
Ii:

LITTLE Newsletter Number 3
Possible future extensions to LITTLE

November 1, 1971
J. T. Schwartz

Various semantic extensions to LITTLE, aimed principally
at certain basic issues crucial in the creation of systems and
large programs, could greatly improve its value as a systems
writing language. This newsletter is intended to begin the process
of getting some of these things on paper. The main areas which
deserve to be treated are as follows:

1. Memory hierarchy management.
2. Interrupt handling.
3. Debugging features •.
4. Syntactic extensions.

In this newsletter, areas 1 and 4 are discussed. The other areas
will be addressed in another newsletter.

1. Memory hierarchy management.

Under this heading various desirable possibilities may
be contemplated.

A. Virtual memories and associated paging structures.
B. Special types of memory structures, allowing extension,

movability, and particular special types of paging.
c. Paging of sections of code; physical grouping of code

sections and data items in a manner permitting efficient paging.

lA. Virtual memory structures.

Of the many possible approaches to this interesting area,
we Qhoose the following, which serves at least to fix our attention.
One-dimensional arrays of a given item SIZE (in the LITTLE sense)
are provided. These arrays are dimensioned; some, as presently
in LITTLE, with fixed dimensions; others with 'contingent'

- 2 -

dimensions, in a manner to be explained below. We think of

physical storage as providing a number of arrays, having fixed
maximum possible dimensions, but from the point of view of any
particular program having dimensions which are 'contingent'
but which cannot exceed these physical maxima. These 'physical
storage arrays' might have such names as CENTRAIME.M, DRUM, DISCl,
TAPEDRIVE3, STRIPFILElO, etc., depending on the actual collection
of physical devices available. Each of these physical arrays
will then have its own particular physical limits and performance
characteristics.

we now introduce a family of declarations which allow special
storage treatment to be declared for an array A. If no special
declaration is made for A, it is stored in central memory in
the standard fashion. However, if a declaration is made for A,
then A will be stored on some secondary storage medium, certain
pages of A being dynamically brought to higher storage levels as
required.

The form of the declarations which we contemplate, and
their semantic effect, will now be explained.

The general form of a storage declaration is as follows:

(1) STORE <array name> PAGESIZE <integer>

Example:

ON <target array name> <(optional) page
level list>.,

(2) STORE A PAGESIZE 512 ON DISC, PAGES
3 ON CENTRAIMEM, 10 ON DRUM. ,

In general, <array name> in (1) is the name of an array for
which a declaration ~s being made; <integer> declares the number
of words (of machine-dependent standard SIZE) in a single 'page'
of the array A; <target array name> declares the 'target arraf'

- 3 -

within which A is stored. This target array may either be some
programmer declared array, itselr the subject or a storage
declaration, or may be some 'physical' array like 'central
memory', 'drum', 'disc', etc. If in {1) a <page level list>
is given, it will have the form

{3) ,PAGES <pagelt>, <pagelt>, •••

where <pagelt> has the form

{4) <integer> ON <target array name>,

and states the number of pages of the array A which are to be
held within some specific target array.

For a set of declarattons having the form {l) to be valid,
we require that they be non-recursive. More specifically, it
must be possible to assign indices to the arrays which occur in
these declarations in such a way that each <target array>
occurring in the declaration of an array A has an index higher
than the index of A. Certain 'top level' arrays A will then not be
target arrays of anything; dimensions should be declared for
these. All other arrays B will be of 'contingent' dimension, B
having a size deducible from the sizes of all the arrays stored
on B. Certain 'bottom level' arrays will have no declared target
arrays; these are ultimate parameters of the program in which
they occur and must be assigned to available physical devices
when this program is enabled for execution.

Note that the syntactic style proposed in the preceding
paragraphs allows the arrays regarded as 'physical' in an initia1
program version to be treated as 'logical' if this becomes neces
sary. For example, a program containing the declaration {2)
can be run on a configuration containing no drum by adding some
such declaration as

STORE DRUM PAGESIZE 1024 ON DISC.,

- 4 -

to the program.
If no <page level list> is included in the declaration

(1) defining the manner in which a given array is to be stored,
the system will append some standard default list.

The appearance of an <array name> A in a declaration (1)
implies the creation of a subsidiary 'index array' for A; we
refer to this subsidiary array as A.INDEX. The nominal number
of entries in A.INDEX is equal to the number of entries in A,
divided by the page size of A. It should also be possible to
declare the storage treatment to be accorded A.INDEX. Suppose
for example that a program uses two large arrays, one, A, in a
relatively dynamic manner; the other, B, as an 'archival'
backup and less dynamically. In this hypothetical case, some
such declarations as the following might be used.

DIMS A(lOO 000), B(lO 000 000).,
STORE A PAGESIZE 500 ON DISC,

PAGES 20 ON DRUM, 5 ON CENTRALMEM.,
STORE B PAGESIZE 4000 ON STRIPFILE,

PAGES 20 ON BREAKUP.,
STORE BREAKUP PAGESIZE 500 ON DISC,

PAGES 5 ON DRUM, 2 ON CENTRALMEM.,
STORE B. INDEX PAGESIZE 500 ON BREAKUP.,

STORE A.INDEX PAGESIZE 200 ON CENTRALMEM.,
STORE BREAKUP.INDEX PAGESIZE 200 QN.CENTRALMEM.,

B. Special types of memory structures, allowing extension,
moving, and particular special types of paging.

The proposal made above allows an array for which growth
to large size is anticipated to be declared with a very large
dimension; most of the array can reside on a secondary medium,
with parts being paged in. For the effective use of this technioue
it is important, however, that the declarations described

f'

- 5 -

above should allow a certain degree of dynamic variability. For
example, if an array A used in a program grows while another B fails
to do so, we may wish to increase the number of pages of A stored
on a high-grade storage array C while diminishing the number of
pages of B so stored. It may be desirable to allow several
arrays, or portions of several arrays, to be stored within c, and
to move the boundaries between the parts of C devoted to storing these
arrays, depending upon the amount to which each array has grown
or shrunk since the last allocation was made. At certain points
in the execution of a program it may be the case that certain
arrays A lose their significance; for example, during a compilation
a 'generated code' array loses its significance the first time a
fatal compilation error occurs. It is then des~rable to be able
to relase for other use all the space in a high-grade storage
array G which such an array A formerly occupied.

Certain arrays will be accessed in a pattern showing reg~lar
trends: perhaps scanned always from low addresses to high add
resses, perhaps active after the manner of a pushdown stack in
which access moves regularly up and down the stack, etc. For use
in such cases, one may wish to provide mechanisms which assure
anticipatory paging of data blocks whose imminent use can be
anticipated.

A general, though possibly over-expensive, scheme for use
in these cases is as follows. Make it possible for a programmer
defined trap to be set on each attempt to reference an array
address nominally not present in central memory. The code at
such a point can drop blocks apt not to be needed, and issue
references to blocks likely to be needed, thereby forcing them to
load.

This may imply the provision of additional statements
such as

PUSH A(J) TO <target array>,

- 6 -

which would initiate a series of background actions eventually
resulting in the page containing the array ele~ent A{J) being
moved to a high~r or lower storage level. A -11 -0011 storage level
might then be equivalent to erasure.

This whole rather important issue deserves careful semantic
and syntactic exploration.

c. Paging of sections of code, physical grouping of code
sections and data items in a manner permitting efficient paging.

Storage-management mechanisms like those described in the pre
ceding paragraphs might do most of what is necessary for the
paging of code, provided that a metqod for assigning particular
sections of code to particular code-storage arrays is made
available. To this end, it might be sufficient to provide a
declaration having the form

STORECODE <target array name>

Such a declaration will force the section of code running from
its occurrence to the next following STORECODE declaration to
be kept in a given target array. Thus, for example, code produ
cing exceptional error printouts, together with the format
information and message text these require, etc,, can be kept in
some array normally held in secondary memory, etc.

Note that for this application mechanisms like those
described in the preceding section, which permit the parameters
occurring in storage declarations to be varied dynamically, can
be particularly valuable.

It is also appropriate that blocks of information declared
to be stored in a target array A should be arranged serially
within A in the order of their declaration. This permits one
to keep together blocks of code and data likely to be exercised
in close temporal proximity.

- 7 -

A quite different technique, but one which also addresses
the problem of code storage, may be addressed here. Code stored
in special interpretable format can allow a higher density of
packing than normal machine code (at a substantial cost in
efficiency). This density comes from the possibility of using
short address fields keyed to the variable names and transfer
labels occurring in a given code section, and from the suppression'
of temporary _variable names. An expanded.operation code set,_
allowing frequently occurring operation sequences to be repre
sented densely, can also be incorporated to advantage. The proto
typical statement I=I+l can be represented interpretively as

I, 1, STORE, I,

which allowing 1 byte/items is 4 bytes. In full machine code
for a standard machine the same statement might be

LOAD Rl, I; ADD IMMEDIATE 1, Rl_; STORE Rl, I

which, allowing 4 bytes for a fullword instruction, would be
approximately 10 byt~s of code. Thus, the use of an interpretive
format may yield a 2-1 reduction in code size. An interpreter for
an average machine IJ!ight run to some 8000 bytes of storage with_
a speed loss of ioo-1. Therefore, the segregation into interpre
tive format of 1-2000 statements of code, whose execution should
occupy less than 1 percent of the running time of a total
program, should begin to achieve storage economies at a relatively,
limited cost in speed. For large programs with ayery scattered
pattern of execution, this may be a better technique than more
straightforward paging.

A possible syntactic convention in which this technique
could be embodied is as follows: allow an array A used for the
storage of code to be designated as

INTERPRETIVE A. ,

,

- 8 -

Blocks of code stored in A would then have compressed interpretive
format, and would be interpreted when their execution was calied for.

2. Syntactic extensions.

When a first LITTLE compiler is completed, it will be
appropriate to extend its translator section considerably. As
long as a given extension does not change the semantics of the
language, that is, as long as the extended language has a straight
fon1ard translation into the unextended language, this will not
affect the 'middle!_ and 1back 1 portions of LITTLE, i.e., its
optimiser and code-generator sections. The following constructions,
many proposed for SETL, are desirable for LITTLE; some even more
in LITTLE than in SETL.

A. If-then-else constructions.
IF (<e ::iq,ression>) <statement>
IF (<expression>) THEN <block>.,

. IF (<expression>) THEN <b.lock> ELSE <block'>.,
IF (<expression>) THEN <block> ELSE IF

(<expression'>) THEN <block'>.,

and so forth. A <block> is a sequence of <statement>1 s. The
SETL scope terminators END IF., etc., are also desirable.

B. The IFF-statement.
This construction is of great value in making complicated

sets of tests more transparent, and ought to be included in
LITTLE, perhaps with somewhat restricted rules.

C. 'While' iterations.
(WHILE <condition>) <block>.,
(WHILE <condition> DOING <block 1 >) <block>.,

- 9 -

etc. This subsumes the FORTRAN-like DO-loops, which can be
written

J=l., (WHILE J.LE.LD1 DOING J=J+l) <block>u

A form even closertto the FORTRAN 'D0 1 can then be obtained
readily using the macro features which will be available.

In this connection the SETL

QUIT.,

and the statement

ITERATE.,

corresponding in meaning to the SETL •continue' should be
available. Note that 'CONTINUE' in LITTLE has a different
meaning.

D. 'At' constructions.
As in SETL, a statement having the form

AT <label> <block>.,

could be useful for the physical concentration of logically
related code. Labels referenced in AT statements might be
restricted to have names beginning with 'at', or some such.

E. Local name scopes~
The present SETL name-scoping rules have their horrible

side; note in particular that the various subroutines comprising
a total program can at present not always be rearranged without
serious semantic consequences ensuing. To relieve some of these
problems, it is proposed to add a new declaration.

- 10 -

LOCAL <sizeelement>, ••• , <sizelement>.,

This would act in much the same way as the present

SIZE <sizelement>, ••• , <sizelement>.,

except that names declared as LOCAL would without further
declaration not be known outside the subroutine within which
they were declared.

F. Improved data statements.
The present

DATA <var>= <const>, ••• ,<const 1 >.,

should also allow

DATA <var>= <constlist>/ ••• ,

where <constlist> is a comma-separated list of <constelt>1 s,
and <constelt> has the syntax

<constelt> = <constexpn> f<constexpn> (<constlist>)

A <constexpn> is any expression containing only constants, no
variable names.

In the second construction, the <constexpn> signifies a
number of repetitions. Thus to zero all the locations of a 1000
element array A we may write

DATA A= 1000(0).,

G. Still further extended macros.
A number of relatively small extensions to the present

macroprocessor can extend its power significantly. These are
as follows.

,;·

- 11

Gl. Macro-expansion output will pass through the macro
definition detector.

This will permit macro definitions to be imbedded in macros,
albeit in a somewhat roundabout way. {Here we prefer a roundabout
method to the direct method which might be made available, since
allowing such combinations as

+.:¥ A= +¼ B = ...
·, , i· can lead to errors.)

Our roundabout method is as follows. We write

+ * Q3 {Wl, W2, W3) = Wl W2 W3 #:-£;-

To include a macro definition within a macro, we
may then write some such construction as

+* DEFINE{WD,TEXT) = Q3{+, *WD=TEXT i:,, *) *~
For an example of the use of this tYPe of construction, note
that by writing

++DO {J,A,B) = J=A. ,/ZZZA/
IF {J.GT.{B)) GO TO ZZZB

Q3 (+, * AZZZ=ZZZAJ,;K)
Q3 { +, * BZZZ=ZZZB*,*)
Q3 (+, * CZZZ=J*, -Jr-)

- 12 -

and by writing

+ * ENDO = CZZZ = CZZZ+l. , GO TO AZZZ. ,

/BZZZ/CONTINUE -/'(:/(,

we may then employ simple (but not nested)DO-loops having
the easy form

DO(J, 1, N).,

text

•••
ENDO.,

G2. An alternate form for generated symbols.
A convention distinctly superior_to that presently

available is as follows. Permit macro-definitions in the form

+* NAME(ARGl, ,ARGn/XARGl, ••• ,XARGm) = text j/{*

The '~ormal arguments' ARGl, ••• ,ARGn will behave like the present
macro-arguments, and are to be supplied when the macro is called.
The 'extra arguments' XARGl, ••• ,XARGm are not to be supplied,
but will be generated by the macro expander when the macro is
called. In this new style, the preceding 'DO' macro could be
written as

+'Jt-DO(J,A,B/ZZZA,ZZZB) = J=A.,/ZZZA/

••• etc. **
This convention simplifies the present code and removes a number
of the technical pitfalls presently afflicting the nested use
of macros containing generated symbols.

03. Iterative macro-arguments.
Suppose that we allow a'-' to be prefixed to certain of the

formal arguments of a macro definition, as in

- 13 -

+*NAME (ARGl, -ARG2, -ARG3) = text * ~.
The semantic intent of this syntactic marking is as follows. Call
a formal argument iterative if _it is marked with a'-' sign. If
the macro is called with a non-parenthesised string in the place
of one of its iterative arguments, then the argument is treated
in the ordinary way. If a parenthesised string consisting of
substrings separated by commas is supplied in place of an_iterative
argument, then the parentheses will be removed, and macro-expansion
will be performed repeatedly, a separate expansion occurring for
each substring. For example, the definition

+,t;;.. PHRASE(-WD) = THE WORD IS WD. ~~

and the call

PHRASE((YES,NO,MAYBE))

will together result in the expansion

THE WORD IS YES.

THE WORD IS NO.
THE WORD IS MAYBE.

If several iterativ~ arguments consisting of parenthesised strings
consisting of comma-delimited substrings are simultaneously
supplied, the macro expansion will advance from one substring
to another for every iterative argument in each iteration of its
expansion. This permits a certain type of 'respectively'
construction. For example, the definition

+# EXPIAIN (IANG, -WDl, -WD2) =

WDl IS THE IANG FOR W2. **
and the call

EXPIAIN (GERMAN, (JA, NEIN, VEILLEICHT),

- 14 -

(YES,NO,MAYBE))

will lead to the expansion

JA IS THE GERMAN FOR YES.

NEIN IS THE GERMAN FOR NO.

VIELEICHT IS THE GERMAN FOR MAYBE.

Suppose next that a macro with several iterative formal arguments
is called with parenthesised, comma delimited, substrings as actual
arguments, but that more substrings are given for an argument
A then for another argument B. In this case, the final substring
of A will be repeated as often as necessary for iteration over
all the substrings of B to take place. Thus, for example, the
expansion of

EXPLA.IN (GERMAN, (NEIN, JA), (NO, YES, OK))

1s

NEIN IS THE GERMAN FOR NO.

JA IS THE GERMAN FOR YES.

JA IS THE GERMAN FOR OK.

The expansion of a macro is complete when every substring of each
of its iterative arguments has been appropriately substituted
in the prototype macro body.

G4. Rudimentary pattern matching.
By supplying the LITTLE macro-processor with a pattern m~iching

facility, we can gain the useful ability to call macros in men
standard form. As a lexical form for the invocation of this
facility, we propose

(5) ++ <name> <(optional)argument list> <(optional)separator list>
<(optional)terminator string>c:<text>

,

- 15 -

Before explaining the detailed syntax and semantics of this
type of declaration, we give an illustrative example of its use.
By declaring the pattern

++DO {J)/(,)/., = DO J =

we ensure that an occurrence of DO<*name> = will be translated
into a macro call whose initial part has the form DO(J, •••
Following the initial occurrence of DO <*name>=, commas will
be taken as delimiting arguments, and ., will be taken as
terminating the macro call. Thus, we may write

DO J = A-1, B+C.,

and have it translated into

DO (J;A-1.,B+C)

'which by_further macro expansion can give as the code desirable
:f'or a do-loop head. Another example is as follows. By declaring

++CALLSUB / (,) /) • ., = CALL SUB (

we make it possible for every (closed) call of a subroutine 'SUB'

present in an original text to be transformed into a corresponding
macro-call., which may then_be expanded in some appropriate manner. T
This can facilitate a hand-optimisation useful once a program
has been debugged.

We now explain the proposed syntax and semantics of (5)
more systematically. In (5) , <name> is the name of a macro,
which is called when the pattern present in <text> is detected
in a source string of tokens. If some of the tokens in <text>
are not parts of the pattern, but are to be transmitted as
arguments of the macro call, an <argument list> should be present
in the declaration (5) and these tokens should appear in it.
The syntactic form of an argument list., when one is present, is

- 16 -

(< name>, ••• , < name>).

Once the presence of some particular macro call has been
established (by the occurrence of an appropriate sequence of
tokens), further macro arguments will be delimited by the
occurrence of some token in the <separator list>. If no
<separator list> is declared, the comma will act as separator.
The macro will be terminated by the _occurreme of the pattern of
tokens appearing in the <terminator string> o,f (5) ; if no
<terminator string> is declared, an unbalanced right parenthesis,
or an exposed instance of., , will terminate: the macro.

GS. Expansion-time calculations, condl:lltional macro
expansions.

A proposal for adding these powerful a.«itditional macro
processor features will be made in a later newsletter.

