
An Introduction to ISETL

Version 3.0

Gary Marc Levin
Bitnet: gary@clutx

Internet: gary@clutx.clarkson.edu

September 18, 2021

Abstract

ISETL is an interactive implementation of SETL1, a programming language built around
mathematical notation and objects, primarily sets and functions. It contains the
usual collection of statements common to procedural languages, but a richer set of
expressions.

The objects of ISETL include: integers, floating point numbers, funcs (sub-programs),
strings, sets, and tuples (finite sequences). The composite objects, sets and tuples,
may contain any mixture of ISETL objects, nested to arbitrary depth.

This introduction is intended for people who have had no previous experience
with ISETL, but who are reasonably comfortable with learning a new programming
language. Few examples are given here, but many examples are distributed with the
software.

This documentation is a useful supplement to Learning Discrete Mathematics with
ISETL, a discrete math text written by Nancy Baxter, Ed Dubinsky, and Gary Levin,
from Springer-Verlag. That text uses ISETL as a tool for teaching discrete mathemat-
ics.

Copyright 1987, 1988, 1989.
Gary Levin.

Clarkson University.

This manual and the accompanying software may be freely copied, subject to the restriction that
it not be sold for profit. (This would permit bulk copying and sale at cost.) The software is offered
as-is, but we will attempt to correct errors in our code.

Portions of this manual and the accompanying software are derived from the Interactive Line Editor,
which was released with the following copyright restrictions.

COPYRIGHT 1988
Evans & Sutherland Computer Corporation

Salt Lake City, Utah
All Rights Reserved.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY EVANS & SUTHERLAND.
EVANS & SUTHERLAND MAKES NO REPRESENTATIONS ABOUT THE SUITABILITY OF
THIS SOFTWARE FOR ANY PURPOSE. IT IS SUPPLIED “AS IS” WITHOUT EXPRESS OR
IMPLIED WARRANTY.

IF THE SOFTWARE IS MODIFIED IN A MANNER CREATING DERIVATIVE COPYRIGHT
RIGHTS, APPROPRIATE LEGENDS MAY BE PLACED ON THE DERIVATIVE WORK IN AD-
DITION TO THAT SET FORTH ABOVE.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose
and without fee is hereby granted, provided that the above copyright notice appear in all copies
and that both the copyright notice and this permission notice appear in supporting documentation,
and that the name of Evans & Sutherland not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

Written by: Robert C. Pendleton Evans & Sutherland, Interactive Systems Division, Salt Lake
City, Utah.

Modified for ISETL by Gary Levin

1SETL was developed at the Courant Institute, by Schwartz. See Schwartz, J.T., et al.
Programming with sets: An introduction to SETL. Springer-Verlag, 1986.

CONTENTS 1

Contents

1 Running ISETL 4

2 Characters, Keywords, and Identifiers 6

2.1 Character Set . 6

2.2 Keywords . 6

2.3 Identifiers . 6

3 Simple Data Types 7

3.1 Integers . 7

3.2 Rationals . 7

3.3 Floating Point Numbers . 7

3.4 Booleans . 8

3.5 Strings . 8

3.6 Atoms . 9

3.7 Files . 9

3.8 Undefined . 9

4 Compound Data Types 9

4.1 Sets . 9

4.2 Tuples . 10

4.3 Maps . 11

5 Funcs 11

6 The ISETL Grammar — Annotated 15

6.1 Terminology . 15

6.2 Input at the Prompt . 15

6.3 Program . 16

6.4 Statements . 16

6.5 Iterators . 21

6.6 Formers . 23

6.7 Selectors . 23

6.8 Left Hand Sides . 24

6.9 Expressions . 25

6.10 Function Constants . 31

2 CONTENTS

7 Pre-defined Functions 33
7.1 Functions on Integers . 33
7.2 Functions on Rationals . 33
7.3 Functions on Floating Point Numbers 33
7.4 Functions on Sets . 34
7.5 Functions on Maps . 34
7.6 Standard Mathematical Functions 34
7.7 Type Testers . 35
7.8 Input/Output Functions . 36
7.9 Miscellaneous . 37
7.10 Tuple . 37
7.11 Graphics . 38

8 Precedence Rules 40

9 Directives 41
9.1 Brief Descriptions . 41
9.2 !clear and !edit . 43
9.3 !allocate and !memory . 44
9.4 !watch and !unwatch . 44
9.5 !record . 45
9.6 !system . 45

10 Editors 46
10.1 MSDOS Screen Editor . 46
10.2 Mac Screen Editor . 46
10.3 Interactive Line Editor (ILE) . 47

11 Runtime Errors 54
11.1 Fatal Errors . 54
11.2 Operator Related Messages . 54
11.3 General Errors . 55

12 The ISETL Grammar — Compressed 59
12.1 Input at the Prompt . 59
12.2 Program . 59
12.3 Statements . 59
12.4 Iterators . 60
12.5 Selectors . 60
12.6 Left Hand Sides . 60

CONTENTS 3

12.7 Expressions and Formers . 61
12.8 Function Constants . 62

Index 63

4 1 RUNNING ISETL

1 Running ISETL

ISETL is an interpreted, interactive version of the programming language SETL.
It is invoked by typing a command line with the executable name, say isetl,
along with optional file names that are discussed below.2

There is no compiler for ISETL. When ISETL is running, it prompts for
input with the character “>”. Input consists of a sequence of expressions (each
terminated by a semicolon “;”), statements, and programs. Each input is acted
upon as soon as it is entered. These actions are explained below. In the case
of expressions, the result includes its value being printed. If you have not
completed your entry, you will receive the prompt “>>”, indicating that more is
expected.

1. ISETL is exited by typing “!quit”. It may also be exited by ending the
standard input. In Unix, this is done by typing ctrl-D. In MS-DOS, ctrl-Z
and ctrl-D will work.

2. A common mistake is omitting the semicolon after an expression. ISETL

will wait until it gets a semicolon before proceeding. The doubled prompt
“>>” indicates that ISETL is expecting more input.

3. ISETL can get its input from sources other than the standard input.

(a) If there is an initialization file3 in the current directory, then the first
thing ISETL will do is read this file.

(b) Next, if the command line has any file names listed, ISETL will read
each of these in turn.4

Thus, if the command line reads,

isetl file.1 blue green

2The Macintosh version is clickable.
3Initialization files are called either .isetlrc or isetl.ini. The file is looked for in:

i. the current directory

ii. the directory containing isetl.exe (MSDOS and Mac)

iii. the home directory (Unix, VMS) or root (MSDOS)

iv. in the symbol ISETLINI: (VMS only)

Only one initialization file is read. The same pattern is searched for the ile initialization file.
4This feature is system dependent. To provide this feature in VMS, you must define

isetl :== $your$disk:[your.dir]isetl.exe in your login.com. The leading $ makes this a
foreign command . The rest is the complete path to the executable version of ISETL.

5

ISETL will first read from “.isetlrc” if it exists, and then from
“file.1”, then “blue”, and then “green”. Finally, it is ready for
input from the terminal.

(c) If there is a file available — say “file.2” — and ISETL is given (at
any time), the following line of input,

!include file.2

then it will take its input from “file.2” before being ready for any
further input. The material in such a file is treated exactly as if it
were typed directly at the keyboard, and it can be followed on subse-
quent lines by any additional information that the user would like to
enter.

Consider the following (rather contrived) example: Suppose that the
file “file.3” contained the following data:

5, 6, 7, 3, -4, "the"

Then if the user typed,

> seta := {
>> !include file.3

!include file.3 completed

>> , x };

the effect would be exactly the same as if the user had entered,

> seta := {5, 6, 7, 3, -4, "the", x};

The line “!include file.3 completed” comes from ISETL and is
always printed after an “!include”.

4. Comments

If a dollar sign “$” appears on a line, then everything that appears until
the end of the line is ignored by ISETL.

5. After a program or statement has executed, the values of global variables
persist. The user can then evaluate expressions in terms of these variables.
(See section 5 for more detail on scope.)

6 2 CHARACTERS, KEYWORDS, AND IDENTIFIERS

2 Characters, Keywords, and Identifiers

2.1 Character Set

The following is a list of characters used by ISETL.

@ [] ; : = | { } () . # ? * / + - _ " < > % ~ ,

a — z A — Z 0 — 9

In addition, the following character-pairs are used.

:= .. ** /= <= >= ->

The characters “:” and “|” may be used interchangably.

2.2 Keywords

The following is a list of ISETL keywords.

and false iff not program true

div for impl notin read union

do forall in of readf value

else from inter om (OM) return where

elseif fromb less opt subset while

end frome local or take with

exists func mod print then write

if newat printf to writeln

2.3 Identifiers

1. An identifier is a sequence of alphanumeric characters along with the un-
derscore, caret, and prime — “ ^ ’”. It must begin with a letter. Upper
or lower case may be used, and ISETL preserves the distinction. (I.e.:
a good thing and A Good Thing are both legal and are different.)

2. An identifier serves as a variable and can take on a value of any ISETL

data type. The type of a variable is entirely determined by the value that
is assigned to it and changes when a value of a different type is assigned.

7

3 Simple Data Types

3.1 Integers

1. There is no limit to the size of integers.5

2. An integer constant is a sequence of one or more digits. It represents an
unsigned integer.

3. On input and output, long integers may be broken to accommodate limited
line length. A backslash (“\”) at the end of a sequence of digits indicates
that the integer is continued on the next line.

> 123456\

>> 789;

123456789;

3.2 Rationals

1. Rationals are only created when the directive !rational on has been
used.

2. Rationals are created by dividing integers.

3. Arithmetic remains rational as long as possible.

3.3 Floating Point Numbers

1. The possible range of floating point numbers is machine dependent. At a
minimum, the values will have 5 place accuracy, with a range of approxi-
mately 1038.

2. A floating point constant is a sequence of zero or more digits, followed by
a decimal point, followed by zero or more digits. Thus, 2.0, .5, and 2.

are all legal.

A floating point constant may be followed by an exponent. An exponent
consists of one of the characters “e”, “E”, “f”, “F” followed by a signed
or unsigned integer. The value of a floating point constant is determined
as in scientific notation. Hence, for example, 0.2, 2.0e-1, 20.0e-2 are
all equivalent. As with integers, it is unsigned.

5No practical limit. Actually limited to about 20,000 digits per integer.

8 3 SIMPLE DATA TYPES

3. Different systems use different printed representations when floating point
values are out of the machine’s range. For example, when the value is too
large, the Macintosh prints “+++++” and the Sun prints “Infinity”.

3.4 Booleans

1. A Boolean constant is one of the keywords true or false, with the obvious
meaning for its value.

3.5 Strings

1. A string constant is any sequence of characters preceded and followed by
a double quote, “"”. A string may not be split across lines. Large strings
may be constructed using the operation of concatenation. Strings may
also be surrounded by single quotes, “’”.

The backslash convention may be used to enter special characters. When
pretty-printing, these conventions are used for output. In the case of
formated output, the special characters are printed.

\b backspace
\f formfeed (new page)
\n newline (prints as CR-LF)
\q double quote
\r carriage return (CR)
\t tab
\octal character represented by octal

Refer to an ASCII chart for meaning.
\other other — may be any character

not listed above.

In particular, "\\" is a single backslash. You may type, "\"" for double
quote, but the pretty printer will print as "\q". ASCII values are limited
to ’\001’ to ’\377’.

> %+ [char(i): i in [1..127]];

"\001\002\003\004\005\006\007\b\t\n\013\f"

+"\r\016\017\020\021\022\023\024\025\026"

+"\027\030\031\032\033\034\035\036\037 !"

+"\q#$%&’()*+,-./0123456789:;<=>?@ABCDEF"

3.6 Atoms 9

+"GHIJKLMNOPQRSTUVWXYZ[\\]^_‘abcdefghijk"

+"lmnopqrstuvwxyz{|}~\177";

3.6 Atoms

1. Atoms are “abstract points”. They have no identifying properties other
than their individual existence.

2. The keyword newat has as its value an atom never before seen in this
session of ISETL.

3.7 Files

1. A file is an ISETL value that corresponds to an external file in the operating
system environment.

2. They are created as a result of applying one of the pre-defined functions
openr, opena, openw. (See section 7.8.)

3.8 Undefined

1. The data type undefined has a single value — OM. It may also be entered
as om.

2. Any identifier that has not been assigned a value has the value OM.

4 Compound Data Types

4.1 Sets

1. Only finite sets may be represented in ISETL. The elements may be of
any type, mixed heterogeneously. Elements occur at most once per set.

2. OM may not be an element of a set. Any set that would contain OM is
considered to be undefined.

3. The order of elements is not significant in a set and printing the value of
a set twice in succession could display the elements in different orders.

10 4 COMPOUND DATA TYPES

4. Zero or more expressions, separated by commas and enclosed in braces
(“{” and “}”) evaluates to the set whose elements are the values of the
enclosed expressions.

Note that as a special case, the empty set is denoted by { }.

5. There are syntactic forms, explained in the grammar, for a finite set that
is an arithmetic progression of integers, and also for a finite set obtained
from a set former in standard mathematical notation.

For example, the value of the following expression

{ x+y : x,y in {-1,-3..-100} | x /= y };

is the set of all sums of two different odd negative integers larger than
−100.

4.2 Tuples

1. A tuple is an infinite sequence of components, of which only a finite number
are defined. The components may be of any type, mixed heterogeneously.
The values of components may be repeated.

2. OM is a legal value for a component.

3. The order of the components of a tuple is significant. By treating the
tuple as a function over the positive integers, you can extract individual
components and contiguous subsequences (slices) of the tuple.

4. Zero or more expressions, separated by commas and enclosed in square
brackets (“[” and “]”) evaluates to the tuple whose defined components
are the values of the enclosed expressions.

Note that as a special case, the empty tuple is denoted by []. This tuple
is undefined everywhere.

5. The syntactic forms for tuples of finite arithmetic progressions and tuple
formers are similar to those provided for sets. The only difference is the
use of square, rather than curly, brackets.

6. The length of a tuple is the largest index (counting from 1) for which
a component is defined (that is, is not equal to OM). It can change at
run-time.

4.3 Maps 11

7. Tuples usually are indexed starting at 1, but they can have different start-
ing indices. See page 31 and page 37 for definitions.

8. Tuples created by a FORMER have the default origin. See origin for how
to redefine the default.

9. Tuples that result from operations on other tuples inherit their origin.
Generally, the result inherits the origin of the leftmost tuple argument.

4.3 Maps

Maps form a subclass of sets.

1. A map is a set that is either empty or whose elements are all ordered pairs.
An ordered pair is a tuple whose first two components and no others are
defined.

2. There are two special operators for evaluating a map at a point in its
domain. Suppose that F is a map.

(a) F(EXPR) will evaluate to the value of the second component of the
ordered pair whose first component is the value of EXPR, provided
there is exactly one such ordered pair in F; if there is no such pair, it
evaluates to OM; if there are many such pairs, an error is reported.

(b) F{EXPR} will evaluate to the set of all values of second components
of ordered pairs in F whose first component is the value of EXPR. If
there is no such pair, its value is the empty set.

3. A map in which no value appears more than once as the first component
of an ordered pair is called a single-valued map or smap; otherwise, the
map is called a multi-valued map or mmap.

5 Funcs

1. A func (proc) is an ISETL value that may be applied to zero or more
values passed to it as arguments. It then returns a value specified by the
definition of the func. (procs return an non-printing version of OM and
should only be used in the place of statements.) Because it is a value,
an ISETL func can be assigned to an identifier, passed as an argument,
etc. Evaluation of an ISETL func can have side-effects determined by the

12 5 FUNCS

statements in the definition of the func. Thus, it also serves the purpose
of what is often called a procedure.

2. The return statement is only meaningful inside a func. Its effect is to
terminate execution of the func and return a value to the caller. The form
“return expr;” returns the value of expr; “return;” returns OM.

ISETL inserts return; just before the end of every func.

3. A func is the computational representation of a function, as a map is the
ordered pair representation, and a tuple is the sequence representation.
Just as tuples and maps may be modified at a point by assignment, so can
funcs. However, if the value at a point is structured, you may not modify
that at a point as well.

> x := func(i);

>> return char(i);

>> end;

> x(97);

"a";

> x(97) := "q";

> x(97);

"q";

> x(97)(1) := "abc";

! Error: Only one level of selection allowed

x may be modified at a point. The assignment to x(97) is legal. However,
the following assignment is not supported at this time, because you are
trying to modify the structure of the value returned.

4. A number of functions have been pre-defined as funcs in ISETL. A list of
their definitions is given in section 7. These are not keywords and may be
changed by the user. They may not be modified at a point, however.

5. It is possible for the user to define her/his own func. This is done with
the following syntax:

func(list-of-parameters);

local list-of-local-ids;

value list-of-global-ids;

statements;

end

Alternately, one may write

13

: list-of-parameters -> result :

if the function simply consists of evaluating an expression.

(a) The declaration of local ids may be omitted if no local variables
are needed. The declaration of value ids represents global variables
whose current values are to be remembered and used at the time of
function invocation; these may be omitted if not needed. The list-
of-parameters may be empty, but the pair of parentheses must be
present.

(b) Parameters and local-ids are local to the func. See below for a dis-
cussion of scope.

(c) The syntax described above is for an expression of type func. As
with any expression, it may be evaluated, but the value has no name.
Thus, the definition will typically be part of an assignment statement
or passed as a parameter. As a very simple example, consider:

cube_plus := func(x,y);

return x**3 + y;

end;

After having executed this input, ISETL will evaluate an expression
such as cube plus(2,5) as 13.

(d) Parameters are passed by value. It is an error to pass too many or
too few arguments. It is possible to make some parameters optional .

f := func(a,b,c opt x,y,z); ... end;

f can be called with 3, 4, 5, or 6 arguments. If there are fewer than
6 arguments, the missing arguments are considered to be OM.

(e) Scope is lexical (static) with retention. Lexical means that references
to global variables are determined by where the func was created, not
by where it will be evaluated. Retention means that even if the scope
that created the func has been exited, its variables persist and can
be used by the func.

By default, references to global variables will use the value of the
variable at the time the function is invoked. The value declaration
causes the value of the global variable at the time the func is created
to be used.

14 5 FUNCS

(f) Here is a more complicated example of the use of func. As defined
below, compose takes two functions as arguments and creates their
functional composition. The functions can be any ISETL values that
may be applied to a single argument; e.g. func, tuple, smap.

compose := func(f,g);

return :x -> f(g(x)) :

end;

twice := :a -> 2*a: ;

times4 := compose(twice,twice);

Then the value of times4(3) would be 12. The value of times4

needs to refer to the values of f and g, and they remain accessible to
times4, even though compose has returned.

(g) Finally, here is an example of functions modified at a point and func-
tions that capture the current value of a global.

f := func(x);

return x + 4;

end func;

gs := [func(x); value N; return x+3*N; end

: N in [1..3]];

f(3) := 21;

After this is executed, f(1) is 5, f(2) is 6, but f(3) is 21. gs(2)(4)
is 10 (4+3*2).

15

6 The ISETL Grammar — Annotated

6.1 Terminology

1. In what follows, the symbol ID refers to identifiers, and INTEGER, FLOAT-
ING POINT, BOOLEAN, and STRING refer to constants of type integer, float-
ing point, Boolean, and string, which have been explained above. Any
other symbol in capital letters is explained in the grammar.

2. Definitions appear as:

STMT → LHS := EXPR ;

STMT → if EXPR then STMTS ELSE-IFS ELSE-PART end

indicating that STMT can be either an assignment statement or a condi-
tional statement. The definitions for ELSE-IFS and ELSE-PART are in the
section for statements, and EXPR in the section for expressions.

3. Rules are sometimes given informally in English. The rule is then quoted.

4. Spaces are not allowed within any of the character pairs listed in section 2,
nor within an ID, INTEGER constant, FLOATING POINT constant, or key-
word. Spaces are required between keywords, IDs, INTEGER constants, and
FLOATING POINT constants.

5. ISETL treats ends of line and tabs as spaces. Any input can be spread
across lines without changing the meaning, and ISETL will not consider it
to be complete until a semicolon (“;”) is entered. The only exceptions to
this are the ! directives, which are ended with a carriage return, and the
fact that a quoted string cannot be typed on more than one line.

The annotated grammar below is divided into sections relating to the major
parts of the language.

6.2 Input at the Prompt

INPUT → PROGRAM

INPUT → STMT

INPUT → EXPR ;

The EXPR is evaluated and the value is printed.

16 6 THE ISETL GRAMMAR — ANNOTATED

6.3 Program

Programs are usually read from a file, only because they tend to be long.

PROGRAM → program ID ; LOCALS VALUES STMTS end ;

Of course, it can appear on several lines. One may optionally close with
end program. LOCALS and VALUES are defined in section 6.10.

6.4 Statements

STMT → LHS := EXPR ;

First, the left hand side (LHS) is evaluated to determine the target(s)
for the assignment, then the right hand side is evaluated. Finally, the
assignment is made. If there are some targets for which there are no
values to be assigned, they receive the value OM. If there are values to be
assigned, but no corresponding targets, then the values are ignored.

Examples:

a := 4;

a is changed to contain the value 4.

[a,b] := [1,2];

a is assigned 1 and b is assigned 2.

[x,y] := [y,x];

Swap x and y.

f(3) := 7;

If f is a tuple, then the effect of this statement is to assign 7 as
the value of the third component of f. If f is a map, then its
effect is to replace all pairs beginning with 3 by the pair [3,7] in
the set of ordered pairs f. If f is a func, then f(3) will be 7, and
all other values of f will be as they were before the assignment.

STMT → EXPR ;

The expression is evaluated and the value ignored. This is usually used
to invoke procedures.

STMT → if EXPR then STMTS ELSE-IFS ELSE-PART end ;

The EXPRs after if and elseif are evaluated in order until one is found
to be true. The STMTS following the associated then are executed. If no
EXPR is found to be true, the STMTS in the ELSE-PART are executed. In

6.4 Statements 17

this last case, if the ELSE-PART is omitted, this statement has no effect.
One may optionally close with end if. See the end of this section for
the definitions of ELSE-IFS and ELSE-PART.

STMT → for ITERATOR do STMTS end ;

The STMTS are executed for each instance generated by the iterator. One
may optionally close with end for.

STMT → while EXPR do STMTS end ;

EXPR must evaluate to a Boolean value. EXPR is evaluated and the STMTS

are executed repetitively as long as this value is equal to true. One may
optionally close with end while.

STMT → read LHS-LIST ;

ISETL gives a question mark (“?”) prompt and waits until an expression
has been entered. This EXPR is evaluated and the result is assigned to
the first item in LHS-LIST. This is repeated for each item in LHS-LIST.
As usual, terminate the expressions with a semicolon. Note: If a read

statement appears in an !include file, then ISETL will look at the next
input in that file for the expression(s) to be read.

STMT → read LHS-LIST from EXPR ;

This is the same as read LHS-LIST; except that EXPR must have a value
of type file. The values to be read are then taken from the external file
specified by the value of EXPR. If there are more values in the file than
items in LHS-LIST, then the extra values are left to be read later. If there
are more items in LHS-LIST than values in the file, then the extra items
are assigned the value OM. In the latter case, the function eof will return
true when given the file as parameter. Before this statement is executed,
the external file in question must have been opened for reading by the
pre-defined function openr (see section 7.8).

STMT → readf PAIR-LIST ;

STMT → readf PAIR-LIST from EXPR ;

The relation between these two forms is the same as the relation between
the two forms of read, with the second one coming from a file. The
elements in the PAIR-LIST define the formating used. See PAIR-LIST at
the end of this section.

STMT → print EXPR-LIST ;

Each expression in EXPR-LIST is evaluated and printed on standard out-
put. The output values are formated to show their structure, with line
breaks at reasonable positions and meaningful indentation.

18 6 THE ISETL GRAMMAR — ANNOTATED

STMT → print EXPR-LIST to EXPR ;

As in read...from..., EXPR must be a value of type file. The values
are written to the external file specified by the value of EXPR. Before
executing this statement, the external file in question must have been
opened for writing by one of the pre-defined functions openw or opena

(see section 7.8).

STMT → printf PAIR-LIST ;

STMT → printf PAIR-LIST to EXPR ;

The relation between these two forms is the same as the relation between
the two forms of print, with the second one going to a file. The elements
in the PAIR-LIST define the formating used. See PAIR-LIST at the end
of this section. See write and writeln below.

STMT → return ;

return is only meaningful inside a func. Its effect is to terminate execu-
tion of the func and return OM to the caller. ISETL inserts return; just
before the end of every func. If return appears at the “top level”, e.g.
as input at the keyboard, a run time error will occur.

STMT → return EXPR ;

Same as return; except that EXPR is evaluated and its value is returned
as the value of the func.

STMT → take LHS from LHS ;

The second LHS must evaluate to a set. An arbitrary element of the set
is assigned to the first LHS and removed from the set.

STMT → take LHS frome LHS ;

The second LHS must evaluate to a tuple (or a string). The value of its
last defined component (or last character) is assigned to the first LHS and
replaced by OM in the tuple (deleted from the string).

STMT → take LHS fromb LHS ;

The second LHS must evaluate to a tuple (or a string). The value of its
first component (defined or not) (first character) is assigned to the first
LHS and all components of the tuple (characters of the string) are shifted
left one place. That is, the new value of the ith component is the old
value of the (i + 1)st component (i = 1, 2, . . .).

STMT → write PAIR-LIST ;

STMT → write PAIR-LIST to EXPR ;

STMT → writeln PAIR-LIST ;

6.4 Statements 19

> readf x;

1.34

> x;

1.34000e+00;

> readf y;

123,456

> y;

"123,456";

Figure 1: readf example

STMT → writeln PAIR-LIST to EXPR ;

write is equivalent to printf, provided for the convenience of the Pascal
user. writeln is equivalent to write, with ’\n’ as the last item of the
list. This is also provided for user convenience.

STMTS → “One or more instances of STMT. The final semicolon is optional.”

ELSE-IFS → “Zero or more instances of ELSE-IF.”

ELSE-IF → elseif EXPR then STMTS

ELSE-PART → else STMTS

“May be omitted.”

PAIR-LIST → “One or more instances of PAIR, separated by commas.”

PAIR → EXPR : EXPR

PAIR → EXPR

When a PAIR appears in a readf, the first EXPR must be a LHS. The
meaning of the PAIR and the default value when the second EXPR is
omitted depends on whether the PAIR occurs in readf or printf. The
second EXPR (or its default value) defines the format.

• Input: Input formats are integers.

The integer gives the maximum number of characters to be read. If
the first sequence of non-white space characters can be interpreted

20 6 THE ISETL GRAMMAR — ANNOTATED

> printf 1/3: 15.10, 1/3:15.1, 1/3:15.01, "\n";

0.3333333135 0.3333333135 0.3

printf 1/3: -17.10, 1/3:-17.1, 1/3:-17.01, "\n";

3.3333331347e-01 3.3333331347e-01 3.3e-01

Figure 2: printf example

> printf 3*[""]+[1..30] : 7*[3] with "\n";

1 2 3 4

5 6 7 8 9 10 11

12 13 14 15 16 17 18

19 20 21 22 23 24 25

26 27 28 29 30

> x := [[i,j,i+j] : i,j in [1..3]];

> printf x: 5*[[0,"+",0, "=", 0], "\t"]

>> with "\n", "\n";

1+1=2 1+2=3 1+3=4 2+1=3 2+2=4

2+3=5 3+1=4 3+2=5 3+3=6

Figure 3: printf with structure example

6.5 Iterators 21

as a number, that is the value read. Otherwise, the first non-white
sequence is returned as a string.

If the integer is negative (say −i), exactly i characters will be read
and returned as a string. Therefore c:-1 will read one character
into c.

If no integer is given, there is no maximum to the number of char-
acters that will be read.

See figure 1.

• Output: Output formats are: integers, floating point numbers,
strings, or tuples of output formats.

Integers (and the integer part of floating point numbers) represent
the minimal number of columns to be used. The fractional part
of a floating point number is used to specify precision, in terms
of hundredths. The precision controls the number of places used
in floating point numbers, and where breaks occur in very long
integers.

Negative values cause floating point numbers to be printed in sci-
entific notation.

Notice that there is a limit to the number of useful digits. Also
notice that 15.1 is the same as 15.10; hence, both would use 15
columns and 10 decimal places. See figure 2.

Strings should not be used as formats outside of tuples.

Compound objects (tuples and sets) iterate over the format. If the
format is a number, it is used as the format for each element. If
the format is a tuple, the elements of the tuple are cycled among,
with strings printed literally and other items used as formats. See
figure 3.

Default values are:

Type Columns Precision
Float 20 5
Integer 10 50 (for breaking large ints)
String 0
Anything else 10

6.5 Iterators

These constructs are used to iterate through a collection of values, assigning
these values one at a time to a variable. Iterators are used in the for statement,

22 6 THE ISETL GRAMMAR — ANNOTATED

quantifiers, and set formers.
A SIMPLE-ITERATOR generates a number of instances for which an assign-

ment is made. These assignments are local to the iterator, and when it is exited,
all previous values of IDs that were used as local variables are restored. That
is, these IDs are “bound variables” whose scope is the construction containing
the iterator. (e.g., for statements, quantifiers, formers, etc.)

ITERATOR → ITER-LIST

ITERATOR → ITER-LIST | EXPR

EXPR must evaluate to a Boolean. Generates only those instances gener-
ated by ITER-LIST for which the value of EXPR is true.

ITER-LIST → “One or more SIMPLE-ITERATORs separated by commas.”
Generates all possible instances for every combination of the
SIMPLE-ITERATORs. The first SIMPLE-ITERATOR advances most slowly.
Subsequent iterators may depend on previously bound values.

SIMPLE-ITERATOR → BOUND-LIST in EXPR

EXPR must evaluate to a set, tuple, or string. The instances generated are
all possibilities in which each BOUND in BOUND-LIST is assigned a value
that occurs in EXPR.

SIMPLE-ITERATOR → BOUND = ID (BOUND-LIST)

Here ID must have the value of an smap, tuple, or string, and BOUND-LIST

must have the correct number of occurrences of BOUND corresponding to
the parameters of ID. The resulting instances are those for which all
occurrences of BOUND in BOUND-LIST have all possible legal values and
BOUND is assigned the corresponding value.

SIMPLE-ITERATOR → BOUND = ID { BOUND-LIST }
Same as the previous one for the case in which ID is an mmap.

BOUND-LIST → “one or more BOUND, separated by commas”

BOUND → ~

Corresponding value is thrown away.

BOUND → ID

Corresponding value is assigned to ID.

BOUND → [BOUND-LIST]

Corresponding value must be a tuple, and elements of the tuple are as-
signed to corresponding elements in the BOUND-LIST.

6.6 Formers 23

6.6 Formers

Generates the elements of a set or tuple.

FORMER → “Empty”
Generates the empty set or tuple.

FORMER → EXPR-LIST

Values are explicitly listed.

FORMER → EXPR .. EXPR

Both occurrences of EXPR must evaluate to integers or characters (strings
of length 1). Generates all integers (characters) beginning with the first
EXPR and increasing by 1 for as long as the second EXPR is not exceeded.
If the first EXPR is larger than the second, no values are generated. The
characters are generated in ASCII order.

FORMER → EXPR , EXPR .. EXPR

All three occurrences of EXPR must evaluate to numbers. Generates all
numbers beginning with the first EXPR and incrementing by the value of
the second EXPR minus the first EXPR. If this difference is positive, it
generates those values that are not greater than the third EXPR. If the
difference is negative, it generates those values that are not less than the
third EXPR. If the difference is zero, no values are generated.

FORMER → EXPR : ITERATOR

The value of EXPR for each instance generated by the ITERATOR.

6.7 Selectors

Selectors fall into three categories: function application, mmap images, and
slices. A tuple, string, map, or func (pre- or user-defined) may be followed by
a SELECTOR, which has the effect of specifying a value or group of values in the
range of the tuple, string, map, or func. Not all of the following SELECTORs can
be used in all four cases.

SELECTOR → (EXPR-LIST)

Must be used with an smap, tuple, string, or func.

If used with a tuple or string, then EXPR-LIST can only have one element,
which must evaluate to a positive integer.

If used with a func, arguments are passed to corresponding parameters.
There must be as many arguments as required parameters and no more
than the optional parameters permit.

24 6 THE ISETL GRAMMAR — ANNOTATED

If used with an smap and EXPR-LIST has more than one element, it is
equivalent to what it would be if the list were enclosed in square brackets,
[]. Thus a function of several variables is interpreted as a function of
one variable — the tuple whose components are the individual variables.

SELECTOR → { EXPR-LIST }
Must be used with an mmap, tuple, or string. Tuples and strings will
either select a singleton set or the empty set. The case in which the list
has more than one element is handled as above.

SELECTOR → (EXPR .. EXPR)

Must be used with a tuple or string, and both instances of EXPR must
evaluate to a positive integer.

The value is the slice of the original tuple or string in the range specified
by the two occurrences of EXPR. There are some special rules in this case.
To describe them, suppose that the first EXPR has the value a and the
second has the value b so that the selector is (a..b).

a ≤ b Value is the tuple or string with components
defined only at the integers from 1 to b− a + 1,
inclusive. The value of the ith component is
the value of the (a + i− 1)st component of the
value of EXPR.

a = b + 1 Value is the empty tuple.
a > b + 1 Run-time error.

SELECTOR → (.. EXPR)

Means the same as (low .. EXPR), where low is 1 for strings and lo(T)

for tuple T.

SELECTOR → (EXPR ..)

Means the same as (EXPR .. high), where high is #s for string s and
hi(T) for tuple T.

SELECTOR → ()

Used with a func that has no parameters. It also works with an smap
with [] in its domain.

6.8 Left Hand Sides

The target for anything that has the effect of an assignment.

LHS → ID

6.9 Expressions 25

LHS → @ EXPR

LHS → @ (EXPR , EXPR , ... , EXPR)

These are variables and may be used wherever a variable is needed. NB:
The ids in declarations and binding positions (iterators) are not variables
and cannot be @-expressions.

The expressions may be strings or integers. The integers are converted
to strings and the strings are then concatenated to produce the variable
name.

LHS → LHS SELECTOR

LHS must evaluate to a tuple, string, or map. LHS is modified by replacing
the components designated by selector.

LHS → [LHS-LIST]

LHS-LIST → “One or more instances of LHS, separated by commas”
Thus the input,

[A, B, C] := [1, 2, 3];

has the effect of replacing A by 1, B by 2, and C by 3.

Any LHS in the list can be replaced by ˜.

The effect is to omit any assignment to a LHS that has been so replaced.
Thus the input,

[A, ~, C] := [1, 2, 3];

replaces A by 1, C by 3.

6.9 Expressions

The first few in the following list are values of simple data types and they have
been discussed before.

EXPR → ID

EXPR → INTEGER

EXPR → FLOATING-POINT

EXPR → STRING

EXPR → true

EXPR → false

26 6 THE ISETL GRAMMAR — ANNOTATED

EXPR → OM

EXPR → newat

The value is a new atom, different from any other atom that has appeared
before.

EXPR → FUNC-CONST

A user-defined func. See section 6.10.

EXPR → if EXPR then EXPR ELSE-IFS ELSE-PART end ;

See definition of if under STMT, page16. If ELSE-PART is omitted, it is
replaced by “else OM”. Each part contains an expression rather than
statements.

EXPR → (EXPR)

Any expression can be enclosed in parentheses. The value is the value of
EXPR.

EXPR → [FORMER]

Evaluates to the tuple of those values generated by FORMER in the order
that former generates them.

EXPR → { FORMER }
Evaluates to the set of those values generated by FORMER.

EXPR → # EXPR

EXPR must be a set, tuple, or string. The value is the cardinality of the
set, the length of the tuple, or the length of the string.

EXPR → not EXPR

Logical negation. EXPR must evaluate to Boolean.

EXPR → + EXPR

Identity function. EXPR must evaluate to a number.

EXPR → - EXPR

Negative of EXPR. EXPR must evaluate to a number.

EXPR → EXPR SELECTOR

EXPR must evaluate to an ISETL value that is, in the general sense, a
function. That is, it must be a map, tuple, string, or func. See section 6.7.

EXPR → EXPR . ID EXPR

This is equivalent to ID(EXPR,EXPR). It lets you use a binary function as
an infix operator. The space after the “.” is optional.

6.9 Expressions 27

EXPR → EXPR . (EXPR) EXPR

This is equivalent to (EXPR)(EXPR,EXPR). It lets you use a binary func-
tion as an infix operator. The space after the “.” is optional.

In general, arithmetic operators and comparisons may mix integers and float-
ing point. The result of an arithmetic operation is an integer if both operands
are integers and floating point otherwise. For simplicity, we will use the term
number to mean a value that is either integer or floating point.
Possible operators are:

+ - * / div mod **

with less

= /= < > <= >=

union inter in notin subset

and or impl iff

See section 8 for precedence rules.
Any cases not covered in the explanation for an operator will result in an error.
For an explanation of errors, see section 11.

EXPR → EXPR + EXPR

If both instances of EXPR evaluate to numbers, this is addition. If both
instances of EXPR evaluate to sets, then this is union. If both instances
of EXPR evaluate to tuples or strings, then this is concatenation.

EXPR → EXPR union EXPR

An alternate form of +. It is intended that it be used with sets, but it is
in all ways equivalent to +.

EXPR → EXPR - EXPR

If both instances of EXPR evaluate to numbers, this is subtraction. If both
instances of EXPR evaluate to sets, then this is set difference.

EXPR → EXPR * EXPR

If both instances of EXPR evaluate to numbers, this is multiplication.
If both evaluate to sets, this is intersection. If one instance of EXPR

evaluates to integer and the other to a tuple or string, then the value is
the tuple or string, concatenated with itself the integer number of times,
if the integer is positive; and the empty tuple or string, if the integer is
less than or equal to zero.

EXPR → EXPR inter EXPR

An alternate form of *. It is intended that it be used with sets, but it is
in all ways equivalent to *.

28 6 THE ISETL GRAMMAR — ANNOTATED

EXPR → EXPR / EXPR

Both instances of EXPR must evaluate to numbers. The value is the result
of division and is of type floating point.

EXPR → EXPR div EXPR

Both instances of EXPR must evaluate to integer, and the second must
be non-zero. The value is integer division defined by the following two
relations,

(a div b) ∗ b + (a mod b) = a for b > 0
a div (−b) = −(a div b) for b < 0.

EXPR → EXPR mod EXPR

Both instances of EXPR must evaluate to integer and the second must
be non-zero. The result is the remainder, and the following condition is
always satisfied,

0 ≤ a mod b < |b|.

EXPR → EXPR ** EXPR

The values of the two expressions must be numbers. The operation is
exponentiation.

EXPR → EXPR with EXPR

The value of the first EXPR must be a set or tuple. If it is a set, the value
is that set with the value of the second EXPR added as an element. If it is
a tuple, the value of the second EXPR is assigned to the value of the first
component after the last defined component of the tuple.

EXPR → EXPR less EXPR

The value of the first EXPR must be a set. The value is that set with the
value of the second EXPR removed, if it was present; the value of the first
EXPR, if the second was not present.

EXPR → EXPR = EXPR

The test for equality of any two ISETL values.

EXPR → EXPR /= EXPR

Negation of EXPR=EXPR.

EXPR → EXPR < EXPR

EXPR → EXPR > EXPR

EXPR → EXPR <= EXPR

6.9 Expressions 29

EXPR → EXPR >= EXPR

For all the above inequalities, both instances of EXPR must evaluate to
the same type, which must be number or string. For numbers, this is
the test for the standard arithmetic ordering; for strings, it is the test for
lexicographic ordering.

EXPR → EXPR in EXPR

The second EXPR must be a set, tuple, or string. For sets and tuples, this
is the test for membership of the first in the second. For strings, it is the
test for substring.

EXPR → EXPR notin EXPR

Negation of EXPR in EXPR.

EXPR → EXPR subset EXPR

Both instances of EXPR must be sets. This is the test for the value of the
first EXPR to be a subset of the value of the second EXPR.

EXPR → EXPR and EXPR

Logical conjunction. Both instances of EXPR should evaluate to a Bool-
ean. If the left operand is false, the right operand is not evaluated.
Actually returns the second argument, if the first is true. While the
user may depend on the left-to-right evaluation order, it is recommended
that they not depend on the behavior when the second argument is not
Boolean.

EXPR → EXPR or EXPR

Logical disjunction. Both instances of EXPR should evaluate to a Boolean.
If the left operand is true, the right operand is not evaluated. Actually
returns the second argument, if the first is false. While the user may
depend on the left-to-right evaluation order, it is recommended that they
not depend on the behavior when the second argument is not Boolean.

EXPR → EXPR impl EXPR

Logical implication. Both instances of EXPR must evaluate to a Boolean.

EXPR → EXPR iff EXPR

Logical equivalence. Both instances of EXPR should evaluate to a Boolean.
It actually checks for equality, like =, but it has a different precedence. It
is recommended that the user not depend on iff to work with arguments
other than Booleans.

30 6 THE ISETL GRAMMAR — ANNOTATED

EXPR → % BINOP EXPR

EXPR must evaluate to a set, tuple, or string. Say that the elements in
EXPR are x1, x2,. . . ,xN (N=#EXPR). If N=0, then the value is OM. If N=1,
then the value is the single element. Otherwise, %⊕ EXPR equals

x1 ⊕ x2 ⊕ · · · ⊕ xN

associating to the left.

If EXPR is a set, then the selection of elements is made in arbitrary order,
otherwise it is made in the order of the components of EXPR.

EXPR → EXPR % BINOP EXPR

The second instance of EXPR must evaluate to a set, tuple, or string.
If the first EXPR is a, BINOP is ⊕, and the values in the second are x1,
x2,. . . ,xN as above, then the value is:

a ⊕ x1 ⊕ x2 ⊕ · · · ⊕ xN

associating to the left.

EXPR → EXPR ? EXPR

The value of the first EXPR, if it is not OM; otherwise the value of the
second EXPR.

EXPR → choose ITER-LIST | EXPR

Returns the first set of iterator values that satisfies EXPR. The value
returned depends on the type of iterators.

Iterator Returns
======== =======
x in S x

x in S, y in T [x,y]

x,y in S [x,y]

y=f(x) [x,y]

y=f(x), a=g(b) [[x,y], [a,b]]

y=f{x} [x,y], where y is a set

EXPR → exists ITER-LIST | EXPR

EXPR must evaluate to a Boolean. If ITER-LIST generates at least one
instance in which EXPR evaluates to true, then the value is true; otherwise
it is false.

EXPR → forall ITER-LIST | EXPR

EXPR must evaluate to a Boolean. If every instance generated by ITER-LIST

is such that EXPR evaluates to true, then the value is true; otherwise it is
false.

6.10 Function Constants 31

EXPR → EXPR where DEFNS end

The value is the value of the EXPR preceding where, evaluated in the
current environment with the IDs in the DEFNS added to the environment
and initialized to the corresponding EXPRs. The scope of the IDs is limited
to the where expression. The DEFNS can modify IDs defined in earlier
DEFNS in the same where expression.

EXPR → EXPR @ EXPR

The first expression must be an integer i and the second a tuple T. The
result is a tuple consisting of the same sequence as T, but with the first
index being i.

BINOP → “Any binary operator or an ID or expression in parentheses whose
value is a function of two parameters. The ID and parenthesized expression may
be preceded by a period.”

The acceptable binary operators are: +, -, *, **, union, inter, /, div,
mod, with, less, and, or, impl.

DEFNS → “Zero or more instances of DEFN. The final semicolon is optional.”

DEFN → BOUND := EXPR ;

DEFN → ID SELECTOR := EXPR ;

EXPR-LIST → “One or more instances of EXPR separated by commas.”

6.10 Function Constants

FUNC-CONST → FUNC-HEAD LOCALS VALUES STMTS end

This is the syntax for user-defined funcs. One may optionally close with
end func. VALUES and LOCALS may be repeated or omitted and appear
in any order.

See return on page 18.

FUNC-CONST → : ID-LIST OPT-PART -> EXPR :

An abbreviation for func(ID-LIST OPT-PART); return EXPR; end

FUNC-HEAD → func (ID-LIST OPT-PART) ;

In this case, there are parameters. The parameters in the OPT-PART

receive the value om if there are no corresponding arguments.

FUNC-HEAD → func (OPT-PART) ;

In this case, there are no required parameters.

32 6 THE ISETL GRAMMAR — ANNOTATED

FUNC-HEAD → proc (ID-LIST OPT-PART) ;

FUNC-HEAD → func (OPT-PART) ;

Just like func, but no value may be returned in the return statement.
Values of type proc should only be used as statements.

OPT-PART → opt ID-LIST

“May be omitted.”

LOCALS → local ID-LIST ;

VALUES → value ID-LIST ;

ID-LIST → “One or more instances of ID separated by commas.”

33

7 Pre-defined Functions

All pre-defined functions are initially locked, preventing accidental modification.
You can unlock the id with the !unlock directive. If no return value is specified,
the function is a proc and should be used as a statement.

7.1 Functions on Integers

In each of the following, EXPR must evaluate to integer.

1. even(EXPR) — Is EXPR even?

2. odd(EXPR) — Is EXPR odd?

3. float(EXPR) — The value of EXPR converted to floating point.

4. char(EXPR) — The one-character string whose (machine dependent) index
is the value of EXPR.

7.2 Functions on Rationals

In each of the following, EXPR must evaluate to a rational.

1. den(EXPR) — returns the denominator of EXPR.

2. num(EXPR) — returns the numerator of EXPR.

7.3 Functions on Floating Point Numbers

In each of the following, EXPR must evaluate to floating point.

1. ceil(EXPR) — The smallest integer not smaller than the value of EXPR.

2. floor(EXPR) — The largest integer not larger than the value of EXPR.

3. fix(EXPR) — The same as floor(EXPR) if EXPR>=0, and the same as
ceil(EXPR) if the value of EXPR<=0. In other words, the fractional part
is discarded.

34 7 PRE-DEFINED FUNCTIONS

7.4 Functions on Sets

In each of following, EXPR must evaluate to a set.

1. pow(EXPR) — The set of all subsets of the value of EXPR.

2. npow(EXPR,EXPR) — One EXPR must be a set and the other a non-negative
integer. The set of all subsets of the set whose cardinality is equal to the
integer.

7.5 Functions on Maps

In each of the following, EXPR must evaluate to a map.

1. domain(EXPR) — The set of all values that appear as the first component
of an element of the value of EXPR.

2. image(EXPR) — The set of all values that appear as the second component
of an element of the value of EXPR.

7.6 Standard Mathematical Functions

1. Each of the following takes a single floating point argument. The result
is a floating point approximation to the value of the corresponding math-
ematical function. exp, ln, log, sqrt, sin, cos, tan, sec, csc, cot,
asec, acsc, atan, asin, acos, atan, sinh, cosh, tanh, asinh, acosh,
atanh.

2. In each of the following, EXPR must evaluate to integer or floating point.
The result is the value of the mathematical function in the same type as
the value of EXPR.

(a) sgn(EXPR) — If EXPR is positive, then 1; if EXPR is zero, then 0;
otherwise −1.

(b) random(EXPR) — The value is a number selected at random in the
interval from 0 to the value of EXPR, inclusive. There has been no
statistical study made of the generators. Don’t depend on them for
highly sensitive work.

7.7 Type Testers 35

(c) randomize(EXPR) — This resets the random number generator.
EXPR should be an integer. This may be used to select a new se-
quence of random numbers.

3. In each of the following, both occurrences of EXPR must evaluate to a
number or string. The result is always one of the two EXPR, according to
the usual mathematical definition.

(a) max(EXPR,EXPR)

(b) min(EXPR,EXPR)

7.7 Type Testers

In each of the following, the value of EXPR can be any ISETL data type. The
function is the test for the value of EXPR being the type indicated.

1. is atom(EXPR)

2. is boolean(EXPR)

3. is defined(EXPR) — Negation of is om.

4. is file(EXPR)

5. is floating(EXPR)

6. is func(EXPR)

7. is integer(EXPR)

8. is map(EXPR)

9. is number(EXPR) — true for integer and floating point.

10. is om(EXPR)

11. is rational(EXPR)

12. is set(EXPR)

13. is string(EXPR)

14. is tuple(EXPR)

36 7 PRE-DEFINED FUNCTIONS

7.8 Input/Output Functions

1. In each of the following functions, the value of EXPR must be a string
that is a file name consistent with the operating system’s naming conven-
tions. The value of the function has ISETL type file and may be used in
read... from..., readf... from..., print... to..., printf... to...,
and the function eof to refer to that file.

(a) openr(EXPR) — If the file named by the value of EXPR exists, then
it is opened for reading, and the value of the function is of type file.
If the file named by the value of EXPR does not exist, then the value
of the function is OM.

A special case is the file named "CONSOLE". Opening "CONSOLE"

for reading provides a way to read from the console, even if you
are currently reading from an include file. If you have directed stdin

from a file, it may read from that file or it may read from the console;
this is machine dependent.

(b) openw(EXPR) — If the file named by the value of EXPR does not
exist, then it is created by the operating system externally to ISETL.
This file is opened for writing from the beginning, so that anything
previously in the file is destroyed. The value of the function is of
type file.

(c) opena(EXPR) — The same as openw(EXPR), except that if the file
exists its contents are not destroyed. Anything that is written is
added to the end of the file.

2. In the following function, the value of EXPR must be of type file. The file
specified by this value is closed. Output files must be closed to guarantee
that all output has been stored by the operating system. All files are closed
automatically when ISETL is exited. There is usually a system-imposed
limit on the number of files that may be open at one time, however, so it
is a good idea to close files when finished using them.

(a) close(EXPR) — Closes the file.

3. In the following function the value of EXPR must be of type file.

(a) eof(EXPR) — Test for having read past the end of an external file.

7.9 Miscellaneous 37

7.9 Miscellaneous

1. abs(EXPR) — If the value of EXPR is integer or floating point, then the
value of the function is the standard absolute value.

2. ord(EXPR) — The inverse of char. EXPR must be a string of length 1.

3. arb(EXPR) — An element of EXPR selected arbitrarily. If the value of EXPR
is empty, then the value of the function is OM. EXPR may be a set, tuple,
or string.

4. random(EXPR) — An element of EXPR selected with uniform probability.
If the value of EXPR is empty, then the value of the function is OM. EXPR

may be a set, tuple, or string.

5. max line(EXPR) — EXPR must be an integer. The maximum number of
columns used when pretty-printing is set to the value of EXPR.

6. system(EXPR) — EXPR must be a string. The string is passed to the
operating system as a command line. Available under Unix, VMS, and
MSDOS.

7. precision(EXPR) — EXPR must be an integer. This sets the number of
decimal places shown by print. If EXPR is negative, it indicates that print
should use scientific notation.

8. video(EXPR) — MSDOS only. EXPR must be a boolean. This controls how
the screen is managed under MSDOS. Generally, true is faster output, and
false is less likely to run into trouble with compatibility questions. Also
controled by -v on the command line. See section 9.1.

7.10 Tuple

1. lo(EXPR) — EXPR must be a tuple. Returns the low bound of the tuple.

2. hi(EXPR) — EXPR must be a tuple. Returns the high bound of the tuple.

3. origin(EXPR) — EXPR must be an integer. Sets the default lower bound
for tuples.

38 7 PRE-DEFINED FUNCTIONS

7.11 Graphics

The following routines work on the PC and Mac versions only.

1. graphics(bool) — Call with true before any of the following commands.
Call with false to return to editor mode (or close window). On PC, ^ G will
switch between graphics and editor. You must have the appropriate *.BGI
file for your PC graphics adaptor in the same directory as isetl.exe.

2. scale(minX,maxX,minY,maxY) — Sets up graphing region. Will plot
points within the rectangle described by args, scaling your values to fit
on the screen. Call before any of the following commands.

3. move(x,y) — Move current point (CP) to (x,y). Nothing drawn.

4. draw(x,y) — Draw line from CP to (x,y). Change CP to (x,y).

5. textout(x,y,text) — Write text starting at (x,y) and writing left to
right. If (x,y) are omitted, writes at CP.

6. get coord() — Returns [x,y,c] when a key is pressed. (x,y) is the
point on the screen and c is the key pressed. c=’’ if mouse was clicked.

7. thickline(bool) — Should lines be thick? Returns old value.

8. title window(text) — Writes near top of graph, on PC. Writes in title
bar on Mac.

9. clear screen() — Clears screen and undefines objects.

10. new object() — Returns an integer i identifying the new object. Any-
thing plotted up to the next new object is part of this object and may be
deleted with del object(i) and added back again with add object(i).

11. add object(i) — See new object.

12. del object(i) — See new object.

13. resolution() — Returns [minX,minY], distance between pixels.

14. XtoYratio() — Returns ratio of x pixel size to y pixel size.

7.11 Graphics 39

15. erasable is used for small objects that come and go quickly. Drawn in
xor mode, so complex figures or text may look funny.

erasable(true) — Plotting is made part of the erasable object.

erasable(false) — Plotting is no longer part of erasable object.

erasable() — Erase erasable object.

16. char mult(m) — Magnify text by m. Returns old value.

17. point(x,y,size) — Draw square 2*size+1 pixels on a side, centered at
(x,y). CP becomes (x,y). If x,y are missing, draws at current CP. If
size is negative, fills square.

18. rectangle(xlow,xhigh,ylow,yhigh,hollow) — Draw rectangle. If
hollow is true or is omitted, rectangle is hollow. If hollow is false, rect-
angle is filled in.

19. save graph(filename) — Write current graph to filename. On PC,
empty string pops up a window to let you enter the name of the file. On
Mac, use SAVE from menu.

20. load graph(filename) — Read filename and add to current object.
Uses the current scale, which may be incorrect for this graph. You can
call scale after a plot. On PC, empty string pops up a window to let you
enter the name of the file. On Mac, this is an error.

40 8 PRECEDENCE RULES

8 Precedence Rules

• Operators are listed from highest priority to lowest priority.

• Operators are left associative unless otherwise indicated.

• “nonassociative” means that you cannot use two operators on that line
without parentheses.

CALL
anything that is a call to a function
— func, tuple, string, map, etc.

- + @ unary operators
@ nonassociative
? nonassociative
% nonassociative
** right associative
* / mod div inter

+ - with less union

.ID infix use of binary function
in notin subset

< <= = /= > >= nonassociative
not unary
and

or

impl

iff

exists forall

where

41

9 Directives

9.1 Brief Descriptions

There are a number of directives that can be given to ISETL to modify its
behavior.

On the command line, the following switches control aspects of ISETL.

-d indicates direct input. This suppresses the interactive line editor or the
screen editor in MSDOS.

-e implies -d and provides the !edit directive described below.

-s indicates silent mode. In silent mode, the header and all prompts are sup-
pressed.

-v (MSDOS only) controls the initial value of video. -v sets it to safe (on all
PC compatibles), but slow (on most video boards).

The rest of the directives are ! commands. [a | b] indicates a choice
between a and b.

9.1.1 Commands

• !quit — Exit ISETL.

• !include <filename> — Replace <filename> with a file/pathname ac-
cording to the rules of your operating system. ISETL will insert your file.

• !clear — Throw away all input back to the last single prompt.

• !edit — Edit all the input back to the last single prompt. Unavailable
on systems with the interactive line editor.

• !memory [nnn] — Change the legal upper bound to nnn. May not be
lower than the currently allocated memory. Without nnn, shows how
much memory has been allocated.

• !allocate nnn — Increase the currently allocated memory to nnn. Will
not exceed the upper bound set by !memory, nor the actual limits of the
machine.

• !record [file-name] — Begins recording input to “file-name”. This
lets you experiment and keep a record of the work performed.

42 9 DIRECTIVES

• !system command-line — Sends the command-line to the system for
execution. Not available on the Macintosh.

• !lock list-of-ids — Prevent future assignments to the ids in the list.
Predefined functions are locked by default.

• !unlock list-of-ids — Permit future assignments to the ids in the list.

• !ids — Lists all non-locked identifiers that have been defined.

• !locked — Lists all locked identifiers that have been defined.

• !oms — Lists all identifiers that have been used, but not defined.

• !alias id command-line — Makes !id equivalent to !command-line.

• !version — Prints version information for ISETL.

• !credits — Print some copyright information.

9.1.2 Toggles

Toggles take arguments on or off. Without arguments, they echo the toggle’s
current state.

• !verbose — Controls the amount of information provided by runtime
error messages. See section 11. Default is off.

• !echo — When on, all input is echoed. This is particularly useful when
trying to find a syntax error in an !include file or input for a read. It is
also useful for pedagogical purposes, as it can be used to interleave input
and output.

• !code — When on, you get a pseudo-assembly listing for the program.
Default is off.

• !trace — When on, you get an execution trace, using the same notation
as !code. When desperate, this can be used to trace the execution of your
program. Really intended for debugging ISETL. Default is off.

• !source — Saves source for debugging. See !pp, !stack, and !slow.

• !stack — Show calls when errors occur.

9.2 !clear and !edit 43

• !setrandom — When off, sets are printed in a canonical order. Default is
on.

• !rational — When on, int / int produces a rational result. Default is
off.

9.1.3 Debugging

1. !watch list-of-ids — Traces assignment and evaluation of ids.

2. !unwatch list-of-ids — Turns off tracing for ids.

3. !pp id [file-name] — Prints the source for function id. When present,
output goes to file-name; otherwise, output goes to last file. !pp returns
the file to stdout (usually the screen).

4. !slow — Execution steps by source lines. See section 9.1.3.

5. !fast — Return to normal execution speed.

When the system is stopped for debugging, in the !slow mode, you get the
?> prompt. Responses at this point are:

f — go to fast mode.

l — leap mode (calls are executed as one step).

c — crawl mode (trace execution within calls).

e — evaluate. Enter an expression at the ! prompt.

RET — Execute the next step.

9.2 !clear and !edit

1. The user can edit6 whatever has been entered since the beginning of the
current syntactic object, in response to a syntax error message, or if the
user wants to change something previously typed. If you prefer to start
again, “!clear” will clear the typing buffer and allow you to start the
input afresh.

6Turn this on with the -e switch.

44 9 DIRECTIVES

2. When the editor is invoked (by typing “!edit”), the user is prompted for
the string that is to be modified. The user types the desired string, and
the editor finds its first occurrence in the lines being edited.

3. The user is then prompted for the replacement of this string. When it is
entered, the change is made.

4. The process repeats until the user enters a blank search line, at which
time control is returned to ISETL.

9.3 !allocate and !memory

The !memory directive adjusts the upper limit on permitted memory allocation.
This is mainly to protect mainframe systems, so that one user doesn’t use all
the available space.

The !allocate directive increases the amount of memory currently available
for ISETL objects. This space is automatically increased up to the limit set by
!memory, but by allocating it early, some large programs may run more quickly.

If you want to grab as much memory as possible, particularly on single user
systems, this is what we would recommend. First, determine the amount of
memory available, by attempting to allocate everything. Then subtract from
that 10K for ISETL’s scratch area plus any other space you may wish to save
for use by the !system directive. You can then set the memory limit and pre-
allocate in your isetl.ini (or .isetlrc) files.

See figure 4. Having tried to allocate 800K, there was only room for 500K.
Deciding to leave 200K for other work, a limit of 300K was placed on ISETL, and
150K was pre-allocated. The lines below “. . . ” are in another session, because
one cannot decrease the GC (garbage collected) memory.

9.4 !watch and !unwatch

The two commands !watch and !unwatch control which identifiers are traced
during execution. Tracing consists of reporting assignments and function eval-
uation.

An identifier is watched by the directive:

!watch id id1 id2 id3

where “id” is the name of the identifier to be watched. More than one identifier
may be listed, separated by blanks.

9.5 !record 45

While being watched, any assignment to a variable named with that identifier
is echoed on the standard output. This includes assignments to slices and maps.
If the identifier is used as a function (smap, mmap, tuple, func), a line is printed
indicating that the expression is being evaluated and a second line is printed
reporting the value returned.

It is significant that identifiers are watched, rather than variables. If i is
being watched, then all variables named i are watched.

You can stop watching an identifier with the directive:

!unwatch id

See figure 5 for an example of the output.

9.5 !record

The !record directive channels all input from standard input into a file. This
allows you to capture your work and later edit it for including.

A directive of the form: !record test changes to recording on file test. If
you had been recording elsewhere, the other file is closed. !record with no file
name turns off recording altogether. The recording is appended to an existing
file.

By combining this with the !echo directive, one can create terminal sessions.

9.6 !system

This allows you to execute one command in the operating system without leaving
ISETL. This feature is not available on the Macintosh version. See section 9.3
for hints on making sure that there is enough room to invoke the command from
the system.

You could list your directory on MS-DOS using the command:

!system dir

Assuming that you had enough memory, you could escape to an editor, edit
a file, exit the editor, and then include the file.

If you type !system by itself, you will enter a new copy of your operating
system. You can execute anything that fits in the remaining memory.

46 10 EDITORS

10 Editors

The original view of ISETL was a program that read lines of text, recognizing
programs and expressions, and then evaluating them. The introduction of ed-
itors adds a second level to this. In each of the editors, there is some way to
send text to ISETL. This phrase refers to taking the text and treating it as if
those lines had been typed directly in.

10.1 MSDOS Screen Editor

In the MSDOS editor, you send lines to ISETL by typing RETURN. If you are
on the last line of the window, that line is sent. You may send other lines by
selecting a region. The first line of a region is called the TAG. The last line is
the line containing the cursor. Regions are written in reverse video.

If you want to send lines from the edit window, edit them first, then TAG the
first line you wish sent by typing ^ T, move to the last line that you wish sent,
and type RETURN. Prompts at the beginning of a line are ignored.7

To make it easy to check a region, you can find TAG by typing ^ X (control-
X). This will exchange the cursor and TAG. Type ^ X again to return.

To make it easy to find the last region sent, type ^ B. This finds the
BOOK MARK, which is left behind at the old TAG after a region is sent to ISETL.

There is a menu (ESC). You can execute commands from the menu by typing
ESC followed by the capital letter in the command or by moving to the command
with the arrows and then typing return.

A hint. You can read a file that contains prompts and then execute it. Note
that you cannot !include a file with prompts, because they are not syntactically
correct, but prompts are stripped from the beginning of the line when the editor
sends lines to ISETL.

10.2 Mac Screen Editor

The Macintosh version has an editor that needs no introduction. All operations
are reachable from the menus, and follow the standard Macintosh usages.

The only unusual feature is that highlighted regions can be run — sent to
the execution window and sent to ISETL as input. You can run by:

• Typing RETURN,

7N.B.: If you try to type a line starting with ‘>’, ‘?’, or ‘!’ you must leave a blank in front
of them to prevent their removal. Blanks are automatically inserted after the prompts.

10.3 Interactive Line Editor (ILE) 47

Table 1: Important keys for MSDOS Editor(^ X = control-X)

ESC Get menu
Arrow Keys Motion
INS Break line
DEL Delete under
Backspace Delete left
Home Left of line
End Right of line
PgUp (PgDn) Up (down) 8 lines
^ PgUp (^ PgDn) Top (bottom) of buffer
Return (LF) If below tag, execute; o.w. insert return
^ A Mark previous region
^ B Go back to bookmark (previous tag)
^ E Erase current line
^ G Show graphics screen
^ L Refresh screen
^ T Tag top of region
^ X Exchange tag and cursor
^ Z Escape to DOS. Use “exit” to return

Help is available through menu or F1.

• Selecting Run from the menu, or

• Typing clover-R.

In addition, typing RETURN on the last line of the Execution window causes that
line to be sent to ISETL.

10.3 Interactive Line Editor (ILE)

10.3.1 Brief description

The left and right arrows will move you within a line, permitting insertions
of characters. delete removes the character at the cursor, backspace deletes
the character left of the cursor. The interesting feature is that the up arrow

moves you back thru the last hundred lines entered, with down arrow moving
you forward. You can’t go past the last entered line.

48 10 EDITORS

Table 2: Menu for MSDOS Editor

Copy region Copies region to the end of the buffer.
Print region Send region to printer.
Save region Appends region to a file. Omits

prompts.
Read file Placed at end of buffer.
save Buffer Saves buffer, with prompts.
Quit Like !quit.
buffer Info Information on buffer size and cursor

position.
Help Describes key maps.
clear region Erase region.
clear buffer Erase all lines in buffer.

You need to use !clear if you want to throw away your current input (since
the last >) so that you can edit it.
Example:

> a := b +

>> c +

>> !clear

> =up=> c + =up=> a := b +

>> =up=> a := b + =up=> c + =edit=> c;

The !clear had ISETL throw away the earlier input, but left it for subsequent
editting. =up=> means typing the up arrow, followed by the new value displayed
on that line. =edit=> means editing the line to produce the desired result.

Below is a complete description of the new editor.

10.3.2 Default key bindings

The interactive line editor is an input line editor that provides both line editing
and a history mechanism to edit and re-enter previous lines.

ISETL looks in the ile initialization file. See page 4 for more information.
Not everyone wants to have to figure out yet another initialization file format

so we provide a complete set of default bindings for all its operations.

10.3 Interactive Line Editor (ILE) 49

The following table shows the default bindings of keys and key sequences
provided by ile. These are based on the emacs key bindings for similar opera-
tions.

Key Effect VMS differences
del delete char under
^ A start of line undefined
^ B backward char
^ E end of line
^ F forward char
^ K erase to end of line
^ L retype line
^ N forward history
^ P backward history
^ U erase line
^ V quote
^ X delete char under

delete delete char under delete char before
back space delete char before start of line
return add to history
line feed add to history
home start of line undefined
end end of line undefined

^ C interrupt
^ Z end of file
^ D end of file

left backward char
right forward char
up backward history
down forward history

10.3.3 Initialization File

The ile initialization file is a list of table numbers, characters, and actions or
strings. ile has 4 action tables. Each action table contains an action or string
for each possible character. ile decides what to do with a character by looking
it up in the table and executing the action associated with the character or by

50 10 EDITORS

passing the string one character at a time into ile as if it had been typed by the
user. Normally only table 0 is used. The escape actions cause the next character
to be looked up in a different table. The escape actions make it possible to map
multiple character sequences to actions.

By default, all entries in table 0 are bound to the insert action, and all
entries in the other tables are bound to the bell action. User specified bindings
override these defaults. The example in Table 3 is an initialization file that sets
up the same key and delimiter bindings as the ile default bindings.

The first character on each key binding line is the index of the table to place
the key binding in. Valid values for the index are 0, 1, 2, and 3.

The second character on the line is either the character to bind or an indi-
cator that tells how to find out what character to bind. If the second character
is any character besides ‘^ ’ or ‘\’ then the action is bound to that character.

If the second character on the line is ‘^ ’ then the next character is taken
as the name of a control character. So ^ H is backspace and ^ [is escape.

If the second character on the line is a ‘\’ and the next character is a digit
between 0 and 7 the the following characters are interpreted as an octal number
that indicates which character to bind the action to. If the character immedi-
ately after the ‘\’ is not an octal digit then the action is bound to that character.
For example, to get the ‘^ ’ character you would use ‘\^ ’.

The next character on the line is always ‘=’. Following the equal sign is the
name of an action or a string. The actions are defined in the following table.

10.3.4 Actions

bell Send a bell (^ G) character to the terminal. Hopefully the bell will ring.
This action is a nice way to tell the user that an invalid sequence of keys
has been typed.

insert Insert the character into the edit buffer. If there are already 75 char-
acters in the buffer ile will beep and refuse to put the character in the
buffer.

delete char Delete the character directly to the left of the cursor from the edit
buffer.

delete char under Delete the character under the cursor from the edit buffer.

quote The next character to come into ile will be inserted into the edit buffer.
This allows you to put characters into the edit buffer that are bound to
an action other than insert.

10.3 Interactive Line Editor (ILE) 51

0\177=delete_char_under

0^@=escape_3

0^A=start_of_line

0^B=backward_char

0^C=pass_thru

0^D=pass_thru

0^E=end_of_line

0^F=forward_char

0^J=add_to_history

0^H=delete_char

0^K=erase_to_end_of_line

0^L=retype_line

0^M=add_to_history

0^N=forward_history

0^P=backward_history

0^U=erase_line

0^V=quote

0^X=delete_char_under

0^Z=pass_thru

0^[=escape_1

1[=escape_2

2A=backward_history

2B=forward_history

2C=forward_char

2D=backward_char

3\107=start_of_line

3\110=backward_history

3\113=backward_char

3\115=forward_char

3\117=end_of_line

3\120=forward_history

3\123=delete_char_under

Table 3: Example ile.ini file

52 10 EDITORS

escape 1 Look up the next character in action table 1 instead of action table 0.

escape 2 Look up the next character in action table 2 instead of action table 0.

escape 3 Look up the next character in action table 3 instead of action table 0.

start of line Move the cursor to the left most character in the edit buffer.

backward char Move the cursor to the left one character.

end of line Move the cursor past the last character in the edit buffer.

forward char Move the cursor to the right one character.

add to history Add the contents of the edit buffer to the history buffer and
pass the line along to the program running under ile.

erase line Clear the line. Erase all characters on the line.

erase to end of line Delete the character under the cursor and all character
to the left of the cursor from the edit buffer.

retype line Retype the contents of the current edit buffer. This is handy when
system messages or other asynchronous output has garbled the input line.

forward history Display the next entry in the history buffer. If you are al-
ready at the most recent entry display a blank line. If you try to go
forward past the blank line this command will beep at you.

backward history Display the previous entry in the history buffer. If there are
no older entries in the buffer, beep.

10.3.5 Strings

In addition to being able to bind a character sequence to an action ile allows
characters sequences to be bound to strings of characters. When a string is
invoked the characters in the string are treated as if they were typed by the
user. For example, if the line:

0^G=ring^Ma^Mbell^M

was in your ile.ini file, typing control G would cause three lines to be
typed as if the user typed them. Using the default bindings, unless there is a
^ J or ^ M in the string the string will be inserted in the current line but not
sent along until the user actually presses return.

10.3 Interactive Line Editor (ILE) 53

10.3.6 Error Messages

When ile encounters errors it prints a message and terminates. ile can print
several standard error message. It can also print a few messages that are specific
to ile.

• ile: ’=’ missing on line #

In a character binding line you left out the ‘=’ character. Or, you did
something that confused the initialization file reader into thinking there
should be an ‘=’ where you didn’t think there should be one.

• ile: error in initialization file on line #

This means that the first character of a character binding line wasn’t a
newline or a 0, 1, 2, or 3. It could also mean that the initialization file
reader is confused.

A misspelled action name in an ile.ini will be treated as a string. This
means that typing the sequence of characters that should invoke the action will
actually cause the misspelled name to be inserted in the input line.

10.3.7 Copyright

ile and this documentation was adapted from the program called ile. Permis-
sion to modify and distribute the program and its documentation is granted,
subject to the inclusion of its copyright notice, which has been reproduced at
the front of this manual.

54 11 RUNTIME ERRORS

11 Runtime Errors

Error messages describe most problems by printing the operation with the of-
fending values of the arguments.

If !source was on when the program was read, you will get the source line
where the error occurred. If !stack is on, lines containing the calls leading to
this error will also be printed.

One possible problem is that some values are very big: {1..1000} for in-
stance. Therefore, there are two forms of the error messages, controlled by the
!verbose directive. By default, verbose is off and large values are represented
by their type. The directive !verbose on results in full values being printed.
!verbose off returns you to short messages. See figure 6 for an example.

11.1 Fatal Errors

The following errors cause ISETL to exit. Generally they indicate that the
problem is larger than ISETL can manage. Please report cases where internal
limits are exceeded to the author.

Message Explanation / Suggestions
Includes too deeply nested Probably file includes itself.
Out of parsing space Internal limit exceeded.
Parser out of memory Internal limit exceeded.
Too many locals Internal limit exceeded.
Too many variables Internal limit exceeded.

11.2 Operator Related Messages

Most errors print the offending expression with the values (or types) of the
arguments. A few have additional information attached.

Additional Explanation
+ May refer to union.
* May refer to inter.
<relation> Refers to any of the relational operators.
Boolean expected May occur in if, while, and,

or, ?, and iterators.
Can’t iterate over Error in iterator.
in LHS of assignment Error in selector on LHS.
Multiple images Smap had multiple images.

11.3 General Errors 55

11.3 General Errors

These errors do not provide context by printing the values involved, but they
are generally more specific.

* Used for self explanatory messages
internal Messages the user should never see

Please report to author.

Message Explanation
Allocated data memory exhausted Use !memory to raise limit.
Arithmetic error Relates to machine limits
Bad arg to mcPrint internal
Bad args in low,next..high *
Bad args in low..high *
Bad format in readf *
Bad mmap in iterator MMap iterator over non-map
Can’t mmap string Cannot perform selection in assignment
Can’t mmap tuple Cannot perform selection in assignment
Cannot edit except at top level Edit not permitted within

an include
Divide by zero *
Exact format too big in readf *
Floating point error *
Input must be an expression *
Internal object too large *
Iter Next internal
Nesting too deep for pretty printer. *
Only one level of selection allowed See section 5
Return at top level *
RHS in mmap assignment must be set *
RHS in string slice assignment *

must be string
RHS in tuple slice assignment *

must be tuple
Return at top level *
Slice lower bound too big *
Slice upper bound too big *
Stack Overflow *
Stack Underflow *
Too few arguments *
Too many arguments *
Wrong number of args *

56 11 RUNTIME ERRORS

> !memory

Current GC memory = 50060, Limit = 1024000

> !allocate 800000

Current GC memory = 500600, Limit = 1024000

...

> !memory 300000

Current GC memory = 50060, Limit = 300000

> !allocate 150000

Current GC memory = 150180, Limit = 300000

Figure 4: Finding memory limits

11.3 General Errors 57

> f := func(i);

return f(i-1)+f(i-2);

end;

> !watch f

!’f’ watched

> f(1) := 1;

! f(1) := 1;

> f(2) := 1;

! f(2) := 1;

> f(4);

! Evaluate: f(4);

! Evaluate: f(3);

! Evaluate: f(2);

! Yields: 1;

! Evaluate: f(1);

! Yields: 1;

! f returns: 2;

! Evaluate: f(2);

! Yields: 1;

! f returns: 3;

3;

Figure 5: !watch examples

58 11 RUNTIME ERRORS

> !verbose on

> {1..3} + 5;

! Error -- Bad arguments in:

{3, 1, 2} + 5;

> !verbose off

> {1..3} + 5;

! Error -- Bad arguments in:

!Set! + 5;

Figure 6: Runtime errors

59

12 The ISETL Grammar — Compressed

12.1 Input at the Prompt

INPUT → PROGRAM

INPUT → STMT

INPUT → EXPR ;

12.2 Program

PROGRAM → program ID ; LOCALS VALUES STMTS end ;

12.3 Statements

STMT → LHS := EXPR ;

STMT → EXPR ;

STMT → if EXPR then STMTS ELSE-IFS ELSE-PART end ;

ELSE-IFS → “Zero or more repetitions of ELSE-IF.”

ELSE-IF → elseif EXPR then STMTS

ELSE-PART → else STMTS

STMT → for ITERATOR do STMTS end ;

STMT → while EXPR do STMTS end ;

STMT → read LHS-LIST ;

STMT → read LHS-LIST from EXPR ;

STMT → readf PAIR-LIST ;

STMT → readf PAIR-LIST to EXPR ;

STMT → print EXPR-LIST ;

STMT → print EXPR-LIST to EXPR ;

STMT → printf PAIR-LIST ;

STMT → printf PAIR-LIST to EXPR ;

STMT → return ;

STMT → return EXPR ;

STMT → take LHS from LHS ;

STMT → take LHS frome LHS ;

STMT → take LHS fromb LHS ;

STMT → write PAIR-LIST ;

STMT → write PAIR-LIST to EXPR ;

STMT → writeln PAIR-LIST ;

60 12 THE ISETL GRAMMAR — COMPRESSED

STMT → writeln PAIR-LIST to EXPR ;

STMTS → “One or more instances of STMT. The final semicolon is optional.”

PAIR-LIST → “One or more instances of PAIR, separated by commas.”

PAIR → EXPR : EXPR

PAIR → EXPR

12.4 Iterators

ITERATOR → ITER-LIST

ITERATOR → ITER-LIST | EXPR

ITER-LIST → “One or more SIMPLE-ITERATORs separated by commas.”

SIMPLE-ITERATOR → BOUND-LIST in EXPR

SIMPLE-ITERATOR → BOUND = ID (BOUND-LIST)

SIMPLE-ITERATOR → BOUND = ID { BOUND-LIST }
BOUND-LIST → “One or more instances of BOUND, separated by commas.”

BOUND → ~

BOUND → ID

BOUND → [BOUND-LIST]

12.5 Selectors

SELECTOR → (EXPR-LIST)

SELECTOR → { EXPR-LIST }
SELECTOR → (EXPR .. EXPR)

SELECTOR → (.. EXPR)

SELECTOR → (EXPR ..)

SELECTOR → ()

12.6 Left Hand Sides

LHS-LIST → “One or more instances of LHS, separated by commas.”

LHS → ID

LHS → @ EXPR

LHS → @ (EXPR , EXPR , ... , EXPR)

LHS → LHS SELECTOR

LHS → [LHS-LIST]

12.7 Expressions and Formers 61

12.7 Expressions and Formers

EXPR-LIST → “One or more instances of EXPR separated by commas.”

EXPR → ID

EXPR → INTEGER

EXPR → FLOATING-POINT

EXPR → STRING

EXPR → true

EXPR → false

EXPR → OM

EXPR → newat

EXPR → FUNC-CONST

EXPR → if EXPR then EXPR ELSE-IFS ELSE-PART end ;

EXPR → (EXPR)

EXPR → [FORMER]

EXPR → { FORMER }

FORMER → “Empty”
FORMER → EXPR-LIST

FORMER → EXPR .. EXPR

FORMER → EXPR , EXPR .. EXPR

FORMER → EXPR : ITERATOR

EXPR → # EXPR

EXPR → not EXPR

EXPR → + EXPR

EXPR → - EXPR

EXPR → EXPR SELECTOR

EXPR → EXPR . ID EXPR

EXPR → EXPR . (EXPR) EXPR

62 12 THE ISETL GRAMMAR — COMPRESSED

EXPR → EXPR OP EXPR

Possible operators (OP) are:

+ - * / div mod **

with less

= /= < > <= >=

union inter in notin subset

and or impl iff

EXPR → % BINOP EXPR

EXPR → EXPR % BINOP EXPR

EXPR → EXPR ? EXPR

EXPR → choose ITER-LIST | EXPR

EXPR → exists ITER-LIST | EXPR

EXPR → forall ITER-LIST | EXPR

EXPR → EXPR where DEFNS end

EXPR → EXPR @ EXPR

BINOP → “Any binary operator or an ID or expression in parentheses whose
value is a function of two parameters. The ID and parenthesized expression may
be preceded by a period.”

The acceptable binary operators are: +, -, *, **, union, inter, /, div,
mod, with, less, and, or, impl.

DEFNS → “Zero or more instances of DEFN. The final semicolon is optional.”

DEFN → BOUND := EXPR ;

DEFN → ID SELECTOR := EXPR ;

12.8 Function Constants

FUNC-CONST → FUNC-HEAD LOCALS VALUES STMTS end

FUNC-CONST → : ID-LIST OPT-PART -> EXPR :

FUNC-HEAD → func (ID-LIST OPT-PART) ;

FUNC-HEAD → func (OPT-PART) ;

FUNC-HEAD → proc (ID-LIST OPT-PART) ;

FUNC-HEAD → func (OPT-PART) ;

OPT-PART → opt ID-LIST

“May be omitted.”

LOCALS → local ID-LIST ;

VALUES → value ID-LIST ;

ID-LIST → “One or more instances of ID separated by commas.”

Index

?, 30, 62
! (directives), 15, 41
@, 25, 31, 60, 62
:=, 16, 59
-, 26, 61
%, 30, 62
.., 23–24, 60–61
+, 26, 61
/, 27, 62
~, 22, 60
abs, 37
!alias, 42
!allocate, 41, 44
and, 6, 27, 62
arb, 37
atom, 9

BINOP, 31, 62
BOUND, 22, 60
bound variable, 22
BOUND-LIST, 22, 60

call by value, 13
cardinality (#) of a set, 26, 61
ceil, 33
char, 33
character set, 6
choose, 30, 62
!clear, 41, 43
close, 36
!code, 42
comments ($), 5
compound operator (%), 30, 62
concatenation (+)

string, 27, 62
tuple, 27, 62

CONSOLE, 36
cos, 34
!credits, 42

DEFN, 31, 62
DEFNS, 31, 62
difference (-) of two sets, 27, 62
directives, 41
div, 6, 27, 62
do, 6, 17, 59
dollar sign, 5
domain, 34

!echo, 42
!edit, 41, 43
else, 6, 16, 59
ELSE-IF, 19, 59
elseif, 6, 16, 59
ELSE-IFS, 19, 59
ELSE-PART, 19, 59
empty

set ({}, ∅), 10
tuple ([]), 10

end, 6, 16–17, 31, 59, 62
eof, 36
equal, 27, 62
error messages, 54
even, 33
exists, 6, 30, 62
exit, 4
exponentiation (**), 27, 62
EXPR, 25, 61
EXPR-LIST, 31, 61

false, 6, 8, 25, 61
!fast, 43

63

64 INDEX

file, 9
fix, 33
float, 33
FLOATING-POINT, 25, 61
floating-point number, 7
floor, 33
for, 6, 17, 59
forall, 6, 30, 62
FORMER, 23, 61
from, 6, 17–18, 59
fromb, 6, 18, 59
frome, 6, 18, 59
func, 6, 11–14, 31, 62
FUNC-CONST, 26, 31, 61–62
FUNC-HEAD, 31, 62
function, 11–14, 24

application, 23
modified at a point, 14
of several variables, 24

generalize operation, 30, 62
grammar, 15
graphics, 38

hi, 37
hyperbolic functions, 34

ID, 25, 61
ID-LIST, 32, 62
!ids, 42
if, 6, 16, 59
iff, 6, 27, 62
ile.ini, 48
image, 34
image, 23
impl, 6, 27, 62
in, 6, 22, 27, 60, 62
!include, 5, 41
INPUT, 15, 59

INTEGER, 25, 61
integer, 7
inter, 6, 27, 62
Interactive Line Editor, 47–53
intersection (*, inter, ∩), 27, 62
is..., 35
isetl.ini, 4, 44
.isetlrc, 4, 44
ITERATOR, 22, 60
ITER-LIST, 22, 60

length (#)
of a string, 26, 61
of a tuple, 26, 61

less, 6, 27, 62
LHS, 24, 60
LHS-LIST, 25, 60
ln, 34
lo, 37
local, 6
LOCALS, 32, 62
!lock, 42
!locked, 42
log, 34

map, 11, 23
max, 35
max line, 37
!memory, 44
min, 35
mmap, 23
mod, 6, 27, 62
MSDOS, 37

newat, 6, 26, 61
not, 6, 26, 61
notin, 6, 27, 62
npow, 34

INDEX 65

number, 7

odd, 33
of, 6
om, 6, 26, 61
!oms, 42
opena, 36
openr, 36
openw, 36
opt, 6, 32, 62
optional parameters, 13
OPT-PART, 32, 62
or, 6, 27, 62
ord, 37
origin, 37

PAIR, 19, 60
PAIR-LIST, 19, 60
parameter, 13
pow, 34
!pp, 43
precedence rules, 40
precision, 37
print, 6, 17–18, 37, 59
printf, 6, 18
proc, 11–14, 32, 62
procedure, 11–14
PROGRAM, 16, 59
program, 6
prompts, 4

!quit, 4, 41
quit, 4

random, 34, 37
randomize, 35
!rational, 43
read, 6, 17, 59
readf, 6

!record, 41, 45
relational operators, 27, 62
replication (*)

string, 27, 62
tuple, 27, 62

return, 6, 12, 18, 59

scope, 13, 22
SELECTOR, 23, 60
set former, 10
!setrandom, 43
sgn, 34
SIMPLE-ITERATOR, 22, 60
sin, 34
slice, 23
!slow, 43
smap, 23
!source, 42
sqrt, 34
!stack, 42
STMT, 15–16, 59
STMTS, 19, 60
STRING, 25, 61
subset, 6, 27, 62
!system, 42, 45
system, 37

take, 6, 18, 59
then, 6, 16, 59
to, 6, 17, 59
!trace, 42
trace, 43–44
transcendental functions, 34
trig functions, 34
true, 6, 8, 25, 61
type test, 35

union, 6, 27, 62
union (+, union, ∪), 27, 62

66 INDEX

!unlock, 42
!unwatch, 43–44

value, 6
value declaration, 13
VALUES, 32, 62
!verbose, 42
!version, 42
video, 37

!watch, 43–44
where, 6, 31, 62
while, 6, 17, 59
with, 6, 27, 62
write, 6
writeln, 6

