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This report is concerned with the application of LITTLE 

to small general purpose machines, or minicomputers, having 4-32K 

words, typically 16-bit. The range of instruction codes for· 

these machines testifies only to the perversity of designers. 

Specifically, the following target minis are considered: 

1. Honeywell H-316 and DDP-516 

These are accumulator machines with a pseudo index 

register, paging, infinite indirect addressing, and a constant 

instruction length of one word. 

2. IBM 1130 and 1800 

These are also accumulator machines with three index 

registers, a single level of indirect addressing, and an instruc

tion length of one or two words. Operands may generally be 

either 16 or 32 bits. 

3. Hewlett-Packard 2100 

No index register is the distinguishing characteristic 

of this mini. There are two registers, one serving as an 

accumulator; the other appears somewhat vestigial. Indirect 

addressing is infinite; the memory is paged. Instruction size 

is one word, but in certain cases up to eight instructions can 

be "microprogrammed" into the single word. 

4. Varian 620 Series 

This one has an accumulator, an index register, and 

a third register which performs some of the functions of the 

previous two. The machine is paged, has infinite indirect 

addressing and single or double word instructions. This machine 

also comes in an 18-bit version. 

5. Data General Nova and Supernova 

These machines are the first in this list that are 

clearly out of the accumulator category. They have four general 

registers, two of which also function in indexing. Memory is 

page<l, indirect addressing is infinite, and all instructions occupy 



one word. The instruction set is idiosyncratic: e.g., skips 

and register shifts are irnbedded in arithmetic instructions. 

6. Digita~ PDP-11 

More powerful than any of the above, this mini has eight 

general registers including a flexible program counter. Especially 

efficient as a stack processor and with 10 addressing modes in 

addition to the ability of employing any word in memory as a. 

register, it seems to present a serious challenge in code 

optimization. Instructions may occupy one, two or three 

locations, and operations can address either 8 or 16 bit words. 

7. Texas Ins trmnen ts 9 6 OA 

Perhaps an even tougher challenge will come from this 

newest minicomputer. There are 16 general registers for 

arithmetic, logical and indexing operations, with 8 fully and 

8 partially available at any given time. Mode switching between 

the two sets is like an exchange jump in the 6600, but is more 

flexible since it may be accomplished in half a dozen ways. 

Instruction length 1s always two words and operands may be 

32, 16, or just 1 bit. Yes, Virginia, there is a Santa; 

you can address a single bit. Some instructions have three operands. 

Instruction execution time appears slower than the other minis 

but small instruction stacks can be accommodated in the CPU. 

Further, though the manufacturer is not now marketing it, 

there may be a capability to microprogram your own instruction set. 

B. Roadblocks 

Despite the diversity, these machines are considered as 

a group specifically because each one has been found useful 

(though certainly not always efficient) in a number of applications: 

compilers for simple languages such as BASIC, time-sharing systems, 

conrrnunication routines, text editing, and my own special interest, 

graphics support. These types of programs seem clearly a good 

target for LITTLE, but it also apparent that. a full implementation 

of LITTLE is impossible on machines of 4-32K with 16 bit words; 

hence code generation must take place on large machines. 
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Since the number of application programs for which LITTLE 

is the best choice will be small for any given minicomputer 

installation, the work of producing an assembler can only be 

judged worthwhile, save for pedantic purposes, if there's a 

reasonable probability of eventual use by other installations. 

To consider this likely, three, partly obvious conditions 

must be presupposed: . 
1) A large computer must be convenient to the minicomputer staff. 

This will not be the case for many small colleges or commercial 

operations, but there remains a sufficient number of situations 

where it will be available. However, physical availability is 

only part of the problem. Not easy to assess are the effects 

on the staff of other inconveniences. First, turn around time 

will generally be slower on the large machone. Second, 

programming becomes a two pass operation: compiling on one 

machine, testing on another. Third, there is sometimes a 

resistance to learning a new language. 

2) The large computer must not only be convenient, but LITTLE must 

already.be running in a full implementation on it. No one is 

going to implement LITTLE on the large machine merely to generate 

a few programs for the minicomputer, even if the assembler for 

the mini has already been written on another large computer. 

3) For many installations there must already be an existing 

assembler, since they will lack either the competence, 

time, or inclination to produce one. This condition will be 

partly mitigated if the number of desired applicaton programs 

coded in LITTLE is already large or the assembler is extremely 

easy to turn out. This last possibility was the subject 

of Newsletter No. 4 and is also the focus of this one. Nonetheless, 

no matter how successful an approach to easy assembler development 

is made, it is not inappropriate to suggest that a serious effort 

to apply LITTLE to minicomputers should imply substantial continuing 

aid to others for implementation. 

The above three conditions bear little or no relevance 

to large machines, but present distinct handicaps for the small 

installation. It might be deemed reasonable to postpone concern 
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for them, focusing on the problems of large machine transfers, 

until a more hospitable situation develops. On the other hand, 

early development of mini computer output could well give 

additional impetus to interest in LITTLE on the part of large 

installations, since they invariably have problems with system 

programming on satellite or remote computers similar to the 

problems here at Courant. 

c. Scope 

The concern here with the conversion of an array 

containing 30 basic LITTLE operations and their associated 

operands (the variable and operations array - VOA) into the 

appropriate binary code of the target machine's loader. To 

explore the difficulties, several examples of LITTLE code will 

be transformed into selected representations in the instruction 

sets of the seven machines described earlier. However, because 

there is an effect on the subsequent discussion, the rst topics 

considered are a suggested redefinition of the goal and an 

enumeration of some major factors which have been nearly or 

completely ignored. 

The suggestion is that the goal be not binary code for 

a loader, but symbolic code for an assembler. Clearly, this is 

a step backward. The VOA and its associated tables contain a 

great deal of information that an assembler once again must 

reconstruct. Nevertheless, a trio of opposing arguments 

should be heard from: 

1) Loaders for minis seem poorly documented, probably because there 

is very little interest. Many, perhaps most, purchasers deal 

only with higher level languages. (A new owner of one of the 

machines treated here was quite adamant in reply when asked for 

the assembly manual, "BASIC is the only language this computer 

knows.") The only released documentation of the.IBM 1130 loader 

is its assembler listing. 

2) Debugging symbolic code is easier. 

3) Special additions to programs may be desirable when the work of 

modifying the LITTLE compiler is not worthwhile. For example, 
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a reference to an absolute address, or a device controlling 

instruction, or special linkages to/from external routines. 

As with debugging, the inclusion will be easier. 

Producing code for the assembler also introduces complications 

though. 

1) Machine dependent assembler directives must be introduced. 

2) The symbol length in LITTLE will in general be unacceptable. • 

In none of the seven minis here can seven characters be handled. 

3) The target machine assembler will in general require control 

or delimiting characters unavaiable to the host machine compiler. 

Each of these objections is, however, relatively trivial to 

o~ercome, and is taken up later. On the other hand, situations 

may appear where the binary code is unquestionably preferable. 

Foremost among these possibilities is the case where an assembler 

does not exist, as it well might with a microprogrammable machine. 

There are at least half a dozen major factors that may 

or will affect the quality of code produced and that are 

completely ignored in this newsletter. 

1) The subjects of virtual memories and associated paging structures 

in the sense of Newsletter# 3 are not considered. (Hardware 

paging is a concern below.) This subject is unquestionably 

important given the size of the minis. 

2) Interpretable code was also discussed in Newsletter# 3 and 

its implementation is ignored here. One can imagine applications 

where this could be valuable. With the cost of memory now 

dropping below 40¢/word, problems lacking large data files might 

well find it possible to pack all the code into core, obviating 

the need for a disk or tape. This would be more economical when 

the scale of this approach is great enough to make a read only 

memory feasible. 

3) Handling operations on words of arbitrary lengths is overlooked. 

I had a nightmare about this one. 

4) I/O and interrupts, discussed in Newsletter# 4~ are not 

considered for the seven target machines here. This is a major 

omission, because in general there wi11· be a greater need for 
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systems programming of this type in minis than in large machines 

where a great variety of I/O routines already exist. 

5) Computers operating in a real time environment are common 

among minis. Experience indicates that the approach taken 

to assembly coding under a real time executive is significantly 

distinctive, but no thought has been given to what implications, 

if any, this might have for the LITTLE compiler. 

6) Most of the attention in the rest of this report concentrates 

on code generated by a single LITTLE statement, to the near exclusion 

of problems with the simple block. For example, the following 

LITTLE equivalent to a simple FORTRAN DO loop poses strenuous 

work to get optimal code -

I= l; 

/LAB/ A(I) = B(I); I=I+l; 

IF(I.NE.N) GO TO LAB; 

Programming in an assembler language would probably result 

in 6 or 7 instructions for these target machines, while the 

first attempt to generate code from the VOA will likely lead 

to 15, 20 or more instructions. 

Before any work is begun on providing LITTLE for the 

minicomputers, it seems advisable that the above points be 

thought through, even if no effort is made to include such 

options initially. In the case of problems 3, 4 and 6 it is 

especially important, and it would probably save future woe to 

trace typical examples through to the target machines. 

D. Pot Holes 

In this section the problems encountered during processing 

of VOA code are examined to determine the influences from three 

general characteristics of each machine: its instruction code, 

its registers, and its addres?ing modes. TnB examination is often 

concerned with the possibility of an intermediate, imaginary 

machine as discussed in LITTLE Newsletter# 4 and to that end 

especially focuses on the idiosyncracies of these computers, or, 
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to put it another way, on the cases where the targetinstruction 

set differs from the 30 element LITTLE set. Such cases are 

not hard to find. For only 3 or 4 of the 30 is there a 

mapping into the instruction sets of all 7 machines that is 

isomorphic: ADD, AND, the unconditional transfer, and perhaps 

the label operation. 

First, let us consider the relationship between the, 

complexity of a processor and the quality of code it might 

turn out. For this purpose two of the minis have been chosen, 

the Honeywell and the PDP-11. Take this LITTLE statement: 

IF((I.GE.J).OR. (K.EQ.L))GO TO NEXT 

The VOA entries produced could be the following. (Sometimes VOA 

entries, both here and below, will be modified from the 

suggested form by previous operations in the block, and sometimes 

I am just guessing what is in it, but this will not be of 

significance for the general discussion.) 

# Operation Operands 

1 

2 

3 

4 

GE 

EQ 

OR 

IF 

I,J 

K,L 

#1,#2 

#3 ,NEXT 

If 

If 

OR 

If 

Explanation 

I > J, true. Otherwise false. 

K = L, true. Otherwise false. 

results of operations 1 and 2. 

result of operation 3 true, 

go to NEXT. 

A simple, straightforward, easy-to-write processor will be 

one that, lacking a single correlative to the VOA instruction, 

expands the original in the new basis set. Ignoring address 

problems for the moment, it need only keep track of the location 

of the results of previous operations. Such a processor could 

give this expansion for the Honeywell: 

Label Operation Operands Explanation 

Load accumulator with I 

Subtract J 

LDA I 

SUB 

SMI 

JMP 

J 

*+3 

Skip if - (I ignore LITTLE rule.) 

Skip next 2 instructions 

[continued] 
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Label Operation 

CRA 

SKP 

LDA 

STA 

LDA 

SUB 

SZE 

JMP 

LDA 

SKP 

CRA 

STA 

ANA 

IMA 

ERA 

ERA 

SZE 

JMP 

Operands 

=-1 

TEMPI 

K 

L 

*+3 

=-1 

TEMP2 

TEMPl 

TEMPl 

TEMP2 

TE.MPl 

NEXT 

Explanation 

Set acc. to false 

Unconditional skip 

Set acc. to true 

Save result in temp. location. 

Skip if zero 

Skip 2 instructions 

Set true 

Set false 

Save result in temp. location. 

There is no OR instruction, 

so these 4 perform it. 

Skip on false. 

Branch on true. 

Now the question is, how do the above twenty-two instructions 

compare with code from a programmer or more intelligent processor? 

Perhaps this: 

LDA I 

SUB J 

SMI Skip if false. 

JMP NEXT Jump if true. 

LDA K 

SUB L 

SNZ Skip if false. 

JMP NEXT· Jump if true. 

Eight instructions. Now turn to expansion output for the PDP-11 

with a more powerful op set. 
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CLR 

CMP 

BMI 

COM 

CLR 

CMP 

BNE 

COM 

BIS 

BNZ 

RO 

I,J 

*+2 

RO 

Rl 

K,L 

*+2 

Rl 

R0,Rl 

NEXT 

Set register Oto false 

Compare I and J 

If I -< J, skip 

Set reg. 0 to true 

Reg. 1 set to false 

Compare Kand L 

If K c/ L, skip 

Set reg. 1 to true 

OR reg. 0 into reg, 1 

If true, go to NEXT 

Ten instructions is much better, but a PDP-11 programmer 

would undoubtedly do this: 

CMP I,J 

BGE NEXT 

CMP 

BZE 

K,L 

NEXT 

If I> J, branch 

IF K = L, branch. 

The bad-to-good code length ratios, 22/8 and 10/4 for the two 

machines, will in practice be even worse, because the longer code 

requires more frequent allocation of memory for addressing purposes. 

However, the simple point to be made here is that it will 

be quite difficult to produce good code. Whereas, in the 

first instances for each machine, it is quite clear which VOA 

entry led to which machine instructions, in the second approaches, 

the processor must be highly aware of the syntax of the VOA. 

That it must also deal intimately with the target semantics is not 

apparent from this example, since it is obvious that any 

intermediate imaginary, LITTLE language that would lead to the good 

HOneywell code would also lead equally well to the good PDP-11 

code. This approach will be examined more closely in 

following examples. 

Another inference can be drawn from these transformations 

of VOA code. The reader should attempt some alternate transforma

tion which improves on the simplest approach, but does not demand 

the work of the good code here. Good luck, 

An objectio~ could be made that this example is a case 

which is most properly a function for the syntax analysis segment 

of the compiler. Although that would be possible with this particular 
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LITTLE statement, a brief consideration of allied situations 

leads to the conclusion that it would only be practical if the 

number of types of operations in the VOA were increased. 

The merits or demerits of that proposal will not be discussed here. 

A final, subjective statement about this example is 

tendered. Perhaps in a large, fast machine the longer code is 

acceptable, but in the minicomputer where space is precious, 

there should be some hope that a processor can turn out the 

better code, even if not initially. 

For a second example, consider the LITTLE expression, 

and the VOA entries, 

1 FETOP 

2 FETOP 

3 

C, X (I) 

D, X (I) 

#2,#1 

C (I) - D (I) 

Fetch O, indexed by I 

Fetch D 

Subtract result 2 from 1. 

This is a situation in which the LITTLE machine seems applicable. 

For example, an index register could be used in the intermediate 

code as shown: 

1 SETXR 

2 FETCH 

3 FETCH 

4 

I 

C,#1 

D, #1 

Set index register to I 

Fetch indexed C 

Fetch D 

Subtract 

Such an instruction set would certainly aid code production for 

a Nova minicomputer: 

LDA 2,I Set reg. 2 to value of I• 
LDA l,C,2 Get c, indexed by reg. 2 

LDA 0,D,2 Get D 

SUB 0,1 Subtract reg. 0 from reg. 1 

With the PDP-11, some synthesis of the instructions is required 

for good code, but it is by no means difficult: 

MOV I,Rl Set index in reg. 1 

MOV A(Rl) ,RO Get A, indexed, into Reg. 0 

SUB B(Rl) ,RO Subtract indexed B from reg. 0 

On the other hand, for the HP-2100 mini, the only obvious way 

to express this is with the following horrendous code: 
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ADDC 

ADDD 

7--11 

LDA 

ADA 

LDA 

LDB 

ADB 

LDB 

CMB 

INB 

ADA 

DAC 

DAC 

ADDC 

I 

@0 

ADDO 

I 

@l 

1 

C 

D 

Get address of C in reg. 

Add index 

Replace address by value 

Get address of Din reg, 

Add index 

Replacement 

There is no subtraction 

so these 3 instructions 

Declare address of C 

Declare address of D 

A 

in reg. A 
B 

operat,or, 

do it. 

Such code arises because this machine has neither indexed nor 

immediate addressing modes. In some blocks, the operand 

addresses probably should be saved for efficiency, and the 

resulting code will look even worse. A similar, though not 

quite so bad, situation can develop with the Honeywell machines, 

which have poorly designed index registers. 

The exercise for the reader now is to empathize 

with the processor that must (1) translate VOA code to the 

three target codes, or (2) from VOA to the intermediate to 

the target codes. The conclusion will be not unlike that of 

our next example. 

The third LITTLE transformation problem comes from this 

statement and its VOA entries. 

1 EXOP 

2 SASS 

8,4,B 

#1,A 

A= .F. 8, 4, B 

Extract 4 bits beginning at pos. 8 from B 

Assign result to A 

This is a much simpler form of the extraction operator than the 

usual case, because the bit position is a constant. When it is 

a variable, a translation differing markedly from the following 

Honeywell code would be made. (I have assumed that the result of 

an extraction is a right justified field with zero 11.) 
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CRA 3 instructions to form 

SSM the mask. 

ARS 3 

LGR 12 Right justify mask 

STA TEMP Save it. 

LDA B Get B. 

ARS 5 Right justify desired field. 

ANA TEMP AND mask with field. 

STA A Store. 

This is rotten code to perform the given task, but is chosen to 

illustrate that it would be a suitable and easy expansion of 

LITTLE machine code. Several of the other target machines are 

also amenable to this hypothetical LITTLE code: 

1 

2 

3 

4 

5 

FMASK 

RSHFT 

RSHFT 

AND 

SASS 

4 

#1, 12 

B,5 

#2,#3 

#4,A 

Form 4-bit mask. 

Right shift to justify. 

Justify B with right shift. 

AND results of operations 2 ' 3. 

Assign result to A. 

However, this code poses obstacles for three of the target machines 

which do not have a general shift capability. The Hewlett-Packard 

shifts either 1 or 4 positions, the Nova and PDP shift 1 or 8, 

and the following PDP code demonstrates the incompatibility. 

LOOPl 

LOOP2 

CLR 

MOV 

MOV 

ROL 

DEC 

BNZ 

MOV 

ROL 

ADC 

ASL 

DEC 

BNZ 

MOV 

RO 
B,Rl 

=8,R2 

Rl 

R2 

LOOPl 

=4,R2 

Rl 

RO 

RO 
R2 

LOOP2 

RO ,A 

Zero register 0. 

Get B in reg. 1. 

Get 8 in reg. 2: counter 

Rotate left reg. 1 

Decrement counter 

Loop till counter zero 

Get 4 in reg. 2: new counter 

Rotate left reg. 1 

Add carry bit to reg. O. 

Shi£t reg. 0 left 1 bit. 

Decrement counter. 

Loop till counter zero. 

Assign result to A. 

With trivial modifications this would be a subroutine that handles 

variable field widths and positions for any extraction from a 16-bit 

word, but the important point is that the PDP does not accommodate 



LI.TTLR 7-13 

itself well to masking operations, and that the processor 

will have a difficult job to either generate this code 

or a request for this subroutine when given the suggested 

LITTLE code. In fact, the only practical solution would involve 

2 or 3 subroutines and a much longer expansion. 

This example and the previous one demonstrate how we· 

can assume too much about a machine's op code. The next two 

examples show how we can assume too little. The first 

non-zero bit operator is the first subject. 

1 

2 

FB 

SASS 

B 

#1, A 

A= .FB. B 

Determine first non-zero bit in B 

Assign result to A 

The Honeywell code that follows is typical of good code for 

most machines, except that the counter would sometimes be 

assigned to a temporary variable. 

CRA Clear accumulator 

STA 0 Zero counter (mem. loc. 0) 

LDA B Get B 

LOOP LGL 1 Shift left 1 position 

IRS 0 Increment counter 

SSC Skip if carry occurred 

JMP LOOP Loop 

STX A Assign the count 

A simple task for you now is to choose imaginary LITTLE code 

from which this target code or similar target code can be 

generated. Whatever the choice, it is unlikely to transform 

easily into the following appropriate IBM 1130 statements. 

LD B Get Bin accumulator 

LDX 1 

SLCA 1 

LD 

MUL 

SZE 

A 

ST 

16 

1 

=-1 

=17 

A 

Set index reg. 1 to 16 

Shift acc. left, decrementing reg. 1 

till bit appears in p0sition 1 

Get index reg 1 into acc. 

There is no complement, so *-1. 

Skip if acc. is zero. 

Correct the count. 

Assign result to A. 
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The fifth example involves an ~xpression containing the 

bit count operator - ! 
i 

.NB. C 

The VOA entry is simply -

1 NB C Count the one bits inc. 

The following code for the Varian 620 is essentially duplica~able 

in all target machines. 
l 

TZB Zero B register. 

LDA C Get C in A reg. 

LDXI 16 Set index reg. to 16. 

LOOP LRLA 1 Shift A reg.• left 1 bit 

XAN Execute next instruction if A reg. 

IBR Increment B register. 

DXR Decrement X reg. 

JXZ NEXT Skip to next if X reg. = o. 
JMP LOOP Loop 

NEXT 

Once again, as with the previous example, it is possible to 

express the above in LITTLE machine code that would make the 

processor's function simpler. Yet it would hardly be simple 

to transform it into the following top notch code for the Texas 

Instrument machine: 

LOT l,C Count the one bits in C; 

put result in reg. 1. 

The first five examples touched on arithmetic and logical 

operations, shifting, and bit manipulation. Here the discussion 

will be about the last major group of instructions those which 

alter program flow. The variations of instruction sets in this 

area create numerous problems for translation either directly 

from the VOA or from an intermediate language. 

The major divergence ?ccurs in the designer's choice of 

conditional skips or conditional branches or both; all these 

choices are represented in the group of machines discussed.here. 

< 0. 
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The obvious implication for code optimization in the case of 

machines capable of conditional branches is that the use of the 

conditional branch as a skip will lead to two instructions where 

one would have sufficed. More serious problems and possibilities 

in optimization are raised (but not discussed) by the following 

machine characteristics. 

1) Some instruction sets are designed for comparison of two qua~tities, 

while others test only the properties of a single quantity. 

2) The Texas Instrument mini can perform branches according to the 

status of any designated bit in the system. 

3) Whether the tests are relational or unary, the set of tests is in 

some cases incomplete. For example, the HP 2100 has no test 

for negativity. 

4) Some machines perform the operations most efficiently on memory, 

some on registers. 

5) In the Varian, one register accommodates the full set; other 

registers a subset. 

6) 'Plus' in some machines also means zero; in others it does not. 

7) The Nova possesses no distinct conditional transfer instructions: 

they are imbedded in arithmetic and logical operations. 
,,, " 

The next difficulty for a processor examined here is 

addressing, and this is perhaps the least difficult. Basically, 

there are only four addressing modes: direct, indirect, immediate, 

and relative. Each of these may be determined or complicated by 

indexing, autoincrementing, paging, or displacement limitations. 

Even with the variations among machines, it still seernsjfeasible I 
to.write a segment of the processor which would handle storage 

allocation and addressing for all of them, though it will 'not be 

an easy task. The tricky problem is the decision on where, or 

at just what point in processing, to introduce the addressing 

segment. For example, an appropriate machine instruction sometimes 

cannot be chosen until the addressing format is known, and the 

addressing format cannot be chosen until several other instructions 

with optional formats are determined. Nevertheless, this is not 

impossible, and will be discussed later in part F of this newsletter. 
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The eighth difficult topic is register allocation, that 

is, specifically, whether or not the optimization of the alloca

tion can be accomplished independently. The hypothesis advanced 

is that a treatment of this process separated from code generation 

will be feasible only when there are a number of identical 

registers. The evidence comes from the definition -- a register 

is defined by the operations which influence it. Hence, any. 

allocator attempting to treat non-identical registers must be 

aware of all the op codes which differ in all the computers 

considered. If this seems a trivial thesis, its consequences 

are not: it eliminates many of the machines here. 

A second limiting influence on the practicality of a 

general allocator occurs when a major segment of the instruction 

set refers to different registers. For example, with indexed 

operations the following possibilities can be envisioned. 

1. Index registers and general registers are separate. 

2. Index registers and general registers are identical. 

3. Some of the general registers are also index registers. 

All three cases are represented here. 

Another complication of some computers is the choice one 

must make for binary operations among register-register, 

register-memory, and memory-memory allocations to operands. 

The choice, when available, will depend not only on subsequent 

operations, which is tractable, but also on the details of the 

instruction sets (which may only allow the choice for a subset 

of the binary ops) and the timing of the machine. A register-to

register instruction is not invariably either faster or smaller. 

In part A the general characteristics of each machine 

were given, but it seems appropriate to consider their registers 

again in the light of the above observations.· 

The Honeywell can be eliminated immediately since there 

are no significant allocation decisions. The Hewlett-Packard 

and to a greater extent the Varian present a number of choices, 

but all registers are different. The IBM of course has only one 

accumulator, but the three index registers present some possibility. 
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However, inspection of substantial quantities of assembler code 

encounters the rare use of all three registers simultaneously. 

This is probably due to the very limited number of instructions 

which modify the registers. On the other hand, indexed operations 

will likely occur far more frequently in LITTLE than in most 

assembler programs. The Texas Instrument computer has 16 

registers and the instruction subsets applying to each may bEi 

labeled as shown: 

Register 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Subset A A A A B C D E F F F F G H I J 

The Nova, as noted earlier, possesses 4 general registers, 2 

of which may also be used for indexing. It is conceivable that 

one could simplify this situation for a general allocator by 

arbitrarily designating one or both optional registers exclusively 

as indexers. Obviously the decision would not have entirely 

laudable consequences, but its benefits are diminished by a 

singular characteristic of the Nova. Alone among these mini

computers, this op set allows no binary operations outside 

registers, thus maximizing the importance of optimization. 

The PDP-11 is an 8-register machine with 2 reserved 

for special purposes. The remaining 6 pose a classical case 

for optimization, modified only by the problem of how or whether 

to use a register at all. For example, inspection of the instruc

tion set indicates that it is possible (though hardly desirable) 

to write programs without ever placing an operand in a register. 

Practically, this flexibility gives rise to optimization problems 

involving LITTLE statements such as 

<*name>= <expr> 

where a common occurrence is for the left-hand member also to 

occur in the expression, and may be factored out to give 

<*name>= <exprl><op><*name> 

then a register need not be allocated and a reduction in code 

results. Of course, this decision would be mediated by subsequent 

code. 
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The final consideration in this section is a minor point. 

Entries in the VOA are in triple form -

<operation><operandl><operand2> 

An alternative is quadruple form -

<operation><operandl><operand2><result> 

Considering particularly the evaluation of expressions, it 

appears that for some machines it would behoove a preliminary 

processor of the VOA to produce quadruples, while for others 

the flexibility and ambiguity of triples are more advantageous. 

The former case applies to minis that are essentially accumulator 

machines: IBM, Honeywell, Varian, and Hewlett-Packard. With 

them, one operand is generally in memory, one in an accumulator, 

and the result admits of only three possible successor actions -

1. Do nothing. 

2. Assign result to a variable. 

3. Assign result to a temporary. 

Such decisions can be made by a preliminary analysis, thus 

simplifying subsequent processing for a particular computer. 

Triples are preferable for the PDP and Texas Instrument 

instruction sets, while the Nova is unclear, but probably 

triples are better. 

E. Crossroads 

It is time now to summarize the discussion, listing only 

very major problems. 

In part Bit was noted that not all minicomputer 

installations will be capable of using LITTLE, and that those 

who can may well express strategic objections having no relation 

to an assessment of LITTLE itself. Furthermore, it was expected 

that acceptcnce of LITTLE will be in no small measure dependent 

on substantial assistance. 

In part Cit was first argued that processors to turn out 

symbolic code rather than full assemblers were preferable. Then 
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a number of points which demand attention but did not receive 

it were listed. Most important among them for minicomputers 

were I/O and the question of block optimization in a processor. 

Part D suggested that, from the beginning, code transfor

mation requires knowledge not only of the syntax and semantics 

of the VOA but also the target op set, that an intermediate, 

general processor can assume either too much or too little abput 

a specific machine, and that optimization of registers is 

complicated by many factors. 

Underlying all this is a perhaps excessively rigid 

unwillingness to compromise the possibilities for good code with 

the assets of a general approach. Yet the only sure conclusion 

one can draw now is that LITTLE for minicomputers is a tough problem. 

In part Fan approach is briefly outlined, and the 

section has been titled AMTRAK because: 

1. The service facilities of the approach need questioning. 

2. It may be better to sidetrack minicomputers and concentrate 

on express work for large computers. 

3. Another mode of transportation may reach the destination 

sooner. 

F. AMTRAK 

A processor might be divided into the following four segments. 

Segment Complexity Independence 

1. Unresolved Code Generator Tough 40 - 60% 

2. Intermediate Resolver Moderate 95% 

3. Formatter Small 0% 

4. Encoder Trivial 95% 

The complexity is an estimate of the difficulty of writing and 

debugging each segment. The independ0nce is a guess as to the 

portion of code that is unconcerned with any particular machine. 

The feasibility of the whole approach will rest almost entirely 

on the feasibility of the first segment. Its complexity requires 

a more lengthy account than the other segments, so the discussion 
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will begin with a statement of the generator's functions to give 

perspective, followed immediately by the details of the rest of 

the processor, and then we'll return for a more extensive 

examination. 

Segment 1 receives control from the syntax analyzer 

after the processing of each subroutine and, using the VOA 

as input, generates a new operation list specific for a singie 

target machine. The code in the new list lacks resolution or 

optimization only with reference to addressing and the operator 

choices determined by addressing. The generator returns control 

to the analyzer after each subroutine, until the last one, 

whereupon control passes to Segment 2. 

The intermediate resolver is a table driven routine with 

three primary functions -- storage allocation, symbol transforma

tion, and address resolution. Input consists of the operations 

list, variables from the VOA, and a table descriptive of the 

target computer (the 5% dependent portion of this segment). 

output is a single list or file needing only minor resolution 

by the following format segment. The descriptive table contains 

special characteristics used for control of the three functions, 

e.g., page size, symbol properties, field length and range of 

addressing modes. 

The storage allocation routine must provide algorithms 

for optimized locations of constants and variables and blocking 

code into pages where necessary. 

The symbol transformer has the trivial task of converting 

LITTLE names into ones acceptable to the assembler used later. 

The address resolver must take each operation, and with 

directions from Segment 1, choose the best address form -

relative, direct, or indirect -- and create indirects when 

appropriate. This is the address mode vs. intermediate code 

problem mentioned in part D, and is solved neatly in a recently 

published algorithm by Ferguson. The resolver should not be 

concerned with addressing forms involving immediate, indexed, 

or incremental modes as they are either trivial to determine or 

highly dependent on the context, and thus are better left to the 

initial generator. 
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This segment is generally oblivious to the semantics 

of operators with two exceptions -- subroutine and function calls 

must be designated as either resolved or not with the information 

passed to the formatter. The other exception is a recognition 

of unconditional transfers to facilitate variable and constant 

placement. 

A later version of this resolver should perhaps atte~pt 

two more optimizing problems. First is assignment of two or more 

variables to the same location. Though this might seem a more 

appropriate function of the syntax analyzer, in some machines it 

would result in more indirect addressing. The other possible 

optimization for paged machines or machines with large relative 

addressing ranges would be the duplication of temporaries to 

reduce storage and execution time by eliminating indirects. 

Both these attempts would require additional information, which 

in the former case might very properly be an appropriate function 

for the analyzer. All in all, this segment (given its input) 

should easily produce better code than the average programmer 

and assembler usually do. 

The formatter converts the Segment 2 output file into a 

symbolic representation of the ultimate program. For the most 

part, it acts as a simple macro expander, converting one operation 

in a binary format to one assembler statement. Its most 

difficult task in this area will be the resolution of op codes 

which could not be tackled until addressing was complete. 

For example, 

JNZ NEXT or SZE 

JMP NEXT 

(Jump if not zero) (Skip if zero; jump) 

This segment could undoubtedly be generalized to work from 

tables with machine independence, exc~pt for one other problem. 

At this point assembler directives and directives passed by the 

assembler to the loader are introduced. In any case, the 

formatter should be so easy to write, especially if a model for 

another machine is available, that independence is not an issue. 
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One additional function could be carried out here. 

A number of unsatisfied external references will exist here 

(e.g., an extraction operator function) and one might introduce 

a file of subroutines to satisfy them, yet it is unclear that 

this would serve any advantage over leaving the function for 

the loader. 

The trivial Segment 4, an encoder, merely produces a. 

file for cards, paper tape, or transmission which is acceptable 

to the target assembler. It uses a table with the binary 

representation of the target machine's characters to translate 

each character of the symbolic file in the large host machine. 

The encoder presumably terminates by transferring control to the 

lexical scanner. Now let us return to Segment 1. 

The unresolved code generator is partitioned {not actually, 

just for expository reasons) into target machine dependent and 

independent sections. These are each subdivided. Both have 

preprocessing subsections; the other subsection of the independent 

portion is a collection of service routines which the other three 

subsections draw upon; the other dependent subsection performs 

direct, simplistic code generation. It all works like this: 

From Syntax Analyzer 

t 
s + Independent Preprocessor {IP) ➔ 

E + R 
V + Dependent Preprocessor (DP) 

➔ 

I ! 
C 
E + Dependent Generator (DG) 

➔ 

1 
To Syntax Analyzer or Segment 2 

The basic service functions are retrieval of information from 

the VOA {and associated tables) and insertion of generated code 

into the new operations list, ·but there are several other 

functions mentioned during the discussion of each subsection. 
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1. IP Considering the thrust of this report so far, 

it may come as some shock that operation of the IP draws 

heavily on the approach in Newsletter# 4, the LITTLE 

imaginary machine, IM. Yet the difficulties pointed to in 

part Dare the exceptions, not the general rule. In each 

of examples 2-5 there were possible choices of code for the 

IM that would have aided subsequent generation for the majority 

of minicomputers. The exceptions are considered extremely 

important, however, because they increase the complexity of code 

generation not marginally, but drastically. The solution should 

be apparent: turn out IM code as an alternative to, rather than 

a replacement for, VOA code. 

Moreover, IM alternatives need neither form a complete 

set nor exclude redundancy. In the former category, for example, 

there is no possibility of improving unconditional transfers, 

label operations, or returns and very little possibility for 

subroutine and function calls, read and write statements, or 

the negation operator. For a quick example of the latter 

category, consider the two VOA entries, 

1. EQ 

2. IF 

I,J 

#1,NEXT 

and possible IM code, 

First alternative: 

1. Compare I with J 

2. If equal, go to NEXT 

Compare I and J for equality. 

Branch to NEXT if op. #1 is true. 

Second Alternative: 

1. Subtract J from I 

2. If not zero, skip. 

3. Go to NEXT. 

Some of these minis would find the first preferable, some the 

second, none the VOA. 

Developing alternatives could easily get out of hand 

without some restrictions. These might include a limit on 

the number of new operators i_ntroduced/ say 40 or 50, and 

allowing only expansions of a single VOA instruction and the 

reworking of a maximum of 2 (or 3?) sequential instructions. 



LITTLE 7--24 

Certainly not very many, because one will soon find the IM code 

tied to a single machine: the IP has become a DP. 

Of course not every alternative need exist in a specific 

implementation; that would involve useless processing. The point 

is, however, to spend some initial effort designing IM code 

that has a good probability of accomplishing the most important 

tasks in a wide variety of minicomputers. Then after the se~ond 

or third machine has been treated, there is essentially no work 

necessary on this subsection. 

The astute observer may be thinking well, don't we have 

a charade going on here now. Why, if a set of alternatives is 

superior for a given machine, shouldn't one just call them and 

treat them as replacements, and be done with it? The answer 

is that there is no.surety of superiority until the code 

environment is examined. For a simple example, take a LITTLE 

assignment statement, A= B. The single VOA entry might be 

processed to give a two-member alternative, but for the PDP-11, 

LD B + register 

ST register+ A 

the dependent generator, DG, would never, by itself, use this 

alternative, since the instruction set includes this direct 

correlative of the VOA entry, 

MOV B,A 

On the other hand, the dependent preprocessor, DP, described 

below, might well decide on the basis of subsequent use of either 

A or B that the alternative.is preferable, since it may save one 

or more machine cycles. In several of the minicomputers the 

choice might be reversed for commutative operators. That is, 

where the D~ would choose the expanded alternatives, the DPs 

would process the VOA w.ith greater ease when the environment 

calls for an operation reversal, 

A op B + Bop A 

The same choice will usually be made by DPs in more complex 

optimizations, because in general the VOA entries will be semanti

cally more inclusive. 
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To wind up discussion of the IP, note that the 

only specific function required of the service subsection is 

recognition of singlet, doublet and perhaps triplet code 

sequences. Finally, the structure of the IP must be that of 

sequentially executable routines to facilitate conversion of 

one implementation to another. 

2. DP Whereas the IP was predominantly involved with 

semantic manipulations, the dependent processor focuses on 

syntactic problems. Its simplest functions would be like 

those mentioned just above. Intermediate function~;include 

register allocation and compile time calculations (e.g., in 

part D, third example, Honeywell code, the first five instructions 

should never be executed). More advanced functions would be the 

transformation envisioned in example 1, part D and the optimiza

tion suggested for the FORTRAN-like loop in part C. 

A major characteristic of the DP is that in a 

first version of any target processor, it may be null. 

The result, naturally, will be lousy code. 

Since DP development can be put off, here there 

will only be brief mention of service requirements and general 

structure. 

The service needs of the IP are duplicated here, 

but are also extended to include recognition of larger 

sequential and scattered code patterns. Additionally the 

service subsection must be capable of answering questions 

concerning the frequency of reference to variables and constants, 

perhaps providing general algorithms for register assignment, 

setting up indirect triple tables to simplify reordering, 

carrying out the subsequent restructuring of the VOA, inserting 

new alternatives created by the DP, and finally marking DP 

output as obligatory input to DG. 

DP structure should receive more thought than the 

other subsections as the complexity might argue for a tree-like 

or even a recursive form, but a simple, sequential set of routines 

would have at least one benefit. The DP is largely tied to a 

specific machine, but at least some optimizations will be nearly 
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identical for several. Going back again to example 1, part D 

we have a clear case. Just as with the IP, portions of a 

sequential DP are more easily stolen for transport to a new 

implementation. 

3. DG The generator is simple. It requests one operation 

at a time from the service routines. Each operation is converted 

to one or more target ops. The toughest task it has is to 

choose between VOA entries and alternatives. It only looks 

ahead to ask whether the result of the current operation is 

referenced again, and when. Even this question can be eliminated 

for some DGs if the service routines can supply quadruples rather 

than triples. The DG supplies service routines with the new 

operations in two parts -- one headed for the intermediate 

resolver, Segment 2, and one for the formatter, Segment 3. 

The information it must supply to each segment is implicit or 

explicit in previous discussion. 

The only additional service function not mentioned 

in the accounts of IP, DP and DG that should be present is 

debugging code to aid new implernentationsof the dependent 

subsections. 

In conclusion 

It is clear that the approach outlined here, separat

ing independent and dependent tasks into sections and subsections, 

will require substantially more effort than writing an assembler 

or processor for a single minicomputer. This effort should be 

balanced against the arguments given in part B. 

Perhaps a gross estimate of the time involved would 

include 2 months for detailed design of the processor, 4 to 5 

man-months for the first application (excluding DP), and about 

1½ - 2 months for each new implementation, 

* * * 




