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J. T. Schwartz 

Various semantic extensions to LITTLE, aimed principally 
at certain basic issues crucial in the creation of systems and 
large programs, could greatly improve its value as a systems 
writing language. This newsletter is intended to begin the process 
of getting some of these things on paper. The main areas which 
deserve to be treated are as follows: 

1. Memory hierarchy management. 
2. Interrupt handling. 
3. Debugging features •. 
4. Syntactic extensions. 

In this newsletter, areas 1 and 4 are discussed. The other areas 
will be addressed in another newsletter. 

1. Memory hierarchy management. 

Under this heading various desirable possibilities may 
be contemplated. 

A. Virtual memories and associated paging structures. 
B. Special types of memory structures, allowing extension, 

movability, and particular special types of paging. 
c. Paging of sections of code; physical grouping of code 

sections and data items in a manner permitting efficient paging. 

lA. Virtual memory structures. 

Of the many possible approaches to this interesting area, 
we Qhoose the following, which serves at least to fix our attention. 
One-dimensional arrays of a given item SIZE (in the LITTLE sense) 
are provided. These arrays are dimensioned; some, as presently 
in LITTLE, with fixed dimensions; others with 'contingent' 
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dimensions, in a manner to be explained below. We think of 

physical storage as providing a number of arrays, having fixed 
maximum possible dimensions, but from the point of view of any 
particular program having dimensions which are 'contingent' 
but which cannot exceed these physical maxima. These 'physical 
storage arrays' might have such names as CENTRAIME.M, DRUM, DISCl, 
TAPEDRIVE3, STRIPFILElO, etc., depending on the actual collection 
of physical devices available. Each of these physical arrays 
will then have its own particular physical limits and performance 
characteristics. 

we now introduce a family of declarations which allow special 
storage treatment to be declared for an array A. If no special 
declaration is made for A, it is stored in central memory in 
the standard fashion. However, if a declaration is made for A, 
then A will be stored on some secondary storage medium, certain 
pages of A being dynamically brought to higher storage levels as 
required. 

The form of the declarations which we contemplate, and 
their semantic effect, will now be explained. 

The general form of a storage declaration is as follows: 

(1) STORE <array name> PAGESIZE <integer> 

Example: 

ON <target array name> <(optional) page 
level list>., 

(2) STORE A PAGESIZE 512 ON DISC, PAGES 
3 ON CENTRAIMEM, 10 ON DRUM. , 

In general, <array name> in (1) is the name of an array for 
which a declaration ~s being made; <integer> declares the number 
of words (of machine-dependent standard SIZE) in a single 'page' 
of the array A; <target array name> declares the 'target arraf' 
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within which A is stored. This target array may either be some 
programmer declared array, itselr the subject or a storage 
declaration, or may be some 'physical' array like 'central 
memory', 'drum', 'disc', etc. If in {1) a <page level list> 
is given, it will have the form 

{3) ,PAGES <pagelt>, <pagelt>, ••• 

where <pagelt> has the form 

{4) <integer> ON <target array name>, 

and states the number of pages of the array A which are to be 
held within some specific target array. 

For a set of declarattons having the form {l) to be valid, 
we require that they be non-recursive. More specifically, it 
must be possible to assign indices to the arrays which occur in 
these declarations in such a way that each <target array> 
occurring in the declaration of an array A has an index higher 
than the index of A. Certain 'top level' arrays A will then not be 
target arrays of anything; dimensions should be declared for 
these. All other arrays B will be of 'contingent' dimension, B 
having a size deducible from the sizes of all the arrays stored 
on B. Certain 'bottom level' arrays will have no declared target 
arrays; these are ultimate parameters of the program in which 
they occur and must be assigned to available physical devices 
when this program is enabled for execution. 

Note that the syntactic style proposed in the preceding 
paragraphs allows the arrays regarded as 'physical' in an initia1 
program version to be treated as 'logical' if this becomes neces
sary. For example, a program containing the declaration {2) 
can be run on a configuration containing no drum by adding some 
such declaration as 

STORE DRUM PAGESIZE 1024 ON DISC., 
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to the program. 
If no <page level list> is included in the declaration 

(1) defining the manner in which a given array is to be stored, 
the system will append some standard default list. 

The appearance of an <array name> A in a declaration (1) 
implies the creation of a subsidiary 'index array' for A; we 
refer to this subsidiary array as A.INDEX. The nominal number 
of entries in A.INDEX is equal to the number of entries in A, 
divided by the page size of A. It should also be possible to 
declare the storage treatment to be accorded A.INDEX. Suppose 
for example that a program uses two large arrays, one, A, in a 
relatively dynamic manner; the other, B, as an 'archival' 
backup and less dynamically. In this hypothetical case, some 
such declarations as the following might be used. 

DIMS A(lOO 000), B(lO 000 000)., 
STORE A PAGESIZE 500 ON DISC, 

PAGES 20 ON DRUM, 5 ON CENTRALMEM., 
STORE B PAGESIZE 4000 ON STRIPFILE, 

PAGES 20 ON BREAKUP., 
STORE BREAKUP PAGESIZE 500 ON DISC, 

PAGES 5 ON DRUM, 2 ON CENTRALMEM., 
STORE B. INDEX PAGESIZE 500 ON BREAKUP., 

STORE A.INDEX PAGESIZE 200 ON CENTRALMEM., 
STORE BREAKUP.INDEX PAGESIZE 200 QN.CENTRALMEM., 

B. Special types of memory structures, allowing extension, 
moving, and particular special types of paging. 

The proposal made above allows an array for which growth 
to large size is anticipated to be declared with a very large 
dimension; most of the array can reside on a secondary medium, 
with parts being paged in. For the effective use of this technioue 
it is important, however, that the declarations described 

f' 
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above should allow a certain degree of dynamic variability. For 
example, if an array A used in a program grows while another B fails 
to do so, we may wish to increase the number of pages of A stored 
on a high-grade storage array C while diminishing the number of 
pages of B so stored. It may be desirable to allow several 
arrays, or portions of several arrays, to be stored within c, and 
to move the boundaries between the parts of C devoted to storing these 
arrays, depending upon the amount to which each array has grown 
or shrunk since the last allocation was made. At certain points 
in the execution of a program it may be the case that certain 
arrays A lose their significance; for example, during a compilation 
a 'generated code' array loses its significance the first time a 
fatal compilation error occurs. It is then des~rable to be able 
to relase for other use all the space in a high-grade storage 
array G which such an array A formerly occupied. 

Certain arrays will be accessed in a pattern showing reg~lar 
trends: perhaps scanned always from low addresses to high add
resses, perhaps active after the manner of a pushdown stack in 
which access moves regularly up and down the stack, etc. For use 
in such cases, one may wish to provide mechanisms which assure 
anticipatory paging of data blocks whose imminent use can be 
anticipated. 

A general, though possibly over-expensive, scheme for use 
in these cases is as follows. Make it possible for a programmer 
defined trap to be set on each attempt to reference an array 
address nominally not present in central memory. The code at 
such a point can drop blocks apt not to be needed, and issue 
references to blocks likely to be needed, thereby forcing them to 
load. 

This may imply the provision of additional statements 
such as 

PUSH A(J) TO <target array>, 
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which would initiate a series of background actions eventually 
resulting in the page containing the array ele~ent A{J) being 
moved to a high~r or lower storage level. A -11 -0011 storage level 
might then be equivalent to erasure. 

This whole rather important issue deserves careful semantic 
and syntactic exploration. 

c. Paging of sections of code, physical grouping of code 
sections and data items in a manner permitting efficient paging. 

Storage-management mechanisms like those described in the pre
ceding paragraphs might do most of what is necessary for the 
paging of code, provided that a metqod for assigning particular 
sections of code to particular code-storage arrays is made 
available. To this end, it might be sufficient to provide a 
declaration having the form 

STORECODE <target array name> 

Such a declaration will force the section of code running from 
its occurrence to the next following STORECODE declaration to 
be kept in a given target array. Thus, for example, code produ
cing exceptional error printouts, together with the format 
information and message text these require, etc,, can be kept in 
some array normally held in secondary memory, etc. 

Note that for this application mechanisms like those 
described in the preceding section, which permit the parameters 
occurring in storage declarations to be varied dynamically, can 
be particularly valuable. 

It is also appropriate that blocks of information declared 
to be stored in a target array A should be arranged serially 
within A in the order of their declaration. This permits one 
to keep together blocks of code and data likely to be exercised 
in close temporal proximity. 
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A quite different technique, but one which also addresses 
the problem of code storage, may be addressed here. Code stored 
in special interpretable format can allow a higher density of 
packing than normal machine code (at a substantial cost in 
efficiency). This density comes from the possibility of using 
short address fields keyed to the variable names and transfer 
labels occurring in a given code section, and from the suppression' 
of temporary _variable names. An expanded.operation code set,_ 
allowing frequently occurring operation sequences to be repre
sented densely, can also be incorporated to advantage. The proto
typical statement I=I+l can be represented interpretively as 

I, 1, STORE, I, 

which allowing 1 byte/items is 4 bytes. In full machine code 
for a standard machine the same statement might be 

LOAD Rl, I; ADD IMMEDIATE 1, Rl_; STORE Rl, I 

which, allowing 4 bytes for a fullword instruction, would be 
approximately 10 byt~s of code. Thus, the use of an interpretive 
format may yield a 2-1 reduction in code size. An interpreter for 
an average machine IJ!ight run to some 8000 bytes of storage with_ 
a speed loss of ioo-1. Therefore, the segregation into interpre
tive format of 1-2000 statements of code, whose execution should 
occupy less than 1 percent of the running time of a total 
program, should begin to achieve storage economies at a relatively, 
limited cost in speed. For large programs with ayery scattered 
pattern of execution, this may be a better technique than more 
straightforward paging. 

A possible syntactic convention in which this technique 
could be embodied is as follows: allow an array A used for the 
storage of code to be designated as 

INTERPRETIVE A. , 

, 
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Blocks of code stored in A would then have compressed interpretive 
format, and would be interpreted when their execution was calied for. 

2. Syntactic extensions. 

When a first LITTLE compiler is completed, it will be 
appropriate to extend its translator section considerably. As 
long as a given extension does not change the semantics of the 
language, that is, as long as the extended language has a straight
fon1ard translation into the unextended language, this will not 
affect the 'middle!_ and 1back 1 portions of LITTLE, i.e., its 
optimiser and code-generator sections. The following constructions, 
many proposed for SETL, are desirable for LITTLE; some even more 
in LITTLE than in SETL. 

A. If-then-else constructions. 
IF ( <e ::iq,ression>) <statement> 
IF ( <expression>) THEN <block>., 

. IF ( <expression>) THEN <b.lock> ELSE <block'>., 
IF (<expression>) THEN <block> ELSE IF 

(<expression'>) THEN <block'>., 

and so forth. A <block> is a sequence of <statement>1 s. The 
SETL scope terminators END IF., etc., are also desirable. 

B. The IFF-statement. 
This construction is of great value in making complicated 

sets of tests more transparent, and ought to be included in 
LITTLE, perhaps with somewhat restricted rules. 

C. 'While' iterations. 
(WHILE <condition>) <block>., 
(WHILE <condition> DOING <block 1 >) <block>., 
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etc. This subsumes the FORTRAN-like DO-loops, which can be 
written 

J=l., (WHILE J.LE.LD1 DOING J=J+l) <block>u 

A form even closertto the FORTRAN 'D0 1 can then be obtained 
readily using the macro features which will be available. 

In this connection the SETL 

QUIT., 

and the statement 

ITERATE., 

corresponding in meaning to the SETL •continue' should be 
available. Note that 'CONTINUE' in LITTLE has a different 
meaning. 

D. 'At' constructions. 
As in SETL, a statement having the form 

AT <label> <block>., 

could be useful for the physical concentration of logically 
related code. Labels referenced in AT statements might be 
restricted to have names beginning with 'at', or some such. 

E. Local name scopes~ 
The present SETL name-scoping rules have their horrible 

side; note in particular that the various subroutines comprising 
a total program can at present not always be rearranged without 
serious semantic consequences ensuing. To relieve some of these 
problems, it is proposed to add a new declaration. 
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LOCAL <sizeelement>, ••• , <sizelement>., 

This would act in much the same way as the present 

SIZE <sizelement>, ••• , <sizelement>., 

except that names declared as LOCAL would without further 
declaration not be known outside the subroutine within which 
they were declared. 

F. Improved data statements. 
The present 

DATA <var>= <const>, ••• ,<const 1 >., 

should also allow 

DATA <var>= <constlist>/ ••• , 

where <constlist> is a comma-separated list of <constelt>1 s, 
and <constelt> has the syntax 

<constelt> = <constexpn> f<constexpn> (<constlist>) 

A <constexpn> is any expression containing only constants, no 
variable names. 

In the second construction, the <constexpn> signifies a 
number of repetitions. Thus to zero all the locations of a 1000 
element array A we may write 

DATA A= 1000(0)., 

G. Still further extended macros. 
A number of relatively small extensions to the present 

macroprocessor can extend its power significantly. These are 
as follows. 
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Gl. Macro-expansion output will pass through the macro
definition detector. 

This will permit macro definitions to be imbedded in macros, 
albeit in a somewhat roundabout way. {Here we prefer a roundabout 
method to the direct method which might be made available, since 
allowing such combinations as 

+.:¥ A= +¼ B = ... 
·, , i· can lead to errors. ) 

Our roundabout method is as follows. We write 

+ * Q3 {Wl, W2, W3) = Wl W2 W3 #:-£;-

To include a macro definition within a macro, we 
may then write some such construction as 

+* DEFINE{WD,TEXT) = Q3{+, *WD=TEXT i:,, *) *~ 
For an example of the use of this tYPe of construction, note 
that by writing 

++DO {J,A,B) = J=A. ,/ZZZA/ 
IF {J.GT.{B)) GO TO ZZZB 

Q3 ( +, * AZZZ=ZZZAJ,;K) 
Q3 { +, * BZZZ=ZZZB*,*) 
Q3 ( +, * CZZZ=J*, -Jr-) 
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and by writing 

+ * ENDO = CZZZ = CZZZ+l. , GO TO AZZZ. , 

/BZZZ/CONTINUE -/'(:/(, 

we may then employ simple (but not nested)DO-loops having 
the easy form 

DO(J, 1, N)., 

text 

••• 
ENDO., 

G2. An alternate form for generated symbols. 
A convention distinctly superior_to that presently 

available is as follows. Permit macro-definitions in the form 

+* NAME(ARGl, .... ,ARGn/XARGl, ••• ,XARGm) = text j/{* 

The '~ormal arguments' ARGl, ••• ,ARGn will behave like the present 
macro-arguments, and are to be supplied when the macro is called. 
The 'extra arguments' XARGl, ••• ,XARGm are not to be supplied, 
but will be generated by the macro expander when the macro is 
called. In this new style, the preceding 'DO' macro could be 
written as 

+'Jt-DO(J,A,B/ZZZA,ZZZB) = J=A.,/ZZZA/ 

••• etc. ** 
This convention simplifies the present code and removes a number 
of the technical pitfalls presently afflicting the nested use 
of macros containing generated symbols. 

03. Iterative macro-arguments. 
Suppose that we allow a'-' to be prefixed to certain of the 

formal arguments of a macro definition, as in 
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+*NAME (ARGl, -ARG2, -ARG3) = text * ~. 
The semantic intent of this syntactic marking is as follows. Call 
a formal argument iterative if _it is marked with a'-' sign. If 
the macro is called with a non-parenthesised string in the place 
of one of its iterative arguments, then the argument is treated 
in the ordinary way. If a parenthesised string consisting of 
substrings separated by commas is supplied in place of an_iterative 
argument, then the parentheses will be removed, and macro-expansion 
will be performed repeatedly, a separate expansion occurring for 
each substring. For example, the definition 

+,t;;.. PHRASE(-WD) = THE WORD IS WD. ~~ 

and the call 

PHRASE((YES,NO,MAYBE)) 

will together result in the expansion 

THE WORD IS YES. 

THE WORD IS NO. 
THE WORD IS MAYBE. 

If several iterativ~ arguments consisting of parenthesised strings 
consisting of comma-delimited substrings are simultaneously 
supplied, the macro expansion will advance from one substring 
to another for every iterative argument in each iteration of its 
expansion. This permits a certain type of 'respectively' 
construction. For example, the definition 

+# EXPIAIN (IANG, -WDl, -WD2) = 

WDl IS THE IANG FOR W2. ** 
and the call 

EXPIAIN (GERMAN, (JA, NEIN, VEILLEICHT), 
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(YES,NO,MAYBE)) 

will lead to the expansion 

JA IS THE GERMAN FOR YES. 

NEIN IS THE GERMAN FOR NO. 

VIELEICHT IS THE GERMAN FOR MAYBE. 

Suppose next that a macro with several iterative formal arguments 
is called with parenthesised, comma delimited, substrings as actual 
arguments, but that more substrings are given for an argument 
A then for another argument B. In this case, the final substring 
of A will be repeated as often as necessary for iteration over 
all the substrings of B to take place. Thus, for example, the 
expansion of 

EXPLA.IN (GERMAN, (NEIN, JA), (NO, YES, OK)) 

1s 

NEIN IS THE GERMAN FOR NO. 

JA IS THE GERMAN FOR YES. 

JA IS THE GERMAN FOR OK. 

The expansion of a macro is complete when every substring of each 
of its iterative arguments has been appropriately substituted 
in the prototype macro body. 

G4. Rudimentary pattern matching. 
By supplying the LITTLE macro-processor with a pattern m~iching 

facility, we can gain the useful ability to call macros in men
standard form. As a lexical form for the invocation of this 
facility, we propose 

(5) ++ <name> <(optional)argument list> <(optional)separator list> 
<(optional)terminator string>c:<text> 

, 
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Before explaining the detailed syntax and semantics of this 
type of declaration, we give an illustrative example of its use. 
By declaring the pattern 

++DO {J)/(,)/., = DO J = 

we ensure that an occurrence of DO<*name> = will be translated 
into a macro call whose initial part has the form DO(J, ••• 
Following the initial occurrence of DO <*name>=, commas will 
be taken as delimiting arguments, and ., will be taken as 
terminating the macro call. Thus, we may write 

DO J = A-1, B+C., 

and have it translated into 

DO (J;A-1.,B+C) 

'which by_further macro expansion can give as the code desirable 
:f'or a do-loop head. Another example is as follows. By declaring 

++CALLSUB / (, ) /) • ., = CALL SUB ( 

we make it possible for every (closed) call of a subroutine 'SUB' 

present in an original text to be transformed into a corresponding 
macro-call., which may then_be expanded in some appropriate manner. T 
This can facilitate a hand-optimisation useful once a program 
has been debugged. 

We now explain the proposed syntax and semantics of (5) 
more systematically. In ( 5 ) , <name> is the name of a macro, 
which is called when the pattern present in <text> is detected 
in a source string of tokens. If some of the tokens in <text> 
are not parts of the pattern, but are to be transmitted as 
arguments of the macro call, an <argument list> should be present 
in the declaration (5) and these tokens should appear in it. 
The syntactic form of an argument list., when one is present, is 
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(< name>, ••• , < name>). 

Once the presence of some particular macro call has been 
established (by the occurrence of an appropriate sequence of 
tokens), further macro arguments will be delimited by the 
occurrence of some token in the <separator list>. If no 
<separator list> is declared, the comma will act as separator. 
The macro will be terminated by the _occurreme of the pattern of 
tokens appearing in the <terminator string> o,f ( 5 ) ; if no 
<terminator string> is declared, an unbalanced right parenthesis, 
or an exposed instance of., , will terminate: the macro. 

GS. Expansion-time calculations, condl:lltional macro 
expansions. 

A proposal for adding these powerful a.«itditional macro
processor features will be made in a later newsletter. 




