
/ I

I
.... ,

I. INTRODUCTION

USERS' GUIDE TO LITTLE
May 1973

Mike Brenn.ar

No. 19

LITTLE is a computer language which is well-suited for

systems programs, especially large programs which must run on

more than one computer. Often a major problem with inventing

complex new programs for modern computers is the extreme diffi

culty of running the program on a computer other than the one

that they were originally debugged on. "Extremely difficult"

means approaching the point where it would be less work to write

the program all over again starting with the flow chart than it

would ae to modify it to work on the new computer.

Two of the major reasons for such difficulty in transporting

programs across computer boundaries are the many nagging ~iny

differences in the languages and, of course, the different word

sizes in computers.

To solve the problem of word size and other hardware incom

patibilities, all code which is machine dependent should be

isolated at the beginning of the program, in the first block of

code, called the "machine block." LITTLE can do this easily

with its excellent macro pre-processor, global quantities, and its

user-defined variable lengths.

To solve the problem of slight differences in language

creeping in between compilers written for allegedly identical

2.

languages on different machines. LITTLE will bootstrap itself

onto each different machine.

Bootstrapping traditionally is the art of leaving a quick

sand trap into which one has fallen, by grasping one's boot

straps and lifting upon them until one has pulled himself out.

In more modern terms, the crane on top of the World Trade Center

which has "pulled" the building up from the ground simulates

what LITTLE is, namely, a program programming itself. This

comes about because the LITTLE compiler is written in the LITTLE

language itself. The object code generators can be inserted for

the particular computer it is running on. Then the compiler can

be compiled by an already existing LITTEL compiler, such as the

one at NYU.

The current version of LITTLE (working at NYU as the lower

level language which supports the SETL system) was invented by

Professor Jack Schwartz in 1968 and originally specified in Cocke

and Schwartz, "Programming Languages and Their Compilers", NYU

1970. It has developed over the years along with the experiences

of the SETL group and this Users' Manual describes the current

implementation. For acomplete discussion of the bootstrapping

process and the implementation of LITTLE, see the System

Programmers' Reference Manual for LITTLE, which will be available

shortly.

3.

II. LITTLE SOURCE DECK

Statements

LITTLE statements may appear on cards on on files which con

tain card images. Statements are written free-field in columns

1 through 72. Column 73 on may be used for identification infor

mation, such as that generated by an automatic UPDATE program.

Blanks are ignored between tokens, but may not appear within

tokens (except when used as characters within character strings).

Statements are separated by semicolons (11-7-8 Punch). All state

ments may be continued on as many lines as you wish. There is

no header statement, but the final statement must be FIN; or an

end-of-file mark.

Comments

There are two forms of comments that may be used in a LITTLE

program. PL/I type comments enclosed between/* and*/ may appear

anywhere that blanks may appear.

but not

ABC= 3 /*comment*/;

ABC=/* comment*/ 3;

AB/* comment*/ C = 3;

In addition, if a token begins with a$, the rest of that

card is treated as a comment. Comments are lexically removed

before any other manipulation of the source text is attempted,

including macro expansion or macro definition recognition.

4.

Labels
Statements may be labelled. Labels are enclosed in slashes

and consist of not more than 200 aophanumeric characters begin

ning with an alphabetic character.

/Zl234/ A= B * C + l;

s.

III. LITTLE EXPRESSIONS

Constants

The only data type recognized by LITTLE is the bit string.

All constants are bit strings, declarable in binary form, octal

form, integer form, character form, or logical form. These

forms are interchangeable and have exactly the same internal

representation. The forms are different in the source text as

a user convenience.

The binary form is a string of l's and O's followed by an L.

101001L 1000.0L l0lL

The octal form is a string of digits from Oto 7 followed by a B.

54B 1027B

The combined binary-octal form is a binary number followed by a

B followed by an octal number. It would be unusual to have more

than 2 binary bits preceding the B.

1B3 is l0llL iB77 is 1 111 111 L

The integer form is a positive decimal integer. LITTLE does not

handle negative integers because that would introduce machine

dependencies. At the present time, the result of integer opera

tors may not exceed 2**60-1.

0 423 1989 4234567

The character form is enclosed in quotes (4-8 punch).

'ABC' 'al.-$/******+=//////**/+***' I/* I

6/

The logical constants are .T. and .T., representing the values

TRUE and FALSE. 'FALSE', or .F., is represented by all zero's;

anything else is taken to be 'TRUE', .T ••

Remember these are all forms of bit strings, they are not

different data types. They all have the same internal represen

tation and are treated alike by LITTLE operators.

Variables

Variable names are alphanumeric characters beginning with an

alphabetic character. Variable names of arbitrary length are

permitted. Each variable used in the LITTLE program must be

declared by specifying its length in bits. This is done with

a SIZE statement.

SIZE X(60) ,FLAG(l) ,LONG(106);

The length of a variable does not depend on the word size

of the computer and can be from l to 511 bits long. However,

some operations do not function across word-boundaries. For this

reason, LITTLE allows one-dimensional arrays. These are declared

using the DIMS statement, which must follow the statement SIZE-ing

the array variable.

SIZE B(60);

DIMS B(34};

This declares an array called B, consisting of 34 variables each

of length 60 bits.

""'"

7.

Subscripting

Variables declared in a DIMS statement are subscripted in

the normal way;

DIMS B{S);

A= B(3);

However, unlike FORTRAN,the subscript may be any valid LITTLE

expression.

Name Scoping

Variables retain their size until re-SIZE-ed later in the

program. In particular, they retain their size across subroutine

boundaries. Thus, all variables are global from the point of

their definition onwards. When a variable is re-SIZE-ed, the

old declaration is lost and the new one is the only one known

by the compiler. Note that thsi unwieldy name-scoping scheme

is to be replaced shortly

Use of variables not appearing in a SIZE statement result

in an informative diagnostic. In this event LITTLE proceeds

SIZE-ing the variable to the word size of the computer.

The bits in LITTLE words are always counting that bit 1 is

the right-most bit, bit 2 is the second from the right, etc.

Data Statements

Data statement~, which store values at load time rather

than execution time, have the form of a list of variables followed

by equal signs and their values, saparated by slashes.

8.

DATA X=l0/Y=34B/Z= 1 JIM 1 /A=lOllL;

In the case of arrays, the whole array may be set in the data

statement:

SIZE ZJ{2);DIMS AJ{3);

DATA AJ = lL,lOL,llL;

This sets AJ(l) to 1, AJ(2) to 2, and AJ(3) to 3.

A mechanism for specification of initial values of arrays, all

of which are identical, will be introduced shortly.

Expressions

LITTLE expressions are composed of variable and function

names, and constants, combined by operators. LITTLE operators,

with the exception of the four arithmetic operators+,-,*,/, are

all composed of a 1-,2-, or 3-letter alphabetic mnemonic, preceded

and followed by a period.

If the right side of the assignment has a SIZE, R, greater

than the SIZE of the left side, L, then the right side is

truncated by only storing bits 1 to L into the address specified

by the left side. If the left side has the larger SIZE then bits

R+l to L will be s.et to zero.

EXAMPLES:

SIZE A(3) ,B (6);

A= 101011L; /* now A is OllL */

B = llOL; /* now Bis OOOllOL */

9.

Monadic Operators (written as a prefix to an expression)

These three, and all operators in LITTLE, work on variables

of any size from 1 bit up to the word size of the computer, with

out any change except in the variables' SIZE statements.

.NOT.

.NB.

.FB.

EXAMPLE:

SIZE

DATA

y =
y =

y =

Boolean minus. Results in bit by bit inversion

of the operand.

Number-of-bits operator. Counts the number of

non-zero bits in the operand.

First-Bit operator. Gives the position of the

first hgih-order non-zero bit, that is, the first

non-zero bit from the left.

X(4) ,y(4);

X=ll;

.NOT. X;

.FB. X;

.NB. X;

/* 11 is 2011L */

/* Y is now OlOOL */

/* Y is now 4, because the fourth bit
from the left is the first non-zero bit*/

/* Y is now 3, since there are 3 non-zero
bits*/

Dyadic Operators

Dyadic operators are written in infix form, between the two

operands.

10.

.EQ.

.NE.

.GT.

.LT.

.GE.

.LE.

.OR.

.AND.

.EX.

.c.

EXAMPLES;

SIZE

equal (Result is .T.(=lL) or .F.(=0L) for the 6
comparison operators

not equal

greater than

less than

greater than or equal to

less than or equal to

Boolean 'OR' of two bit-strings of arbitrary length

Boolean 'AND', e.g., a masking operation

Boolean 'EXCLUSIVE OR' between bit-strings

concatenation of two bit-strings (not limited to word-
size units)

X(4) ,Y(4) ,z (8);

DATA X = lOl0L/y=ll0OL;

z = X.OR.Y; /* z is 0000lll0L *I
z = X.AND.Y; I* z is 0000l00OL *I
z = X.EX.Y; *I z is 00000ll0L */

z = X.C.Y; /* z is 10101100L *I
z = X.LE.Y; */ X is interpreted as integer 10

y is interpreted as integer 12

z is • T.

z is 11111111 *I

11.

Triadic Operator

.T. The field extractor is the triadic operator written in

prefix form:

.T. EXP,CONSTANT,EXP2

EXP determines the first position of the extracted

subfield of EXP2

CONSTANT is the length of the subfield

Remember that in LITTLE you count bits such that the

right-most bit is number one

.F.2,3,A Extracts the 3 bits starting from the 2nd bit from

the right of A .

• F.I,5,B(K) Extracts the 5 bits starting at Bit I of the Kth

element of array B.

In a field extractor on the right side of an assignment

statement then EXP and EXP2 can be any LITTLE expres

sion. If the field extractor appears on the left-hand

side the EXP2 may be only a (possibly subscripted)

variable name which may be preceded by field extractors.

SIZE A(S);

A = .F.3,1,l0llB; /* A is now 00000L */

A = .F.1,2,l0llB; /* A is now 000llL */
A = .F.4,2,l0llB; /* A is now 0000lL */

A = .F.160,5,l0llB; /* A is now 00000L */
.F.2,3,A=S; /* stores 5 (i.e., 101L) in the 2,3,4 bits of A.

A is now 01010L */

12.

Precedence

As in other languages, precedence rules are provided to

reduce the number of parentheses needed to specify a complicated

expression. The following table shows the unusual precedence

. groups of LITTLE operators, arranged in order of increasing

precedence (i.e.,* is of greater precedence than+).

TABLE OF LITTLE OPERATORS IN ORDER OF INCREASING PRECEDENCE

1. The integer comparison operators

.EQ. .NE •• GT •. LT •• GE •• LE.

These operators have a non-standard precedence lower than

.AND. and .OR., because unlike PL/I and FORTRAN, it is not

expected that integers will be the most commonly used data forms.

Therefore while IF(A.LE.B .AND. C.LE.D) is a convenient FORTRAN

expression meaning IF((A.LE.B) .AND. (C.LE.D)), it is expected

that in LITTLE the AND operator will be used much more frequently

as a masking operation than as the logical AND of true-false

expressions, which is its most common use in FORTRAN.

2. integer addition and subtraction+ and -

3. Integer multiplication and division* and/

4. Boolean addition and concatenation of strings .OR •• C.

5. Boolean inversion, bit count, first-bit .NOT.,.NE.,.FB.

13.

6. Boolean multiplication, exclusive or .AND.,.EX.

7. function and array references and field extractors

Execu:table statements

Having constructed the form of LITTLE expressions, here are

some examples of LITTLE statements. First, there are four types

of assignment statements. EXPl, EXP2, and EXP3 represent any

valid LITTLE expressions. Address can be any variable name.

SIMPLE ASSIGNMENT

INDEXED ASSIGNMENT

PARTWORD ASSIGNMENT

INDEXED PARTWORD

ADDRESS= EXP;

ADDRESS(EXP) = EXP2;

.F. EXP,CONSTANT,ADDRESS = EXP2;

.F. EXP,CONSTANT,ADDRESS(EXP2) = EXP3;

Other Executable Instructions

CONTINUE;

GO TO label;

this is a no-op in LITTLE

unconditional transfer to a label

GOBY exp(label-l,label-2,label-3, .•• ,label-n);

computed GO TO just like FORTRAN,

except that exp can be any expression

IF(expr) GO TO label; conditional transfer on non-zero (true)

CALL name (expl, ••• ,expn); subroutine call (with aruments)

RETURN; FORTRAN-type non-recursive return

There are no recursive routines in LITTLE. The statements

just described are the only executable statements in the LITTLE

14.

language except for the INPUT/OUTPUT instructions described in

another section.

In the near future some user convenient statement types

may be added to the LITTLE compiler. These would include

IF ••. , THEN .•. , ELSE, DO, and WHILE statements.

15.

IV. PROGRAM STRUCTURE

LITTLE prgorams are divided into subroutines and functions,

each of which may use SIZE and DIMS and DATA statements to declare

new variables. There is no "main program" in LITTLE. One

subroutine must be named "START" and this is where the system

initially transfers control. Each SUBR OR FNCT block is ended

with an END statement. If the END statement is executed before

a RETURN statement is encountered, the routine will not return,

but the whole LITTLE program will be aborted.

EXAMPLE:

SUBR ADD(X,Y,Z);

SIZE X(60,Y(60) ,z (60);

·z = X + Y;

RETURN;

END;

With this subroutine defined, another routine could call it:

CALL ADD(X,3,H);

This would add 3 to the value of X and store it in H.

FNCT ADD(X,Y);

SIZE X(70) ,Y(60) ,ADD(60);

ADD= X + Y;

RETURN: end;

16.

With this function definition, another routine could call it:

SIZE ADD(60); H = ADD(X,3);

This would have exactly the same effect as the subroutine call

above. Notice that the function must be SIZED both in the

function definition routine and in every routine that calls it.

However, since the SIZE is global, it is actually only necessary

to SIZE it in the defining FNCT statement and the first routine

that calls it, assuming that no other routines SIZE a variable

with the same name as the function. Only the first seven char

acters of LITTLE function and subroutine names are used by

LOADER, though LITTLE itself can handle names up to 200 characters.

17.

V. THE MACRO PRE-PROCESSOR

The lexcial scanner is capable of some rather sophisticated

macro activity. Macro-definitions and calls may appear anywhere

a blank may appear in a source program. The simplest type of macro

is a simple substitution. As an example, let us say that you

wish to SIZE a large number of variables to the word size of the

computer at many random places, but you want the word size of

the computer to change from one machine to another. In the macro

section at the beginning of the LITTLE program, define a macro:

+ * ws = 60 **

Now in a SIZE statement, you may write:

SIZE X(WS);

When the lexical scanner comes to the WS in the SIZE statement,

it looks it up in the hash-coded table of macros and expands WS

to 60. It then turns only the constant 60 over to the parser,

which never sees the token 'WS'.

More complicated macros can be devised which will substitute

for parameters.

+ *NAME(Al,A2,A3,A4,AS, .•. ,An) =BODY**

Macros may have from Oto 15 parameters. The BODY is decomposed

18.

into tokens. Each occurrence of an argument Aj is detected and

flagged when the macro definition is stored in the internal hash

table. The Aj's must be simple variables. To invoke a macro,

it is called with the sequence:

NAME(ARGUMl,ARGUM2,ARGUM3,ARGUM4, ... ,ARGUMn)

The number of arguments in the calling sequence and the defining

sequence must match, although null arguments in the calling

sequence are permitted. That is, two commas immediately following

each other indicate the argument between them is the null string.

The arguments in the calling sequence may be any valid

LITTLE expressions which are balanced with respect to parentheses

and which have no occurrences of commas or semicolons except

enclosed within parentheses. If a semicolon appears, it is

flagged with an error message, and the macro is not expanced,

however this check can be turned off (see the section on LITTLE

SCOPE interface).

EXAMPLE:

+ *NAME(X,Y,Z) = X - Y * Z **

NAME(X/Y,F(G) ,'BBB'.C.'CCC')

macro definition

macro invocation

Macro invocations are expanded by substituting ARGUMj for

Aj for each argument occurring in the macro definition, and

issuing the resulting stream of tokens instead of the stream

initially input. If this transformed stream is then found to

19.

contain a macro invocation, this inner invocation is expanded,

and so on recursively. Thus macro bodies may contain calls to

other macros, though never macro definitions. Any error in a

macro definition or call such as non-matching numbers of arguments

will generate an informative diagnostic and the macro will not

be expanded. If a macro is not closed with '**' before another

is opened with'+*', a closure is assumed. This can save a lot

of other macros from being passed over in the case of a single

mistake.

In addition to the normal variable names (labels) and

integers, you may use, macros are capable of generating their

own variable names (labels) and counters. If one of the special

names ZZZA, ZZZB, ••• ,zzzz appears in a macro body, the following

action takes place. One of 26 counters in a common block in the

compiler is incremented, but only the first time the particular

name occurs in the given macro expansion. If the current value

of the ZZA counter, for instance, is 65, then each occurrence

within the macro body of ZZZA is replaced by an occurrence of

ZZA ~~~65.

Similarly the special names ZZYA,ZZYB, ••• ,zzyz will be

replaced by 5 digit integers.

EXAMPLES:

+*LIMIT{A)= IF(A.LT.ALIM) GO TO ZZZB;

CALL EXIT;

/ZZZB/ **

20.

This could lead to the actual expansion:

IF(XYZ.LT.ALIM) GO TO ZZZB12345;

CALL EXIT;

/ZZZB12345/ ••.•.

This macro may be used several times in a subroutine without

generating duplicate labels. Another example:

+*A= ZZZYZ**

This will make what appears to be a variable in the source

deck to be a constant which will be 1 the first time the ZZZYZ

counter is called, 2 the next time, etc. Thus

I= A; J = A

could expand into:

I= 00005; J = 00006;

These macro-generated tokens are particularly useful when used

as subscripts to long lists of simple array assignments.

Macros may be redefined, and a non-fatal message will be

issued. ~he old definition is lost. To drop a macro, redefine

it without an equal sign.

+*NAfll..E**

21.

This removes it from macro status. If you want a macro to expand

to the null string, i.e., to be ignored by the lexical scanner,

define it like this:

+*NAME=**

If it is defined to be the null string, then

TEXT! NAME TEXT2 will expand to TEXT! TEXT2.

To get around the restriction that a macro definition may

not appear within a macro, the macro-expanded output is permitted to

pass through the macro-definition detector. This permits an

indirect definition to appear, although a direct definition issues

a fatal diagnostic. We prefer a roundabout method to the direct

method which might be made available, since allowing such combina

tions as

+*A= "*B =

acn lead to errors.

The roundabout method is as follows. First define a lexical

concatenator.

+*Q3{Wl,W2,W3) = Wl W2 W3**

Then, to include a macro definition with a macro body, we may

then write some such construction as

22.

+*DEFINE(WD,TEXT) = Q3(+,*WD TEXT*,*)**

The power of this kind of structure is indicated by the

language extensions to elementary LITTLE that can be lexically

added through this type of construction. We can build WHILE

and DO loops, and implement a macro-generated IF ••• THEN ••• ELSE •••

ENDIF statemBJ!nent which all translate into the IF(EXP) GO TO

label; primitive.

To implement a macro-generated non-nestable DO loop of the

form

DO(J,1,N);

TEXT

ENDO;

all we have to do is define two macros:

+*DO(J,A,B) = J = ai

and also

/ZZZA/ If (J.GT.(B)) GO TO ZZZB

Q3(+,*AXXX = ZZZA*,*)

Q3(+,*BZZZ = ZZZB*,*)

Q3(+,*CZZZ = J*,*)**

+*ENDO= CZZZ = CZZZ + l; GO TO AZZZ;

/BZZZ/ CONTINUE**

23.

VI. INPUT/OUTPUT FACILITIES

There are 6 I/O verbs in the LITTLE language {not counting

the additional verbs available through PUP, the Print Utility

Package which may be loaded with your LITTLE program to increase

the I/O power of LITTLE)

READ N,LIST;

WRITE N,LIST;

READB N,LIST;

WRITEB N,LIST;

REWIND N;

ENDFILE N;

read BCD from tape unit N

write BCD

read binary

write binary

rewind tape N

put and end-of-file mark on tape unit N

In the above, N must be an integer signifying the logical

tape number of a tape unit that the operating system recognizes

as existing at the time your program is being executed. The

lists are lists of arbitrary length composed of arbitrary LITTLE

expressions separated by commas. Input and output are both

assumed to be in 8Al0 format in the READ and WRITE cases.

EXAMPLES:

READl,X;

WRITE2, 'Xis' ,X;

24.

VII. LITTLE-SCOPE INTERFACE AT NYU

Here is the complete deck set-up to run a LITTLE program

which adds one and one.

ID,CM150000,Tl0. NAME

LOADER

ATTACH(LEX,LTLLEXF)

LEX.

RFL,150000

ATTACH(LITTLE,LITTLE)

LITTLE

COLLECT,LGT,LTLLlBF

RFL(S0000)

LGO

END-OF-RECORD

SIZE C(l2);

C = 1 + l;'

WRITE 2,'l+l' = ',C;

FIN;

END-OF-FILE

JOB CARD

USE THE MACE LOADER

GET LITTLE FRONT-END

EXECUTE THE FRONT-END

NEED SPACE FOR COMPILER

GET THE COMPILER

COMPILE.

SATISFY EXTERNAL REFERENCES

REDUCE STORAGE

EXECUTE

GREEN CARD

THE PROGRAM

RED CARD

Note that the RFL(S0000) is used because the loader will otherwise

RFL up to the job card CM before reducing to the minimum necessary

for execution of LGO. Very large LITTLE program will require

more field length.

A closer examination of the 'LEX' card is in order. The

default parameters for LEX are:

LEX(INPUT,OUTPUT,LISTING,BINFILE) (XA=i,xE=i,cc=$,SL=i1,MAsc=i,

SLO=i,TF=l,NLO=l,ABT=0)

25.

INPUT

OUTPUT

LISTING

BINFILE

SOURCE FILE

LIST AND STATISTICS WRITTEN ON THIS FILE

MACRO-EXPANDED SOURCE TEXT WRITTEN HERE

INPUT TO THE PARSER

Thus if a very long program is in UPDATE format, and only a

lexical scan is desired, the following control cards would be

used:

ID,CM120000,T50,NAME

LOADER

ATTACH(OLDPL,YOURLITTLEPROGRAMFILE)

UPDATE

ATTACH(LEX,LTLLEXF)

LEX(COMPILER) (TF=0)

END-OF-RECORD

UPDATE CONTROL CARDS

END-OF-FILE

The secondary parameters on the LEX card may be altered as

follows. Setting something to 1 is the same as setting ti to

'ON' or 1 TRUE 1
• Zero is equivalent to either 'OFF' or 'FALSE'.

XA 1

XE l

LITTLE will produce a full global cross-reference

map of all names used in the program.

LITTLE will produce a local cross-reference map for

each routine that is for each 'SUBR' and 'FNCT'

26.

MASC 1

TF 0

ABT l

SLO 1

This enables the macro-argument test which gives a

error if a semi-colon appears as a macro agrument not

enclosed in parentheses. If the test is off and right

parenthesis terminating a macro-argument list is

omitted, the remaining program text may be seen as an

argument to the macro. This will cause the message

'OVERFLOW -ASTL-'. The test will catch the error at

the end of the next statement ending in a semi-colon.

This will turn off the token-file generation (used as

input to parser via the file called BINFILE, the fourth

argument of the program LEX). This should be turned

off when only scanning, with no following parse, to

increase the scanning rate.

Abort on lexical errors to avoid parsing erroneous

text. This is only used in debugging macros. During

normal debugging it is advantageous never to use ABT on

or TF off, but rather always to get a complete parse

immediately, to catch all the errors at once.

SETLISTC OVERRIDE: ignore SETLISTC cards throughout

the program, using only the initial value of the SL

parameter, described next.

27.

SL xy

if bit 1

if bit 2

if bit 3

if bit 4

if bit 5

if bit 6

EXAMPLES:

is

is

is

is

is

Initial setting of the SETLISTC flag 'xy' represents

a two-digit octal constant, that is, 6 binary bits.

The value of the SETLISTC flag may be changed during the

scanning of the input text by the appearance of the

symbol SETLISTCxy anywhere in the input stream. The

symbol SETLISTCxy itself will never be listed, but will

only have the immediate effect of changing the value

of the flag. In describing the meaning of the flag,

remember that LITTLE always counts the rightmost bit

as bit number 1.

1 then all cards read are listed

1 then macro-generated text is also listed

1 then macros are listed with macro generated text

1 then macro text (as listed) is also to be punched

(72 columns)

1 then save the old value of SETLISTC before giving

it the new value

if 1 then restore the old value of SETLISTC, saved by

a previous setting of bit 5 to 1. Only one value

can be saved at a time, the most recent save.

SL 03 causes source text and macro-generated text to be

printed in an interspersed manner. (SETLISTC03)

SL 15 causes macro-generated text to be punched without the

macros showing and can be used for deck editing. (SETLISTC15)

28.

If bit 1 is off, then the only listing that will occur is

that when an error occurs, the previous ten tokens are printed.

However, the line-identifying information in columns 73 to 80 is

not printed out with it, so in large programs the card number,

say 4589, does not help too much in locating the error. This

problem is unwittingly solved by the fact that almost all errors

detected by the lexical scanner also result in parse errors and

will again be detected in the back end. of the compiler

Note that macro expanded li.sting caused by bi ts 2 and 3 of SL

are written to file LISTING, not output. To get them you must

add the following cards: 1-,.

Finally,

cc=%

IN SUMMARY:

ABT

cc

MASC

SL

SLO

REWIND(LISTING)

COPYBF(LISTING)

This would change the end-of-line character(which

indicates that the rest of the line is a comment)

abort on lexical errors

comment character

macro-argument semi-colon test

set initial value of SETLISTC

override occurrences of SETLISTCxy in the text, using

only SL value

29.

TF

XA

XE

token-file write flag

global cross-reference map

local cross-reference map

A closer examination of the 'LITTLE' card follows. The

default parameters on the 'LITTLE' card are:

LITTLE(BINFILE,OUTPUT,LITINIT) (A=l,SL=l,ABT=0,MAP=0)

BINFILE scanned output table from 'LEX' - the input to the

OUTPUT

LININIT

parser

list file

This is the LITTLE "main pr~gram" provided by the

System. It calls the user supplied subroutine

START to begin program execution. If the user

wishes to modify this main program, he should add

these four cards between the JOB-card and the

"LOADER." card:

ATTACH(OLDPL,LTLSYSLIBPL)

UPDATE(Q,8)

RUN(S,,,COMPILE,OUTPUT,LITINIT)

RETURN(COMPILE,OLDPL)

In addition the second record of his deck, that is,

the record following the first end-of-record card,

will contain any update directives he wishes to

change the file. The following card would be

included.

*COMPILE LITINIT

30.

A=O

A=l

SL=O

SL=l

ABT=N

Do not produce binary object code on file LGO

Produce LGO file

Do not list original source program

List source cards

Abort to *exit card if parser detects at least N

errors

ABT=0 Do not abort no matter how many parse errors

MAP=l list storage map

EXAMPLE: To abort if any parse errors:

LITTLE. {ABT=l)

Finally, let us examine the 11 LGO 11 card. By default it is

LGO (INPUT ,OUTPUT ,TAPE3 ,TAPE4 ,TAPES ,TAPE6 ,TAPE7)

where TAPEl is equivalenced to INTPUT and

TAPE2 is equivalenced to OUTPUT.

Thus, the system environment set up for LITTLE at NYU has five

tape units, a printer, and a card reader (all simulated by disk

files) available to the LITTLE user community. The computer

also supports the SETL group, NYU students, and other federally

sponsored projects. In order to prevent conflicts we always

try to speed up the over-all turnaround time for all users.

This is why the RFL(S0000) card appears. Another little

embellishment to speed up the operating system by decreasing

the size of the file-name table is to put in this card after

the "LEX" card:

31.

RETURN(OLDPL,COMPILE,LEX)

and this one after the 'COLLECT' card:

RETURN(LITTLE,BINFILE,LITINIT,LTLLIBF)

IF the whole job runs in 100 seconds or less, then it is not

worth putting in these return cards.

