
>: LITTLE Newsletter Number 7

LITTLE for Minicomputer~

A. Targets

March 27, 1972

T. Stuart

This report is concerned with the application of LITTLE

to small general purpose machines, or minicomputers, having 4-32K

words, typically 16-bit. The range of instruction codes for·

these machines testifies only to the perversity of designers.

Specifically, the following target minis are considered:

1. Honeywell H-316 and DDP-516

These are accumulator machines with a pseudo index

register, paging, infinite indirect addressing, and a constant

instruction length of one word.

2. IBM 1130 and 1800

These are also accumulator machines with three index

registers, a single level of indirect addressing, and an instruc

tion length of one or two words. Operands may generally be

either 16 or 32 bits.

3. Hewlett-Packard 2100

No index register is the distinguishing characteristic

of this mini. There are two registers, one serving as an

accumulator; the other appears somewhat vestigial. Indirect

addressing is infinite; the memory is paged. Instruction size

is one word, but in certain cases up to eight instructions can

be "microprogrammed" into the single word.

4. Varian 620 Series

This one has an accumulator, an index register, and

a third register which performs some of the functions of the

previous two. The machine is paged, has infinite indirect

addressing and single or double word instructions. This machine

also comes in an 18-bit version.

5. Data General Nova and Supernova

These machines are the first in this list that are

clearly out of the accumulator category. They have four general

registers, two of which also function in indexing. Memory is

page<l, indirect addressing is infinite, and all instructions occupy

one word. The instruction set is idiosyncratic: e.g., skips

and register shifts are irnbedded in arithmetic instructions.

6. Digita~ PDP-11

More powerful than any of the above, this mini has eight

general registers including a flexible program counter. Especially

efficient as a stack processor and with 10 addressing modes in

addition to the ability of employing any word in memory as a.

register, it seems to present a serious challenge in code

optimization. Instructions may occupy one, two or three

locations, and operations can address either 8 or 16 bit words.

7. Texas Ins trmnen ts 9 6 OA

Perhaps an even tougher challenge will come from this

newest minicomputer. There are 16 general registers for

arithmetic, logical and indexing operations, with 8 fully and

8 partially available at any given time. Mode switching between

the two sets is like an exchange jump in the 6600, but is more

flexible since it may be accomplished in half a dozen ways.

Instruction length 1s always two words and operands may be

32, 16, or just 1 bit. Yes, Virginia, there is a Santa;

you can address a single bit. Some instructions have three operands.

Instruction execution time appears slower than the other minis

but small instruction stacks can be accommodated in the CPU.

Further, though the manufacturer is not now marketing it,

there may be a capability to microprogram your own instruction set.

B. Roadblocks

Despite the diversity, these machines are considered as

a group specifically because each one has been found useful

(though certainly not always efficient) in a number of applications:

compilers for simple languages such as BASIC, time-sharing systems,

conrrnunication routines, text editing, and my own special interest,

graphics support. These types of programs seem clearly a good

target for LITTLE, but it also apparent that. a full implementation

of LITTLE is impossible on machines of 4-32K with 16 bit words;

hence code generation must take place on large machines.

LlTTLE 7-..J

Since the number of application programs for which LITTLE

is the best choice will be small for any given minicomputer

installation, the work of producing an assembler can only be

judged worthwhile, save for pedantic purposes, if there's a

reasonable probability of eventual use by other installations.

To consider this likely, three, partly obvious conditions

must be presupposed: .
1) A large computer must be convenient to the minicomputer staff.

This will not be the case for many small colleges or commercial

operations, but there remains a sufficient number of situations

where it will be available. However, physical availability is

only part of the problem. Not easy to assess are the effects

on the staff of other inconveniences. First, turn around time

will generally be slower on the large machone. Second,

programming becomes a two pass operation: compiling on one

machine, testing on another. Third, there is sometimes a

resistance to learning a new language.

2) The large computer must not only be convenient, but LITTLE must

already.be running in a full implementation on it. No one is

going to implement LITTLE on the large machine merely to generate

a few programs for the minicomputer, even if the assembler for

the mini has already been written on another large computer.

3) For many installations there must already be an existing

assembler, since they will lack either the competence,

time, or inclination to produce one. This condition will be

partly mitigated if the number of desired applicaton programs

coded in LITTLE is already large or the assembler is extremely

easy to turn out. This last possibility was the subject

of Newsletter No. 4 and is also the focus of this one. Nonetheless,

no matter how successful an approach to easy assembler development

is made, it is not inappropriate to suggest that a serious effort

to apply LITTLE to minicomputers should imply substantial continuing

aid to others for implementation.

The above three conditions bear little or no relevance

to large machines, but present distinct handicaps for the small

installation. It might be deemed reasonable to postpone concern

LI.TTLE 7-..4

for them, focusing on the problems of large machine transfers,

until a more hospitable situation develops. On the other hand,

early development of mini computer output could well give

additional impetus to interest in LITTLE on the part of large

installations, since they invariably have problems with system

programming on satellite or remote computers similar to the

problems here at Courant.

c. Scope

The concern here with the conversion of an array

containing 30 basic LITTLE operations and their associated

operands (the variable and operations array - VOA) into the

appropriate binary code of the target machine's loader. To

explore the difficulties, several examples of LITTLE code will

be transformed into selected representations in the instruction

sets of the seven machines described earlier. However, because

there is an effect on the subsequent discussion, the rst topics

considered are a suggested redefinition of the goal and an

enumeration of some major factors which have been nearly or

completely ignored.

The suggestion is that the goal be not binary code for

a loader, but symbolic code for an assembler. Clearly, this is

a step backward. The VOA and its associated tables contain a

great deal of information that an assembler once again must

reconstruct. Nevertheless, a trio of opposing arguments

should be heard from:

1) Loaders for minis seem poorly documented, probably because there

is very little interest. Many, perhaps most, purchasers deal

only with higher level languages. (A new owner of one of the

machines treated here was quite adamant in reply when asked for

the assembly manual, "BASIC is the only language this computer

knows.") The only released documentation of the.IBM 1130 loader

is its assembler listing.

2) Debugging symbolic code is easier.

3) Special additions to programs may be desirable when the work of

modifying the LITTLE compiler is not worthwhile. For example,

LITTLE. 7-5

a reference to an absolute address, or a device controlling

instruction, or special linkages to/from external routines.

As with debugging, the inclusion will be easier.

Producing code for the assembler also introduces complications

though.

1) Machine dependent assembler directives must be introduced.

2) The symbol length in LITTLE will in general be unacceptable. •

In none of the seven minis here can seven characters be handled.

3) The target machine assembler will in general require control

or delimiting characters unavaiable to the host machine compiler.

Each of these objections is, however, relatively trivial to

o~ercome, and is taken up later. On the other hand, situations

may appear where the binary code is unquestionably preferable.

Foremost among these possibilities is the case where an assembler

does not exist, as it well might with a microprogrammable machine.

There are at least half a dozen major factors that may

or will affect the quality of code produced and that are

completely ignored in this newsletter.

1) The subjects of virtual memories and associated paging structures

in the sense of Newsletter# 3 are not considered. (Hardware

paging is a concern below.) This subject is unquestionably

important given the size of the minis.

2) Interpretable code was also discussed in Newsletter# 3 and

its implementation is ignored here. One can imagine applications

where this could be valuable. With the cost of memory now

dropping below 40¢/word, problems lacking large data files might

well find it possible to pack all the code into core, obviating

the need for a disk or tape. This would be more economical when

the scale of this approach is great enough to make a read only

memory feasible.

3) Handling operations on words of arbitrary lengths is overlooked.

I had a nightmare about this one.

4) I/O and interrupts, discussed in Newsletter# 4~ are not

considered for the seven target machines here. This is a major

omission, because in general there wi11· be a greater need for

LITTLE 7-6

systems programming of this type in minis than in large machines

where a great variety of I/O routines already exist.

5) Computers operating in a real time environment are common

among minis. Experience indicates that the approach taken

to assembly coding under a real time executive is significantly

distinctive, but no thought has been given to what implications,

if any, this might have for the LITTLE compiler.

6) Most of the attention in the rest of this report concentrates

on code generated by a single LITTLE statement, to the near exclusion

of problems with the simple block. For example, the following

LITTLE equivalent to a simple FORTRAN DO loop poses strenuous

work to get optimal code -

I= l;

/LAB/ A(I) = B(I); I=I+l;

IF(I.NE.N) GO TO LAB;

Programming in an assembler language would probably result

in 6 or 7 instructions for these target machines, while the

first attempt to generate code from the VOA will likely lead

to 15, 20 or more instructions.

Before any work is begun on providing LITTLE for the

minicomputers, it seems advisable that the above points be

thought through, even if no effort is made to include such

options initially. In the case of problems 3, 4 and 6 it is

especially important, and it would probably save future woe to

trace typical examples through to the target machines.

D. Pot Holes

In this section the problems encountered during processing

of VOA code are examined to determine the influences from three

general characteristics of each machine: its instruction code,

its registers, and its addres?ing modes. TnB examination is often

concerned with the possibility of an intermediate, imaginary

machine as discussed in LITTLE Newsletter# 4 and to that end

especially focuses on the idiosyncracies of these computers, or,

LITTLE. 7-7

to put it another way, on the cases where the targetinstruction

set differs from the 30 element LITTLE set. Such cases are

not hard to find. For only 3 or 4 of the 30 is there a

mapping into the instruction sets of all 7 machines that is

isomorphic: ADD, AND, the unconditional transfer, and perhaps

the label operation.

First, let us consider the relationship between the,

complexity of a processor and the quality of code it might

turn out. For this purpose two of the minis have been chosen,

the Honeywell and the PDP-11. Take this LITTLE statement:

IF((I.GE.J).OR. (K.EQ.L))GO TO NEXT

The VOA entries produced could be the following. (Sometimes VOA

entries, both here and below, will be modified from the

suggested form by previous operations in the block, and sometimes

I am just guessing what is in it, but this will not be of

significance for the general discussion.)

Operation Operands

1

2

3

4

GE

EQ

OR

IF

I,J

K,L

#1,#2

#3 ,NEXT

If

If

OR

If

Explanation

I > J, true. Otherwise false.

K = L, true. Otherwise false.

results of operations 1 and 2.

result of operation 3 true,

go to NEXT.

A simple, straightforward, easy-to-write processor will be

one that, lacking a single correlative to the VOA instruction,

expands the original in the new basis set. Ignoring address

problems for the moment, it need only keep track of the location

of the results of previous operations. Such a processor could

give this expansion for the Honeywell:

Label Operation Operands Explanation

Load accumulator with I

Subtract J

LDA I

SUB

SMI

JMP

J

*+3

Skip if - (I ignore LITTLE rule.)

Skip next 2 instructions

[continued]

LI.TTLE 7-8

Label Operation

CRA

SKP

LDA

STA

LDA

SUB

SZE

JMP

LDA

SKP

CRA

STA

ANA

IMA

ERA

ERA

SZE

JMP

Operands

=-1

TEMPI

K

L

*+3

=-1

TEMP2

TEMPl

TEMPl

TEMP2

TE.MPl

NEXT

Explanation

Set acc. to false

Unconditional skip

Set acc. to true

Save result in temp. location.

Skip if zero

Skip 2 instructions

Set true

Set false

Save result in temp. location.

There is no OR instruction,

so these 4 perform it.

Skip on false.

Branch on true.

Now the question is, how do the above twenty-two instructions

compare with code from a programmer or more intelligent processor?

Perhaps this:

LDA I

SUB J

SMI Skip if false.

JMP NEXT Jump if true.

LDA K

SUB L

SNZ Skip if false.

JMP NEXT· Jump if true.

Eight instructions. Now turn to expansion output for the PDP-11

with a more powerful op set.

LITTLE 7--9

CLR

CMP

BMI

COM

CLR

CMP

BNE

COM

BIS

BNZ

RO

I,J

*+2

RO

Rl

K,L

*+2

Rl

R0,Rl

NEXT

Set register Oto false

Compare I and J

If I -< J, skip

Set reg. 0 to true

Reg. 1 set to false

Compare Kand L

If K c/ L, skip

Set reg. 1 to true

OR reg. 0 into reg, 1

If true, go to NEXT

Ten instructions is much better, but a PDP-11 programmer

would undoubtedly do this:

CMP I,J

BGE NEXT

CMP

BZE

K,L

NEXT

If I> J, branch

IF K = L, branch.

The bad-to-good code length ratios, 22/8 and 10/4 for the two

machines, will in practice be even worse, because the longer code

requires more frequent allocation of memory for addressing purposes.

However, the simple point to be made here is that it will

be quite difficult to produce good code. Whereas, in the

first instances for each machine, it is quite clear which VOA

entry led to which machine instructions, in the second approaches,

the processor must be highly aware of the syntax of the VOA.

That it must also deal intimately with the target semantics is not

apparent from this example, since it is obvious that any

intermediate imaginary, LITTLE language that would lead to the good

HOneywell code would also lead equally well to the good PDP-11

code. This approach will be examined more closely in

following examples.

Another inference can be drawn from these transformations

of VOA code. The reader should attempt some alternate transforma

tion which improves on the simplest approach, but does not demand

the work of the good code here. Good luck,

An objectio~ could be made that this example is a case

which is most properly a function for the syntax analysis segment

of the compiler. Although that would be possible with this particular

LITTLE_ 7--lQ

LITTLE statement, a brief consideration of allied situations

leads to the conclusion that it would only be practical if the

number of types of operations in the VOA were increased.

The merits or demerits of that proposal will not be discussed here.

A final, subjective statement about this example is

tendered. Perhaps in a large, fast machine the longer code is

acceptable, but in the minicomputer where space is precious,

there should be some hope that a processor can turn out the

better code, even if not initially.

For a second example, consider the LITTLE expression,

and the VOA entries,

1 FETOP

2 FETOP

3

C, X (I)

D, X (I)

#2,#1

C (I) - D (I)

Fetch O, indexed by I

Fetch D

Subtract result 2 from 1.

This is a situation in which the LITTLE machine seems applicable.

For example, an index register could be used in the intermediate

code as shown:

1 SETXR

2 FETCH

3 FETCH

4

I

C,#1

D, #1

Set index register to I

Fetch indexed C

Fetch D

Subtract

Such an instruction set would certainly aid code production for

a Nova minicomputer:

LDA 2,I Set reg. 2 to value of I•
LDA l,C,2 Get c, indexed by reg. 2

LDA 0,D,2 Get D

SUB 0,1 Subtract reg. 0 from reg. 1

With the PDP-11, some synthesis of the instructions is required

for good code, but it is by no means difficult:

MOV I,Rl Set index in reg. 1

MOV A(Rl) ,RO Get A, indexed, into Reg. 0

SUB B(Rl) ,RO Subtract indexed B from reg. 0

On the other hand, for the HP-2100 mini, the only obvious way

to express this is with the following horrendous code:

LI.TTLE

ADDC

ADDD

7--11

LDA

ADA

LDA

LDB

ADB

LDB

CMB

INB

ADA

DAC

DAC

ADDC

I

@0

ADDO

I

@l

1

C

D

Get address of C in reg.

Add index

Replace address by value

Get address of Din reg,

Add index

Replacement

There is no subtraction

so these 3 instructions

Declare address of C

Declare address of D

A

in reg. A
B

operat,or,

do it.

Such code arises because this machine has neither indexed nor

immediate addressing modes. In some blocks, the operand

addresses probably should be saved for efficiency, and the

resulting code will look even worse. A similar, though not

quite so bad, situation can develop with the Honeywell machines,

which have poorly designed index registers.

The exercise for the reader now is to empathize

with the processor that must (1) translate VOA code to the

three target codes, or (2) from VOA to the intermediate to

the target codes. The conclusion will be not unlike that of

our next example.

The third LITTLE transformation problem comes from this

statement and its VOA entries.

1 EXOP

2 SASS

8,4,B

#1,A

A= .F. 8, 4, B

Extract 4 bits beginning at pos. 8 from B

Assign result to A

This is a much simpler form of the extraction operator than the

usual case, because the bit position is a constant. When it is

a variable, a translation differing markedly from the following

Honeywell code would be made. (I have assumed that the result of

an extraction is a right justified field with zero 11.)

LITTLE.--7--12

CRA 3 instructions to form

SSM the mask.

ARS 3

LGR 12 Right justify mask

STA TEMP Save it.

LDA B Get B.

ARS 5 Right justify desired field.

ANA TEMP AND mask with field.

STA A Store.

This is rotten code to perform the given task, but is chosen to

illustrate that it would be a suitable and easy expansion of

LITTLE machine code. Several of the other target machines are

also amenable to this hypothetical LITTLE code:

1

2

3

4

5

FMASK

RSHFT

RSHFT

AND

SASS

4

#1, 12

B,5

#2,#3

#4,A

Form 4-bit mask.

Right shift to justify.

Justify B with right shift.

AND results of operations 2 ' 3.

Assign result to A.

However, this code poses obstacles for three of the target machines

which do not have a general shift capability. The Hewlett-Packard

shifts either 1 or 4 positions, the Nova and PDP shift 1 or 8,

and the following PDP code demonstrates the incompatibility.

LOOPl

LOOP2

CLR

MOV

MOV

ROL

DEC

BNZ

MOV

ROL

ADC

ASL

DEC

BNZ

MOV

RO
B,Rl

=8,R2

Rl

R2

LOOPl

=4,R2

Rl

RO

RO
R2

LOOP2

RO ,A

Zero register 0.

Get B in reg. 1.

Get 8 in reg. 2: counter

Rotate left reg. 1

Decrement counter

Loop till counter zero

Get 4 in reg. 2: new counter

Rotate left reg. 1

Add carry bit to reg. O.

Shi£t reg. 0 left 1 bit.

Decrement counter.

Loop till counter zero.

Assign result to A.

With trivial modifications this would be a subroutine that handles

variable field widths and positions for any extraction from a 16-bit

word, but the important point is that the PDP does not accommodate

LI.TTLR 7-13

itself well to masking operations, and that the processor

will have a difficult job to either generate this code

or a request for this subroutine when given the suggested

LITTLE code. In fact, the only practical solution would involve

2 or 3 subroutines and a much longer expansion.

This example and the previous one demonstrate how we·

can assume too much about a machine's op code. The next two

examples show how we can assume too little. The first

non-zero bit operator is the first subject.

1

2

FB

SASS

B

#1, A

A= .FB. B

Determine first non-zero bit in B

Assign result to A

The Honeywell code that follows is typical of good code for

most machines, except that the counter would sometimes be

assigned to a temporary variable.

CRA Clear accumulator

STA 0 Zero counter (mem. loc. 0)

LDA B Get B

LOOP LGL 1 Shift left 1 position

IRS 0 Increment counter

SSC Skip if carry occurred

JMP LOOP Loop

STX A Assign the count

A simple task for you now is to choose imaginary LITTLE code

from which this target code or similar target code can be

generated. Whatever the choice, it is unlikely to transform

easily into the following appropriate IBM 1130 statements.

LD B Get Bin accumulator

LDX 1

SLCA 1

LD

MUL

SZE

A

ST

16

1

=-1

=17

A

Set index reg. 1 to 16

Shift acc. left, decrementing reg. 1

till bit appears in p0sition 1

Get index reg 1 into acc.

There is no complement, so *-1.

Skip if acc. is zero.

Correct the count.

Assign result to A.

LITTLE 7-14

The fifth example involves an ~xpression containing the

bit count operator - !
i

.NB. C

The VOA entry is simply -

1 NB C Count the one bits inc.

The following code for the Varian 620 is essentially duplica~able

in all target machines.
l

TZB Zero B register.

LDA C Get C in A reg.

LDXI 16 Set index reg. to 16.

LOOP LRLA 1 Shift A reg.• left 1 bit

XAN Execute next instruction if A reg.

IBR Increment B register.

DXR Decrement X reg.

JXZ NEXT Skip to next if X reg. = o.
JMP LOOP Loop

NEXT

Once again, as with the previous example, it is possible to

express the above in LITTLE machine code that would make the

processor's function simpler. Yet it would hardly be simple

to transform it into the following top notch code for the Texas

Instrument machine:

LOT l,C Count the one bits in C;

put result in reg. 1.

The first five examples touched on arithmetic and logical

operations, shifting, and bit manipulation. Here the discussion

will be about the last major group of instructions those which

alter program flow. The variations of instruction sets in this

area create numerous problems for translation either directly

from the VOA or from an intermediate language.

The major divergence ?ccurs in the designer's choice of

conditional skips or conditional branches or both; all these

choices are represented in the group of machines discussed.here.

< 0.

LITTLE 7-15

The obvious implication for code optimization in the case of

machines capable of conditional branches is that the use of the

conditional branch as a skip will lead to two instructions where

one would have sufficed. More serious problems and possibilities

in optimization are raised (but not discussed) by the following

machine characteristics.

1) Some instruction sets are designed for comparison of two qua~tities,

while others test only the properties of a single quantity.

2) The Texas Instrument mini can perform branches according to the

status of any designated bit in the system.

3) Whether the tests are relational or unary, the set of tests is in

some cases incomplete. For example, the HP 2100 has no test

for negativity.

4) Some machines perform the operations most efficiently on memory,

some on registers.

5) In the Varian, one register accommodates the full set; other

registers a subset.

6) 'Plus' in some machines also means zero; in others it does not.

7) The Nova possesses no distinct conditional transfer instructions:

they are imbedded in arithmetic and logical operations.
,,, "

The next difficulty for a processor examined here is

addressing, and this is perhaps the least difficult. Basically,

there are only four addressing modes: direct, indirect, immediate,

and relative. Each of these may be determined or complicated by

indexing, autoincrementing, paging, or displacement limitations.

Even with the variations among machines, it still seernsjfeasible I
to.write a segment of the processor which would handle storage

allocation and addressing for all of them, though it will 'not be

an easy task. The tricky problem is the decision on where, or

at just what point in processing, to introduce the addressing

segment. For example, an appropriate machine instruction sometimes

cannot be chosen until the addressing format is known, and the

addressing format cannot be chosen until several other instructions

with optional formats are determined. Nevertheless, this is not

impossible, and will be discussed later in part F of this newsletter.

LI~TL& 7-16

The eighth difficult topic is register allocation, that

is, specifically, whether or not the optimization of the alloca

tion can be accomplished independently. The hypothesis advanced

is that a treatment of this process separated from code generation

will be feasible only when there are a number of identical

registers. The evidence comes from the definition -- a register

is defined by the operations which influence it. Hence, any.

allocator attempting to treat non-identical registers must be

aware of all the op codes which differ in all the computers

considered. If this seems a trivial thesis, its consequences

are not: it eliminates many of the machines here.

A second limiting influence on the practicality of a

general allocator occurs when a major segment of the instruction

set refers to different registers. For example, with indexed

operations the following possibilities can be envisioned.

1. Index registers and general registers are separate.

2. Index registers and general registers are identical.

3. Some of the general registers are also index registers.

All three cases are represented here.

Another complication of some computers is the choice one

must make for binary operations among register-register,

register-memory, and memory-memory allocations to operands.

The choice, when available, will depend not only on subsequent

operations, which is tractable, but also on the details of the

instruction sets (which may only allow the choice for a subset

of the binary ops) and the timing of the machine. A register-to

register instruction is not invariably either faster or smaller.

In part A the general characteristics of each machine

were given, but it seems appropriate to consider their registers

again in the light of the above observations.·

The Honeywell can be eliminated immediately since there

are no significant allocation decisions. The Hewlett-Packard

and to a greater extent the Varian present a number of choices,

but all registers are different. The IBM of course has only one

accumulator, but the three index registers present some possibility.

LI.TTLE 7-17

However, inspection of substantial quantities of assembler code

encounters the rare use of all three registers simultaneously.

This is probably due to the very limited number of instructions

which modify the registers. On the other hand, indexed operations

will likely occur far more frequently in LITTLE than in most

assembler programs. The Texas Instrument computer has 16

registers and the instruction subsets applying to each may bEi

labeled as shown:

Register 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Subset A A A A B C D E F F F F G H I J

The Nova, as noted earlier, possesses 4 general registers, 2

of which may also be used for indexing. It is conceivable that

one could simplify this situation for a general allocator by

arbitrarily designating one or both optional registers exclusively

as indexers. Obviously the decision would not have entirely

laudable consequences, but its benefits are diminished by a

singular characteristic of the Nova. Alone among these mini

computers, this op set allows no binary operations outside

registers, thus maximizing the importance of optimization.

The PDP-11 is an 8-register machine with 2 reserved

for special purposes. The remaining 6 pose a classical case

for optimization, modified only by the problem of how or whether

to use a register at all. For example, inspection of the instruc

tion set indicates that it is possible (though hardly desirable)

to write programs without ever placing an operand in a register.

Practically, this flexibility gives rise to optimization problems

involving LITTLE statements such as

<*name>= <expr>

where a common occurrence is for the left-hand member also to

occur in the expression, and may be factored out to give

<*name>= <exprl><op><*name>

then a register need not be allocated and a reduction in code

results. Of course, this decision would be mediated by subsequent

code.

LITTLE 7-18

The final consideration in this section is a minor point.

Entries in the VOA are in triple form -

<operation><operandl><operand2>

An alternative is quadruple form -

<operation><operandl><operand2><result>

Considering particularly the evaluation of expressions, it

appears that for some machines it would behoove a preliminary

processor of the VOA to produce quadruples, while for others

the flexibility and ambiguity of triples are more advantageous.

The former case applies to minis that are essentially accumulator

machines: IBM, Honeywell, Varian, and Hewlett-Packard. With

them, one operand is generally in memory, one in an accumulator,

and the result admits of only three possible successor actions -

1. Do nothing.

2. Assign result to a variable.

3. Assign result to a temporary.

Such decisions can be made by a preliminary analysis, thus

simplifying subsequent processing for a particular computer.

Triples are preferable for the PDP and Texas Instrument

instruction sets, while the Nova is unclear, but probably

triples are better.

E. Crossroads

It is time now to summarize the discussion, listing only

very major problems.

In part Bit was noted that not all minicomputer

installations will be capable of using LITTLE, and that those

who can may well express strategic objections having no relation

to an assessment of LITTLE itself. Furthermore, it was expected

that acceptcnce of LITTLE will be in no small measure dependent

on substantial assistance.

In part Cit was first argued that processors to turn out

symbolic code rather than full assemblers were preferable. Then

LI.TTLR 7--19

a number of points which demand attention but did not receive

it were listed. Most important among them for minicomputers

were I/O and the question of block optimization in a processor.

Part D suggested that, from the beginning, code transfor

mation requires knowledge not only of the syntax and semantics

of the VOA but also the target op set, that an intermediate,

general processor can assume either too much or too little abput

a specific machine, and that optimization of registers is

complicated by many factors.

Underlying all this is a perhaps excessively rigid

unwillingness to compromise the possibilities for good code with

the assets of a general approach. Yet the only sure conclusion

one can draw now is that LITTLE for minicomputers is a tough problem.

In part Fan approach is briefly outlined, and the

section has been titled AMTRAK because:

1. The service facilities of the approach need questioning.

2. It may be better to sidetrack minicomputers and concentrate

on express work for large computers.

3. Another mode of transportation may reach the destination

sooner.

F. AMTRAK

A processor might be divided into the following four segments.

Segment Complexity Independence

1. Unresolved Code Generator Tough 40 - 60%

2. Intermediate Resolver Moderate 95%

3. Formatter Small 0%

4. Encoder Trivial 95%

The complexity is an estimate of the difficulty of writing and

debugging each segment. The independ0nce is a guess as to the

portion of code that is unconcerned with any particular machine.

The feasibility of the whole approach will rest almost entirely

on the feasibility of the first segment. Its complexity requires

a more lengthy account than the other segments, so the discussion

LITTLE 7-20

will begin with a statement of the generator's functions to give

perspective, followed immediately by the details of the rest of

the processor, and then we'll return for a more extensive

examination.

Segment 1 receives control from the syntax analyzer

after the processing of each subroutine and, using the VOA

as input, generates a new operation list specific for a singie

target machine. The code in the new list lacks resolution or

optimization only with reference to addressing and the operator

choices determined by addressing. The generator returns control

to the analyzer after each subroutine, until the last one,

whereupon control passes to Segment 2.

The intermediate resolver is a table driven routine with

three primary functions -- storage allocation, symbol transforma

tion, and address resolution. Input consists of the operations

list, variables from the VOA, and a table descriptive of the

target computer (the 5% dependent portion of this segment).

output is a single list or file needing only minor resolution

by the following format segment. The descriptive table contains

special characteristics used for control of the three functions,

e.g., page size, symbol properties, field length and range of

addressing modes.

The storage allocation routine must provide algorithms

for optimized locations of constants and variables and blocking

code into pages where necessary.

The symbol transformer has the trivial task of converting

LITTLE names into ones acceptable to the assembler used later.

The address resolver must take each operation, and with

directions from Segment 1, choose the best address form -

relative, direct, or indirect -- and create indirects when

appropriate. This is the address mode vs. intermediate code

problem mentioned in part D, and is solved neatly in a recently

published algorithm by Ferguson. The resolver should not be

concerned with addressing forms involving immediate, indexed,

or incremental modes as they are either trivial to determine or

highly dependent on the context, and thus are better left to the

initial generator.

LI.TTLE 7-21

This segment is generally oblivious to the semantics

of operators with two exceptions -- subroutine and function calls

must be designated as either resolved or not with the information

passed to the formatter. The other exception is a recognition

of unconditional transfers to facilitate variable and constant

placement.

A later version of this resolver should perhaps atte~pt

two more optimizing problems. First is assignment of two or more

variables to the same location. Though this might seem a more

appropriate function of the syntax analyzer, in some machines it

would result in more indirect addressing. The other possible

optimization for paged machines or machines with large relative

addressing ranges would be the duplication of temporaries to

reduce storage and execution time by eliminating indirects.

Both these attempts would require additional information, which

in the former case might very properly be an appropriate function

for the analyzer. All in all, this segment (given its input)

should easily produce better code than the average programmer

and assembler usually do.

The formatter converts the Segment 2 output file into a

symbolic representation of the ultimate program. For the most

part, it acts as a simple macro expander, converting one operation

in a binary format to one assembler statement. Its most

difficult task in this area will be the resolution of op codes

which could not be tackled until addressing was complete.

For example,

JNZ NEXT or SZE

JMP NEXT

(Jump if not zero) (Skip if zero; jump)

This segment could undoubtedly be generalized to work from

tables with machine independence, exc~pt for one other problem.

At this point assembler directives and directives passed by the

assembler to the loader are introduced. In any case, the

formatter should be so easy to write, especially if a model for

another machine is available, that independence is not an issue.

LI_TTLE. 7--22

One additional function could be carried out here.

A number of unsatisfied external references will exist here

(e.g., an extraction operator function) and one might introduce

a file of subroutines to satisfy them, yet it is unclear that

this would serve any advantage over leaving the function for

the loader.

The trivial Segment 4, an encoder, merely produces a.

file for cards, paper tape, or transmission which is acceptable

to the target assembler. It uses a table with the binary

representation of the target machine's characters to translate

each character of the symbolic file in the large host machine.

The encoder presumably terminates by transferring control to the

lexical scanner. Now let us return to Segment 1.

The unresolved code generator is partitioned {not actually,

just for expository reasons) into target machine dependent and

independent sections. These are each subdivided. Both have

preprocessing subsections; the other subsection of the independent

portion is a collection of service routines which the other three

subsections draw upon; the other dependent subsection performs

direct, simplistic code generation. It all works like this:

From Syntax Analyzer

t
s + Independent Preprocessor {IP) ➔

E + R
V + Dependent Preprocessor (DP)

➔

I !
C
E + Dependent Generator (DG)

➔

1
To Syntax Analyzer or Segment 2

The basic service functions are retrieval of information from

the VOA {and associated tables) and insertion of generated code

into the new operations list, ·but there are several other

functions mentioned during the discussion of each subsection.

LITTLE 7-23

1. IP Considering the thrust of this report so far,

it may come as some shock that operation of the IP draws

heavily on the approach in Newsletter# 4, the LITTLE

imaginary machine, IM. Yet the difficulties pointed to in

part Dare the exceptions, not the general rule. In each

of examples 2-5 there were possible choices of code for the

IM that would have aided subsequent generation for the majority

of minicomputers. The exceptions are considered extremely

important, however, because they increase the complexity of code

generation not marginally, but drastically. The solution should

be apparent: turn out IM code as an alternative to, rather than

a replacement for, VOA code.

Moreover, IM alternatives need neither form a complete

set nor exclude redundancy. In the former category, for example,

there is no possibility of improving unconditional transfers,

label operations, or returns and very little possibility for

subroutine and function calls, read and write statements, or

the negation operator. For a quick example of the latter

category, consider the two VOA entries,

1. EQ

2. IF

I,J

#1,NEXT

and possible IM code,

First alternative:

1. Compare I with J

2. If equal, go to NEXT

Compare I and J for equality.

Branch to NEXT if op. #1 is true.

Second Alternative:

1. Subtract J from I

2. If not zero, skip.

3. Go to NEXT.

Some of these minis would find the first preferable, some the

second, none the VOA.

Developing alternatives could easily get out of hand

without some restrictions. These might include a limit on

the number of new operators i_ntroduced/ say 40 or 50, and

allowing only expansions of a single VOA instruction and the

reworking of a maximum of 2 (or 3?) sequential instructions.

LITTLE 7--24

Certainly not very many, because one will soon find the IM code

tied to a single machine: the IP has become a DP.

Of course not every alternative need exist in a specific

implementation; that would involve useless processing. The point

is, however, to spend some initial effort designing IM code

that has a good probability of accomplishing the most important

tasks in a wide variety of minicomputers. Then after the se~ond

or third machine has been treated, there is essentially no work

necessary on this subsection.

The astute observer may be thinking well, don't we have

a charade going on here now. Why, if a set of alternatives is

superior for a given machine, shouldn't one just call them and

treat them as replacements, and be done with it? The answer

is that there is no.surety of superiority until the code

environment is examined. For a simple example, take a LITTLE

assignment statement, A= B. The single VOA entry might be

processed to give a two-member alternative, but for the PDP-11,

LD B + register

ST register+ A

the dependent generator, DG, would never, by itself, use this

alternative, since the instruction set includes this direct

correlative of the VOA entry,

MOV B,A

On the other hand, the dependent preprocessor, DP, described

below, might well decide on the basis of subsequent use of either

A or B that the alternative.is preferable, since it may save one

or more machine cycles. In several of the minicomputers the

choice might be reversed for commutative operators. That is,

where the D~ would choose the expanded alternatives, the DPs

would process the VOA w.ith greater ease when the environment

calls for an operation reversal,

A op B + Bop A

The same choice will usually be made by DPs in more complex

optimizations, because in general the VOA entries will be semanti

cally more inclusive.

LITTLE 7--2 5

To wind up discussion of the IP, note that the

only specific function required of the service subsection is

recognition of singlet, doublet and perhaps triplet code

sequences. Finally, the structure of the IP must be that of

sequentially executable routines to facilitate conversion of

one implementation to another.

2. DP Whereas the IP was predominantly involved with

semantic manipulations, the dependent processor focuses on

syntactic problems. Its simplest functions would be like

those mentioned just above. Intermediate function~;include

register allocation and compile time calculations (e.g., in

part D, third example, Honeywell code, the first five instructions

should never be executed). More advanced functions would be the

transformation envisioned in example 1, part D and the optimiza

tion suggested for the FORTRAN-like loop in part C.

A major characteristic of the DP is that in a

first version of any target processor, it may be null.

The result, naturally, will be lousy code.

Since DP development can be put off, here there

will only be brief mention of service requirements and general

structure.

The service needs of the IP are duplicated here,

but are also extended to include recognition of larger

sequential and scattered code patterns. Additionally the

service subsection must be capable of answering questions

concerning the frequency of reference to variables and constants,

perhaps providing general algorithms for register assignment,

setting up indirect triple tables to simplify reordering,

carrying out the subsequent restructuring of the VOA, inserting

new alternatives created by the DP, and finally marking DP

output as obligatory input to DG.

DP structure should receive more thought than the

other subsections as the complexity might argue for a tree-like

or even a recursive form, but a simple, sequential set of routines

would have at least one benefit. The DP is largely tied to a

specific machine, but at least some optimizations will be nearly

LlTTLE. 7-26.

identical for several. Going back again to example 1, part D

we have a clear case. Just as with the IP, portions of a

sequential DP are more easily stolen for transport to a new

implementation.

3. DG The generator is simple. It requests one operation

at a time from the service routines. Each operation is converted

to one or more target ops. The toughest task it has is to

choose between VOA entries and alternatives. It only looks

ahead to ask whether the result of the current operation is

referenced again, and when. Even this question can be eliminated

for some DGs if the service routines can supply quadruples rather

than triples. The DG supplies service routines with the new

operations in two parts -- one headed for the intermediate

resolver, Segment 2, and one for the formatter, Segment 3.

The information it must supply to each segment is implicit or

explicit in previous discussion.

The only additional service function not mentioned

in the accounts of IP, DP and DG that should be present is

debugging code to aid new implernentationsof the dependent

subsections.

In conclusion

It is clear that the approach outlined here, separat

ing independent and dependent tasks into sections and subsections,

will require substantially more effort than writing an assembler

or processor for a single minicomputer. This effort should be

balanced against the arguments given in part B.

Perhaps a gross estimate of the time involved would

include 2 months for detailed design of the processor, 4 to 5

man-months for the first application (excluding DP), and about

1½ - 2 months for each new implementation,

* * *

