GUI DE TO THE LI TTLE LANGUACGE

GUI DE TO THE LI TTLE LANGUACGE
Davi d Shi el ds

Copyright (C 1979, 1981, 1982 All rights reserved

Cct ober 4, 1982

(A Tabl e of Contents appears at the end.)

PAGE

GUI DE TO THE LI TTLE LANGUACGE PAGE 2
PREFACE

This report is the basic docunent describing the LI TTLE Programi ng
Language. The central part of this systemis the progranm ng | anguage
LITTLE (the nane reflects what at one tine seened to be rather nodest
proj ect goals), and a standard conpiler for LITTLE witten in LITTLE

The goal of the LITTLE project 1is to provide a neans for witing
software which is portable and efficient. An early version of LITTLE
was defined in 1968; serious work began in 1971, when LI TTLE was
chosen as the inplenentation |anguage for SETL, a very high leve

| anguage with finite sets as its fundanental data type. The relation
between the two projects is inportant. The SETL project has provided
an active group of wusers for LITTLE, these users expect a quality
conpiler. The need to support the ’'production’” wuse of LITTLE has
given nuch of the work on LITTLE a pragmatic flavor; this has been a
real benefit, as a major problemin | anguage design is to balance the
desire for 'abstract consistency’ with the actual needs of the users.
The SETL inplenentation work has had nminimal inpact on the LITTLE
| anguage, as both groups agree that LITTLE should be a separate
progranm ng | anguage, able to stand on its own nerits.

LITTLE has been inplenented on several systens, including CDC 6000,
| BM Systenf 370, Digital Equi pnrent DECsystem 10, and Digital Equi pnent
VAX- 11/ 780. A substantial anount of software has been witten in
LI TTLE, including the LITTLE systemitself, several inplenentations of
SETL, an operating system and a translator for the M N MAL | anguage

This version adds support of floating point operations, input/output
facilities, and nakes character strings easier to use. Recent work
has nmade it even nore clear that an essential part of a portable
progranm ng systemis a standard, well-specified operating system
interface; nmuch of this interface, called the LITTLE 'library’ is
witten in LITTLE

There remain several troublespots in the |anguage. Problens remain in
the handling of arithnetic precision, particularly for negative
i ntegers. The previous version provided |large precision (up to 2047
bits), but did not support |arge negative integers, and did not
include word-size arithnetic as a proper subset; a nore fruitfu
approach seens to provide a paraneterized 'portable integer’ with size
between 16 and 100 bits, but the details remain unclear. The handling
of array elenents, particularly in calling sequence, renains unusual
This version retains the peculiar value semantics since the design of
the standard conpiler nakes the inplenentation of the nore usua
"pointer’ semantics a difficult task

GUI DE TO THE LI TTLE LANGUACGE PAGE 3
PREFACE

The CQuide serves both as a | anguage definition and reference nanual
Al t hough the LITTLE systemincludes a standard conpiler, LITTLE is not

a language 'defined” by its conpiler. A programming systemis a
contract, and this Quide attenpts to provide all needed fine print.
However, |anguage definition is no easy task; nunerous errors and

om ssi ons undoubtedly remain. The style used in the Quide enphasizes
use as a reference manual; the discipline of witing in this way has
aided in the elimnation of needless digressions and extraneous
justifications. The organi zation of the GQuide is based in |arge part
on that used by Lecht (/1/) in his admirable book 'The Programer’s
PL/ 1.

In summary, LITTLE provides a congenial, effective environnent for the
construction of portable, efficient software. Portability remains an
el usive goal, but can, with sone thought, be achieved.

Acknowl edgnent s

The LITTLE project represents the work of many people. Jacob Schwartz
designed the first version of the language. The principal authors of
the LITTLE system are Robert Abes, Edith Deak, Richard Kenner, David
Shields, Aaron Stein and Thomas Stuart; their contributions are too
nunerous to detail. Henry Warren was the first major user and was
nost patient in accepting the weaknesses of the bootstrap conpiler
Paul Schneck provided the first inplenentation for the | BM Systent 370.
The nmenbers of the SETL project have nmde nunerous comments and
suggesti ons.

GUI DE TO THE LI TTLE LANGUACGE PAGE 4
I NTRODUCT! ON

The present docunment is a conprehensive introduction to the LITTLE
progranm ng | anguage, and contains the specifications of the |Ianguage.

The goal of the LITTLE project is to provide a neans for creating
portable and efficient software. Software is portable if it contains
no inplicit assunptions about the environnent in which it is to be
executed. Environnental dependencies are unavoidable for all but the
sinplest programs, but if they are nmde to appear as explicit
paraneters of a program then that program may be nade portable.
There are three basic classes of environnental dependencies: machine
dependenci es, system dependenci es and conpi |l er dependenci es. Machi ne
dependencies reflect the basic nmachine architecture - word size,
character size, addressing nodes, etc. System dependencies reflect
t he operating system conventions: file structure, input/output
schenes, loader facilities, calling conventions, etc. Conpi | er
dependencies reflect variations in conpiler perfornance and features:
the nature and quality of generated code, conpiler options, diagnostic
level, listing format, etc.

The basic tool needed to achieve programportability is a |anguage
whi ch provi des systematic nechani sns for naking explicit the crucial
environnental dependencies; ideally, the |anguage should force the
explicit statenent of all such dependencies. The |anguage nust then
be coupled with a processor which deals automatically, in a manner
invisible to the user, with those dependencies which it can handle
better than the user hinself could. ’'Better’ in this case neans nore
systematically and nore efficiently.

Qur tool for producing portable, efficient software consists of the
fol | owi ng:

A programm ng | anguage, LITTLE

A standard conpiler for LITTLE, witten in LITTLE

A library of procedures, witten as nuch as possible in LITTLE
whi ch provides a standard operating systeminterface.

As an exanple of explicit nachi ne dependencies, the foll owi ng specia
t okens designate three basic paraneters of a target nachi ne:

. WB. si ze of machi ne word
. PS. size of machi ne pointer (address)
. Cs. si ze of character

The paraneter .PS. reflects the possibility that a machi ne may have
full-word and address arithnmetics of differing precisions. For
exanple, for the IBM Systenm’ 370, .W5. has value 32 and .PS. has val ue
24. These paraneters can be used in a LITTLE source program On the
other hand, storage allocation is handled by the conpiler itself, and
nothing is provided in the |anguage to give the user any control over
this process.

GUI DE TO THE LI TTLE LANGUACGE PAGE 5

| NTRODUCTI ON

System dependencies are nmainly a reflection of the | ack of standard
specifications for operating systens features; for exanple, the
notion of ’'record is so diffuse that it is not nmentioned in the

definition of the LITTLE input/output features. LITTLE deals with
system dependencies nmainly by providing a standard interface with the
host operating system Mich of this interface is witten in LITTLE
This body of <code, called the LITTLE Library, is itself a fruitful
product of our work on portability.

A program is efficient if it is presented at a |evel of detail such
that its translation into assenbly language is a routine, albeit

ti me-consuning task. This requires that the conpiler translate well
the data structure representations, and produce good code. The use of
a common conpiler and library neans that sonme constructs are not

al ways realized as efficiently as with a nmachine-tailored conpiler
This is the price of portability. However, the cost of alternate
strategies is alnost invariably higher. Furthernore, the language is
designed wth optinzaton techniques in mnd. Several | anguage
features were chosen (or rejected) according to the applicability of
program optim zaton to them

The |language was created by Jacob Schwartz in 1968; the initia
description is contained in Cocke and Schwartz (/2/). In brief,
LITTLE was first defined as a quite |owlevel language, simlar to
FORTRAN, which had bitstrings as its single data type, and which
contained the mninmal set of operators and statenents needed to

express the conpiler for the language in LITTLE itself. The basic
concepts are t hus machi ne-i ndependence, ef ficiency, and
sel f-definition. These concepts are explained in detail below

Further goals include the desirable features of any programing
| anguage, such as readability, nodularity, ease of use, and ease of
debuggi ng.

Machi ne independence is the fundanental goal of LITTLE. Methods of
attaining this goal nmay be divided into several broad categories

1. The ’conplete’ approach defines an abstract environnent which is
natural to users and which can be inplenented. Exanples of this
approach i ncl ude PL/ 1, SETL and SNOBOL. Al t hough every
progranm ng | anguage necessarily defines an environnent of the
sort just described, the 'conplete approach’ uses |anguages of a
quite high level, and the conpilers for these |anguages are
typically witten in other |anguages.

2. The ’'abstract’ nachi ne approach defines an abstract nachi ne which
can be faithfully, and acceptably, nobdelled on the available
har dwar e. For exanple, this approach is wused in the STAGE2
progranm ng system (/3/), and by the SIMPL inplenentation |anguage
for GRAAL (/4/).

3. The 'nmacro’ approach expresses a programas a set of macro-calls.
| mpl enentation involves the realization of the nacros. For
exanple, this approach is wused in the SIL inplenentation of

GUI DE TO THE LI TTLE LANGUACGE PAGE 6
I NTRODUCT! ON

SNOBOL4 (/5/).

4. The ’'unknown nachine’ approach expresses prograns as 'nachine
| anguage for a nachi ne whose detailed features are not known at
the tine of program construction

The above categories are not exclusive; rather they indicate sone of
the various approaches taken to achieve nmachine independence. The
approach wused in LITTLE is quite sinmlar to the "abstract’ machine
approach; however LITTLE nakes minimal assunptions about the structure
of its target nachine, and LI TTLE prograns are witten wi th nmachine
features as explicit program paraneters.

GUI DE TO THE LI TTLE LANGUACGE PAGE 7

PRECI S

LITTLE is a lowlevel Ilanguage for the production of nachine
i ndependent software. Correct use of the |anguage requires carefu
paraneterization of machi ne- dependenci es. To express t hese

dependencies, and to sinplify coding, LITTLE includes a sinple nacro
processor; for exanpl e:

+* BUMP(l) =1 =1 + 1; ** /* I NCREMENT |. */

+* YES =1 ** +* NO =0 ** $ AIDS READABI LI TY.
+* HAMAX = 787 ** $ DI MENSION OF HA

+* ERRORLIMT = 50 ** $ MAXI MUM ALLOAED ERRORS

As just shown, LITTLE prograns nmy contain comments, both in the
delimted "/*...text...*/’" style of PL/I, and the 'rest-of-line’ form
whi ch begins with '$ and includes the rest of the line.

The single data type is the bitstring. Bitstring variables are
declared with the SIZE statenent, which defines the length of the
bitstring; one dinensional arrays are supported, and are declared with
the DIMS statenent; for exanple:

SIZE LINE(CS); DI M LINE(80); /* ARRAY OF CHARACTERS */

Bitstrings extend from right to left, counting from1; for exanple,
the bitstring '10° has bit 1 =0, bit 2 = 1, the leftnost (nost
significant) bit is 1, and the rightnost (least significant) bit is O.

LITTLE pernmits the use of a constant expression, i.e., an expression
containing only constant operands, in npbst cases where a single
constant nay appear, such as ’'SIZE Bl G 3*W5+1)’

LITTLE provides the standard arithnetic operators for bitstrings,
viewed as the binary representation of integers: + - * / .
LI TTLE includes the usual conparison operators, in both their FORTRAN
and PL/1 form

= N= < > <= >=
. EQ . NE. .LT. . GT. . LE. . GE

LI TTLE al so includes the standard bitstring primtives:

& ! A
. AND. .OR . NOT. . EXOR.

Addi tional basic operators include

.FB. X - index of |eftnost nonzero bit in X
.NB. X - nunber of nonzero bits in X

GUI DE TO THE LI TTLE LANGUACGE PAGE 8
PRECI S

LI TTLE provi des extractors to access subparts of bitstrings; the basic
formis

.E. 3, 5 W

which specifies that field in Wwhich begins at bit 3, and extends 5
bits to the left. Fixed fields are often defined by nacros; for
exanple to access the left and right parts of a word, we mght wite

+* LEFT = . E. W5/ 2+1, W5/ 2, **
+* RIGHT = .E. 1, W8/ 2, **

X = LEFT A . EXOR R GHT B;
LEFT Y = 10;

LI TTLE represents character strings as bitstrings which contain fixed
fields defining the nunber of <characters in the string, and the
position of the first (leftnost) character. LI TTLE provides
character and substring extractors, which nmay be used on both the |eft
and right side of an assignnent statenent; for exanple

.S. 1, 3, STR ="ABl'; $ ASSI GN SUBSTRI NG
X =.CH 2, STR $ X IS NOW CHARACTER CODE FOR LETTER B.

LITTLE enunerates characters fromleft to right, starting from one,
and includes string concatenation,’!!’, and a search operator, of form
"X .IN Y, which returns the index in character string Y of the first
occurrence of character string X

In summary, LITTLE has bitstring variables, possibly indexed, as the
basi ¢ data type. LITTLE provides extractors to access parts of
bitstrings, and includes the usual arithnetic and bool ean operators.

LI TTLE supports floating point (real) arithnetic. This is done by
associating an arithnmetic node - integer or real - with each variable,
array or function procedure. The arithnetic node of an operation is
generally integer unless both inputs are of real node. Real variables
are decl ared using the REAL declaration instead of the SIZE
declaration used to declare variables with integer arithnetic node.
There are no inplicit node conversions, and no conversions on
assignnent. LITTLE supports the standard FORTRAN real operations and
functions.

Statenents are terninated by a senmicolon, and nmay be witten in a free
form LITTLE has no fixed colum assignnents for input text.
Statenents nay be sinple or conpound. Conpound statenents begin the
definition of a conpound group; the body nmay contain other statenents.
The body is termnated by an END statenent.

LITTLE includes the standard assi gnnent statenent, and the assignnent
target may be qualified by an extractor, to allow access to subparts
of itens; e.qg.

Fo 4, 12, X =YIT,

GUI DE TO THE LI TTLE LANGUACGE PAGE 9
PRECI S

LITTLE provides the wusual |IF, DO WHLE, and UNTIL statenents.
Statenents nay be |abeled. Labels nay be subscripted. LI TTLE
includes the GO TO, in both its sinple and i ndexed form

GO TO ERRORCASE

GO TOL(l) IN1 TO 3;
IL(1)/
IL(2)/
IL(3)/ ...
/| ERRORCASE/ . .
LITTLE uses a static namescoping schene simlar to FORTRAN. By
default, variables are local to the procedure in which they are
defined. @ obal variables may be defined, and are grouped together in
naned groups using the NAMESET st atenent. The ACCESS statenent is
used to nane the NAMESETs which a particul ar procedure nay use. The
DATA statenent specifies the initial values of variables.

Gross programstructure is simlar to that of FORTRAN, subprograns and
functions nmay be defined with the SUBR and FNCT statenents,
respectively. Execution begins with the PROG statenent group

LITTLE includes input/output facilities for unformatted (binary) and
formatted files. Formatted files may be external sequential files or
internal character strings. Formatted IO nay use fixed fields (edit
node) or free-formfields (list node).

The following program fragnent indicates the flavor of LITTLE
Appendi x G contains a nore conprehensive exanpl e.

/* SAMPLE LI TTLE PROCEDURE */

$ MACRO SECTI ON - DEFI NE MACHI NE PARAMETERS, CODE SEQUENCES
+* SWAP(A, B) = $ MACRO TO SWAP TWD | TEMS, A COMMON OPERATI ON
SIZE ZZZA(.W6.); $ TEMPORARY FOR MACRO
ZZZA = A, A =B, B=ZZZA, **

SUBR SORTER(A, N);

$ THI' S PROCEDURE SORTS THE ARRAY A OF N | TEMS USI NG A

$ SORTI NG ALGORI THM DUE TO J. SCHWARTZ, WHI CH | S BASED
$ ON THE ELEGANT HEAPSORT ALGORI THM

SIZE A(.WS.); DIMS A(2); $ ARRAY TO SORT.

SIZE I(.PS.); $ DO LOOP | NDEX
SIZE N(.PS.); $ NUMBER OF ELEMENTS TO SORT.
SIZE M.PS.); $ CURRENT NODE BEI NG EXAM NED
SIZE TOP(.PS.); $ CURRENT TOP OF TREE DURI NG PHASE 2.
SIZE TARGE.PS.); $ | NDEX OF LARGEST CHI LD.
DO | =2 TON, $ MAKE |INTO HEAP, | | S CURRENT PARENT
M=

WHLE M> 1; $ EXAM NE PARENTS I N TURN.
IF (A(M2) >= A(M) QUT WHILE, $ IF PARENT NO SMALLER
SWAP(A(M, A(M2)); $ PROMOTE LARGE CHI LD,

M= M/ 2. $ MOWVE TO GRANDPARENT.
END WHI LE;
END DO | ;

GUI DE TO THE LI TTLE LANGUACGE PAGE
PRECI S

DO TOP = NTO2 BY -1; $ SORT SUBTREES | N TURN.
SWAP(A(1), A(TOP)); $ EXTRACT LARGEST ELEMENT.
M= 1, $ FORCE REMAINI NG SUBTREE TO BE HEAP.

WH LE M2 < TOP, $ FOR ALL SUBTREES
IF (A(M2) < A(M2+1)) & (M2+1 < TOP)
THEN TARG = M 2+1;
ELSE TARG = M2; END IF;
IF A(M < A(TARG THEN
SWAP(A(M), A(TARG); $ CHILD TOO BIG EXCHANGE.
ELSE QU T WH LE; END IF;
M= TARG $ MOVE TO SUBTREE OF LARGEST CHI LD.
END WHI LE;
END DO TOP;
END SUBR SORTER;

10

GUI DE TO THE LI TTLE LANGUACGE PAGE 11
TERVS AND NOTATI ON

This section defines the terns and notation used in the remai nder of
this docunent.

Source text structure, directives and |ines.

LITTLE source text consists of a sequence of Ilines. Each |line
contains at least 72 characters. The first 72 characters of each line
are LITTLE text; remaining characters nay be used for identification

Every conpilation directive line has a blank as the first character of
the line and a period as the second character. A rest-of-line coment
begins with the dollar character.

Formati on of nanes

There are two types of names in LITTLE sinple nanes and nane
constants. A sinple nanme consists of an al phabetic character foll owed
by zero or nore al phameric characters. A nane constant consists of an
integer of one to three digits, followed by the letter N, followed by

a value part. Let L be the value of the integer. |If L is nonzero,
the value part consists of the L characters immediately following the
letter N If L is zero, the first character after the letter N

defines a delimter, and the value part consists of the one or nore
characters which occur before the next follow ng instance of the
delinmter. For exanple, the follow ng synbols each define the nane
LI TTLE:

LI TTLE 6NLI TTLE ON LI TTLE/

(Conment : Nane constants are typically used to define a name which
contai ns non-al phaneric characters. Such nonstandard nanes are often
used to define nanes which have a | ow probability of conflicting with
sinmple nanes found in prograns. For exanple, the procedures wused to
i nplenrent the LITTLE | O features have nanes which end in "$10, as in
" TNGETC$1 O)

The GQuide wuses nane to indicate that either a sinple nane or a nane
constant may be witten. |If only a sinple nane nmay be wused, this
restriction is explicitly noted.

Vari abl es and arrays

LI TTLE provides bitstring variables and one dinensional arrays, and
requires that every variable be declared. The initial declaration is
either a SIZE declaration or a REAL declaration; a subsequent DI M5
decl aration defines an array and gi ves the nunber of elenents in the
array. The DATA statenent gives the initial values of variables. The
phrase 'variable indicates that either a sinple variable or array
el ement can be used in a construct; any construct which requires only
sinple variables, and does not pernit array elenments, is noted by
usi ng the phrase 'sinple variable’.

GUI DE TO THE LI TTLE LANGUACGE PAGE 12
TERVS AND NOTATI ON

Counti ng conventions

The bits in a bitstring are enunerated fromright to left. The |east

significant bit has index one and is the rightnost bit. The
characters in a character string are counted fromleft to right. The
first character has index one and is the |leftnost character. The

first element of an array has index one.

Arithnetic node

There are two arithnmetic nodes: integer and real. Every variable,
array and function procedure has an arithnmetic node, established by
decl arati ons. Arithmetic is in general done in the integer node, but

is done in real node if both operands are of real node, or iif the
operation definition specifies that an operand may be of real node.
For exanple, A+B is integer add unless A and B both have real node,
while SQRT(X) is valid only if X is of real node

There are no inplicit conversions of node wthin expressions or as
part of assignment process. For exanple, if | is of integer node and
R is of real node, the assignnent 'I=R just copies the value of Rto
| without conversion. The standard functions |IFIX and FLOAT are
provided, and nust be explicitly witten, to effect nobde conversion

for exanple, "I = IFIX(R)'.

d obal and | ocal vari abl es

Variables in LITTLE are local or global. Al'l variables nust be
declared within a procedure body. A variable is global if it is
declared wthin the body of a NAMESET statenent group, and is said to
be a nmenber of the NAMESET.

A procedure may reference global variables which are bound to a fornma
argunent of the procedure or which are nenbers of an accessible
NANMESET. A NAMESET is accessible to a procedure if the procedure
contai ns the NAMESET group defining the NAMESET, of if the procedure
contai ns an ACCESS st atenent which includes the NAMVESET nane.

(Conment : The standard conpiler assists in the use of globa
variables by providing two options, one to generate a NAMESET
consisting of the otherwise 'local’ variables declared in the first
procedure conpiled, another to grant each procedure access to al
NAMESETs defined in the first procedure conpiled. Both these options
are enabl ed by default.)

GUI DE TO THE LI TTLE LANGUACGE PAGE 13
TERVS AND NOTATI ON

Wthin a programa file is identified by an integer. The integer nust
be greater than zero and no greater than sone inplenentation limt
(typically ten). The FILE statenent defines (connects) a file to an
external medium the TITLE clause of the FILE statenment identifies the
external nedium the ACCESS clause indicates the |/O features to be
used. Initially, file one is preconnected as the standard input file,
and file two is preconnected as the standard output file. The ACCESS
option STRING pernits the use of a character string variable as a
single line file, so that a programcan use the data conversion and
editing features without performng 10 on an external nedi um

Array bl ocks

The input/output features permt the use of an "array block’ to
i ndi cate transm ssion of several elenents of an array. The form of an
array block is "ARA(LO to ARA(HI)' where ARA is an array nane, and LO
and H index elenents of ARA. H nust be greater than or equal to LO
The array block specifies transmssion of the elenments ARA(LO,
ARA(LO+1),...,ARA(H). The array block consisting of all the array
elements may be specified by giving the array nane alone: 'ARA
wi t hout an index corresponds to the array block 'ARA(1l) TO ARA(D)’
where D is the dinension of ARA If H=LO1), no elenent is
transmtted. This is a null slice.

Conpound gr oups

A conmpound group is a sequence of statenents, called a statenent
group, which serve a given purpose. The first statenent in the group
defines the purpose of the group. An END statenent terninates the
group. The keyword END in an END statenent nmay be foll owed by severa
tokens; if given, they nust match the tokens in the statenent which
begi ns the group. The conpound statenments are as foll ows:

DO FNCT |IF NAMESET PROG SUBR UNTIL WH LE
The FNCT, PROG and SUBR st atenent groups define a procedure group, or

procedure. The DO, UNTIL and WHI LE statenent groups define iteration
gr oups.

GUI DE TO THE LI TTLE LANGUACGE PAGE 14
TERVS AND NOTATI ON

Conpound groups may be nested and nmay include CONT and QU T statenents
which refer to the group. The group referred to is determned by a
list of tokens in the statenent; if this list is enpty, the group
referred to is the innernost group of the desired type; otherwi se the
group is the innernost group whose initial statenment begins with the
sane tokens as are in the token |ist.

Pr ocedur es

A procedure is a naned sequence of statenents. In LITTLE, a procedure
is a conpound group which begins with a FNCT, PROG or SUBR statenent.
A CALL statenent directs the execution of a SUBR group. The
appearance of a FNCT group nane wthin an expression directs the
execution of a FNCT group. Program execution begins with the program
group defined by a PROG statenent. A procedure group nmay not contain
another procedure group, nor nay a conpound statenent contain a
procedure group.

Iteration groups, iterators

An iteration group begins with a DO, UNTIL or WH LE statenent. The
body of an iteration group is executed a varying nunber of tines
according to the value of an iteration condition. Various statenents
in the body may direct whether to continue or ternminate the iteration

"To termnate an iteration” is to continue processing wth the
statement which follows the END statement which ends the iteration
group. "To continue an iteration’ is to continue processing with the

first statenent in the group body.

St at enent | abel s

A statenment |abel identifies a statenent. A statenent |abel consists
of a nanme optionally followed by an integer constant enclosed in
par ent heses. A statenent label definition consists of a slash
character followed by a statenent Ilabel, followed by a slash
character, witten before a statement. A statenment nmmy be prefixed
with one or nore statenment |abel definitions. Statement |abels are
used in the sinple and i ndexed GO TO statenents to explicitly sel ect
the next statenent to be processed.

GUI DE TO THE LI TTLE LANGUACGE PAGE 15
TERVS AND NOTATI ON

I nst ance synbol s

Most of the constructs of the LITTLE | anguage have paraneters which
represent the synbols, variables and constants needed to define an
actual LITTLE program The follow ng synbols are used to indicate the
formof the itens which nay occur in a given construct. An instance
synbol consists of a letter followed by a digit. The letter gives the
type of the synbol, the digit gives an instance nunber. The digit '9
is used only where a varying nunber of instances can be witten, and
then to indicate the last instance. The letters used are as foll ows:

array
constant, or expression in constants

expr essi on

i nteger expression (arithnmetic node integer)
name

real expression (arithnetic node real)
variable, or array el enent

<TZ2— MO >

Comments within the guide

The construct '(Conment: ...)’ indicates an internal conmment. Such
comments are not part of the definition of LITTLE, but are included to
i mprove readability and to direct the reader to related nmaterial.

GUI DE TO THE LI TTLE LANGUACGE PAGE 16
CHARACTER SET

LI TTLE uses the foll owing characters:

1. Al phabetic characters:
ABCDEFGHI JKLMNOPQRSTUVWXY Z _

(The character * ' is called the break character.)
2. Nuneric characters: 0123456789

The al phabetic and nuneric characters are referred to collectively as
t he al phanuneric (al phaneric) characters

3. Special characters:

Synbol ASCl | Nane
32 bl ank
= 61 equal
+ 44 pl us
- 45 m nus
* 42 times, asterisk
/ 47 di vi de, sl ash
(40 | eft parenthesis
) 41 right parenthesis
, 44 comma
. 46 peri od, point
; 59 semni col on
: 55 col on
$ 36 dol I ar sign, comment character
A 94 not
& 38 and
! 33 or
< 60 | ess than
> 62 greater than
' 39 apostrophe, string delimter

The ASCI| code for break character is 95.
| mpl enent ati ons nay support both upper and | ower case letters.
If so, case is significant only within string constants.

GUI DE TO THE LI TTLE LANGUACGE PAGE 17
COMMVENTS

A LITTLE program may contain comments. Comments nay occur between, or
even within, programstatenents. Comments provide for the interna
docunentation of a program and have no effect on the manner in which
the programis executed. Comments are |exical tokens, and so nmay not
occur within other tokens.

Comments nmay also occur, in certain cases, in the datasets processed
by the LITTLE input/output features, as described in section 7.

Comments are of two types, as follows:

1. End-of-line coment, which begins with the character '$ and
i ncludes the renaining characters on the |ine.

2. Delimted conmment, which begins wth the characters '/*" (no
i ntervening blanks), and consists of an arbitrary nunber of
characters, possibly extending over several lines. The coment
ends with the first occurrence of the characters '*/' (no
i nterveni ng bl anks).

Exanpl es of comments are

I 1, $ PREPARE FOR SEARCH

1, /* PREPARE FOR SEARCH. */

1 /* PREPARE FOR SEARCH. */;
/[*PREPARE*/ | /*FOR*/ = 1; $ SEARCH

All of the Ilines just given are equivalent in that, after comments
have been processed, each contains the single statenent '1=1;’

GUI DE TO THE LI TTLE LANGUACGE PAGE 18
MACRO PROCESSOR

LITTLE includes a sinple macro processor. Macros with argunments are
declared in the form

(1) +*MACRONAME(ARGL, ARG, ..., ARGk) = MACROBCDY **

Macros with no argunents are declared in the form

(2) +* MACRONAME = MACROBODY **

In the above, MACRONAME is a nane, ARGL,...,ARGK are nanes denoting
the macro argunents, and MACROBODY is a sequence of zero or nore
| exi cal tokens.

After its definition, a macro nmay be invoked at any point by witing

(3) MACRONAME (SUB1, SUBZ2,..., SUBK)

for a nacro with argunents, where each SUBn is a sequence of one
nore tokens.

A nmacro without argunents is invoked by just witing its name
(4) MACRONAME

The nunber of argunents in (1) and (3) nust match, although nul
argunents are allowed. Each argunent SUBKk nmay be any sequence of
tokens which is balanced with respect to parentheses and which
contains no exposed conmms, i.e., no comms not encl osed in
par ent heses.

Macr o i nvocati ons are expanded by substituting SUBk for each
occurrence of ARGK in the nmacro body, and issuing the resultant stream
of tokens instead of the the tokens which invoked the macro. |If this

stream contains nmacro invocations, these inner invocations are
expanded, and so on recursively.

Macro definitions may not explicitly contain other nmacro definitions;
however, the macro processor does allow nmacros to be defined wthin
other macros in an indirect fashion, as foll ows:

(5) Define macro @B by +*B(A B,C = AB C **,

(6) Defi ne macro MACDEF by
+* MACDEF(TEXT) = @(+, *TEXT*, *) **

(7) Macros may then be defined within other macros by using
+* Qutermacro = ... MACDEF(Nane=l nnerbody) ... **

GUI DE TO THE LI TTLE LANGUACGE PAGE 19
MACRO PROCESSOR

The macro processor al so supports a sinple schene for generating nanes
and integers with values unique to a particul ar macro expansi on. For
exanpl e, such values are useful to generate statenent |abels within
macros. The nmacro generation synbols have the form

ZZZA, ZZ7ZB, ..., ZZZZ, ZZZ_ (for nanes)
ZZYA, ZZYB, ..., ZZYZ, ZZY_ (for integers)

Associated with each such name is a counter variable. Wen the nane
is first encountered during a macro expansi on, the appropriate counter
is incremented and the nanme is replaced by the nane or integer so
generated. Subsequent instances of the name in the nmacro body are
replaced by the value generated on encountering the first instance.
Cener at ed nanes consi st of the counter val ue appended to the nane; for

exanple, 'ZZZA nmight be replaced by ’'ZZZA01020'. If a counter
variable is encountered when no nacro is being expanded, it is
replaced with the value |ast generated during a nacro expansion, i.e.

its current val ue.

Once a nanme is given nmacro status, it retains that status until it is
"dropped’. Macros are dropped by redefining the nane as a macro wth
a null macro body. For exanple,

+* MACRONAME = **

The ZZYORG directive line resets selected ZZY synbols to have val ue
zero. The directive line begins with a blank, followed by a period,
foll owed by ZZYORG followed by one or nore bl anks, followed by one of
nor e al phabetic characters. The al phabetic characters give the |ast
character of each ZzZY synbol which is to be reset to zero

(Conment : Al'l macroprocessing is done at the lexical level, prior to
parsing. Thus, nmacro definitions are 'global’ in that they persist
over procedure boundaries.)

The foll owi ng exanpl e shows use of nacros to define fields:

$ FI ELDS OF LEXI CAL SCANNER SYMBCL TABLE.

+* LEXTYP = .E 01, 04, ** $ LEXICAL TYPE

+* LEXLEN = .E 05, 07, ** $ LEXICAL LENGTH

+* HALENTYP = .E. 01, 11, ** $ LENGTH AND TYPE FI ELDS
+* LI TCCD = .E 12, 07, ** $ LITERAL CODE

+* CAB = .E 19, 01, ** $ CONDI TI ONAL ASSEMBLY BI T.
+* NAMEPTR = .E 20, 13, ** $ NAMES | NDEX

+* MACORG = .E 33, 13, ** $ MACRO ORIG N.

+* NUSES = .E 46, 02, ** $ NUMBER OF USES.

+* HALI NK = .E 48, 13, ** $ LINK FOR HASH CHAI N

Appendi x D contains an infornmal introduction to the macro processor

GUI DE TO THE LI TTLE LANGUACGE PAGE 20
TEXT DEFI NI TI ON: CONDI TI ONAL ASSEMBLY, REMOTE TEXT

LI TTLE provides conditional assenbly to conditionally select the input
lines to be processed, and an |INCLUDE directive to request
substitution of renptely defined text.

Condi ti onal assenbly

LI TTLE supports a sinple schene for the conditional assenbly of source
text. Input lines with a blank in colum one, a period in colum two,
one of the characters '+ or ’'-' or '.’ in colum three, and an
al phabetic character in colum four (which begins a sinple nanme) are
conditional assenbly directives. Such lines take one of the forns

(1) .+*NAME conditional assenbly of rest of line

(2) .-NAME conditional negative assenbly of rest of |ine
(3) .+NAME. conditional assenbly of group

(4) .-NAME. conditional negative assenbly of group

(5) ..NAME end of conditional group

For each name wused in one of the above fornms there is an associated
conditional assenbly bit, CAB. The CABis initially zero. Wen form
(1) is seen, the rest of the line is processed only if the CAB for the
nane is one; otherwise, the rest of the line is ignored. When form
(2) is seen, the rest of the line is processed only if the CAB for the
nane is zero; otherwise the line is ignored.

Fornms (3) and (4) are treated simlarly, except that the scope of the
conditional action is the next conditional assenbly line referring to
the sane nane. Form (5) is used to indicate the end of a conditiona
assenbly group.

The CAB values for all nanmes are initially zero. Values may be set by
using conditional assenbly lines with the nanme ’'SET', which has a
special interpretation. Such lines contain the conditional name SET
followed by a Iist of nanes separated by conmas. The CAB for the nane
is set to one in the case '.+SET', or is set to zero in the case
".-SET". For exanple, the line

.+SET HATRACE $ ENABLE TRACI NG OPTI ON
enabl es the conditional nane HATRACE

Conditional directives can be nested; for exanple

. +S66.

.+SET EXTIME $ Display execution tinme

. +SET WBMB $ Wrd size is multiple of three
.. S66

Appendi x G contains an exanple of the use of conditional assenbly.

GUI DE TO THE LI TTLE LANGUACGE PAGE 21
TEXT DEFI NI TI ON: CONDI TI ONAL ASSEMBLY, REMOTE TEXT

I ncl usion of renpte text

The text inclusion feature permts the collection of text lines into
naned groups, called MEMBERs, and subsequent insertion of MEMBERs into
atext file by use of the INCLUDE directive. The inclusion feature is
typically used for text fragnents shared by several prograns; exanples
of such text fragnents include macro definitions for codes, field
structures and procedure definitions. The inclusion feature can also
be wused if the sane text fragnent occurs several tines in a program
al t hough the nmacro processor is nore commonly used for this function

An I NCLUDE directive is a line which begins with a blank, followed by
a period, followed by an equal sign, followed by I NCLUDE, followed by
one or nore blanks, followed by a nenber specification. A nenber
specification begins with the first nonblank character after colum
twel ve and ends with the next nonblank character which is followed by
a bl ank character. The nenber specification defines a nenber nane M
according to the follow ng rules:

1 Renmove the first character if it is an apostrophe.

2 Renmove the first character if it is a left parenthesis.
3. Renove the last character if it is an apostrophe.

4 Renmove the last character if it is a right parenthesis.

The above reduction rules permt several ways of specifying a
MEMBER nane; for exanple, the follow ng each refer to LTL:

LTL °LTL® ' (LTL)’ (LTL) ' LTL)

In effect, the lines of the nanmed MEMBER replace the | NCLUDE
directive.

The format of a sequential inclusion text file is as foll ows:

1. A nenber definition line of the the form’ .=MEMBER M begi ns
the definition of menber M

2. The nenber consists of all following |ines up to, but not
i ncluding the next nenber definition line, or the end of the
file, whichever occurs first.

3. A nenber nmay have no |ines

GUI DE TO THE LI TTLE LANGUACGE PAGE 22
TEXT DEFI NI TI ON: CONDI TI ONAL ASSEMBLY, REMOTE TEXT

(Comment: The standard sequential form defines a machi ne i ndependent
representation of nenber definitions which can be wused for program
i nt erchange. However, a LITTLE inplenentation nay represent text
libraries in a system dependent nmanner, particularly if direct access
i nput/output is available.)

(Comment: The standard conpiler option 'I MEMEM directs the inclusion
of menber M before the first line of the input.)

(Conment : The standard conpiler accepts MEMBER directives in the
conpiler input file to pernit the trial conpilation of text libraries.
This also permits the witing of programtext in a form which suggests
the forma text library would take, wi thout requiring the construction
of the text Ilibrary in order to conpile the text. |Input |lines
cont ai ni ng MEMBER directives are skipped.)

GUI DE TO THE LI TTLE LANGUACGE PAGE 23
DATA TYPES AND CONSTANTS

LI TTLE provides the bitstring as the basic data type and supports the
use of bitstrings to represent integers, floating point nunbers,
character codes and character strings. The notion of data type in
LITTLE is less rigid than that found in nost progranm ng |anguages,
and is closer in spirit to the assenbly |language |evel. LITTLE
exposes the bitstring representation of data type val ues, and does not
include any inplicit conversions fromone data type to another

Bi tstrings

The bitstring is the basic data type of LITTILE A bitstring is a
sequence of binary digits, or bits. The length of a bitstringis its
si ze. LI TTLE enunerates bitstrings fromright to left, starting from
one. For exanple, in the bitstring '10°, the size is two, the
rightnost bit is zero, the leftnost bit is one, the first bit is zero
and the second bit is one.

A byte constant specifies the bits in a bit string. The constant
begins with a single digit which specifies the byte w dth. The byte
width nust be 1, 2, 3 or 4. The byte width is followed by the letter
B and then by a string of characters (the value part) delimted by
apost r ophes. The byte width gives the nunber of bits defined by each
nonbl ank character in the value part. Blanks may occur wthin the
value part; iif present, they do not affect the value. For exanple,
the following bitstring constants have the sane value: 1B 1101

2B 31' 3B 1%’ 4B' D

Byte digits are interpreted according to the byte width, as shown in
the follow ng table:

SYMBOL 4 3 2 1 (BYTE WDTH)

TMUOW>O©O~NOUDWNERO
£222222222%22%22%2+v0

£222222222¢2¢%

The entry NV in the table indicates that the synbol is not valid in
byte constants of the corresponding byte width. A byte constant is
said to be ’'binary', 'octal’ or 'hexadecinal’ according as the byte
width is 1, 3 or 4, respectively.

GUI DE TO THE LI TTLE LANGUACGE PAGE 24
DATA TYPES AND CONSTANTS

I nt egers

LITTLE internally represents nonnegative decinmal integers using the
standard base two bitstring representation. For exanpl e, t he
bitstring ’'100° corresponds to the integer four, the integer fifteen
corresponds to the bitstring ' 1111

LITTLE bitstrings and nonnegative integers may be viewed as the
rightnost part of an arbitrarily long representation. The assignnent
of a 'short’ value to a 'longer’ value inplies that the | eftnost bits
of the result not defined by the assignnent source are set to zero.

LITTLE permts the use of signed integers, although all such integers
have a fixed size, which is the nachine word size (.Ws.), and the
| eftnost bit of a negative value is always one. The representation of
negative integers is processor dependent, typically either one's or
two’s conpl enent.

A decinal integer constant consists of one or nore digits, optionally
preceded by a sign character. One or nore blanks may occur between
two digits; such blanks do not affect the value; for exanple:

100, 10, -123, 100 456 789

A floating point nunber is a processor-dependent approxinmation to a
real nunber. Real quantities have an inplenentation-defined size.
LITTLE provides explicit conversion operators, as well as severa
mat hemati cal functions, such as SQRT for 'square root’.

A sinple real constant consists of an optional sign, an integer part,

a decimal point represented by '.’', and a fractional part. The
integer part and the fractional part consist of digits. Either part
may be omitted, but at |east one of the parts nust be given. A rea

exponent consists of the letter E followed by an optionally signed
i nteger, and represents a power of ten. A real constant is either a
sinple real constant, a sinple real constant followed by a rea
exponent, or an integer constant followed by a real exponent. A rea
constant nmmy contain one or nore blanks between two digits; for
exanple '3.1416° and '3.1 4 16’ define the sane value.; for exanple:

3. 1416 . 31416E+01 31.416E-1 31416E-04 3EO0

(Comment: It is good practice to wite the decimal point, and to wite
a digit before and after the decinmal point. For exanple, wite 43.0,
0.1 and 3.0E-02 instead of witing 43., .1 and 3E-02.)

Logi cal s (Bool eans)

LITTLE does not include a separate |ogical (boolean) data type, but
follows the convention that 'nonzero’ is 'true’ and zero is ’'false’

GUI DE TO THE LI TTLE LANGUACGE PAGE 25
DATA TYPES AND CONSTANTS

The standard formfor '"true’ is one, the standard formfor 'false is
zero. The standard conparison operators, such as '> always return as
result a bitstring of Iength one. LI TTLE provides the bitstring
operations of And, Not, Inclusive O and Exclusive O. These
operators also serve as logical operators using the standard form
operands of size one.

(Conment : A standard coding convention is to use nmacros YES and NO
defined by +* YES = 1 ** +* NO =0 ** to clarify use of bitstrings
for |ogical values.)

(Comment: On a nachine which uses one’s conplenent arithnetic, the
quantity '-0" is considered to be nonzero, or 'true’, since it has at
| east one nonzero bit.)

Character codes and character strings

LITTLE provides both character string constants and character code
constants. Character string constants are instances of the nost
portable form of character strings, character code constants support
the mani pul ation of the codes of individual characters as interna
i ntegers. For exanple, the character string constant 'O specifies
the string of Iength one containing the single character correspondi ng
to the digit zero, while the character code constant 1RO specifies the
internal integer code of the character for the digit zero

A 'character code set’ of width Wwith N synbols is the association of
N distinct synbols with distinct bitstrings each of size W The
character code set is ’'conplete if Nis the Wth power of two, so
that a synbol is associated with each possible bitstring. Each synbol
is either a ’'graphic synbol’ or a ’'control synbol’. The LITTLE
| anguage uses 56 distinct graphic synbols. The term ’'character’ is
used in the guide to refer to one of these graphic synmbols. LITTLE
requires no control synbols; this Guide does not define the results of
their use in character strings. The Guide al so does not define the
use of characters other than those used by the LITTLE | anguage.

Since LITTLE uses 56 characters, each LITTLE inplenentation requires a
character set with a width of at |least six bits. The width of the
environnent character set 1is an essential paraneter of a LITTLE
program this width is called the ’'character size’ and is witten
. CS.’

A character string is a ’'sequence of characters’. In LITTLE a
character string is a bitstring with three parts. The ’'length part’
gi ves the nunber of characters in the string. The ’'origin part’ gives
the position of the character codes within the bitstring. The ’'value
part’ contains, in order, the bitstring codes of the graphic synbols
of the character string. The bitstring representation of a character
string provides nost of the properties of 'varying |l ength character
strings’ as this termis comonly used. Appendix E contains a nore
detail ed explanation of the use of this representation

The unique character string which has length zero and contains no
characters is the "null’ character string. The LITTLE operations on

GUI DE TO THE LI TTLE LANGUACGE PAGE 26
DATA TYPES AND CONSTANTS

character strings pernmt the use of the null string so that, for
exanpl e, the result of concatenating a character string Sto the nul
string is just the string S.

Character code constants

A character code constant defines a bitstring as a function of the
graphi c synbols. A character code constant consists of a length given
by an unsigned integer, followed inmediately by the letter R, followed
by a val ue part.

If the length, L, is nonzero, then the value part consists of the L
characters immediately following the letter R If the length is zero,
the first character following Ris taken as a delimter, and the val ue
consists of following characters up to the next instance of the
delimter. Each character in the 'value part’ of the constant defines
a bitstring of length .CS. which has as value the bitstring code for
t he graphi c character

The size of a character code constant is the product of the character
size, .CS., and the nunber of characters in the constant. Char act er
code constants are stored right-justified with zero fill.

Exanpl es:

1IRX 6RLITTLE OR/ DELI M TED CASE/

Character string constants

Character string constants consist of a sequence of zero or nore
characters encl osed i n apostrophes. Such strings may contain interna
apostrophes; if so, two apostrophes nust be witten to indicate each
apostrophe in the string. For exanple, the character string
containing the letter A an apostrophe and the letter Bis witten

AR
The string '’ denotes the null character string.

Character string constants nay also be given as Qtype constants.
This formconsists of a length part, followed by the letter Q
followed by a value part. The length part consists of one to three
nuneric characters with no intervening blanks; let L be the value of
the length part. If L is nonzero, the value part consists of the L
characters following the letter Q O herwise, the first character
following the letter Q defines a delimter, and the value part
consists of the zero or nore characters which occur before the next
instance of the delimter. For exanple, the follow ng are equival ent:

"LITTLE 6Q.ITTLE OQ LITTLE

Q constants permit the definition of character string constants which
contain apostrophes wthout the need to doubl e t he i nterna

GUI DE TO THE LI TTLE LANGUACGE PAGE 27
DATA TYPES AND CONSTANTS

apostrophes. For exanple, both
"A'B and 3QA'B

define a constant character string consisting of the letter A
foll owed by the apostrophe character, followed by the letter B

GUI DE TO THE LI TTLE LANGUACGE PAGE 28
EXPRESSI ONS

Expressions are constructed using constants, nanes and operators in
the usual manner. The rules for expression formation pernit the use
of parentheses to explicitly delimt operands and the use of
precedence levels to sinplify the witing of expressions. For
exanpl e, the operator * has higher precedence than the operator +, so
that A*B+C is taken to nean (A*B)+C). The following table summarizes
the standard operators of LITTLE and gives the operator precedence
| evel s.

Every expression has an arithnmetic node which is either integer or
real. The phrase 'integer expression’ denotes an expression which
must have arithnetic node integer, the phrase ’'real expression
denot es an expressi on which nust have arithnetic node real

Precedence Synbol Synonyns Functi on

7 .E. E1,E2,E3 Subfield of E3 with length E2
beginning at bit El
.F. El, E2, E3 Subfield of E3 with length E2
beginning at bit E1 (may not cross word
boundari es.)
.S. El1, E2, E3 Substring of character string E3 with
| ength E2 beginning at position El
.CH E1, E2 Character E1 of character string E2
.LEN. E1 Length of character string
+E1 Unary sign prefix: +El same as El1
-E1 Unary sign prefix: -El same as (0-E1l)
.NB. E1 Nunber of nonzero bits in E1
.FB. E1 Position of |eftnost nonzero bit in El
.SDS. El1 Si ze of character string of E1 characters
ElL * E2 Mul tiply
El / E2 Di vi de
El .IN E2 Index in character string E2 of first
occurrence of character string E1
El + E2 Add
El - E2 Subt r act

EXPRESSI ONS

4 El = E2
El "= E2
El > E2
El >= E2
El < E2
El <= E2
El .SEQ E2
El .SNE. E2

3 .NOT. E1
2 El & E2

1 El ! E2
El. EXOR E2
El !l E2
Cl . PAD. C2

The operands of an
as many operands as
need be eval uat ed.

GUI DE TO THE LI TTLE LANGUACGE PAGE 29

. EQ
. NE.
. GT.
. GE.
LT
. LE.

. N.

. AND.

.OR
. EX
. CC.

Equality

I nequal ity

Greater than

Greater than or equa

Less than

Less than or equa

Character string equality
Character string inequality

Bit by bit inverse
Bitstring | ogical product
Bitstring inclusive or

Bi tstring exclusive or

Character string concatenation
Pad character string Cl to length C2

expression may be evaluated in any order, and only
are required to deternmine the expression result

GUI DE TO THE LI TTLE LANGUACGE PAGE 30
EXTRACTI ON OPERATCRS

The following operators extract part of a bitstring. There are also
correspondi ng forns of the assignnent statenent to assign new val ues
to part of a bitstring.

Ceneral extractor

Pur pose: To extract part of a bitstring.

Form .E. 11, 12, E1

Rul es:

1. 12 nust be greater than or equal to zero

2. If 12 is zero, the result is zero

3. 11 nust be greater than zero, and (l1+12-1) nust be |less than or

equal to the size of EL.

4. The I-th bit of the result is the (I1+l-1)-th bit of El

Part word extractor

Pur pose: To extract a bitstring froma nmachi ne word.

Form Fo11, 12, E1

Rul es:

1. 12 nust be greater than or equal to zero

2. If 12 is zero, the result is zero

3. 11 nust be greater than zero, and 12 nust be less than or equal to

the machine word size W ((11-1)/W8) nust be equal to
((11+12-1)/ WB).

4., The I-th bit of the result is bit (I1+l-1) of El1l

GUI DE TO THE LI TTLE LANGUACGE PAGE 31
EXTRACTI ON OPERATCRS

Character substring extractor

Pur pose: To extract a substring of a character string.
Form .S 11, 12, E1

Rul es:

1. 12 nust be greater than or equal to zero

2. If 12 is zero, the result is the null character string.

3. E1 nust be a character string. Let LE1 be the Ilengthin
characters of EL.

4. 11 nust be greater than zero, and (11+l12) nust be |ess than or
equal to (LE1+1).

5. The result is a character string of 12 characters. The I-th

character of the result is the (I1+l-1)-th character of El1

Character code extractor

Pur pose: To extract a character froma character string
Form .CH 11, E1
Rul es:

1. E1 nust be a character string. Let LE1 be the Ilengthin
characters of EL.

2. 11 nust be greater than zero, and 11 nust be less than or equal to
LE1L.

3. The result is the 11-th character of EIl.

GUI DE TO THE LI TTLE LANGUACGE PAGE 32
EXTRACTI ON OPERATCRS

Character string | ength operator

Pur pose: To determine the current I ength of a character string.
Form .LEN. E1
Rul es:

1. El nust be a character string.
2. The result is the current length in characters of EIl.
Exanpl es:

.LEN. "7 is O
.LEN. "LTL" is 3

GUI DE TO THE LI TTLE LANGUACGE PAGE 33
UNARY OPERATCRS

Unary m nus operator

The expression '-E1' is equivalent to the subtraction of ELl from zero.

Unary pl us operator

The expression '+E1' is sane as (El).

Bit | nversion operator

Pur pose: To invert a bit string.
Form N EL
Rul es:

1. Determne bit | of the result as foll ows:
1. If bit | of El is zero, bit | of the result is one.
2. If bit | of El1 is one, bit | of the result is zero.

2. '™El'" may be written '.NOI. E1l' or '.N EI

Exanpl es:
.NOT. 1B 10’ is 1B 01
.NOT. 1B' O’ is 1B 1’

First bit operator

Pur pose: To determ ne index of |eftnobst nonzero bit.
Form .FB. El1
Rul es:

1. Deternmine the result as follows:
1. If El is zero, the result is zero
2. If E1 is not zero, the result is the largest integer | such
that bit | of E1 is one.

Exanpl es:
.FB. 1B' O’ is O
.FB. 1B 01’ is 1

. FB. 1B 010071’ is 4

GUI DE TO THE LI TTLE LANGUACGE PAGE 34
UNARY OPERATCRS

Nunmber of bits operator

Pur pose: To determ ne the nunber of nonzero bits.
Form .NB. E1
Rul es:

1. The result is the nunber of bits in E1 which are one.

Exanpl es:
.NB. 1B O’ is O
.NB. 1B’ 0101’ is 2
. NB. 1B’ 1000’ is 1

Character string size operator

Pur pose: To determ ne the nunber of bits needed for a character
string.

Form .S0S. 11

Rul es:

1. Assert that 11 is greater than or equal to zero

2. The result is the size of a character string which may contain at
nost 11 characters. The result is always a nultiple of the
machi ne word size

The standard LITTLE conpiler assunes that the word size W is a
nmultiple of the character size CS, so that

.SDS. N =W * ((N+ (.SL.+.SO)/CSs + CPW-1) /| CPW
where .SO and .SL. are the synbols which denote the length in bits of

the string origin and string length fields respectively. Assuming W
is 32, CSis 8, .SL. is 8 and .SO is 16, .SDS. evaluates as foll ows:

.SDS. 0 is 32
.SDS. 1 is 32
. SDS. 2 is 64
. SDS. 5 is 64
. SDS. 8 is 96
. SDS. 80 is 672

Appendi x E describes the representation of character strings in nore
detail.

GUI DE TO THE LI TTLE LANGUACGE PAGE 35
Bl NARY OPERATORS

Arithnmetic operators

LI TTLE i ncludes the followi ng standard arithnetic operators:
1. Add, witten 'EL+E2’.
2. Subtract, witten 'E1-E2’.
3. Miltiply, witten 'E1*E2’.
4. Divide, witten 'E1/E2’.
The result has arithnetic node real only if both operands are of

arithnetic node real, otherwise the result has arithnetic node
i nteger.

Conpari son operators

LI TTLE i ncl udes the follow ng standard conpari son operators:
1. Equal to, witten "E1=E2’ or 'E1l.EQ E2’.
2. Not equal to, witten 'E1*"=E2’ or 'El.NE E2'.
3. Geater than, witten 'E1>E2’ or 'El.GI.E2' .
4. Geater than or equal to, witten 'E1>=E2’ or 'El.GE E2'.
5. Less than, witten ' E1<E2’ or ’'E1.LT.E2.
6. Less than or equal to, witten ' El<=E2’ or 'El.LE E2’'.
The result is always zero or one.
The operands nust have the sane arithnetic node.
In operators such as '<= where two synbols are used to indicate the

operator, the synbols are normally witten with no intervening spaces;
however, intervening spaces are permtted.

Character string conparison operators

Pur pose: To conpare two character strings for equality (inequality)
Form El . SEQ E2 (E1 . SNE. E2)
Rul es:

1. Assert that E1 and E2 are character strings.

2. The result is one (zero) only if El and E2 have the sane | ength
and contain the sane characters. Oherwise, the result is zero

GUI DE TO THE LI TTLE LANGUACGE PAGE 36
Bl NARY OPERATORS

(one).

Exanpl es:
"' .SEQ 'ABC is O
"AB' .SEQ 'AB is 1
"AB' .SNE. 'AC is 1

Character string concatenation operation

Pur pose: To concatenate two character strings into a single string.
Form El1!! E2
Rul es:

1. Assert that E1 and E2 are character strings.

2. If either input is the null character string, the result is the
ot her input.

3. Oherwise, let L1 be the length in characters of El, and let L2 be
the length in characters of E2. The result is a character string
of length (L1+L2). The first L1 characters are the characters of
El; the remaining L2 characters are the characters of E2.

4, 'EL'!'E2’ may al so be witten 'ELl. CC E2

Exanpl es:
L T ABC is 'ABC
"AB Il is 'AB
"ABC Il 'LTL is 'ABCLTL

Character string instance operator

Pur pose: To find an instance of one character string wthin another
Form El .IN E2
Rul es:

1. E1l and E2 nust be character strings.

2. If either El or E2 is the null character string, the result is
zero.

3. Oherwise, let L1 be the length in characters of El, L2 the length
in characters of E2.

4., The result is zero unless string E2 contains an instance of E1, in
which case the result is the index in E1l of the start of the first
such instance.

GUI DE TO THE LI TTLE LANGUACGE PAGE 37

Bl NARY OPERATORS

Exanpl es:
"IN "ABC is O
"AB'" .IN is O
"BC .IN 'ABCD is 2
"BC .IN. ' ABCDBC is 2

Character string paddi ng operator

Pur pose: To pad a character string constant to a given | ength.

Form Cl . PAD. 2

Rul es:

1. Cl nust be a character constant and C2 nust be an integer constant
greater than or equal to zero. Let L1 be the Ilength in characters
of Cl.

2. The result is a character string constant of length C2. If Cis
| ess than or equal to L1, the I-th character of the result is the
I-th character of C1. If C2is greater than L1, the first C2
characters of the result are the characters of Cl, the renaining
(C2-L1) characters of the result are bl ank

Exanpl es:

"' .PAD. O is "’

"' . PAD. 2 is '

"ABC .PAD. 6 is 'ABC
"ABC .PAD. 2 is 'AB

"ABC .PAD. 0O is '’

"ABC .PAD. 6 !! ' XY'.PAD. 10 is "ABC XY '

(Comment: The .PAD. operator requires constant operands and is

eval uated at conpilation tine. The .PAD. operator sinplifies the

writing of character string constants which end with severa

bl anks.)

GUI DE TO THE LI TTLE LANGUACGE PAGE
Bl NARY OPERATORS

Bi nary bitstring operators

LI TTLE i ncludes the follow ng standard binary bitstring operators:

1. And, witten 'E1&E2’, or 'E1.AND.E2' or 'El1.A E2'.
2. Inclusive O, witten "E1!E2’, or 'E1.OR E2'.

3. Exclusive O, witten 'E1. EXOR E2' or 'El.EX E2'.

Exanpl es:
1B 1100° .AND. 1B 1010 is 1B 1000’
1B 1100° .EXOR. 1B 1010’ is 1B 0110

1B’ 1100° . OR 1B’ 1010’ is 1B’ 1110’

38

LI TTLE
I1 and |2 represent
argunents. The
first character of the function name is | or M otherw se the function
value is of arithnetic node real.

ABS(R1)

Al NT(RL)

ALOG RL)

ALOGLO(RL)

AMOD(RL, R2)

ATAN(RL)

ATAN2(RL, R2)

COS(R1)

DIMRL, R2)

EXP(R1)
FLOAT(11)
| ABS(1 1)

IDIMI11, 12)

GUI DE TO THE LI TTLE LANGUACGE PAGE 39
STANDARD MATHENMATI CAL FUNCTI ONS.

i ncludes the followi ng standard nat hemati cal functions. Nanes
i nteger argunents. Nanes Rl and R2 represent real

value is of arithnmetic node integer if the

Real absol ute val ue.

Real to integer truncation. |If the
absolute value of Rl is |less than one
the result is zero; otherwi se the result
is the sign of RL tines the |argest

i nt eger whose absol ute value is not
greater than the absolute val ue of RIL.

Natural |ogarithmof Rl
Assert that RL is greater than zero.

Conmmon (base ten) logarithmof RIL.
Assert that Rl is greater than zero.

Remainder: Rl - R2 * FLOAT(INT(R1/ R2)).
Assert that R2 is nonzero.

Arctangent of R1 radians.
Result RV in range -PlI/2.0<=Rv<=PI/2.0

Arctangent of R1/R2 radi ans.
Result RV in range -Pl<Rv<=P|.

Cosi ne of Rl radi ans.

Positive difference. If RL is greater
than R2, the result is (Rl-R2);
otherwi se the result is zero.

E to the power RL

Integer to real conversion.

I nt eger absol ute val ue.

Integer positive difference. If I1lis

greater than 12, the result is (11-12),
otherwise the result is zero.

GUI DE TO THE LI TTLE LANGUACGE PAGE 40

STANDARD MATHENMATI CAL FUNCTI ONS.

| FI X(R1)

| NT(R1)

ISIGN(11, 12)

MOD(11, 12)

SIGN(RL, R2)

SI N(RL)

SQRT(R1)

TANH(RL)

Real to integer conversion. |If the
absolute value of RL is |ess than one,
the result is zero. QOherwise the result
is the sign of RL tines the |argest

i nt eger whose magni tude does not exceed
t he absol ute val ue of RI1.

Sanme as | FI X(R1)

Sign of 12 tines absolute value of I1.
If 11 is zero, result is zero.

12 must not be zero.

Remainder: 11 - 12 * (11/12).

Sign of R2 tines absolute value of RIL.
If RLis zero, result is zero.

R2 must be not zero.

Sine of Rl radi ans.

Square root of RL. Rl nust be
greater than or equal to zero.

Hyperbol i c tangent of RI.

GUI DE TO THE LI TTLE LANGUACGE PAGE 41

Sl ZI NG RULES

This section gives the rules which determine the size in bits of the

result of an operation. The follow ng general rules apply:

1. The size of a conparison is always one.

2. The size of standard arithnmetic functions such as EXP or LOG is
determ ned by the type of the result, and is always either the
size of a signed integer or the size of a real

In the following table, SZ(X) denotes the size of X, MN and MAX

denote the m ni rum and maxi num respectively.

The followi ng tabl e sunmarizes renmi ning size rules:

Qperation Result Size
JEO1L 12, V1 If 12 is a constant, size is |2.
O herwi se, size is SZ(V1).
RO 12, VL If 12 is a constant, size is |2.
O herwi se, size is MN(.W5.,SZ(Vl)).
.S 11, 12, vi If 12 is constant, size is (.SDS. 12).
O herwi se, size is SZ(V1).
L.CH 11, Vi1 . CS
.LEN. E1 . SL.
N EL SZ(El)
.FB. E1 . PS.
.NB. E1 . PS.
.SDS. El . PS.
ElL * E2 MAX(SZ(El), SZ(E2))
El / E2 SZ(El)
ElL .IN E2 . PS.
El + E2 MAX(SZ(El), SZ(E2))
El - E2 MAX(SZ(El), SZ(E2))
.NOT. El1 SZ(El)
El & E2 MAX(SZ(El), SZ(E2))
El ! E2 MAX(SZ(El), SZ(E2))
El . EXOR E2 MAX(SZ(El), SZ(E2))
El!! E2 . SDS. (L1+L2) where L1 is largest integer

such that (.SDS.L1 <= SZ(E1)) and L2 is
the | argest integer such that
((.SDS. L1) <= SZ(E2)).

Cl .PAD. 2 .SDS. 2

GUI DE TO THE LI TTLE LANGUACGE

FORVMAT AND DESCRI PTI ON OF LI TTLE STATEMENTS

This section
al phabetica
formats:

presents the
order,

ACCESS
ASSERT (MON)

ASSI GNIVENT

SI MPLE

PARTWORD
EXTENDED
CHARACTER

SUBSTRI NG
CHARACTER STRI NG
LENGTH

ourwNE

CALL

CHECK (MON)

CONTI NUE | TERATI ON
DATA
DI MENSI ON

DO
1. POSITIVE

2. NEGATI VE
3. BY ONE
END

FI LE

FUNCTI ON

& TO

1. SIMPLE
2. COVPOUND

MONI TOR (MON)

NAMESET

statenents

of the

ACCESS N1, N2 ... N9,

ASSERT E1,

V1 = EI,;
RO, 12, vl
JEC1L 12, V1
.CH I'1, V1 = EI,
.S 11, 12, V1 = El,
.LEN. V1 = 11;

El;
El;

CALL N1(E1, E2 ... E9);

CHECK I NDEX Al, A2 ... A9;;
NOCHECK | NDEX A1, A2 ... A9;

CONT;
DATA V1 = C1: V2 = C2 ... Co:

DIMS N1(CL), N2(C2)

DOV1 =11 TO 12 BY |I3; BLOCK;
END DG,

DOV1I =11 TO 12 BY -
END DG,

DO V1 =11 TO 12; BLOCK; END DO

END;
FILE |1 N1=E1, N2=E2, N3=E3;
FNCT NI(N2, N3 ... N9);
GET 11 1O LIST;

GO TO N1,

GO TO N1(11) INC1 TO C2;

IF E1 SI MPLESTATEMENT

IF E1 THEN Bl ELSEIF B2 THEN ...

MONI TOR OPTI ONLI ST;

NAMESET N1;

PAGE

NO(C9);

I 3; BLOCK;

42

LI TTLE | anguage, in
begi nning with an index of the statenent names and

END;

GUI DE TO THE LI TTLE LANGUACGE

FORVMAT AND DESCRI PTI ON OF LI TTLE STATEMENTS

NULL STATEMENT
PROGRAM

PUT

QT

READ

REAL

RETURN

REW ND

Sl ZE

SUBROUTI NE

TRACE (MON)

UNTI L
VH LE

VRI TE

Statenents marked (MON) are used to nonitor program execution

di scussed in Section 8, Mbnitor

PAGE 43
PROG N1,
PUT 11 1O_LIST;
QIT;
READ |1, Vi1, V2 ... V9,
REAL N1, N2 ... N9,
RETURN,;
REW ND 1 1,
SI ZE N1(Cl), N2(C2) NO(C9) ;
SUBR NL(N2, N3 ... N9);
TRACE OPTI ONLI ST;
NOTRACE OPTI ONLI ST;
UNTI L E1; BLOCK; END UNTIL;
VWHI LE E1; BLOCK; END UNTIL;
WRITE I'1, E1, E2 ... E9;

and are

Facility.

GUI DE TO THE LI TTLE LANGUACGE PAGE 44
ACCESS STATEMENT

Pur pose: To pernit references to variables which are
menbers of a previously defined NAMESET,;

Form ACCESS N1, N2,...,N9;
Rul es:

1. The ACCESS statenment contains a list of variable nanmes, separated
by conmas.

2. Each nane nust identify a previously defined NAVESET.

3. On encountering a reference to a variable not declared in the
current procedure, search the list of accessible NAMESETs for a
vari abl e of the same nane. |f found, bind the nane to the NAMESET
menber, so that subsequent references to the variable nane are
taken as references to the NAMESET nenber vari able.

Exanpl es:

PROG NAI N

NAMESET SYMTIABNS

SIZE SYMIABPTR(PS); $ SYMBCL TABLE PO NTER

S| ZE SYMIAB(SYMIABSZ); DI M5 SYMIAB(SYMTABMAX) ;
END NAMESET;

END PROG MAI N;

SUBR ADDSYM Sl) ;

ACCESS SYMTABNS;
SYMIABPTR = SYMIABPTR + 1;

END SUBR ADDSYM

GUI DE TO THE LI TTLE LANGUACGE PAGE 45

ASSI GNVENT STATEMENT.

Pur pose: To assign a new value to a variable or a subpart of

a vari abl e.

For ns: V1l = EI,
JE1L, 12, V1 = EL;
RO, 12, VI = EL
.S 11, 12, V1 = E1;
.CH 11, V1 = E1;
.LEN. V1 =11,
Rul es:
1. The expression follow ng the equal sign gives the source val ue of

the assignnent. The variable i mediately preceding the equal sign

is the target variable of the assignnent. Execution of the
assi gnnent uses the value of the source expression to determnne
the value of sonme or perhaps all of the bits of the target
vari abl e.

The arithnetic node of the source and target may differ; however,
execution of +the assignnment statenent includes no inmplicit
conversions of arithnmetic node.

On execution of the sinple assignnent 'V1 = El’

1. Let LEl be the length in bits of El. Let LV1 be the length in
bits of V1.

2. If LE1l is greater than or equal to LV1, then for | fromone to
LV1, set the I-th of V1 to the I-th bit of El

3. If LE1 is less than LV1, then for | fromone to LEl, set the
I-th bit of V1 to the I-th bit of E1l. Then for | from (LEL+1)
to LV1, set the I-th bit of V1 to zero.

On execution of t he character string length assignnent
".LEN. V1 = E1', set the length in characters of V1 to El1

On execution of the character string assignnent '.S. 11, 12, V1 =

E1l’, which assigns the |12 characters of V1 starting at position |1

according to the val ue of EI:

1. V1 nust be a character string. Let LV1 be the length in
characters of V1.

2. If the value of 12 is zero, the assignnent statenment does not
change t he val ue of V1.

3. E1 nust be a character string. Let LE1 be the length in
characters of EL.

4, 11 nust be greater than zero, and |12 nust be greater than
zero. (11+12-1) nust be less than or equal to LEl

5. If LE1l is greater than or equal to 12, then for | fromone to
|2, set the (I1+l-1)-th character of V1 to the I-th character
of EL.

6. If LE1 is Iless than 12, then for | fromone to LEl, set the
(11+1-1)-th character of V1 to the I-th character of EI.
Then, for | from (LE1+1) to 12, set the (I1+l-1)-th character
of V1 to be bl ank.

GUI DE TO THE LI TTLE LANGUACGE PAGE 46

ASSI GNVENT STATEMENT.

6.

On execution of the character assignnent '.CH 11, V1 = E1', which

assigns the 11-th character of character string V1 to be the

character whose internal code is El:

1. V1 nust be a character string. Let LV1 be the length in
characters of V1.

2. 11 nust be greater than zero, and |1 nust be less than or
equal to LVI1.

3. Set the I1-th character of V1 to EL.

On execution of the extract assignnment '.E 11, 12, V1 = EY

which assigns the 12 bits of V1 starting with bit 11 according to

t he val ue of EI:

1. Assert that 12 is greater than or equal to zero. If I2is
zero, execution of the assignment statenent terminates with no
change to the val ue of Vi1.

2. Let SV1 be the size of V1. Let SEl be the size of E1l

3. 11 nust be greater than zero, and (11+l2) nust be | ess than or
equal to (SVi+l).

4, |If SE1 is greater than or equal to 12 then, for | fromone to

12, set the (I11+l-1)-th bit of V1 to the I-th bit of El1

5, If SE1 is less than 12 then, for | fromone to SE1, set the
(11+1-1)-th bit of V1 to the I-th bit of E1l. Then, for | from
(SE1+1) to 12, set the (l11+l-1)-th bit of V1 to zero.

On execution of the field assignnent . F. 11, 12, V1 = E1', which

assigns the 12 bits of V1 starting with bit 11 according to the

val ue of E1 (subject to the restriction that all the assigned bits
are in a single machi ne word):

1. 12 nust be greater than or equal to zero. If 12 is zero,
execution of the assignnent statenment terninates wthout
change to the val ue of Vi.

2. Let SV1 be the size V1. Let SEl be the size of El

3. 11 nust be greater than zero, and (I 1+l 2-1) nust be |l ess than
or equal to SV1.
4., 12 nust be less than or equal to the nachine word size Ws.

((11-1)/W8) nust equal ((I11+11-2)/W8). (Coment: The field
nmust be in a single machi ne word.)

5. If SEl is greater than or equal to |2 then, for | fromone to
12, set the (I11+l-1)-th bit of V1 to the I-th bit of El1

6. If SE1 is less than 12 then, for | fromone to SE1, set the
(11+1-1)-th bit of V1 to the I-th bit of E1l. Then, for | from
(SE1+1) to 12, set the I-th bit of V1 to zero.

GUI DE TO THE LI TTLE LANGUACGE PAGE 47

CALL STATEMENT

Pur pose: To initiate execution of a procedure, and to supply the

paraneters for that execution.

Form CALL N1(E1, E2,...,E9);
CALL Ni;
Rul es:
1. The argunent list is optional. |If present, it consists of a list,

encl osed in parentheses, of actual argunents, separated by comas.

2. An actual argunent is a sinple variable, array nane or expression.

3. On execution of the CALL statenent:

1. Evaluate each actual argument which is an expression.

2. Proceed to the first executable statenent in the body of
procedure N1.

3. On execution of a RETURN statenent or the END statenent which
term nates the procedure N1, continue execution wth the
statenent follow ng the CALL statenent.

4, Assert that the nunber of argunents given in the CALL statenent
agrees with the nunber of formal arguments given in the procedure
definition.

Exanpl es:

CALL READLI NE(I NPUTFI LE, NEXTLI NE);
CALL EXIT;

GUI DE TO THE LI TTLE LANGUACGE PAGE 48

CONTI NUE STATEMENT

Pur pose: To terninate the current execution of an iteration body,

and possibly repeat execution of the iteration body,
after testing, and perhaps nodifying, the iteration
control variable or expression.

Form CONT;
Rul es:
1. The CONT statenent (CONT stands for continue) nust occur within

the body of an iteration group.

2. Zero or nore tokens may follow the keyword CONT. |If none are
given, the CONT statenent refers to the innernost iterator. | f
any are given, they nust correspond to the tokens which begin an
iteration containing the CONT statenent, and the CONT statenent
refers to the innernost such iterator.

3. Execution of a CONT statenent proceeds in the sane way as
execution of the END statenent which ternminates the iteration
gr oup.

Exanpl es:

CONT WHI LE I;
CONT DG,
CONT;
DO | =1 TON
DO J =1 TOM
I

F (B(J)=0) CONT DO I;
A1) = A1) | B(J);
END DO J;

END DO | ;

GUI DE TO THE LI TTLE LANGUACGE PAGE 49
DATA STATEMENT

Pur pose: To define the initial value of a variable.

Form DATA V1 = C1: V2 = C2:...:V9 = C9;

Rul es:

1. A DATA statement contains a |list of initialization itenmns,

separ at ed by col ons.

2. An initialization itemis either a variable initialization or an
array initialization.

3. A wvariable initialization consists of a variable nane foll owed by
the equal synbol, followed by a constant. The constant gives the
initial value of the variable when execution begins.

4, An array initialization consists of an array specification
foll owed by the equal synbol, followed by a list of array initial
val ues.

5. The array specification specifies a starting index in an array.
An array specification consisting of just an array nane alone
specifies a starting index of one. O herwi se, the array
specification consists of an array nane followed by a constant
encl osed in parentheses; the constant gives the starting index.

6. An array initial value is either a constant or a constant foll owed
by a repetition constant encl osed in parentheses.

7. The array initial values define the initial values of array
el ements, in order, beginning with the starting index. Repetition
constants direct the initialization of successive array el enents
to the sane val ue.

8. DATA initializations nust occur within the procedure containining
the declaration of the variable.

Exanpl es:
DATA | =1: J(3)=2;
$ THE FOLLOW NG DATA STATEMENTS EACH | NI Tl ALI ZE
$ A(l) TO A(10) TOBE 1,3,5,4,4,4,7,0,0,0.
DATAA=1, 3, 5 4, 4, 4, 7, 0, 0, O;
DATA A =1, 3, 5 4(3), 7, 0(3);
DATA A(1) =1, 3, 5 A7) =7: A(4) = 4(3): A(8) = 0(3);

GUI DE TO THE LI TTLE LANGUACGE PAGE 50
DI MENSI ON STATEMENT

Pur pose: To declare that an identifier is an array, and to indicate
the nunber of elenments in the array.

Form DIMS N1(Cl), N2(C2),...,N9(C9);
Rul es:
1. A DIMS statenent contains a |ist of dinension declarations,

separ ated by conmas.

2. A dinension declaration consists of a nane N followed by a
constant C which is enclosed in parentheses. C nust be greater
than zero

3. The dinension declaration nust occur after the initial SIZE or
REAL declaration for the vari abl e.

4., The dinension declaration declares that N is an array with C
el ement s.

Exanpl es:
DI M5 LI NE(72);

GUI DE TO THE LI TTLE LANGUACGE PAGE 51

DO STATEMENT

Pur pose: To mark the start of a DO group; to cause the statenments

of a DO group to be iterated based on the value of a
control vari abl e.

Form DO V1l = E1 TO E2 BY E3; (Positive)
DO V1 = E1 TO EZ; (Positive by one)
DO V1 = E1 TO E2 BY - E3; (Negative)
Rul es:
1. The DO statenent is an opener. The body of the DO group consists

of all following statenents up to and including the END statenent
whi ch terni nates the DO group

2. The DO group is an iteration group

3. The BY clause is optional. |If E3 is not given, take E3 to be one.

4. V1 is the control variable and nust be a sinple integer variable.
El, E2 and E3 are integer expressions. El is the initial value,
E2 is the final value, and E3 is the nagnitude of the increnent.
E3 nust be greater than zero. The loop is said to be increasing
(decreasing) if the mnus character does not (does) followthe
keyword BY.

5. Execution proceeds as foll ows:

1. Evaluate El1, E2 and E3; let LV1, LV2 and LV3 denote their
respecti ve val ues.

2. If the loop is increasing (decreasing), then if LVl is greater
than (less than) LV2, execution proceeds to the statenent
following the END statenment which termnminates the DO group
Oherwise V1 is set to be LV1 and execution proceeds to the
first statenent of the DO group

6. The expressions El, E2 and E3 are evaluated only once, so that
assignnents within the | oop body to variables occuring in these
expressions do no affect the nunber of times the | oop body is
execut ed.

7. On execution of the END statenent which terninates the DO group
If the iteration is increasing (decreasing), add (subtract) E3 to
the iteration control variable V1. |If the value of the contro
variable is greater than (less than) the value of E2, then
termnate the iteration. Oherw se, continue the iteration

Exanpl es:

DO | =1 TON A(l) =0; END DG

DO | =NTO1BY -1

IF (A(1)=0) CONT DO
A1) =10 / A(l);
END DO,

GUI DE TO THE LI TTLE LANGUACGE PAGE 52
END STATEMENT

Pur pose: To end a conpound statenent group.
Form END;
Rul es:

1. The END statenent term nates the statenment group begun by the nost
recent conpound statenent.

2. An END statenent term nates one statenent group.

3. The keyword END nmay be followed by up to five tokens. |If present,
they nmust match the tokens which begin the conpound statenent.

4. Execution of an END statenment depends on the type of the conpound
group, and is explained in the rules for the statenent.

Exanpl es:
IF X >0 THEN
COUNT = 0;
ELSE
COUNT = COUNT + 1;
END | F X;

GUI DE TO THE LI TTLE LANGUACGE PAGE 53

FI LE STATEMENT

Pur pose: To connect a file and give the file attributes to

be used for subsequent input/output.

Form FILE FID FATR1=EXPRl, FATR2=EXPR2, ..., FATRNn=EXPRn;

Rul es:

1. Assert than FIDis an integer greater than zero

2. Execution of the FILE statenent associates FIDwth an entity
whi ch can contain representations of bit strings.

3. The FILE statenent contains a list of the attributes which apply
for subsequent input/output operations on the file. Execution of
the FILE statement either alters the current association, or
termnates the current association and establ i shes a new
associ ati on.

4. The file attributes FATR are ACCESS, LINESIZE and TITLE
1. The ACCESS attribute nust be given and nust have as val ue one

of the foll ow ng synbol s:

1. GET: file contains formatted representations. Permt GET
st at ement s.

2. PRINT: file contains formatted representations. Pernit
PUT statenments. Pernmt use of PAGE control fornmat.

3. PUT: file contains formatted representations. Permt PUT
st at ement s.

4. READ. file contains unformatted representations. Pernit
READ st at enment s.

5. STRING file is line represented by a character string
variable. Pernmt GET and PUT statenents.

6. WRITE file is to contain unfornatted representations.
Permt WRI TE statenents.

7. RELEASE: disconnect the file.

2. If the LINESIZE attribute is given, then the value nust be
greater than or equal to zero

1. If LINESIZE given the file access nust be GET, PRI NT, PUT
or STRI NG

2. If LINESIZE not given, take linesize to be zero.

3. Assert that LINESIZE is greater than or equal to zero

4. If LINESIZE is greater than zero, it gives the nunber of
characters in aline. |If LINESIZE is zero, the length of
a line is determined fromthe structure of the externa
file. nent: FILESTAT(FID, LINESIZE) gives actual line
| ength.)

3. The TITLE attribute nanes the file, as follows:

1. If the ACCESS is STRING the TITLE attribute specifies the
nane of a sinple variable which has the structure of a
character string. This variable contains the single Iine
of the file.

2. Oherwise, the value of TITLE is a character string which
gives the operating systemidentification of the file. |If
the null string is specified, the file title is deternined
as function of file nunber, in processor-sel ected manner.

5. Execution of the FILE statenent establishes a new association for

the file unless the FILE statenent is used to read a file that has

GUI DE TO THE LI TTLE LANGUACGE PAGE 54
FI LE STATEMENT

just been witten. |If the file statenent contains only the ACCESS
attribute, transition fromwiting to reading, with rew nding of
the file, occurs if prior ACCESS was WRI TE and new access i s READ
or if prior ACCESS was PRI NT or PUT, and new access is CET.

6. Two files are initially defined as execution begins.
1. The standard input file has attributes

FILE 1 ACCESS=CET, LINESIZE = 0, TITLE ="' ;

A GET statenent which does not explicitly specify a file
nunber inplicitly specifies file one. File one is
preconnected as the standard i nput file.

2. The standard print file has attributes

FILE 2 ACCESS=PRINT, LINESIZE = 0, TITLE ="~

A PUT statenent which does not explicitly specify a file
nunber inplicitly specifies file t wo. File t wo is
preconnected as the standard output file.

Exanpl es:
+* LISTING =4 ** +* FS = 5 ** +* SCRATCH = 6 **
FILE LI STING
ACCESS = PRI NT,
LI NESI ZE = 120,
TI TLE = LI STI NGNAME

SIZE SV(.SDS. 5);

FILE FS
ACCESS = STRI NG
TITLE = 8V,
LI NESI ZE = 5;

FI LE SCRATCH
ACCESS = WRI TE,
TI TLE = * TAPE1040’

GUI DE TO THE LI TTLE LANGUACGE PAGE 55

FUNCTI ON STATEMENT

Pur pose: To nanme a function procedure, indicate its paraneters,

begin its definition

Form FNCT N1(N2, N3,...,N9);
Rul es:
1. The function statenent is an opener. The body of the function

group consists of all followi ng statements up to and including the
END statenent which term nates the function group

2. The function statenent contains the function nane N1 foll owed by a
list, enclosed in parentheses, of fornmal argunents, separated by
commas. Each fornmal argunent is a nane.

3. The body of the function nust contain a declaration of a sinple
vari abl e of the sanme nane as the function

4, A function is invoked by witing its nane, followed by a
parent hesi zed |ist of actual argunents. The function procedure is
then executed, and the | ast val ue assigned within the function to
the variable of the same nane as the function is used as the val ue
of the function call

5. A procedure P which invokes a function procedure N nust contain a
SI ZE or REAL declaration for Nto indicate the size and arithnetic
node of the function procedure val ue.

6. The function body nust not contain any assignnents to fornma
ar gunent s.

7. On execution within a function procedure of a RETURN statenent or
of the END statenent which termnates the function group
execution of the function procedure term nates. Executi on
proceeds with the use of the value of the function nane variable
wi thin the expression which contains the function reference.

Exanpl es:

$ FIND I NDEX OF LAST NONBLANK | N STRI NG
FNCT LASTNB(STR);

SI ZE LASTNB(PS); $ FUNCTI ON VALUE.
SIZE STR(.SDS. 80); $ STRING
SIZE 1(PS); $ LOOP | NDEX.
LASTNB = O0;
DO | = (.LEN. STR) TO 1 BY -1;
IF (.CH I, STR ~= 1R THEN
LASTNB = |
QUT DO
END | F;
END DO,

END FNCT LASTNB;

GUI DE TO THE LI TTLE LANGUACGE PAGE 56

CGET STATEMENT

Pur pose: To read data froma formatted file.
Form GET FID Form i st;
GET Formlist;
Rul es:
1. FID is an integer expression giving the file nunber. |If FIDIis

not given, take FID to be one.

2. Assert that file FIDis connected with access GET or STRI NG
3. Fornmist is alist of control formats, input data itens and data
formats witten according to the follow ng rules:

1. A comma precedes each control or data fornat.

2. A colon precedes each data item

3. Adata format or a data itemfollows a data item

4, Transmt data according to the follow ng rules:

1. Transmit weach data item according to the associated data
format. The data format either immediately follows the data
itemor follows a list of data itens.

2. Transmt each elenment of an array block using the associated
data fornmat.

Exanpl es:
FILE FF
TI TLE = ' EXAMPLE'
ACCESS = CET,

LI NESI ZE = 100;
GET FF ,SKIP : X 1(5) :A(LO TO A(H), B(10, 3);

GET :LINE A(80) ,SKIP; $ GET LINE FROM STANDARD | NPUT.
GET :A'B:C/1(5) $ READ A B,C IN I(5) FORMAT.

GUI DE TO THE LI TTLE LANGUACGE PAGE 57
GO TO STATEMENT (S| MPLE)

Pur pose: To select the next statenent to execute.
Form GO TO SL;
Rul es:

1. SL nust be a statenent |abel prefix for exactly one statenment in
t he contai ni ng procedure.

2. On execution, proceed to the statenent with statenent |abel SL.
Exanpl es:
GO TO READLI NE;

/ READLI NE/ ...statenent processed after GO TO ...

GUI DE TO THE LI TTLE LANGUACGE PAGE 58

GO TO STATEMENT (| NDEXED)

Pur pose: To select the next statenent to be processed according

to the value of an integer selection expression.

Form GO TO N1(E1) IN C1 TO C2;
Rul es:
1. Cl and C2 nust be integer constants such that Cl is greater than

or equal to zero, C2 is greater than or equal to Cl, and C2 is
| ess than 1000.

2. The procedure containing the indexed GO TO nust contain one
statenent | abel prefix N(E) for each integer E fromCl to C2.
3. Assert that E1 is greater than or equal to Cl, and |ess than or
equal to C2.
4., On execution, proceed to the statement with statenent |abel prefix
equal to EL.
Exanpl es:
GO TO L(ECASE) IN 1 TO 4;
IL(1)/
IL(3)/

IL(2)] L(4)/

GUI DE TO THE LI TTLE LANGUACGE PAGE 59

| F STATEMENT (SI MPLE)

Pur pose: To conditionally determ ne whether a single, sinple

statenent is to be executed.

Form | F E1 Sinplestatenent

Rul es:

1. Execution proceeds as foll ows:
1. If E1l is nonzero, process the Sinplestatenent.
2. If E1 is zero, proceed to the next statenent.

2. Sinplestatenent is any statenent except a conpound statenent, a
sinmple I F statement or an END st at enent.

(Comment: It is suggested, but not required, that the control

expression E1 be enclosed in parentheses.)

Exanpl es

| F (X>0) CALL READER
| F (FOUNDVAL ~= 0) RETURN;

GUI DE TO THE LI TTLE LANGUACGE PAGE 60

| F STATEMENT (COMPOUND)

Pur pose: To conditionally determ ne whether a group of statements

is to be processed.

Form IF E1 THEN Block END IF;

IF E1 THEN Block ELSE Block END I F;
IF E1 THEN Bl ock
ELSEIF E2 THEN Bl ock

ELSEIF E9 THEN Bl ock
ELSE Bl ock END | F;

Rul es:

1.

The conpound IF statenent is an opener. The body of the IF group
consists of all statenents follow ng the keyword THEN up to and
including the END statenent which ternminates the | F statenent.

A conmpound |F statenent is distinguished from a sinple IF
statenent by the occurrence of THEN immediately following the
control expression which follows IF.

The body consists of an |F_THEN cl ause, followed by zero or nore

ELSEI F cl auses, optionally followed by an ELSE cl ause.

1. An IF_THEN clause consists of the keyword IF followed by a
control expression, followed by the keyword THEN, followed by
one or nore statements.

2. An ELSEIF clause consists of the keyword ELSEIF fol |l owed by a
control expression, followed by the keyword THEN, followed by
one or nore statements.

3. An ELSE cl ause consists of the keyword ELSE fol | owed by one or
nore statenents.

4, A clause is ternmnated by the next clause or by the END
statenent which term nates the |F group.

On execution of a conpound IF statenent, performthe foll ow ng

actions for each cl ause:

1. On execution of an |F THEN clause, evaluate the control
expression. |If the value is zero, proceed to the next clause.
O herwise, proceed to the first statement following the
keyword THEN.

2. On execution of an ELSEIF clause, evaluate the control
expression. |If the value is zero, proceed to the next clause.
O herwi se, proceed to the first statement following the
keyword THEN.

3. On execution of an ELSE clause, proceed to the statenent
foll owi ng the keyword ELSE.

4, After execution of the last statenment in a clause, proceed to
the statenent followi ng the END statenent which term nates the
I F group.

On execution of the END statenment which term nates the |IF group,
proceed to the next follow ng statenent.

GUI DE TO THE LI TTLE LANGUACGE PAGE
| F STATEMENT (COVPOUND)

Exanpl es:
IF X=10 THEN Y=3; END IF;

IF X=10 THEN Y=3;
ELSE Y=5; END IF;

IF X=10 THEN Y=3;
ELSEI F X=20 THEN Y=5;
ELSEI F X=40 THEN Y=7;
ELSE Y = 0; ENDIF;

DO LI = 1 TO ARGVAX;
H = ARGLI ST(LI);
IF (H=0) QUJT DO
LC=.F 1, 8 H WwW=_.F 9, 8, H
IF LC THEN
IF CC=5 ! CC=6 THEN
COUNTUP(OPRCODTABLPTR, OPRCODTABLMAX, ' OPRTAB');
OPRCODTABL (OPRCODTABLPTR) = WV;
END | F;
LI TTABL(CO) = Vv,
ELSE
CC = VWV,
END | F;
END DG,

61

GUI DE TO THE LI TTLE LANGUACGE PAGE 62
NAMVESET STATEMENT

Pur pose: To indicate the name of a set of global variables; to
begin definition of a set of global variables.

Form NAMESET N1,

Rul es:

1. The NAMESET statenment is an opener. The body of the NAMESET group
consists of all following statenents up to and including the END

statenent which term nates the NAVESET group.

2. Any declaration wthin the NAMESET group defines a globa
variabl e, which is a nenber of the NAMESET.

3. The nenber variables of a NAMESET have distinct nanes.
4. The sane variable nane nay not occur in nore than one NAMESET.

5. Variables in a NAMESET nmy be referred to in other procedures,
usi ng the ACCESS st at enent.

6. Variables not contained in any NAVESET are |local to the procedure
in which they are defined.

7. Variables in a NAMESET may be referred to within the procedure in
which they are defined. No separate ACCESS statenent is needed.

8. On execution of the END statenment which tern nates the NAMESET
group, execution proceeds to the next follow ng statenent.

Exanpl es
NAMVESET SYMTAB;
S| ZE SYMTABPTR(PS); $ TOP OF SYMBOL TABLE
SI ZE SYMIAB(WS); DI M5 SYMIAB(100);
END NAMESET SYMIAB;

GUI DE TO THE LI TTLE LANGUACGE PAGE 63
NULL STATEMENT

Pur pose: To specify no action other than continuation of
processing; to sinplify use of nacros.

Form ;
Rul es:
1. On execution, proceed to the next statenent.

(Conment : LITTLE uses the senicolon to termnate, not separate,
statenents. Null statenments permt the use of nore than one sem col on
to ternminate a single statenment, and typically occur as a result of
macro processing. Macros often consist of several statenents which
acconplish a given task. There then arises the question whether the
sem colon ternmnating the last statenent is to be witten in the nacro
definition or as part of each macro invocation. LITTLE includes the
null statenent so that the sem colon nmay be witten in the definition

in the call, or both, without changing the program senantics.)
Exanpl es:
Consi der

+ INCR(1) =1 = 1+1; **

| NCR(SYMPTR) ;

whi ch, after nacro expansion, yields
SYMPTR = SYMPTR + 1;;

whi ch contains a null statenent.

GUI DE TO THE LI TTLE LANGUACGE PAGE 64

PROGRAM STATEMENT

Pur pose: To define the program procedure.

Form PROG N1,

Rul es:

1. The program statenment is an opener. The body of the program group

consists of all following statenents up to and including the END
statenent which term nates the program group.

2. An executable LITTLE program consists of one or nore procedures.
One and only one procedure nust be a program procedure. Execution
begi ns with the first executable statenent in the program
procedure and continues until execution is term nated.

3. On execution within a program procedure of a RETURN statenent or
of the END statenment which ternminates the program group, program
execution terminates in a nornal fashion.

Exanpl es:

PROG COPYFILE; $ LI ST STANDARD | NPUT FILE.
SIZE LINE(.SDS. 80);
WH LE 1;
GET ,SKIP :LINE A(80); $ READ LINE.
IF (FILESTAT(1, END)) QU T WH LE;
PUT :LINE A ,SK P
END WHI LE;
END PROG COPYFI LE;

GUI DE TO THE LI TTLE LANGUACGE PAGE 65

PUT STATEMENT

Pur pose: To wite data to a fornmatted file.
Form PUT FID Formist;
PUT Form i st;
Rul es:
1. FIDis an integer greater than zero which identifies the file. |If

FIDis not given, take FID to be two.

2. Assert that file FID is connected with access PRINT, PUT or
STRI NG

3. Fornmist is alist of control formats, output data itens and data
formats witten according to the follow ng rules.

1. A comma precedes each control or data fornat.

2. A colon precedes each data item

3. Adata format or a data itemfollows a data item

4, Transmt data according to the follow ng rules:

1. Transmit each data item according to the associated data
format. The data format either immediately follows the data
itemor follows a list of data itens.

2. Transmt each element of an array block according to the
associ ated data format.

5. If S is a character string constant, the edit specification :S, A
may be abbreviated by witing a conma before the string constant.
This abbreviated form’,S is called an annotation format, as it
reflects, and sinplifies, the comon use of <character string
constants to describe or annotate formatted out put.

Exanpl es:

FILE FF
ACCESS = PUT,

TI TLE = * EXAVPLE
LI NESI ZE = 100;
PUT FF ,SKIP : X, 1(5) :A(LO TO A(Hl), B(10,3);

PUT :LINE, A ,SKIP; $ PUT LINE TO STANDARD PRI NT FI LE.
PUT ,’ EXECUTION TI ME ’* : XTI ME, F(10,3) ,’ M LLI SECONDS. " ;

GUI DE TO THE LI TTLE LANGUACGE PAGE 66

QUI' T STATEMENT

Pur pose: To ternmi nate execution of an iteration.

Form QU T,

Rul es:

1. A QUIT statenment nust occur within an iteration group.

2. Zero or nore tokens may followthe keyword QU T. |If none are
given, the QU T statenent refers to the innernost iterator. | f
any are given, they nust correspond to the tokens which begin an
iteration group containing the QUT statenent, and the QUT
statement refers to the innernost such iterator.

3. On execution, termnate the iteration and proceed to the statenent
followi ng the END statenent which term nates the iteration group.

Exanpl es:

QU T WH LE MORE;
QIT DO

$ FIND | NDEX OF FI RST VONEL I N STRI NG STR
FI RSTVONEL = O;
DO | =1 TO.LEN STR
IF (.S I, 1, STRR .IN "AEIQU THEN $ |IF FOUND.
FI RSTVOVEL = |[;
QUIT DG
END | F;
END DG,

GUI DE TO THE LI TTLE LANGUACGE PAGE 67

READ STATEMENT

Pur pose: To read values froman unformatted file.

Form READ FID, V1, V2,...,V9;

Rul es:

1. FID is an integer greater than zero which identifies the file.
The file nust be connected with access READ.

2. The READ statenent contains a list of read input itens, separated
by conmas.

3. A read input itemis either a sinple variable or an array bl ock
item

4, On execution, read fromfile FID the values of the variables and
array elenents specified in the list.

Exanpl es:

FILE 3 ACCESS=READ, TITLE=;
READ 3, |, VOALO, VOA(VOALO) TO VOA(VOALO#10);

GUI DE TO THE LI TTLE LANGUACGE PAGE 68
REAL STATEMENT

Pur pose: To declare a real variable.
Form REAL N1, N2,...,N9;
Rul es:

1. A REAL statenent contains a list of nanmes, separated by conmas.

2. The REAL statenent declares each nane to be a real variable with
arithnetic node real and an inpl enentation-defined size.

Exanpl es:
REAL SUMX, SUMY;

GUI DE TO THE LI TTLE LANGUACGE PAGE 69

RETURN STATEMENT

Pur pose: To terninate execution of a procedure.

Form RETURN,;

Rul es:

1. On execution within a program (PROG procedure, term nate program
execution in a nornmal nmanner.

2. On execution within a subroutine (SUBR) procedure, proceed to the
statement which follows the CALL statenment which invoked the
procedur e.

3. On execution within a function (FNCT) procedure, return as val ue
the value of the local variable of the sane name as the function
procedure, and continue eval uation of the expression which invoked
the function procedure.

Exanpl e:

FNCT LASTNB(STR); $ FIND LAST NON BLANK CHAR | N STR
SIZE LASTNB(.PS.);

SIZE STR(.SDS. 80); $ STRING TO SEARCH.

SIZE 1(.PS.); $ LOOP | NDEX.

LASTNB = 0; $ ASSUME STRING ALL BLANK
DO | = (.LEN. STR) TO 1 BY -1;
IF .CH I, STR"= 1R THEN $ |IF NON BLANK FOUND.
LASTNB = | ;
RETURN,
END | F;
END DO | ;
END FNCT LASTNB;

GUI DE TO THE LI TTLE LANGUACGE PAGE 70
REW ND STATEMENT

Pur pose: To position a file at its initial point.
Form REW ND FI D
Rul es:

1. FID is an integer greater than zero which identifies the file.
The file nust be connected.

2. Position file FID at its initial point.

Exanpl es:
REW ND SCRFI LE

(Comment: An inplicit rewind occurs when the FILE statenment is used to
change access fromWRI TE to READ, or fromPUT to GET. For exanple in

FILE 3 TITLE= ', ACCESS = WRI TE;
WRI TE 3, A(1) TO A(10);
FILE 3 ACCESS = READ,

there is an inplicit rewind perforned as part of the second FILE
statenent.)

GUI DE TO THE LI TTLE LANGUACGE PAGE 71
SI ZE STATEMENT

Pur pose: To declare a variable and give its size in bits.
Form SI ZE N1(Cl), N2(C2),...,N9(C9) ;
Rul es:

1. A SIZE statenent contains a list of size declarations, separated
by conmas.

2. A size declaration consists of a nane N followed by a constant C
encl osed i n parentheses.

3. The size declaration declares Nto be of arithnetic node integer

3. Assert that C is greater than zero. C gives the length of Nin
bits.

Exanpl es:

SI ZE LINE (80*CS); $ CS IS MACRO FOR CHARACTER- Sl ZE
SI ZE ONBI T(1), LOCKBI T(1);

GUI DE TO THE LI TTLE LANGUACGE PAGE 72

SUBR STATEMENT

Pur pose: To give the nane of a subroutine procedure,

to give its definition.

Form SUBR N1(N2, N3,...,N9);
Rul es:
1. The subroutine statenent is an opener. The body of the subroutine

group consists of all followi ng statements up to and including the
END statenent which term nates the subroutine group

2. The subroutine statenent contains the name of the subroutine.
Subroutines nmay have argunents. If so, the SUBR statenent
contains a list, enclosed in parentheses, of the nanes of the
formal argunents.

3. On execution of a RETURN statenment or of the END statenent which
term nates the subroutine, execution continues with the statenent
fol |l owi ng t he CALL statenment which invoked the subroutine
procedur e.

Exanpl es:

SUBR LSTLI'N
$ LI ST CURRENT I NPUT LINE I'F NOT YET LI STED.

IF LINELISTED = 0 THEN
PUT : LI NENOW A(80) , SKI P;
LI NELI STED = 1,
END | F;

END SUBR LSTLI N

GUI DE TO THE LI TTLE LANGUACGE PAGE 73
UNTI L STATEMENT

Pur pose: To repeatedly execute a group of statements until the
val ue of a control expression becones nonzero.

Form UNTI L EZ1;

Rul es:

1. The UNTIL statement is an opener. The body of the UNTIL group
consists of all following statenents up to and including the END
statement which ternminates the UNTIL statenent.

2. The UNTIL group is an iteration group.

3. On execution of the UNTIL statenent, proceed to the first
statenent in the body of the until group.

4, On execution of the END statenent which ternmnates the UNTIL

group:

1. If El is zero, continue the iteration.

2. If E1 is nonzero, termnate the iteration.
Exanpl es:

$ CONVERT | NTEGER TO STREAM OF CHARACTERS.
+* CHAROFDIG(D) = (.CH. D, ’0123456789') **
UNTI L N=O;

D=N- 10*(N 10);

CALL PUTCHAR(CHAROFDI G(D)) ;

N=N/ 10;

END UNTI L;

GUI DE TO THE LI TTLE LANGUACGE PAGE 74
VWH LE STATEMENT

Pur pose: To repeatedly execute a group of statenments while the
val ue of a control expression renains nonzero.

Form VWHI LE E1;

Rul es:

1. The WHLE statement is an opener. The body of the WH LE group
consists of all following statenents up to and including the END
statenent which term nates the WH LE group.

2. The WHI LE group is an iteration group.

3. Execution proceeds as follows:

1. If E1 is zero, terminate the iteration. |f E1l is nonzero,

proceed to the statenent which follows the WH LE st at enent.

4, On execution of the END statenent which ternmnates the WH LE

gr oup:
1. If El is zero, termnate the iteration.
2. If E1 is nonzero, continue the iteration.
Exanpl es:
VWH LE 1;

CALL READLI NE;

IF (FILESTAT(I NPUTFILE, END)) QUI T WH LE;
CALL PROCESSLI NE;

END WHI LE;

GUI DE TO THE LI TTLE LANGUACGE PAGE 75

VRI TE STATEMENT

Pur pose: To wite values to an unfornatted file.

Form WRI TE FID, E1, E2,...E9;

Rul es:

1. FID is an integer greater than zero which identifies the file.

File FID nust be connected with access WRI TE.

2. The WRITE statenent contains a list of wite output itens,
separ ated by conmas.

3. A wite output item is either a variable, expression or array
bl ock item

4. On execution, wite to file FID, in order, the values of the wite
out put itens.

Exanpl es:

FILE 3 ACCESS=WRI TE, TITLE=;
WRI TE 3, |, VOALO, VOA(VOALO) TO VOA(VOALO+10);

GUI DE TO THE LI TTLE LANGUACGE PAGE 76
PROCEDURES AND PROGRAMS

LITTLE ©provides three Kkinds of procedures: subroutine (SUBR),
function (FNCT) and program (PROG. The nost basic is the subroutine.
Subroutines nmmy have argunents. A program procedure is sinmlar to a
subroutine, except that it may have no argunents, and nmarks the
starting point of programexecution. A function has a value, and is
used i n expressions. Procedures comunicate by the association of
argunents or by shared access to global variables. In LITTLE, gl oba
vari abl es are grouped into naned collections, called NAMESETSs. The
ACCESS statenent pernits one procedure to use the variables in a
speci fi ed NAVESET.

Subrouti ne (SUBR) procedure

The conpound SUBR statenent defines a subroutine procedure. A
subroutine may have argunments. The CALL statenent initiates execution
of a subroutine and supplies the actual argunents to be associ ated
with the formal argunments during the execution. On execution wthin
the subroutine of a RETURN statenment or of the END statenment which
term nates the subroutine, execution continues wth the statenent
followi ng the CALL statenent which invoked the subroutine.

Function (FNCT) procedure

The conpound FNCT statenent defines a function procedure. A function
reference consists of the occurrence within an expression of the
function nane followed by Ilist of actual argunents enclosed in
parent heses. A function nust have at |east one argunent. The
function procedure nust contain a local variable of the sane nane as
the function. On execution within the function of a RETURN statenent
or of the END statenent which term nates the function procedure, the
| ast val ue assigned to the function nane variable is used to continue
eval uation of the expression containing the function reference.

Pr ogram (PROG) procedure

The conpound PROG statenent defines a program procedure. A program
procedure cannot have formal argunents. (Comment: The standard LITTLE
library includes procedures GETI PP and GETSPP whi ch obtain values from
the execution environnent.) A LITTLE programtext is executable only
if it contains exactly one program procedure. Program execution
begins with this program procedure. On execution within the program
procedure of a RETURN statenent or of the END statenent which
term nates the program procedure, programexecution termnates in a
nor mal nmanner.

GUI DE TO THE LI TTLE LANGUACGE PAGE 77
PROCEDURES AND PROGRAMS

Intrinsic function procedures

LITTLE provides a nunber of standard functions which have a fixed
interpretation. These functions should not be declared. The standard
functions include the FILESTAT input/output status function and the
foll owi ng standard nat hematical functions defined in section 4:

ABS Al NT ALCG ALOCGLO AMCD ATAN ATAN2
Cos D M EXP FLOAT | ABS I DI M I FI X
I NT ISIGN MDD SIGN SQRT TAN

Associ ation of argunents

A function procedure nust have at |east one argunent; a subroutine
procedure nay have argunents. Every argunent nust be decl ared. The
declarations define the size, arithnetic node and possibly the
di mension of the argunent. The process of procedure invocation
associ at es act ual argunents with the formal argunents of the
procedur e. This section defines the rules of valid ar gunent
associ ati on.

Actual argunents are divided into the follow ng cl asses:

Exprarg expression, including constants and array el enents
Var ar g sinple variable (undinensioned vari abl e)
Arrayarg array nane

An Exprarg can only provide a value, so that a procedure shoul d not
execute an assignnent to all or part of a formal argunent associated
with an Exprarg. A procedure may only reference as an array a forma

argunent associated with an Arrayarg. The sizes of actual and fornma

argunents which are arrays nust be equal. 1In any reference to a
formal argunent which is not qualified by an extractor, the sizes of
the formal and actual argunments nust be equal

GUI DE TO THE LI TTLE LANGUACGE PAGE 78
| NPUT/ QUTPUT: TERMS AND CONCEPTS

The input/output process (10O associates the internal processor
representaton of bit strings with external representations on various
medi a. On input, the external representation defines the interna
value; on output, the i nternal val ue defi nes t he ext erna
representation.

A file 1is a sequence of external representations. A FORMATTED file
consists of a sequence of lines; each line is a sequence of
characters.

A formatted file is accessed with data formats and control fornats.
Control formats are used to position to a specific line or position
within a |Iine. Data formats specify the form of the externa
representation. Each data format corresponds to a type of constant;
for exanple, the |I format indicates repesentation as integer constant.

There are two types of data formats: edit and list. Each defines a
field, consisting of a sequence of characters. The field nmay occupy
nore than one line. Edit data formats specify the width of the field
and the structure of the data in the field. List formats are used for
fields which contain data in the sane formas a constant. On input,
the field is determi ned by searching for a constant of the desired
type. On output, the field width is chosen to permt a correct
representation of the internal val ue.

The edit formats pernit the use of group control to insert or ignore
bl anks within a field in order to represent long strings in a nore
readable form For exanple, division of string ' EXAMPLE into groups
of two gives "EX AMPL E', division of '12378912' into groups of three
gives '12 378 912’, and division of '133.414" into groups of two gives
"1 33.41 4.

GUI DE TO THE LI TTLE LANGUACGE PAGE 79
SUMVARY COF | O STATEMENTS AND FORVATS

This section sunmmarizes the input/output statenents. Files are
referenced within the programas small integers, indicated by FID in
the sunmary

FILE FID ATTR1=VAL1, ATTR2=VAL2, ... ATTRn=VALn;

The attributes and interpretation are as foll ows:

ACCESS GET PRINT PUT READ STRING WRITE RELEASE
LI NESI ZE Length of line in characters.

If zero, processor determ nes |ength.
TI TLE If ACCESS is STRING then variable nane

el se string giving external nane (if nul

then processor deternines nane)

GET FID lolist; Read fromfile

PUT FID lolist; Wite to file.

READ FI D, V1, V2,...,V9; Read fromunformatted file.
REW ND FI D Rewi nd file.

WRITE FID, E1, E2,...,E9; Wite to unformatted file.

The intrinsic function FILESTAT returns the current value of a file
attribute. FILESTAT has two argunents. The first argunent specifies
the file; the second is a keyword naning the attribute. The codes are
as follows:

ACCESS Return file type, encoded as foll ows:
GET 1
PRINT 2
PUT 3
READ 4
STRI NG 5
WRITE 6

Return zero if file not connected.

COLUWN Return col umm position

END Return one if at end of file.

ERR If last operation had error, return error code;
otherwi se return zero. ERR may be witten ERROR

LI NESI ZE Return current line size.

STREAM Return one if prior operation forced streaning

The control formats establish a position within a fornatted file:

PAGCE Begi n new page
COLUWN(E) Set current colum position to E
SKI P(E) Skip E lines

X(E) Reset current columm position by adding E

GUI DE TO THE LI TTLE LANGUACGE PAGE 80
SUMVARY COF | O STATEMENTS AND FORVATS

Data fornmats specify the conversion of data itens for formatted files:

Code Type Ali gnnment Par anet er s Requi red paraneters.
A Edi t Left A(FW GW
AL Li st AL
B Edi t Ri ght B(FW BW GW FW BW
BL Li st B(BW
E Edi t Ri ght E(FW DW GN FW
EL Li st EL(SD) SD not specified on input
F Edi t Ri ght F(FW DW GN FW
FL Li st FL(SD) SD not specified on input
I Edi t Ri ght I(FW DW GW
IL Li st IL
R Edi t Left R(FW GW FW
RL Li st RL(NC)

Paraneter types are as foll ows:
FW field width, nonnegative integer
BW byte width, either 1,2,3 or 4
DW decinmal width, positive nonzero integer
GW group width, positive nonzero integer
NC nunber of characters
SD nunber of significant digits

On output, if FWis zero, let processor determ ne width.

On output, if NCis zero or not given, take NC to be one.

On output, if SDis zero or not given, take SD to be six.

On output, may prefix any data format with Nto indicate that name is
to generated in A fornmat.

Streanming in formatted files

Formatted files <consist of a sequence of characters, grouped into
lines. The end of one line is logically followed by the start of the
next . The action of going fromthe end of one line to the start of
the next is called streaning; when this occurs inplicitly during
processing of an Edit or List format, streaning is said to have been
forced. The STREAM option of the FILESTAT inquiry can be wused to
determne if streanming has been forced in the prior 10 operation. The
SKIP control format positions to the start of a new line.

GUI DE TO THE LI TTLE LANGUACGE PAGE 81

EDI T FI ELDS

Edi t

fields represent data within a specified nunber of characters.

The followi ng general rules apply:

1

The edit formats have the general form
Edit _code(Expr _list)

where Edit_code is a single character which gives the fornmat
type and Expr _list is a |list of expressions separated by conmas.

Each edit format pernits a nunber of paraneters. In sone cases
not all paraneters need be witten and default values are then
inplied for the paraneters. The enclosing parentheses are witten
only if paraneters are specified explicitly.

The first paraneter, FW always specifies the length of the edit
field. Sone edit formats permit FWto be zero on output, in which
case FW is the mininmumvalue required to correctly represent the
edited val ue.

Associated with each edit format is an alignnent, either left or
right, as follows: A(left), B(right), E(right), F(right),
I (right), R(left).

The |ast paraneter specifies group control. G ouping consists of
inserting (on output) or ignoring (on input) the blanks in an edit
field in order to break up the represented value into readable
groups. The follow ng general rules apply:

If the group width is not given, take group width to be zero.

If the group width is zero, do not form groups.

The group width nust be greater than or equal to zero

Determ ne group structure according to the follow ng rules.

(exceptions are noted in the description of the individua

edit formats):

1. If the edit itemis left adjusted, begin the field at the
left and formgroups fromthe |eft.

2. If the wedit itemis right adjusted, end the field on the
right and form groups fromthe right.

3. On input, group control has no effect for the |l and B
formats, as blanks are allowed in constants of these
types.

4, On output wusing the nuneric formats (E, F and |I), insert
the group separating blanks only between digits. For the
E and F formats, center the groups around the deci nal
poi nt .

PP

GUI DE TO THE LI TTLE LANGUACGE PAGE 82
LI ST FI ELDS

List fields are used to transmt data in the formof a constant.
The followi ng general rules apply:

1. The list field contains a string in the sane formas a constant.

2. On output, wite the value as a constant, and then wite one or
nore bl anks.

3. For PUT access, include the enclosing string delimters for
character strings; for PRI NT access, do not include the enclosing
string delimters for character strings

3. On input:

1. Advance to the start of the data field by skipping over
bl anks, commas and conments.

2. If the end of the file is encountered during the advanci ng,
raise the end of file condition and set the value of the
receiving itemto zero

3. Accumulate characters as |long as the accunul ated characters
define a valid representation of a constant of the desired
type.

4. Convert the accunulated characters to an internal value in
the same manner as a constant.

5. Blanks nmay not occur within nuneric constants (integers and
real quantities).

6. Set the colum position at the character follow ng the |ast
character accunul ated, which nust be a blank or comm.

GUI DE TO THE LI TTLE LANGUACGE PAGE 83
CONTRCL FORMVATS

Control formats specify a position within a line or page. The contro
formats are COLUMN, PAGE, SKIP and X. Control formats require ACCESS
of CET, PRINT, PUT or STRING

Col um for nmat

Pur pose: To set the current columm position.
Form COLUWMN(E1)
Rul es:

1. El is greater than zero and less than or equal to the (LINESIZE+1)
of the file.

2. Set the value of the current colum position to E1l. Setting the
position to (LINESIZE+1) indicates that the next operation is to
begin at the start of the next record.

Page for mat

Pur pose: To begin a new page on a print file.
Form PAGE
Rul es:

1. Assert that file ACCESS is PRI NT.
2. Conplete the current |ine and begin a new one.

3. The new |line begins a new page

Ski p fornat

Pur pose: To establish the next Iine to be processed.
Form SKI P(E1)

Rul es:

1. If E1l is not given, take E1 to be one.
2. Assert that El is greater than or equal to zero
3. If E1 is zero, the skip request has no effect.

4, On input, read El lines. The last line read becones the current
line.

GUI DE TO THE LI TTLE LANGUACGE PAGE 84
CONTRCL FORMVATS

5. On output, end the current line. |If El is greater than one, then
wite (E1-1) blank |ines.

7. Begin a newline.

X format

Pur pose: To set the current colum relative to its current val ue.
Form X(E1)

Rul es:

1. If E1l is not given, take E1 to be one.

2. Define the new value of the current colum position by adding El
to the current val ue.

3. Assert that the new value is within the current I|ine.

4. Set the current colum position to the new val ue.

GUI DE TO THE LI TTLE LANGUACGE PAGE 85

A FORMAT
A format: Edit form
Pur pose: To edit data in the formof a character string.
Form A(FW GW
Rul es:
1. The edit field is left adjusted. GWgives the group w dth.
2. On input:
1. Let RL be the largest integer such that the value of '.SDS
RL’ does not exceed the size in characters of the input item
2. The effective field width, EFW is the minimmof RL and FW
EFW nust be greater than zero.
3. The first EFW characters in the field define a character

string constant.

3. On output:

1. Assert that the output itemis a character string. Let SL be
the length of this string.
2. If FWis not given, or is given with value zero, take FWto be
SL.
3. The effective field width, EFW is the mni rumof SL and FW
4., The first EFWcharacters of the output itemdefine the data in
the edit field.
A format: List form
Pur pose: To transnit data in the formof a character string
const ant
Form AL
Rul es:
1. Oninput, the list field contains a character string constant.

2. On output:

1

2.

If the ACCESS is PRINT, the list field contains the characters
in the sending item

Oherwise, the Ilist field contains the character string
constant defined by the sending item

GUI DE TO THE LI TTLE LANGUACGE PAGE 86

B FORMVAT

B format: Edit form

Pur pose: To edit data in the formof a bitstring constant.
Form B(FW BW GW

Rul es:

1. The edit field is right adjusted.

2. BW is the byte width and nust have a value of 1, 2, 3 or 4. BW
gives the byte width of each character in the edit field in the
sanme nmanner as for a byte constant. BWnust be given.

3. On input:
1. The edit field nust contain only characters that are valid
within the value part of a bitstring constant of byte wdth
BW
2. The group width GWhas no effect.

4, On output:

1. If the field width FWis not given, take FWto be zero.

2. If the field width is zero, then the field width is EFW where
EFWis the | east integer such that the value of 'EFWBW s
greater than or equal to the value of '.FB. SI', where Sl is
the output item |If EFWis zero, take EFWto be one.

3. The &edit field contains the delinmted part of the bitstring
constant of byte width BWdefined by the sending item

4. If BW not given, take BWto be a processor-defined val ue.
(Comment: the inplied value will typically be the standard
byte width used for the nachine.)

B format: List form
Pur pose: To transnit data in the formof a bitstring constant.
Form BL i nput
BL(BW out put
Rul es:

1. The list field has the formof a bitstring constant

2. On output, BWspecifies the byte width to use (1, 2, 3 or 4). |If
BWis not given, take BWto be a processor-defined val ue.

E FORVAT

E format:

Pur pose
Form
Rul es:

1. The
give

2. FWi

3. Oni
1
2.
3.

4, On o
1

2.
3.

GUI DE TO THE LI TTLE LANGUACGE PAGE 87

Edit form

To edit data in the formof a real constant.

E(FW DW GW

edit field is right adjusted, and contains nuneric data. GW
s the group width.

s the field width and nust be given

nput :

The edit field contains a real constant.

DWis the decimal width. [If not given, take DWto be zero.

If the edit field does not contain a decinmal point, the
position of the decimal point is inplied by DW and the
i nternal val ue corresponds to division of the constant defined
inthe field by the value of 10 raised to the power DW

ut put :

The value of the sending item approxinmately defines a rea
const ant .

DWis the decimal width. |[If not given, take DWto be zero.
The &edit field contains in order the follow ng parts: a sign
representation, a decinmal representation and an exponent
representation.

If the sending itemhas value zero, the field contains '0.’.

If the value is nonzero the decimal representation consists of
a nonzero digit followed by a decimal point followed by DW
digits.

The exponent representation consists of the letter E fol |l oned
by a signed integer

GUI DE TO THE LI TTLE LANGUACGE PAGE 88
E FORVAT

E format: List form

Pur pose: To transnmit data in the formof a real constant.
Form EL I nput

EL(SD) Qut put
Rul es:

1. Oninput, the list field contains a real constant.

2. On output:
1. SD gives the nunber of significant digits. |[If SDis not given
or has value zero, take SD to be six.
2. Represent the internal value as a floating point constant with
SD significant digits and with an exponent of at least two
significant digits. The decinmal point follows the first
digit.

GUI DE TO THE LI TTLE LANGUACGE PAGE 89

F FORVAT

F format: Edit form

Pur pose: To edit data in the formof a real constant.
Form F(FW DW GW

Rul es:

1. The field is right adjusted and contains nuneric data. GW
specifies the group wi dth.

2. Finput format is the same as E input fornmat.

3. On output:
1. DW is the decimal width. |If DWis not given, take DWto be
zero.
2. The field consists of a real constant with no exponent part
and DWdigits after the deci mal point.

F format: List form
Pur pose: To transnmit data in the formof a real constant.
Form FL I nput
FL(SD) Qut put
Rul es:

1. The list field contains a real constant.

2. On output:
1. SD gives the nunber of significant digits. |[If SDis not given
or is given with value zero, take SD to be six.
2. Represent the internal value as a floating point constant with
SD significant digits.

GUI DE TO THE LI TTLE LANGUACGE PAGE 90

I FORVAT

| format: Edit form

Pur pose: To edit data in the formof an integer constant.

Form I(FW DW GWN

Rul es:

1. The edit field is right adjusted and contains nunmeric data. GW
gi ves the group width.

2. The edit field contains an integer constant.

3. DW gives the decimal wdth. |[If DWis not given, take DWto be
one. The field contains at least DW digits wth Ileading zeros
added i f necessary.

| format List form

Pur pose: To transnmit data in the formof an integer constant.

Form IL

Rul es:

1. The list field contains an integer constant.

GUI DE TO THE LI TTLE LANGUACGE PAGE 91

R FORVAT

R format: Edit form

Pur pose: To edit data in the formof character codes.

Form R(FW GW

Rul es:

1. The edit field is left adjusted. GWspecifies the group wi dth.

2. FWis the field width. If FWis not given or has val ue zero, take

FWto be one.

3. On input, the edit field defines a character code constant of
| ength FW
4, On output:

1. Let SL be the largest integer such that '.CS. * SL' does not
exceed the size of the sending item |If SL is zero, set SL to
one.

2. The effective field width, EFW is the m ninmum of FWand SL.
The edit field contains the EFW characters defined by the
ri ght nost EFW character codes in the sending item

R format: List form
Pur pose: To transnmit data in the formof a character code constant.
Form RL I nput
RL(FW Qut put
Rul es:
1. Oninput, the list field contains a character code constant.
2. On output:

1. FWgives the nunber of character codes to transmt.

2. If FWis not given, take FWto be one.

3. The list field contains a character code constant with FW
codes. codes.

GUI DE TO THE LI TTLE LANGUACGE PAGE 92

NAM NG OQUTPUT | TEMS

Pur pose: To wite the nane of a data item

Form The letter N occurs before the data format code.

Rul es:

1. On output to a formatted file, may prefix any data format with the

letter N

2. Let D be the data itemto which the data format applies. Define

a character string S which nanes DI as foll ows:

1. If D is an expression, Sis the null string "’

2. If D is a sinple variable, Sis the nane of the variable.

3. If D is an array elenent, S is the nane of the array foll owed
by a left parenthesis followed by the subscript val ue
represented as an integer, followed by a right parenthesis.

3. Wite the nane string S defined by rule 2 and then wite the
string ' ="
Exanpl es:

PUT 'S, NI(3);

PUT :A(1) TO ACAMAX), NI (6) , SKI P;

GUI DE TO THE LI TTLE LANGUACGE PAGE 93

STRI NG FI LES

The formatted 10 features support the construction of lines by
conversion and editing, and the transnmission of I|ines to external
medi a. The file access STRING pernits use of the editing and

conversion features without the cost of transmitting data to external
media. The followi ng rules govern the use of file access STRI NG

1. Establish access STRING by a FILE statenent of the form
FILE FID ACCESS=STRI NG TITLE=V1, LI NESIZE=I1;

where V1 is a character string, and |1 defines the length of the
l'ine.

2. Both PUT and GET statenents can be used if access is STRI NG
Assert that on execution of a GET or PUT statenent, the current
length in characters of V1 is greater than or equal to the
LI NESI ZE | 1.

3. The following actions set the colum position of a STRINGfile to
one:
1. Execution of the FILE statenent.
2. Execution of a REWND statenent.
3. Execution of a SKIP or PAGE fornmat.
4. Execution of a PUT statenent which forces streaning.

4. Execution of a PUT statenent which forces stream ng does not clear
the string to bl anks.

5. Execution of a GET statenent which forces streamng raises the
file END condition.

Exanpl es:
$ SHOW HOW TO OBTAI N VALUES USI NG
$ STRINGIO TH'S METHOD COULD BE USED TO OBTAI N
$ PROGRAM PARAMETERS OR DATA IN ' FREE FI ELD FORM

SI ZE SFI LE(. SDS. 80);

SIZE 1(.PS.); $ LOOP | NDEX.

SIZE ARA(.WS.); DIMS ARA(100);

SIZE ARAPTR(.PS.); $ NUMBER OF VALUES OBTAI NED.
FILE 3 ACCESS=STRING, TI TLE=SFILE, LINESIZE = 80;
SFILE=" 135 -20 123 ' .PAD. 80;

ARAPTR = 0;

DO | = 1 TO 100;

GET 3 :V,IL; $ GET NEXT VALUE.
IF (FILESTAT(3, END)) QU T DO,
ARAPTR = ARAPTR + 1;

ARA(ARAPTR) = V.

END DO,

GUI DE TO THE LI TTLE LANGUACGE PAGE 94

FI LESTAT REQUEST.

Pur pose: To obtain file attributes or status of |ast

i nput/out put operation.

Form FI LESTAT(FI D, SCODE)
Rul es:
1. FILESTAT is an intrinsic function.
2. FIDis the file nunber as established by a FILE statenent.
3. SCODE nanes the type of the request and nust be one of the
fol | owi ng:
ACCESS COLUWN END ERROR ERR LINESIZE STREAM

4. The result is zero, except as noted bel ow.
5. ACCESS returns the file access node, as foll ows:

Type Val ue

0 (file not connected)
(Must exeucute FILE statenent before
any other 10 operation on file.)

GET 1

PRI NT 2

PUT 3

READ 4

STRI NG 5

VRI TE 6
6. COLUW returns the current colum position of formatted file.
7. END returns one if the end of an input file has been encountered.
8. ERROR is nonzero if an error condition exists, as follows:

val ue meani ng

1 truncati on or conversion error
2 format error or error doing operation
FI LESTAT(F, ERROR) may al so be witten FILESTAT(F, ERR)

9. LINESIZE returns the LINESIZE of a formatted file.

10. STREAMis one if the preceding 10 action forced streaning to a new
l'ine.

GUI DE TO THE LI TTLE LANGUACGE PAGE 95
MONI TOR FACI LI TI ES

/* M. Edison, | was infornmed, had been up the two previous
ni ghts di scovering a 'bug’ in his phongraph - an
expression for solving a difficulty, and inplying
that sone inmaginary insect has secreted itself inside
and is causing all the trouble.

--Suppl enent to Oxford English Dictionary, under

bug” */

LI TTLE provides several tools to nonitor program execution. These
tools nay assist in the identification of programerrors, and provide
many of the features wusually found in a 'debugging package. The
tools pernit the foll ow ng:

trace of procedure entry and exit

report of control flow during procedure invocation
trace of stores (assignnents) to selected variabl es
check that index valid on array assi gnnent
verification of program’assertion

The nonitor package includes the follow ng conpilation directives:

CHECK (NOCHECK) | NDEX; Check (do not check) index on array
assi gnnent .

CHECK (NOCHECK) | NDEX Al,...,A9; Check (do not check) index
on assignnents to selected arrays.

TRACE (NOTRACE) ENTRY; Trace (do not trace) procedure
entry and exit.

TRACE (NOTRACE) FLOW Trace (do not trace) procedure
control flow

TRACE (NOTRACE) STORES; Trace (do not trace) assignnents
to all variabl es.

TRACE (NOTRACE) STORES N1,...,N9; Trace (do not trace)

assignnents to selected vari abl es.

The nonitor package includes the follow ng executabl e statenents:

ASSERT E1; Verify that E1 is nonzero.
MONI TOR OPTI ONLI ST; Set nonitor option, as follows:
BYTE (NOBYTE) Quarantee (do not guarantee) that
bitstring val ue al ways given
ENTRY (NOENTRY) Enabl e (disable) listing of results
of TRACE ENTRY directives.
FLOW (NOFLOW Enabl e (disable) listing of results
of TRACE FLOWdirecti ves.
LIMT = E1 Set nmonitor line linmt to El
STORES (NOSTORES) Enabl e (disable) listing of results

of TRACE STORES directi ves.

Moni t or conventi ons.

Several of the nonitor directives have two forns - one to enable a
feature and one to disable it. The prefix NO systematically
identifies the disabling case. For exanple, TRACE ENTRY enabl es
tracing of procedure entry, while NOTRACE ENTRY di sables this trace

GUI DE TO THE LI TTLE LANGUACGE PAGE 96
MONI TOR FACI LI TI ES

The directives CHECK and TRACE nay contain a list of names. |If no
nanes are given, the directive has nmaxinal scope in that all nanes
are referred to. If a list is given, only the naned itens are

i ndi cated. For exanple, 'TRACE STORES A, X;' directs tracing of stores
to A and 'X, while the directive 'NOTRACE STORES;’' disables stores
tracing for all variables.

The scope of a CHECK or TRACE directive is determined as follows: an
interlude of a program consists of the text before the start of the
first procedure definition, or of the text between the END stat enent
termnating a procedure definition and the start of the next procedure
definition. Directives within an interlude establish defaults for
followi ng procedures; directives within a procedure definition apply
only to that procedure. The TRACE ENTRY and TRACE FLOW directives
nmust appear in an interl ude.

Checki ng index range on array assignnent

The CHECK directive requests checking that the index is valid on an
array assignnent. The NOCHECK directive suppresses this check. The
CHECK directive either requests checking of all arrays, or contains a
list of nanes of the arrays to check

Traci ng procedure entry and exit

The TRACE ENTRY directive enabl es tracing of procedure entry and exit.
The NOTRACE ENTRY directive disables this trace. This directive nust
occur in an interl ude.

The TRACE FLOWdirective enables the tracing of control flowwithin a
procedure invocation. The NOTRACE FLOWdirective disables this trace.
This directive nmust occur in an interlude.

Traci ng assi gnnents.

The TRACE STORES directive enables tracing of assignnents. The
NOTRACE STORES directive disables this trace. The directive either
enables tracing of assignnents to all variables or contains a list of
the variables to be traced.

GUI DE TO THE LI TTLE LANGUACGE PAGE 97
MONI TOR FACI LI TI ES

Verification of program assertions

If a programis valid only if certain conditions hold, use the ASSERT
statenent to verify these assertions at execution tine. The ASSERT
statenment has the form

ASSERT E1,

On execution, if E1 is nonzero, execution proceeds to the next
statenent; otherw se, execution term nates abnornally.

Execution time nonitor options

The MONITOR statenent defines execution-tine options of the nonitor
package. A MN TOR statenment nust occur within a procedur e
definition. The MONITOR statenent consists of a list of options
separated by commas. The options are as foll ows:

1. The BYTE option enables listing of values in byte form The
NOBYTE option disables this listing. The nonitor package

picks a format to print a value. |f the BYTE option is on
the value as a bitstring is also listed if another format is
chosen.

2. The ENTRY option enables listing of the output of TRACE ENTRY
directives. The NCENTRY option disables this listing.

3. The FLOW option enables listing of output of TRACE FLOW
directives. The NOFLOWoption disables this listing.

4, The LIMT option has the form LIMT =11 where Il is an
integer giving the nonitor line linmt. When the nunber of
lines produced by nonitor directives equals or exceeds this
limt, the options ENTRY, FLOWand STORES are disabled, to
m nimze further nonitor output.

5. The STORES option enables listing of the output of TRACE
STORES directives. The NOSTORES option disables this listing

Moni tor | evel

There are several levels of nonitor processing, as follows:
0. Ignore all nonitor statements and directives
1. Process only ASSERT statenents.
2. Process all Mnitor directives and statenents.

The default level is one. The conpiler option MLEV sets the level, as
does the conpiler option HELP

Conpi |l er option HELP

The conpiler option HELP aids use of the nonitor package for
debuggi ng. The paranmeters of HELP consist of a sequence of character
codes, which correspond to initial nonitor directives, as follows:

GUI DE TO THE LI TTLE LANGUACGE PAGE 98
MONI TOR FACI LI TI ES

CHECK | NDEX on
TRACE ENTRY on
TRACE FLOW on
TRACE STORES on

nTmao

The default is 'HELP=0'. If "HELP al one given, then 'HELP=ES is
taken. If any of the options are selected, the nonitor level is set
to two.

GUI DE TO THE LI TTLE LANGUAGE PAGE 99
REFERENCES
(/1) P. Lecht. The Progranmmer’s PL/I. MGawH Il (1970).
(/2/) J. Cocke and J. Schwartz. Progranm ng Languages and Their
Conpi l ers. Conputer Science Departnent, Courant Institute
of Mathenatical Sciences, New York University (1970).
(/3/) P.C. Poole and WM Wiite. ’'Portability and Adaptability’.
i n: Advanced Course on Software Engi neering, ed. Bauer,
Springer-Verlag, Berlin and New York (1973).
(/4/) V. Basili. SIMPL-X - A Language for Witing Structured
Prograns. Technical Report TR-223, University of
Maryl and (1973).
(/5/) R Giswld. The Macro | nplenentation of SNOBOL 4.
WH. Freeman and Co, San Francisco (1972).
(/6/) WA wlf, et. al. BLISS Reference Manual. Conputer
Sci ence Departnent Report, Carnegie Mellon University,
Pi ttsburgh, Penn., (1969).
(/7/) G Goos. 'Language Characteristics: Progranmm ng Languages
as a Tool in Witing Systens Software’. 1In: Beekmann, op. Cit.

(/8/) P. J. Browmn. Macro Processors and Techni ques for Portabl e
Software. John Wley and Sons, New York (1974).

(/9/) R Giswld, J. Poage and |I. Pol onsky. The SNOBOL4
Pr ogranmm ng Language. Second Edition, Prentice-Hall (1971).

LI TTLE GRAMVAR

GUI DE TO THE LI TTLE LANGUACGE PAGE 100

The following granmar for LITTLE may aid in wunderstanding its

syntactic details.

<stype>
<*| type>
it lit’
<-conment >
<stype*>

<stype(mn)>

The notations used in the grammar are as foll ows:

denotes a syntactic type
denotes a lexical type
denotes litera
denot es comment about the grammar
denot es varyi ng nunber of instances (maybe none)
of a syntactic type
denotes limted nunber of repetitions of
a syntactic type
m : m ni rum nunber required
n : maxi rum nunber al | owed

Successive alternative expansions of a syntactic type are indicated by
successi ve equal signs, as follows:

<stype>

(first alternative)
(second alternative)
...(remaining alternatves)

The follow ng | exical types appear in the grammar

<*nane> vari abl e or procedure nane
<*con> a constant, integer, bit or string
Exanpl es: 10 " A STRI NG 3B 33 1RC

<*not sem col on> any character except sem col on

<pr ogr an®
<bl ock>

<st at enent >

<decl st at enent >

<conpst at enent >

<i f st at enent >

<el sei f bl ock>

<opener >

: = <bl ock>
.= <statenent> <statenent*>

: = <decl st at enent >
. = <conpst at enent >
. = <si npl st at enent >
;= <sinplifstatenent>

= S| ZE <attrspec> <cattrspec*>
REAL <*nane> <chane*> ;

DI M5 <attrspec> <cattrspec*>
DATA <dat aspec> <col dat aspec*>
:= ACCESS <*nanme> <cnane*> ;

. = <opener > <bl ock> <ender >
:= <ifstatenent>

.= | F <expr> THEN <bl ock> <el sei f bl ock*>
<ender >

.= | F <expr> THEN <bl ock> <el sei f bl ock*>
ELSE <bl ock> <ender >

.= ELSElI F <expr> THEN <bl ock>

= NAMESET <*nane> ;

GUI DE TO THE LI TTLE LANGUACGE PAGE 101
LI TTLE GRAMVAR

PROG <* nane>;

SUBR <*nane> <arglist> ;
SUBR <*nane> ;

FNCT <*nane> <arglist> ;
VWHI LE <expr> ;

UNTI L <expr >;
DO <*nane>
DO <*nane>
DO <*nane>

<expr> TO <expr> BY - <expr> ;
<expr> TO <expr> BY <expr> ;
<expr> TO <expr> ;

<si npli fstatenent> | F <expr> <sinpl st at enent >

<si npl st at enrent > CALL <*nane> (<expr> <cexpr*>);
CALL <*name> ;

CONT <notsem (0,5)> ;

GO TO <*nane> ;

GO TO <*name> (<expr>) ;

GO TO <*name> (<expr>)

I N <const> TO <const > ;

QUI T <notsem (0,5)> ;

RETURN ;

REW ND <expr> ;

FI LE <expr> <filelist> ;

CET <expr> <iolist>;

GET <iolist> ;

PUT <expr> <iolist> ;

PUT <iolist> ;

READ <expr> , <expr> <cexpr*> ;
WRI TE <expr> , <expr> <cexpr*> ;
<assi gnst at enent > ;

<arglist> = (<*nane> <chanme*>)

<chane> =, <*nanme>

<ender > := END <*notseni (0,5)> ;

<not sem > . = <*not sem col on>

<attrspec> .= <*nanme> (<constexpr>)

<cattrspec> .=, <attrspec>

<file> = <const expr>

<assi gnst at enent > = <targpart> <target> = <expr>
= <target> = <expr>

<targpart> .F. <expr>, <expr>,
.E. <expr>, <expr>,
.S, <expr>, <expr>,
.CH. <expr> ,

. LEN.

<t arget > <*nane> (<expr>)

<* nane>

LI TTLE GRAMVAR

<dat aspec>

<dat aval >
<cdat aexpr >
<col dat aspec>

<dat aexpr >

<iolist>

<ioitenr

<control f or mat >

<cexpr >
<expr>
<const expr >

<dat ai t en®

GUI DE TO THE LI TTLE LANGUACGE PAGE

<*nane> (<constexpr>) = <dataval *>
<*name> = <dataval *>

<dat aexpr > <cdat aexpr*>
, <dat aexpr>
<dat aspec>

<constexpr> (<constexpr>)
<const expr >

<ioitenr <ioitem>

, <control format>
<i odat ai t en>

SKI P (<expr>)
SKI P

X (<expr>)

X

PAGE

COLUWN (<expr>)
<*string>

, <expr>

<-described in section 4>

102

<- expression with only constants as operands>

<dat ai ten> , <dat af or mat >
<* nane>

GUI DE TO THE LI TTLE LANGUACGE PAGE 103
CODI NG CONVENTI ONS

This section describes the coding conventions used in witing software
for the LITTLE system Systematic coding style inproves readability.
The conventions include basic text format, choice of nanes, coments
and program organi zation. The prograns in appendix G follow these
conventi ons.

Basi c text format

A line of LITTLE text contains 72 colums. Leave colum one bl ank
and begin text of each line in colum seven, except as noted bel ow

Except for procedure definitions and perhaps NAMESET definitions,
i ndent each statenent in the body of a conmpound group four spaces,
including the terminating END statenent. The standard ’'tabs’ are thus
7, 11, 15, 19,

Begin the ELSEIF and ELSE cl auses of a conpound IF in the sanme col um
as the opening IF. 1In general, put the ELSE of an ELSE clause on a
separate |ine.

Spaci ng rul es

1. Space twice after the following if they begin a line
DATA DIMS DO IF REAL SIZE +*

2. Space twice before and after the condition of an IF or ELSEIF
cl ause. Space twi ce before and after THEN
3. Space twice after the following: ; ** .
4. Space twi ce before '$ which begins comment and space at | east
once after it.
5. Space at least once after every conmm, except as noted in next
rule.
6. In GET or PUT statenents,
1. Space once before each comm which is followed by a
control format.
2. Space once before each colon which narks a data item
3. Do not space before or after a conma which is foll owed by
a data fornmat.

For exanple, 'PUT ,SKIP ,X:A:B/NL ,SKIP;".

Never ternminate two conpound groups on the sanme line if neither

GUI DE TO THE LI TTLE LANGUACGE PAGE 104
CODI NG CONVENTI ONS

Bl ank |ines

Use blank lines to inprove readability, but do not use themin excess.
Use a single blank Iine to indicate a break in the program Use two
blank lines to indicate a major break. Use of nore than two bl ank
lines at a time is generally no nore informative than a single blank
line, and serves only to waste paper

Put a blank line before and after conpound groups which contain nore
than a few lines, to indicate the scope of the group

Avoi d banners

A banner consists of one or nore |ines which do nothing other than
announce their presence. A conmpbn use is to announce comments, as in

/* * * % * % *x % *x * *x * * *x * % */

Conmments are an integral part of a well-witten programand so need no
banners to announce their presence. A better approach is to use blank
lines as noted above, or to construct prograns which extract and I|i st
speci al text groups.

St at enent | abel s

Use as few statenment |abels as necessary. Use a separate line for
| abel s and begin the I abel in colum two, unless need for indenting
i ndicates otherw se. Use descriptive nanes for |abels, except that L
is commonly used for an indexed GO TOif a procedure contains a single
i ndexed GO TO

Identify term nati ng END

Always put at least the opening keyword after the END in an END
statenent. Do this also for CONT and QU T statenents; for exanple:

END PROG NAI N; QU T DG, END | F; CONT WHI LE

Choi ce of nanes

1. Use short nanmes for itens used nmany tines and | onger nanes for
itens infrequently referenced.

2. Wen a nane is not obvious, include a comment which explains the
derivation of the name; for exanple:

LTLDOC $ LTL-LITTLE DOC- UVENTATI ON PROGRAM
LCS $ L-1ST C OWPlI LATI ON S- TATI STI CS.
3. In choosing related nanes, use a common prefix, as this nmakes

GUI DE TO THE LI TTLE LANGUACGE PAGE 105

CODI NG CONVENTI ONS

cross-reference list easier to read. For exanple, wite ’'HAPTR
HAMAX and HAORG and not ' PTRHA, MAXHA and ORGHA'.

Avoid nanes which are comon words, such as 'table’. Invented
nanes stand out in text and require no special delimters to
di stingui sh the nane fromthe comobn word

Pr ogram or gani zati on

A LITTLE programtext consists of the follow ng sections:

1. [INTRO an introductory section consisting entirely of
conmments which nane the program give its purpose and identify
t he aut hors.

2. MODS: a section consisting entirely of coments which
descri bes each change to the program The text of each nod
shoul d contain the nane of the author, the date of change, the
pur pose of the change, and a list of the procedures affected.

3. GLOSSARY: the glossary is needed for l|large prograns, and
contai ns an al phabetical |ist of nanes of nacros, procedures
and variables, with one nane to a line; for exanple,

$ HAMAX: DI MENSI ON OF HA.’

4. MACRCS: this section contains the standard macros as foll ows:
1. Conditional assenbly options.
2. Machi ne paraneters.
3. Program paraneters, such as table |engths.
4. Program codes, typically macros nam ng constants.
5. Code macros

5. MAIN this section defines the first procedure, typically a
program procedure and contains the declarations for globa
vari abl es.

6. PROCS: renmining procedure definitions.

Commrent s

1. Use rest-of-line coments in preference to delimted conmments.
Use delinted comments only for comments of several |ines.

2. Every variable declaration requires a conment. Use a paragraph of
comments just before the declarations of sever al rel ated
vari ables, or an end-of-line corment for a single variable.

3. Put a period at the end of every comment.

4, Wite coments in active voice. Coments should define the task
to be done.

5. Good comments are an essential part of a quality program

6. Begin each procedure with a paragraph of comments which define the

pur pose of procedure.

GUI DE TO THE LI TTLE LANGUACGE PAGE 106
I NTRODUCTI ON TO MACROS IN LI TTLE

Macro processors are not conmonly found in high | evel |anguages, and
this appendi x expands on the definition of the LITTLE nmacro processor
given in section 2.3 to provide an informal introduction to the LITTLE
macro processor. A book by Brown (/8/) <contains an excellent
introduction to nacro processors and techniques for witing portable
sof t war e

A nmacro processor provides a tool for transform ng one set of synbols
into another. A macro definition specifies a transfornation rule. A
macro call applies the transformation rule to a specific sequence of
synbols. The synbols resulting fromthe transformation replace the
macro call.

The sinplest formof a macro definition is shown by
+* MAXTOKLEN = 127 ** $ MAXI MUM TOKEN LENGTH.

The successive plus and asterisk characters mark the start of the
macro definition, and are foll owed by the macro name MAXTOKLEN. The
macro body begins with the synbol follow ng the equal character after
the macro nanme and is ended by the two successive asterisk characters
that termnate a nmacro definition.

A subsequent instance of MAXTOKLEN in the source text causes the
repl acenent of MAXTOKLEN by the nacro body so that, for exanple, the
st at enent

ASSERT TOKLEN <= MAXTOKLEN
becones
ASSERT TOKLEN <= 127;

This wuse of the nmacro processor inproves the programin two ways.
First, the statenent ' ASSERT TOKLEN <= MAXTCKLEN;’' is nore readable
than *ASSERT TOKLEN <= 127;'. Second, and of nore inportance, in
order to change the programto accept tokens of a different maxi num
length it is only necessary to change the nmacro definition, as in

+* MAXTOKLEN = 255 ** § MAXI MUM TOKEN LENGTH.
The macro processor can be used to sinplify coding, as shown by
+* W5 = .WB. ** +* CS = .CS. **

which pernits the witing of Ws and CS to express the environnent word
and character sizes, respectively. Macros can be used within nmacros,
as shown by

+* CPW= (W5/CS) ** $ CHARACTERS PER WORD.
+* HASHTOKORG = $ ORIA N OF HASH TOKEN STRI NG
(1 + .SDS. (MAXTOKLEN+CPW) **
Note that a macro definition nay be witten on a single
line or on several lines, and a line nmay contain severa
macro definitions.

Anot her conmon use of t he nmacr o processor is to express

GUI DE TO THE LI TTLE LANGUACGE PAGE 107
I NTRODUCTI ON TO MACROS IN LI TTLE

envi ronnent - dependent program paraneters, as shown by

+* NCHARS = $ NUMBER OF CHARACTER CODES
. +S37 256 $ | BM SYSTEM 370.
. +S66 64 $ CDC 6000 SERI ES.

* %

This nacro wuses the conditional assenbly feature to select the nacro
body. If an attenpt is nmade to conpile the program in a new
envi ronnment, the macro definition becones

+* NCHARS = **

whi ch has an enpty (null) nacro body. The nmacro processor treats this
definition formas a request to drop the macro status of the nanme, and
subsequent instances of the nane are not transforned. For exanple,
NCHARS just renmmins NCHARS. An attenpt to conpile the program wll
result in conpilation errors since NCHARS wll appear to be an
undecl ared variable. This use of the macro processor thus nakes
envi ronnent - dependent paraneters very visible, and requires that a new
val ue be specified when attenpting to nobve the program to a new
envi ronnent .

Anot her commobn wuse of the nmacro processor is to nane the fields of a
bitstring, as shown by the macros

+* HA LEXLEN
+* HA_NAMEPTR
+* HA_MACORG

.E. 05, 07, ** $ TOKEN LENGTH
.E. 20, 13, ** $ NAMES | NDEX
.E. 35, 13, ** $ MACRO ORIG N

which define sone of the fields in the synbol table of the LITTLE
| exi cal scanner. Uses of such nacros have the form

HA LEXLEN SYMTAB(I)

I nstances of consecutive nanes, wth no intervening operators or
delimters, usually indicate the use of an extractor in a LITTLE
progr am

The macro processor permts macros to have argunents. For exanpl e,
suppose the array TOKARA is used to accunulate the characters of a
token. Before adding a new character to the array, it is necessary to
check that there is roomfor it, by witing code of the form

ASSERT TOKARAPTR < MAXTCKLEN,
TOKARAPTR = TOKARAPTR + 1,
TOKARA(TOKARAPTR) = NEWCHAR

The basi c check can be expressed as a nmacro by witing
+* COUNTUP(VAR, LIM = $ INCREMENT WTH LIM T CHECK.

ASSERT VAR < LIM
VAR = VAR + 1; **

GUI DE TO THE LI TTLE LANGUACGE PAGE 108
I NTRODUCTI ON TO MACROS IN LI TTLE

This nacro definition has the sane formas a sinple definition except
that the macro name is followed by a parenthesized list of nanes
separated by commas. The code can now be witten

COUNTUP(TOKARAPTR, MAXTOKLEN) ;
TOKARA(TOKARAPTR) = NEWCHAR

However, the basic action is just to add the character, and can be
witten as

+* ADDCHAR(C) = $ ADD C TO TOKARA.
COUNTUP(TOKARAPTR, MAXTOKLEN)
TOKARA(TOKARAPTR) = C, **
so that the original code can now be witten as just
ADDCHAR(NEWCHAR) ;
which, as a result of expandi ng macros ADDCHAR and COUNTUP, vyi el ds
ASSERT TOKARAPTR < MAXTOKLEN
TOKARAPTR = TOKARAPTR + 1;;
TOKARA(TOKARAPTR) = NEWCHAR; ;

The consecutive semicolons result fromthe witing of a senicolon both

in the macro definition and after the macro call. However, a
statenent consisting only of the statenent-terninating semcolonis a
null statenment in LITTLE. |ndeed, LITTLE includes the null statenment

just to avoid this problem

As anot her exanpl e, suppose the array STK is used to sinulate a stack
with STKPTR the index of the top of the stack. The stack primtives
PUSH and POP can be inplenented by witing

+* PUSH(l) = $ PUSH | ON STACK
COUNTUP(STKPTR, STKLIM; $ TEST FOR OVERFLOW

STK(STKPTR) = I; **
+* POP(1) = $ POP STACK TO I.
| = STK(STKPTR);

ASSERT STKPTR > 0; $ TEST FOR UNDERFLOW
STKPTR = STKPTR - 1; **

The ADDCHAR, PUSH and POP nacros illustrate the use of the nacro
processor to pernit the witing of code in a form close to the
programmer’s view of the algorithm This adaption can al so be done by
usi ng procedures, witing code of the form

CALL PUSH(ELM); ... CALL POP(LAST);

A nerit of the nacro processor is that it permits the use of both
direct 'in-line’ code and ’'off-line’ procedures, or conbinations
t her eof . For exanple, if speed is of the essence, the POP nacro can
be defined, as above, to expand into code; however, if it is nore
i mportant to reduce programsize, and there are many calls to POP, the
POP nmacro can be defined to expand into a procedure call.

GUI DE TO THE LI TTLE LANGUACGE PAGE 109
I NTRODUCTI ON TO MACROS IN LI TTLE

The definition of a nmacro in which the body is procedural in nature
and requires its own local variables or statenent |abels nust be done
with care. For exanple, consider witing a nmacro NBLANKS which is to
return the nunber of blank characters in a character string. A first
attenpt is to wite

+* NBLANKS(S, NB) = $ SET NB TO NUM OF BLANKS IN S.

NB = 0;
DO | =1 TO.LEN S
NB=NB+ (.CH I, S=1R);
END DO
* %
The loop index | is local to the macro, and the user of the nacro
shoul d not even know of the existence of |I. LITTLE provides special
synbol s ZZzZA, ZzZZB, ..., ZZZZ (and also ZZZ , since _ can be used in

nanes) which can be witten in a macro definition and which cause the
generation of new nanes on nmacro expansion. The correct definition is

+* NBLANKS(S, NB) = $ SET NB TO NUM OF BLANKS IN S.
SIZE Z7zZI(PS); $ LOOP | NDEX.
NB = 0;
DO ZzzzZI = 1 TO.LEN. S
NB=NB + (.CH ZzzZl, S =1R);
END DO,

LITTLE also provides ZZY synbols which generate integer constants
private to a nacro expansi on

As has been shown, nmacros can be used within macro definitions. An
obvi ous question is to ask whether nmacro definitions can be witten
within macro definitions. The LITTLE macro processor answers yes, but
this point requires sone discussion. For exanple, consider the nacro
definition

+ M(A B) =
4% M2 = B **
A=B+ 1;

* %

One approach is to have the nacro processor absorb the definition of
M2 whil e processing the definition of ML. This is not very useful, as
M is then just a nacro giving the nane B of the second argunent of
ML. A second and nmruch nore powerful approach is to defer the
definition of M2 until ML is called. The LITTLE nacro processor takes
the second approach. For various technical reasons, this requires the
use of the follow ng nmacros

+ @B(A B, C = ABC**
+* MACDEF(MACTXT) = QB(+, *MACTXT*, *) **

to effect definition of macros within macros. The main point is that
during expansion of a nmacro containing a call of MACDEF, the expansion
of the MACDEF macro provides the '+*' and '**' delimters before and
after MACTXT, so that MACTXT is recognized as a macro definition

GUI DE TO THE LI TTLE LANGUACGE PAGE 110
I NTRODUCTI ON TO MACROS IN LI TTLE

As an exanple of the use of macro definitions within nmacros, consider
the coding of an interpreter for a hypothetical mnachine which has
fifteen opcodes. The crudest approach would be just to assign the
codes and use their integer values, although the resulting code would
not be very readable. A sinple use of the macro processor is to wite
macros of the form

+* OP_ACT = 01 **
+* OP_BAK = 02 **
+* OP_END = 03 **

The MACDEF device pernits the assigning of codes w thout the need to
specify the values. This is done by witing

+* DEFC(C) = MACDEF(C=ZZYA) **

DEFC(OP_ACT) $ ASSI GN CONSTANT CODE FOR ACT.
DEFC(OP_BAK)

DEFC(OP_END)

This nethod permits the addition of new codes, and changing the order
of the codes sinply by adding a new DEFC nmacro call or by changing the
order of the calls. There is a problemif DEFC macro used to define
several sets of <codes, as each set would begin with a code
corresponding to one nore than the code assigned to the |ast el enent
inthe prior set. LITTLE pernmits the resetting of the ZZY synbols to
their initial value, by use of the ZZYORG directive |line, which has
the form

.=ZZYORG AXB

and which, in this exanple, resets the ZZYA, ZZYX and ZZYB synbol
origins. The period nust be witten in colum two.

Al though LITTLE provides only one-dinensional arrays, the nacro
processor can be wused to provi de nmuch of t he ef f ect of
mul ti-di mensional arrays. For exanple, consider the nmacro

+* DEFARA2(MAC, ARA, NR NC, DIM =
MACDEF(MAC(1, J) = ARA((1)+((J)-1)*NR))
MACDEF(DIM = (NR*NC)) $ DI MENSI ON OF ARA.

* %

which permits the witing of MAC(I,J) to refer to an elenent of the
two-di nensional array with NR rows and NC colums. The elenents are
stored in the one-di nensional array ARA and DI M gi ves the dinension of
ARA. For exanple

DEFARAZ2(VAT, MATARA, 10, 20, MATARADI M

SIZE MATARA(VB);
DIMS MATARA(MATARADI M ;
DATA MATARA = O(MATARADI M

sets up an 10 by 20 matri x whose el enments can be referenced by witing
MAT(4,1), MAT(3*J, K), etc. Simlar nethods can be used to define
"zero origin arrays, and so forth.

GUI DE TO THE LI TTLE LANGUACGE PAGE 111
I NTRODUCTI ON TO MACROS IN LI TTLE

Instances of macro argunents wthin expressions in the macro body
shoul d be enclosed in parentheses. To see the need for this consider
t he macro

+* MIL5(X) = X*5 ** $ MITIPLY BY FIVE

The macro call MJIL5(N) expands to N+5; however, the nmacro cal
MUL5(A+B) expands to A+B*5, and since nultiplication has a higher
precedence than addition, the expression is interpreted as A+(B*5)
i nstead of the desired (A+B)*5. Such problens are avoided by witing
the macro as

+ MIL5(X) = (X)*5 ** $ MILTIPLY BY FI VE.

Macro argunents nmay in general consist of an arbitrary sequence of
tokens. The argunents nmay contain calls to other nmacros. However ,
since macro argunments are separated by conmas, sonme care nust be taken
in witing argunents which contain comas. For exanple, the cal

MUL5(.E. 5, 6, A(l)) would be detected as erroneous by the macro
processor, as it is taken to be a call with the three argunents '.E
5, '6', and "A(l)’, while MIL5 has only one argunent. The correct
way to wite this macro call is to wite MIL5((.E. 5, 6, A(l))) as the
macro processor permts conmmas in argunments which are enclosed in

parent heses. |f the extractor were defined by a macro such as i
FLD = .E. 5, 6, **' then the nacro call could be witten MJIL5(FLD
ACl)) .

Yet another use of the nmcro processor is to assist in the
initialization of program data. For exanple, the followi ng text
fragment taken fromthe | BM Systenf 370 code generator for LITTLE shows
how sone of the nachine attributes are specified in a readable
fashi on.

$ FIELDS IN - MOPTAB- .
++ MI_OP

+* MI_CCTYPE
+* MI_MODRL

.F. 01, 8, ** $ MACH NE OPERATI ON CODE
.F. 09, 8 ** $ CONDI TION CODE TYPE.
F.o17, 1, ** $ ' CHANGES | NPUT REQ STER

SIZE MOPTAB(PS); DI M5 MOPTAB(NUM MO): $ OPERATI ON TABLE.
SIZE MOPNAME(.SDS. 4); DI MS MOPNAME(NUM MD); $ NAMES.

$ MACRO TO I NI TI ALI ZE - MOPTAB- .
+* MOP(VAL, CODE, CC, M, NAME) =
MOPNAMVE(VAL) = NAME:
MOPTAB(VAL) = ML*4B’' 10000’ +CC*4B’ 100’ +CODE **

DATA $ INITI ALI ZE TABLE.

$ MOoP CODE CCTYPE MR1 NANME
$ S ceee iaoo- S -

MOP(MOP_BALR, 4B 05’', MC_NOCHANGE, YES, ’BALR):
MOP(MOP_BCTR, 4B 06’, MC_NOCHANGE, YES, ’'BCTR):
MOP(MOP_BCR, 4B 07', MC_NOCHANGE, NO, 'BCR):
MOP(MOP_LPR, 4B 10', MC_FULL, YES, 'LPR):

GUI DE TO THE LI TTLE LANGUACGE PAGE 112
I NTRODUCTI ON TO MACROS IN LI TTLE

MOP(MOP_LNR, 4B 11', MC_FULL, YES, 'LNR):
MOP(MOP_LTR, 4B 12', MC_FULL, NO, 'LTR):
MOP(MOP_LCR, 4B 13', MC_FULL, YES, 'LCR):

In conclusion, nacros are quite powerful, and are of great assistance
inthe witing of well-structured prograns. |ndeed, nuch of the art
of progranmming in LITTLE is in the design of systenmatic macros which
clarify program structure and enhance portability.

GUI DE TO THE LI TTLE LANGUACGE PAGE 113
I NTRCDUCTI ON TO CHARACTER STRI NGS

The construction of portable software which uses character strings in
an efficient manner remains a difficult problem Al though the desired
primtives - input/output, concatenation, substring extraction and
insertion - are quite standard, there is no obvious character string
representation which is both portable and efficient. This appendix
gives an informal introduction to the processing of character strings
in LITTLE, and al so describes the representation of character strings
used by the standard LI TTLE conpiler

The character string features may be sumari zed as foll ows:

1. Constants
1. R constants for character codes.
2. Quoted and Q constants for character strings.

2. Unary operator .SDS. |1 to determ ne size of character string
of 11 characters

3. Binary operators:
1. S1 .IN S2 to search character string S2 for instance of
character string S1.
2. S1 .PAD. 11 to pad character string S1 to length I1. Sl
and |11 nmust be constants.
3. S1 .SEQ S2 to conpare character strings for equality.
4, S1 .SNE. S2 to conpare character strings for inequality.

4. Access (extractor, assignnent) qualifiers:

1. .CH 11, S1 to access |I1-th character code of character
string S1.
2. .S 11, 12, S1 to access substring of character string Sl

which is 12 characters |ong and begins at position |1.
3. .LEN. S1 to access length of character string Sl

5. Input/output fornats:
1. A format for character strings.
2. R format for character codes.

6. Environnment synbols:

1. .CS. for size of character code
2. .SL. for size of character string length field.
3. .SO for size of character string origin field.

7. String search, case conversion and replacenent procedures
(described in section 9.6.4).

A character string is a sequence of characters. Each character has
both an external graphic synbol and an internal bitstring code. The
internal code has size CS. An R-constant specifies the internal code
in terns of the external graphic synbol; for exanple, the value of the
constant 1RA is the internal code of the character which has the
letter A as its graphic synbol (01 on S66, 193 on S37). Char act er
string constants are witten using the commopn convention of encl osing
the characters with the apostrophe character, using two successive
apostrophes to represent an apostrophe within the string. Q constants
simplify the witing of character string constants wth interna
apostrophes; for exanple, both 3Q'’ and '''''''’ represent the sane
character string constant.

GUI DE TO THE LI TTLE LANGUACGE PAGE 114
I NTRCDUCTI ON TO CHARACTER STRI NGS

Character strings are represented as bitstrings according to the
foll owi ng rul es:

1. The size of the bitstring is a nultiple of the nmachine word size
WB.

2. The rightnost part of the bitstring contains two fields. The
first field has size .SL. and gives the length of the character
string in characters. The second field has size .SO and gives
the relative position of the start of the string. These fields
are conventionally referenced by the macros

+* SLEN
+* SORG

.E. 01, .SL., ** $ STRING LENGTH
E. .SL.+1, .SO, ** $ STRING ORIA N.

The conbined length of these fields (.SL.+.SO) nust be a nultiple
of the character size CS

3. The character codes are arranged in the bitstring so that the
extractor for the I-th character of Sis

.F. (SORG S)-1*CS, CS, S

The .F. extractor is used since the representation requires that
characters not cross machi ne word boundaries. Note that .LEN S
is just an abbreviation of SLEN S, so that

.LEN. S = SLENS = .E 1, .SL., S

The representation rules constrain the values of the Iength and origin
fields, and so permit a validity test to be perforned on a bitstring
used to represent a character string. The validity test is defined as
follows (failure of a wvalidity test causes abnor nal program
term nation):

1. Let L be the value of .LEN. S. If L is zero, S has a valid form
and represents the null string.

2. The value of (SORGS - 1) nust be less than or equal to the size
of S; otherwise, the validity test fails. The value of (SORG S
must be one nore than a nultiple of the word size; otherw se the
validity test fails. The value of (SORG S) nust be greater than
the value of (.SL.+.SO.); otherwise the validity test fails.

3. The capacity C of Sis defined as
(SORG S - 1)/ (W/ICS) - (.SL.+.S0.)/Cs
and nust be greater than or equal to the length L; otherw se the
validity test fails. Cis just the nunber of characters that can

be correctly represented by S

The standard conpiler performs the validity test in the follow ng
situations:

1. In S1 .IN S2, both S1 and S2 are val i dat ed.

GUI DE TO THE LI TTLE LANGUACGE PAGE 115
I NTRCDUCTI ON TO CHARACTER STRI NGS

2. In S1!! S2, both S1 are S2 are vali dated.

3. In S1 .SEQ S2, both S1 and S2 are validated.

4, In S1 .SNE. S2, both S1 and S2 are vali dated.

5. In S1 .PAD. 11, S1 is validated. Since S1 nust be a character
string constant, validation is done as part of conpilation

6. In .S 11, 12, S1 = S2, both S1 and S2 are validated.

Moreover, the index of the last character in the substring,
(11+12-1), nust not exceed the capacity of S1 and nust not
exceed the current length of SI1. Substring assi gnnent
repl aces existing characters, and cannot be used to extend the
I ength of the target string.

7. In the extraction .S. I1, 12, S1, Sl is validated.

8. If S1is PUT using the A format, Sl is validated.

The wvalidity test detects nobst, but not all, of the attenpts to
operate on a bhitstring which does not in fact represent a character
string.

The representation rules do not define a unique representation, as two
valid representations of the sanme string nay have different origins.
Moreover, the character string representati on does not always specify
the values of all the bits in the representing bitstring, but only
specifies the values of the length and origin fields, and the val ues
of the internal <character codes. As a result, the bitstring
conparison operators alnbst always return incorrect results when
applied to character strings. LITTLE provides the binary operators
.SEQ and .SNE. to test for character string equality and inequality
respectively. As there is no standard ordering of character codes
across different nachines, LITTLE does not attenpt to define the other
conpari son operators on character strings

Certain actions conpletely define a character string in that they set
both the origin and length fields. These operations always provide a
valid representation wth smallest origin. These operations are
string concatenation (!!), the use of the Ainput format to read in a
character string, the .S. substring extractor and the .PAD. operator

The following denonstration program illustrates sone of the points
just nmentioned. The programwas run an | BM Systeni 370, and uses the
Monitor package to show the internal representations. This nachine
has W5 of 32, PS of 24, CS of 8, .SL. of 16, and .SO of 16.

1 + WS = WS ** +* PS = .PS. ** 4% CS = .CS. **
2 TRACE STORES; $ TRACE ALL STORES.

1 PROG START;

2 MONI TOR BYTE;

3 SIZE CI(CS), C2(CS*2), CA4(CS*4), CB8(CS*8);
4 SIZE S1(.SDS. 1), S4(.SDS. 4), S8(.SDS. 8);
5 SIZE 1(PS);

6

7 Cl = 1RA

8 C2 = 2RAB;

9 C4 = OR/ ABCD ;

10 S1 ='A; $ NOTE Cl AND S1 DI FFER

GUI DE TO THE LI TTLE LANGUAGE PAGE
| NTRODUCTI ON TO CHARACTER STRI NGS
11 S4 ='AB ’; $ SHOULD BE ' AB . PAD. 4
12 S8 ="A CD ’;
13 S8 = ' COWPI LER ;
14 S. 5 4, S8 ='X;
15 .CH 1, S4 = 1RC,
16 .S, 2, 2, S4="OM;
17 .S. 4, 1, S4="P;
18 S4 = S4; $ TO FORCE TRACE LI ST.
19 S8 = S8; $ TO FORCE TRACE LI ST.
20 | =S4 .SEQ S8; $ NOT EQUAL, AS LENGTHS DI FFER
21 .LEN. S8 = 4;
22 | =S4 .SEQ S8;
23 | = (S4 .EQ S8); $.EQ IS NOT SAME AS . SEQ
24 | ="M .IN S4;
25 END PROG START;
7: Cl = 193 = 4B 000000CL’
8 : C2 = 49602 = 4B 0000C1C2’
9 : C4 = 4B ClC2C3C4
10 : S1 = 'A = 4B C1000000 00410001’
11 : S4 = 'AB ' = 4B C1C24040 00410004’
12 : S8 ='A CD ' = 4B Cl404040 40C3C440 40000000 00810009’
13 : S8 = ' COWPILER = 4B C3D6D4D7 C9D3C5D9 00610008
14 : .S, 5, 4, S8 =X = 4B E7000000 00210001’
15 : . CH. 1, S4 = 1RC = 4B 000000C3’
16 : .S. 2, 2, S4 =’ OM = 4B D6D40000 00410002’
17 : .S. 4, 1, S4 ='P = 4B D7000000 00210001’
18 : S4 = 'COWP' = 4B C3D6D4D7 00410004’
19 : S8 = 'COWX ' = 4B C3D6D4D7 E7404040 00610008’
20: | = 0 = 4B 00000000’
21 : .LEN. S8 = 4 = 4B 00000004’
22 | = 1 = 4B 00000001’
23: | = 0 = 4B 00000000’
24 | = 3 = 4B 00000003’

116

GUI DE TO THE LI TTLE LANGUACGE PAGE 117

EXAMPLE - SORT PROCEDURES

B PDPPAHDPHPHHBH P

TH S PROGRAM DEFI NES TWO SORT ROUTI NES AND A TEST ROUTI NE.
ROUTI NE BUBLSRT(A, B,N) IS THE WELL- KNOAWN BUBBLE SORT, AS
DESCRI BED IN * THE ART OF COVMPUTER PROGRAMM NG , VOL. 3,
PAGES 106-111.
ROUTI NE HEAPSRT(A, B, N) IS THE HEAP SORT, CF. PP 145-149 OF KNUTH
THE CODE FOR HEAPSRT IS BASED ON THAT G VEN I N
" ON PROGRAMM NG | NSTALLMENT 2’ BY J. SCHWARTZ, P. 64.
THE MAIN ROUTI NE START | S TEST DRI VER FOR SORTERS; | T USES DATA
G VEN IN KNUTH, P. 75.
THE CODE CONTAI NS CONDI TI ONAL TEXT, W TH NAME ' T’
VH CH MAY BE USED TO OBTAI N TRACE PRI NTQUTS OF THE SORTERS
IN ACTI ON, AND TO Al D DEBUGAE NG
AUTHOR D. SH ELDS (CIMsS) REVISED 01 JUL 77

MACRO SECTI ON - DEFI NE MACHI NE PARAMETERS, |/ 0O FUNCTI ONS, AND
USEFUL CODI NG SEQUENCES.
+* W5 = 60 ** +* PS = 17 ** +* CS =6 ** $ 6600 PARAVETERS

.+SET T $ COWILE TRACI NG LI NES.

+* NTEST = 16 ** $ SIZE OF TEST ARRAY.

+ PRINTIT(A NA) =
$ MACRO TO PRI NT ARRAY, 4 COLUMNS PER ELENMENT
PUT , COLUMN(14) :A(1) TO A(NA),1(5), SKIP;

* %

+* TESTSORT(SORTER, SORTERNAME) = $ TEST SORT PROCEDURE.

PUT , SKI P(2),’ TEST SORT PROCEDURE: ' : SORTERNAME, A, SKI P;

DO | = 1 TO NTEST; SORTED(1) = TEST(l); END DO

PUT ,’ BEFORE SORT: '; PRINTIT(TEST, NTEST): $ LIST TEST DATA.
CALL SORTER(SORTED, NTEST):; $ TEST SORT.

PUT ,’ AFTER SORT: '; PRI NTI T(SORTED, NTEST); PUT , SKI P(2);

* %

+* SWAP(A, B) = $ MACRO TO SWAP TWD | TEMS, A COMMON OPERATI ON
SIZE ZZZA(W5); $ TEMPORARY FOR MACRO
ZZZA = A, A =B, B=ZZZA, **

PROG START; $ MAI N PROGRAM AND TEST PROCEDURE.

SI ZE TEST(WS); DI MS TEST(NTEST); $ KNUTH S TEST DATA

SI ZE SORTED(WB); DI M5 SORTED(NTEST);

DATA TEST = 503, 087, 512, 061, 908, 170, 897, 275,
653, 426, 154, 509, 612, 677, 765, 703;

SIZE 1(PS); $ DO LOOP | NDEX.

PUT , SKIP, * TEST OF SORT ROUTINES ', SKIP(2);

TESTSORT(BUBLSRT, ’ BUBBLE SORT');

TESTSORT(HEAPSRT, ' HEAP SORT') ;

END;

SUBR BUBLSRT(A, N); $ BUBBLE SORT OF A.

SI ZE A(WB) ;

DIMS A(2): $ ARGUVENTS ARE ARRAYS (DI MENSI ONS ARE DUMMY)
SIZE J(PS); $ DO LOOP | NDEX.

SIZE N(PS); $ NUMBER OF ELEMENTS TO SORT.

SIZE T(PS); $ POSITION OF LAST SWAP | N PASS THROUGH ARRAY.
SIZE BOUND(PS); $ HI GHEST I NDEX | N ORDER.

SIZE 1(PS); $ DO LOOP | NDEX.

BOUND = N;

GUI DE TO THE LI TTLE LANGUACGE PAGE

EXAMPLE - SORT PROCEDURES

L+T

BAPAAODPHPHHDPHHH

. +T.

L+T

L+T

VWH LE BOUND>0; $ LOOP WHI LE PCSSI BLY UNSORTED
T = 0;
DO J =1 TOBOUND-1; $ BUBBLE ENTRY TO PROPER PLACE.
IF A(J) > A(J+1) THEN $ OQUT OF ORDER, EXCHANGE.
SWAP(A(J), A(J+1));
T =J; $ RECORD PO NT OF EXCHANGE.
END | F;
END DG,
BOUND = T; $ ELEMENTS ABOVE BOUND ARE SORTED.
PUT : BOUND, NI (5); PRINTIT(A, N; $ TRACE LI ST.
END WHI LE;
END SUBR BUBLSRT;

SUBR HEAPSRT(A, N); $ HEAPSORT OF A; FROM SETL NOTES.
THI' S PROCCEDURE | S A VARI ANT OF HEAP SORT DUE TO
J. SCHWARTZ.
INBRIEF, THHS IS A TREE SELECTI ON SORT I N WHI CH ELEMENTS
2*1 AND 2*1+1 ARE THE DESCENDANTS CF |. WE BEG N BY

118

TRANSFORM NG THE ARRAY | NTO A HEAP, WHERE A(1l)...A(N) IS A

HEAP | F FOR 1 <= FLOOR(J/2) < J <= N, THEN
A(FLOOR(J/2)) >= A(J)

FOR A BI NARY TREE, TH S MEANS THAT NO CHI LD IS Bl GGER THAN

A PARENT. FI RST FORCE THE ARRAY TO HAVE THE HEAP
PROPERTY. AS A RESULT A(1) WLL BE THE MAXI MAL ELEMENT.
THEN SWAP THE TOP ELEMENT W TH THE RI GHTMOST, AND

THEN REARRANGE THE TREE SO I T REMAINS A HEAP.

REPEAT THI S PROCESS UNTIL ALL ELEMENTS ARE SORTED.

SIZE A(WS); DIMB A(2); $ OUTPUT SORTED ARRAY.

SIZE 1(PS); $ DO LOOP | NDEX.

SIZE N(PS); $ NUMBER OF ELEMENTS TO SORT.

SIZE MPS); $ CURRENT NODE BEI NG EXAM NED.

SIZE TOP(PS); $ CURRENT TOP OF TREE DURI NG PHASE TWO
SIZE TARGPS); $ LARGEST CHILD.

PUT , SKI P, ’ HEAPSORT - FORCE HEAP.', SKIP;
PUT :1 :MN(3), COLUWN(14);
DOl =1 TON PUT :1,1(5); END DO PUT ,SKlP;

2 TON $ MAKE | NTO HEAP, | | S CURRENT PARENT
l;
WHLE M>1; $ EXAM NE PARENTS | N TURN.

IF (A(M2) >= A(M) QUT WHILE, $ IF PARENT NO SMALLER

$ 1S HEAP.
SWAP(A(M, A(M2)); $ PROMOTE LARGE CHI LD.
PUT :1:MNI(3); PRINTIT(A, N) $ TRACE LIST.
M= M/ 2, $ MOWVE TO GRANDPARENT.
END WHI LE;
END DO | ;

PUT ,SKIP ,’ HEAPSORT - PHASE 2’ , SKIP;

DO TOP = NTO2 BY -1; $ SORT SUBTREES | N TURN.
SWAP(A(1), A(TOP)); $ EXTRACT LARGEST ELEMENT.
M= 1, $ FORCE REMAINI NG SUBTREE TO BE HEAP.
WH LE M2 < TOP, $ FOR ALL SUBTREES.

$ PI CK LARGEST CHI LD OF NODE M | N SUBTREE.
IF (A(M2) < A(M2+1)) & (M2+1 < TOP)

GUI DE TO THE LI TTLE LANGUACGE PAGE 119
EXAMPLE - SORT PROCEDURES

THEN TARG = M 2+1;
ELSE TARG = M2; END IF;
IF A(M < A(TARG THEN
SWAP(A(M), A(TARG); $ CHILD TOO BI G EXCHANGE.
AT PUT : TOP: M TARG | (5); PRINTIT(A, N) $ TRACE LIST
ELSE
$ QUI T SINCE BOTH CHI LDREN | N RANGE, AND
$ KNOW THAT THEI R CHI LDREN ALREADY | N ORDER. .
QT WH LE M
END | F;
M= TARG $ MOVE TO SUBTREE OF LARGEST CHI LD.
END WHI LE;
END DO TOP;
END SUBR HEAPSRT;

GUI DE TO THE LI TTLE LANGUACGE

PAGE

EXAVPLE - TAUSWORTHE RANDOM NUMBER GENERATOR
+ WB = WS, ** 4% PS = .PS. ** 4* CS = .CS **
+* RSZ = We-1 ** $ SI ZE OF RANDOM VALUE.
PROG START; $ TEST TAUSWORTHE RANDOM GENERATOR.
SIZE 1(PS); $ LOOP | NDEX.
SIZE RV(PS); $ RANDOM VAL UE.
SIZE RANI NT(RSZ); $ RANDOM VALUE FUNCTI ON.
SI ZE RANI NTSEED(RSZ) ; $ RANDOM SEED.

RANINTSEED = . F. 1, 31, ATAN(1.0);
PUT : RANI NTSEED, NB(20, 3, 4) , SKI P;

PUT , PACE, ' TEST OF TAUSWORTHE GENERATOR.’, SKI P;
DO | =1 TO 100;

RV = RANI NT(100);

PUT : RV, 1(5);

IF (MODX(I,10)=0) PUT , SKIP;

END DO

END PROG START;
FNCT RANI NT(K) ;

/* K 1S AN ORDI NARY | NTECER. THE RESULT IS AN
CRDI NARY | NTEGER FROM 0 TO K-1, UNI FORMLY DI STRI BUTED.
THI S | S THE TAUSWORTHE GENERATOR FOR A 32 BI' T MACHI NE
(SI GN AND 31 MAGNI TUDE). THE SEQUENCE IS OF MAXI MUM LENGTH
FOR THE WORD SI ZE USED.
REFERENCES:
1. TAUSWORTHE, ROBERT C., MATHEMATI CS OF COVPUTATI ON
1965 PAGES 201-209.
2. VWH TTLESLEY, J., CACM SEPTEMBER 1968 PAGES 641-644.
3. PAYNE, W H, CACM JANUARY 1970 PAGE 57.

THE ROUTI NE USES PARAMETERS N AND M WH CH ARE CHOSEN
BASED ON THE MACHI NE' S WORD SI ZE. ONE NORMALLY CHOCSES N
EQUAL TO THE WORD SI ZE LESS ONE, AND THEN M AS FOLLOWG:

N AND M ARE EXPRESSED AS MACROS, SO THAT EFFI CI ENT
CODE | S OBTAI NED.
THE CALCULATI ON OF SU TABLE VALUES OF M FCR A G VEN N
| N\VOLVES FI NDI NG PRI M Tl VE POLYNOM ALS; SEE (1) PAGE 208.
THI' S ROUTI NE USES A GLOBAL VARI ABLE ' RANI NTSEED
VWH CH MUST BE I NI TI ALI ZED TO A BI TSTRI NG
NOT ALL ZEROS, OF LENGTH N.
AUTHOR: D. SHIELDS (CIMsS) 01 JAN 77.
THS IS A REMRI TE OF A VERSI ON WRI TTEN
IN SETL BY HENRY S. WARREN, JR

*/

120

GUI DE TO THE LI TTLE LANGUACGE PAGE 121
EXAMPLE - TAUSWORTHE RANDOM NUMBER GENERATOR

++ N = 31 **
+ M= 13 **

SIZE RANINT(N); $ SIZE NO MORE THAN N.

SIZE A(WS), B(WS); $ TEMPORARI ES DURI NG GENERATI ON
SIZE K(WS); $ RANGE IN WHI CH RANI NT MUST FALL.

SI ZE FBK(PS); $ MAGNI TUDE OF K
$ FI RST UPDATE THE VALUE OF ' RANI NTSEED .

ASSERT K>0;
FBK = .FB. K, $ MAGNI TUDE OF K
ASSERT FBK <= N
UNTIL RANINT <= K; $ | TERATE TILL GET NUMBER | N RANCE.
B=.F M1, NM RANINTSEED, $ RIGHT SH FT M
A = RANI NTSEED . EXCR B;
Fo NMHL, M B=.F 1, M A
.F. 1, M B = 0; $ LEFT SH FT N-M
RANI NTSEED = A . EXOR B;

/* NOW CONVERT ’ RANI NTSEED' TO AN | NTEGER RANG NG FROM 0 TO
K-1, WHERE K < 2 EXP. N. TH S IS DONE BY TRUNCATI NG

"RANI NTSEED TO THE APPROPRI ATE NUMBER OF BITS. | F THE RESULT
IS LESS THAN K, IT IS RETURNED. OTHERW SE THE ROUTI NE STARTS
ALL OVER AGAIN. TH S GUARANTEES A UNI FORMLY DI STRI BUTED
RESULT. THE PROCESS MUST TERM NATE, AS ' RANINTSEED 1S OF
MAXI MUM PERI QD (2 EXP. N - 1). */

RANINT = . F. (N+1) - FBK, FBK, RANI NTSEED; $ TAKE LEFT BITS.
END UNTI L;
END FNCT RANI NT;

GUI DE TO THE LI TTLE LANGUACGE PAGE 122
EXAMPLE - LTLDOC: A SI MPLE FORMVATTI NG PROGRAM

/* LTLDOC - LIST LI TTLE DOCUMENT.

I NPUT CONSI STS OF LI NES W TH CONTROL CHARACTERS I N
THE FI RST TWO CCLUWNS, AND TEXT I'N THE REMAI NI NG SEVENTY COLUMWNS.
CONTRCOL CHARACTERS ARE AS FOLLOWE:

- DOCUMENT: | NI TI ALI ZE. SHOULD BE FI RST CONTRCL LI NE.

- BEJECT: SET EJECT FLAG DO NOT LI ST TEXT.

- PAGE: SET EJECT FLAG LI ST TEXT.

SUBTI TLE: USE TEXT TO DEFI NE SUBTI TLE, SET EJECT FLAG
- TITLE: USE TEXT TO DEFINE MAIN Tl TLE, SET EJECT FLAG
- UNDERLI NE: LI ST TEXT, THEN UNDERLI NE | T.

- SKI P LI NE BEFORE LI STI NG TEXT.

- SAME AS P.

RPOCHWTMO

LTLDOC | NCREASES THE PAGE AND LINE LIMTS TO PERM T
UP TO 500 PAGES.

AUTHOR: DAVID SHI ELDS (CIMs) 11 JAN 77.
*/

$ STANDARD MACRCS.
+* W6 = WS, ** +¥ PS = . PS, ** +* CS = .CS, **
+* YES = 1 ** +* NO = 0 **

$ PROGRAM PARAMETERS.
+* NLB = 4 ** $ NUMBER OF LEADI NG BLANKS | N LI NE.
+* IBL = ("".PAD. NLB) ** $ INITIAL BLANK STRI NG

PROG LTLDCC; $ LI ST LI TTLE DOCUMENT.

SI ZE LI NESPERPAGE(PS); $ LI NES PER PAGE.

S| ZE DOTEXT(1); $ ON TO LI ST TEXT OF LI NE

SI ZE EJECTING(1); $ ON TO BEG N NEW PAGE W TH NEXT TEXT
$ LINE

SIZE UNDERLINING(1); $ ON TO UNDERLI NE TEXT.
$ FIRSTNB AND LASTNB DELIM T TEXT FOR UNDERLI NE OPTI ON.
SIZE FIRSTNB(PS), LASTNB(PS);

SIZE 1(PS); $ LOOP | NDEX.

SIZE C1(CS), C2(CS); $ FIRST TWD CHARACTERS I N LI NE.
SIZE TEXT(.SDS. 70); $ TEXT LINE.

SI ZE SKI PCOUNT(PS); $ SKI P COUNT.

$ GET NUMBER OF LI NES PER PAGE.
CALL CONTLPR(10, LI NESPERPAGE);

$ SET LARGE PAGE AND LINE LIM TS.
CALL CONTLPR(21, 500); $ UP TO 500 PAGES.
CALL CONTLPR(19, 500* LI NESPERPAGE) ;
CALL DOCI NI ; $ I NI TI ALI ZE FOR NEW DOCUVENT.
WH LE 1;
GET ,SKIP :Cl :C2,R(1) :TEXT, A(70);
IF (FILESTAT(1, END)) QU T WH LE;

IF Cl1 =1R THEN $ IF BLANK, LIST TEXT.

GUI DE TO THE LI TTLE LANGUACGE PAGE 123
EXAMPLE - LTLDOC: A SI MPLE FORMVATTI NG PROGRAM

DOTEXT = YES;

ELSEIF Cl = 1RD THEN $ |IF NEW DOCUMENT
CALL DOCI NI
DOTEXT = NG

ELSEIF Cl = 1RE THEN $ |IF EJECT REQUEST.
DOTEXT = NO, EJECTI NG = YES;

ELSEIF Cl=1RP ! Cl=1R1 THEN $ |IF NEW PAGE.

DOTEXT = YES; EJECTING = YES;
ELSEIF Cl1 = 1RS THEN $ I|F SUBTI TLE DEFI NI TI ON.
DOTEXT = NO, EJECTI NG = YES;

CALL STITLR(1, IBL!!TEXT); $ ENTER SUBTI TLE.

ELSEIF C1 IRT THEN $ IF MAIN TITLE DEFI NI TI ON
DOTEXT NO EJECTING = YES;
CALL STITLR(O, IBL!!TEXT); $ ENTER MAIN TITLE.
CALL STITLR(1, '’); $ CLEAR SUBTITLE.

ELSEIF Cl1 = 1RU THEN $ |F UNDERLI NE REQUEST.
DOTEXT = YES; UNDERLI NI NG = YES;

ELSEIF Cl1 = 1RO THEN $ IF SKIP LI NE REQUEST.
DOTEXT = YES; SKIPCOUNT = 1,

ELSE DOTEXT = YES;
END | F;

|F (DOTEXT=NO) CONT WHI LE;

IF EJECTING THEN $ |F STARTI NG NEW PAGE.
PUT , PAGE;
EJECTI NG = NO
END | F;

IF SKIPCOUNT THEN $ | F SKIPPI NG LI NES BEFORE TEXT.
PUT , SKI P(SKI PCOUNT); SKIPCOUNT = 0; END IF;

PUT , X(NLB) : TEXT, A , SKI P;
DOTEXT = YES;

IF UNDERLINING THEN
UNDERLI NI NG = NO,
IF (TEXT .SEQ (’'.PAD.70)) CONT WH LE;
CALL CONTLPR(5, 3); $ NEED AT LEAST THREE LI NES.
FIRSTNB = 1; $ FIND FIRST, LAST NON BLANKS.
WH LE .CH FIRSTNB, TEXT = 1R ;
FIRSTNB = FIRSTNB + 1; END W LE;
LASTNB = 70;
WH LE .CH LASTNB, TEXT = 1R ;
LASTNB = LASTNB - 1; END W LE;
TEXT = '’ .PAD. 70;
DO | = FIRSTNB TO LASTNB;, .CH. I, TEXT = 1R-; END DO,
PUT , X(NLB) : TEXT, A, SKI P;
END | F;

GUI DE TO THE LI TTLE LANGUACGE PAGE 124
EXAMPLE - LTLDOC: A SI MPLE FORMVATTI NG PROGRAM

END VHI LE;
END PROG LTLDCC,
SUBR DOCI NI ;

CALL CONTLPR(6, 1);
CALL CONTLPR(7,1);
CALL ETITLR(0, ' PAGE ,
CALL CONTLPR(8, 71);
CALL CONTLPR(9, 0);
CALL CONTLPR(13, 0);
CALL CONTLPR(2, 2);

$ INITI ALI ZE FOR NEW DOCUMENT.

$ ENABLE PAG NG

$ ENABLE TI TLI NG CLEAR MAI N, SUBTI TLES.
67, 0); $ ENTER ' PAGE FIELD.

$ SET PAGE Fl ELD.

$ CLEAR DATE FI ELD.

$ SET I NI TI AL PAGE NUMBER

$ SET INITIAL LI NE POCSI TI ON.

DOTEXT = NO, EJECTING = YES; UNDERLI NI NG = NO

SKI PCOUNT = O;
END SUBR DOCI NI ;

GUI DE TO THE LI TTLE LANGUACGE PAGE 125
CONTENTS

Preface 2

°

Introduction 4
1. Basic terns and concepts 11

2. Lexical structure 16
Character set 16
Comments 17
Macr oprocessor 18
Conditional Assenbly 20
Renote text 21

3. Data types and constants 23
Bitstrings 23
Integers 24
Reals 24
Booleans 24
Character codes 25
Character strings 16

4, Expressions 28
Extractors 30
Unary operators 33
Bi nary operators 35
Standard arithnetic functions 39
Sizing rules 41

5 Statenments 42
ACCESS 44
Assignnent 45
CALL 47
CONT 48
DATA 49
DMs 5O
oo b1
END. b2
FFILe 53
FNCT . . 0 0 bb
éGr. 56
cTO0. b7
IF 59
NAMESET 62
NnOLL 63
PROG 64
PUT 65
QQoaTt 66
READ 67
REAL 68
RETURN 69
REWND 70
slze 11
SBBR 12
UNTIL 73
VHLE. 74
WTE. 75

6. Procedures and prograns 76

GUI DE TO THE LI TTLE LANGUACGE

CONTENTS

7. I nput/Qutput

Streanming in formatted flles

Edit fields .

List fields .

Control formats
COLUW f or mat
PAGE f or mat
SKI P format
X fornmat

Data formats
A format
B format
E format
F format
| format
Rformat

Nam ng output itens .

STRING files .

FI LESTAT file |an|ry.

8. Monitor package .
CHECK directive .
TRACE directive .
ASSERT st at enent
MONI TOR st at enent
Moni t or options

Ref er ences

Appendi ces

A G amar

B. Coding conventl ons

C. Introduction to macros

D. Introduction to character stri ngs
E. Exanples

Sorting procedures
Random nunber gener at or
Docunent fornatter

Tabl e of contents .

/* FINS */

78
80
81
82
83
83
83
83
84
85
85
86
87
89
90
91
92
93
94

95
96
96
97
97
97

99

100
103
106
113
117
117
120
122

125

PAGE 126

	Contents
	Preface
	Acknowledgments
	Introduction
	Precis
	Terms and notations
	Character set
	Macro processor
	Text definition: conditional assembly, remote text
	Data types and constants
	Expressions
	Extraction operators
	Unary operators
	Binary operators
	Standard mathematical functions
	Sizing rules

	Statements
	ACCESS
	Assignment
	CALL
	CONTINUE
	DATA
	DIMENSION
	DO
	END
	FILE
	Function
	GET
	GO TO
	IF
	NAMESET
	 NULL
	Program
	PUT
	QUIT
	READ
	REAL
	RETURN
	REWIND
	SIZE
	Subroutine
	UNTIL
	WHILE
	WRITE

	Procedures and programs
	Input/output
	Summary of IO statements and formats
	Edit fields
	List fields
	Control formats
	Data formats
	A format
	B format
	E format
	F format
	I format
	R format

	Naming output items
	String files
	FILESTAT request

	Monitor facilities
	References
	Appendices
	LITTLE grammar
	Coding conventions
	Introduction to macros in LITTLE
	Introduction to character strings
	Examples
	Sort procedures
	Tauseworthe random number generator
	LTLDOC: a simple formatting program

