
An Introduction to ISETL

Gary Marc Levin
Clarkson University

Dept of Math and Computer Science

1989

This introduction is intended for people who have had no previous experience
with SETL or ISETL, but who are reasonably comfortable with learning a new
programming language. Very few examples are given in the description, but a
large number of examples is distributed with the software.

This documentation appears as an appendix in a discrete math text written
by Nancy Baxter, Ed Dubinsky, and Gary Levin. That text uses ISETL as a
tool for teaching discrete mathematics.

1 Running ISETL

ISETL is an interpreted, interactive version of the programming language SETL.
Written in C, it is invoked by typing a command line with the executable name,
say isetl, along with optional file names that are discussed below.1

There is no compiler for ISETL. When ISETL is running, it prompts for
input with the character “>”. Input consists of a sequence of expressions (each
terminated by a semicolon “;”), statements, and programs. Each input is acted
upon as soon as it is entered. The result of this action is explained below.
In the case of expressions, the result includes its value being sent to standard
output. If you have not completed your entry, you will receive the prompt “>>”,
indicating that more is expected.

1. ISETL is exited by typing “!quit”. It may also be exited by ending the
standard input. (In Unix, this is done by typing ctrl-D).

2. A common mistake is omitting the semicolon after an expression. ISETL
will wait until it gets a semicolon before proceeding — even if a carriage
return is entered. The doubled prompt “>>” indicates that ISETL is
expecting more input.

3. ISETL can get its input from sources other than the standard input.

1The Macintosh version is clickable. Therefore, statements about the command line do not
apply to the Mac.

1



(a) If there is a file with the name “.isetlrc” in the current directory,
then the first thing ISETL will do is read this file. 2

(b) Next, if the command line has any file names listed, ISETL will read
each of these in turn. 3

Thus, if the command line reads,

isetl file.1 foo bar

ISETL will first read from the “.isetlrc” file, if it exists, and then
from the file “file.1”, then from “foo”, and then from “bar”. Fi-
nally, it is ready for input from the terminal. (This is only available
under UNIX and MSDOS.)

(c) If there is a file available with the name, say “file.2” and ISETL is
given (at any time), the input,

!include file.2

(notice that there is no semicolon), then it will take its input from
“file.2” before being ready for any further input. The material in
such a file is treated exactly as if it were typed directly to the terminal,
and it can be followed by any additional information that the user
would like to enter.

Consider the following (rather contrived) example: Suppose that the
file “file.3” contained the following data,

5, 6, 7, 3, -4, "the"

Then if the user typed,

> seta := {
>> !include file.3

!include file.3 completed

>> , x };

the effect would be exactly the same as if the user had entered,

> seta := {5, 6, 7, 3, -4, "the", x};

The line “!include file.3 completed” comes from ISETL and is
always printed after an “!include”.

4. Comments

If a dollar sign “$” appears on a line, then everything that appears until
the next carriage return is ignored by ISETL.

2On systems that use file extentions, this file will be called “isetl.ini”.
3This feature is system dependent. Currently, neither the VMS nor the Macintosh version

has this feature.

2



5. After a program or statement has executed, the values of global variables
persist. The user can then evaluate expressions in terms of these variables.
(See below for more detail on scope.)

2 Characters and Keywords

2.1 Character set.

The following is a list of characters used by ISETL.

] [ ; : = | } { ) ( . # ? * / + - " > < % ~ ,

a – z A – Z 0 – 9

In addition, the following character-pairs are used.

:= .. ** /= <= >=

2.2 Keywords.

The following is a list of ISETL keywords.

and from newat subset

div fromb not take

do frome notin then

else func of to

elseif if om (OM) true

end impl or value

exists in print while

false less program where

for local read with

forall mod return

3 Identifiers.

1. An identifier is a sequence of alphanumeric characters along with the un-
derscore, “ ”. It must begin with a letter. Upper or lower case may
be used, and ISETL preserves the distinction. (I.e.: a good thing and
A Good Thing are both legal and are different.)

2. An identifier serves as a variable and can take on a value of any ISETL
data type. The type of a variable is entirely determined by the value that
is assigned to it and changes when a value of a different type is assigned
to it.

3



4 Simple Data Types.

4.1 Integers.

1. There is no limit to the size of integers. 4

2. An integer constant is a sequence of one or more digits. It represents an
unsigned integer.

3. On output, long integers may be broken to accomodate limited line length.
This format is not yet available for input.

4.2 Floating Point Numbers.

1. The possible range of floating point numbers is machine dependent.
At a minimum, the values will have 5 place accuracy, with a range of
approximately 1038.

2. A floating point constant is a sequence of one or more digits, followed
by a period, “.”, followed by one or more digits. Thus, 2.0 is legal, and
2. and .5 are illegal.

It may be followed by an exponent. An exponent consists of one of the
characters “e”, “E”, “f”, “F” followed by a signed or unsigned integer.
The value of a floating point constant is determined as is usual with
scientific notation. As with integers, it is unsigned. Hence, for example,
0.2, 2.0e-1, 20.0e-2 are all equivalent.

3. Different systems use different printed representations when floating point
values are out of the machine’s range. For example, when the value is too
large, the Mac prints “+++++” and the Sun prints ”Infinity”.

4.3 Booleans.

1. A Boolean constant is one of the keywords true or false, with the obvious
meaning for its value.

4.4 Strings.

1. A string constant is any sequence of characters preceded and followed by
a double quote, “"”. The double quote may not be used in a string. A
string may not be split across lines. Large strings may be constructed
using the operation of concatenation.

Warning: Construction of strings containing double quote is possible,
but the output of such strings may cause difficulties.

4No practical limit. Actually limited to about 20,000 digits per integer.

4



4.5 Atoms.

1. Atoms are “abstract points”. They have no identifying properties other
than their individual existence.

4.6 Files.

1. Files are ISETL values that are created as a result of applying one of the
pre-defined functions openr, opena, openw. They correspond to external
files in the operating system environment.

4.7 Undefined.

1. The data type undefined has a single value, OM. Any identifier that has
not been given a value has the value OM. It may also be entered as om.

5 Compound Data Types.

5.1 Sets.

1. Only finite sets may be represented in ISETL. The elements may be of
any type, mixed heterogeneously. Elements occur at most once per set.

2. The order of elements is not significant in a set and printing the value of
a set twice in succession could display the elements in different orders.

3. OM may not be an element of a set. Any set that would contain OM is
considered to be undefined.

4. An expression, or several expressions separated by commas, and, in either
case, enclosed in { } evaluates to the set whose elements are the values
of the enclosed expressions.

5. The empty set is denoted by { }.

6. There are syntactic forms, explained in the grammar, for a finite set that
is an arithmetic progression of integers, and also for a finite set obtained
from a set former in standard mathematical notation.

For example, the value of the following expression

{ x + y : x in {-1,-3..-100}, y in {-1,-3..-100} | x /= y};

is the set of all sums of two different odd negative integers larger than
−100.

5



5.2 Tuples.

1. A tuple is an infinite sequence of components, of which only a finite
number are defined. The components may be of any type, mixed hetero-
geneously. The values of components may be repeated.

2. The order of the components of a tuple is significant. By treating the
tuple as a function over the integers, you can extract individual compo-
nents and slices of the tuple.

3. OM is a legal value for a component.

4. An expression, or several expressions separated by commas, and, in either
case, enclosed by [ ], evaluates to a tuple whose defined components are
the values of the enclosed expressions.

5. The empty tuple is denoted by [ ].

6. The syntactic forms for tuples of finite arithmetic progressions and tuple

formers are similar to those provided for sets. The only difference is the
use of square, rather than curly, brackets.

7. The length of a tuple is the largest index (counting from 1) for which
a component is defined (that is, is not equal to OM). It can change at
run-time.

5.3 Maps.

Maps form a subclass of sets.

1. A map is a set that is either empty or whose elements are all ordered pairs.
An ordered pair is a tuple whose first two components and no others are
defined.

2. There are two special operators for evaluating a map at a point in its
domain. Suppose that F is a map.

(a) F(EXPR) will evaluate to the value of the second component of the
ordered pair whose first component is the value of EXPR, provided
there is exactly one such ordered pair in F; otherwise, it evaluates to
OM.

(b) F{EXPR} will evaluate to the set of all values of second components
of ordered pairs in F whose first component is the value of EXPR. If
there are none such, its value is the empty set.

3. A map in which no value appears more than once as the first component
of an ordered pair is called a single-valued map or smap; otherwise, the
map is called a multi-valued map or mmap.

6



6 Funcs.

1. A func is an ISETL value that may be applied to zero or more values
passed to it as arguments. It then returns a value specified by the defini-
tion of the func. Because it is a value, an ISETL func can be assigned to
an identifier, passed as an argument, etc. Evaluation of an ISETL func

can have side-effects determined by the statements in the definition of the
func. Thus, it also serves the purpose of what is often called a procedure.

2. A func is the computational representation of a function, as a map is the
ordered pair representation, and a tuple is the sequence representation.
Just as tuples and maps may be modified at a point by assignment, so
can funcs. However, if the value at a point is structured, you may not
modify that at a point as well.

x := func(i); return char(i); end;

x(97) := "b";

x(97)(1) := "abc";

x may be modified at a point. The assignment to x(97) is legal. However,
the following assignment is not supported at this time, because you are
trying to modify the structure of the value returned.

3. A number of functions have been pre-defined as funcs in ISETL. A list of
their definitions is given later in this document. These are not keywords
and may be changed by the user. They may not be modified at a point,
however.

4. It is possible for the user to define her/his own func. This is done with
the following syntax,

func(list-of-parameters);

local list-of-local-ids;

value list-of-global-ids;

statements;

end

(a) The declaration of local-ids may be omitted if no locals are needed.
The declaration of global-ids represents global variables whose cur-
rent values are to be remembered and used at the time of function in-
vocation; these may be omitted if not needed. The list-of-parameters
may be empty, but the pair of parentheses must be present.

(b) Parameters and local-ids are local to the func. See below for a dis-
cussion of scope.

7



(c) The syntax described above is for an expression of type func. As with
any expression, it has an existence as a value, but no name. Thus,
the definition will typically be part of an assignment statement, or
passed as a parameter. As a very simple example, consider:

cube plus := func(x,y);

return x**3 + y;

end;

After having executed this input, ISETL will evaluate an expression
such as cube plus(2,5); as 13.

(d) Parameters are passed by value. If there are too many arguments,
the extra arguments are ignored. If there are too few arguments, the
extra parameters are assigned the value OM.

(e) Scope is lexical (static) with retention. Lexical means that references
to global variables are determined by where the func was created,
not by where it will be evaluated. Retention means that even if the
scope that created the func has been exited, its variables persist and
can be used by the func.

By default, references to global variables will use the value of the
variable at the time the function is invoked. The value declaration
causes the value of the global variable at the time the func is created
to be used.

(f) Here is a more complicated example of the use of func. As defined
below, compose takes two functions as arguments and creates their
functional composition. The functions can be any ISETL values that
may be applied to a single argument; e.g. func, tuple, smap.

compose := func (f,g);

return func (x);

return f(g(x));

end;

end;

twice := func (a);

return 2*a;

end;

times4 := compose(twice,twice);

Then the value of times4(3) would be 12. The value of times4

needs to refer to the values of f and g, and they remain accessible to
times4, even though compose has returned.

(g) Finally, here are some examples of functions modified at a point, and
functions that capture the current value of a global.

8



f := func (x);

return x + 4;

end ;

gs := [ func(x); value N; return x+3*N; end :

N in [1..3] ];

f(3) := 21;

After this is executed, f(1) is 5, f(2) is 6, but f(3) is 21. gs(2)(4)
is 10 (4+3*2).

7 The ISETL Grammar.

7.1 Terminology.

1. In what follows, the symbols ID, INTEGER, FLOATING POINT, BOOLEAN,
and STRING refer to the terms identifier and integer, floating point

number, Boolean, and string constants, which have been specified above.
Any other symbol in capital letters is explained in the grammar.

2. A statement enclosed in double quotes is an extra-grammatical explana-
tion.

3. Spaces are not allowed within any of the character pairs listed in the sec-
tion on Characters and Keywords, nor within an ID, INTEGER constant,
FLOATING POINT constant, or keyword. Spaces are required between key-
words, IDs, INTEGER constants, and FLOATING POINT constants.

4. ISETL treats carriage returns and tabs as spaces. Any input can be spread
across lines without changing the meaning, and ISETL will not consider
it to be complete until a semicolon “;” is entered. The only exceptions to
this are the !include input, which is ended with a carriage return, and
the fact that a quoted string cannot be typed on more than one line.

7.2 The Grammar.

The annotated grammar below is presented in three columns. The first column
is the symbol being defined, the second column contains a list of the possibil-
ities for that symbol, and the third column, when present, provides additional
explanation.

INPUT

Can be typed at the terminal or read from a file.

PROGRAM

STMT

EXPR ;

The EXPR is evaluated and the result is sent to standard output.

9



PROGRAM

Usually read from a file.

program ID ; STMTS ; end ;

Of course, it can appear on several lines with the usual indented format.

STMTS

“One or more instances of STMT”

STMT

LHS := EXPR ;

The left hand side is evaluated to determine the target(s) for the assign-
ment, and the right hand side is evaluated. Then the assignment is made.
If there are some targets for which there are no values to be assigned,
then they receive the value, OM. If there are values to be assigned but no
corresponding targets, then the values are ignored.

Examples:

a := 4;

a is changed to contain the value 4.

[a,b] := [1,2];

a is assigned 1 and b is assigned 2.

[x,y] := [y,x];

Swap x and y.

f(3) := 7;

If f is a tuple, then the effect of this statement is to assign 7 as the value
of the third component of f. If f is a map, then its effect is to replace all
pairs beginning with 3 by the pair [ 3 , 7 ] in the set of ordered pairs
f. If f is a func, then f(3) will be 7, and all other values of f will be as
they were before the assignment.

EXPR ;

The expression is evaluated and the value ignored.

for ITERATOR do STMTS end ;

The STMTS are executed for each instance generated by the iterator. Op-
tionally, one may close with end for.

while EXPR do STMTS end ;

EXPR must evaluate to a BOOLEAN value. EXPR is evaluated and the STMTS

are executed repetitively as long as this value is equal to true. Option-
ally, one may close with end while.

take LHS frome LHS ;

The second LHS must evaluate to a tuple (or a string). The value of
its last defined component (or last character) is assigned to the first LHS
and replaced by OM in the tuple (deleted from the string).

take LHS fromb LHS ;

10



The second LHS must evaluate to a tuple (or a string). The value of
its first component (defined or not) (first character) is assigned to the
first LHS and all components of the tuple (characters of the string) are
shifted left one place. That is, the new value of the ith component is the
old value of the (i + 1)st component (i = 1, 2, ...).

take LHS from LHS ;

The second LHS must evaluate to a set. An arbitrary element of the set

is assigned to the first LHS and removed from the set.

read LHS LIST ;

ISETL gives a question mark “?” prompt and waits until an expression
has been entered. This EXPR is evaluated and the result is assigned to
the first item in LHS LIST. This is repeated for each item in LHS LIST.
Note: If a read statement appears in an !include file, then ISETL will
look at the next input in that file for the expression(s) to be read.

read LHS LIST from EXPR ;

This is the same as read LHS LIST; except that EXPR must have a value
of type file. The values to be read are then taken from the external file
specified by the value of EXPR. If there are more values in the file than
items in LHS LIST, then the extra values are left to be read later. If
there are more items in LHS LIST than values in the file, then the extra
items are assigned the value OM. In the latter case, the function eof will
return true, when given the file as parameter. Before this statement is
executed, the external file in question must have been opened for reading
by the pre-defined function openr (see the section on file functions).

print EXPR LIST ;

Each expression in EXPR LIST is evaluated and printed on standard out-
put. The output values are formated to show their structure, with line
breaks at reasonable positions and meaningful indentation. The only
problem is with very long strings. If a string is too long to fit on
the screen, the front of the string is printed, followed by ellipses and a
length indicator.

print EXPR LIST to EXPR ;

Again EXPR must be a value of type file. The values are written to the
external file specified by the value of EXPR. Before executing this state-
ment, the external file in question must have been opened for printing
by one of the pre-defined functions openw or opena (see the section on
file functions).

return ;

return is only meaningful inside a func. Its effect is to terminate ex-
ecution of a func and return the value OM to the caller. ISETL inserts
return; just before the end of every func. If return appears at the “top
level”, i.e. as input to the terminal, a run time error will occur.

return EXPR ;

11



Same as return; except that EXPR is evaluated and its value is returned
as the value of the func.

IF STMT

if EXPR then STMTS ELSE IFS ELSE PART end

The EXPRs after if and elseif are evaluated in order until one is found
to be true. The STMTS following the associated then are executed. If no
EXPR is found to be true, the STMTS in the ELSE PART are executed. In
this last case, if the ELSE PART is omitted, this statement has no effect.
Optionally, one may close with end if.

ELSE IFS

“zero or more repetitions of the following”

elseif EXPR then STMTS

ELSE PART

“may be omitted”

else STMTS

ITERATOR

ITER LIST

ITER LIST | EXPR

EXPR must evaluate to a BOOLEAN. Generates only those instances gener-
ated by ITER LIST for which the value of EXPR is true.

ITER LIST

“one or more SIMPLE ITERATORs separated by commas.”
Generates all possible instances for every combination of the
SIMPLE ITERATORs. The first SIMPLE ITERATOR advances most slowly.
Subsequent iterators may depend on previously bound values.

SIMPLE ITERATOR

A SIMPLE ITERATOR generates a number of instances for which an as-
signment is made. These assignments are local to the iterator and when
it is exited, all previous values of IDs that were used as local variables
are restored. That is, these IDs are “bound variables” whose scope is
the construction containing the iterator. (e.g., for-loops, quantifiers,
formers, etc. )

BOUND LIST in EXPR

EXPR must evaluate to a set, tuple, or string. The instances generated
are all possibilities in which each BOUND in BOUND LIST is assigned a value
that occurs in EXPR.

BOUND = ID ( BOUND LIST )

12



Here ID must have the value of an smap, tuple, or string, and
BOUND LIST must have the correct number of occurrences of BOUND cor-
responding to the parameters of ID. The resulting instances are those
for which all occurrences of BOUND in BOUND LIST have all possible legal
values and BOUND is assigned the corresponding value.

BOUND = ID { BOUND LIST }
Same as the previous one for the case in which ID is an mmap.

BOUND LIST

“one or more BOUND, separated by commas”

BOUND

~

Corresponding value is thrown away.

ID

Corresponding value is assigned to ID.

[ BOUND LIST ]

Corresponding value must be a tuple, and elements of the tuple are
assigned to corresponding elements in the BOUND LIST.

SELECTOR

A tuple, string, map, or func (pre- or user- defined) may be followed by
a SELECTOR, which has the effect of specifying a value or group of values
in the range of the tuple, string, map, or func. Not all of the following
SELECTORs can be used in all four cases.

{ EXPR LIST }
Must be used with an mmap. If the EXPR LIST has more than one element
it is equivalent to what it would be if the list were enclosed in square
brackets, [ ]. Thus a function of several variables is interpreted as a
function of one variable — the vector (tuple) whose components are the
individual variables.

( EXPR LIST )

Must be used with an smap, tuple, string, or func. If it is used with
a tuple or string, then EXPR LIST can only have one element, which
must evaluate to a positive integer. Same remark as previous for the
case in which the list has more than one element.

( EXPR .. EXPR )

Must be used with a tuple or string, and both instances of EXPR must
evaluate to a positive integer.

The value is the slice of the original tuple or string in the range specified
by the two occurrences of EXPR. There are some special rules in this case.
To describe them, suppose that the first EXPR has the value a and the
second has the value b so that the selector is (a..b).

13



a ≤ b value is the tuple or string with components
defined only at the integers from 1 to b− a + 1,
inclusive. The value of the ith component is
the value of the (a + i− 1)st component of the
value of EXPR.

a = b + 1 value is the null tuple.
a > b + 1 run-time error.

( .. EXPR )

Means the same as (1 .. EXPR).

( EXPR .. )

Means the same as ( EXPR .. EXPR ) where the second EXPR is equal
to the length of the tuple or string.

( )

Used with a func that has no parameters. It also works with an smap

with [ ] in its domain.

FORMER

Generates the values to be used in expressions that evaluate to a set or
a tuple.

EXPR : ITERATOR

The value of EXPR for each instance generated by the ITERATOR.

EXPR LIST

Values are explicitly listed.

EXPR .. EXPR

Both occurrences of EXPR must evaluate to integer. Generates all
integers beginning with the first EXPR and increasing by 1 for as long
as the second EXPR is not exceeded. If the first EXPR is larger than the
second, no values are generated.

EXPR , EXPR .. EXPR

All three occurrences of EXPR must evaluate to integer. Generates all
integers beginning with the first EXPR and incrementing by the value
of the second EXPR minus the first EXPR. If this difference is positive, it
generates those integers that are not greater than the third EXPR. If the
difference is negative, it generates those integers that are not less than
the third EXPR. If the difference is zero, no integers are generated.

LHS

The target for anything that has the effect of an assignment.

ID

LHS SELECTOR

LHS must evaluate to a tuple, string, or map. LHS is modified by re-
placing the components designated by selector.

14



[ LHS LIST ]

LHS LIST

“One or more instances of LHS, separated by commas”
Thus the input,

[A, B, C] := [1, 2, 3];

has the effect of replacing A by 1, B by 2, and C by 3.

“Any LHS in the list can be replaced by ~ ”
The effect is to omit any assignment to a LHS that has been so replaced.
Thus the input,

[A, ~ , C] := [1, 2, 3];

replaces A by 1, C by 3.

EXPR

The first few in the following list are values of simple data types and they
have been discussed before.

ID

INTEGER

FLOATING POINT

STRING

true

false

OM

newat

The value is a new atom, different from any other atom that has appeared
at the time it is invoked.

FUNC CONST

A user-defined func.

( EXPR )

Any expression can be enclosed in parentheses. The value is the value of
EXPR enclosed in parentheses.

[ FORMER ]

Evaluates to the tuple of those values generated by FORMER in the order
that former generates them.

{ FORMER }
Evaluates to the set of those values generated by FORMER.

# EXPR

EXPR must be a set, tuple, or string. The value is the cardinality of
the set, the length of the tuple, or the length of the string as the case
may be.

EXPR SELECTOR

15



EXPR must evaluate to an ISETL value that is, in the general sense,
a function. That is, it must be a map, tuple, string, or func. See
SELECTOR.

EXPR . ID EXPR

This is equivalent to ID(EXPR,EXPR). (Space after the “.” is optional.)

EXPR ? EXPR

The value of the first EXPR, if it is not OM; otherwise the value of the
second EXPR.
In general, arithmetic and comparisons may mix integers and
floating point. The result is an integer if both operands are
integers and floating point, otherwise. For simplicity, we will use the
term number to mean a value that is either integer or floating point.

EXPR ** EXPR

The values of the two expressions must be numbers. The operation is
exponentiation.

EXPR * EXPR

If both instances of EXPR evaluate to numbers, this is multiplication.
If both evaluate to sets, this is intersection. If one instance of EXPR

evaluates to integer, and the other to a tuple or string, then the value
is the tuple or string, concatenated with itself the integer number of
times, if the integer is positive; and the empty tuple or string, if the
integer is less than or equal to zero.

EXPR / EXPR

Both instances of EXPR must evaluate to numbers. The value is the result
of division, and is of type floating point.

EXPR mod EXPR

Both instances of EXPR must evaluate to integer and the second must
be positive. The result is the remainder, and the following condition is
always satisfied,

0 ≤ a mod b < b

.

EXPR div EXPR

Both instances of EXPR must evaluate to integer, and the second must
be non-zero. The value is integer division defined by the following two
relations,

(a div b) ∗ b + (a mod b) = 0 for b > 0
a div (−b) = −(a div b) for b < 0.

EXPR + EXPR

If both instances of EXPR evaluate to numbers, this is addition. If both
instances of EXPR evaluate to sets, then this is union. If both instances
of EXPR evaluate to tuples or strings, then this is concatenation.

16



EXPR - EXPR

If both instances of EXPR evaluate to numbers, this is subtraction. If both
instances of EXPR evaluate to sets, then this is set difference.

EXPR with EXPR

The value of the first EXPR must be a set or tuple. If it is a set, the
value is that set with the value of the second EXPR added as an element.
If it is a tuple, the value of the second EXPR is assigned to the value of
the first component after the last defined component of the tuple.

EXPR less EXPR

The value of the first EXPR must be a set. The value is that set with
the value of the second EXPR removed, if it was present.

EXPR = EXPR

The test for equality of any two ISETL values.

EXPR /= EXPR

Negation of EXPR=EXPR.

EXPR < EXPR

EXPR > EXPR

EXPR <= EXPR

EXPR >= EXPR

For all the above inequalities, both instances of EXPR must evaluate to
the same type, which must be number or string. For numbers, this is
the test for the standard arithmetic ordering, and for strings, it is the
test for lexicographic ordering.

EXPR in EXPR

The second EXPR must be a set, tuple, or string. For sets and tuples,
this is the test for membership. For strings, it is the test for substring.

EXPR notin EXPR

Negation of EXPR in EXPR.

EXPR subset EXPR

Both instances of EXPR must be sets. This is the test for the value of
the first EXPR to be a subset of the value of the second EXPR.

EXPR and EXPR

Both instances of EXPR must evaluate to BOOLEAN. Logical conjunction.
If the left operand is false, the right operand is not evaluated.

EXPR or EXPR

Both instances of EXPR must evaluate to BOOLEAN. Logical disjunction. If
the left operand is true, the right operand is not evaluated.

EXPR impl EXPR

Both instances of EXPR must evaluate to BOOLEAN. Logical implication.

not EXPR

EXPR must evaluate to BOOLEAN. Logical negation.

+ EXPR

17



EXPR must evaluate to a number. Identity function.

- EXPR

EXPR must evaluate to a number. Negative of EXPR.

% BINOP EXPR

EXPR must evaluate to a set, tuple, or string. Say that the elements
in EXPR are x1, x2,...,xN (N=#EXPR). If N=0, then the value is OM. If N=1,
then the value is the single element. Otherwise, %BINOP EXPR equals

x1 BINOP x2 BINOP . . . BINOP xN

associating to the left.

If EXPR is a set, then the selection of elements is made in arbitrary order,
otherwise it is made in the order of the components of EXPR.

EXPR % BINOP EXPR

The second instance of EXPR must evaluate to a set, tuple, or string.
If the first EXPR is a, and the values in the second are x1, x2,...,xN as
above, then the value is:

a BINOP x1 BINOP x2 BINOP . . . BINOP xN

associating to the left.

exists ITER LIST | EXPR

EXPR must evaluate to a BOOLEAN. If ITER LIST generates at least one in-
stance in which EXPR evaluates to true, then the value is true; otherwise
it is false.

forall ITER LIST | EXPR

EXPR must evaluate to a BOOLEAN. If every instance generated by
ITER LIST is such that EXPR evaluates to true, then the value is true;
otherwise it is false.

EXPR where DEFNS end

The value is the value of the EXPR preceeding where, evaluated in the
current environment with the IDs in the DEFNS added to the environment
and initialized to the corresponding EXPRs. The scope of the IDs is limited
to the where expression. The DEFNS can modify IDs defined in earlier
DEFNS in the same where expression.

18



DEFNS

“Zero or more instances of DEFN”

DEFN

BOUND := EXPR ;

ID SELECTOR := EXPR ;

EXPR LIST

“One or more instances of EXPR separated by commas”

BINOP

“Any binary operator (+, -, *, **, /, div, mod, with, less, and, or, impl)
or an ID whose value is a function of two parameters.”

FUNC CONST

FUNC HEAD LOCALS VALUES STMTS end

This is the syntax for user-defined funcs. Optionally, one may close with
end func.

FUNC HEAD

func ( ID LIST ) ;

In this case, there are parameters.

func ( ) ;

In this case, there are no parameters.

LOCALS

local ID LIST ;

The appearance of this in FUNC CONST is optional.

VALUES

value ID LIST ;

The appearance of this in FUNC CONST is optional. VALUES and LOCALS

may be repeated and appear in any order.

ID LIST

“One or more instances of ID separated by commas.”

19



8 Pre-defined Functions

8.1 Functions on integers.

In each of the following, EXPR must evaluate to integer.

1. even(EXPR). The test for even.

2. odd(EXPR). The test for odd.

3. float(EXPR).

The value is the value of EXPR converted to floating point.

4. char(EXPR). The value is the one-character string whose (machine de-
pendent) index is the value of EXPR.

8.2 Functions on floating point numbers.

In each of the following, EXPR must evaluate to floating point.

1. ceil(EXPR). The value is the smallest integer not smaller than the value
of EXPR.

2. floor(EXPR). The value is the largest integer not larger than the value
of EXPR.

3. fix(EXPR). The value is the same as floor(EXPR) if EXPR>=0, and the
same as ceil(EXPR) if the value of EXPR<=0. In other words, the fractional
part is discarded.

8.3 Functions on Sets.

In each of following, EXPR must evaluate to a set.

1. arb(EXPR). An element of EXPR, selected arbitrarily. If the value of EXPR
is { }, then the value of the function is OM.

2. pow(EXPR). The value is the set of all subsets of the value of EXPR.

3. npow(EXPR,EXPR). One EXPR must be a set, and the other a non-negative
integer. The value is the set of all subsets of the set whose cardinality
is equal to the integer. This func is defined in .isetlrc. This will
eventually change. If you do not have the standard .isetlrc, you do not
have this func.

20



8.4 Functions on maps.

In each of the following, EXPR must evaluate to a map.

1. domain(EXPR). The value is the set of all values that appear as the first
component of an element of the value of EXPR.

2. image(EXPR). The value is the set of all values that appear as the second
component of an element of the value of EXPR.

8.5 Standard mathematical functions.

1. Each of the following takes a single floating point argument. The value
is a floating point approximation to the value of the corresponding
mathematical function.

exp, ln, log, sqrt, sin, cos, tan, asin, acos, atan, sinh, cosh, tanh,
asinh, acosh, atanh.

2. In each of the following, EXPR must evaluate to integer or
floating point. The value is the value of the mathematical function
in the same type as the value of EXPR.

(a) sgn(EXPR). If EXPR is positive, then 1; if EXPR is zero, then 0; other-
wise -1.

(b) random(EXPR). The value is a number selected at random in the in-
terval from 0 to the value of EXPR, inclusive. There has been no
statistical study made of the generators. Don’t depend on them for
highly sensitive work.

(c) randomize(EXPR). If EXPR is an integer, this resets the random
number generator. This may be used to re-create a sequence of ran-
dom numbers. On some systems, a non-integer argument resets the
random number generator in an uncontrolled fashion.

3. In each of the following, both occurrences of EXPR must evaluate to
integer, floating point, or string. The value of the function is the
value of the mathematical function in the same type as was the values of
the two occurrences of EXPR.

(a) max(EXPR,EXPR).

(b) min(EXPR,EXPR).

8.6 Type Testers.

In each of the following, the value of EXPR can be any ISETL data type. The
function is the test for the value of EXPR being the type indicated.

1. is atom(EXPR).

21



2. is boolean(EXPR).

3. is integer(EXPR).

4. is file(EXPR).

5. is floating(EXPR).

6. is func(EXPR).

7. is map(EXPR).

8. is number(EXPR) – true for integer and floating point.

9. is set(EXPR).

10. is string(EXPR).

11. is tuple(EXPR).

12. is om(EXPR).

13. is defined(EXPR). Negation of is om.

8.7 Input/Output Functions.

1. In each of the following functions, the value of EXPR must be a string

that is a file name consistent with the operating system’s naming con-
ventions. The value of the function has ISETL type file and may be in
read...from... and print...to... statements to refer to that file.

(a) openr(EXPR). If the file named by the value of EXPR exists, then it is
opened for reading, and the value of the function is of type file. If
the file named by the value of EXPR does not exist, then the value of
the function is OM.

(b) openw(EXPR). If the file named by the value of EXPR does not exist,
then it is created by the operating system externally to ISETL. This
file is opened for writing from the beginning, so that anything pre-
viously in the file is destroyed. The value of the function is of type
file.

(c) opena(EXPR). The same as openw(EXPR) except that if the file exists
its contents are not destroyed. Anything that is written is appended
to the file.

2. In the following function, the value of EXPR must be of type file. The file
specified by this value is closed. Output files must be closed to guarantee
that all output has been stored by the operating system. All files are closed
automatically when ISETL is exited. There is usually a system-imposed
limit on the number of files that may be open at one time, however, so it
is a good idea to close files when finished using them.

22



(a) close(EXPR). The value of the function is OM.

3. In the following function the value of EXPR must be of type file.

(a) eof(EXPR). Test for having read past the end of an external file.

8.8 Miscellaneous.

1. abs(EXPR). If the value of EXPR is integer or floating point, then the
value of the function is the standard absolute value.

2. ord(EXPR). The inverse of char. EXPR must be a string of length 1.

3. font(EXPR,EXPR). Macintosh version only. Both arguments should be
integer. The first controls the font, the second the point size. The
relation between numbers and fonts is dependent on the fonts loaded, so
you need to experiment. If an argument is not an integer, that parameter
is unchanged. The result is a pair, where the first element is the old font
and the second element is the old size.

9 Precedence Rules

• Operators are listed from highest priority to lowest priority.

• Operators are left associative unless otherwise indicated.

• “nonassociative” means that you cannot use two operators on that line
without parentheses.

CALL

anything that is
a call to a function
– func, tuple, string, map, etc.

#

? nonassociative
% nonassociative
** right associative
* / mod div

+ - with less

INFIX .

in notin subset

< <= = /= > >= nonassociative
not

and

or

impl

23



10 Directives

There are a number of directives that can be given to ISETL to modify its
behavior.

On the command line, -s indicates silent mode. In silent mode, the header
and all prompts are supressed. This is useful when using ISETL as a filter. This
feature is not available on the Macintosh version.)

The rest of the directives are ! commands.

1. !quit – exit ISETL.

2. !include <filename> – Replace <filename> with a file/pathname ac-
cording to the rules of your operating system. ISETL will insert your
file.

3. !clear – throw away all input back to the last single prompt.

4. !edit – edit all the input back to the last single prompt.

5. !echo [ on | off ] – When on, all input is echoed. This is particularly
useful when trying to find a syntax error in an !include file or input for
a read. It is also useful for pedagogical purposes, as it can be used to
interleave input and output.

6. !memory – shows how much memory has been allocated.

7. !memory nnn – increase the legal upper bound to nnn.

8. !code [ on | off ] – When on, you get a pseudo-assembly listing for
the program. Default is off.

9. !trace [ on | off ] – When on, you get an execution trace, using the
same notation as !code. When desperate, this can be used to watch the
execution of your program. Really intended for debugging ISETL. Default
is off.

10. !ids – Lists all identifiers which have been defined.

11 Editor

1. The user can edit whatever has been entered since the beginning of the
current syntactic object, in response to a syntax error message, or if the
user wants to change something previously typed. If you prefer to start
again, “!clear” will clear the typing buffer and allow you to start the
input afresh.

2. When the editor is invoked (by typing “!edit”), the user is prompted for
the string that is to be modified. The user types the desired string, and
the editor finds its first occurrence in the lines being edited.

24



3. The user is then prompted for the replacement of this string. When it is
entered, the change is made.

4. The process repeats until the user enters a blank search line, at which
time control is returned to ISETL.

25



12 Error Messages

The following list of error messages is given in two columns. The first is the mes-
sage as it is printed to standard output, and the second gives a brief explanation
of the meaning of the message.

* used for self explanatory messages
internal messages the user should never see
operator messages that report bad args to the operator

RT Message Explanation

’#’ operator
And operator
Assignment operator
Bad arg to mcPrint internal
Bad args in low,next..high *
Bad args in low..high *
Bad modulus operator mod
Bad selector to modify lhs and selector incompatible
Bad slice assignment slice on lhs out of range
Bounds must be integer *
Cannot edit except at top level Edit not permitted within an include
Cannot SMap Cannot perform selection
Cannot MMap Cannot perform selection
Cannot Slice Cannot perform selection
Cnt2 bad args to x..y

Cnt3 bad args to x,y..z

Div operator
Divide by zero *
Exp operator
From operator
Fromb operator
Frome operator
IC2 bad args to iterator over x..z
IC3 bad args to iterator over x,y..z
Impl operator
In operator
Index < 1 *

26



Index out of bounds *
Input must be an expression *
Iter Next internal
Less operator
Lower bound < 1 *
MMap bad args to iterator for MMap
MMap/Str bad args to iterator for MMap
MMap/Tuple bad args to iterator for MMap
Minus operator
Mk Iter bad LHS for iterator
Mod operator
Negate operator (unary -)
Negative slice *
Non-bool to Br False May occur in if, while, and, or
Non-bool to Br True May occur in if, while, and, or
Non-integer index to string *
Non-integer index to tuple *
Not operator
Only one level of selection allowed Limitation on modification of funcs
Or operator
Order Relation incomparable args to <,>,<=,>=
Plus operator
RHS of MMap must be a set f{x}, f not a set of ordered pairs
Return at top level *
Set Coersion internal
Slash operator
Slice out of bounds *
Stack Overflow *
Stack Underflow * internal
String index too small *
String requires integer index *
Subset operator
Times operator
Top level return not allowed *
Tuple index too small *
Tuple requires integer index *
With operator

27


