
LITTLE Newsletter #10

Interspersing Macros

a. Statement of Problem:

April 2, 1972

J. T. Schwartz

An expressional technique useful in a variety of

programming stituations is the segregation of source text

into two portions: a main part expressing the 'principal'

logic of an algorithm and one or more subsidiary parts

indicating 'auxiliary• actions to be taken in connection

with particular items belonging to the main part. The

point here is that by isolating the logical skeleton of

a process we make its 'main idea' stand out and allow

ourselves to express_ this main- idea without forcing 'details'

to be stated at the same time. The comprehension of details

subsequently supplied is also made easier, since they appear

in a pre-specified context.

The type of situation I have in mind is best made by

considering an example.

A good example is furnished by the expanded Backus

top-down recognizer metalanguage described on pp. 75-90

of the Cocke--Schwartz compiler notes. Describing

a top-down parser always involves three logically separable

tasks:

a. specification of the sequence of syntactic elements

to be sought in an input string (the skeletal 'Backus grammar'

of the language);

b. for each syntactic element appearing in a sequence a),

a directive concerning the action to be taken 1f the element

is missing or ill formed in the input string being parsed;

c. specification of the 'generative' actions to be

taken upon cumplete recognition of each of the component

parts of a syntactic string.

Pars a) and b) together describe the 'branching

structure' of a top-down parsing process; c} describes

the collec·::icn of 'procedural elemGnt.s I attached to this

,

branching structure. It is not unreasonable to write a)

first and c) second. Most of the entries in b) describe an

error-action to be on the failure of a test in a),

and it is therefore reasonable to write b) after a) and c)

have been completed. Note in particular that if a) and

b) are intermixed one gets sequences having the

following flavor:

11 if testl succeeds do actl; if it fails take transfer l;

if text 2 succeeds do act 2; if it fails take transfer2, ••. ".

Seen ten masse', expressions of this kind tend to be

confusing. This same point is made if we observe that the

footnoted Backus description

a) <forstatement> : F¢R <*name>'=' <expr> T¢ <expr>STEP<expr> [*J

c) [~]: call forstaement generator; begin processing

of next statement

b) try next statement form; emit error message 1.
I

emit error message 2; emit error message 3;

emit error message 4' emit error message 5,

go to <shortforstatement>, emit error message 6

is-distinctly cleaner than the interspersed text which it

implies:

<forstatement> := FOR Iif missing try next statement form] <*name>

[if missing emit error message 1] ' • [if missing emit

error message 2] etc.

b. A helpful mechanism, suggested as a partial solution;

As a mechanism allowing textual •footnoting• of the

kind which the above example suggests as useful, the following

is proposed. Introduce argument-free •interspersing macros'.

Using a style like that already used fn the LITTLE macro

producer, we may agree that to define such a macro one writes

LIT'l'LE 9-3

+*<integer>= textl ** text2 ** ... ** textn ***

Example:

+* 1 =goto 1 ** call er(l) ** call er(2) ** call er(3)

** call er(4) ***

Note that the macro-definition shown above is terminated

by the occurrence of three rather than of two asterisks;

the asterisk-pairs which occur separate the several

'successive definitions' of the macro, see below.

An interspersing macro defined in this way is called

by writing /<integer>/, e.g. /1/. Each time the macro

is called, one of the text fragments textl, text2,

appearing in its definition replaces its call. These

replacements are made successively, i.e., textl on the

first call, text2 on the second, etc. The occurrence of

more calls than there are text fragments in the macro's

definition is an error, and yields an error message,

though of course a macro redefinition is always possible,

and renews the sequence of text fragments corresponding to

a given <integer>.

In many cases, one will wish to verify that all the

text fragments appearing in an interspersing-macro definition

have been called by the time t~at a given point in a source

text is reached. The following supplementary mechanism will

allow this: introduce a 'post-call' having the form

/<integer>-/, e.g. /1-/. This simply generates a standard

error message if there still remain unissued text fragments

for th~ inte~spersing macro to which ~he post-call refers.

Interspersing macros of the form suggested can be

used effectively in connection with ordinary macros.

In particular, expansion of an interspersing macro can

produce ordinary macro-calls and vice-versa .. Note in

L

LITTLE 9-4

particular that the syntax of the 'extended Backus'

metalanguage discussed above can be captured pretty

closely by a combination of ordinary and interspersing macros.

For example, the extended Backus (cf. Cocke-Schwartz, p. 95)

(A) <F~RSTAT> = F¢R <*NAME>'=' <EXPR> T¢ <EXPR> STEP

<EXPR>.GENF¢R .• CDEND/.B.ER(4).ER(5) .ER(l) .

• ER(ll) •. ER(l)

can be written as

(B) +*l = B ** ER(4) ** ER(S) ** ER(l) ** ER(ll) ** I Nl**ER(l)**t

/F¢RSTAT / R ('F~R I) F {NAME) R (I= I) s (EXPR) R (IT¢ I)

S{EXPR)R{'STEP')S(EXPR)C GENF¢R., G CDEND.,

/Nl/

Here we have assumed the following overall macros to be

in effect:

-f* R(X) = CALL REC¢(;(X) ., /1/ **

+* F (X) = CALL FIND {X)., /1/ **

+* S (X) = CALL SUBPART (X) . , /1/ **

+* C =CALL**

The text (B) is not too bad a substitute for the slightly

better (A).

