
I I
LITI'LE Newsletter Number 4
A 'LITTLE' Machine.

I. Introduction

November 28, 1971
J. T. Schwartz

The size of the machine block required to define LI~TLE
on a new machine can be reduced substantially at what is probably
a modest cost in efficiency by using the following technique.

A. Define a parametrised family of 'LITTLE' machines,
able to a reasonable degree to 1match 1 physical computers likely
to be of interest. The imaginary machine IM used to approximate
a given physical computer PM should 'underestimate' it slightly,
i.e., should not permit any instructions whose emulation on the
physical machine cannot be performed efficiently.

B. Compile into efficient machine code for IM. This will
in particular involve register allocation for the registers of IM.

C. Reassemble the IM code into PM code. Only this last

step is dependent on the actual details of PM; the 'reassemble~•
necessary should be short and simple, as only a local transfor­
mation of IM code is here in question. The simpiest _form of __
reassembly can amount to nothing more than a one-for-one sub­
stitution of short PM code sequences for IM instructions; a
slightly more complex (and more optimatjreassembly would involve
scanning for local code patterns in the IM code to be reassembled,
and a slightly conditional generation of PM code sequences. '110
aid in the optimisation here implied, certain small items of global
information can be preserved in the IM code to be reassembled;
namely, each use of an IM register can be tagged as last use
before reload/not last use before reload, and loads of constants
can be fla6ged also.

In the present newsletter, a tentative set of parameters

for machines IM will be sugiested, and a (fixed) opcode set for

these machines outlined. The first grouo of operati.onf; su!"':ri:estecl
will be those necessary to support the present LITTLE intermediate
lanc;uae;e. A seconcl 13roup, 1•1hi ch could ~;u~p0rt ,1 versio:1 of LI'::.'I'L.::::

- 2 -

considerably extended in its power to describe operating systems,
will also be outlined.

II. A family of 'LITTLE' machines IM.

Each imaginary machine will have a memory co~sisting of
NMEM words of size WDSIZ, and will have NFULL 'full-length'
registers of size WDSIZ. It will also have NINDX 'short' or
'index' registers of size INDXSIZ. The parameters NMEM, NFULL,
NINDX, WDSIZ, and INDXSIZ specify a machine IM completely. It
is assumed that INDXSIZ is large enough so that every word of
memory can be addressed by an address contained in an index

register.

III. Opcode set for the 'LITTLE' machines IM, basic part.

The opcode set of the 'LITTLE' machines IM is basically
double address, with a few instructions of different format
provided. The opcodes are as follows. (Full registers are
denoted Fi; index registers as Ii.)

Fi-E-Fj full register move
Fi ~Fi. OR. Fj boolean or
Fi~Fi.A.Fj boolean and
Fi~Fi.EX.Fj exclusive or
Fi~ .N.Fj inversion
Ii~.NB.Fj number of bits of Fj
Iit-. FB. Fj position of first non-zero bit;

Ii~O if Fj=O.
Fj~Ii move Ii to low Fj
Ii~lowbi ts Fj move lowbits Fj to Ii
Ii~O zero Ii
Fj(-G(A) load ,,,ord A to F,j

Fli~G(A+Ii) load indexed A(Ii) to Fj
C(A)-'E-- store F,i to '':Ord A

C(A+Ii)~ Fj store Fj indexed to word A(Ii)

Ii~ lowbi ts G(A)
Ii(:--lowbits G(A+Ij)

Fj-sE-Fj.R.Ii

Fj~Fj.L.Ii

Fj ~.M. Ii
GO TO L
SKIP if Fi=Fj
SKIP if Ii=Ij
SKIP if FiFFj
SKIP if Iijij
SKIP if Fi=O
SKIP if Ii=O

- 3 -

load index from word A

load index from word A(Ij)
righ~shift Fj by amount Ij.
(end-off, zero extended)
left~hift Fj by amount Ij
(end-off, z~ro exte~ded)
generate Ii-bit mask in Fj
(unconditional go to label)
(conditional operations)

Integer additional and subtraction have standard definitions
only for positive quantities, contained in similar registers; such
quantitites are distinguished by the fact that the leading bit
of the register is off. If the addition or subtraction operator
is applied to quantities not satisfying this restriction, the
result is unpredictable. Additions may overflow, and subtractions
underflow, this bit. A test on the lead bit is provided.

Similar remarks apply to the comparison tests described
below, which maJl be thought of as being logically equivalent to
a subtraction followed by an appropriate sign test.

Fif-Fi+F,j integer addition

Fi. 4- Fi-F j integer subtraction

Ii~ Ii+Ij integer addition
Ii~ Ii-Ij integer subtraction

SKIP if Fi lead bit 1
SKIP if Fi lead bit 0
SKIP if Ii lead bit 1
SKIP if Ii lead bit 0

SKIP if Fi.GE.Fj
SKIP if Fi.GT.Fj
SKIP if Fi.LE.Fj
SKIP if Fi.LT.Fj

- 4 -

SKIP if Ii.GE.Ij
SKIP if Ii.GT.Ij
SKIP if IL LE. Ij
SKIP if Ii.LT.Ij

Integer multiplication is assumed to be available for F-register

quantities, provided that the quantities being multiplied have no
bits on in the upper half of the register. If this condition
is violated, the result of a multiplication operator is unpre­

dictable.
_ Integer di vision and remainder are assumed to be available for

for F-register quantities provided that neither operand has its
lead bit on. Division by zero will give an error stop.

Fi ~ Fi ;f F j
Fi~Fi/Fj
Fif-Fi//Fj

V. Stores.

STORE Fi TO A+Ij
STORE Ii TO A+Ij

integer multiply
integer divide
integer remainder

indexed store
indexed store of index

(highbits of word set to zero)

STORE Fi TO A

STORE Ii TO A

VI. Floating arithmetic.

- 5 -

stores value to address A

stores index to address A
(highbits of word set to zero)

Floating arithmetic is not specified for the 'core' or
'machine independent' section of the LITTLE language, since floating
arithmetic operations are normally highly machine dependent. It
may, however, be desirable to support these operations in the
LITTLE machine, since this will enable languages like FORTRAN
to be compiled for the same machine, i.e., to be supported by
the LITTLE intermediate language. Naturally, a program in which
floating arithmetic is used may lose some of its machine indepen­
dence. To limit this effect, operations are proposed which
provide a narrow path of communication between intege~ and
floating quantities. Note in particular that the bit-pattern of
a floating quantity should in general not be examined.

A special single bit quantity called FLOAT ERROR is
associated with the floating point operations. This quantity
is turned on by various error conditions in floating point
operations, such as floating point overflow, underf'low, etc.
Two skip operations which test this bit are described below;
testing the bit turns it off.

Fi~Fi (E)Fj
Fi(-Fi E)Fj
Fi~Fi ® Fj
Fi(:-Fi (2) F j
Fi~. FLOAT. F j
Fi~.INTEGER.Fj

SKIP if Fi.FGE.Fj
SKIP if Fi.FGT.Fj
SKIP if Fi.FLE.Fj

SKIP if Fi.FLT.Fj

floating add
floating subtract
floating multiply
floating divide
float and round integer
Fi becomes greatest integer

less than absolute value of Fj
(floating greater or equal)
(floating greater than)
(floating less or equal)
(floating less than)

Fi~O
SKIP if no FLOAT ERROR
SKIP if FLOAT ERROR

- 0 -

(load floating zero)

VII. Input-output, External Device Control.

The descriptions below assume a logical environment
in which a central memory and a set of named files exist.
A file name is assumed to have the same length in bits as a
full register. Files· have the nature of arrays, i.e., they
consist of words sequentially addressed. Otherwise empty
file addresses contain zeros. A separate set of tape read/write

operations are provided. Tapes are always read and written from a

nominal current position, which is atways a nominal 'record gap'.
Each record gap has a specified 1eor-level'; a logical tape is

t~rminated by a record gap of maximum possible level.

Read and write operations are provided in three basic

forms:
a - normal form, implying suspension of processing during

i/o operat_ion.
b - buffered form, implying continuation of processing

during i/o operation, with flag posted in specified location on
completio~ of i/o.

c - interrupt form, implying continuation of processing
during i/o operation, with specified interrupt on completion of
i/o.

MOVE LOC,NEWLOC,mIDS

READ FILE,FLOC,LOC,NWDS

move N words from array
beginning at LOC to array
beginning at NEWLOC
read N words beginning at
location FLOC in specified file
to array beginning at LOC

WRITE

READT

WRITET

BREAD

BWRITE
BREADT
BWRITET

- 7 -

FILE,FLOC,LOC,NWDS

TFILE,LOC,NWDS,EORLEV

write N words f'rom array
beginning at LOC to specified
file, first file position
written being FLOG.
read up to N words from
specified tape file to'array
beginning at LOC. Read until
first following end record mark
of level at least EORLEV.
Store level of this mark in
EORLEV.

TFILE,LOC,NWDS,EORLEV write N words to specified tape
file from array beginning at LOC.
At end of these words, write an
end record mark of specified
level.

FILE,FLOC,LOC,NWDS,READY operation similar to 'read',
but proceeds in parallel with
computation. READY set to O
when operation initiated, to 1
when operation completed.

FILE, FLOC, LOC, NWDS, READY 2similar [WRITE
TFILE,LOC,NWDS,EORLEV,READY 1 con~urrent 1 READT

TFILE,LOC,NWDS,EORLEV,READY versions of WRITET

- 8 -

VIII. Device control.

'Devices' are considered to be files to which control sig­
nals may be written and from which control signals ('status
information') may be read. Available devices will have particular
file names, e.g., 'CLOCK', 'SENSORl', 1 CONSOLE3', etc. Control
signals may also be associated with files to which data could
reasonably be written; this will allow error conditions to be
sensed, etc. Each class of device will expect control signals
in some specified standard format, and will react to a 'read
control status' signal by transmitting a status package having
some specified standard format. The completion of a control
operation may require a time depending on the control parameters
supplied; this can be exploited to secure a 'WAIT K MILLISECONDS'
effect. Devices absent (or files not yet attached) will deliver
a characteristic status package, allowing 'device disconnected'
or 'file closed' to be sensed.

As with read/write operations, so also control operations
are provided in three basic forms: normal form, implying
suspension of processing until operation completion, buffered
form, implying the setting of a completion flag, and interrupt
form.

READC

WRITEc,

BREADC

BWRITEC

FILE,LOC,NWDS

FILE, LOC, mms

read first N words of status
information to array beginning
at LOC.
write N words of control
operation from array beginning
at LOC.

FILE,LOC,NWDS,READY operation similar to 1 readc',
but proceeds in parallel with
computation. RE.ADY set to zero
when operation initiated, to 1
when operation c~npleted.

similar 'concurrent' version of WRITEG.

- 9 -

A special nominal device PROCESSES can be read repeatedly
to obtain a list consisting of all devices for which 1/o or
control operations are in process. This allows programmed
shutdown of these operations on the occurrence of an inter~upt.

IX. Interrupts: A LITTLE interrupt causes the following actions:
·-

a - A system interrupt-level_.enabled counter is set to
its maxim~m possible value (all interrupts disabled).

b - Control is transferrerl to a specific code location
('label'); note that since the actual format which code has during
execution is not known, code locations lie in an address space
logically __ distinct from that containing data locations.

c - A standard status package, recording all register
contents, status of the FLOAT ERROR bit, prior ~nterrupt level,
and instruction position, is recorded at a pre-specified data
location.

Return from an interrupt is then made by an !RETURN
instruction addressiqg the stored status package.

ENABLE
!RETURN

WAIT

The interrupt-related LITTLE machine instructions are

LEV

SPAK
- enable interrupts of level exceeding LEV
- interrupt return, using status pacl{age
_ stored starting at location SPAK

- idle waiting for next interrupt
Corresponding i/o and control i/o operations are as follows.

IREAD FILE,FLOC,LOC,NWDS,LABEL,LEVEL,STATLOC
read N words beginning at location FLOG in specified
file to array beginning at address LOC. On conclusion
of this input operation, an interrupt of the specified
level is to take place, control being transferred to
the code address LABEL, with status stored at the
data address STATLOC

!WRITE
IREADT

IWRITET
IREADC
IWRITEC

- 10 -

FILE,FLOC,LOC,NWDS,LABEL,LEVEL,STATLOC
TFILE,LOC,NWDS,EORLEV,LABEL,LEVEL,STATLOC
TFILE,LOC,NWDS,EORLEV,LABEL,LEVEL,STATLOC
FILE,LOC,NWDS,LABEL,LEVEL,STATLOC
FILE,LOC,NWDS,LABEL,LEVEL,STATLOC

These last five instructions are corresponding 'interrupting'
versions of WRITE, READT, WRITET, READC, WRITEC respectively.

X. Miscellaneous additional points for subsequent consideration.

We have assumed the 'central memory' of the LIT1LE machine
to be 'real' rather than 'virtual', in that no address-fault
conditions are recognised and no address mapping system appears
in the language. The opposite decision might be better, and it is
desirable to try to work out software conventions which could
make explicit within LITTLE address faults and the sequences to
be used to recover from them.

In a paged environment of the type envisaged in the
prece~ing paragraph, code might be written in a man~er allowing
intra-page transfers to proceed normally, with inter-page transfers
going through a paging table. An 'ENCODE' instruction, which
takes a data array having a known intermediate language format
and converts it into true executable format (necessarily machine
dependent) is necessary also. This instruction might return the
number of words which the resulting code block contains. To
secure the execution of such a block, one might have such a
master 'system' instruction as

EXECUTE LOCODE,HICODE,LODATA,HIDATA,TIME,STATUSPAK,
RETLOC, RETDA TA

This instruction would begin or continue the execution of a
program with code contained between LOCODE and HICODE, data
contained between LODATA and HIDATA. Execution would be permitted
for a stated TIIill, and would begin with the status package held

- 11 -

at a specified address. Whenever a program initiated in this
way attempted to execute a 'privileged' instruction (a READ,
WRITE,vffiITEC,READC,etc., or an interrupt related instruction)
control would return to RETLOC, with the parameters of the reque~t
available in the RETDATA area in some standard form. An iristru~­
tion of this kind should ideally be so designed as to be 'trans­
parent', i.e., so that a program initiated by an EXECUTE has
exactly the same form as any other program; this allows systems
to be tested while imbedded as subprograms within other systems.

To allow data and code space to be returned to/requesteq
from an enveloping 'operating system' program, special instruc­
tions

UPDATA NWDS
and UPCODE NWDS

might be desirable. Depending on whether the parameter NWDS is
positive or negative, a certain number of pages of DATA (resp.
CODE) space would be requested by (or released).by the program
executing these instructions; always at the end of its currently
available data (or code) space. These instructions might also
be provided in 'buffered' and 'interrupt' form.

