
; 

LITTLE Newsletter No. 24 

Proposals for rrext Stage of LITTLE Development 

D. Shields 
March 19, 1973 

We indicate the major areas with which LITTLE development 
should focus in the near future, and indicate some of the 
subproblems of interest. Our intent is to indicate the problems 

seen to be of immediate interest; and to comment. on the relevance of 
these problems. Suggestions about areas no·t described in this 
newsletter are invited. 

The status of the LITTLE effort at the present time is as 
follows: 
1) A working FORTRAN-written compiler for LITTLE is available. 

2) The lexical-scanner phase of the LITTLE compiler has been 
transcribed into LITTLE and substantially debugged. 

:; ) The LITTLE compiler has been converted to a table- driven 
form, and the new compiler and code generators are currently 
being debugged. We expect the availability of a LITTLE-written 
parser and generators within a month. 

4) LITTLE is already supporting a substantial user community, 
to wit, the SETL-run time library, the development of a 
BAT.M system based on LITTLE, and the development of a 
LITTLE-written operating system supporting the ARTSPEAK 
language for mini-computers. Though 'bootstrap' compilers 
are usually meant only for one-time use, namely, the 
compilation of the compiler itself, LITTLE has already 
obtained, even in the bootstrap form, a user community 
which must be supported. 



5) a new assembler for LITTLE, which promises substantially 
improved code generation at the basic block level, has 
been written, and is just enter~ng the debugg~ng process. 

Thus, within two months we may expect that the LITTLE bootstrapping 
process will be complete; at which point we may contemplate the 
transfer of LITTLE to other machines; moreover, since LITTLE is 
essential to the ongoing development of the SETL language, 
improvements in LITTLE of a 'local' nature (i.e., directed to 
use at NYU) may be advisable. As a consequence, we here consider 
those extensions and refinements of LITTLE which are of immediate 
interest. 

The main areas of concern may be separated into several 
partially overlapping areas: 

human factors-- improving LITTLE from the user's point 
of view 
LITTLE exteneions--changes to the language based on 
experience so far obtained; e.g., the inclusion of 
'DO' and 'WHILE' statements in the language. 
preparation for transportability--preparing LITTLE for 
use on other machines and operating system. This involves 

the isolation of dependencies on the NYU operating system, 
and may involve the creation of support facilities, e.g. 

a LITTLE written version of the UPDATE library support 
program. 

documentation--closing the 'documentation gap' which 
currently limits access to the LITTLE compiler to those 
few people who have been substantially involved in the 
bootstrap process. 

I 

2 



HUMAN FACTORS CONSIDERATIONS 

At the present time, LITTLE gives marginal support to its 
users, in that the compiler itself is unwieldy, requires large 
amounts of core to execute (thus increasing turnaround time for 
LITTLE users), provides a minimal imput/output package, and 
req~ires an extensive (and obscure) piece of job-control language 
to run LITTLE programs. The main desiderata from the user's 
point of view are as follows: 

a) Provide better coordination of compiler listing 
between the scanner and the parser phases--much 
redundan~ output is currently generated. 

b) Provide better input/output facilites, particularly 
in the production of listable output. output is 
currently generated using the 'PUP' package, or 
the'UTILE' package within the compiler itself; 
both package were written to 'minimize coding 
time' while providing a usable input/output function. 
However, both packages are very system-dependent 
and should replaced by facilities modelled along the 

. lines suggested by B.Abes in LITTLE Newsletter number 11. 
e) Support 'modular' LITTLE programs, by providing 

facilities to support libraries of LITTLE-compiled 
modules, and, more importantly, by providing a name
scoping scheme which is less of a disaster-area than 
the current scheme (whose only advantage is its ease 
of implementation). The consequent improvements to 
LITTLE are: 

1) Redefine listing conventions, based on 
experience of SETL-library group. 

2) Provide better input/output by implementing 
(at least part) of Bob Abes's definition of 
LITTLE input/output 

3) Support modularity by converting to MACE 
loader, and by implementing 'name-set' 
conventions proposed by Dave Shields in 

LITTLE Newsletter number 23, and modify 
LITTLE to compile constants and temporaries 
1 locally' within routines, and not globally, 
as at present. 

3 



LITTLE EXTENSIONS. 

LITTLE was purposely defined incompletely, so as to 
defer a precise definition of LITTLE until some user experience 
had been gained. This experience suggests the following 
points of interests: 

a) Add 'IF-THEN-ELSE', 'WHILE' and 'DO' to the 
language, instead of supporting these statement 
forms by macros. This will permit the generation 
of diagnostic messages which the 
macros forbids, e.g., check that do-loops are 
correctly terminated. 

b) Clear up ambiguities in language definition, e.g., 
multi-word field assignments, influence and 
handling of 'sign' bit, etc., by providing a more 
precise definition of the basic operations 
supported by LITTLE. 

c) Clarify handling of• character-strings, even if 
a new data-type must be defined. LITTLE admits 
a_marginal representation of strings, which is 
very machine-dependent. 

d) Provide better input/output facilities, as 
described in the 'human factors' section above. 

e) Improve LITTLE optimisation facilities. 
f) Implement some debugging features, e.g., check of 

validity of subscript values in array references. 
Some form of the 'ASSERT' statement used in the SETLB 
debugging package may be particularly useful. 

4 



TRANSPORTABILITY ISSUES 

The LITTLE bootstrap process should be substantiaily complete 
soon. Accordingly, we should consider those problems 

of interest in transporting LITTLE to other machines. The main 
problems are as follows: 

. a) Improved documentation within the LITTLE system 
itself, so as to make the LITTLE system 'self-defining•. 
Moreover, code fragments resulting from properties 
of the NYU operating system should be clarified and 
isolated. Thus substantial effort is needed to 

5 

document the LITTLE compiler in a machine independent 
manner, so that the compiler is maximally self defining. 

b) Provision of library support facilities similar to 
those features supplied by the UPDATE program used 
to maintain LITTLE at CIMS. 

c) Clarification and definition of the input/output 
facilities needed by the LITTLE compiler. 

d) A machine-independent definition (as much as possible) 
of the loader support function required by the 
LITTLE system. 

e) Moreover, we should anticipate the problems to be 
encountered during the •transportation' process; and 
design procedures to minimize the effort of CIMS-based 
people to support this process. For example, test 
decks which verify correctness of parts of the LITTLE 
system should be constructed, and, more importantly, 
these decks should verify that the new system satisfies 
the minimal assumptions made when LITTLE movable-system 
was generated. e.g., that at least 80 characters 
per line may be printed. 



DOCUMENTATION ISSUES 

As has been mentioned before, the LITTLE compiler at 
present suffers from a 1documantation gap', in that only 
those people who have been involved in the LITTLE bootstrap 
pro~ess have a detailed knowledge of the LITTLE compiler. 
A primary consideration must be the inclusion within the 
compiler itself of sufficient documentation to describe 
both the 'machine-independent' and the 1machine-dependent 1 

components of the LITTLE compiler itself. Immediate documentation 
goals proposed to address these problems are: 

1) Provision of a 'global' variable dictionary defining 
all mac-ros, variables, and codes used in more than 
one routine. 

2) Inclusion of comments of a subroutine nature 
describing the function, of and global assumptions 
made concerning each routine in the LITTLE compiler. 

3) Definition of all 'global' macros at the start of 
the program text. 

4) Description of assumed system functions - for example, 
inclusion within the assembler of a description of 
the structure of the loader-tables which must be 
produced by the LITTLE compiler. 

6 




