
 GUIDE TO THE LITTLE LANGUAGE PAGE 1

 GUIDE TO THE LITTLE LANGUAGE

 David Shields

 Copyright (C) 1979, 1981, 1982 All rights reserved

 October 4, 1982

 (A Table of Contents appears at the end.)

 GUIDE TO THE LITTLE LANGUAGE PAGE 2
 PREFACE

 This report is the basic document describing the LITTLE Programming
 Language. The central part of this system is the programming language
 LITTLE (the name reflects what at one time seemed to be rather modest
 project goals), and a standard compiler for LITTLE written in LITTLE.

 The goal of the LITTLE project is to provide a means for writing
 software which is portable and efficient. An early version of LITTLE
 was defined in 1968; serious work began in 1971, when LITTLE was
 chosen as the implementation language for SETL, a very high level
 language with finite sets as its fundamental data type. The relation
 between the two projects is important. The SETL project has provided
 an active group of users for LITTLE; these users expect a quality
 compiler. The need to support the ’production’ use of LITTLE has
 given much of the work on LITTLE a pragmatic flavor; this has been a
 real benefit, as a major problem in language design is to balance the
 desire for ’abstract consistency’ with the actual needs of the users.
 The SETL implementation work has had minimal impact on the LITTLE
 language, as both groups agree that LITTLE should be a separate
 programming language, able to stand on its own merits.

 LITTLE has been implemented on several systems, including CDC 6000,
 IBM System/370, Digital Equipment DECsystem-10, and Digital Equipment
 VAX-11/780. A substantial amount of software has been written in
 LITTLE, including the LITTLE system itself, several implementations of
 SETL, an operating system, and a translator for the MINIMAL language.

 This version adds support of floating point operations, input/output
 facilities, and makes character strings easier to use. Recent work
 has made it even more clear that an essential part of a portable
 programming system is a standard, well-specified operating system
 interface; much of this interface, called the LITTLE ’library’ is
 written in LITTLE.

 There remain several troublespots in the language. Problems remain in
 the handling of arithmetic precision, particularly for negative
 integers. The previous version provided large precision (up to 2047
 bits), but did not support large negative integers, and did not
 include word-size arithmetic as a proper subset; a more fruitful
 approach seems to provide a parameterized ’portable integer’ with size
 between 16 and 100 bits, but the details remain unclear. The handling
 of array elements, particularly in calling sequence, remains unusual.
 This version retains the peculiar value semantics since the design of
 the standard compiler makes the implementation of the more usual
 ’pointer’ semantics a difficult task.

 GUIDE TO THE LITTLE LANGUAGE PAGE 3
 PREFACE

 The Guide serves both as a language definition and reference manual.
 Although the LITTLE system includes a standard compiler, LITTLE is not
 a language ’defined’ by its compiler. A programming system is a
 contract, and this Guide attempts to provide all needed fine print.
 However, language definition is no easy task; numerous errors and
 omissions undoubtedly remain. The style used in the Guide emphasizes
 use as a reference manual; the discipline of writing in this way has
 aided in the elimination of needless digressions and extraneous
 justifications. The organization of the Guide is based in large part
 on that used by Lecht (/1/) in his admirable book ’The Programmer’s
 PL/I’.

 In summary, LITTLE provides a congenial, effective environment for the
 construction of portable, efficient software. Portability remains an
 elusive goal, but can, with some thought, be achieved.

 Acknowledgments

 The LITTLE project represents the work of many people. Jacob Schwartz
 designed the first version of the language. The principal authors of
 the LITTLE system are Robert Abes, Edith Deak, Richard Kenner, David
 Shields, Aaron Stein and Thomas Stuart; their contributions are too
 numerous to detail. Henry Warren was the first major user and was
 most patient in accepting the weaknesses of the bootstrap compiler.
 Paul Schneck provided the first implementation for the IBM System/370.
 The members of the SETL project have made numerous comments and
 suggestions.

 GUIDE TO THE LITTLE LANGUAGE PAGE 4
 INTRODUCTION

 The present document is a comprehensive introduction to the LITTLE
 programming language, and contains the specifications of the language.

 Goals

 The goal of the LITTLE project is to provide a means for creating
 portable and efficient software. Software is portable if it contains
 no implicit assumptions about the environment in which it is to be
 executed. Environmental dependencies are unavoidable for all but the
 simplest programs, but if they are made to appear as explicit
 parameters of a program, then that program may be made portable.
 There are three basic classes of environmental dependencies: machine
 dependencies, system dependencies and compiler dependencies. Machine
 dependencies reflect the basic machine architecture - word size,
 character size, addressing modes, etc. System dependencies reflect
 the operating system conventions: file structure, input/output
 schemes, loader facilities, calling conventions, etc. Compiler
 dependencies reflect variations in compiler performance and features:
 the nature and quality of generated code, compiler options, diagnostic
 level, listing format, etc.

 The basic tool needed to achieve program portability is a language
 which provides systematic mechanisms for making explicit the crucial
 environmental dependencies; ideally, the language should force the
 explicit statement of all such dependencies. The language must then
 be coupled with a processor which deals automatically, in a manner
 invisible to the user, with those dependencies which it can handle
 better than the user himself could. ’Better’ in this case means more
 systematically and more efficiently.

 Our tool for producing portable, efficient software consists of the
 following:

 A programming language, LITTLE.
 A standard compiler for LITTLE, written in LITTLE.
 A library of procedures, written as much as possible in LITTLE,
 which provides a standard operating system interface.

 As an example of explicit machine dependencies, the following special
 tokens designate three basic parameters of a target machine:

 .WS. size of machine word
 .PS. size of machine pointer (address)
 .CS. size of character.

 The parameter .PS. reflects the possibility that a machine may have
 full-word and address arithmetics of differing precisions. For
 example, for the IBM System/370, .WS. has value 32 and .PS. has value
 24. These parameters can be used in a LITTLE source program. On the
 other hand, storage allocation is handled by the compiler itself, and
 nothing is provided in the language to give the user any control over
 this process.

 GUIDE TO THE LITTLE LANGUAGE PAGE 5
 INTRODUCTION

 System dependencies are mainly a reflection of the lack of standard
 specifications for operating systems features; for example, the
 notion of ’record’ is so diffuse that it is not mentioned in the
 definition of the LITTLE input/output features. LITTLE deals with
 system dependencies mainly by providing a standard interface with the
 host operating system. Much of this interface is written in LITTLE.
 This body of code, called the LITTLE Library, is itself a fruitful
 product of our work on portability.

 A program is efficient if it is presented at a level of detail such
 that its translation into assembly language is a routine, albeit
 time-consuming task. This requires that the compiler translate well
 the data structure representations, and produce good code. The use of
 a common compiler and library means that some constructs are not
 always realized as efficiently as with a machine-tailored compiler.
 This is the price of portability. However, the cost of alternate
 strategies is almost invariably higher. Furthermore, the language is
 designed with optimizaton techniques in mind. Several language
 features were chosen (or rejected) according to the applicability of
 program optimizaton to them.

 Origins

 The language was created by Jacob Schwartz in 1968; the initial
 description is contained in Cocke and Schwartz (/2/). In brief,
 LITTLE was first defined as a quite low-level language, similar to
 FORTRAN, which had bitstrings as its single data type, and which
 contained the minimal set of operators and statements needed to
 express the compiler for the language in LITTLE itself. The basic
 concepts are thus machine-independence, efficiency, and
 self-definition. These concepts are explained in detail below.
 Further goals include the desirable features of any programming
 language, such as readability, modularity, ease of use, and ease of
 debugging.

 Machine independence is the fundamental goal of LITTLE. Methods of
 attaining this goal may be divided into several broad categories:

 1. The ’complete’ approach defines an abstract environment which is
 natural to users and which can be implemented. Examples of this
 approach include PL/I, SETL and SNOBOL. Although every
 programming language necessarily defines an environment of the
 sort just described, the ’complete approach’ uses languages of a
 quite high level, and the compilers for these languages are
 typically written in other languages.

 2. The ’abstract’ machine approach defines an abstract machine which
 can be faithfully, and acceptably, modelled on the available
 hardware. For example, this approach is used in the STAGE2
 programming system (/3/), and by the SIMPL implementation language
 for GRAAL (/4/).

 3. The ’macro’ approach expresses a program as a set of macro-calls.
 Implementation involves the realization of the macros. For
 example, this approach is used in the SIL implementation of

 GUIDE TO THE LITTLE LANGUAGE PAGE 6
 INTRODUCTION

 SNOBOL4 (/5/).

 4. The ’unknown machine’ approach expresses programs as ’machine’
 language for a machine whose detailed features are not known at
 the time of program construction.

 The above categories are not exclusive; rather they indicate some of
 the various approaches taken to achieve machine independence. The
 approach used in LITTLE is quite similar to the ’abstract’ machine
 approach; however LITTLE makes minimal assumptions about the structure
 of its target machine, and LITTLE programs are written with machine
 features as explicit program parameters.

 GUIDE TO THE LITTLE LANGUAGE PAGE 7
 PRECIS

 LITTLE is a low-level language for the production of machine
 independent software. Correct use of the language requires careful
 parameterization of machine-dependencies. To express these
 dependencies, and to simplify coding, LITTLE includes a simple macro
 processor; for example:

 +* BUMP(I) = I = I + 1; ** /* INCREMENT I. */
 +* YES = 1 ** +* NO = 0 ** $ AIDS READABILITY.
 +* HAMAX = 787 ** $ DIMENSION OF HA.
 +* ERRORLIMIT = 50 ** $ MAXIMUM ALLOWED ERRORS.

 As just shown, LITTLE programs may contain comments, both in the
 delimited ’/*...text...*/’ style of PL/I, and the ’rest-of-line’ form,
 which begins with ’$’ and includes the rest of the line.

 The single data type is the bitstring. Bitstring variables are
 declared with the SIZE statement, which defines the length of the
 bitstring; one dimensional arrays are supported, and are declared with
 the DIMS statement; for example:

 SIZE LINE(CS); DIMS LINE(80); /* ARRAY OF CHARACTERS */

 Bitstrings extend from right to left, counting from 1; for example,
 the bitstring ’10’ has bit 1 = 0, bit 2 = 1, the leftmost (most
 significant) bit is 1, and the rightmost (least significant) bit is 0.

 LITTLE permits the use of a constant expression, i.e., an expression
 containing only constant operands, in most cases where a single
 constant may appear, such as ’SIZE BIG(3*WS+1)’.

 LITTLE provides the standard arithmetic operators for bitstrings,
 viewed as the binary representation of integers: + - * / .
 LITTLE includes the usual comparison operators, in both their FORTRAN
 and PL/I form:

 = ^= < > <= >=
 .EQ. .NE. .LT. .GT. .LE. .GE. .

 LITTLE also includes the standard bitstring primitives:

 & ! ^
 .AND. .OR. .NOT. .EXOR.

 Additional basic operators include

 .FB. X - index of leftmost nonzero bit in X
 .NB. X - number of nonzero bits in X

 GUIDE TO THE LITTLE LANGUAGE PAGE 8
 PRECIS

 LITTLE provides extractors to access subparts of bitstrings; the basic
 form is

 .E. 3, 5, W

 which specifies that field in W which begins at bit 3, and extends 5
 bits to the left. Fixed fields are often defined by macros; for
 example to access the left and right parts of a word, we might write

 +* LEFT = .E. WS/2+1, WS/2, **
 +* RIGHT = .E. 1, WS/2, **
 X = LEFT A .EXOR. RIGHT B;
 LEFT Y = 10; .

 LITTLE represents character strings as bitstrings which contain fixed
 fields defining the number of characters in the string, and the
 position of the first (leftmost) character. LITTLE provides
 character and substring extractors, which may be used on both the left
 and right side of an assignment statement; for example

 .S. 1, 3, STR = ’AB1’; $ ASSIGN SUBSTRING.
 X = .CH. 2, STR; $ X IS NOW CHARACTER CODE FOR LETTER B.

 LITTLE enumerates characters from left to right, starting from one,
 and includes string concatenation,’!!’, and a search operator, of form
 ’X .IN. Y’, which returns the index in character string Y of the first
 occurrence of character string X.

 In summary, LITTLE has bitstring variables, possibly indexed, as the
 basic data type. LITTLE provides extractors to access parts of
 bitstrings, and includes the usual arithmetic and boolean operators.

 LITTLE supports floating point (real) arithmetic. This is done by
 associating an arithmetic mode - integer or real - with each variable,
 array or function procedure. The arithmetic mode of an operation is
 generally integer unless both inputs are of real mode. Real variables
 are declared using the REAL declaration instead of the SIZE
 declaration used to declare variables with integer arithmetic mode.
 There are no implicit mode conversions, and no conversions on
 assignment. LITTLE supports the standard FORTRAN real operations and
 functions.

 Statements are terminated by a semicolon, and may be written in a free
 form. LITTLE has no fixed column assignments for input text.
 Statements may be simple or compound. Compound statements begin the
 definition of a compound group; the body may contain other statements.
 The body is terminated by an END statement.

 LITTLE includes the standard assignment statement, and the assignment
 target may be qualified by an extractor, to allow access to subparts
 of items; e.g.,

 .F. 4, 12, X = Y/7;

 GUIDE TO THE LITTLE LANGUAGE PAGE 9
 PRECIS

 LITTLE provides the usual IF, DO, WHILE, and UNTIL statements.
 Statements may be labeled. Labels may be subscripted. LITTLE
 includes the GO TO, in both its simple and indexed form.

 GO TO ERRORCASE; ...
 GO TO L(I) IN 1 TO 3;
 /L(1)/ ...
 /L(2)/ ...
 /L(3)/ ...
 /ERRORCASE/... .

 LITTLE uses a static namescoping scheme similar to FORTRAN. By
 default, variables are local to the procedure in which they are
 defined. Global variables may be defined, and are grouped together in
 named groups using the NAMESET statement. The ACCESS statement is
 used to name the NAMESETs which a particular procedure may use. The
 DATA statement specifies the initial values of variables.

 Gross program structure is similar to that of FORTRAN; subprograms and
 functions may be defined with the SUBR and FNCT statements,
 respectively. Execution begins with the PROG statement group.

 LITTLE includes input/output facilities for unformatted (binary) and
 formatted files. Formatted files may be external sequential files or
 internal character strings. Formatted IO may use fixed fields (edit
 mode) or free-form fields (list mode).

 The following program fragment indicates the flavor of LITTLE.
 Appendix G contains a more comprehensive example.

 /* S A M P L E L I T T L E P R O C E D U R E */

 $ MACRO SECTION - DEFINE MACHINE PARAMETERS, CODE SEQUENCES
 +* SWAP(A,B) = $ MACRO TO SWAP TWO ITEMS, A COMMON OPERATION
 SIZE ZZZA(.WS.); $ TEMPORARY FOR MACRO
 ZZZA = A; A = B; B = ZZZA; **

 SUBR SORTER(A, N);
 $ THIS PROCEDURE SORTS THE ARRAY A OF N ITEMS USING A
 $ SORTING ALGORITHM, DUE TO J. SCHWARTZ, WHICH IS BASED
 $ ON THE ELEGANT HEAPSORT ALGORITHM.

 SIZE A(.WS.); DIMS A(2); $ ARRAY TO SORT.
 SIZE I(.PS.); $ DO LOOP INDEX
 SIZE N(.PS.); $ NUMBER OF ELEMENTS TO SORT.
 SIZE M(.PS.); $ CURRENT NODE BEING EXAMINED.
 SIZE TOP(.PS.); $ CURRENT TOP OF TREE DURING PHASE 2.
 SIZE TARG(.PS.); $ INDEX OF LARGEST CHILD.

 DO I = 2 TO N; $ MAKE INTO HEAP, I IS CURRENT PARENT
 M = I;
 WHILE M > 1; $ EXAMINE PARENTS IN TURN.
 IF (A(M/2) >= A(M)) QUIT WHILE; $ IF PARENT NO SMALLER,
 SWAP(A(M), A(M/2)); $ PROMOTE LARGE CHILD,
 M = M / 2; $ MOVE TO GRANDPARENT.
 END WHILE;
 END DO I;

 GUIDE TO THE LITTLE LANGUAGE PAGE 10
 PRECIS

 DO TOP = N TO 2 BY -1; $ SORT SUBTREES IN TURN.
 SWAP(A(1), A(TOP)); $ EXTRACT LARGEST ELEMENT.
 M = 1; $ FORCE REMAINING SUBTREE TO BE HEAP.
 WHILE M*2 < TOP; $ FOR ALL SUBTREES
 IF (A(M*2) < A(M*2+1)) & (M*2+1 < TOP)
 THEN TARG = M*2+1;
 ELSE TARG = M*2; END IF;
 IF A(M) < A(TARG) THEN
 SWAP(A(M), A(TARG)); $ CHILD TOO BIG, EXCHANGE.
 ELSE QUIT WHILE; END IF;
 M = TARG; $ MOVE TO SUBTREE OF LARGEST CHILD.
 END WHILE;
 END DO TOP;
 END SUBR SORTER;

 GUIDE TO THE LITTLE LANGUAGE PAGE 11
 TERMS AND NOTATION.

 This section defines the terms and notation used in the remainder of
 this document.

 Source text structure, directives and lines.
 --

 LITTLE source text consists of a sequence of lines. Each line
 contains at least 72 characters. The first 72 characters of each line
 are LITTLE text; remaining characters may be used for identification.
 Every compilation directive line has a blank as the first character of
 the line and a period as the second character. A rest-of-line comment
 begins with the dollar character.

 Formation of names

 There are two types of names in LITTLE: simple names and name
 constants. A simple name consists of an alphabetic character followed
 by zero or more alphameric characters. A name constant consists of an
 integer of one to three digits, followed by the letter N, followed by
 a value part. Let L be the value of the integer. If L is nonzero,
 the value part consists of the L characters immediately following the
 letter N. If L is zero, the first character after the letter N
 defines a delimiter, and the value part consists of the one or more
 characters which occur before the next following instance of the
 delimiter. For example, the following symbols each define the name
 LITTLE:

 LITTLE 6NLITTLE 0N/LITTLE/

 (Comment: Name constants are typically used to define a name which
 contains non-alphameric characters. Such nonstandard names are often
 used to define names which have a low probability of conflicting with
 simple names found in programs. For example, the procedures used to
 implement the LITTLE IO features have names which end in ’$IO’, as in
 ’7NGETC$IO’.)

 The Guide uses name to indicate that either a simple name or a name
 constant may be written. If only a simple name may be used, this
 restriction is explicitly noted.

 Variables and arrays

 LITTLE provides bitstring variables and one dimensional arrays, and
 requires that every variable be declared. The initial declaration is
 either a SIZE declaration or a REAL declaration; a subsequent DIMS
 declaration defines an array and gives the number of elements in the
 array. The DATA statement gives the initial values of variables. The
 phrase ’variable’ indicates that either a simple variable or array
 element can be used in a construct; any construct which requires only
 simple variables, and does not permit array elements, is noted by
 using the phrase ’simple variable’.

 GUIDE TO THE LITTLE LANGUAGE PAGE 12
 TERMS AND NOTATION.

 Counting conventions

 The bits in a bitstring are enumerated from right to left. The least
 significant bit has index one and is the rightmost bit. The
 characters in a character string are counted from left to right. The
 first character has index one and is the leftmost character. The
 first element of an array has index one.

 Arithmetic mode

 There are two arithmetic modes: integer and real. Every variable,
 array and function procedure has an arithmetic mode, established by
 declarations. Arithmetic is in general done in the integer mode, but
 is done in real mode if both operands are of real mode, or if the
 operation definition specifies that an operand may be of real mode.
 For example, A+B is integer add unless A and B both have real mode,
 while SQRT(X) is valid only if X is of real mode.

 There are no implicit conversions of mode within expressions or as
 part of assignment process. For example, if I is of integer mode and
 R is of real mode, the assignment ’I=R’ just copies the value of R to
 I without conversion. The standard functions IFIX and FLOAT are
 provided, and must be explicitly written, to effect mode conversion;
 for example, ’I = IFIX(R)’.

 Global and local variables

 Variables in LITTLE are local or global. All variables must be
 declared within a procedure body. A variable is global if it is
 declared within the body of a NAMESET statement group, and is said to
 be a member of the NAMESET.

 A procedure may reference global variables which are bound to a formal
 argument of the procedure or which are members of an accessible
 NAMESET. A NAMESET is accessible to a procedure if the procedure
 contains the NAMESET group defining the NAMESET, of if the procedure
 contains an ACCESS statement which includes the NAMESET name.

 (Comment: The standard compiler assists in the use of global
 variables by providing two options, one to generate a NAMESET
 consisting of the otherwise ’local’ variables declared in the first
 procedure compiled, another to grant each procedure access to all
 NAMESETs defined in the first procedure compiled. Both these options
 are enabled by default.)

 GUIDE TO THE LITTLE LANGUAGE PAGE 13
 TERMS AND NOTATION.

 Files

 Within a program a file is identified by an integer. The integer must
 be greater than zero and no greater than some implementation limit
 (typically ten). The FILE statement defines (connects) a file to an
 external medium; the TITLE clause of the FILE statement identifies the
 external medium, the ACCESS clause indicates the I/O features to be
 used. Initially, file one is preconnected as the standard input file,
 and file two is preconnected as the standard output file. The ACCESS
 option STRING permits the use of a character string variable as a
 single line file, so that a program can use the data conversion and
 editing features without performing IO on an external medium.

 Array blocks

 The input/output features permit the use of an ’array block’ to
 indicate transmission of several elements of an array. The form of an
 array block is ’ARA(LO) to ARA(HI)’ where ARA is an array name, and LO
 and HI index elements of ARA. HI must be greater than or equal to LO.
 The array block specifies transmission of the elements ARA(LO),
 ARA(LO+1),...,ARA(HI). The array block consisting of all the array
 elements may be specified by giving the array name alone: ’ARA’
 without an index corresponds to the array block ’ARA(1) TO ARA(D)’,
 where D is the dimension of ARA. If HI=(LO-1), no element is
 transmitted. This is a null slice.

 Compound groups

 A compound group is a sequence of statements, called a statement
 group, which serve a given purpose. The first statement in the group
 defines the purpose of the group. An END statement terminates the
 group. The keyword END in an END statement may be followed by several
 tokens; if given, they must match the tokens in the statement which
 begins the group. The compound statements are as follows:

 DO FNCT IF NAMESET PROG SUBR UNTIL WHILE.

 The FNCT, PROG and SUBR statement groups define a procedure group, or
 procedure. The DO, UNTIL and WHILE statement groups define iteration
 groups.

 GUIDE TO THE LITTLE LANGUAGE PAGE 14
 TERMS AND NOTATION.

 Compound groups may be nested and may include CONT and QUIT statements
 which refer to the group. The group referred to is determined by a
 list of tokens in the statement; if this list is empty, the group
 referred to is the innermost group of the desired type; otherwise the
 group is the innermost group whose initial statement begins with the
 same tokens as are in the token list.

 Procedures

 A procedure is a named sequence of statements. In LITTLE, a procedure
 is a compound group which begins with a FNCT, PROG or SUBR statement.
 A CALL statement directs the execution of a SUBR group. The
 appearance of a FNCT group name within an expression directs the
 execution of a FNCT group. Program execution begins with the program
 group defined by a PROG statement. A procedure group may not contain
 another procedure group, nor may a compound statement contain a
 procedure group.

 Iteration groups, iterators

 An iteration group begins with a DO, UNTIL or WHILE statement. The
 body of an iteration group is executed a varying number of times
 according to the value of an iteration condition. Various statements
 in the body may direct whether to continue or terminate the iteration.
 ’To terminate an iteration’ is to continue processing with the
 statement which follows the END statement which ends the iteration
 group. ’To continue an iteration’ is to continue processing with the
 first statement in the group body.

 Statement labels

 A statement label identifies a statement. A statement label consists
 of a name optionally followed by an integer constant enclosed in
 parentheses. A statement label definition consists of a slash
 character followed by a statement label, followed by a slash
 character, written before a statement. A statement may be prefixed
 with one or more statement label definitions. Statement labels are
 used in the simple and indexed GO TO statements to explicitly select
 the next statement to be processed.

 GUIDE TO THE LITTLE LANGUAGE PAGE 15
 TERMS AND NOTATION.

 Instance symbols

 Most of the constructs of the LITTLE language have parameters which
 represent the symbols, variables and constants needed to define an
 actual LITTLE program. The following symbols are used to indicate the
 form of the items which may occur in a given construct. An instance
 symbol consists of a letter followed by a digit. The letter gives the
 type of the symbol, the digit gives an instance number. The digit ’9’
 is used only where a varying number of instances can be written, and
 then to indicate the last instance. The letters used are as follows:

 A array
 C constant, or expression in constants
 E expression
 I integer expression (arithmetic mode integer)
 N name
 R real expression (arithmetic mode real)
 V variable, or array element

 Comments within the guide

 The construct ’(Comment: ...)’ indicates an internal comment. Such
 comments are not part of the definition of LITTLE, but are included to
 improve readability and to direct the reader to related material.

 GUIDE TO THE LITTLE LANGUAGE PAGE 16
 CHARACTER SET

 LITTLE uses the following characters:

 1. Alphabetic characters:
 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _

 (The character ’_’ is called the break character.)

 2. Numeric characters: 0 1 2 3 4 5 6 7 8 9

 The alphabetic and numeric characters are referred to collectively as
 the alphanumeric (alphameric) characters.

 3. Special characters:

 Symbol ASCII Name

 32 blank
 = 61 equal
 + 44 plus
 - 45 minus
 * 42 times, asterisk
 / 47 divide, slash
 (40 left parenthesis
) 41 right parenthesis
 , 44 comma
 . 46 period, point
 ; 59 semicolon
 : 55 colon
 $ 36 dollar sign, comment character
 ^ 94 not
 & 38 and
 ! 33 or
 < 60 less than
 > 62 greater than
 ’ 39 apostrophe, string delimiter

 The ASCII code for break character is 95.
 Implementations may support both upper and lower case letters.
 If so, case is significant only within string constants.

 GUIDE TO THE LITTLE LANGUAGE PAGE 17
 COMMENTS

 A LITTLE program may contain comments. Comments may occur between, or
 even within, program statements. Comments provide for the internal
 documentation of a program, and have no effect on the manner in which
 the program is executed. Comments are lexical tokens, and so may not
 occur within other tokens.

 Comments may also occur, in certain cases, in the datasets processed
 by the LITTLE input/output features, as described in section 7.

 Comments are of two types, as follows:

 1. End-of-line comment, which begins with the character ’$’ and
 includes the remaining characters on the line.

 2. Delimited comment, which begins with the characters ’/*’ (no
 intervening blanks), and consists of an arbitrary number of
 characters, possibly extending over several lines. The comment
 ends with the first occurrence of the characters ’*/’ (no
 intervening blanks).

 Examples of comments are

 I = 1; $ PREPARE FOR SEARCH.

 I = 1; /* PREPARE FOR SEARCH. */

 I = 1 /* PREPARE FOR SEARCH. */;

 /*PREPARE*/ I /*FOR*/ = 1; $ SEARCH

 All of the lines just given are equivalent in that, after comments
 have been processed, each contains the single statement ’I=1;’.

 GUIDE TO THE LITTLE LANGUAGE PAGE 18
 MACRO PROCESSOR

 LITTLE includes a simple macro processor. Macros with arguments are
 declared in the form

 (1) +*MACRONAME(ARG1, ARG2,...,ARGk) = MACROBODY ** .

 Macros with no arguments are declared in the form

 (2) +* MACRONAME = MACROBODY ** .

 In the above, MACRONAME is a name, ARG1,...,ARGk are names denoting
 the macro arguments, and MACROBODY is a sequence of zero or more
 lexical tokens.

 After its definition, a macro may be invoked at any point by writing

 (3) MACRONAME (SUB1, SUB2,...,SUBk)

 for a macro with arguments, where each SUBn is a sequence of one
 more tokens.

 A macro without arguments is invoked by just writing its name

 (4) MACRONAME

 The number of arguments in (1) and (3) must match, although null
 arguments are allowed. Each argument SUBk may be any sequence of
 tokens which is balanced with respect to parentheses and which
 contains no exposed commas, i.e., no commas not enclosed in
 parentheses.

 Macro invocations are expanded by substituting SUBk for each
 occurrence of ARGk in the macro body, and issuing the resultant stream
 of tokens instead of the the tokens which invoked the macro. If this
 stream contains macro invocations, these inner invocations are
 expanded, and so on recursively.

 Macro definitions may not explicitly contain other macro definitions;
 however, the macro processor does allow macros to be defined within
 other macros in an indirect fashion, as follows:

 (5) Define macro Q3 by +*Q3(A,B,C) = A B C **.

 (6) Define macro MACDEF by
 +* MACDEF(TEXT) = Q3(+, *TEXT*, *) ** .

 (7) Macros may then be defined within other macros by using
 +* Outermacro = ... MACDEF(Name=Innerbody) ... ** .

 GUIDE TO THE LITTLE LANGUAGE PAGE 19
 MACRO PROCESSOR

 The macro processor also supports a simple scheme for generating names
 and integers with values unique to a particular macro expansion. For
 example, such values are useful to generate statement labels within
 macros. The macro generation symbols have the form

 ZZZA,ZZZB,..., ZZZZ, ZZZ_ (for names)
 ZZYA,ZZYB,..., ZZYZ, ZZY_ (for integers)

 Associated with each such name is a counter variable. When the name
 is first encountered during a macro expansion, the appropriate counter
 is incremented and the name is replaced by the name or integer so
 generated. Subsequent instances of the name in the macro body are
 replaced by the value generated on encountering the first instance.
 Generated names consist of the counter value appended to the name; for
 example, ’ZZZA’ might be replaced by ’ZZZA01020’. If a counter
 variable is encountered when no macro is being expanded, it is
 replaced with the value last generated during a macro expansion, i.e.
 its current value.

 Once a name is given macro status, it retains that status until it is
 ’dropped’. Macros are dropped by redefining the name as a macro with
 a null macro body. For example,

 +* MACRONAME = ** .

 The ZZYORG directive line resets selected ZZY symbols to have value
 zero. The directive line begins with a blank, followed by a period,
 followed by ZZYORG, followed by one or more blanks, followed by one of
 more alphabetic characters. The alphabetic characters give the last
 character of each ZZY symbol which is to be reset to zero.

 (Comment: All macroprocessing is done at the lexical level, prior to
 parsing. Thus, macro definitions are ’global’ in that they persist
 over procedure boundaries.)

 The following example shows use of macros to define fields:

 $ FIELDS OF LEXICAL SCANNER SYMBOL TABLE.
 +* LEXTYP = .E. 01, 04, ** $ LEXICAL TYPE.
 +* LEXLEN = .E. 05, 07, ** $ LEXICAL LENGTH.
 +* HALENTYP = .E. 01, 11, ** $ LENGTH AND TYPE FIELDS.
 +* LITCOD = .E. 12, 07, ** $ LITERAL CODE.
 +* CAB = .E. 19, 01, ** $ CONDITIONAL ASSEMBLY BIT.
 +* NAMEPTR = .E. 20, 13, ** $ NAMES INDEX.
 +* MACORG = .E. 33, 13, ** $ MACRO ORIGIN.
 +* NUSES = .E. 46, 02, ** $ NUMBER OF USES.
 +* HALINK = .E. 48, 13, ** $ LINK FOR HASH CHAIN.

 Appendix D contains an informal introduction to the macro processor.

 GUIDE TO THE LITTLE LANGUAGE PAGE 20
 TEXT DEFINITION: CONDITIONAL ASSEMBLY, REMOTE TEXT

 LITTLE provides conditional assembly to conditionally select the input
 lines to be processed, and an INCLUDE directive to request
 substitution of remotely defined text.

 Conditional assembly

 LITTLE supports a simple scheme for the conditional assembly of source
 text. Input lines with a blank in column one, a period in column two,
 one of the characters ’+’ or ’-’ or ’.’ in column three, and an
 alphabetic character in column four (which begins a simple name) are
 conditional assembly directives. Such lines take one of the forms

 (1) .+NAME conditional assembly of rest of line
 (2) .-NAME conditional negative assembly of rest of line
 (3) .+NAME. conditional assembly of group
 (4) .-NAME. conditional negative assembly of group
 (5) ..NAME end of conditional group

 For each name used in one of the above forms there is an associated
 conditional assembly bit, CAB. The CAB is initially zero. When form
 (1) is seen, the rest of the line is processed only if the CAB for the
 name is one; otherwise, the rest of the line is ignored. When form
 (2) is seen, the rest of the line is processed only if the CAB for the
 name is zero; otherwise the line is ignored.

 Forms (3) and (4) are treated similarly, except that the scope of the
 conditional action is the next conditional assembly line referring to
 the same name. Form (5) is used to indicate the end of a conditional
 assembly group.

 The CAB values for all names are initially zero. Values may be set by
 using conditional assembly lines with the name ’SET’, which has a
 special interpretation. Such lines contain the conditional name SET
 followed by a list of names separated by commas. The CAB for the name
 is set to one in the case ’.+SET’, or is set to zero in the case
 ’.-SET’. For example, the line

 .+SET HATRACE $ ENABLE TRACING OPTION.

 enables the conditional name HATRACE.

 Conditional directives can be nested; for example

 .+S66.
 .+SET EXTIME $ Display execution time
 .+SET WSM3 $ Word size is multiple of three.
 ..S66

 Appendix G contains an example of the use of conditional assembly.

 GUIDE TO THE LITTLE LANGUAGE PAGE 21
 TEXT DEFINITION: CONDITIONAL ASSEMBLY, REMOTE TEXT

 Inclusion of remote text

 The text inclusion feature permits the collection of text lines into
 named groups, called MEMBERs, and subsequent insertion of MEMBERs into
 a text file by use of the INCLUDE directive. The inclusion feature is
 typically used for text fragments shared by several programs; examples
 of such text fragments include macro definitions for codes, field
 structures and procedure definitions. The inclusion feature can also
 be used if the same text fragment occurs several times in a program,
 although the macro processor is more commonly used for this function.

 An INCLUDE directive is a line which begins with a blank, followed by
 a period, followed by an equal sign, followed by INCLUDE, followed by
 one or more blanks, followed by a member specification. A member
 specification begins with the first nonblank character after column
 twelve and ends with the next nonblank character which is followed by
 a blank character. The member specification defines a member name M
 according to the following rules:

 1. Remove the first character if it is an apostrophe.
 2. Remove the first character if it is a left parenthesis.
 3. Remove the last character if it is an apostrophe.
 4. Remove the last character if it is a right parenthesis.

 The above reduction rules permit several ways of specifying a
 MEMBER name; for example, the following each refer to LTL:

 LTL ’LTL’ ’(LTL)’ (LTL) ’LTL)

 In effect, the lines of the named MEMBER replace the INCLUDE
 directive.

 The format of a sequential inclusion text file is as follows:

 1. A member definition line of the the form ’ .=MEMBER M’ begins
 the definition of member M.

 2. The member consists of all following lines up to, but not
 including the next member definition line, or the end of the
 file, whichever occurs first.

 3. A member may have no lines.

 GUIDE TO THE LITTLE LANGUAGE PAGE 22
 TEXT DEFINITION: CONDITIONAL ASSEMBLY, REMOTE TEXT

 (Comment: The standard sequential form defines a machine independent
 representation of member definitions which can be used for program
 interchange. However, a LITTLE implementation may represent text
 libraries in a system dependent manner, particularly if direct access
 input/output is available.)

 (Comment: The standard compiler option ’IMEM=M’ directs the inclusion
 of member M before the first line of the input.)

 (Comment: The standard compiler accepts MEMBER directives in the
 compiler input file to permit the trial compilation of text libraries.
 This also permits the writing of program text in a form which suggests
 the form a text library would take, without requiring the construction
 of the text library in order to compile the text. Input lines
 containing MEMBER directives are skipped.)

 GUIDE TO THE LITTLE LANGUAGE PAGE 23
 DATA TYPES AND CONSTANTS

 LITTLE provides the bitstring as the basic data type and supports the
 use of bitstrings to represent integers, floating point numbers,
 character codes and character strings. The notion of data type in
 LITTLE is less rigid than that found in most programming languages,
 and is closer in spirit to the assembly language level. LITTLE
 exposes the bitstring representation of data type values, and does not
 include any implicit conversions from one data type to another.

 Bitstrings

 The bitstring is the basic data type of LITTLE. A bitstring is a
 sequence of binary digits, or bits. The length of a bitstring is its
 size. LITTLE enumerates bitstrings from right to left, starting from
 one. For example, in the bitstring ’10’, the size is two, the
 rightmost bit is zero, the leftmost bit is one, the first bit is zero
 and the second bit is one.

 A byte constant specifies the bits in a bit string. The constant
 begins with a single digit which specifies the byte width. The byte
 width must be 1, 2, 3 or 4. The byte width is followed by the letter
 B and then by a string of characters (the value part) delimited by
 apostrophes. The byte width gives the number of bits defined by each
 nonblank character in the value part. Blanks may occur within the
 value part; if present, they do not affect the value. For example,
 the following bitstring constants have the same value: 1B’1101’
 2B’31’ 3B’15’ 4B’D’

 Byte digits are interpreted according to the byte width, as shown in
 the following table:

 SYMBOL 4 3 2 1 (BYTE WIDTH)

 0 0000 000 00 0
 1 0001 001 01 1
 2 0010 010 10 NV
 3 0011 011 11 NV
 4 0100 100 NV NV
 5 0101 101 NV NV
 6 0110 110 NV NV
 7 0111 111 NV NV
 8 1000 NV NV NV
 9 1001 NV NV NV
 A 1010 NV NV NV
 B 1011 NV NV NV
 C 1100 NV NV NV
 D 1101 NV NV NV
 E 1110 NV NV NV
 F 1111 NV NV NV

 The entry NV in the table indicates that the symbol is not valid in
 byte constants of the corresponding byte width. A byte constant is
 said to be ’binary’, ’octal’ or ’hexadecimal’ according as the byte
 width is 1, 3 or 4, respectively.

 GUIDE TO THE LITTLE LANGUAGE PAGE 24
 DATA TYPES AND CONSTANTS

 Integers

 LITTLE internally represents nonnegative decimal integers using the
 standard base two bitstring representation. For example, the
 bitstring ’100’ corresponds to the integer four, the integer fifteen
 corresponds to the bitstring ’1111’.

 LITTLE bitstrings and nonnegative integers may be viewed as the
 rightmost part of an arbitrarily long representation. The assignment
 of a ’short’ value to a ’longer’ value implies that the leftmost bits
 of the result not defined by the assignment source are set to zero.

 LITTLE permits the use of signed integers, although all such integers
 have a fixed size, which is the machine word size (.WS.), and the
 leftmost bit of a negative value is always one. The representation of
 negative integers is processor dependent, typically either one’s or
 two’s complement.

 A decimal integer constant consists of one or more digits, optionally
 preceded by a sign character. One or more blanks may occur between
 two digits; such blanks do not affect the value; for example:

 100, 10, -123, 100 456 789

 Reals

 A floating point number is a processor-dependent approximation to a
 real number. Real quantities have an implementation-defined size.
 LITTLE provides explicit conversion operators, as well as several
 mathematical functions, such as SQRT for ’square root’.

 A simple real constant consists of an optional sign, an integer part,
 a decimal point represented by ’.’, and a fractional part. The
 integer part and the fractional part consist of digits. Either part
 may be omitted, but at least one of the parts must be given. A real
 exponent consists of the letter E followed by an optionally signed
 integer, and represents a power of ten. A real constant is either a
 simple real constant, a simple real constant followed by a real
 exponent, or an integer constant followed by a real exponent. A real
 constant may contain one or more blanks between two digits; for
 example ’3.1416’ and ’3.1 4 16’ define the same value.; for example:

 3.1416 .31416E+01 31.416E-1 31416E-04 3E0

 (Comment: It is good practice to write the decimal point, and to write
 a digit before and after the decimal point. For example, write 43.0,
 0.1 and 3.0E-02 instead of writing 43., .1 and 3E-02.)

 Logicals (Booleans)

 LITTLE does not include a separate logical (boolean) data type, but
 follows the convention that ’nonzero’ is ’true’ and zero is ’false’.

 GUIDE TO THE LITTLE LANGUAGE PAGE 25
 DATA TYPES AND CONSTANTS

 The standard form for ’true’ is one, the standard form for ’false’ is
 zero. The standard comparison operators, such as ’>’ always return as
 result a bitstring of length one. LITTLE provides the bitstring
 operations of And, Not, Inclusive Or and Exclusive Or. These
 operators also serve as logical operators using the standard form
 operands of size one.

 (Comment: A standard coding convention is to use macros YES and NO
 defined by +* YES = 1 ** +* NO = 0 ** to clarify use of bitstrings
 for logical values.)

 (Comment: On a machine which uses one’s complement arithmetic, the
 quantity ’-0’ is considered to be nonzero, or ’true’, since it has at
 least one nonzero bit.)

 Character codes and character strings

 LITTLE provides both character string constants and character code
 constants. Character string constants are instances of the most
 portable form of character strings, character code constants support
 the manipulation of the codes of individual characters as internal
 integers. For example, the character string constant ’0’ specifies
 the string of length one containing the single character corresponding
 to the digit zero, while the character code constant 1R0 specifies the
 internal integer code of the character for the digit zero.

 A ’character code set’ of width W with N symbols is the association of
 N distinct symbols with distinct bitstrings each of size W. The
 character code set is ’complete’ if N is the W-th power of two, so
 that a symbol is associated with each possible bitstring. Each symbol
 is either a ’graphic symbol’ or a ’control symbol’. The LITTLE
 language uses 56 distinct graphic symbols. The term ’character’ is
 used in the guide to refer to one of these graphic symbols. LITTLE
 requires no control symbols; this Guide does not define the results of
 their use in character strings. The Guide also does not define the
 use of characters other than those used by the LITTLE language.

 Since LITTLE uses 56 characters, each LITTLE implementation requires a
 character set with a width of at least six bits. The width of the
 environment character set is an essential parameter of a LITTLE
 program; this width is called the ’character size’ and is written
 ’.CS.’.

 A character string is a ’sequence of characters’. In LITTLE a
 character string is a bitstring with three parts. The ’length part’
 gives the number of characters in the string. The ’origin part’ gives
 the position of the character codes within the bitstring. The ’value
 part’ contains, in order, the bitstring codes of the graphic symbols
 of the character string. The bitstring representation of a character
 string provides most of the properties of ’varying length character
 strings’ as this term is commonly used. Appendix E contains a more
 detailed explanation of the use of this representation.

 The unique character string which has length zero and contains no
 characters is the ’null’ character string. The LITTLE operations on

 GUIDE TO THE LITTLE LANGUAGE PAGE 26
 DATA TYPES AND CONSTANTS

 character strings permit the use of the null string so that, for
 example, the result of concatenating a character string S to the null
 string is just the string S.

 Character code constants

 A character code constant defines a bitstring as a function of the
 graphic symbols. A character code constant consists of a length given
 by an unsigned integer, followed immediately by the letter R, followed
 by a value part.

 If the length, L, is nonzero, then the value part consists of the L
 characters immediately following the letter R. If the length is zero,
 the first character following R is taken as a delimiter, and the value
 consists of following characters up to the next instance of the
 delimiter. Each character in the ’value part’ of the constant defines
 a bitstring of length .CS. which has as value the bitstring code for
 the graphic character.

 The size of a character code constant is the product of the character
 size, .CS., and the number of characters in the constant. Character
 code constants are stored right-justified with zero fill.

 Examples:

 1RX 6RLITTLE 0R/DELIMITED CASE/ .

 Character string constants

 Character string constants consist of a sequence of zero or more
 characters enclosed in apostrophes. Such strings may contain internal
 apostrophes; if so, two apostrophes must be written to indicate each
 apostrophe in the string. For example, the character string
 containing the letter A, an apostrophe and the letter B is written

 ’A’’B’ .

 The string ’’ denotes the null character string.

 Character string constants may also be given as Q-type constants.
 This form consists of a length part, followed by the letter Q,
 followed by a value part. The length part consists of one to three
 numeric characters with no intervening blanks; let L be the value of
 the length part. If L is nonzero, the value part consists of the L
 characters following the letter Q. Otherwise, the first character
 following the letter Q defines a delimiter, and the value part
 consists of the zero or more characters which occur before the next
 instance of the delimiter. For example, the following are equivalent:

 ’LITTLE’ 6QLITTLE 0Q/LITTLE/

 Q constants permit the definition of character string constants which
 contain apostrophes without the need to double the internal

 GUIDE TO THE LITTLE LANGUAGE PAGE 27
 DATA TYPES AND CONSTANTS

 apostrophes. For example, both

 ’A’’B’ and 3QA’B

 define a constant character string consisting of the letter A,
 followed by the apostrophe character, followed by the letter B.

 GUIDE TO THE LITTLE LANGUAGE PAGE 28
 EXPRESSIONS

 Expressions are constructed using constants, names and operators in
 the usual manner. The rules for expression formation permit the use
 of parentheses to explicitly delimit operands and the use of
 precedence levels to simplify the writing of expressions. For
 example, the operator * has higher precedence than the operator +, so
 that A*B+C is taken to mean (A*B)+C). The following table summarizes
 the standard operators of LITTLE and gives the operator precedence
 levels.

 Every expression has an arithmetic mode which is either integer or
 real. The phrase ’integer expression’ denotes an expression which
 must have arithmetic mode integer, the phrase ’real expression’
 denotes an expression which must have arithmetic mode real.

 Precedence Symbol Synonyms Function

 7 .E. E1,E2,E3 Subfield of E3 with length E2
 beginning at bit E1
 .F. E1,E2,E3 Subfield of E3 with length E2
 beginning at bit E1 (may not cross word
 boundaries.)
 .S.E1,E2,E3 Substring of character string E3 with
 length E2 beginning at position E1
 .CH. E1,E2 Character E1 of character string E2
 .LEN. E1 Length of character string

 +E1 Unary sign prefix: +E1 same as E1
 -E1 Unary sign prefix: -E1 same as (0-E1)
 .NB. E1 Number of nonzero bits in E1
 .FB. E1 Position of leftmost nonzero bit in E1.
 .SDS. E1 Size of character string of E1 characters.

 6 E1 * E2 Multiply
 E1 / E2 Divide
 E1 .IN. E2 Index in character string E2 of first
 occurrence of character string E1

 5 E1 + E2 Add
 E1 - E2 Subtract

 GUIDE TO THE LITTLE LANGUAGE PAGE 29
 EXPRESSIONS

 4 E1 = E2 .EQ. Equality
 E1 ^= E2 .NE. Inequality
 E1 > E2 .GT. Greater than
 E1 >= E2 .GE. Greater than or equal
 E1 < E2 .LT. Less than
 E1 <= E2 .LE. Less than or equal
 E1 .SEQ. E2 Character string equality
 E1 .SNE. E2 Character string inequality

 3 .NOT. E1 .N. ^ Bit by bit inverse

 2 E1 & E2 .AND. .A. Bitstring logical product

 1 E1 ! E2 .OR. Bitstring inclusive or
 E1.EXOR.E2 .EX. Bitstring exclusive or
 E1 !! E2 .CC. Character string concatenation
 C1 .PAD. C2 Pad character string C1 to length C2

 The operands of an expression may be evaluated in any order, and only
 as many operands as are required to determine the expression result
 need be evaluated.

 GUIDE TO THE LITTLE LANGUAGE PAGE 30
 EXTRACTION OPERATORS

 The following operators extract part of a bitstring. There are also
 corresponding forms of the assignment statement to assign new values
 to part of a bitstring.

 General extractor

 Purpose: To extract part of a bitstring.

 Form: .E. I1, I2, E1

 Rules:

 1. I2 must be greater than or equal to zero.

 2. If I2 is zero, the result is zero.

 3. I1 must be greater than zero, and (I1+I2-1) must be less than or
 equal to the size of E1.

 4. The I-th bit of the result is the (I1+I-1)-th bit of E1.

 Partword extractor

 Purpose: To extract a bitstring from a machine word.

 Form: .F. I1, I2, E1

 Rules:

 1. I2 must be greater than or equal to zero.

 2. If I2 is zero, the result is zero.

 3. I1 must be greater than zero, and I2 must be less than or equal to
 the machine word size WS. ((I1-1)/WS) must be equal to
 ((I1+I2-1)/WS).

 4. The I-th bit of the result is bit (I1+I-1) of E1.

 GUIDE TO THE LITTLE LANGUAGE PAGE 31
 EXTRACTION OPERATORS

 Character substring extractor

 Purpose: To extract a substring of a character string.

 Form: .S. I1, I2, E1

 Rules:

 1. I2 must be greater than or equal to zero.

 2. If I2 is zero, the result is the null character string.

 3. E1 must be a character string. Let LE1 be the length in
 characters of E1.

 4. I1 must be greater than zero, and (I1+I2) must be less than or
 equal to (LE1+1).

 5. The result is a character string of I2 characters. The I-th
 character of the result is the (I1+I-1)-th character of E1.

 Character code extractor

 Purpose: To extract a character from a character string.

 Form: .CH. I1, E1

 Rules:

 1. E1 must be a character string. Let LE1 be the length in
 characters of E1.

 2. I1 must be greater than zero, and I1 must be less than or equal to
 LE1.

 3. The result is the I1-th character of E1.

 GUIDE TO THE LITTLE LANGUAGE PAGE 32
 EXTRACTION OPERATORS

 Character string length operator

 Purpose: To determine the current length of a character string.

 Form: .LEN. E1

 Rules:

 1. E1 must be a character string.

 2. The result is the current length in characters of E1.

 Examples:

 .LEN. ’’ is 0
 .LEN. ’LTL’ is 3

 GUIDE TO THE LITTLE LANGUAGE PAGE 33
 UNARY OPERATORS

 Unary minus operator

 The expression ’-E1’ is equivalent to the subtraction of E1 from zero.

 Unary plus operator

 The expression ’+E1’ is same as (E1).

 Bit Inversion operator

 Purpose: To invert a bit string.

 Form: ^ E1

 Rules:

 1. Determine bit I of the result as follows:
 1. If bit I of E1 is zero, bit I of the result is one.
 2. If bit I of E1 is one, bit I of the result is zero.

 2. ’^E1’ may be written ’.NOT. E1’ or ’.N. E1’.

 Examples:

 .NOT. 1B’10’ is 1B’01’
 .NOT. 1B’0’ is 1B’1’

 First bit operator

 Purpose: To determine index of leftmost nonzero bit.

 Form: .FB. E1

 Rules:

 1. Determine the result as follows:
 1. If E1 is zero, the result is zero.
 2. If E1 is not zero, the result is the largest integer I such
 that bit I of E1 is one.

 Examples:

 .FB. 1B’0’ is 0
 .FB. 1B’01’ is 1
 .FB. 1B’01001’ is 4

 GUIDE TO THE LITTLE LANGUAGE PAGE 34
 UNARY OPERATORS

 Number of bits operator

 Purpose: To determine the number of nonzero bits.

 Form: .NB. E1

 Rules:

 1. The result is the number of bits in E1 which are one.

 Examples:

 .NB. 1B’0’ is 0
 .NB. 1B’0101’ is 2
 .NB. 1B’1000’ is 1

 Character string size operator

 Purpose: To determine the number of bits needed for a character
 string.

 Form: .SDS. I1

 Rules:

 1. Assert that I1 is greater than or equal to zero.

 2. The result is the size of a character string which may contain at
 most I1 characters. The result is always a multiple of the
 machine word size.

 The standard LITTLE compiler assumes that the word size WS is a
 multiple of the character size CS, so that

 .SDS. N = WS * ((N + (.SL.+.SO.)/CS + CPW -1) / CPW)

 where .SO. and .SL. are the symbols which denote the length in bits of
 the string origin and string length fields respectively. Assuming WS
 is 32, CS is 8, .SL. is 8 and .SO. is 16, .SDS. evaluates as follows:

 .SDS. 0 is 32
 .SDS. 1 is 32
 .SDS. 2 is 64
 .SDS. 5 is 64
 .SDS. 8 is 96
 .SDS. 80 is 672

 Appendix E describes the representation of character strings in more
 detail.

 GUIDE TO THE LITTLE LANGUAGE PAGE 35
 BINARY OPERATORS

 Arithmetic operators

 LITTLE includes the following standard arithmetic operators:

 1. Add, written ’E1+E2’.

 2. Subtract, written ’E1-E2’.

 3. Multiply, written ’E1*E2’.

 4. Divide, written ’E1/E2’.

 The result has arithmetic mode real only if both operands are of
 arithmetic mode real, otherwise the result has arithmetic mode
 integer.

 Comparison operators

 LITTLE includes the following standard comparison operators:

 1. Equal to, written ’E1=E2’ or ’E1.EQ.E2’.

 2. Not equal to, written ’E1^=E2’ or ’E1.NE.E2’.

 3. Greater than, written ’E1>E2’ or ’E1.GT.E2’.

 4. Greater than or equal to, written ’E1>=E2’ or ’E1.GE.E2’.

 5. Less than, written ’E1<E2’ or ’E1.LT.E2’.

 6. Less than or equal to, written ’E1<=E2’ or ’E1.LE.E2’.

 The result is always zero or one.

 The operands must have the same arithmetic mode.

 In operators such as ’<=’ where two symbols are used to indicate the
 operator, the symbols are normally written with no intervening spaces;
 however, intervening spaces are permitted.

 Character string comparison operators

 Purpose: To compare two character strings for equality (inequality)

 Form: E1 .SEQ. E2 (E1 .SNE. E2)

 Rules:

 1. Assert that E1 and E2 are character strings.

 2. The result is one (zero) only if E1 and E2 have the same length
 and contain the same characters. Otherwise, the result is zero

 GUIDE TO THE LITTLE LANGUAGE PAGE 36
 BINARY OPERATORS

 (one).

 Examples:

 ’’ .SEQ. ’ABC’ is 0
 ’AB’ .SEQ. ’AB’ is 1
 ’AB’ .SNE. ’AC’ is 1

 Character string concatenation operation
 --

 Purpose: To concatenate two character strings into a single string.

 Form: E1 !! E2

 Rules:

 1. Assert that E1 and E2 are character strings.

 2. If either input is the null character string, the result is the
 other input.

 3. Otherwise, let L1 be the length in characters of E1, and let L2 be
 the length in characters of E2. The result is a character string
 of length (L1+L2). The first L1 characters are the characters of
 E1; the remaining L2 characters are the characters of E2.

 4. ’E1!!E2’ may also be written ’E1.CC.E2’.

 Examples:

 ’’ !! ’ABC’ is ’ABC’
 ’AB’ !! ’’ is ’AB’
 ’ABC’ !! ’LTL’ is ’ABCLTL’

 Character string instance operator

 Purpose: To find an instance of one character string within another

 Form: E1 .IN. E2

 Rules:

 1. E1 and E2 must be character strings.

 2. If either E1 or E2 is the null character string, the result is
 zero.

 3. Otherwise, let L1 be the length in characters of E1, L2 the length
 in characters of E2.

 4. The result is zero unless string E2 contains an instance of E1, in
 which case the result is the index in E1 of the start of the first
 such instance.

 GUIDE TO THE LITTLE LANGUAGE PAGE 37
 BINARY OPERATORS

 Examples:

 ’’ .IN. ’ABC’ is 0
 ’AB’ .IN. ’’ is 0
 ’BC’ .IN. ’ABCD’ is 2
 ’BC’ .IN. ’ABCDBC’ is 2

 Character string padding operator

 Purpose: To pad a character string constant to a given length.

 Form: C1 .PAD. C2

 Rules:

 1. C1 must be a character constant and C2 must be an integer constant
 greater than or equal to zero. Let L1 be the length in characters
 of C1.

 2. The result is a character string constant of length C2. If C2 is
 less than or equal to L1, the I-th character of the result is the
 I-th character of C1. If C2 is greater than L1, the first C2
 characters of the result are the characters of C1, the remaining
 (C2-L1) characters of the result are blank.

 Examples:

 ’’ .PAD. 0 is ’’
 ’’ .PAD. 2 is ’ ’
 ’ABC’ .PAD. 6 is ’ABC ’
 ’ABC’ .PAD. 2 is ’AB’
 ’ABC’ .PAD. 0 is ’’
 ’ABC’.PAD.6 !! ’XY’.PAD.10 is ’ABC XY ’

 (Comment: The .PAD. operator requires constant operands and is
 evaluated at compilation time. The .PAD. operator simplifies the
 writing of character string constants which end with several blanks.)

 GUIDE TO THE LITTLE LANGUAGE PAGE 38
 BINARY OPERATORS

 Binary bitstring operators

 LITTLE includes the following standard binary bitstring operators:

 1. And, written ’E1&E2’, or ’E1.AND.E2’ or ’E1.A.E2’.

 2. Inclusive Or, written ’E1!E2’, or ’E1.OR.E2’.

 3. Exclusive Or, written ’E1.EXOR.E2’ or ’E1.EX.E2’.

 Examples:

 1B’1100’ .AND. 1B’1010’ is 1B’1000’
 1B’1100’ .EXOR. 1B’1010’ is 1B’0110’
 1B’1100’ .OR. 1B’1010’ is 1B’1110’

 GUIDE TO THE LITTLE LANGUAGE PAGE 39
 STANDARD MATHEMATICAL FUNCTIONS.

 LITTLE includes the following standard mathematical functions. Names
 I1 and I2 represent integer arguments. Names R1 and R2 represent real
 arguments. The function value is of arithmetic mode integer if the
 first character of the function name is I or M; otherwise the function
 value is of arithmetic mode real.

 ABS(R1) Real absolute value.

 AINT(R1) Real to integer truncation. If the
 absolute value of R1 is less than one
 the result is zero; otherwise the result
 is the sign of R1 times the largest
 integer whose absolute value is not
 greater than the absolute value of R1.

 ALOG(R1) Natural logarithm of R1
 Assert that R1 is greater than zero.

 ALOG10(R1) Common (base ten) logarithm of R1.
 Assert that R1 is greater than zero.

 AMOD(R1, R2) Remainder: R1 - R2 * FLOAT(INT(R1/R2)).
 Assert that R2 is nonzero.

 ATAN(R1) Arctangent of R1 radians.
 Result RV in range -PI/2.0<=RV<=PI/2.0

 ATAN2(R1, R2) Arctangent of R1/R2 radians.
 Result RV in range -PI<RV<=PI.

 COS(R1) Cosine of R1 radians.

 DIM(R1, R2) Positive difference. If R1 is greater
 than R2, the result is (R1-R2);
 otherwise the result is zero.

 EXP(R1) E to the power R1

 FLOAT(I1) Integer to real conversion.

 IABS(I1) Integer absolute value.

 IDIM(I1, I2) Integer positive difference. If I1 is
 greater than I2, the result is (I1-I2),
 otherwise the result is zero.

 GUIDE TO THE LITTLE LANGUAGE PAGE 40
 STANDARD MATHEMATICAL FUNCTIONS.

 IFIX(R1) Real to integer conversion. If the
 absolute value of R1 is less than one,
 the result is zero. Otherwise the result
 is the sign of R1 times the largest
 integer whose magnitude does not exceed
 the absolute value of R1.

 INT(R1) Same as IFIX(R1)

 ISIGN(I1, I2) Sign of I2 times absolute value of I1.
 If I1 is zero, result is zero.
 I2 must not be zero.

 MOD(I1, I2) Remainder: I1 - I2 * (I1/I2).

 SIGN(R1, R2) Sign of R2 times absolute value of R1.
 If R1 is zero, result is zero.
 R2 must be not zero.

 SIN(R1) Sine of R1 radians.

 SQRT(R1) Square root of R1. R1 must be
 greater than or equal to zero.

 TANH(R1) Hyperbolic tangent of R1.

 GUIDE TO THE LITTLE LANGUAGE PAGE 41
 SIZING RULES

 This section gives the rules which determine the size in bits of the
 result of an operation. The following general rules apply:
 1. The size of a comparison is always one.
 2. The size of standard arithmetic functions such as EXP or LOG is
 determined by the type of the result, and is always either the
 size of a signed integer or the size of a real.

 In the following table, SZ(X) denotes the size of X, MIN and MAX
 denote the minimum and maximum, respectively.

 The following table summarizes remaining size rules:

 Operation Result Size

 .E. I1, I2, V1 If I2 is a constant, size is I2.
 Otherwise, size is SZ(V1).
 .F. I1, I2, V1 If I2 is a constant, size is I2.
 Otherwise, size is MIN(.WS.,SZ(V1)).
 .S. I1, I2, V1 If I2 is constant, size is (.SDS. I2).
 Otherwise, size is SZ(V1).
 .CH. I1, V1 .CS.
 .LEN. E1 .SL.
 ^ E1 SZ(E1)
 .FB. E1 .PS.
 .NB. E1 .PS.
 .SDS. E1 .PS.
 E1 * E2 MAX(SZ(E1), SZ(E2))
 E1 / E2 SZ(E1)
 E1 .IN. E2 .PS.
 E1 + E2 MAX(SZ(E1), SZ(E2))
 E1 - E2 MAX(SZ(E1), SZ(E2))
 .NOT. E1 SZ(E1)
 E1 & E2 MAX(SZ(E1), SZ(E2))
 E1 ! E2 MAX(SZ(E1), SZ(E2))
 E1 .EXOR. E2 MAX(SZ(E1), SZ(E2))
 E1 !! E2 .SDS.(L1+L2) where L1 is largest integer
 such that (.SDS.L1 <= SZ(E1)) and L2 is
 the largest integer such that
 ((.SDS. L1) <= SZ(E2)).
 C1 .PAD. C2 .SDS. C2

 GUIDE TO THE LITTLE LANGUAGE PAGE 42
 FORMAT AND DESCRIPTION OF LITTLE STATEMENTS

 This section presents the statements of the LITTLE language, in
 alphabetical order, beginning with an index of the statement names and
 formats:

 NAME FORMAT

 ACCESS ACCESS N1, N2 ... N9;

 ASSERT (MON) ASSERT E1;

 ASSIGNMENT
 1. SIMPLE V1 = E1;
 2. PARTWORD .F. I1, I2, V1 = E1;
 3. EXTENDED .E. I1, I2, V1 = E1;
 4. CHARACTER .CH. I1, V1 = E1;
 5. SUBSTRING .S. I1, I2, V1 = E1;
 6. CHARACTER STRING .LEN. V1 = I1;
 LENGTH

 CALL CALL N1(E1, E2 ... E9);

 CHECK (MON) CHECK INDEX A1,A2 ... A9;;
 NOCHECK INDEX A1,A2 ... A9;

 CONTINUE ITERATION CONT;

 DATA DATA V1 = C1: V2 = C2 ... C9:

 DIMENSION DIMS N1(C1), N2(C2) ... N9(C9);

 DO
 1. POSITIVE DO V1 = I1 TO I2 BY I3; BLOCK;
 END DO;
 2. NEGATIVE DO V1 = I1 TO I2 BY - I3; BLOCK;
 END DO;
 3. BY ONE DO V1 = I1 TO I2; BLOCK; END DO;

 END END;

 FILE FILE I1 N1=E1,N2=E2,N3=E3;

 FUNCTION FNCT N1(N2, N3 ... N9);

 GET GET I1 IO_LIST;

 GO TO GO TO N1;
 GO TO N1(I1) IN C1 TO C2;

 IF
 1. SIMPLE IF E1 SIMPLESTATEMENT
 2. COMPOUND IF E1 THEN B1 ELSEIF B2 THEN ...END;

 MONITOR (MON) MONITOR OPTIONLIST;

 NAMESET NAMESET N1;

 GUIDE TO THE LITTLE LANGUAGE PAGE 43
 FORMAT AND DESCRIPTION OF LITTLE STATEMENTS

 NULL STATEMENT ;

 PROGRAM PROG N1;

 PUT PUT I1 IO_LIST;

 QUIT QUIT;

 READ READ I1, V1, V2 ... V9;

 REAL REAL N1, N2 ... N9;

 RETURN RETURN;

 REWIND REWIND I1;

 SIZE SIZE N1(C1), N2(C2) ... N9(C9);

 SUBROUTINE SUBR N1(N2, N3 ... N9);

 TRACE (MON) TRACE OPTIONLIST;
 NOTRACE OPTIONLIST;

 UNTIL UNTIL E1; BLOCK; END UNTIL;

 WHILE WHILE E1; BLOCK; END UNTIL;

 WRITE WRITE I1, E1, E2 ... E9;

 Statements marked (MON) are used to monitor program execution, and are
 discussed in Section 8, Monitor Facility.

 GUIDE TO THE LITTLE LANGUAGE PAGE 44
 ACCESS STATEMENT

 Purpose: To permit references to variables which are
 members of a previously defined NAMESET;

 Form: ACCESS N1, N2,...,N9;

 Rules:

 1. The ACCESS statement contains a list of variable names, separated
 by commas.

 2. Each name must identify a previously defined NAMESET.

 3. On encountering a reference to a variable not declared in the
 current procedure, search the list of accessible NAMESETs for a
 variable of the same name. If found, bind the name to the NAMESET
 member, so that subsequent references to the variable name are
 taken as references to the NAMESET member variable.

 Examples:

 PROG MAIN;
 NAMESET SYMTABNS;
 SIZE SYMTABPTR(PS); $ SYMBOL TABLE POINTER.
 SIZE SYMTAB(SYMTABSZ); DIMS SYMTAB(SYMTABMAX);
 END NAMESET;
 ...
 END PROG MAIN;
 ...
 SUBR ADDSYM(SI);
 ACCESS SYMTABNS;
 SYMTABPTR = SYMTABPTR + 1;
 ...
 END SUBR ADDSYM;

 GUIDE TO THE LITTLE LANGUAGE PAGE 45
 ASSIGNMENT STATEMENT.

 Purpose: To assign a new value to a variable or a subpart of
 a variable.

 Forms: V1 = E1;
 .E. I1, I2, V1 = E1;
 .F. I1, I2, V1 = E1;
 .S. I1, I2, V1 = E1;
 .CH. I1, V1 = E1;
 .LEN. V1 = I1;

 Rules:

 1. The expression following the equal sign gives the source value of
 the assignment. The variable immediately preceding the equal sign
 is the target variable of the assignment. Execution of the
 assignment uses the value of the source expression to determine
 the value of some or perhaps all of the bits of the target
 variable.

 2. The arithmetic mode of the source and target may differ; however,
 execution of the assignment statement includes no implicit
 conversions of arithmetic mode.

 3. On execution of the simple assignment ’V1 = E1’:
 1. Let LE1 be the length in bits of E1. Let LV1 be the length in
 bits of V1.
 2. If LE1 is greater than or equal to LV1, then for I from one to
 LV1, set the I-th of V1 to the I-th bit of E1.
 3. If LE1 is less than LV1, then for I from one to LE1, set the
 I-th bit of V1 to the I-th bit of E1. Then for I from (LE1+1)
 to LV1, set the I-th bit of V1 to zero.

 4. On execution of the character string length assignment
 ’.LEN. V1 = E1’, set the length in characters of V1 to E1.

 5. On execution of the character string assignment ’.S. I1, I2, V1 =
 E1’, which assigns the I2 characters of V1 starting at position I1
 according to the value of E1:
 1. V1 must be a character string. Let LV1 be the length in
 characters of V1.
 2. If the value of I2 is zero, the assignment statement does not
 change the value of V1.
 3. E1 must be a character string. Let LE1 be the length in
 characters of E1.
 4. I1 must be greater than zero, and I2 must be greater than
 zero. (I1+I2-1) must be less than or equal to LE1.
 5. If LE1 is greater than or equal to I2, then for I from one to
 I2, set the (I1+I-1)-th character of V1 to the I-th character
 of E1.
 6. If LE1 is less than I2, then for I from one to LE1, set the
 (I1+I-1)-th character of V1 to the I-th character of E1.
 Then, for I from (LE1+1) to I2, set the (I1+I-1)-th character
 of V1 to be blank.

 GUIDE TO THE LITTLE LANGUAGE PAGE 46
 ASSIGNMENT STATEMENT.

 6. On execution of the character assignment ’.CH. I1, V1 = E1’, which
 assigns the I1-th character of character string V1 to be the
 character whose internal code is E1:
 1. V1 must be a character string. Let LV1 be the length in
 characters of V1.
 2. I1 must be greater than zero, and I1 must be less than or
 equal to LV1.
 3. Set the I1-th character of V1 to E1.

 7. On execution of the extract assignment ’.E. I1, I2, V1 = E1’,
 which assigns the I2 bits of V1 starting with bit I1 according to
 the value of E1:
 1. Assert that I2 is greater than or equal to zero. If I2 is
 zero, execution of the assignment statement terminates with no
 change to the value of V1.
 2. Let SV1 be the size of V1. Let SE1 be the size of E1.
 3. I1 must be greater than zero, and (I1+I2) must be less than or
 equal to (SV1+1).
 4. If SE1 is greater than or equal to I2 then, for I from one to
 I2, set the (I1+I-1)-th bit of V1 to the I-th bit of E1.
 5. If SE1 is less than I2 then, for I from one to SE1, set the
 (I1+I-1)-th bit of V1 to the I-th bit of E1. Then, for I from
 (SE1+1) to I2, set the (I1+I-1)-th bit of V1 to zero.

 8. On execution of the field assignment ’.F. I1, I2, V1 = E1’, which
 assigns the I2 bits of V1 starting with bit I1 according to the
 value of E1 (subject to the restriction that all the assigned bits
 are in a single machine word):
 1. I2 must be greater than or equal to zero. If I2 is zero,
 execution of the assignment statement terminates without
 change to the value of V1.
 2. Let SV1 be the size V1. Let SE1 be the size of E1.
 3. I1 must be greater than zero, and (I1+I2-1) must be less than
 or equal to SV1.
 4. I2 must be less than or equal to the machine word size WS.
 ((I1-1)/WS) must equal ((I1+I1-2)/WS). (Comment: The field
 must be in a single machine word.)
 5. If SE1 is greater than or equal to I2 then, for I from one to
 I2, set the (I1+I-1)-th bit of V1 to the I-th bit of E1.
 6. If SE1 is less than I2 then, for I from one to SE1, set the
 (I1+I-1)-th bit of V1 to the I-th bit of E1. Then, for I from
 (SE1+1) to I2, set the I-th bit of V1 to zero.

 GUIDE TO THE LITTLE LANGUAGE PAGE 47
 CALL STATEMENT

 Purpose: To initiate execution of a procedure, and to supply the
 parameters for that execution.

 Form: CALL N1(E1, E2,...,E9);
 CALL N1;

 Rules:

 1. The argument list is optional. If present, it consists of a list,
 enclosed in parentheses, of actual arguments, separated by commas.

 2. An actual argument is a simple variable, array name or expression.

 3. On execution of the CALL statement:
 1. Evaluate each actual argument which is an expression.
 2. Proceed to the first executable statement in the body of
 procedure N1.
 3. On execution of a RETURN statement or the END statement which
 terminates the procedure N1, continue execution with the
 statement following the CALL statement.

 4. Assert that the number of arguments given in the CALL statement
 agrees with the number of formal arguments given in the procedure
 definition.

 Examples:
 CALL READLINE(INPUTFILE, NEXTLINE);
 CALL EXIT;

 GUIDE TO THE LITTLE LANGUAGE PAGE 48
 CONTINUE STATEMENT

 Purpose: To terminate the current execution of an iteration body,
 and possibly repeat execution of the iteration body,
 after testing, and perhaps modifying, the iteration
 control variable or expression.

 Form: CONT;

 Rules:

 1. The CONT statement (CONT stands for continue) must occur within
 the body of an iteration group.

 2. Zero or more tokens may follow the keyword CONT. If none are
 given, the CONT statement refers to the innermost iterator. If
 any are given, they must correspond to the tokens which begin an
 iteration containing the CONT statement, and the CONT statement
 refers to the innermost such iterator.

 3. Execution of a CONT statement proceeds in the same way as
 execution of the END statement which terminates the iteration
 group.

 Examples:
 CONT WHILE I;
 CONT DO;
 CONT;

 DO I = 1 TO N;
 DO J = 1 TO M;
 IF (B(J)=0) CONT DO I;
 A(I) = A(I) / B(J);
 END DO J;
 END DO I;

 GUIDE TO THE LITTLE LANGUAGE PAGE 49
 DATA STATEMENT

 Purpose: To define the initial value of a variable.

 Form: DATA V1 = C1: V2 = C2:...:V9 = C9;

 Rules:

 1. A DATA statement contains a list of initialization items,
 separated by colons.

 2. An initialization item is either a variable initialization or an
 array initialization.

 3. A variable initialization consists of a variable name followed by
 the equal symbol, followed by a constant. The constant gives the
 initial value of the variable when execution begins.

 4. An array initialization consists of an array specification,
 followed by the equal symbol, followed by a list of array initial
 values.

 5. The array specification specifies a starting index in an array.
 An array specification consisting of just an array name alone
 specifies a starting index of one. Otherwise, the array
 specification consists of an array name followed by a constant
 enclosed in parentheses; the constant gives the starting index.

 6. An array initial value is either a constant or a constant followed
 by a repetition constant enclosed in parentheses.

 7. The array initial values define the initial values of array
 elements, in order, beginning with the starting index. Repetition
 constants direct the initialization of successive array elements
 to the same value.

 8. DATA initializations must occur within the procedure containining
 the declaration of the variable.

 Examples:
 DATA I=1: J(3)=2;
 $ THE FOLLOWING DATA STATEMENTS EACH INITIALIZE
 $ A(1) TO A(10) TO BE 1,3,5,4,4,4,7,0,0,0.
 DATA A = 1, 3, 5, 4, 4, 4, 7, 0, 0, 0;
 DATA A = 1, 3, 5, 4(3), 7, 0(3);
 DATA A(1) = 1, 3, 5: A(7) = 7: A(4) = 4(3): A(8) = 0(3);

 GUIDE TO THE LITTLE LANGUAGE PAGE 50
 DIMENSION STATEMENT

 Purpose: To declare that an identifier is an array, and to indicate
 the number of elements in the array.

 Form: DIMS N1(C1), N2(C2),...,N9(C9);

 Rules:

 1. A DIMS statement contains a list of dimension declarations,
 separated by commas.

 2. A dimension declaration consists of a name N followed by a
 constant C which is enclosed in parentheses. C must be greater
 than zero.

 3. The dimension declaration must occur after the initial SIZE or
 REAL declaration for the variable.

 4. The dimension declaration declares that N is an array with C
 elements.

 Examples:
 DIMS LINE(72);

 GUIDE TO THE LITTLE LANGUAGE PAGE 51
 DO STATEMENT

 Purpose: To mark the start of a DO group; to cause the statements
 of a DO group to be iterated based on the value of a
 control variable.

 Form: DO V1 = E1 TO E2 BY E3; (Positive)
 DO V1 = E1 TO E2; (Positive by one)
 DO V1 = E1 TO E2 BY - E3; (Negative)

 Rules:

 1. The DO statement is an opener. The body of the DO group consists
 of all following statements up to and including the END statement
 which terminates the DO group.

 2. The DO group is an iteration group.

 3. The BY clause is optional. If E3 is not given, take E3 to be one.

 4. V1 is the control variable and must be a simple integer variable.
 E1, E2 and E3 are integer expressions. E1 is the initial value,
 E2 is the final value, and E3 is the magnitude of the increment.
 E3 must be greater than zero. The loop is said to be increasing
 (decreasing) if the minus character does not (does) follow the
 keyword BY.

 5. Execution proceeds as follows:
 1. Evaluate E1, E2 and E3; let LV1, LV2 and LV3 denote their
 respective values.
 2. If the loop is increasing (decreasing), then if LV1 is greater
 than (less than) LV2, execution proceeds to the statement
 following the END statement which terminates the DO group.
 Otherwise V1 is set to be LV1 and execution proceeds to the
 first statement of the DO group.

 6. The expressions E1, E2 and E3 are evaluated only once, so that
 assignments within the loop body to variables occuring in these
 expressions do no affect the number of times the loop body is
 executed.

 7. On execution of the END statement which terminates the DO group:
 If the iteration is increasing (decreasing), add (subtract) E3 to
 the iteration control variable V1. If the value of the control
 variable is greater than (less than) the value of E2, then
 terminate the iteration. Otherwise, continue the iteration.

 Examples:

 DO I = 1 TO N; A(I) = 0; END DO;

 DO I = N TO 1 BY -1;
 IF (A(I)=0) CONT DO;
 A(I) = 10 / A(I);
 END DO;

 GUIDE TO THE LITTLE LANGUAGE PAGE 52
 END STATEMENT

 Purpose: To end a compound statement group.

 Form: END;

 Rules:

 1. The END statement terminates the statement group begun by the most
 recent compound statement.

 2. An END statement terminates one statement group.

 3. The keyword END may be followed by up to five tokens. If present,
 they must match the tokens which begin the compound statement.

 4. Execution of an END statement depends on the type of the compound
 group, and is explained in the rules for the statement.

 Examples:
 IF X > 0 THEN
 COUNT = 0;
 ELSE
 COUNT = COUNT + 1;
 END IF X;

 GUIDE TO THE LITTLE LANGUAGE PAGE 53
 FILE STATEMENT

 Purpose: To connect a file and give the file attributes to
 be used for subsequent input/output.

 Form: FILE FID FATR1=EXPR1, FATR2=EXPR2,...,FATRn=EXPRn;

 Rules:

 1. Assert than FID is an integer greater than zero.

 2. Execution of the FILE statement associates FID with an entity
 which can contain representations of bit strings.

 3. The FILE statement contains a list of the attributes which apply
 for subsequent input/output operations on the file. Execution of
 the FILE statement either alters the current association, or
 terminates the current association and establishes a new
 association.

 4. The file attributes FATRi are ACCESS, LINESIZE and TITLE.
 1. The ACCESS attribute must be given and must have as value one
 of the following symbols:
 1. GET: file contains formatted representations. Permit GET
 statements.
 2. PRINT: file contains formatted representations. Permit
 PUT statements. Permit use of PAGE control format.
 3. PUT: file contains formatted representations. Permit PUT
 statements.
 4. READ: file contains unformatted representations. Permit
 READ statements.
 5. STRING: file is line represented by a character string
 variable. Permit GET and PUT statements.
 6. WRITE: file is to contain unformatted representations.
 Permit WRITE statements.
 7. RELEASE: disconnect the file.
 2. If the LINESIZE attribute is given, then the value must be
 greater than or equal to zero.
 1. If LINESIZE given the file access must be GET, PRINT, PUT
 or STRING.
 2. If LINESIZE not given, take linesize to be zero.
 3. Assert that LINESIZE is greater than or equal to zero.
 4. If LINESIZE is greater than zero, it gives the number of
 characters in a line. If LINESIZE is zero, the length of
 a line is determined from the structure of the external
 file. ment: FILESTAT(FID, LINESIZE) gives actual line
 length.)
 3. The TITLE attribute names the file, as follows:
 1. If the ACCESS is STRING, the TITLE attribute specifies the
 name of a simple variable which has the structure of a
 character string. This variable contains the single line
 of the file.
 2. Otherwise, the value of TITLE is a character string which
 gives the operating system identification of the file. If
 the null string is specified, the file title is determined
 as function of file number, in processor-selected manner.

 5. Execution of the FILE statement establishes a new association for
 the file unless the FILE statement is used to read a file that has

 GUIDE TO THE LITTLE LANGUAGE PAGE 54
 FILE STATEMENT

 just been written. If the file statement contains only the ACCESS
 attribute, transition from writing to reading, with rewinding of
 the file, occurs if prior ACCESS was WRITE and new access is READ,
 or if prior ACCESS was PRINT or PUT, and new access is GET.

 6. Two files are initially defined as execution begins.
 1. The standard input file has attributes

 FILE 1 ACCESS=GET, LINESIZE = 0, TITLE = ’’ ;

 A GET statement which does not explicitly specify a file
 number implicitly specifies file one. File one is
 preconnected as the standard input file.
 2. The standard print file has attributes

 FILE 2 ACCESS=PRINT, LINESIZE = 0, TITLE = ’’;

 A PUT statement which does not explicitly specify a file
 number implicitly specifies file two. File two is
 preconnected as the standard output file.

 Examples:
 +* LISTING = 4 ** +* FS = 5 ** +* SCRATCH = 6 **
 FILE LISTING
 ACCESS = PRINT,
 LINESIZE = 120,
 TITLE = LISTINGNAME;

 SIZE SV(.SDS. 5);
 FILE FS
 ACCESS = STRING,
 TITLE = SV,
 LINESIZE = 5;

 FILE SCRATCH
 ACCESS = WRITE,
 TITLE = ’TAPE1040’;

 GUIDE TO THE LITTLE LANGUAGE PAGE 55
 FUNCTION STATEMENT

 Purpose: To name a function procedure, indicate its parameters,
 begin its definition.

 Form: FNCT N1(N2, N3,...,N9);

 Rules:

 1. The function statement is an opener. The body of the function
 group consists of all following statements up to and including the
 END statement which terminates the function group.

 2. The function statement contains the function name N1 followed by a
 list, enclosed in parentheses, of formal arguments, separated by
 commas. Each formal argument is a name.

 3. The body of the function must contain a declaration of a simple
 variable of the same name as the function.

 4. A function is invoked by writing its name, followed by a
 parenthesized list of actual arguments. The function procedure is
 then executed, and the last value assigned within the function to
 the variable of the same name as the function is used as the value
 of the function call.

 5. A procedure P which invokes a function procedure N must contain a
 SIZE or REAL declaration for N to indicate the size and arithmetic
 mode of the function procedure value.

 6. The function body must not contain any assignments to formal
 arguments.

 7. On execution within a function procedure of a RETURN statement or
 of the END statement which terminates the function group,
 execution of the function procedure terminates. Execution
 proceeds with the use of the value of the function name variable
 within the expression which contains the function reference.

 Examples:
 $ FIND INDEX OF LAST NONBLANK IN STRING.
 FNCT LASTNB(STR);
 SIZE LASTNB(PS); $ FUNCTION VALUE.
 SIZE STR(.SDS. 80); $ STRING.
 SIZE I(PS); $ LOOP INDEX.
 LASTNB = 0;
 DO I = (.LEN. STR) TO 1 BY -1;
 IF (.CH. I, STR) ^= 1R THEN
 LASTNB = I;
 QUIT DO;
 END IF;
 END DO;
 END FNCT LASTNB;

 GUIDE TO THE LITTLE LANGUAGE PAGE 56
 GET STATEMENT

 Purpose: To read data from a formatted file.

 Form: GET FID Formlist;
 GET Formlist;

 Rules:

 1. FID is an integer expression giving the file number. If FID is
 not given, take FID to be one.

 2. Assert that file FID is connected with access GET or STRING.

 3. Formlist is a list of control formats, input data items and data
 formats written according to the following rules:
 1. A comma precedes each control or data format.
 2. A colon precedes each data item.
 3. A data format or a data item follows a data item.

 4. Transmit data according to the following rules:
 1. Transmit each data item according to the associated data
 format. The data format either immediately follows the data
 item or follows a list of data items.
 2. Transmit each element of an array block using the associated
 data format.

 Examples:
 FILE FF
 TITLE = ’EXAMPLE’,
 ACCESS = GET,
 LINESIZE = 100;
 GET FF ,SKIP :X,I(5) :A(LO) TO A(HI),B(10,3);

 GET :LINE,A(80) ,SKIP; $ GET LINE FROM STANDARD INPUT.
 GET :A:B:C,I(5) $ READ A,B,C IN I(5) FORMAT.

 GUIDE TO THE LITTLE LANGUAGE PAGE 57
 GO TO STATEMENT (SIMPLE)

 Purpose: To select the next statement to execute.

 Form: GO TO SL;

 Rules:

 1. SL must be a statement label prefix for exactly one statement in
 the containing procedure.

 2. On execution, proceed to the statement with statement label SL.

 Examples:

 GO TO READLINE;
 ...
 /READLINE/ ...statement processed after GO TO ...

 GUIDE TO THE LITTLE LANGUAGE PAGE 58
 GO TO STATEMENT (INDEXED)

 Purpose: To select the next statement to be processed according
 to the value of an integer selection expression.

 Form: GO TO N1(E1) IN C1 TO C2;

 Rules:

 1. C1 and C2 must be integer constants such that C1 is greater than
 or equal to zero, C2 is greater than or equal to C1, and C2 is
 less than 1000.

 2. The procedure containing the indexed GO TO must contain one
 statement label prefix N(E) for each integer E from C1 to C2.

 3. Assert that E1 is greater than or equal to C1, and less than or
 equal to C2.

 4. On execution, proceed to the statement with statement label prefix
 equal to E1.

 Examples:

 GO TO L(ECASE) IN 1 TO 4;
 /L(1)/ ...
 /L(3)/ ...
 /L(2)/ /L(4)/ ...

 GUIDE TO THE LITTLE LANGUAGE PAGE 59
 IF STATEMENT (SIMPLE)

 Purpose: To conditionally determine whether a single, simple
 statement is to be executed.

 Form: IF E1 Simplestatement

 Rules:

 1. Execution proceeds as follows:
 1. If E1 is nonzero, process the Simplestatement.
 2. If E1 is zero, proceed to the next statement.

 2. Simplestatement is any statement except a compound statement, a
 simple IF statement or an END statement.

 (Comment: It is suggested, but not required, that the control
 expression E1 be enclosed in parentheses.)

 Examples
 IF (X>0) CALL READER;
 IF (FOUNDVAL ^= 0) RETURN;

 GUIDE TO THE LITTLE LANGUAGE PAGE 60
 IF STATEMENT (COMPOUND)

 Purpose: To conditionally determine whether a group of statements
 is to be processed.

 Form: IF E1 THEN Block END IF;
 IF E1 THEN Block ELSE Block END IF;
 IF E1 THEN Block
 ELSEIF E2 THEN Block
 ...
 ELSEIF E9 THEN Block
 ELSE Block END IF;

 Rules:

 1. The compound IF statement is an opener. The body of the IF group
 consists of all statements following the keyword THEN up to and
 including the END statement which terminates the IF statement.

 2. A compound IF statement is distinguished from a simple IF
 statement by the occurrence of THEN immediately following the
 control expression which follows IF.

 3. The body consists of an IF_THEN clause, followed by zero or more
 ELSEIF clauses, optionally followed by an ELSE clause.
 1. An IF_THEN clause consists of the keyword IF followed by a
 control expression, followed by the keyword THEN, followed by
 one or more statements.
 2. An ELSEIF clause consists of the keyword ELSEIF followed by a
 control expression, followed by the keyword THEN, followed by
 one or more statements.
 3. An ELSE clause consists of the keyword ELSE followed by one or
 more statements.
 4. A clause is terminated by the next clause or by the END
 statement which terminates the IF group.

 4. On execution of a compound IF statement, perform the following
 actions for each clause:
 1. On execution of an IF_THEN clause, evaluate the control
 expression. If the value is zero, proceed to the next clause.
 Otherwise, proceed to the first statement following the
 keyword THEN.
 2. On execution of an ELSEIF clause, evaluate the control
 expression. If the value is zero, proceed to the next clause.
 Otherwise, proceed to the first statement following the
 keyword THEN.
 3. On execution of an ELSE clause, proceed to the statement
 following the keyword ELSE.
 4. After execution of the last statement in a clause, proceed to
 the statement following the END statement which terminates the
 IF group.

 5. On execution of the END statement which terminates the IF group,
 proceed to the next following statement.

 GUIDE TO THE LITTLE LANGUAGE PAGE 61
 IF STATEMENT (COMPOUND)

 Examples:
 IF X=10 THEN Y=3; END IF;

 IF X=10 THEN Y=3;
 ELSE Y=5; END IF;

 IF X=10 THEN Y=3;
 ELSEIF X=20 THEN Y=5;
 ELSEIF X=40 THEN Y=7;
 ELSE Y = 0; END IF;

 DO LI = 1 TO ARGMAX;
 H = ARGLIST(LI);
 IF (H=0) QUIT DO;
 LC = .F. 1, 8, H; VV = .F. 9, 8, H;
 IF LC THEN
 IF CC=5 ! CC=6 THEN
 COUNTUP(OPRCODTABLPTR, OPRCODTABLMAX, ’OPRTAB’);
 OPRCODTABL(OPRCODTABLPTR) = VV;
 END IF;
 LITTABL(CC) = VV;
 ELSE
 CC = VV;
 END IF;
 END DO;

 GUIDE TO THE LITTLE LANGUAGE PAGE 62
 NAMESET STATEMENT

 Purpose: To indicate the name of a set of global variables; to
 begin definition of a set of global variables.

 Form: NAMESET N1;

 Rules:

 1. The NAMESET statement is an opener. The body of the NAMESET group
 consists of all following statements up to and including the END
 statement which terminates the NAMESET group.

 2. Any declaration within the NAMESET group defines a global
 variable, which is a member of the NAMESET.

 3. The member variables of a NAMESET have distinct names.

 4. The same variable name may not occur in more than one NAMESET.

 5. Variables in a NAMESET may be referred to in other procedures,
 using the ACCESS statement.

 6. Variables not contained in any NAMESET are local to the procedure
 in which they are defined.

 7. Variables in a NAMESET may be referred to within the procedure in
 which they are defined. No separate ACCESS statement is needed.

 8. On execution of the END statement which terminates the NAMESET
 group, execution proceeds to the next following statement.

 Examples
 NAMESET SYMTAB;
 SIZE SYMTABPTR(PS); $ TOP OF SYMBOL TABLE
 SIZE SYMTAB(WS); DIMS SYMTAB(100);
 END NAMESET SYMTAB;

 GUIDE TO THE LITTLE LANGUAGE PAGE 63
 NULL STATEMENT

 Purpose: To specify no action other than continuation of
 processing; to simplify use of macros.

 Form: ;

 Rules:

 1. On execution, proceed to the next statement.

 (Comment: LITTLE uses the semicolon to terminate, not separate,
 statements. Null statements permit the use of more than one semicolon
 to terminate a single statement, and typically occur as a result of
 macro processing. Macros often consist of several statements which
 accomplish a given task. There then arises the question whether the
 semicolon terminating the last statement is to be written in the macro
 definition or as part of each macro invocation. LITTLE includes the
 null statement so that the semicolon may be written in the definition,
 in the call, or both, without changing the program semantics.)

 Examples:

 Consider

 +* INCR(I) = I = I+1; **

 INCR(SYMPTR);

 which, after macro expansion, yields

 SYMPTR = SYMPTR + 1;;

 which contains a null statement.

 GUIDE TO THE LITTLE LANGUAGE PAGE 64
 PROGRAM STATEMENT

 Purpose: To define the program procedure.

 Form: PROG N1;

 Rules:

 1. The program statement is an opener. The body of the program group
 consists of all following statements up to and including the END
 statement which terminates the program group.

 2. An executable LITTLE program consists of one or more procedures.
 One and only one procedure must be a program procedure. Execution
 begins with the first executable statement in the program
 procedure and continues until execution is terminated.

 3. On execution within a program procedure of a RETURN statement or
 of the END statement which terminates the program group, program
 execution terminates in a normal fashion.

 Examples:

 PROG COPYFILE; $ LIST STANDARD INPUT FILE.
 SIZE LINE(.SDS. 80);
 WHILE 1;
 GET ,SKIP :LINE,A(80); $ READ LINE.
 IF (FILESTAT(1,END)) QUIT WHILE;
 PUT :LINE,A ,SKIP;
 END WHILE;
 END PROG COPYFILE;

 GUIDE TO THE LITTLE LANGUAGE PAGE 65
 PUT STATEMENT

 Purpose: To write data to a formatted file.

 Form: PUT FID Formlist;
 PUT Formlist;

 Rules:

 1. FID is an integer greater than zero which identifies the file. If
 FID is not given, take FID to be two.

 2. Assert that file FID is connected with access PRINT, PUT or
 STRING.

 3. Formlist is a list of control formats, output data items and data
 formats written according to the following rules.
 1. A comma precedes each control or data format.
 2. A colon precedes each data item.
 3. A data format or a data item follows a data item.

 4. Transmit data according to the following rules:
 1. Transmit each data item according to the associated data
 format. The data format either immediately follows the data
 item or follows a list of data items.
 2. Transmit each element of an array block according to the
 associated data format.

 5. If S is a character string constant, the edit specification :S,A
 may be abbreviated by writing a comma before the string constant.
 This abbreviated form ’,S’ is called an annotation format, as it
 reflects, and simplifies, the common use of character string
 constants to describe or annotate formatted output.

 Examples:
 FILE FF
 ACCESS = PUT,
 TITLE = ’EXAMPLE’,
 LINESIZE = 100;
 PUT FF ,SKIP :X,I(5) :A(LO) TO A(HI),B(10,3);

 PUT :LINE,A ,SKIP; $ PUT LINE TO STANDARD PRINT FILE.
 PUT ,’EXECUTION TIME ’ :XTIME,F(10,3) ,’ MILLISECONDS.’;

 GUIDE TO THE LITTLE LANGUAGE PAGE 66
 QUIT STATEMENT

 Purpose: To terminate execution of an iteration.

 Form: QUIT;

 Rules:

 1. A QUIT statement must occur within an iteration group.

 2. Zero or more tokens may follow the keyword QUIT. If none are
 given, the QUIT statement refers to the innermost iterator. If
 any are given, they must correspond to the tokens which begin an
 iteration group containing the QUIT statement, and the QUIT
 statement refers to the innermost such iterator.

 3. On execution, terminate the iteration and proceed to the statement
 following the END statement which terminates the iteration group.

 Examples:
 QUIT WHILE MORE;
 QUIT DO;

 $ FIND INDEX OF FIRST VOWEL IN STRING STR.
 FIRSTVOWEL = 0;
 DO I = 1 TO .LEN. STR;
 IF (.S. I, 1, STR) .IN. ’AEIOU’ THEN $ IF FOUND.
 FIRSTVOWEL = I;
 QUIT DO;
 END IF;
 END DO;

 GUIDE TO THE LITTLE LANGUAGE PAGE 67
 READ STATEMENT

 Purpose: To read values from an unformatted file.

 Form: READ FID, V1, V2,...,V9;

 Rules:

 1. FID is an integer greater than zero which identifies the file.
 The file must be connected with access READ.

 2. The READ statement contains a list of read input items, separated
 by commas.

 3. A read input item is either a simple variable or an array block
 item.

 4. On execution, read from file FID the values of the variables and
 array elements specified in the list.

 Examples:

 FILE 3 ACCESS=READ, TITLE=’’;
 READ 3, I, VOALO, VOA(VOALO) TO VOA(VOALO+10);

 GUIDE TO THE LITTLE LANGUAGE PAGE 68
 REAL STATEMENT

 Purpose: To declare a real variable.

 Form: REAL N1, N2,...,N9;

 Rules:

 1. A REAL statement contains a list of names, separated by commas.

 2. The REAL statement declares each name to be a real variable with
 arithmetic mode real and an implementation-defined size.

 Examples:
 REAL SUMX, SUMY;

 GUIDE TO THE LITTLE LANGUAGE PAGE 69
 RETURN STATEMENT

 Purpose: To terminate execution of a procedure.

 Form: RETURN;

 Rules:

 1. On execution within a program (PROG) procedure, terminate program
 execution in a normal manner.

 2. On execution within a subroutine (SUBR) procedure, proceed to the
 statement which follows the CALL statement which invoked the
 procedure.

 3. On execution within a function (FNCT) procedure, return as value
 the value of the local variable of the same name as the function
 procedure, and continue evaluation of the expression which invoked
 the function procedure.

 Example:

 FNCT LASTNB(STR); $ FIND LAST NON-BLANK CHAR IN STR.
 SIZE LASTNB(.PS.);
 SIZE STR(.SDS. 80); $ STRING TO SEARCH.
 SIZE I(.PS.); $ LOOP INDEX.

 LASTNB = 0; $ ASSUME STRING ALL BLANK.
 DO I = (.LEN. STR) TO 1 BY -1;
 IF .CH. I, STR ^= 1R THEN $ IF NON BLANK FOUND.
 LASTNB = I;
 RETURN;
 END IF;
 END DO I;
 END FNCT LASTNB;

 GUIDE TO THE LITTLE LANGUAGE PAGE 70
 REWIND STATEMENT

 Purpose: To position a file at its initial point.

 Form: REWIND FID;

 Rules:

 1. FID is an integer greater than zero which identifies the file.
 The file must be connected.

 2. Position file FID at its initial point.

 Examples:

 REWIND SCRFILE;

 (Comment: An implicit rewind occurs when the FILE statement is used to
 change access from WRITE to READ, or from PUT to GET. For example in

 FILE 3 TITLE=’’, ACCESS = WRITE;
 WRITE 3, A(1) TO A(10);
 FILE 3 ACCESS = READ;

 there is an implicit rewind performed as part of the second FILE
 statement.)

 GUIDE TO THE LITTLE LANGUAGE PAGE 71
 SIZE STATEMENT

 Purpose: To declare a variable and give its size in bits.

 Form: SIZE N1(C1), N2(C2),...,N9(C9) ;

 Rules:

 1. A SIZE statement contains a list of size declarations, separated
 by commas.

 2. A size declaration consists of a name N followed by a constant C
 enclosed in parentheses.

 3. The size declaration declares N to be of arithmetic mode integer.

 3. Assert that C is greater than zero. C gives the length of N in
 bits.

 Examples:

 SIZE LINE (80*CS); $ CS IS MACRO FOR CHARACTER-SIZE
 SIZE ONBIT(1), LOCKBIT(1);

 GUIDE TO THE LITTLE LANGUAGE PAGE 72
 SUBR STATEMENT

 Purpose: To give the name of a subroutine procedure,
 to give its definition.

 Form: SUBR N1(N2, N3,...,N9);

 Rules:

 1. The subroutine statement is an opener. The body of the subroutine
 group consists of all following statements up to and including the
 END statement which terminates the subroutine group.

 2. The subroutine statement contains the name of the subroutine.
 Subroutines may have arguments. If so, the SUBR statement
 contains a list, enclosed in parentheses, of the names of the
 formal arguments.

 3. On execution of a RETURN statement or of the END statement which
 terminates the subroutine, execution continues with the statement
 following the CALL statement which invoked the subroutine
 procedure.

 Examples:

 SUBR LSTLIN;
 $ LIST CURRENT INPUT LINE IF NOT YET LISTED.

 IF LINELISTED = 0 THEN
 PUT :LINENOW,A(80) ,SKIP;
 LINELISTED = 1;
 END IF;
 END SUBR LSTLIN;

 GUIDE TO THE LITTLE LANGUAGE PAGE 73
 UNTIL STATEMENT

 Purpose: To repeatedly execute a group of statements until the
 value of a control expression becomes nonzero.

 Form: UNTIL E1;

 Rules:

 1. The UNTIL statement is an opener. The body of the UNTIL group
 consists of all following statements up to and including the END
 statement which terminates the UNTIL statement.

 2. The UNTIL group is an iteration group.

 3. On execution of the UNTIL statement, proceed to the first
 statement in the body of the until group.

 4. On execution of the END statement which terminates the UNTIL
 group:

 1. If E1 is zero, continue the iteration.

 2. If E1 is nonzero, terminate the iteration.

 Examples:

 $ CONVERT INTEGER TO STREAM OF CHARACTERS.
 +* CHAROFDIG(D) = (.CH. D, ’0123456789’) **
 UNTIL N=0;
 D = N - 10*(N/10);
 CALL PUTCHAR(CHAROFDIG(D));
 N = N / 10;
 END UNTIL;

 GUIDE TO THE LITTLE LANGUAGE PAGE 74
 WHILE STATEMENT

 Purpose: To repeatedly execute a group of statements while the
 value of a control expression remains nonzero.

 Form: WHILE E1;

 Rules:

 1. The WHILE statement is an opener. The body of the WHILE group
 consists of all following statements up to and including the END
 statement which terminates the WHILE group.

 2. The WHILE group is an iteration group.

 3. Execution proceeds as follows:
 1. If E1 is zero, terminate the iteration. If E1 is nonzero,
 proceed to the statement which follows the WHILE statement.

 4. On execution of the END statement which terminates the WHILE
 group:
 1. If E1 is zero, terminate the iteration.
 2. If E1 is nonzero, continue the iteration.

 Examples:
 WHILE 1;
 CALL READLINE;
 IF (FILESTAT(INPUTFILE, END)) QUIT WHILE;
 CALL PROCESSLINE;
 END WHILE;

 GUIDE TO THE LITTLE LANGUAGE PAGE 75
 WRITE STATEMENT

 Purpose: To write values to an unformatted file.

 Form: WRITE FID, E1, E2,...E9;

 Rules:

 1. FID is an integer greater than zero which identifies the file.
 File FID must be connected with access WRITE.

 2. The WRITE statement contains a list of write output items,
 separated by commas.

 3. A write output item is either a variable, expression or array
 block item.

 4. On execution, write to file FID, in order, the values of the write
 output items.

 Examples:

 FILE 3 ACCESS=WRITE, TITLE=’’;
 WRITE 3, I, VOALO, VOA(VOALO) TO VOA(VOALO+10);

 GUIDE TO THE LITTLE LANGUAGE PAGE 76
 PROCEDURES AND PROGRAMS

 LITTLE provides three kinds of procedures: subroutine (SUBR),
 function (FNCT) and program (PROG). The most basic is the subroutine.
 Subroutines may have arguments. A program procedure is similar to a
 subroutine, except that it may have no arguments, and marks the
 starting point of program execution. A function has a value, and is
 used in expressions. Procedures communicate by the association of
 arguments or by shared access to global variables. In LITTLE, global
 variables are grouped into named collections, called NAMESETs. The
 ACCESS statement permits one procedure to use the variables in a
 specified NAMESET.

 Subroutine (SUBR) procedure

 The compound SUBR statement defines a subroutine procedure. A
 subroutine may have arguments. The CALL statement initiates execution
 of a subroutine and supplies the actual arguments to be associated
 with the formal arguments during the execution. On execution within
 the subroutine of a RETURN statement or of the END statement which
 terminates the subroutine, execution continues with the statement
 following the CALL statement which invoked the subroutine.

 Function (FNCT) procedure

 The compound FNCT statement defines a function procedure. A function
 reference consists of the occurrence within an expression of the
 function name followed by list of actual arguments enclosed in
 parentheses. A function must have at least one argument. The
 function procedure must contain a local variable of the same name as
 the function. On execution within the function of a RETURN statement
 or of the END statement which terminates the function procedure, the
 last value assigned to the function name variable is used to continue
 evaluation of the expression containing the function reference.

 Program (PROG) procedure

 The compound PROG statement defines a program procedure. A program
 procedure cannot have formal arguments. (Comment: The standard LITTLE
 library includes procedures GETIPP and GETSPP which obtain values from
 the execution environment.) A LITTLE program text is executable only
 if it contains exactly one program procedure. Program execution
 begins with this program procedure. On execution within the program
 procedure of a RETURN statement or of the END statement which
 terminates the program procedure, program execution terminates in a
 normal manner.

 GUIDE TO THE LITTLE LANGUAGE PAGE 77
 PROCEDURES AND PROGRAMS

 Intrinsic function procedures

 LITTLE provides a number of standard functions which have a fixed
 interpretation. These functions should not be declared. The standard
 functions include the FILESTAT input/output status function and the
 following standard mathematical functions defined in section 4:

 ABS AINT ALOG ALOG10 AMOD ATAN ATAN2
 COS DIM EXP FLOAT IABS IDIM IFIX
 INT ISIGN MOD SIGN SQRT TAN

 Association of arguments

 A function procedure must have at least one argument; a subroutine
 procedure may have arguments. Every argument must be declared. The
 declarations define the size, arithmetic mode and possibly the
 dimension of the argument. The process of procedure invocation
 associates actual arguments with the formal arguments of the
 procedure. This section defines the rules of valid argument
 association.

 Actual arguments are divided into the following classes:

 Exprarg expression, including constants and array elements
 Vararg simple variable (undimensioned variable)
 Arrayarg array name

 An Exprarg can only provide a value, so that a procedure should not
 execute an assignment to all or part of a formal argument associated
 with an Exprarg. A procedure may only reference as an array a formal
 argument associated with an Arrayarg. The sizes of actual and formal
 arguments which are arrays must be equal. In any reference to a
 formal argument which is not qualified by an extractor, the sizes of
 the formal and actual arguments must be equal.

 GUIDE TO THE LITTLE LANGUAGE PAGE 78
 INPUT/OUTPUT: TERMS AND CONCEPTS

 The input/output process (IO) associates the internal processor
 representaton of bit strings with external representations on various
 media. On input, the external representation defines the internal
 value; on output, the internal value defines the external
 representation.

 A file is a sequence of external representations. A FORMATTED file
 consists of a sequence of lines; each line is a sequence of
 characters.

 A formatted file is accessed with data formats and control formats.
 Control formats are used to position to a specific line or position
 within a line. Data formats specify the form of the external
 representation. Each data format corresponds to a type of constant;
 for example, the I format indicates repesentation as integer constant.

 There are two types of data formats: edit and list. Each defines a
 field, consisting of a sequence of characters. The field may occupy
 more than one line. Edit data formats specify the width of the field
 and the structure of the data in the field. List formats are used for
 fields which contain data in the same form as a constant. On input,
 the field is determined by searching for a constant of the desired
 type. On output, the field width is chosen to permit a correct
 representation of the internal value.

 The edit formats permit the use of group control to insert or ignore
 blanks within a field in order to represent long strings in a more
 readable form. For example, division of string ’EXAMPLE’ into groups
 of two gives ’EX AM PL E’, division of ’12378912’ into groups of three
 gives ’12 378 912’, and division of ’133.414’ into groups of two gives
 ’1 33.41 4’.

 GUIDE TO THE LITTLE LANGUAGE PAGE 79
 SUMMARY OF IO STATEMENTS AND FORMATS

 This section summarizes the input/output statements. Files are
 referenced within the program as small integers, indicated by FID in
 the summary:

 FILE FID ATTR1=VAL1, ATTR2=VAL2, ... ATTRn=VALn;

 The attributes and interpretation are as follows:

 ACCESS GET PRINT PUT READ STRING WRITE RELEASE
 LINESIZE Length of line in characters.
 If zero, processor determines length.
 TITLE If ACCESS is STRING, then variable name
 else string giving external name (if null
 then processor determines name)

 GET FID Iolist; Read from file.

 PUT FID Iolist; Write to file.

 READ FID, V1, V2,...,V9; Read from unformatted file.

 REWIND FID; Rewind file.

 WRITE FID, E1, E2,...,E9; Write to unformatted file.

 The intrinsic function FILESTAT returns the current value of a file
 attribute. FILESTAT has two arguments. The first argument specifies
 the file; the second is a keyword naming the attribute. The codes are
 as follows:

 ACCESS Return file type, encoded as follows:
 GET 1
 PRINT 2
 PUT 3
 READ 4
 STRING 5
 WRITE 6
 Return zero if file not connected.

 COLUMN Return column position.
 END Return one if at end of file.
 ERR If last operation had error, return error code;
 otherwise return zero. ERR may be written ERROR.
 LINESIZE Return current line size.
 STREAM Return one if prior operation forced streaming.

 The control formats establish a position within a formatted file:

 PAGE Begin new page
 COLUMN(E) Set current column position to E
 SKIP(E) Skip E lines
 X(E) Reset current column position by adding E.

 GUIDE TO THE LITTLE LANGUAGE PAGE 80
 SUMMARY OF IO STATEMENTS AND FORMATS

 Data formats specify the conversion of data items for formatted files:

 Code Type Alignment Parameters Required parameters.
 --
 A Edit Left A(FW, GW)
 AL List AL
 B Edit Right B(FW, BW, GW) FW, BW
 BL List B(BW)
 E Edit Right E(FW, DW, GW) FW
 EL List EL(SD) SD not specified on input
 F Edit Right F(FW, DW, GW) FW
 FL List FL(SD) SD not specified on input
 I Edit Right I(FW, DW, GW)
 IL List IL
 R Edit Left R(FW, GW) FW
 RL List RL(NC)

 Parameter types are as follows:
 FW field width, nonnegative integer
 BW byte width, either 1,2,3 or 4
 DW decimal width, positive nonzero integer
 GW group width, positive nonzero integer
 NC number of characters
 SD number of significant digits

 On output, if FW is zero, let processor determine width.
 On output, if NC is zero or not given, take NC to be one.
 On output, if SD is zero or not given, take SD to be six.
 On output, may prefix any data format with N to indicate that name is
 to generated in A format.

 Streaming in formatted files

 Formatted files consist of a sequence of characters, grouped into
 lines. The end of one line is logically followed by the start of the
 next. The action of going from the end of one line to the start of
 the next is called streaming; when this occurs implicitly during
 processing of an Edit or List format, streaming is said to have been
 forced. The STREAM option of the FILESTAT inquiry can be used to
 determine if streaming has been forced in the prior IO operation. The
 SKIP control format positions to the start of a new line.

 GUIDE TO THE LITTLE LANGUAGE PAGE 81
 EDIT FIELDS

 Edit fields represent data within a specified number of characters.
 The following general rules apply:

 1. The edit formats have the general form

 Edit_code(Expr_list)

 where Edit_code is a single character which gives the format
 type and Expr_list is a list of expressions separated by commas.

 2. Each edit format permits a number of parameters. In some cases,
 not all parameters need be written and default values are then
 implied for the parameters. The enclosing parentheses are written
 only if parameters are specified explicitly.

 3. The first parameter, FW, always specifies the length of the edit
 field. Some edit formats permit FW to be zero on output, in which
 case FW is the minimum value required to correctly represent the
 edited value.

 4. Associated with each edit format is an alignment, either left or
 right, as follows: A(left), B(right), E(right), F(right),
 I(right), R(left).

 5. The last parameter specifies group control. Grouping consists of
 inserting (on output) or ignoring (on input) the blanks in an edit
 field in order to break up the represented value into readable
 groups. The following general rules apply:

 1. If the group width is not given, take group width to be zero.
 2. If the group width is zero, do not form groups.
 3. The group width must be greater than or equal to zero.
 4. Determine group structure according to the following rules.
 (exceptions are noted in the description of the individual
 edit formats):
 1. If the edit item is left adjusted, begin the field at the
 left and form groups from the left.
 2. If the edit item is right adjusted, end the field on the
 right and form groups from the right.
 3. On input, group control has no effect for the I and B
 formats, as blanks are allowed in constants of these
 types.
 4. On output using the numeric formats (E, F and I), insert
 the group separating blanks only between digits. For the
 E and F formats, center the groups around the decimal
 point.

 GUIDE TO THE LITTLE LANGUAGE PAGE 82
 LIST FIELDS

 List fields are used to transmit data in the form of a constant.
 The following general rules apply:

 1. The list field contains a string in the same form as a constant.

 2. On output, write the value as a constant, and then write one or
 more blanks.

 3. For PUT access, include the enclosing string delimiters for
 character strings; for PRINT access, do not include the enclosing
 string delimiters for character strings.

 3. On input:

 1. Advance to the start of the data field by skipping over
 blanks, commas and comments.
 2. If the end of the file is encountered during the advancing,
 raise the end of file condition and set the value of the
 receiving item to zero.
 3. Accumulate characters as long as the accumulated characters
 define a valid representation of a constant of the desired
 type.
 4. Convert the accumulated characters to an internal value in
 the same manner as a constant.
 5. Blanks may not occur within numeric constants (integers and
 real quantities).
 6. Set the column position at the character following the last
 character accumulated, which must be a blank or comma.

 GUIDE TO THE LITTLE LANGUAGE PAGE 83
 CONTROL FORMATS

 Control formats specify a position within a line or page. The control
 formats are COLUMN, PAGE, SKIP and X. Control formats require ACCESS
 of GET, PRINT, PUT or STRING.

 Column format

 Purpose: To set the current column position.

 Form: COLUMN(E1)

 Rules:

 1. E1 is greater than zero and less than or equal to the (LINESIZE+1)
 of the file.

 2. Set the value of the current column position to E1. Setting the
 position to (LINESIZE+1) indicates that the next operation is to
 begin at the start of the next record.

 Page format

 Purpose: To begin a new page on a print file.

 Form: PAGE

 Rules:

 1. Assert that file ACCESS is PRINT.

 2. Complete the current line and begin a new one.

 3. The new line begins a new page.

 Skip format

 Purpose: To establish the next line to be processed.

 Form: SKIP(E1)

 Rules:

 1. If E1 is not given, take E1 to be one.

 2. Assert that E1 is greater than or equal to zero.

 3. If E1 is zero, the skip request has no effect.

 4. On input, read E1 lines. The last line read becomes the current
 line.

 GUIDE TO THE LITTLE LANGUAGE PAGE 84
 CONTROL FORMATS

 5. On output, end the current line. If E1 is greater than one, then
 write (E1-1) blank lines.

 7. Begin a new line.

 X format

 Purpose: To set the current column relative to its current value.

 Form: X(E1)

 Rules:

 1. If E1 is not given, take E1 to be one.

 2. Define the new value of the current column position by adding E1
 to the current value.

 3. Assert that the new value is within the current line.

 4. Set the current column position to the new value.

 GUIDE TO THE LITTLE LANGUAGE PAGE 85
 A FORMAT

 A format: Edit form

 Purpose: To edit data in the form of a character string.

 Form: A(FW, GW)

 Rules:

 1. The edit field is left adjusted. GW gives the group width.

 2. On input:
 1. Let RL be the largest integer such that the value of ’.SDS.
 RL’ does not exceed the size in characters of the input item.
 2. The effective field width, EFW, is the minimum of RL and FW.
 EFW must be greater than zero.
 3. The first EFW characters in the field define a character
 string constant.

 3. On output:
 1. Assert that the output item is a character string. Let SL be
 the length of this string.
 2. If FW is not given, or is given with value zero, take FW to be
 SL.
 3. The effective field width, EFW, is the minimum of SL and FW.
 4. The first EFW characters of the output item define the data in
 the edit field.

 A format: List form

 Purpose: To transmit data in the form of a character string
 constant

 Form: AL

 Rules:

 1. On input, the list field contains a character string constant.

 2. On output:
 1. If the ACCESS is PRINT, the list field contains the characters
 in the sending item.
 2. Otherwise, the list field contains the character string
 constant defined by the sending item.

 GUIDE TO THE LITTLE LANGUAGE PAGE 86
 B FORMAT

 B format: Edit form

 Purpose: To edit data in the form of a bitstring constant.

 Form: B(FW, BW, GW)

 Rules:

 1. The edit field is right adjusted.

 2. BW is the byte width and must have a value of 1, 2, 3 or 4. BW
 gives the byte width of each character in the edit field in the
 same manner as for a byte constant. BW must be given.

 3. On input:
 1. The edit field must contain only characters that are valid
 within the value part of a bitstring constant of byte width
 BW.
 2. The group width GW has no effect.

 4. On output:
 1. If the field width FW is not given, take FW to be zero.
 2. If the field width is zero, then the field width is EFW, where
 EFW is the least integer such that the value of ’EFW*BW’ is
 greater than or equal to the value of ’.FB. SI’, where SI is
 the output item. If EFW is zero, take EFW to be one.
 3. The edit field contains the delimited part of the bitstring
 constant of byte width BW defined by the sending item.
 4. If BW not given, take BW to be a processor-defined value.
 (Comment: the implied value will typically be the standard
 byte width used for the machine.)

 B format: List form

 Purpose: To transmit data in the form of a bitstring constant.

 Form: BL input
 BL(BW) output

 Rules:

 1. The list field has the form of a bitstring constant .

 2. On output, BW specifies the byte width to use (1, 2, 3 or 4). If
 BW is not given, take BW to be a processor-defined value.

 GUIDE TO THE LITTLE LANGUAGE PAGE 87
 E FORMAT

 E format: Edit form

 Purpose: To edit data in the form of a real constant.

 Form: E(FW, DW, GW)

 Rules:

 1. The edit field is right adjusted, and contains numeric data. GW
 gives the group width.

 2. FW is the field width and must be given.

 3. On input:
 1. The edit field contains a real constant.
 2. DW is the decimal width. If not given, take DW to be zero.
 3. If the edit field does not contain a decimal point, the
 position of the decimal point is implied by DW and the
 internal value corresponds to division of the constant defined
 in the field by the value of 10 raised to the power DW.

 4. On output:
 1. The value of the sending item approximately defines a real
 constant.
 2. DW is the decimal width. If not given, take DW to be zero.
 3. The edit field contains in order the following parts: a sign
 representation, a decimal representation and an exponent
 representation.
 4. If the sending item has value zero, the field contains ’0.’.
 5. If the value is nonzero the decimal representation consists of
 a nonzero digit followed by a decimal point followed by DW
 digits.
 6. The exponent representation consists of the letter E followed
 by a signed integer.

 GUIDE TO THE LITTLE LANGUAGE PAGE 88
 E FORMAT

 E format: List form

 Purpose: To transmit data in the form of a real constant.

 Form: EL Input
 EL(SD) Output

 Rules:

 1. On input, the list field contains a real constant.

 2. On output:
 1. SD gives the number of significant digits. If SD is not given
 or has value zero, take SD to be six.
 2. Represent the internal value as a floating point constant with
 SD significant digits and with an exponent of at least two
 significant digits. The decimal point follows the first
 digit.

 GUIDE TO THE LITTLE LANGUAGE PAGE 89
 F FORMAT

 F format: Edit form

 Purpose: To edit data in the form of a real constant.

 Form: F(FW, DW, GW)

 Rules:

 1. The field is right adjusted and contains numeric data. GW
 specifies the group width.

 2. F input format is the same as E input format.

 3. On output:
 1. DW is the decimal width. If DW is not given, take DW to be
 zero.
 2. The field consists of a real constant with no exponent part
 and DW digits after the decimal point.

 F format: List form

 Purpose: To transmit data in the form of a real constant.

 Form: FL Input
 FL(SD) Output

 Rules:

 1. The list field contains a real constant.

 2. On output:
 1. SD gives the number of significant digits. If SD is not given
 or is given with value zero, take SD to be six.
 2. Represent the internal value as a floating point constant with
 SD significant digits.

 GUIDE TO THE LITTLE LANGUAGE PAGE 90
 I FORMAT

 I format: Edit form

 Purpose: To edit data in the form of an integer constant.

 Form: I(FW, DW, GW)

 Rules:

 1. The edit field is right adjusted and contains numeric data. GW
 gives the group width.

 2. The edit field contains an integer constant.

 3. DW gives the decimal width. If DW is not given, take DW to be
 one. The field contains at least DW digits with leading zeros
 added if necessary.

 I format: List form

 Purpose: To transmit data in the form of an integer constant.

 Form: IL

 Rules:

 1. The list field contains an integer constant.

 GUIDE TO THE LITTLE LANGUAGE PAGE 91
 R FORMAT

 R format: Edit form

 Purpose: To edit data in the form of character codes.

 Form: R(FW, GW)

 Rules:

 1. The edit field is left adjusted. GW specifies the group width.

 2. FW is the field width. If FW is not given or has value zero, take
 FW to be one.

 3. On input, the edit field defines a character code constant of
 length FW.

 4. On output:
 1. Let SL be the largest integer such that ’.CS. * SL’ does not
 exceed the size of the sending item. If SL is zero, set SL to
 one.
 2. The effective field width, EFW, is the minimum of FW and SL.
 The edit field contains the EFW characters defined by the
 rightmost EFW character codes in the sending item.

 R format: List form

 Purpose: To transmit data in the form of a character code constant.

 Form: RL Input
 RL(FW) Output

 Rules:

 1. On input, the list field contains a character code constant.

 2. On output:
 1. FW gives the number of character codes to transmit.
 2. If FW is not given, take FW to be one.
 3. The list field contains a character code constant with FW
 codes. codes.

 GUIDE TO THE LITTLE LANGUAGE PAGE 92
 NAMING OUTPUT ITEMS

 Purpose: To write the name of a data item.

 Form: The letter N occurs before the data format code.

 Rules:

 1. On output to a formatted file, may prefix any data format with the
 letter N.

 2. Let DI be the data item to which the data format applies. Define
 a character string S which names DI as follows:
 1. If DI is an expression, S is the null string ’’.
 2. If DI is a simple variable, S is the name of the variable.
 3. If DI is an array element, S is the name of the array followed
 by a left parenthesis followed by the subscript value
 represented as an integer, followed by a right parenthesis.

 3. Write the name string S defined by rule 2 and then write the
 string ’ = ’.

 Examples:

 PUT :S, NI(3);

 PUT :A(1) TO A(AMAX),NI(6) ,SKIP;

 GUIDE TO THE LITTLE LANGUAGE PAGE 93
 STRING FILES

 The formatted IO features support the construction of lines by
 conversion and editing, and the transmission of lines to external
 media. The file access STRING permits use of the editing and
 conversion features without the cost of transmitting data to external
 media. The following rules govern the use of file access STRING:

 1. Establish access STRING by a FILE statement of the form

 FILE FID ACCESS=STRING, TITLE=V1, LINESIZE=I1;

 where V1 is a character string, and I1 defines the length of the
 line.

 2. Both PUT and GET statements can be used if access is STRING.
 Assert that on execution of a GET or PUT statement, the current
 length in characters of V1 is greater than or equal to the
 LINESIZE I1.

 3. The following actions set the column position of a STRING file to
 one:
 1. Execution of the FILE statement.
 2. Execution of a REWIND statement.
 3. Execution of a SKIP or PAGE format.
 4. Execution of a PUT statement which forces streaming.

 4. Execution of a PUT statement which forces streaming does not clear
 the string to blanks.

 5. Execution of a GET statement which forces streaming raises the
 file END condition.

 Examples:

 $ SHOW HOW TO OBTAIN VALUES USING
 $ STRING IO. THIS METHOD COULD BE USED TO OBTAIN
 $ PROGRAM PARAMETERS OR DATA IN ’FREE FIELD’ FORM.

 SIZE SFILE(.SDS. 80);
 SIZE I(.PS.); $ LOOP INDEX.
 SIZE ARA(.WS.); DIMS ARA(100);
 SIZE ARAPTR(.PS.); $ NUMBER OF VALUES OBTAINED.
 FILE 3 ACCESS=STRING, TITLE=SFILE, LINESIZE = 80;
 SFILE = ’ 1 3 5 -20 123 ’ .PAD. 80;

 ARAPTR = 0;
 DO I = 1 TO 100;
 GET 3 :V,IL; $ GET NEXT VALUE.
 IF (FILESTAT(3, END)) QUIT DO;
 ARAPTR = ARAPTR + 1;
 ARA(ARAPTR) = V;
 END DO;

 GUIDE TO THE LITTLE LANGUAGE PAGE 94
 FILESTAT REQUEST.

 Purpose: To obtain file attributes or status of last
 input/output operation.

 Form: FILESTAT(FID, SCODE)

 Rules:

 1. FILESTAT is an intrinsic function.

 2. FID is the file number as established by a FILE statement.

 3. SCODE names the type of the request and must be one of the
 following:

 ACCESS COLUMN END ERROR ERR LINESIZE STREAM

 4. The result is zero, except as noted below.

 5. ACCESS returns the file access mode, as follows:
 Type Value

 0 (file not connected)
 (Must exeucute FILE statement before
 any other IO operation on file.)
 GET 1
 PRINT 2
 PUT 3
 READ 4
 STRING 5
 WRITE 6

 6. COLUMN returns the current column position of formatted file.

 7. END returns one if the end of an input file has been encountered.

 8. ERROR is nonzero if an error condition exists, as follows:

 value meaning
 1 truncation or conversion error.
 2 format error or error doing operation

 FILESTAT(F, ERROR) may also be written FILESTAT(F, ERR).

 9. LINESIZE returns the LINESIZE of a formatted file.

 10. STREAM is one if the preceding IO action forced streaming to a new
 line.

 GUIDE TO THE LITTLE LANGUAGE PAGE 95
 MONITOR FACILITIES

 /* Mr. Edison, I was informed, had been up the two previous
 nights discovering a ’bug’ in his phongraph - an
 expression for solving a difficulty, and implying
 that some imaginary insect has secreted itself inside
 and is causing all the trouble.
 --Supplement to Oxford English Dictionary, under ’bug’ */

 LITTLE provides several tools to monitor program execution. These
 tools may assist in the identification of program errors, and provide
 many of the features usually found in a ’debugging’ package. The
 tools permit the following:

 trace of procedure entry and exit
 report of control flow during procedure invocation
 trace of stores (assignments) to selected variables
 check that index valid on array assignment
 verification of program ’assertion’

 The monitor package includes the following compilation directives:

 CHECK (NOCHECK) INDEX; Check (do not check) index on array
 assignment.

 CHECK (NOCHECK) INDEX A1,...,A9; Check (do not check) index
 on assignments to selected arrays.
 TRACE (NOTRACE) ENTRY; Trace (do not trace) procedure
 entry and exit.
 TRACE (NOTRACE) FLOW; Trace (do not trace) procedure
 control flow.
 TRACE (NOTRACE) STORES; Trace (do not trace) assignments
 to all variables.
 TRACE (NOTRACE) STORES N1,...,N9; Trace (do not trace)
 assignments to selected variables.

 The monitor package includes the following executable statements:

 ASSERT E1; Verify that E1 is nonzero.

 MONITOR OPTIONLIST; Set monitor option, as follows:
 BYTE (NOBYTE) Guarantee (do not guarantee) that
 bitstring value always given.
 ENTRY (NOENTRY) Enable (disable) listing of results
 of TRACE ENTRY directives.
 FLOW (NOFLOW) Enable (disable) listing of results
 of TRACE FLOW directives.
 LIMIT = E1 Set monitor line limit to E1.
 STORES (NOSTORES) Enable (disable) listing of results
 of TRACE STORES directives.

 Monitor conventions.

 Several of the monitor directives have two forms - one to enable a
 feature and one to disable it. The prefix NO systematically
 identifies the disabling case. For example, TRACE ENTRY enables
 tracing of procedure entry, while NOTRACE ENTRY disables this trace.

 GUIDE TO THE LITTLE LANGUAGE PAGE 96
 MONITOR FACILITIES

 The directives CHECK and TRACE may contain a list of names. If no
 names are given, the directive has maximal scope in that all names
 are referred to. If a list is given, only the named items are
 indicated. For example, ’TRACE STORES A,X;’ directs tracing of stores
 to ’A’ and ’X’, while the directive ’NOTRACE STORES;’ disables stores
 tracing for all variables.

 The scope of a CHECK or TRACE directive is determined as follows: an
 interlude of a program consists of the text before the start of the
 first procedure definition, or of the text between the END statement
 terminating a procedure definition and the start of the next procedure
 definition. Directives within an interlude establish defaults for
 following procedures; directives within a procedure definition apply
 only to that procedure. The TRACE ENTRY and TRACE FLOW directives
 must appear in an interlude.

 Checking index range on array assignment
 --

 The CHECK directive requests checking that the index is valid on an
 array assignment. The NOCHECK directive suppresses this check. The
 CHECK directive either requests checking of all arrays, or contains a
 list of names of the arrays to check.

 Tracing procedure entry and exit

 The TRACE ENTRY directive enables tracing of procedure entry and exit.
 The NOTRACE ENTRY directive disables this trace. This directive must
 occur in an interlude.

 Tracing control flow

 The TRACE FLOW directive enables the tracing of control flow within a
 procedure invocation. The NOTRACE FLOW directive disables this trace.
 This directive must occur in an interlude.

 Tracing assignments.

 The TRACE STORES directive enables tracing of assignments. The
 NOTRACE STORES directive disables this trace. The directive either
 enables tracing of assignments to all variables or contains a list of
 the variables to be traced.

 GUIDE TO THE LITTLE LANGUAGE PAGE 97
 MONITOR FACILITIES

 Verification of program assertions

 If a program is valid only if certain conditions hold, use the ASSERT
 statement to verify these assertions at execution time. The ASSERT
 statement has the form

 ASSERT E1;

 On execution, if E1 is nonzero, execution proceeds to the next
 statement; otherwise, execution terminates abnormally.

 Execution time monitor options

 The MONITOR statement defines execution-time options of the monitor
 package. A MONITOR statement must occur within a procedure
 definition. The MONITOR statement consists of a list of options
 separated by commas. The options are as follows:

 1. The BYTE option enables listing of values in byte form. The
 NOBYTE option disables this listing. The monitor package
 picks a format to print a value. If the BYTE option is on,
 the value as a bitstring is also listed if another format is
 chosen.
 2. The ENTRY option enables listing of the output of TRACE ENTRY
 directives. The NOENTRY option disables this listing.
 3. The FLOW option enables listing of output of TRACE FLOW
 directives. The NOFLOW option disables this listing.
 4. The LIMIT option has the form LIMIT = I1 where I1 is an
 integer giving the monitor line limit. When the number of
 lines produced by monitor directives equals or exceeds this
 limit, the options ENTRY, FLOW and STORES are disabled, to
 minimize further monitor output.
 5. The STORES option enables listing of the output of TRACE
 STORES directives. The NOSTORES option disables this listing.

 Monitor level

 There are several levels of monitor processing, as follows:
 0. Ignore all monitor statements and directives.
 1. Process only ASSERT statements.
 2. Process all Monitor directives and statements.

 The default level is one. The compiler option MLEV sets the level, as
 does the compiler option HELP.

 Compiler option HELP

 The compiler option HELP aids use of the monitor package for
 debugging. The parameters of HELP consist of a sequence of character
 codes, which correspond to initial monitor directives, as follows:

 GUIDE TO THE LITTLE LANGUAGE PAGE 98
 MONITOR FACILITIES

 C CHECK INDEX on
 E TRACE ENTRY on
 F TRACE FLOW on
 S TRACE STORES on

 The default is ’HELP=0’. If ’HELP’ alone given, then ’HELP=ES’ is
 taken. If any of the options are selected, the monitor level is set
 to two.

 GUIDE TO THE LITTLE LANGUAGE PAGE 99
 REFERENCES

 (/1/) P. Lecht. The Programmer’s PL/I. McGraw Hill (1970).

 (/2/) J. Cocke and J. Schwartz. Programming Languages and Their
 Compilers. Computer Science Department, Courant Institute
 of Mathematical Sciences, New York University (1970).

 (/3/) P.C. Poole and W.M. Waite. ’Portability and Adaptability’.
 in: Advanced Course on Software Engineering, ed. Bauer,
 Springer-Verlag, Berlin and New York (1973).

 (/4/) V. Basili. SIMPL-X - A Language for Writing Structured
 Programs. Technical Report TR-223, University of
 Maryland (1973).

 (/5/) R. Griswold. The Macro Implementation of SNOBOL 4.
 W.H. Freeman and Co, San Francisco (1972).

 (/6/) W.A. Wulf, et. al. BLISS Reference Manual. Computer
 Science Department Report, Carnegie Mellon University,
 Pittsburgh, Penn., (1969).

 (/7/) G. Goos. ’Language Characteristics: Programming Languages
 as a Tool in Writing Systems Software’. In: Beekmann, op. Cit.

 (/8/) P. J. Brown. Macro Processors and Techniques for Portable
 Software. John Wiley and Sons, New York (1974).

 (/9/) R. Griswold, J. Poage and I. Polonsky. The SNOBOL4
 Programming Language. Second Edition, Prentice-Hall (1971).

 GUIDE TO THE LITTLE LANGUAGE PAGE 100
 LITTLE GRAMMAR

 The following grammar for LITTLE may aid in understanding its
 syntactic details. The notations used in the grammar are as follows:

 <stype> denotes a syntactic type
 <*ltype> denotes a lexical type
 lit ’lit’ denotes literal
 <-comment> denotes comment about the grammar
 <stype*> denotes varying number of instances (maybe none)
 of a syntactic type
 <stype(m,n)> denotes limited number of repetitions of
 a syntactic type
 m : minimum number required
 n : maximum number allowed

 Successive alternative expansions of a syntactic type are indicated by
 successive equal signs, as follows:

 <stype> := (first alternative)
 := (second alternative)
 :=...(remaining alternatves) .

 The following lexical types appear in the grammar

 <*name> variable or procedure name
 <*con> a constant, integer, bit or string
 Examples: 10 ’A STRING’ 3B’33’ 1RC
 <*notsemicolon> any character except semicolon

 <program> := <block>

 <block> := <statement> <statement*>

 <statement> := <declstatement>
 := <compstatement>
 := <simplstatement>
 := <simplifstatement>

 <declstatement> := SIZE <attrspec> <cattrspec*> ;
 := REAL <*name> <cname*> ;
 := DIMS <attrspec> <cattrspec*> ;
 := DATA <dataspec> <coldataspec*> ;
 := ACCESS <*name> <cname*> ;

 <compstatement> := <opener> <block> <ender>
 := <ifstatement>

 <ifstatement> := IF <expr> THEN <block> <elseifblock*>
 <ender>
 := IF <expr> THEN <block> <elseifblock*>
 ELSE <block> <ender>

 <elseifblock> := ELSEIF <expr> THEN <block>

 <opener> := NAMESET <*name> ;

 GUIDE TO THE LITTLE LANGUAGE PAGE 101
 LITTLE GRAMMAR

 := PROG <*name>;
 := SUBR <*name> <arglist> ;
 := SUBR <*name> ;
 := FNCT <*name> <arglist> ;
 := WHILE <expr> ;
 := UNTIL <expr>;
 := DO <*name> = <expr> TO <expr> BY - <expr> ;
 := DO <*name> = <expr> TO <expr> BY <expr> ;
 := DO <*name> = <expr> TO <expr> ;

 <simplifstatement> := IF <expr> <simplstatement>

 <simplstatement> := CALL <*name> (<expr> <cexpr*>);
 := CALL <*name> ;
 := CONT <notsemi(0,5)> ;
 := GO TO <*name> ;
 := GO TO <*name> (<expr>) ;
 := GO TO <*name> (<expr>)
 IN <const> TO <const> ;
 := QUIT <notsemi(0,5)> ;
 := RETURN ;
 := REWIND <expr> ;
 := FILE <expr> <filelist> ;
 := GET <expr> <iolist> ;
 := GET <iolist> ;
 := PUT <expr> <iolist> ;
 := PUT <iolist> ;
 := READ <expr> , <expr> <cexpr*> ;
 := WRITE <expr> , <expr> <cexpr*> ;
 := <assignstatement> ;

 <arglist> := (<*name> <cname*>)

 <cname> := , <*name>

 <ender> := END <*notsemi(0,5)> ;

 <notsemi> := <*notsemicolon>

 <attrspec> := <*name> (<constexpr>)

 <cattrspec> := , <attrspec>

 <file> := <constexpr>

 <assignstatement> := <targpart> <target> = <expr>
 := <target> = <expr>

 <targpart> := .F. <expr> , <expr> ,
 := .E. <expr> , <expr> ,
 := .S. <expr> , <expr> ,
 := .CH. <expr> ,
 := .LEN.

 <target> := <*name> (<expr>)
 := <*name>

 GUIDE TO THE LITTLE LANGUAGE PAGE 102
 LITTLE GRAMMAR

 <dataspec> := <*name> (<constexpr>) = <dataval*>
 := <*name> = <dataval*>

 <dataval> := <dataexpr> <cdataexpr*>

 <cdataexpr> := , <dataexpr>

 <coldataspec> := : <dataspec>

 <dataexpr> := <constexpr> (<constexpr>)
 := <constexpr>

 <iolist> := <ioitem> <ioitem*>

 <ioitem> := , <controlformat>
 := <iodataitem>

 <controlformat> := SKIP (<expr>)
 := SKIP
 := X (<expr>)
 := X
 := PAGE
 := COLUMN (<expr>)
 := <*string>

 <cexpr> := , <expr>

 <expr> := <-described in section 4>

 <constexpr> := <- expression with only constants as operands>

 <dataitem> := : <dataitem> , <dataformat>
 := : <*name>

 GUIDE TO THE LITTLE LANGUAGE PAGE 103
 CODING CONVENTIONS

 This section describes the coding conventions used in writing software
 for the LITTLE system. Systematic coding style improves readability.
 The conventions include basic text format, choice of names, comments
 and program organization. The programs in appendix G follow these
 conventions.

 Basic text format

 A line of LITTLE text contains 72 columns. Leave column one blank,
 and begin text of each line in column seven, except as noted below.

 Except for procedure definitions and perhaps NAMESET definitions,
 indent each statement in the body of a compound group four spaces,
 including the terminating END statement. The standard ’tabs’ are thus
 7, 11, 15, 19,

 Begin the ELSEIF and ELSE clauses of a compound IF in the same column
 as the opening IF. In general, put the ELSE of an ELSE clause on a
 separate line.

 Spacing rules

 1. Space twice after the following if they begin a line

 DATA DIMS DO IF REAL SIZE +*

 2. Space twice before and after the condition of an IF or ELSEIF
 clause. Space twice before and after THEN.
 3. Space twice after the following: ; ** .
 4. Space twice before ’$’ which begins comment and space at least
 once after it.
 5. Space at least once after every comma, except as noted in next
 rule.
 6. In GET or PUT statements,
 1. Space once before each comma which is followed by a
 control format.
 2. Space once before each colon which marks a data item.
 3. Do not space before or after a comma which is followed by
 a data format.

 For example, ’PUT ,SKIP ,X :A :B,NIL ,SKIP;’.

 Never terminate two compound groups on the same line if neither

 begins on that line.

 GUIDE TO THE LITTLE LANGUAGE PAGE 104
 CODING CONVENTIONS

 Blank lines

 Use blank lines to improve readability, but do not use them in excess.
 Use a single blank line to indicate a break in the program. Use two
 blank lines to indicate a major break. Use of more than two blank
 lines at a time is generally no more informative than a single blank
 line, and serves only to waste paper.

 Put a blank line before and after compound groups which contain more
 than a few lines, to indicate the scope of the group.

 Avoid banners

 A banner consists of one or more lines which do nothing other than
 announce their presence. A common use is to announce comments, as in

 /* * * * * * * * * * * * * * * * */ .

 Comments are an integral part of a well-written program and so need no
 banners to announce their presence. A better approach is to use blank
 lines as noted above, or to construct programs which extract and list
 special text groups.

 Statement labels

 Use as few statement labels as necessary. Use a separate line for
 labels and begin the label in column two, unless need for indenting
 indicates otherwise. Use descriptive names for labels, except that L
 is commonly used for an indexed GO TO if a procedure contains a single
 indexed GO TO.

 Identify terminating END

 Always put at least the opening keyword after the END in an END
 statement. Do this also for CONT and QUIT statements; for example:

 END PROG MAIN; QUIT DO; END IF; CONT WHILE; .

 Choice of names

 1. Use short names for items used many times and longer names for
 items infrequently referenced.
 2. When a name is not obvious, include a comment which explains the
 derivation of the name; for example:

 LTLDOC $ LTL-LITTLE DOC-UMENTATION PROGRAM.
 LCS $ L-IST C-OMPILATION S-TATISTICS.
 3. In choosing related names, use a common prefix, as this makes

 GUIDE TO THE LITTLE LANGUAGE PAGE 105
 CODING CONVENTIONS

 cross-reference list easier to read. For example, write ’HAPTR,
 HAMAX and HAORG’ and not ’PTRHA, MAXHA and ORGHA’.
 4. Avoid names which are common words, such as ’table’. Invented
 names stand out in text and require no special delimiters to
 distinguish the name from the common word.

 Program organization

 A LITTLE program text consists of the following sections:

 1. INTRO: an introductory section consisting entirely of
 comments which name the program, give its purpose and identify
 the authors.
 2. MODS: a section consisting entirely of comments which
 describes each change to the program. The text of each mod
 should contain the name of the author, the date of change, the
 purpose of the change, and a list of the procedures affected.
 3. GLOSSARY: the glossary is needed for large programs, and
 contains an alphabetical list of names of macros, procedures
 and variables, with one name to a line; for example,

 $ HAMAX: DIMENSION OF HA.’

 4. MACROS: this section contains the standard macros as follows:
 1. Conditional assembly options.
 2. Machine parameters.
 3. Program parameters, such as table lengths.
 4. Program codes, typically macros naming constants.
 5. Code macros.
 5. MAIN: this section defines the first procedure, typically a
 program procedure and contains the declarations for global
 variables.
 6. PROCS: remaining procedure definitions.

 Comments

 1. Use rest-of-line comments in preference to delimited comments.
 Use delimited comments only for comments of several lines.
 2. Every variable declaration requires a comment. Use a paragraph of
 comments just before the declarations of several related
 variables, or an end-of-line comment for a single variable.
 3. Put a period at the end of every comment.
 4. Write comments in active voice. Comments should define the task
 to be done.
 5. Good comments are an essential part of a quality program.
 6. Begin each procedure with a paragraph of comments which define the
 purpose of procedure.

 GUIDE TO THE LITTLE LANGUAGE PAGE 106
 INTRODUCTION TO MACROS IN LITTLE

 Macro processors are not commonly found in high level languages, and
 this appendix expands on the definition of the LITTLE macro processor
 given in section 2.3 to provide an informal introduction to the LITTLE
 macro processor. A book by Brown (/8/) contains an excellent
 introduction to macro processors and techniques for writing portable
 software.

 A macro processor provides a tool for transforming one set of symbols
 into another. A macro definition specifies a transformation rule. A
 macro call applies the transformation rule to a specific sequence of
 symbols. The symbols resulting from the transformation replace the
 macro call.

 The simplest form of a macro definition is shown by

 +* MAXTOKLEN = 127 ** $ MAXIMUM TOKEN LENGTH.

 The successive plus and asterisk characters mark the start of the
 macro definition, and are followed by the macro name MAXTOKLEN. The
 macro body begins with the symbol following the equal character after
 the macro name and is ended by the two successive asterisk characters
 that terminate a macro definition.

 A subsequent instance of MAXTOKLEN in the source text causes the
 replacement of MAXTOKLEN by the macro body so that, for example, the
 statement

 ASSERT TOKLEN <= MAXTOKLEN;

 becomes

 ASSERT TOKLEN <= 127;

 This use of the macro processor improves the program in two ways.
 First, the statement ’ASSERT TOKLEN <= MAXTOKLEN;’ is more readable
 than ’ASSERT TOKLEN <= 127;’. Second, and of more importance, in
 order to change the program to accept tokens of a different maximum
 length it is only necessary to change the macro definition, as in

 +* MAXTOKLEN = 255 ** $ MAXIMUM TOKEN LENGTH.

 The macro processor can be used to simplify coding, as shown by

 +* WS = .WS. ** +* CS = .CS. **

 which permits the writing of WS and CS to express the environment word
 and character sizes, respectively. Macros can be used within macros,
 as shown by

 +* CPW = (WS/CS) ** $ CHARACTERS PER WORD.
 +* HASHTOKORG = $ ORIGIN OF HASH TOKEN STRING.
 (1 + .SDS. (MAXTOKLEN+CPW)) **
 Note that a macro definition may be written on a single
 line or on several lines, and a line may contain several
 macro definitions.

 Another common use of the macro processor is to express

 GUIDE TO THE LITTLE LANGUAGE PAGE 107
 INTRODUCTION TO MACROS IN LITTLE

 environment-dependent program parameters, as shown by

 +* NCHARS = $ NUMBER OF CHARACTER CODES.
 .+S37 256 $ IBM SYSTEM/370.
 .+S66 64 $ CDC 6000 SERIES.
 **

 This macro uses the conditional assembly feature to select the macro
 body. If an attempt is made to compile the program in a new
 environment, the macro definition becomes

 +* NCHARS = **

 which has an empty (null) macro body. The macro processor treats this
 definition form as a request to drop the macro status of the name, and
 subsequent instances of the name are not transformed. For example,
 NCHARS just remains NCHARS. An attempt to compile the program will
 result in compilation errors since NCHARS will appear to be an
 undeclared variable. This use of the macro processor thus makes
 environment-dependent parameters very visible, and requires that a new
 value be specified when attempting to move the program to a new
 environment.

 Another common use of the macro processor is to name the fields of a
 bitstring, as shown by the macros

 +* HA_LEXLEN = .E. 05, 07, ** $ TOKEN LENGTH.
 +* HA_NAMEPTR = .E. 20, 13, ** $ NAMES INDEX.
 +* HA_MACORG = .E. 35, 13, ** $ MACRO ORIGIN.

 which define some of the fields in the symbol table of the LITTLE
 lexical scanner. Uses of such macros have the form

 HA_LEXLEN SYMTAB(I)

 Instances of consecutive names, with no intervening operators or
 delimiters, usually indicate the use of an extractor in a LITTLE
 program.

 The macro processor permits macros to have arguments. For example,
 suppose the array TOKARA is used to accumulate the characters of a
 token. Before adding a new character to the array, it is necessary to
 check that there is room for it, by writing code of the form

 ASSERT TOKARAPTR < MAXTOKLEN;
 TOKARAPTR = TOKARAPTR + 1;
 TOKARA(TOKARAPTR) = NEWCHAR;

 The basic check can be expressed as a macro by writing

 +* COUNTUP(VAR, LIM) = $ INCREMENT WITH LIMIT CHECK.
 ASSERT VAR < LIM;
 VAR = VAR + 1; **

 GUIDE TO THE LITTLE LANGUAGE PAGE 108
 INTRODUCTION TO MACROS IN LITTLE

 This macro definition has the same form as a simple definition except
 that the macro name is followed by a parenthesized list of names
 separated by commas. The code can now be written

 COUNTUP(TOKARAPTR, MAXTOKLEN);
 TOKARA(TOKARAPTR) = NEWCHAR;

 However, the basic action is just to add the character, and can be
 written as

 +* ADDCHAR(C) = $ ADD C TO TOKARA.
 COUNTUP(TOKARAPTR, MAXTOKLEN);
 TOKARA(TOKARAPTR) = C; **

 so that the original code can now be written as just

 ADDCHAR(NEWCHAR);

 which, as a result of expanding macros ADDCHAR and COUNTUP, yields

 ASSERT TOKARAPTR < MAXTOKLEN;
 TOKARAPTR = TOKARAPTR + 1;;
 TOKARA(TOKARAPTR) = NEWCHAR;;

 The consecutive semicolons result from the writing of a semicolon both
 in the macro definition and after the macro call. However, a
 statement consisting only of the statement-terminating semicolon is a
 null statement in LITTLE. Indeed, LITTLE includes the null statement
 just to avoid this problem.

 As another example, suppose the array STK is used to simulate a stack,
 with STKPTR the index of the top of the stack. The stack primitives
 PUSH and POP can be implemented by writing

 +* PUSH(I) = $ PUSH I ON STACK.
 COUNTUP(STKPTR, STKLIM); $ TEST FOR OVERFLOW.
 STK(STKPTR) = I; **

 +* POP(I) = $ POP STACK TO I.
 I = STK(STKPTR);
 ASSERT STKPTR > 0; $ TEST FOR UNDERFLOW.
 STKPTR = STKPTR - 1; **

 The ADDCHAR, PUSH and POP macros illustrate the use of the macro
 processor to permit the writing of code in a form close to the
 programmer’s view of the algorithm. This adaption can also be done by
 using procedures, writing code of the form

 CALL PUSH(ELM); ... CALL POP(LAST);

 A merit of the macro processor is that it permits the use of both
 direct ’in-line’ code and ’off-line’ procedures, or combinations
 thereof. For example, if speed is of the essence, the POP macro can
 be defined, as above, to expand into code; however, if it is more
 important to reduce program size, and there are many calls to POP, the
 POP macro can be defined to expand into a procedure call.

 GUIDE TO THE LITTLE LANGUAGE PAGE 109
 INTRODUCTION TO MACROS IN LITTLE

 The definition of a macro in which the body is procedural in nature
 and requires its own local variables or statement labels must be done
 with care. For example, consider writing a macro NBLANKS which is to
 return the number of blank characters in a character string. A first
 attempt is to write

 +* NBLANKS(S, NB) = $ SET NB TO NUM. OF BLANKS IN S.
 NB = 0;
 DO I = 1 TO .LEN. S;
 NB = NB + (.CH. I, S = 1R);
 END DO;
 **

 The loop index I is local to the macro, and the user of the macro
 should not even know of the existence of I. LITTLE provides special
 symbols ZZZA, ZZZB, ..., ZZZZ (and also ZZZ_, since _ can be used in
 names) which can be written in a macro definition and which cause the
 generation of new names on macro expansion. The correct definition is

 +* NBLANKS(S, NB) = $ SET NB TO NUM. OF BLANKS IN S.
 SIZE ZZZI(PS); $ LOOP INDEX.
 NB = 0;
 DO ZZZI = 1 TO .LEN. S;
 NB = NB + (.CH. ZZZI, S = 1R);
 END DO;
 **

 LITTLE also provides ZZY symbols which generate integer constants
 private to a macro expansion.

 As has been shown, macros can be used within macro definitions. An
 obvious question is to ask whether macro definitions can be written
 within macro definitions. The LITTLE macro processor answers yes, but
 this point requires some discussion. For example, consider the macro
 definition

 +* M1(A, B) =
 +* M2 = B **
 A = B + 1;
 **

 One approach is to have the macro processor absorb the definition of
 M2 while processing the definition of M1. This is not very useful, as
 M2 is then just a macro giving the name B of the second argument of
 M1. A second and much more powerful approach is to defer the
 definition of M2 until M1 is called. The LITTLE macro processor takes
 the second approach. For various technical reasons, this requires the
 use of the following macros

 +* Q3(A, B, C) = A B C **
 +* MACDEF(MACTXT) = Q3(+, *MACTXT*, *) **

 to effect definition of macros within macros. The main point is that
 during expansion of a macro containing a call of MACDEF, the expansion
 of the MACDEF macro provides the ’+*’ and ’**’ delimiters before and
 after MACTXT, so that MACTXT is recognized as a macro definition.

 GUIDE TO THE LITTLE LANGUAGE PAGE 110
 INTRODUCTION TO MACROS IN LITTLE

 As an example of the use of macro definitions within macros, consider
 the coding of an interpreter for a hypothetical machine which has
 fifteen opcodes. The crudest approach would be just to assign the
 codes and use their integer values, although the resulting code would
 not be very readable. A simple use of the macro processor is to write
 macros of the form

 +* OP_ACT = 01 **
 +* OP_BAK = 02 **
 +* OP_END = 03 **

 The MACDEF device permits the assigning of codes without the need to
 specify the values. This is done by writing

 +* DEFC(C) = MACDEF(C=ZZYA) **
 DEFC(OP_ACT) $ ASSIGN CONSTANT CODE FOR ACT.
 DEFC(OP_BAK)
 DEFC(OP_END)

 This method permits the addition of new codes, and changing the order
 of the codes simply by adding a new DEFC macro call or by changing the
 order of the calls. There is a problem if DEFC macro used to define
 several sets of codes, as each set would begin with a code
 corresponding to one more than the code assigned to the last element
 in the prior set. LITTLE permits the resetting of the ZZY symbols to
 their initial value, by use of the ZZYORG directive line, which has
 the form

 .=ZZYORG AXB

 and which, in this example, resets the ZZYA, ZZYX and ZZYB symbol
 origins. The period must be written in column two.

 Although LITTLE provides only one-dimensional arrays, the macro
 processor can be used to provide much of the effect of
 multi-dimensional arrays. For example, consider the macro

 +* DEFARA2(MAC, ARA, NR, NC, DIM) =
 MACDEF(MAC(I,J) = ARA((I)+((J)-1)*NR))
 MACDEF(DIM = (NR*NC)) $ DIMENSION OF ARA.
 **

 which permits the writing of MAC(I,J) to refer to an element of the
 two-dimensional array with NR rows and NC columns. The elements are
 stored in the one-dimensional array ARA and DIM gives the dimension of
 ARA. For example

 DEFARA2(MAT, MATARA, 10, 20, MATARADIM)

 SIZE MATARA(WS);
 DIMS MATARA(MATARADIM);
 DATA MATARA = 0(MATARADIM)

 sets up an 10 by 20 matrix whose elements can be referenced by writing
 MAT(4,I), MAT(3*J, K), etc. Similar methods can be used to define
 ’zero origin’ arrays, and so forth.

 GUIDE TO THE LITTLE LANGUAGE PAGE 111
 INTRODUCTION TO MACROS IN LITTLE

 Instances of macro arguments within expressions in the macro body
 should be enclosed in parentheses. To see the need for this consider
 the macro

 +* MUL5(X) = X*5 ** $ MULTIPLY BY FIVE.

 The macro call MUL5(N) expands to N*5; however, the macro call
 MUL5(A+B) expands to A+B*5, and since multiplication has a higher
 precedence than addition, the expression is interpreted as A+(B*5)
 instead of the desired (A+B)*5. Such problems are avoided by writing
 the macro as

 +* MUL5(X) = (X)*5 ** $ MULTIPLY BY FIVE.

 Macro arguments may in general consist of an arbitrary sequence of
 tokens. The arguments may contain calls to other macros. However,
 since macro arguments are separated by commas, some care must be taken
 in writing arguments which contain commas. For example, the call
 MUL5(.E. 5, 6, A(I)) would be detected as erroneous by the macro
 processor, as it is taken to be a call with the three arguments ’.E.
 5’, ’6’, and ’A(I)’, while MUL5 has only one argument. The correct
 way to write this macro call is to write MUL5((.E. 5, 6, A(I))) as the
 macro processor permits commas in arguments which are enclosed in
 parentheses. If the extractor were defined by a macro such as ’+*
 FLD = .E. 5, 6, **’ then the macro call could be written MUL5(FLD
 A(I)).

 Yet another use of the macro processor is to assist in the
 initialization of program data. For example, the following text
 fragment taken from the IBM System/370 code generator for LITTLE shows
 how some of the machine attributes are specified in a readable
 fashion.

 $ FIELDS IN -MOPTAB-.

 +* MT_OP = .F. 01, 8, ** $ MACHINE OPERATION CODE.
 +* MT_CCTYPE = .F. 09, 8, ** $ CONDITION CODE TYPE.
 +* MT_MODR1 = .F. 17, 1, ** $ ’CHANGES INPUT REGISTER’

 SIZE MOPTAB(PS); DIMS MOPTAB(NUM_MO); $ OPERATION TABLE.
 SIZE MOPNAME(.SDS. 4); DIMS MOPNAME(NUM_MO); $ NAMES.

 $ MACRO TO INITIALIZE -MOPTAB-.
 +* MOP(VAL, CODE, CC, M1, NAME) =
 MOPNAME(VAL) = NAME:
 MOPTAB(VAL) = M1*4B’10000’+CC*4B’100’+CODE **

 DATA $ INITIALIZE TABLE.

 $ MOP CODE CCTYPE MR1 NAME
 $ --- ---- ------ --- ----

 MOP(MOP_BALR, 4B’05’, MC_NOCHANGE, YES, ’BALR’):
 MOP(MOP_BCTR, 4B’06’, MC_NOCHANGE, YES, ’BCTR’):
 MOP(MOP_BCR, 4B’07’, MC_NOCHANGE, NO, ’BCR’):
 MOP(MOP_LPR, 4B’10’, MC_FULL, YES, ’LPR’):

 GUIDE TO THE LITTLE LANGUAGE PAGE 112
 INTRODUCTION TO MACROS IN LITTLE

 MOP(MOP_LNR, 4B’11’, MC_FULL, YES, ’LNR’):
 MOP(MOP_LTR, 4B’12’, MC_FULL, NO, ’LTR’):
 MOP(MOP_LCR, 4B’13’, MC_FULL, YES, ’LCR’):

 In conclusion, macros are quite powerful, and are of great assistance
 in the writing of well-structured programs. Indeed, much of the art
 of programming in LITTLE is in the design of systematic macros which
 clarify program structure and enhance portability.

 GUIDE TO THE LITTLE LANGUAGE PAGE 113
 INTRODUCTION TO CHARACTER STRINGS

 The construction of portable software which uses character strings in
 an efficient manner remains a difficult problem. Although the desired
 primitives - input/output, concatenation, substring extraction and
 insertion - are quite standard, there is no obvious character string
 representation which is both portable and efficient. This appendix
 gives an informal introduction to the processing of character strings
 in LITTLE, and also describes the representation of character strings
 used by the standard LITTLE compiler.

 The character string features may be summarized as follows:

 1. Constants
 1. R constants for character codes.
 2. Quoted and Q constants for character strings.

 2. Unary operator .SDS. I1 to determine size of character string
 of I1 characters.

 3. Binary operators:
 1. S1 .IN. S2 to search character string S2 for instance of
 character string S1.
 2. S1 .PAD. I1 to pad character string S1 to length I1. S1
 and I1 must be constants.
 3. S1 .SEQ. S2 to compare character strings for equality.
 4. S1 .SNE. S2 to compare character strings for inequality.

 4. Access (extractor, assignment) qualifiers:
 1. .CH. I1, S1 to access I1-th character code of character
 string S1.
 2. .S. I1, I2, S1 to access substring of character string S1
 which is I2 characters long and begins at position I1.
 3. .LEN. S1 to access length of character string S1.

 5. Input/output formats:
 1. A format for character strings.
 2. R format for character codes.

 6. Environment symbols:
 1. .CS. for size of character code.
 2. .SL. for size of character string length field.
 3. .SO. for size of character string origin field.

 7. String search, case conversion and replacement procedures
 (described in section 9.6.4).

 A character string is a sequence of characters. Each character has
 both an external graphic symbol and an internal bitstring code. The
 internal code has size CS. An R-constant specifies the internal code
 in terms of the external graphic symbol; for example, the value of the
 constant 1RA is the internal code of the character which has the
 letter A as its graphic symbol (01 on S66, 193 on S37). Character
 string constants are written using the common convention of enclosing
 the characters with the apostrophe character, using two successive
 apostrophes to represent an apostrophe within the string. Q constants
 simplify the writing of character string constants with internal
 apostrophes; for example, both 3Q’’’ and ’’’’’’’’ represent the same
 character string constant.

 GUIDE TO THE LITTLE LANGUAGE PAGE 114
 INTRODUCTION TO CHARACTER STRINGS

 Character strings are represented as bitstrings according to the
 following rules:

 1. The size of the bitstring is a multiple of the machine word size
 WS.

 2. The rightmost part of the bitstring contains two fields. The
 first field has size .SL. and gives the length of the character
 string in characters. The second field has size .SO. and gives
 the relative position of the start of the string. These fields
 are conventionally referenced by the macros

 +* SLEN = .E. 01, .SL., ** $ STRING LENGTH.
 +* SORG = .E. .SL.+1, .SO., ** $ STRING ORIGIN.

 The combined length of these fields (.SL.+.SO.) must be a multiple
 of the character size CS.

 3. The character codes are arranged in the bitstring so that the
 extractor for the I-th character of S is

 .F. (SORG S)-I*CS, CS, S

 The .F. extractor is used since the representation requires that
 characters not cross machine word boundaries. Note that .LEN. S
 is just an abbreviation of SLEN S, so that

 .LEN. S = SLEN S = .E. 1, .SL., S

 The representation rules constrain the values of the length and origin
 fields, and so permit a validity test to be performed on a bitstring
 used to represent a character string. The validity test is defined as
 follows (failure of a validity test causes abnormal program
 termination):

 1. Let L be the value of .LEN. S. If L is zero, S has a valid form
 and represents the null string.

 2. The value of (SORG S - 1) must be less than or equal to the size
 of S; otherwise, the validity test fails. The value of (SORG S)
 must be one more than a multiple of the word size; otherwise the
 validity test fails. The value of (SORG S) must be greater than
 the value of (.SL.+.SO.); otherwise the validity test fails.

 3. The capacity C of S is defined as

 (SORG S - 1)/(WS/CS) - (.SL.+.SO.)/CS

 and must be greater than or equal to the length L; otherwise the
 validity test fails. C is just the number of characters that can
 be correctly represented by S.

 The standard compiler performs the validity test in the following
 situations:

 1. In S1 .IN. S2, both S1 and S2 are validated.

 GUIDE TO THE LITTLE LANGUAGE PAGE 115
 INTRODUCTION TO CHARACTER STRINGS

 2. In S1 !! S2, both S1 are S2 are validated.
 3. In S1 .SEQ. S2, both S1 and S2 are validated.
 4. In S1 .SNE. S2, both S1 and S2 are validated.
 5. In S1 .PAD. I1, S1 is validated. Since S1 must be a character
 string constant, validation is done as part of compilation.
 6. In .S. I1, I2, S1 = S2, both S1 and S2 are validated.
 Moreover, the index of the last character in the substring,
 (I1+I2-1), must not exceed the capacity of S1 and must not
 exceed the current length of S1. Substring assignment
 replaces existing characters, and cannot be used to extend the
 length of the target string.
 7. In the extraction .S. I1, I2, S1, S1 is validated.
 8. If S1 is PUT using the A format, S1 is validated.

 The validity test detects most, but not all, of the attempts to
 operate on a bitstring which does not in fact represent a character
 string.

 The representation rules do not define a unique representation, as two
 valid representations of the same string may have different origins.
 Moreover, the character string representation does not always specify
 the values of all the bits in the representing bitstring, but only
 specifies the values of the length and origin fields, and the values
 of the internal character codes. As a result, the bitstring
 comparison operators almost always return incorrect results when
 applied to character strings. LITTLE provides the binary operators
 .SEQ. and .SNE. to test for character string equality and inequality,
 respectively. As there is no standard ordering of character codes
 across different machines, LITTLE does not attempt to define the other
 comparison operators on character strings.

 Certain actions completely define a character string in that they set
 both the origin and length fields. These operations always provide a
 valid representation with smallest origin. These operations are
 string concatenation (!!), the use of the A input format to read in a
 character string, the .S. substring extractor and the .PAD. operator.

 The following demonstration program illustrates some of the points
 just mentioned. The program was run an IBM System/370, and uses the
 Monitor package to show the internal representations. This machine
 has WS of 32, PS of 24, CS of 8, .SL. of 16, and .SO. of 16.

 1 +* WS = .WS. ** +* PS = .PS. ** +* CS = .CS. **
 2 TRACE STORES; $ TRACE ALL STORES.

 1 PROG START;
 2 MONITOR BYTE;
 3 SIZE C1(CS), C2(CS*2), C4(CS*4), C8(CS*8);
 4 SIZE S1(.SDS. 1), S4(.SDS. 4), S8(.SDS. 8);
 5 SIZE I(PS);
 6
 7 C1 = 1RA;
 8 C2 = 2RAB;
 9 C4 = 0R/ABCD/;
 10 S1 = ’A’; $ NOTE C1 AND S1 DIFFER.

 GUIDE TO THE LITTLE LANGUAGE PAGE 116
 INTRODUCTION TO CHARACTER STRINGS

 11 S4 = ’AB ’; $ SHOULD BE ’AB’.PAD.4
 12 S8 = ’A CD ’;
 13 S8 = ’COMPILER’;
 14 .S. 5, 4, S8 = ’X’;
 15 .CH. 1, S4 = 1RC;
 16 .S. 2, 2, S4 = ’OM’;
 17 .S. 4, 1, S4 = ’P’;
 18 S4 = S4; $ TO FORCE TRACE LIST.
 19 S8 = S8; $ TO FORCE TRACE LIST.
 20 I = S4 .SEQ. S8; $ NOT EQUAL, AS LENGTHS DIFFER.
 21 .LEN. S8 = 4;
 22 I = S4 .SEQ. S8;
 23 I = (S4 .EQ. S8); $.EQ. IS NOT SAME AS .SEQ.
 24 I = ’MP’ .IN. S4;
 25 END PROG START;

 7 : C1 = 193 = 4B’000000C1’
 8 : C2 = 49602 = 4B’0000C1C2’
 9 : C4 = 4B’C1C2C3C4’
 10 : S1 = ’A’ = 4B’C1000000 00410001’
 11 : S4 = ’AB ’ = 4B’C1C24040 00410004’
 12 : S8 = ’A CD ’ = 4B’C1404040 40C3C440 40000000 00810009’
 13 : S8 = ’COMPILER’ = 4B’C3D6D4D7 C9D3C5D9 00610008’
 14 : .S. 5, 4, S8 = ’X’ = 4B’E7000000 00210001’
 15 : .CH. 1, S4 = 1RC = 4B’000000C3’

 16 : .S. 2, 2, S4 = ’OM’ = 4B’D6D40000 00410002’
 17 : .S. 4, 1, S4 = ’P’ = 4B’D7000000 00210001’
 18 : S4 = ’COMP’ = 4B’C3D6D4D7 00410004’
 19 : S8 = ’COMPX ’ = 4B’C3D6D4D7 E7404040 00610008’
 20 : I = 0 = 4B’00000000’
 21 : .LEN. S8 = 4 = 4B’00000004’
 22 : I = 1 = 4B’00000001’
 23 : I = 0 = 4B’00000000’
 24 : I = 3 = 4B’00000003’

 GUIDE TO THE LITTLE LANGUAGE PAGE 117
 EXAMPLE - SORT PROCEDURES

 $ THIS PROGRAM DEFINES TWO SORT ROUTINES AND A TEST ROUTINE.
 $ ROUTINE BUBLSRT(A,B,N) IS THE WELL-KNOWN BUBBLE SORT, AS
 $ DESCRIBED IN ’THE ART OF COMPUTER PROGRAMMING’, VOL. 3,
 $ PAGES 106-111.
 $ ROUTINE HEAPSRT(A,B,N) IS THE HEAP SORT, CF. PP 145-149 OF KNUTH.
 $ THE CODE FOR HEAPSRT IS BASED ON THAT GIVEN IN
 $ ’ON PROGRAMMING: INSTALLMENT 2’ BY J. SCHWARTZ, P. 64.
 $ THE MAIN ROUTINE START IS TEST DRIVER FOR SORTERS; IT USES DATA
 $ GIVEN IN KNUTH, P. 75.
 $ THE CODE CONTAINS CONDITIONAL TEXT, WITH NAME ’T’
 $ WHICH MAY BE USED TO OBTAIN TRACE PRINTOUTS OF THE SORTERS
 $ IN ACTION, AND TO AID DEBUGGING.
 $ AUTHOR: D. SHIELDS (CIMS) REVISED 01 JUL 77
 $
 $ MACRO SECTION - DEFINE MACHINE PARAMETERS, I/O FUNCTIONS, AND
 $ USEFUL CODING SEQUENCES.
 +* WS = 60 ** +* PS = 17 ** +* CS = 6 ** $ 6600 PARAMETERS
 .+SET T $ COMPILE TRACING LINES.
 +* NTEST = 16 ** $ SIZE OF TEST ARRAY.

 +* PRINTIT(A, NA) =
 $ MACRO TO PRINT ARRAY, 4 COLUMNS PER ELEMENT
 PUT ,COLUMN(14) :A(1) TO A(NA),I(5),SKIP;
 **

 +* TESTSORT(SORTER, SORTERNAME) = $ TEST SORT PROCEDURE.
 PUT ,SKIP(2),’TEST SORT PROCEDURE: ’ :SORTERNAME,A,SKIP;
 DO I = 1 TO NTEST; SORTED(I) = TEST(I); END DO;
 PUT ,’BEFORE SORT: ’; PRINTIT(TEST, NTEST); $ LIST TEST DATA.
 CALL SORTER(SORTED, NTEST); $ TEST SORT.
 PUT ,’AFTER SORT: ’; PRINTIT(SORTED, NTEST);PUT ,SKIP(2);
 **

 +* SWAP(A,B) = $ MACRO TO SWAP TWO ITEMS, A COMMON OPERATION
 SIZE ZZZA(WS); $ TEMPORARY FOR MACRO.
 ZZZA = A; A = B; B = ZZZA; **

 PROG START; $ MAIN PROGRAM AND TEST PROCEDURE.
 SIZE TEST(WS); DIMS TEST(NTEST); $ KNUTH’S TEST DATA
 SIZE SORTED(WS); DIMS SORTED(NTEST);
 DATA TEST = 503, 087, 512, 061, 908, 170, 897, 275,
 653, 426, 154, 509, 612, 677, 765, 703;
 SIZE I(PS); $ DO LOOP INDEX.
 PUT ,SKIP, ’TEST OF SORT ROUTINES ’,SKIP(2);
 TESTSORT(BUBLSRT, ’BUBBLE SORT’);
 TESTSORT(HEAPSRT, ’HEAP SORT’);
 END;

 SUBR BUBLSRT(A, N); $ BUBBLE SORT OF A.
 SIZE A(WS);
 DIMS A(2); $ ARGUMENTS ARE ARRAYS (DIMENSIONS ARE DUMMY)
 SIZE J(PS); $ DO LOOP INDEX.
 SIZE N(PS); $ NUMBER OF ELEMENTS TO SORT.
 SIZE T(PS); $ POSITION OF LAST SWAP IN PASS THROUGH ARRAY.
 SIZE BOUND(PS); $ HIGHEST INDEX IN ORDER.
 SIZE I(PS); $ DO LOOP INDEX.
 BOUND = N;

 GUIDE TO THE LITTLE LANGUAGE PAGE 118
 EXAMPLE - SORT PROCEDURES

 WHILE BOUND>0; $ LOOP WHILE POSSIBLY UNSORTED
 T = 0;
 DO J = 1 TO BOUND-1; $ BUBBLE ENTRY TO PROPER PLACE.
 IF A(J) > A(J+1) THEN $ OUT OF ORDER, EXCHANGE.
 SWAP(A(J), A(J+1));
 T = J; $ RECORD POINT OF EXCHANGE.
 END IF;
 END DO;
 BOUND = T; $ ELEMENTS ABOVE BOUND ARE SORTED.
 .+T PUT :BOUND,NI(5); PRINTIT(A, N); $ TRACE LIST.
 END WHILE;
 END SUBR BUBLSRT;

 SUBR HEAPSRT(A, N); $ HEAPSORT OF A; FROM SETL NOTES.
 $ THIS PROCEDURE IS A VARIANT OF HEAP SORT DUE TO
 $ J. SCHWARTZ.
 $ IN BRIEF, THIS IS A TREE SELECTION SORT IN WHICH ELEMENTS
 $ 2*I AND 2*I+1 ARE THE DESCENDANTS OF I. WE BEGIN BY
 $ TRANSFORMING THE ARRAY INTO A HEAP, WHERE A(1)...A(N) IS A
 $ HEAP IF FOR 1 <= FLOOR(J/2) < J <= N, THEN
 $ A(FLOOR(J/2)) >= A(J) .
 $ FOR A BINARY TREE, THIS MEANS THAT NO CHILD IS BIGGER THAN
 $ A PARENT. FIRST FORCE THE ARRAY TO HAVE THE HEAP
 $ PROPERTY. AS A RESULT A(1) WILL BE THE MAXIMAL ELEMENT.
 $ THEN SWAP THE TOP ELEMENT WITH THE RIGHTMOST, AND
 $ THEN REARRANGE THE TREE SO IT REMAINS A HEAP.
 $ REPEAT THIS PROCESS UNTIL ALL ELEMENTS ARE SORTED.
 $
 SIZE A(WS); DIMS A(2); $ OUTPUT SORTED ARRAY.
 SIZE I(PS); $ DO LOOP INDEX.
 SIZE N(PS); $ NUMBER OF ELEMENTS TO SORT.
 SIZE M(PS); $ CURRENT NODE BEING EXAMINED.
 SIZE TOP(PS); $ CURRENT TOP OF TREE DURING PHASE TWO.
 SIZE TARG(PS); $ LARGEST CHILD.

 .+T. PUT ,SKIP, ’HEAPSORT - FORCE HEAP.’, SKIP;
 PUT :I :M,NI(3), COLUMN(14);
 DO I = 1 TO N; PUT :I,I(5); END DO; PUT ,SKIP;
 ..T
 DO I = 2 TO N; $ MAKE INTO HEAP, I IS CURRENT PARENT
 M = I;
 WHILE M > 1; $ EXAMINE PARENTS IN TURN.
 IF (A(M/2) >= A(M)) QUIT WHILE; $ IF PARENT NO SMALLER,
 $ IS HEAP.
 SWAP(A(M), A(M/2)); $ PROMOTE LARGE CHILD.
 .+T PUT :I:M,NI(3); PRINTIT(A, N) $ TRACE LIST.
 M = M / 2; $ MOVE TO GRANDPARENT.
 END WHILE;
 END DO I;
 .+T PUT ,SKIP ,’ HEAPSORT - PHASE 2’ ,SKIP;
 DO TOP = N TO 2 BY -1; $ SORT SUBTREES IN TURN.
 SWAP(A(1), A(TOP)); $ EXTRACT LARGEST ELEMENT.
 M = 1; $ FORCE REMAINING SUBTREE TO BE HEAP.
 WHILE M*2 < TOP; $ FOR ALL SUBTREES.
 $ PICK LARGEST CHILD OF NODE M IN SUBTREE.
 IF (A(M*2) < A(M*2+1)) & (M*2+1 < TOP)

 GUIDE TO THE LITTLE LANGUAGE PAGE 119
 EXAMPLE - SORT PROCEDURES

 THEN TARG = M*2+1;
 ELSE TARG = M*2; END IF;
 IF A(M) < A(TARG) THEN
 SWAP(A(M), A(TARG)); $ CHILD TOO BIG, EXCHANGE.
 .+T PUT :TOP:M:TARG,I(5); PRINTIT(A, N) $ TRACE LIST
 ELSE
 $ QUIT SINCE BOTH CHILDREN IN RANGE, AND
 $ KNOW THAT THEIR CHILDREN ALREADY IN ORDER..
 QUIT WHILE M;
 END IF;
 M = TARG; $ MOVE TO SUBTREE OF LARGEST CHILD.
 END WHILE;
 END DO TOP;
 END SUBR HEAPSRT;

 GUIDE TO THE LITTLE LANGUAGE PAGE 120
 EXAMPLE - TAUSWORTHE RANDOM NUMBER GENERATOR

 +* WS = .WS. ** +* PS = .PS. ** +* CS = .CS. **
 +* RSZ = WS-1 ** $ SIZE OF RANDOM VALUE.
 PROG START; $ TEST TAUSWORTHE RANDOM GENERATOR.
 SIZE I(PS); $ LOOP INDEX.
 SIZE RV(PS); $ RANDOM VALUE.
 SIZE RANINT(RSZ); $ RANDOM VALUE FUNCTION.
 SIZE RANINTSEED(RSZ); $ RANDOM SEED.
 RANINTSEED = .F. 1, 31, ATAN(1.0);
 PUT :RANINTSEED,NB(20,3,4) ,SKIP;
 PUT ,PAGE, ’TEST OF TAUSWORTHE GENERATOR.’,SKIP;
 DO I = 1 TO 100;
 RV = RANINT(100);
 PUT :RV,I(5);
 IF (MOD(I,10)=0) PUT ,SKIP;
 END DO;
 END PROG START;
 FNCT RANINT(K);

 /* K IS AN ORDINARY INTEGER. THE RESULT IS AN
 ORDINARY INTEGER FROM 0 TO K-1, UNIFORMLY DISTRIBUTED.
 THIS IS THE TAUSWORTHE GENERATOR FOR A 32 BIT MACHINE
 (SIGN AND 31 MAGNITUDE). THE SEQUENCE IS OF MAXIMUM LENGTH
 FOR THE WORD SIZE USED.
 REFERENCES:

 1. TAUSWORTHE, ROBERT C., MATHEMATICS OF COMPUTATION
 1965 PAGES 201-209.
 2. WHITTLESLEY, J., CACM SEPTEMBER 1968 PAGES 641-644.
 3. PAYNE, W. H., CACM JANUARY 1970 PAGE 57.

 THE ROUTINE USES PARAMETERS N AND M, WHICH ARE CHOSEN
 BASED ON THE MACHINE’S WORD SIZE. ONE NORMALLY CHOOSES N
 EQUAL TO THE WORD SIZE LESS ONE, AND THEN M AS FOLLOWS:

 N M

 11 2
 15 1, 4, OR 7
 17 3, 5, OR 6
 23 5 OR 9
 31 3, 6, 7, OR 13
 63 1, 5, OR 31

 N AND M ARE EXPRESSED AS MACROS, SO THAT EFFICIENT
 CODE IS OBTAINED.
 THE CALCULATION OF SUITABLE VALUES OF M FOR A GIVEN N
 INVOLVES FINDING PRIMITIVE POLYNOMIALS; SEE (1) PAGE 208.
 THIS ROUTINE USES A GLOBAL VARIABLE ’RANINTSEED’
 WHICH MUST BE INITIALIZED TO A BITSTRING,
 NOT ALL ZEROS, OF LENGTH N.

 AUTHOR: D. SHIELDS (CIMS) 01 JAN 77.

 THIS IS A REWRITE OF A VERSION WRITTEN
 IN SETL BY HENRY S. WARREN, JR.

 */

 GUIDE TO THE LITTLE LANGUAGE PAGE 121
 EXAMPLE - TAUSWORTHE RANDOM NUMBER GENERATOR

 +* N = 31 **
 +* M = 13 **
 SIZE RANINT(N); $ SIZE NO MORE THAN N.
 SIZE A(WS), B(WS); $ TEMPORARIES DURING GENERATION
 SIZE K(WS); $ RANGE IN WHICH RANINT MUST FALL.

 SIZE FBK(PS); $ MAGNITUDE OF K.
 $ FIRST UPDATE THE VALUE OF ’RANINTSEED’.

 ASSERT K>0;
 FBK = .FB. K; $ MAGNITUDE OF K.
 ASSERT FBK <= N;
 UNTIL RANINT <= K; $ ITERATE TILL GET NUMBER IN RANGE.
 B = .F. M+1, N-M, RANINTSEED; $ RIGHT SHIFT M
 A = RANINTSEED .EXOR. B;
 .F. N-M+1, M, B = .F. 1, M, A;
 .F. 1, N-M, B = 0; $ LEFT SHIFT N-M.
 RANINTSEED = A .EXOR. B;

 /* NOW CONVERT ’RANINTSEED’ TO AN INTEGER RANGING FROM 0 TO
 K-1, WHERE K < 2 EXP. N. THIS IS DONE BY TRUNCATING
 ’RANINTSEED’ TO THE APPROPRIATE NUMBER OF BITS. IF THE RESULT
 IS LESS THAN K, IT IS RETURNED. OTHERWISE THE ROUTINE STARTS
 ALL OVER AGAIN. THIS GUARANTEES A UNIFORMLY DISTRIBUTED
 RESULT. THE PROCESS MUST TERMINATE, AS ’RANINTSEED’ IS OF
 MAXIMUM PERIOD (2 EXP. N - 1). */

 RANINT = .F. (N+1) - FBK, FBK, RANINTSEED; $ TAKE LEFT BITS.
 END UNTIL;
 END FNCT RANINT;

 GUIDE TO THE LITTLE LANGUAGE PAGE 122
 EXAMPLE - LTLDOC: A SIMPLE FORMATTING PROGRAM.

 /* LTLDOC - LIST LITTLE DOCUMENT.

 INPUT CONSISTS OF LINES WITH CONTROL CHARACTERS IN
 THE FIRST TWO COLUMNS, AND TEXT IN THE REMAINING SEVENTY COLUMNS.
 CONTROL CHARACTERS ARE AS FOLLOWS:

 D - DOCUMENT: INITIALIZE. SHOULD BE FIRST CONTROL LINE.
 E - EJECT: SET EJECT FLAG, DO NOT LIST TEXT.
 P - PAGE: SET EJECT FLAG, LIST TEXT.
 S - SUBTITLE: USE TEXT TO DEFINE SUBTITLE, SET EJECT FLAG.
 T - TITLE: USE TEXT TO DEFINE MAIN TITLE, SET EJECT FLAG.
 U - UNDERLINE: LIST TEXT, THEN UNDERLINE IT.
 0 - SKIP LINE BEFORE LISTING TEXT.
 1 - SAME AS P.

 LTLDOC INCREASES THE PAGE AND LINE LIMITS TO PERMIT
 UP TO 500 PAGES.

 AUTHOR: DAVID SHIELDS (CIMS) 11 JAN 77.
 */

 $ STANDARD MACROS.
 +* WS = .WS. ** +* PS = .PS. ** +* CS = .CS. **
 +* YES = 1 ** +* NO = 0 **

 $ PROGRAM PARAMETERS.
 +* NLB = 4 ** $ NUMBER OF LEADING BLANKS IN LINE.
 +* IBL = (’’.PAD. NLB) ** $ INITIAL BLANK STRING.

 PROG LTLDOC; $ LIST LITTLE DOCUMENT.

 SIZE LINESPERPAGE(PS); $ LINES PER PAGE.
 SIZE DOTEXT(1); $ ON TO LIST TEXT OF LINE.
 SIZE EJECTING(1); $ ON TO BEGIN NEW PAGE WITH NEXT TEXT
 $ LINE.
 SIZE UNDERLINING(1); $ ON TO UNDERLINE TEXT.
 $ FIRSTNB AND LASTNB DELIMIT TEXT FOR UNDERLINE OPTION.
 SIZE FIRSTNB(PS), LASTNB(PS);
 SIZE I(PS); $ LOOP INDEX.
 SIZE C1(CS), C2(CS); $ FIRST TWO CHARACTERS IN LINE.
 SIZE TEXT(.SDS. 70); $ TEXT LINE.
 SIZE SKIPCOUNT(PS); $ SKIP COUNT.

 $ GET NUMBER OF LINES PER PAGE.
 CALL CONTLPR(10, LINESPERPAGE);

 $ SET LARGE PAGE AND LINE LIMITS.
 CALL CONTLPR(21, 500); $ UP TO 500 PAGES.
 CALL CONTLPR(19, 500*LINESPERPAGE);

 CALL DOCINI; $ INITIALIZE FOR NEW DOCUMENT.

 WHILE 1;
 GET ,SKIP :C1 :C2,R(1) :TEXT,A(70);
 IF (FILESTAT(1,END)) QUIT WHILE;

 IF C1 = 1R THEN $ IF BLANK, LIST TEXT.

 GUIDE TO THE LITTLE LANGUAGE PAGE 123
 EXAMPLE - LTLDOC: A SIMPLE FORMATTING PROGRAM.

 DOTEXT = YES;

 ELSEIF C1 = 1RD THEN $ IF NEW DOCUMENT
 CALL DOCINI;
 DOTEXT = NO;

 ELSEIF C1 = 1RE THEN $ IF EJECT REQUEST.
 DOTEXT = NO; EJECTING = YES;

 ELSEIF C1=1RP ! C1=1R1 THEN $ IF NEW PAGE.
 DOTEXT = YES; EJECTING = YES;

 ELSEIF C1 = 1RS THEN $ IF SUBTITLE DEFINITION.
 DOTEXT = NO; EJECTING = YES;
 CALL STITLR(1, IBL!!TEXT); $ ENTER SUBTITLE.

 ELSEIF C1 = 1RT THEN $ IF MAIN TITLE DEFINITION
 DOTEXT = NO; EJECTING = YES;
 CALL STITLR(0, IBL!!TEXT); $ ENTER MAIN TITLE.
 CALL STITLR(1, ’’); $ CLEAR SUBTITLE.

 ELSEIF C1 = 1RU THEN $ IF UNDERLINE REQUEST.
 DOTEXT = YES; UNDERLINING = YES;

 ELSEIF C1 = 1R0 THEN $ IF SKIP LINE REQUEST.
 DOTEXT = YES; SKIPCOUNT = 1;

 ELSE DOTEXT = YES;
 END IF;

 IF (DOTEXT=NO) CONT WHILE;

 IF EJECTING THEN $ IF STARTING NEW PAGE.
 PUT ,PAGE;
 EJECTING = NO;
 END IF;

 IF SKIPCOUNT THEN $ IF SKIPPING LINES BEFORE TEXT.
 PUT ,SKIP(SKIPCOUNT); SKIPCOUNT = 0; END IF;

 PUT ,X(NLB) :TEXT,A ,SKIP;
 DOTEXT = YES;

 IF UNDERLINING THEN
 UNDERLINING = NO;
 IF (TEXT .SEQ. (’’.PAD.70)) CONT WHILE;
 CALL CONTLPR(5, 3); $ NEED AT LEAST THREE LINES.
 FIRSTNB = 1; $ FIND FIRST, LAST NON BLANKS.
 WHILE .CH. FIRSTNB, TEXT = 1R ;
 FIRSTNB = FIRSTNB + 1; END WHILE;
 LASTNB = 70;
 WHILE .CH. LASTNB, TEXT = 1R ;
 LASTNB = LASTNB - 1; END WHILE;
 TEXT = ’’ .PAD. 70;
 DO I = FIRSTNB TO LASTNB; .CH. I, TEXT = 1R-; END DO;
 PUT ,X(NLB) :TEXT,A,SKIP;
 END IF;

 GUIDE TO THE LITTLE LANGUAGE PAGE 124
 EXAMPLE - LTLDOC: A SIMPLE FORMATTING PROGRAM.

 END WHILE;
 END PROG LTLDOC;
 SUBR DOCINI; $ INITIALIZE FOR NEW DOCUMENT.

 CALL CONTLPR(6, 1); $ ENABLE PAGING.
 CALL CONTLPR(7,1); $ ENABLE TITLING, CLEAR MAIN, SUBTITLES.
 CALL ETITLR(0, ’PAGE’, 67, 0); $ ENTER ’PAGE’ FIELD.
 CALL CONTLPR(8, 71); $ SET PAGE FIELD.
 CALL CONTLPR(9, 0); $ CLEAR DATE FIELD.
 CALL CONTLPR(13,0); $ SET INITIAL PAGE NUMBER.
 CALL CONTLPR(2,2); $ SET INITIAL LINE POSITION.

 DOTEXT = NO; EJECTING = YES; UNDERLINING = NO;
 SKIPCOUNT = 0;
 END SUBR DOCINI;

 GUIDE TO THE LITTLE LANGUAGE PAGE 125
 CONTENTS

 Preface 2

 0. Introduction 4
 1. Basic terms and concepts 11

 2. Lexical structure 16
 Character set 16
 Comments 17
 Macroprocessor 18
 Conditional Assembly 20
 Remote text 21

 3. Data types and constants 23
 Bitstrings 23
 Integers 24
 Reals 24
 Booleans 24
 Character codes 25
 Character strings 16

 4. Expressions 28
 Extractors 30
 Unary operators 33
 Binary operators 35
 Standard arithmetic functions 39
 Sizing rules 41

 5. Statements 42
 ACCESS 44
 Assignment 45
 CALL 47
 CONT 48
 DATA 49
 DIMS 50
 DO 51
 END 52
 FILE 53
 FNCT 55
 GET 56
 GO TO 57
 IF 59
 NAMESET 62
 NULL 63
 PROG 64
 PUT 65
 QUIT 66
 READ 67
 REAL 68
 RETURN 69
 REWIND 70
 SIZE 71
 SUBR 72
 UNTIL 73
 WHILE 74
 WRITE 75

 6. Procedures and programs 76

 GUIDE TO THE LITTLE LANGUAGE PAGE 126
 CONTENTS

 7. Input/Output 78
 Streaming in formatted files 80
 Edit fields 81
 List fields 82
 Control formats 83
 COLUMN format 83
 PAGE format 83
 SKIP format 83
 X format 84
 Data formats 85
 A format 85
 B format 86
 E format 87
 F format 89
 I format 90
 R format 91
 Naming output items 92
 STRING files 93
 FILESTAT file inquiry 94

 8. Monitor package 95
 CHECK directive 96
 TRACE directive 96
 ASSERT statement 97
 MONITOR statement 97
 Monitor options 97

 References 99

 Appendices
 A. Grammar 100
 B. Coding conventions 103
 C. Introduction to macros 106
 D. Introduction to character strings 113
 E. Examples 117
 Sorting procedures 117
 Random number generator . . . 120
 Document formatter 122

 Table of contents 125

 /* FINIS */

	Contents
	Preface
	Acknowledgments
	Introduction
	Precis
	Terms and notations
	Character set
	Macro processor
	Text definition: conditional assembly, remote text
	Data types and constants
	Expressions
	Extraction operators
	Unary operators
	Binary operators
	Standard mathematical functions
	Sizing rules

	Statements
	ACCESS
	Assignment
	CALL
	CONTINUE
	DATA
	DIMENSION
	DO
	END
	FILE
	Function
	GET
	GO TO
	IF
	NAMESET
	 NULL
	Program
	PUT
	QUIT
	READ
	REAL
	RETURN
	REWIND
	SIZE
	Subroutine
	UNTIL
	WHILE
	WRITE

	Procedures and programs
	Input/output
	Summary of IO statements and formats
	Edit fields
	List fields
	Control formats
	Data formats
	A format
	B format
	E format
	F format
	I format
	R format

	Naming output items
	String files
	FILESTAT request

	Monitor facilities
	References
	Appendices
	LITTLE grammar
	Coding conventions
	Introduction to macros in LITTLE
	Introduction to character strings
	Examples
	Sort procedures
	Tauseworthe random number generator
	LTLDOC: a simple formatting program

