
· L!TTLE · Newsletter No. 21

-Some--proposa-1s f'or--Improving Accessibility
of' LITTLE Compiler

December 4., 1972
David Shields

In this newsletter we argue that sometime in the near
future a "documentation interlude" is needed to substanttally
-improve the-accessibility of the LITTLE compiler· to further
change and improvement. We indicate how this interlude might be
carried out; and also make a few miscellaneous comments about
the documentation of the LITTLE compiler-.

The "documentation" we describe in this newsletter is
progra.tD: documentation; that is., the source code for the compiler
itself--the form and content of' the comments and instructions in
tbe __ compiler. We do not discuss the- writing of manuals about
tbe __ compiler., .. programmer's guides., etc: Such manuals are certainly
desirable., but our intent here is to make the compiler proper -as

---self-contained as possible.

By "accessibility" we mean the ease with which one can learn
about and work with the compiler by examination of the source
code alone; and also the ease with which modifications of parts of
the compiler me.y be accomplished. Without a:rfecting the entire
compiler. Thus accessibility requires readability and modularity· •.

That the LI'rl'LE compiler is not currently accessible in the
sense. described above is apparent from examination of virtually
any part ot..,'it. ·· The reasons f'or ·this inaccessibility are mo-~1;1~

____ ...,.h,._.i_..s.tonca.l, in that_during. the_b.oo.ts.trapp:tng process., .. the compiler
has gone through representations in at least three language_s

-rr.:tTTLE; · cOMPAss;· -and FORTR(ll() over a time span of several years.
Each such representation had added some "noise" to the compiler
and has resulted in some loss of original algorithm of compiler.

The need for improved accessibility is apparent when we
consider the demands to be placed on the LITTLE compiler once
it has been successfully bootstrapped so that it is written in
LITTLE itself. These demands include:

2

a) Generation of code for machines other than the 6600-IBM 360,
Honeywell 516 (a minicomputer), and a "LITTLE" machine.

b) Improvement of basic block processing with addition of
more machine-independent optimisation.

c) Possible implementation of LITTLE on other 6600 systems.
d) Refinement of current assembler part of compiler to

produce better code for 6600.
e) Addittion of machine-independent optimizations based on

analysis of program flow. Now the implementation of any of these
projects would i_nvolve the modification or replacement of only part
of the compiler--hence the need for modularity; and some under
standing of the compile~_so that the relevant subpart can be
identified and isolated--hence the need for readability.
Moreover, accessibility is necessary not only to make these projects
less di£ficult; but to make them possible. For example, someone
may be loathe to attempt to compile LITTLE for the 516 if it
takes several man-weeks just to determine how the compiler works.

In the preceding paragraphs we have defined accessibility
and shown the need for making the LITTLE compiler more accessible;
we now discuss some techniques which might be used:

Improvements not affecting executability--comments,
variable and label renaming, lexical reordering

Improvements affecting executability~-macro packing,
subroutine renaming, variable reordering,
machine generation of compiler subparts

Improvement of system interface
Debugging facilities
Improvement of transferability of compiler.

All of the improvements just mentioned are intended to improve
accessibility without fundamentally changing the algorithms of
the compiler. If any of these improvements are added, the new
compiler obtained will be substantially the same. The improvements
we propose are similar to those methods of transforming a program
used for program optimisation. Optimisation transformations
aim to produce equivalent programs which run in less time or
use less memory; "accessibility" transformations produce an
equivalent program which is more readable or more modular.

A critical problem is, of course, the verification that
any change has not substantially altered the compiler,· or added
errors.

At worst we will have to run the new compiler against a
(hopefully) comprehensive library of test programs; a test which
requires a substantial amount of computer time; at best, as
when we add comments, we need to verify that we have added only
comments, and have not changed any executable instruction.

Consider a subprogram S which compilers to a binary module B.
Consider S', which is obtained from S by any combination of the
following transformations:

1) Adding or removing comments

2) Renaming variables
3) Lexically reordering the program; e.g., changing

source so all statements start on column 11.
Let B' be the binary module obtained from s•. Then B' is
identical to B, since none of the above transformations above have
any effect on the binary module produced. Such transformations are
best implemented on a subroutine by subroutine basis. They are
verified by compiling the resulting routine, and comparing the
binary module of the result with the binary result of the original
source on a bit-by bit basis; accepting the change if no
bits differ.

Lexical reordering is particularly important when a program
has been modified by several people over a long time span:
Lexical reordering is best done by a program, which reads a
program as input and produces an equivalent program in which
statements and expressions are arranged in a standard format.
An example of such a program is TIDY, available at NYU, which
reformats FORTRAN programs. Such a reordering is attempted in

a minimal fashicn in produci~g the "punchout" file of the
LITTLE lexical scanner, in that

a) statements begin in column 11
b) labels are started in column l (when label defined)

Perhaps the greatest probl~m in constructing a reordering
program for LITTLE is how macros are to be handled. In general
we would want to keep macros unexpanded; however, renaming of
lables and variable is best accomplished by using macros. Thus

4

it seems desirable to add an option to the compiler in which only
selected macros are to be expanded. Al~o, if some macros are
not to be expanded, then we cannot attempt to parse the program
to recognize statement boundaries, subroutine definitions, label
definitions, etc. For example, if the program uses the macro

+ * LABCHK (L, TEXT) = /L / PRINT TEXT; **
then the reformatting rules (a) and (b) above will not suffice to
isolate statements and label definitions. The best approache
seems to use standard rules in formatting macro calls, so that
macros of the form above need not be processed.

Transformations which produce a different binary module
must undergo·a more extensive verification procedure, the new
module must be executed and the resultant output verified. To
minimize the time necessary to carry out such tests, it seems
advisable to distinguish changes which involve only a single
module or small group of modules from those which potentially may
alter the entire comptler. Examples of the simple changes, which
may be verified by running the new module against a small test
library,

a)

b)

are:
renaming of subroutines and functions
reordering of variables,i.e. changing
order in which variables SIZED.

c) Very local changes to a routine, e.g.
changing the content of an error message

Examples of changes which require more extensive verification are:

a) Consolidation or redefinition of several modules to
improve modularity.

b) Change and or clarification of system interface.
c) Change in any fundamental compiler data object,

i.e. adding new field to HA or VDA.
SUch changes require the possible recompilation of the entire
compiler, and verification against a large test library.

A further sort of transformation, which may fall into any
of the above classes, and which seems particularly important, is

5

the "recognition" of macros; that is., the recognition of code
patterns which can be realised by expansion of macros. The resulting
consolidation of code obtained by defining new macros whenever
possible, improves readibility in an obvious way, and aids
modification of the compiler.

Another means of consolidating code is to use programs to
produce repetitive or highly structured parts of the compiler:
Two candidates for this method are the parser proper, and the
error-massage routine.

The LITTLE parser (routine SYNREC) was originally produced by
a FORTRAN program wh~ch accepts a description of th grammar in
a Backus-like form, and produces a FORTRAN parser. H~storically,
changes to the LITTLE grammar, have been effected by changing
the parser itself, so the original (and much more comprehensible)
Back~s grammar has been lost. Now, only slight changes to the
meta-compiler (which is available) are needed to produce a

6

LITTLE parser(due to availabilty of macro-processor). The use of
the meta-compiler would ease changes to LITTLE grammar, and would
provide for a much sounder definition of LITTLE syntax. Similarly,
the error _routines invoked by the parser could profitably utilise
a message-table generator. This would facilitate the change of
message text, and the addition of new messages when the grammar is
changed. Such a generator program is very simple, and is used
in the SETLB system; the SF;rLB generator program accepts input
data of the form 1 "error 1--bad statement, missing semiclolon"
and produces (FORTRAN) DATA statements for defining a
message-array, e.g.

DATA (INDEX(l) = 10)
DATA (TAB(lO) = lOHERROR_l--,)

• • •
DATA (TAB(l4) = lOHSEMICOLON)

An important area of improvement is the identification and
isolation of parts of the compiler which interface with the current
operating system. For example, the compiler contains the statement

CALL FINBIN (1,0)
which results in an efficient packing of a binary token file used
for communication between lexical scanner and parser. Statements
of this sort should be clearly indicated and isolated; otherwise
substantial problems in portability will result.

- -· ·Further areas of relev~nce to . portability issues are
the. following:

a} Isolation and indication of memory management; so that
size of a compiler ar~ay may be easily changed: This requires
knowledge of variables defining size and dimension of an array,
and,if array used to contain indices, or pointers, the size and
definition of pointer-accessing parts of the compiler.
-b }- -Some provision for maintaining the source in a Library
form; this is perhaps best achieved by constructing in LITTLE a
library maintenance routine similar to the CDC progr~ UPDATE.

7

c) Provision for isolating and handling character-set
problems; for example, how to hang the semi-colon on other machines,
how to convert character strtngs.

d) Definition of operating system interface needed for
implementation at other sites, both those with 66OO's and those
wi~h o~~er hardware.

Also, the debugging facilities within the compiler should be
strengthened and extended, if possible. For example; tracing of
loads or stores of key fields in the HA and VDA should be possible
(this is possible in the current FORTRAN bootstrap, but not in
the LITTLE written version).

In summary, we have indicated the need for making the LITTLE
compiler more accessible, and have indicated some approaches to
use and the gains to be expected~ These changes are best
accomplished by a "documentation interlude".in which only changes
of this sort are performed. Once the compiler has been clean up,
modifications and improvements should proceed at a much faster rate
than w~uld be ~therwise possible.

I
I

Appendix-to LITTLE 21

1. on macros:
macros have three uses in LITTLE.
a) operator definit~ons,e.g. FIVEARGS
b) para.meter definitions
c) equivalence declarations

Comments by
Kent Curtis

In cleaning up the code type C macros should be eleminated and
a mininuim set of variab1e names used consistertly throughout
all parts of the code.

Type (b) macros should be isolated in a single bloc at the
beginning of the code with a comment on each explaining the
nature of use of the para.meter

Type (a) macros should be isolated in a single bloc at the
beginning of the code, some of the existing ones are more confusing
than useful, e.g.

+ * GOBK • GO TO SYSBACK **
and should be eliminated. No macro definition should be
embedded in the code.

A fairly simple program should be able to read the compiler
code, make desired substitutions, and write revised code in
standard format.

2. On code organization.
code should be reorganized to show:

1. Explanatory comment on overall compiler organization and
operation, defining parameters,principle sections, and linkages.

2. Macro block refining parameters
3. Macro block defining operators
4. Initialization blocks (well annotated)
5. Main program
6. Principle sections in-execution order

1

.,

2

7. Subroutine or f'unction definitions in alphabetic order.
a. Interf'ace to host system e.g. CALL FTNBIN should ,be

replaced in code body by call to something defined here.
machine dependency should then be isolated to items 21 4 and a.
above (and explained in item l)~ One might hope 1 in f'act 1 to
isolate machine dependence to items 2 and a.

3. Proposed modus operandi
a) Finish bootstrapping compiler as is.
b) Then clean up code a la suggestions
c) Write LITTLE machine simulator (L~S) in LITTLE
d) Write machine dependent IMS-+ host machine translator
e) Bootstrap entire package on 6600
r) Bootstrap entire package on 360/? or 370/?

Revise as experience dictates to complete isolation
and explanation of machine dependency

g) Do comprehensive test on both machines including
making co.mpiler modifications to analyze ease and

indiot-proofness. Revise as experience dictates.
h) Prepare a systems programmers reference manual and a

users manual
1) Give it to the world and elaborate the compiler

itself as desired.

