
LITTLE Newsletter No. 18 November 10, 1972 

A new array optimization for basic blocks, J. Schwartz 

and some suggestions concerning the installa-

tion of optimizations into LITTLE. 

l. A new array optimization. Frequently in LITTLE code

sequences that occur in the SETL run-time library, the following 

phenomenon, typical for certain types of recursive programming, 

are encountered. An array A is used as a stack. Code which in 

some original recursive source might have appeared as 

I = I + l 

J = J + 1 

K = I * J 

becomes transformed by the association of I, J, K with stack 

locations relative to a stack pointer Pinto code with the 

following appearance: 

A(l+P} = A(l+P} + l 

A(2+P) = A(2+P} + 1 

A(3+P) = A(l+P) * A(2+P) 

The standard basic block optimization technique is incapable 

of coping with this situation, since it assumes that the 

A(2+P) = ••. changes the whole array A, and hence that A(l+P) 

must be reloaded before its use in the third line. 

We shall now describe an improvement of the standard 

technique which removes this deficiency. 

We assume that the following information will be exposed 

prior to the basic block optimization which we aim to describe. 

Indexed loads and stores have their indices reassociated as 

necessary, and are exposed in the form 

.•• A(n+e} (a use) or A(n+e) = (a redefinition) • 

Here n represe~ts an integer constant w~ose value is known at 

compile time; ea variable, or rather really its value number 

in the sense of the normal basic block optimization procedure. 

Other operations are represented in any conventional and 

convenient way, cf. Cocke and Schwartz, Programming Languages etc., 

p. ff. Our treatment of indexed stores and loads ias 



LITTLE 18-2 

as follows: 

a) As many separate 'auxiliary names' An are 

generated as are needed for all the •.. A(n+e) and 

A(n+e) = which occur in the block. 

b) The basic inherent spoil rules which apply are these: 

bi) an assignment A (e) = x sets the value number n 
of the left-hand side equal to the value number of 

the right-hand side. 

bii) an assignment An(e) = does not spoil the value of 

An' (e) if e and e' are the same.value number and n ~ n 1
• 

biii) any assignment Am(e') = withe'~ e spoils 

the value of every An(e), An 1 (e), etc. 

c) These rules can be enforced as follows: 

For each array name A introduce two quantities 

lastindex(A) and indexcount(A). Here 

lastindex(A) -- is the value number of the last index e 

occurring in a store An(e) = ; 

indexcount(A) is the number of separate indices which 

have occurred in stores A (e) =. n 
successive stores An(e) = , An' (e) = 
but for example consider the pattern 

A (e') = 
m 

We count immediately 

I • • • only once, 

to involve three separate indices since the two uses 

of the index value (number) e are separated by a use of 

the different index value (number) e'. 

The rule for updating lastindex and indexcount is 

clearly this: on encountering a store An(e), execute 

if lastindex(A) ~ e then lastindex(A)=e; indexcount(A)= 

indexcount(A)+l; end if; 



LITTLE 18-3 

d) When a value number is recorded for A (e) 
n 

(on encountering an assignment to or a use of A (e)} n 
record with this value number the current value k ·of 

lastindex(A). At a later point of use in the same basic 

block, A (e) has the same value if and only if no n 
entervening stores Am(e') have occurred. But this 

if k is still equal to 

this scheme: Value 

are associated with pairs 

name' (qualified by a, 

A 

is clearly the case if and only 

lastindex(A). Hence we may use 

numbers (for indexed quantities) 

Am being a 'qualified array 

compile-time constant integer) and e being a value number. 

With each such pair we also associate a quantity 

m 

'creationcount', which records the value which indexcount(A) 

had at the moment at which the current value number was 

associated with the pair A ,e. When A (e) is used, m m 
we check its creationcount. If this is equal to the current 

value of indexcount(A), the value number associated with 

, e; 

A (e) is unchanged, and whatever redundant operation elimination 
m 

is appropriate is performed. In the contrary case, the 

pair A , e 
m 

is issued a new value number, and the 

creationcount associated with this pair set equal to the 

current value of indexcount(A). 

It is certainly desirable to extend this technique 

to an interval-based method which can be used in the 

presence of flow. 

2. Concerning the installation of optimizations into LITTLE. 

The easiest optimizations to install, and those which 

probably have the biggest immediate payoff, are associated 

rather closely with basic blocks. They can be experimented 

with as basic block optimizations, supplemented by additional 

information concerning end-conditions on block exit, which 

would of course have to be collected by a global analyzer. 

The most valuable optimizations are probably 



LITTLE 18-4 

a) basic block redundancy and constant propagation. 
b) some special casing: 

quantities used only for conditional transfers 

should not be reduced to final boolean form; 
divide by 2n, multiply by 2n; 

mask and other 'easy' constants generated by mask 
operations rather than loads; 

quantities to be stored generated directly 

into X6, X7, saving moves; 

and possibly a few others. 

c) suppress store of dead quantities, using global 

live-dead information. 

Going beyond this to an optimization which is more 

truly global, it is desirable to use live-de_ad tracing 

to find interferences within first and second level 

intervals (inner loops), and to do register packing in 

these code sections, probably using the fast Cocke 

packing algorithm described in the SETL notes. 




