
(. \

LITTLE Newsletter No. 22

Examples of LITTLE-generated Code

December 12,1972
David Shields

In an earlier newsletter {LITTLE news No. 20) we gave some
examples of the LITTLE source code from the SETL Run-Time Library
{SRTL); in this newsletter, we give some examples of the 6600
machine code produced by the current LITTLE compiler for sample
parts of the SRTL. For each example, we present the LITTLE source
{after macro expansion) and a COMPASS-like representation of the
machine-code generated by LITTLE. Note that the use of a '+'character
in the label field indicates that the instruction begins a new word.

Ex. 1--Simple Stores
The LITTLE source

T = 5000 - MAXZZYZ; TRES = T; RUNNINGBLK = T;
compiler into

+

+

+

SXl
SA2

IX3
BX6
SA6
SA6
SA4
BX7
SA7

5000
MAXZZYZ
Xl - X2
X3
T

TRES
T

x4
RUNNINGBLK

This code takes about 60 minor cycles {a minor cycle is 100 nanoseconds)
to execute, and requires four words. The preferred code, which
takes about 35 minor cycles, and three words, is

+ SA2 MAXZZYZ
SXl 5000

+ IX6 Xl -X2
BX7 x6
SA6 T

+ SA7 TRES
SA6 RUNNINGBLK

Ex 2-- Argument access and branching
The LITTLE source

SUBR GETSTG (N,P);
IF (N.EQ.O) GO TO A09;

GO TO B09;

/A09/ CALL ABORT; /B09 / •••
compilers into
CALLAD BSS

GETSTG BSS

+

+

+

LOl

+
L02

+

SAl
SA2
SA2
MX3
BX4
SB2
NZ

SB2
NE

JP
NO
SAO

1

1

CALLAD

Xl + 0

X2
0

X2-X3
BO
X4., LOl
1

B2., BO, L02
B09

ABORT-1
RJ ABORT

B09 •••

.arg-list address planted

.here as part of call

.entry/exit word

.x2 = value of N

.X3 = 0

.equality test

.full-word no-ops

This code takes seven words, and executes in about 80 cycles
(if ABORT is called). The preferred code., requiring three words

and about 35 cycles (if ABORT called) is

GETSTG BSS 1
SAl CALLAD
SA2 Xl + BO
SA2 X2 + BO

+ NZ X2., B09
RJ ABORT

2

3

Ex. 3--.multiplication by 1

Though the LITTLE source is not available,
the following code-fragment (from routine START) was observed:

SAl T

+ sxo 1

PXO XO, BO .Pack
PXl xi, BO

+ DXl Xl *XO • multiply
UXl Xl, BO .get integer product
SA2 Xl +U .ie., U(xl)

+ MX3 0
BX6 X3
SA6 A2

+ SAl T

SA2 1

+ IX3 Xl +X2
BX6 X3
SA6 Al

The source is probably

U{'I"tl) = O; -T = T + 1 • ,
The preferred code is

+ SAl T

MX6 0
+ SA6 Xl + U

SX7 Xl + 1
+ SA7 T

The longer code takes about 60 minor cyc:'.es, the shorter abou;t 30.

Ex. 4-- simple loop

The LITTLE source

TEMP = 1;
/AOl/ IF (TEMP .GT. 5000)00 TO BOl;

STORAGE (TEMP)= O;
TEMP= TEMP+ l;

which is

+
AOl

+

+

LOl

+

+

+

+

+

GO TO AOl;
a "memory-set"

SXl
BX6
SA6
SAl
SX2

IX3
SBl
PL
SBl
NE
SAl
SB2
SA2
MX3
BX6
SA6
SAl

SX2
IX3
BX6
SA6
J'f

loop, compiles
1

Xl
TE>IP
TEMP
5000

X2 - Xl
BO
X3, LOl
1

Bl,BO,BOl
TEMP
Xl
B2 + STORAGE
0

X3
A2
TEMP
1
Xl + X2
X3
Al
AOl

into

Since loop takes more than 7 words, it doesn't fit in the stack.
Since TEMP not used outside loop, it need not be stored, also
TEMP used as a subscript and thus may be kept in B-register.

4

Thus prererred code 1s

SBl 1

SB2 5000

SB3 1

MX6 0

SA6 STORAGE+ Bl
L SBl Bl+ B3

SA6 A6 + Bl.
LT Bl,B2, L

+ •••
The shorter code fits in stack (main loop is a single word),and
requires about three words for entire loop instead of nine for
longer LITTLE generated code.

Note the perhaps the best way to handle storage-set loops is
to call a storage-set function which is carefully hand coded to

5

fit in stack and stores both STORAGE (TEMP) and STORAGE(TEMP+l)
in single pass thru loop (such a routine is available) similar
remarks apply to storage-move loops.

In summary, the example show that a relatively simple improve
ment in code-generation would probably reduce both code-size and
execution time by a factor of two for typical LITTLE programs.
Furthermore, most of these improvements could be done in a separate
job step, which takes as input the code produced by LITTLE and
produces improved code (on a subroutine by subroutine basis).
This separate code-improver could be developed without any
substantial change in the current LITTLE compiler; the only change
required in the LITTLE compiler is the ability to produce symbolic,
COMPASS-like output, instead of loader input modules (otherwise,
the code-analyser must unpack the loader tables).

