] as origin,if -2: take [a,b] as extent
[x,y,w,h] := getrect(oml'r[ect]'l'e[llipse]', [a,b]lom,
scalel01-ll-21om);
$ create interactively a rect: if scale>O: h = w * scale,
$if -1: take [a,b] as origin,if -2: take [a,b] as extent
[x l ,y 1,x2,y2, win_no] - getvector([xl ,yl]lom,
[xl,yl]lom, lenlOl-21-41-8); $ create interactively a
vector: if len > 0, create a vector of this length
$ -2: take [xl,yl] as origin, -4: create vect parallel to
given line\n$ -8: create vector with same length

Cantor
a prototyping language

Cantor

getpoly

saveimage
restoreimage

spextra
Draw Picture

erasepict

changepicset

getselpict

getportpict

setselpict

setportpict

getselinrect

getselatpoint

movefocusto

setorigin
moveselectpict

movepict

translatepict

enumerpict

killpict

duplpict
pictrect

clearselpict

cutselpict
copyselpict

1Ge.pl:e.r
a prototyping company

primitives list 12

2

2
2

1
3

2

2

1

1

2

2

3

3

2

2
2

3

3

1

1

1
1

1

1
1

[poly ,[yl ,x 1,y2,x2, yn,xn]] . - getpoly(1 IOlom,
winlom); $ poly is a pict ref (bignum) $ arg is: free-
style (11 om), constrained to manhattan motion : 0
$ moveto(t(2), t(l)); for 1 in [3,5 .. #t] do
lineto(t(i+ 1),t(i)); end;
saveimage(filenamelom);$ save image from cur window
restoreimage(filenamelom);$ restore image to cur
window
spextra(x);$ widen spaces in texts by x pixels
DrawPicture(picture, frameRect I om,llOlom); $ both arg
are deref ptrs (bignums) 3rd arg is: acquire (1 or om) or
not acquire(O)
erasepict(picture,win_no I om);$ arg picture: deref ptrs
(bignum)
changepicset(picset,win_no I om); $ picset: set or tuple
of picture (deref ptrs (bignum))
picture:= getselpict(win_no I om); $ value returned is
deref ptr (bignum)
picture I [picture,picset] := getportpict(win_no I om); $
value returned is deref ptr (bignum) if no background
picset, otherwise a pair:[porpict,picset]
picture:= setselpict(win_no I om, picture);$ arg picture
& value returned are deref ptrs (bignums)
picture:= setportpict(win_no I om, picturelpicset); $ arg
picture & value returned are deref ptrs (bignums)
picture := getselinrect(win_no I om, [x,y,w,h] I rect-ref,
kind); $ arg rect & value returned are deref ptrs
(bignums)-- kind: O:text, 1:line, 2:rect, 3:oval, 4:arc,
5:poly, nokind: oml-1
picture := getselatpoint(win_no I om, [x,y] I point-as
bignum, kind); $ value returned is deref ptr (bignum)--
kind: O:text, 1:line, 2:rect, 3:oval, 4:arc, 5:poly, nokind:
oml-1
movefocusto([x,y] I point-as bignum,win_no I om); $
program-controlled scrolling for graphic windows
setorigin(x,y); $ change coordinates of portRect
picture:= moveselectpict(win_no I om, [dh,dv] I point-
as biimum); $ value returned is deref ptr (bignum)
movepict(pict,win_no I om, [dh,dv] I point-as bignum);
$ superposes moved pict to portpict
picture := translatepict(picture,win_no I om, [dh,dv] I
point-as bignum); $ value returned is deref ptr (biimum)
map:= enumerpict(picture); $map= pic_contents (the
picture's components)
killpict(picture); $ no automated garbage col. for
pictures!
pie:= duplpict(picture); $ duplicate (copy) a picture!
[x,y,w,h] := pictrect(picture); $ a rectangle enclosing
the picture!
clearselpict(win_no I om); $ clear window's selpict if
any
cutselpict(win no I om);$ cut window's selpict if any
copyselpict(win_no I om); $ copy window's selpict if
any

Cantor
a prototyping language

Cantor

pastepict

portrect

portframe

viewframe

screen
textbox

dragpict

deselect

redraw

inrect

grids and cells

grid attributes
grid_databounds

create _grid _pane
add_col

del_col

add_row

del_row

gridcopy

grid deselect
grid_selflags

selected_cells

grid_select_all

grid_add_to

'.JGe.p(e.T
a prototyping company

primitives list 13

1

1

1

1

0
4·

2

1

1

2

0
1

2
3

3

3

3

3

1
2

2

2

3

pastepict(win_no I om); $ paste clipboard pict in
window
[x,y,w,h] := portrect(win_no I om); $ window's port
rectangle
[x,y,w,h] := portframe(win_no I om); $ window's
picture frame
[x,y,w,h] := viewframe(win_no I om); $ window's
view frame
[x,y,w,h] :=screen();$ screen frame
pie := textbox(text,box,'center'l'right'l'left',win_no I
om);$ box is [x,y,w,h]
[[du,dv],[win_no,moved_pict]] := dragpict (pict,
win_no I om); $ drag picture pict in window win_no,
returns translation [du,dv] and translated pict
win_no := deselect(win_no I om);$ deselect all items in
window
win_no := redraw(win_no I om); $ redraw all items in
window
bool := pointlrect .inrect r; $ [x,y] .inrect [u,v,w,h];$
[x,y,larg,haut] .inrect [u,v,w,h];

an experimental set of primitives, extending text-pane
primitives, not optimally operational
grid attributes();$ help: the grid attributes in a grid map
[x,y,w,h] := grid_databounds(grid); $ grid extent, cell
range
gri.d no := create _grid _pane(win no,grid map);$
add_col(grid,count,col); $ when arg is om use default
values: current active pane, count = 1, current select.
cell's col
del_col(grid,count,col); $ when arg is om use default
values: current active pane, count = 1, current select.
cell's col
add_row(grid,count,row); $ when arg is om use default
values: current active pane, count = 1, current select.
cell's row
del_row(grid,count,row); $ when arg is om use default
values: current active pane, count = 1, current select.
cell's row
n := gridcopy(from,to,oml[x,y]l[x,y,w,h]); $ copy from
a text pane to a File the sub-grid starting at cur-sel I
[x,y] I limited to [x,y,w,h] (see finsert for converse)
grid deselect(grid); $ deselect all cells in grid
grid_selflags(grid,int_flags I om); $ modify grid
selection flags
t := selected_cells(grid,kindlom); $ tuple of all selected
cells in grid; kind = om: returns only cell list; kind =
3(int),4(long),8(string): the values are all of same kind;
other kinds
grid_select_all(grid,kindlom); $ kind = om: all cells
selected; kind /= om: all non-empty cells selected
grid_add_to(grid,x,oml[ij]); $ append x to
grid cell [i,j] or current selection

Cantor
a prototyping language

Cantor

grid_get

grid_set

Cantor Global var

CantorDrvrMap

MenuBarMap

StaticMenuDrvrMap

cantor_AlphaNumSet

Cantor directives

allocate
breakpoint on/off

clear

changes on/off
code on/off
echo on/off
flex alloc on/off

flex_min_size

gc on/off
help

ids
include

load

memory
new_ids

oms

passive_err on/off

quit
record

lGepCer
a prototyping company

primitives list 14

2

3

x := grid_get(grid,oml[i,j]); $ returns the value of grid
cell [i,j] or that of current selection
grid_set(grid,x,oml[i,j]); $ set grid cell [i,j] or current
selection to x

these variables have default values OM or { }
CantorDrvrMap([win_no,event_type]) := aFunc; $
if an event of type event_type occurs in window
win no, and has for event map ev, aFunc(ev) is run
MenuBarMap(win_no) := aFunc; $
if an event of type EVENT _MENU or
EVENT_MENU_BAR occurs in window win no, and
with selected item number isel , then aFunc(isel) is run
StaticMenuDrvrMap(selected_text) := aFunc; $
if an event of type EVENT_MENU occurs in any static
window and selects the string selected text, then
aFunc() is run
contains all non standard alphanumeric character (used
by scan)

these are execution or compilation directives
!allocate mem size$ memory pre-allocation
!breakpoint on/off $ enable/disable breakpoints over
watched objects
!clear $ clear the text input buffer (e.g. after syntax
error)
!changes on/off$ enable/disable changes monitoring
!code on/off$ enable/disable codeproduction trace
!echo on/off$ enable/disable echo of console input
!flex_alloc on/off $ enable/disable flexible self-
adjustable memory allocation policies (cff[ex min size)
!flex_min_size block_size $ suggest free block size; for
most applications 200 is ok (cff[ex a/Zoe)
!gc on/off $ enable/disable garbage collection stat. trace
!help pattern $ supplies a list of all the primitives
matching the pattern
!ids $ list of all defined (non-om) identifiers
!include filename $ insert as Cantor source the file's
contents
!load filename $ insert as binary prog. component the
file's contents
!memory memsize $ sets the upperbound of gc memory
! new _ids $ lists all var created by the prog in the current
component (see work ids, oms,ids)
!oms$ lists all undefined var created by the prog in the
current component (see new ids, work ids, ids)
!passive_err on/off $ disable/enable interactive
acknowledgement of detected errors
!quit $ quit Cantor session
!record filename $ record all input to console in file
!record$ no filename arg --> stop recording

Cantor
a prototyping language

Cantor

record Output

reset

save

suspend

time on/off
trace on/off

unwatch

verbose on/off

version
watch

work_ids

experimental Cantor
directives

annotate on/off
in_debug on/off

oldBin
oldReal

pane & file experiments

get_stdio

stdin from
stdout to
get_file value
get file mode
get _pane file
get_other_pane_file

Xepf.er
a prototyping company

primitives list 15

0

2
2
1
1
1
2

!recordOutput $ record all console output in file
!recordOutput $ no filename arg --> stop recording
!reset $ reset all program variables. Does'nt reset
windows
!save filename$ create a prog. component file copy .(see
load)
!suspend $ suspend execution: same as interp(om);
Resume execution by entering return;
!time on/off$ enable/disable date display in traces
!trace on/off$ enable/disable Cantor Abstract Machine
execution trace
!unwatch name$ stop watching the object(s) identified
by that name (see watch, breakpoint, allbreakpt())
!verbose on/off$ enable/disable detailed display of data
involved in traces
!version $ display current Cantor version
!watch name $ start watching the object(s) identified by
that name (see unwatch, breakpoint, allbreakpt())
!work_ids $ lists all defined var created by the prog in
the current component (see new_ids, oms, ids)

these are execution or compilation directives

!annotate on/off$ enable/disable AST annotation
!in_debug on/off $ enable/disable graphic driver
primitives trace
!oldBin $ no longer applicable
!oldReal $ for upward compatibility with binaries
containing real nbrs in version V0.45 or before

[stdin,stdout] := get_stdio(); $--> stdin , stdout : global
variables in Cantor
stdin from(paneID, win no);$ redirects
stdout to(paneID, win no);$ redirects
file value:= get file value(file);
file value:= get file mode(file);
file value:= get _pane file(panelD);
file value:= get other _pane file(paneID, pane file);

Cantor
a prototyping language

Cantor

Cantor primitives
index

basic math

exp
In
log
max
min
abs
ceil
fix
floor
even
odd
random
randomize
round
sgn
sqrt

cos
sin
tan
acos
asin
atan
cosh
sinh
tanh
acosh
asinh
atanh

arb
image
npow
pow
range

trigonometry

basic set
primitives

type testing

is_atom
is_ast
is_boolean
is_bignum
is_defined
is_integer
is_file
is_floating
is_func

'.JGepCer

primitives list

is_map
is_func
is_number
is_om
is_set
is_string
is_table
is_textpane
is_tuple
type

source &

binary

interp
include
components
ids_in
newids
newsymbols
allchanges
visiblechanges
resetchanges
ids
gc
restore
save
store
ref
refcollect
workComp

misc

rank
sorted
size
blockcount
npow2
qsort
sort_index
break
setallbreakpt
ignoreallbreakpt
allbreaktype
breaktype
clock
pause
tellfunc
setBaseAtom

ator
rtoa
atoi
itoat
itoa
ord

text-number
conversion

Cantor primitives index

char
hash
date
uclcase
strsubst
max_line
show_mode
show

i

basic file
processing

close
eof
opena
openab
openr
openrb
openrw
openrwb
openw
openwb
fwrite
fread
fseek
ftell
rewind
toend
flen
le
fgets

fcopy

advanced file
primitives

finsert
panecopy
file_find_str
rename
fdelete

scope control

applyEnv
applyNilEnv
hasNilEnv
detachEnv
codeOf
overrideOf
envOf
mkLocal

drawing

clearscreen
lineto
moveto
arc
fare
box

Cantor

fbox
ellipse
fellipse
circle
fcircle
polygon
fpolygon
font
gputs
color
hascolor
alloccolor
set_gc
get_gc
acquire
release
set_cursor
hilite
compute_rect_text

windows

open window
closewindow
show_hide
window
set_window
window _attributes
set_ window _attributes
get_ window _attributes
ask_str
ask_real
ask_int
ask_long
settitle
tell

events

wait_mask_event
check_mask_event
PostHEvent
interface_task
event_mask
event_map
event_domains
event_convert

menus

install_menu
remove_menu
popupmenu
getpopup
set_item
set_item_status

regions

clipwindow
create_region

primitives list

rect_region
destroy _region
union_region

buttons

create_button
set_button_attributes
get_button_attributes
destroy _button
draw _buttons
get_button_ value
button_attributes

text pane

create_text_pane
delete_text_pane
tp_get_select
tp_set_select
tp_return_select
tp_show _selection
tp_delete_selection
tp_insert
tp_text_length
tp_set_prompt
tp_select_paragraph
tp_set_focus
tp_set_handler
tp_find_string
text_pane_attributes
tp_set_handler

pane files

open_pane_file
get_pane_id
get_file_ window
echo_pane_file
remove_echo_file

logo turtle

cclearscreen,cs
set_world
set_view
wtov
vtow
move_to
line_to
dot
cligne_line
is_pendown
set_pendown
pendown,pd
penup,pu
pos
set_pos
stdpt
home
std_dir

Cantor primitives index

forward, fd
backward, bk
left, It
right, rt
set_turtle
ngon
init_turtle
open_std_turtle
cngon

abstract
syntax

parsetree
resetParses
scan
setScanStop
which_ast
is_ast_leaf
ast
copy_ast
coref_ast
setAst
setCopyAst
construct
analyze
is_chained
chain_ast
up
eval
evalref
findAll
varsOf
upTo
ugly
pretty
prettyS trings
findAst
match
well_defined
varsln
parse_msg
unify
unif_step
ast_subs
ast_id_str_subs
kwd

ll

interoperabil
ity functions

convert_cantor_id
convert_cantor_obj
mk_cantor_obj
mk_cantor_id
mk_local_id
invocation (from
Can tor) of C
procedures

ii

Cantor

invocation (from C) of
Cantor

macintosh
specific
misc.

get_in_file_name
get_out_file_name
setfilecreator
add_mac_menu
check_menu_item
openresfile
closeresfile
getnewdialog
closedialog
getditem
setditem
getitext
setitext
getctitle
setctitle
hidecontrol
showcontrol
getctlvalue
setctlvalue
getctlmin
setctlmin
getctlmax
setctlmax
hitdialog
dialog

macintosh
vector
graphics

getobj
getrect
getvector
getpoly
saveimage
restoreimage
spextra
Draw Picture
erasepict
changepicset
getselpict
getportpict
setselpict
setportpict
getselinrect
getselatpoint
movefocusto
setorigin
moveselectpict
movepict
translatepict
enumerpict

'.Ke.pCer

primitives list

killpict
duplpict
pictrect
clearselpict
cutselpict
copyselpict
pastepict
portrect
portframe
viewframe
screen
textbox
dragpict
deselect
redraw
inrect

grids and
cells

grid_attributes
grid_databounds
create_grid_pane
add_col
del_col
add_row
del_row
gridcopy
grid_deselect
grid_selflags
selected_cells
grid_select_all
grid_add_to
grid_get
grid_set

Cantor Global
var

CantorDivrMap
MenuBarMap
StaticMenuDrvrMap
cantor_AlphaNumSet

Cantor
directives

allocate
breakpoint on/off
clear
changes on/off
code on/off
echo on/off
flex_alloc on/off
flex_min_size
gc on/off
help
ids
include
load

Cantor primitives index

111

memory
new_ids
oms
passive_err on/off
quit
record
record Output
reset
save
suspend
time on/off
trace on/off
unwatch
verbose on/off
version
watch
work_ids

experimental
Cantor
directives

annotate on/off
in_debug on/off
oldBin
old.Real

pane & file
experiments

get_stdio
stdin_from
stdout_to
get_file_ value
get_file_mode
get_pane_file
get_other_pane_file

Sorted Topic List

abstract syntax
advanced file

primitives
basic file

processing
basic math
basic set

primitives
buttons
Cantor directives
Cantor Global var
drawing
events
experimental

Cantor directives
grids and cells
interoperability

functions

iii

Cantor

logo turtle
macintosh specific

misc.
macintosh vector

graphics
menus
misc
pane & file

experiments
pane files
regions
scope control
source & binary
text pane
text-number

conversion
trigonometry
type testing
windows

Sorted Item List

abs
acos
acosh
acquire
add_col
add_mac_menu
add_row
allbreak:type
allchanges
allocate
alloccolor
analyze
annotate on/off
applyEnv
applyNilEnv
arb
arc
asin
asinh
ask_int
ask_long
ask_real
ask_str
ast
ast_id_str_subs
ast_subs
atan
atanh
atoi
ator
backward, bk
blockcount
box
break
breakpoint on/off

'.Ke.pCe.r

primitives list

break:type
button_attributes
CantorDrvrMap
cantor_AlphaNumSet
cclearscreen,cs
ceil
chain_ast
changepicset
changes on/off
char
check_mask_event
check_menu_item
circle
clear
clearscreen
clearselpict
cligne_line
clip window
clock
close
closedialog
closeresfile
close window
cngon
code on/off
codeOf
color
components
compute_rect_text
construct
convert_cantor_id
convert_cantor_obj
copyselpict
copy_ast
coref_ast
cos
cosh
create_button
create_grid_pane
create_region
create_text_pane
cutselpict
date
delete_text_pane
del_col
del_row
deselect
destroy _button
destroy _region
detachEnv
dialog
dot
dragpict
Draw Picture
draw _buttons
duplpict
echo on/off

Cantor primitives index

echo_pane_file
ellipse
enumerpict
envOf
eof
erasepict
eval
evalref
even
event_convert
event_domains
event_map
event_mask
exp
fare
fbox
fcirde
fcopy
fdelete
fellipse
fgets
file_find_str
findAll
findAst
finsert
fix
flen
flex alloc on/off
flex_min_size
floor
font
forward, fd
fpolygon
fread
fseek
ftell
fwrite
gc
gc on/off
getctitle
getctlmax
getctlmin
getctlvalue
getditem
getitext
getnewdialog
getobj
getpoly
getpopup
getportpict
getrect
getselatpoint
getselinrect
getselpict
getvector
get_button_attributes
get_button_ value

IV

iv

Cantor

get_file_mode
get_file_ value
get_file_ window
get_gc
get_in_file_name
get_other_pane_file
get_out_file_name
get_pane_file
get_pane_id
get_stdio
get_ window _attributes
gputs
gridcopy
grid_add_to
grid_attributes
grid_databounds
grid_deselect
grid_get
grid_select_all
grid_selflags
grid_set
hascolor
hash
hasNilEnv
help
hidecontrol
hilite
hitdialog
home
ids

ids
ids_in
~gnoreallbreakpt
nnage
include
include
init_turtle
inrect
install_menu
interface_task
interp
invocation (from C) of
Cantor
invocation (from
Cantor) of C
procedures
in_debug on/off
is_ast
is_ast_leaf
is_atom
is_bignum
is_boolean
is_chained
is_defined
is_file
is_floating
is_func

primitives list

is_func
!s_integer
1s_map
is_number
is_om
is_pendown
is_set
is_string
is_table
is_textpane
is_tuple
itoa
itoat
killpict
kwd
le
left, lt
lineto
line_to
1n
load
log
match
max
max_line
memory
MenuBarMap
min
mkLocal
mk_cantor_id
mk_cantor_obj
mk_local_id
movefocusto
movepict
moveselectpict
moveto
move_to
newids
newsymbols
new_ids
ngon
npow
npow2
odd
oldBin
old.Real
oms
opena
openab
openr
openrb
openresfile
openrw
openrwb
openw
openwb
open window

Cantor primitives index

open_pane_file
open_std_turtle
ord
overrideOf
panecopy
parsetree
parse_msg
passive_err on/off
pastepict
pause
pendown,pd
penup,pu
pictrect
polygon
popupmenu
portframe
portrect
pos
PostHEvent
pow
pretty
pretty Strings
qsort
quit
random
randomize
range
rank
record
recordOutput
rect_region
redraw
ref
refcollect
release
remove_echo_file
remove_menu
rename
reset
resetchanges
resetParses
restore
restoreimage
rewind
right, rt
round
rtoa
save
save
saveimage
scan
screen
selected_cells
setallbreakpt
setAst
setBaseAtom
setCopyAst

V

V

Cantor primitives list

setctitle tp _select_paragraph
setctlmax tp_set_focus
setctlmin tp _set_handler
setctlvalue tp_set_handler
setditem tp _set_prompt
setfilecreator tp _set_select
setitext tp_show _selection
setorigin tp_text_length
setportpict trace on/off
setScanStop translatepict
setselpict type
settitle uclcase
set_button_attributes ugly
set_cursor unify
set_gc u~f_step.
set_item umon_region
set_item_status unwatch
set_pendown up
set_pos upTo
set_turtle varsln
set_view varsOf
set_window verbose on/off
set_ window _attributes version
set_world viewframe
sgn visiblechanges
show vtow
showcontrol wait_mask_event
show_hide watch
show_mode well_defined
sin which_ast
sinh window
size window _attributes
sorted workComp
sort_index work_ids
spextra wtov
sqrt
StaticMenuDrvrMap
stdin_from
stdout_to
stdpt
std_dir
store
strsubst
suspend
tan
tanh
tell
tellfunc
textbox
text_pane_attributes
time on/off
toend
tp_delete_selection
tp_find_string
tp_get_select
tp_insert
tp_return_select

'.KepCer Cantor primitives index vi

Cantor

Index

:=46
% 30; 57
% (functionals) 57
%ast40
* 10; 12; 15;22;25;55
** 10; 12; 56
+ 10; 12; 15; 22; 25; 55
- 10; 12; 22
-> 35; 56
I 10; 56
/= 11; 56
=56
? 21; 47
abs 11; 13
Abstract Syntax Tree 38
Ada/Ed2
allbreaktype 70
allocate 60; 63
analyze 40
and 14; 57
annotate 62
applyEnv 37
applyNilEnv 37
arb 23
assignment 46; 54
assignment
(simultaneous-) 53
ast 38; 39
ast_kind 38
ast_subs 44
atoi 16
atom 19
ator 16
backslash 12; 16
Bignum 10
binary function 55
BNF 4; 44
Boolean 14; 31; 44
bound variables 51
breakpoint 61
breakpoints 69
breaktype 70
call (selector) 52
cantor.ini 8
cantor_AlphaNumSet 19
cardinality 23; 25; 26
ceil(13
changes 61
char 11; 16
character-pairs 9
class 36
clear60
close 20
Closure 33
code 61

'.Kepler

codeOf37
command6
comment9
compound operator 30
construct 40
conversion 16; 20
data-base 21
date 16
debugging 67
declaration 34
detachEnv 37
directives 5; 59
div 10; 56
do 46; 47
domain27
double quotes 16
echo 61
else 46
elseif 46
end of file 20
environment 37
envOf37
eof20
error messages 68
eval 41
even 11
exists 31; 58
exit 60
expression 54
external file 21
Fatal Errors 68
fgets 21
File 20; 47
file size 21
findAst 41
fix 13
flen 21
flex_alloc 61
flex_min_size 61
float(11
floating point 12
FLOATING_POINT 44
floor 13
for46
forall 31; 58
format50
former (set-, tuple-) 52
Formers 28
fread 21
from 47; 48
fromb 49
frome 48
fseek 21
ftell 21
func 33; 58
func syntax 34
fwrite 21

Cantor user guide index

garbage collection 61
Gary Levin 3
gc 61
global 34
grammar44
hash 16
hasNilEnv 37
help6
icon4
ID44
identifier 9
ids 61
if 46
iff 14; 57
ignoreallbreakpt70
image28
image set27
impl 14; 57
in 15; 23; 26; 57
include 6; 8; 60
include file 4 7
inequality 56
INF 14
infix operator 55
Integer 1 O; 44
inter 22; 55
interp 41
iSE1L3
is_ast 38
is_ast_leaf 40
is_atom 19
is_bignum 10
is_boolean 14
is_defined 21
is_file 20
is_floating 12
is_func 33
is_integer 10
is_map 27
is_number 11; 13
is_om 21
is_set 22; 27
is_string 15
is_tuple 24
iterator 51
itoa 16
itoat20
keywords 9; 41
kwd41
I-expression 34
le 21
less 23; 56
line count 21
load 6; 8; 60
local 34; 59
logarithms 13
lower-case 18

Cantor

map 27; 32
match43
max 11; 13
memory 60; 63
min 11; 13
mkLocal 37
mmap28; 52
mod 10; 56
modes 7
nested mode 7
newat 19
new_ids 61
noop 70
not14
notin 23; 26; 57
npow 24
npow2 24
odd 11
OM21
oms 61
opena20
openab 20
openr 20
openrb 20
openrw 20
openrwb 21
openw 21
openwb 21
operator 55
opt59
or 14; 57
ord 11; 16
ovenideOf 37
package 36
pair 28
pane file 21
parse_msg 43
parsing 40
passive_err 62
pattern matching 43
persistence 9
pointer 35
polymorphic 14; 26
pow23
precision 14; 50
Predef33
pretty 41
print 47
printf 48; 49
program45
prompt 5
quantifiers 31
quit 6; 60
random 11; 13; 15; 16; 24
randomize 11; 13
range 28
rank 16; 26

RAPTS 2
read47
read mode 7
readf 47; 49
real 12
record 60; 64
recordOutput 6; 61
ref37
replicate 15
reset 60
restart 60
return 34
rewind 21
round 13
rtoa 16
runtime error 68
save 6; 60
scan 16; 17; 41
scope 35; 37
SED2
separator 19
set 22; 32
set formers 22
setallbreakpt 70
setAst 41
setBaseAtom 20
SE1L2
setScanStop 16
sgn 11; 13
short cuts 6
simple data type 54
simple inheritance 36
single quotes 16
size 24
slice 53
slices 22; 25
smap 28; 52
special characters 9; 17
sqrt 13
standard mode 7
String 15; 44
strsubst 16
subset 23; 57
substring 15
suspend 6; 60
take 23; 26; 48
tellfunc 37; 68
terminator 17
then 46
this 36
time 62
to48
toend 21
token 17
trace 61
trigonometry 13
tuple 24; 32

Cantor user guide index

tuple formers 25
type 10
type testing 9
uclcase 16
ugly 41
Undefined 21
unification 43
unify 44
union 22; 55
unwatch 60
upper (resp. lower) case
16
upper-case 18
value 34; 59
varsln 43
varsOf 43
verbose 61; 68
version 61
watch 60; 63
weakly typed 14
where 58
which_ast 40
while 47
with 23; 25; 56
work_ids 61
write 49
writeln 49

11

