
,z::m~~:~;..;:.t;;::.:r::~:;;.;..:....,'.;·..:.t,.;;:::1s....-.ru,s;a~;·IZ'llllll!lfplllllraB11M11 ___ ._e:ill!IIIQll!lll■••11111111n111 ... ~,1--11111a--lllll!!lw-•---------------
•. ~ / fir

·1~; (,

LITTLE Newsletter# 32A

Realisation of the LITTLE

·Interrupt System Described

.in Newsletters #30 and ·32

1. Introduction.

Claudette McDonald
January 9, 1975

This newsletter, essentially identical to the author's

master thesis, describes a realisation of the LITTLE interrupt

system specified in LITTLE Newsletter# 30. (A few restrictions,

of relatively minor importance, are

scheme described in Newsletter 30).

omits three appendices of the full

imposed on the general

The text of this newsletter

thesis: these

appendices are respectively: the corrections to the LITTLE

grammar and intermediate code-generator routine package needed

to define the interrupt-handling extensions; corresponding

corrections to the machine-code generating routines; and a
,:,_,•

sample program written in the extended language.

3

2.0 Precis

The interrupt facilities center around the notion of

a 'process'. frocesses consist of program text and a data

environment. They can communicate with each other through

'public' variables (there is no notion of parameter passing

between processes). Once a process is initialized, control

may be passed to it either by execution of a RECALL state­

ment or automatically in response to an externally generated

interrupt.

The semantic primitives implemented during this project

appear in Table 1. These include declarations, executable

statements, compiler-directed statements, a builtin

function, several builtin global variables, and a name

qualification for 'private' global variables. Optional

clauses are enclosed in brackets.

The clause form

proaessname(array,index)

which appears in many of the primitives described below

implies that proaessname is a process, array is a

previously defined array, and that index is an integer

valued expression.

4

TABLE 1. Interrupt Handling Primitives.

Primitive Function

PROCESS processname DISABLED/ENABLED;IDefinition of a process

(declarations and code for

main routine)

[(code for all subprograms

in process)]

END [processname];

INITIAL SETUP

processname (array, index)

[var1 = datalist1 :

var2 = datalist2 :

varn = datalistn];

INITIAL SETUP

processname(array,index)

FROM label

[var1 = datalist1 :

var2 = datalist2 : ...
varn = datalistn];

with its variables,

main routine, subpro­

grams, and its initial

enable status.

Compile time process

initialization. Space

is reserved in the

designated array begin­

ning at location index

for the process' data

environment (status

package). Process' pri­

vate global variables

are initialized ..

Compile t~me process

initialization for the

process entered first.

Space is reserved in the

designated array-,begin-

. I ning at location 'index
1

1

SETUP processname

(array,index):

RECALL processnarne

(array,index);

RECALL processnarne

(array,index) FROM label:

5

for the process data environment

(status package). Process' pri­

vate global variables are

initialized. After processes are

compiled and loaded, control is

passed to the named process, with

a forced transfer to the speci­

fied label, a label in the

process' main routine.

Runtime process initialization.

Not completely implemented since

reentrant routines are not

supported in LITTLE.

Resumption of a process, at loca­

tion recorded in the process data

environment. Register reload

performed.

Passes control to a process, with

a forced transfer to a label in

the main routine of the process.

Register reload is omitted.

ATTACH n TO Attaches interrupt source to a

processnarne(arra~ 1 index); process. When interrupt n occurs,

the process is resumed beginning

at the location recorded in the

process data environment. Register

reload is performed.

ATTACH n TO

processname(array,index)

FROM label;

ENABLE1

DISABLE;

PUBLIC NAMESET name;

SIZE var1 (siz
1
);

SIZE var
2

(siz
2
);

SIZE var (siz) ; n n

END [PUBLIC NAMESET];

quantityname[(extraindex)]

.PN. processname

(array, index)

6

!Attaches interrupt source to a

process. When interrupt n occurs,

control passes to the process

with a forced transfer to a

label in the process' main

routine. Register reload is

omitted.

Enables all interrupts.

Disables all interrupts.

Declaration of public global

variables, which may be

accessed by any process.

A name qualification to allow

one process to reference private

global variables in another

process. The named quantity is

declared as a private global

variable in the named process.

Array and index locate the place

where the process data environ­

ment is stored. 'extra index' is

used to reference a component of

a dimensioned variable.

PSIZE(processname)

INTMASK

WAS-+ENABLED

SIMULATE IN processname;

7

!Builtin function that returns the

number of words of storage

needed for the process' data

environment.

Builtin private global variable

used to repress and allow

specific external interrupt

sources in a process. Assignment

to variable causes hardware

interrupt mask register reload.

Builtin public global variable,

indicates previous enable status

when a DISABLE statement is

executed.

Compiler-directed statement

prefixed to a family of processes

modifies compilation of LITTLE

source text to include code to

simulate interrupts. Interrupts

are simulated at the points of

subroutine calls and user

defined labels. The specified

process is a user-provided

process which assigns an interrupt

type, mimics core locations or

register changes associated with

INTERRUPT n;

EXEC+COUNT

8

an interrupt·, and recalls

whatever process is attached

to the interrupt type being

simulated. E.g. CALL SUBK;

/* FROM LITTLE SOURCE TEXT*/

is compiled as:

EXEC+COUNT = EXEC+COUNT -

(compile-time estimate of number

of instructions since last

simulated interrupt};

IF EXEC+COUNT < 0 THEN

CALL processname(INTMASK of

current process};

END IF;

CALL SUBK;

used in simulation process to

recall whatever process is

attached to interrupt n.

Built-in public global variable

used to control frequency

of simulated interrupts.

9

3.0 Description of Facilities

The description includes references to semantic primi­

tives found in Table 1 and to LITTLE statements described

in the LITTLE language user's manual, LITTLE Newsletter

Number 33.

3.1 Processes

Our language extension involves the addition of

'processes' to LITTLE. Abstractly a process may be thought

of as a complete program, text plus data environment ready

to run. It consists of a 'main routine' plus any subroutines

or functions which the process calls. It also includes

declarations of all variables and constants (i.e. the

complete data environment) needed for this program to run.

The process is defined as follows:

PROCESS processname ENABLED;

PROCESS processname DISABLED;

/* PROCESS HEADER LINE*/

/* ALTERNATE PROCESS

HEADER LINE*/

[declarations for main routine]

[global declarations for process]

code for main routine

[code for all necessary subprocedures]

END[processname];

The main routine must include at least one label.

The labels designate entry points for the process. These

or

10

are points at which the process will start to perform some

function. The first SUBR or FNCT statement in a process

or an END statement which matches the PROCESS statement

terminates the main routine. Any other LITTLE statement

or declaration including those in the interrupt facilities

may occur in the main routine.

Any well-defined subroutine or function as currently

defined in the LITTLE user's manual can be used as part of

a process.

procedures.

No code or declarations may occur between sub­

Processes need not have subprocedures. A total

program, compiled in a single run, consists of one or more

processes. No code, declarations, or subprograms may occur

between processes.

3.2 Namescoping and Processes

An extension was made to the existing LITTLE namescoping

scheme. In the existing scheme, local and global variables

are defined. Global variables are global to a compilation.

Our extended scheme is described as follows. Variables not

declared within the scope of a NAMESET statement are local

to the subprocedure or the main routine in which they are

defined. Variables declared within the scope of a NAMESET

(between the NAMESET declaration and the next END statement)

are private global variables, available to all the routines

of the process. Any subprocedure in the process may refer

to these variables by using an

11

ACCESS namesetname;

statement, Routines in one process may not access namesets

which are private to another process. However a new

declaration

PUBLIC NAMESET namesetname;

is provided. Variables declared within the scope of such

a narneset may be accessed by any routine in any process

by providing an ACCESS statement in the routine.

To ease the use of global variables, a default first

routine nameset and default access options are currently

provided as control card options. The monoprocess convention

is modifed for multiple processes as follows:

first routine narneset (GS parameter);

if this option is used, all variables declared

in the main routine of a process which would

normally be local to the main routine are gathered

into a private nameset given the name of the process

default access (DA parameter); if this option

is used, each subprocedure in the process is granted

access to all namesets defined or accessed in the

main routine of a process. The effect is as though

the compiler inserted an access statement, with

names of namesets defined in the main routine (inclu­

ding the first routine nameset) and the names of all

public namesets accessed in the main routine, after

each SUBR or FNCT statement in the process.

12

Variables declared in ordinary namesets are known as

private global variables and those-in public namesets are

known as publia gZobaZ variables. Processes may access or

modify private global variables of another process or an

individual basis by using the following syntactic forms:

(a) quantityname .PN. proaessname(array,index)

(b) quanti tyname (extraindexi .PN. proaessname (array, index)

The quantityname occurring in (a) or (b) must be

defined within the text of the named process as a private

global variable. Form (a) is used for unindexed variables

and form (b) is used for indexed variables. In the second

form, extraindex is the one defining the particular component

of a private array in process proaessname. The array and

index parameters serve to locate the process' data environ­

ment and are described in the next section.

13

3.3 Process Data Environment and Status Package

Every process has a data environment consisting of

all declared private global or local variables and arrays,

routine return addresses, and routine parameters. In

addition, the compiler allocates space for a status

package area in which registers and other machine dependent

status words needed to implement the interrupt facilities

are saved~ The status package always contains space for

an instruction location, an enable status bit, and an

interrupt mask; aside from this, the exact size of the

status package is implementation dependent. The exact

amount of space needed to store the status package is

made available to the user through a pseudo-function of

the form

(2) PSIZE(processname)

Note that the value of this function is now provided as

a constant equal to the number of words needed to hold the

status package.

The original design of the interrupt facilities, as

given in LITTLE Newsletter Number 30, included features

needing the support of reentrant routinep, not currently

provided in the LITTLE compiler. If reentrancy is provided

in a future LITTLE compiler, the PSIZE pseudo-function

should return a value indicating the storage space needed

for the 'complete' data environment of a process.

14

One element of the status package, the process'

interrupt mask, is available to the user through a private

global variable named INTMASK. This variable has an imple-·

mentation dependent size equal to the number of interrupt

sources recognized. The j-th external interrupt source

corresponds to the j-th bit in INTMASK. If the bit is 1,

the interrupt source is enabled. The use of this mask is

explained in Section 3.5.

Each process also has an enable status. The mask and

the status are saved whenever an explicit RECALL statement

is executed (this must be done by an assembly language

interrupt handler invoked whenever control exits from a

process in response to an external interrupt). The interrupt

mask is in the second location in the process' data environ­

ment, and the third location is for the process' enable

status which the interrupt handler sets to the value 'l'.

The compiler provides a pointer named CDP which points to

the first address of the data environment for the process

currently running.

15

3. 4 Statements

Our language extension includes statements to perform

interrupt-management and multi-processing related actions.

The INITIAL SETUP statement, which has one of two forms,

(3) INITIAL SETUP proaessname(array,index)

[var 1 = dataliat1: var2 = datalist 2 : ...

varn = datalistn];

(4) INITIAL SETUP proaeaaname(array,index)

FROM ZabeZ

varn = data Zia t] ; n

directs the compiler to reserve storage for a process'

'status package' in a designated array starting at a

specified index. The array must be previously defined

and of some fixed, implementation dependent size, normally

the size of the longest register or status word. The

specified index must be a constant, and proaesaname

a process. The statement may include data initialization
~

clauses for private global variables in the process named

p:t>oaessname.

Such load-time assignments, made within the scope of

an INITIAL SE~UP statement, perform the same function as a

DATA statement occurring within the process. An INITIAL

SETUP statement must appear after the PROCESS header line

of the process to which it refers, and after the declaration

of any global variables it names, with the exception of

INTMASK.

16

The statement form (4) is used to set up the first

process to be entered at execution time. The statement

specifies a label in the main routine of the process named

proaessname. The compiler, after encountering a statement

of form (4), generates a routine named START containing

instructions to recall the process specified in statement

(4) from the designated label. Execution, in the CDC 6600

implementation for LITTLE, begins with a routine named

START. Of course, the statement form (4) may be used for

only one process in a single compilation run. Every other

process in a single compilation run is to be set up using

form (3). The statement form,

(5) SETUP proaessname(array,inde~);

specified in LITTLE Newsletter 30, is not implemented since

it requires reentrancy not currently supported by LITTLE.

Control can be passed to a proc·ess by an explicit

RECALL statement. Two RECALL statement forms are provided.

(6)

(7)

RECALL proaessname (array,inde::c);

RECALL proaessname(array,inde::c) FROM iabel;

When such a statement is executed, the currently executing

process' status package is saved in the exiting process'

data environment area and a transfer is made to the named

process. Specifically the program location counter is saved

in the first location of the status package area, the

interrupt mask register is saved in the second location,

and the process' enable status is saved in the third

location. Any other implementation dependent registers

or status words are saved in following consecutive loca­

tions. The simple RECALL statement (6) effects a jump to

the ·1ocation saved in the data environment of the named

process. The use of the simple RECALL assumes that the

17

named process has been entered at some previous time and

execution was suspended either by the execution of a RECALL

statement within the text of the named process or by some

earlier external interrupt. Within the text of the new

process is the code needed to restore its process-state.

The alternate RECALL form (7) forces a ,transfer to a

particular label in the main routine of the specified

process. Register reload is omitted in this type of process

switching with the exception of the interrupt mask register.

When a RECALL statement is the last statement of a

routine in some process and such a statement is executed,

the process should subsequently be restarted by a recall of

the form (7). If the process is restarted by a simple

recall, an error condition occurs.

External interrupts are treated essentially as autono­

mously forced RECALL operations of one of two forms corres­

ponding to the two types of explicit recalls. Accordingly

the ATTACH statement is provided to connect a particular

process-state to the specified interrupt source.

(8)

(9)

18

ATTACH n TO pPocessname(aPPay,index);

ATTACH n TO pPoaesename(aPPay,index) FROM Zabel;

In treating these statements, the compiler assumes some non­

empty implementation defined set of interrupt sources to

exist; these interrupt sources are numbered· 1,2,3, ••• j. In

the ATTACH statement, n is an integer-valued expression

representing the source of the interrupt. When an ATTACH

statement is executed, information needed at interrupt time

to handle an interrupt is stored in two builtin public

global arrays: the nth location in the array ATTACHMENTS

stores the process entry point and the nth location in the

array ATTINDICES stores the first address of the process

data environment. The execution of an ATTACH statement

automatically detaches an interrupt source from any other

process to which it may have been attached.

When an interrupt occurs, the system behaves as if

one of the two forms of explicit recalls has been executed.

An assembly-language interrupt handler is assumed to 'trap'

all interrupts in the system; using the builtin public global

pointer CDP, this routine saves the process-state of the

interrupted process in the area beginning at the location

pointed to by CDP. The interrupt handler always saves the

program location counter at the time of interruption in the

first location in this data area, the interrupt mask value

at the time of interruption in the second location of this

·area, and always sets the third location to the value '1'.

19

,It changes CDP to point to the data environment of the process

attached to the specific interrupt. source before transferring

to the entry of that process. On the occurrence of interrupt

j, the addresses necessary to start the appropriate interrupt

handling process are found in the jth locations of the

ATTINDICES and ATTACHMENTS arrays. The body of the new

process contains the code to restore its process-state if

such code is necessary. The interrupt handler need not

know whether a 'simple' or a 'FROM label' attach was made.

The variable names CDP, ATTACHMENTS, and ATTINDICES

are defined within a nameset named PUBLOCK and are available

to an assembly-language program by using a COMMON block of

the same name.

The ENABLE statement is provided to enable all interrupts

and the DISABLE statement is provided to disable all interrupts.

The DISABLE operation does not change the value of the process

interrupt mask. These two statements respectively set and

clear a builtin 1-bit public global flag called ENABLE

representing the enable state of the system. This flag may

be accessed but not modified. Its use in interrupt simulation

is described in Section 3.6. When a DISABLE statement is

executed, another 1-bit public global flag called WAS-+-ENABLED,

available to the user, is set to '1' if interrupts were

previously enabled and to'o'otherwise.

20

Since the LITTLE compiler does not at present support

reentrant routines, the user must·use caution in recalling

a given process to perform different functions 'con­

currently'. If necessary, multiple copies of such a

process should be provided, each with a different process

name.

A user's reference to the interrupt handling statements

is provided in.Appendix A.

21

3.5 Enable Status and Interrupt Mask

During the execution of a recall statement and during

the execution of an interrupt handler routine, all interrupts

are disabled. When a new process is entered as a result of

an explicit recall or an implicit (interrupt actuated)

recall, the system enable status either remains disabled

or changes to enabled depending upon the following rules.

When a process is restarted by a simple recall or by action

taken as a result of an external interrupt and a 'simple'

attach, the process previous enable status is restored.

That is, if the process' previous enable status was enabled,

then all interrupts are enabled after reloading registers

and jumping to the location stored in the process data

environment, otherwise interrupts are left disabled.

When a process is restarted from a label, interrupts

are left disabled if the process header statement is:

(10) PROCESS processname DISABLED;

Otherwise, if the process header statement is

{11) PROCESS processname ENABLED;

then all interrupts are enabled at every label in the main

routine of the process. To selectively enable interrupts at

some of the process entry points (i.e. labels in the main

routine), a process header of form (10) is used and the user

is responsible for providing an ENABLE statement at the

appropriate entry points. The example in Section 3.7

demonstrates these cases.

The interrupt mask register i·s reloaded whenever

a process is restarted. It is reloaded from the INTMASK

value found in the process data environment. If the

process has never been entered before, its interrupt mask

value is taken from an initializing statement, i.e., a

DATA statement or an INITIAL SETUP statement. Thus

the interrupt mask register reloading is associated

with process switching. Of course, an explicit assignment

made, to the variable INTMASK also causes reload of the

interrupt mask register.

3.6 Interrupt Simulation and Simulation Processes

When the SIMULATE statement (12)

(12) SIMULATE IN processname;

22

is prefixed to a family of processes, it causes the compila­

tion of simulated interrupts within the source code.

Interrupts can be simulated at subroutine calls and at user­

defined labels, both of which end basic blocks. At these

points the following interpolation is made into the generated

code:

(13) EXEC+COUNT = EXEC~COUNT - (compile ·time estimate of number

of instructions since last preceding simulated

interrupt) /* EXEC+COUNT is a public global counter*/

IF EXEC+COUNT < 0 THEN

save process-state/* a new VOA operation*/

CALL simulation-process '(INTMASK};

/* interrupt mask of current process*/

END IF;

The simulation process shown above is named on the

SIMULATE statement. This routine restores EXEC-l-COUNT to

some reasonable positive value, assigns an interrupt type

23

to be simulated, may call subprocedures to mimic any changes

in core locations or accessible registers which may be

associated with the interrupt, and then recalls whatever

process has been attached to the particular interrupt. Of

course, the simulation process source code is exempt from

modification. That is, no simulated interrupts are compiled

within the simulation process.

The simulation process uses the public global ENABLE flag

and the variable name INTMASK, which gives the value of the

interrupt mask in the interrupted process, to assist in

determining if a particular simulated interrupt source is

enabled. The process-state of the interrupted process is

saved by the compiler before transferring to the simulation

process. To assist in simulating the rest of the recall, an

additional·statement

(14} INTERRUPT n;

is provided. When executed, this statement imitates the

24

action of an interrupt handler, as described in Section 3.4,

by recalling whatever process is attached to interrupt

source n. In statement (14}, n may be an integer-valued

expression.

The simulation process is compiled differently than

other processes. It does not have. a 'status package'

associated with it. The simulation process name, consequently,

should not appear on an ATTACH, RECALL, or any SETUP state­

ment form. The text of such a process, however, is defined

as shown in (1), in the same manner as other processes.

A RETURN statement is allowed in the simulation process'

main routine to permit a return to the interrupted process

when a particular simulated interrupt source is not enabled

within the interrupted process.

3.7 Example of Interrupt Handling Facilities

In this section is an example illustrating the use of

the interrupt handling facilities. Appendix E gives an

example of a program intended to be compiled with simulated

interrupts.

PROCESS T DISABLED;

+*ACTIVE= 1 ** +*INACTIVE= 2 _.*

/* DECLARE ARRAY USED FOR DATA ENVIRONMENT*/

PUBLIC NAMESET PUB;

SIZE STPACK(WS); DIMS STPACK(S * PSIZE(T));

END PUBLIC;

25

PUBLIC NAMESET TPUB; /* INTERRUPT PROCESS COMMUNICATION*/

SIZE GLOBA(l); DATA GLOBA = 0;

SIZE GLOBC(l); DATA GLOBC = O;

END PUBLIC;

NAMESET OWNT; /*EXECUTIVE-PROCESS*/

SIZE STATUS(2); /*COMMUNICATION*/

DATA STATUS= INACTIVE;

END NAMESET;

SIZE W(WS); DATA W = O;

SIZE Y(WS); DATA Y = 0;

/* INTERRUPT 4 COUNTER*/

/* INTERRUPT 2 COUNTER*/

INITIAL SETUP T(STPACK, 1) INTMASK = llllL;

/* PROCESS IS ENTERED AT 'TLABl' DISABLED */

/TLABl/ STATUS= ACTIVE; ENABLE;

/* INTERRUPT SOURCES 1,2,3,4 ARE ENABLED */

/* SUSPEND PROCESS-TRANSFER TO EXECUTIVE*/

RECALL EXEC(STPACK, 2 * PSIZE(T)+l) FROM EXCONT;

INTMASK = 0101L; /* INTERRUPT SOURCES 1,3 ENABLED*/

IF GLOBA CALL BUMPT(W);

IF GLOBC CALL BUMPT(Y);

INTMASK = llllL: /* REENABLE 4 INTERRUPT SOURCES*/

STATUS= INACTIVE;

/* TRANSFER TO EXECUTIVE-TERMINATE PROCESS*/

RECALL EXEC(STPACK, 2 *PSIZE(T)+l) FROM EXCONT;

SUBR BUMPT (VAR) ;

SIZE VAR(WS); /* COUNTS INTERRUPTS*/

IF GLOBA THEN GLOBA = 0; ELSE GLOBC = O;

VAR = VAR + l;

RETURN;

END SUBR; END PROCESS T;

PROCESS X DISABLED;

SIZE X(WS); DATA=0; /* INTERRUPT 3 COUNTER*/

SIZE Z(WS); DATA=0; /* INTERRUPT 1 COUNTER*/

SIZE SAVE(l); DATA SAVE=0; /* ENABLE STATUS*/

ACCESS PUB; /* DATA ENVIRONMENT*/

26

PUBLIC NAMESET XPUB; /* INTERRUPT PROCESS COMMUNICATION*/

SIZE GLOBB(l); DATA GLOBB = O;

SIZE GLOBD(l); DATA GLOBD = 0;

END PUBLIC;

NAMESET OWNX;

SIZE STATUS(2);

/*EXECUTIVE-PROCESS*/

/*COMMUNICATION*/

DATA STATUS= INACTIVE;

END NAMESET;

INITIAL SETUP(STPACK, PSIZE(T)+l) INTMASK = llllL;

/XLABl/ STATUS= ACTIVE; ENABLE;

/* INTERRUPT SOURCES 1,2,3,4 ARE ENABLED*/

/* SUSPEND PROCESS-TRANSFER TO EXECUTIVE*/

RECALL EXEC{STPACK, 2*PSIZE{X)+l) FROM EXCONT;

/* DISABLE INTERRUPTS - SAVE ENABLE STATUS*/

DISABLE; SAVE= WAS+ENABLED;

IF GLOBB CALL BUMPX(X);

IF GLOBD CALL BUMPX (Z);

IF (SAVE) ENABLE; /* RE-ENABLE IF NECESSARY*/

STATUS= INACTIVE;

/* TRANSFER TO EXECUTIVE-TERMINATE PROCESS*/

RECALL EXEC(STPACK, 2*PSIZE(X)+l) FROM EXCONT;

SUBR BUMPX (VAR) ;

SIZE VAR(WS); /* COUNTS INTERRUPTS*/

IF GLOBB THEN GLOBB = 0; ELSE GLOBD = O;

VAR= VAR+l;

RETURN;

END SUBR; END PROCESS X;

PROCESS EXEC DISABLED;

/* EXECUTVE PROGRAM*/

27

ACCESS PUB; /* DATA ENVIRONMENT AND PROCESS-EXECUTIVE

COMMUNICATION */

PUBLIC NAMESET EXPUB; /* INTERRUPT PROCESS-EXECUTIVE

COMMUNICATION */

SIZE SWITCH(l); DATA SWITCH= l;

END PUBLIC;

/* FIRST PROCESS TO EXECUTE*/

INITIAL SETUP EXEC(STPACK, 2*PSIZE(EXEC)+l)

FROM EXECSTART;

DATA INTMASK = llllL;

/EXECSTART/ /* ALL INTERRUPTS DISABLED*/

ATTACH 1 TO V(STPACK,3*PSIZE(EXEC)+l) FROM VLABl;

ATTACH 2 TO K(STPACK,4*PSIZE(EXEC)+l) FROM KLABl;

ATTACH 3 TO V(STPACK,3*PSIZE(EXEC)+l) FROM VLAB2;

ATTACH 4 TO K(STPACK,4*PSIZE(EXEC)+l);

28

/EXCONT/ ENABLE; /* INTERRUPT SOURCES 1,2,3,4 ENABLED*/

IF SWITCH THEN

PUBPARAM = -PUBPARAM+l;

IF STATUS .PN. T(STPACK, 1) = INACTIVE THEN

RECALL T(STPACK,l) FROM TLABl;

ELSE RECALL T(STPACK,1); END IF;

ELSE PUBPARAM = -PUBPARAM+l;

IF STATUS .PN. X(STPACK,PSIZE(EXEC)+l} =

INACTIVE THEN

RECALL X(STPACK,PSIZE(EXEC)+l} FROM XLABl;

ELSE RECALL X(STPACK,PSIZE(EXEC)+l);

END IF; END IF;

END PROCESS EXEC;

PROCESS V ENABLED;

/* INTERRUPT PROCESS FOR SOURCES 1,3 */

ACCESS PUB, XPUB, EXPUB;

INITIAL SETUP V(STPACK, 3*PSIZE(V)+l);

INTMASK = l0l0L;

/VLABl/ GLOBA = 1;

CALL WRITB;

/* INTERRUPTS 2,4 ENABLED*/

/* PROCESS INTERRUPT 1 */

/* LIBRARY ROUTINE*/

SWITCH = l;

RECALL EXEC(STPACK,2*PSIZE(V)+l) FROM EXCONT;

/VLAB2/ GLOBC = l; /* PROCESS INTERRUPT 3 * /

CALL WSTATCHK; /* LIBRARY ROUTINE*/

SWITCH= l;

RECALL EXEC(STPACK, 2*PSIZE(V) +l) FROM EXCONT;

END PROCESS V;

PROCESS K ENABLED;

/* INTERRUPT PROCESS FOR SOURCES 2,4 */

ACCESS PUB, TPUB, EXPUB;

INITIAL SETUP K(STPACK,4*PSIZE(K)+l)

INTMASK = l0lL;

/* INTERRUPTS 1,3 ENABLED*/

/KLABl/ GLOBB = 1;

CALL READ; /* LIBRARY ROUTINE*/

SWITCH= 0;

RECALL EXEC(STPACK, 2*PSIZE(K) +l) FROM EXCONT;

GLOBD = l; SWITCH= 0;

CALL RSTATCHK; /* LIBRARY ROUTINE*/

RECALL EXEC (STPACK, 2*PSIZE (K)+l) FROM EXCONT;

END PROCESS K;

29

4.0 Implementation

Implementation of interrupt handling facilities and

interrupt simulation involves three levels of modification

to the LITTLE compiler. An addition to the LITTLE grammar

30

is made; this is shown in Appendix B. Additions to the

parser-generator (GEN) are made; these additions accomplish

semantic checking, and build preliminary interrupt-related

machine-inqependent macro-code and auxiliary tables as shown

in Appendix C. Finally a set of modifications is made to the

LITTLE assembler phase (ASM), to produce interrupt simulation

code for the CDC 6600; these additions are shown in Appendix D.

The macro-code produced by the GEN phase is designed to be

used for either simulation mode or code generation mode.

Only the simulation mode is implemented in the ASM phase

for the CDC 6600 since this machine does not have hard inter­

rupts. This Section 4 is intended as a supplement to the

LITTLE System Manual and references data structures and

routines described therein.

4.1 Grammar Modification

ROUTINES IN GEN: DEFLIT, ERMET

DATA STRUCTURES IN GEN: LITTAB

LITTLE is defined syntactically by a 'statement' grammar

written in top-down metalanguage. New statements and primi­

tives were added by modifying this 'statement' grammar as

shown in Appendix B. Corresponding syntax error messages are

added to the ERMET routine and additional entries for new

key words were made to the LITTAB. table in the DEFLIT

routine which implements the 'branch-on-literal' speedup

of the parsing algorithm.

4.2 Parser-Generator (GEN) Modification

4.2.A Program Level Syntax

ROUTINES: GENPROC, GENSUB, GENEND, GENRET

DATA.STRUCTURES: VOA, COSA

LITTLE's program level syntax is not represented in

the formal metalanguage but rather it is encoded in GEN.

The program syntax for the basic LITTLE language is a

series of well formed subroutines and/or functions. The

interrupt handling facilities modify the program syntax as

follows:

<program>=> <process> <process* 0>

<process>=> <procheader> <main routine>

<subprogram* 0> END;

<procheader> => PROCESS <*name> ENABLED;

31

=> PROCESS <*name> DISABLED;

<subprogram>=> [any well-formed subroutine or function]

<mainroutine> => [any LITTLE statement including

interrupting handling statementsbut

excluding a SUBR, FNCT, RETURN', or END

statement.]

32

Within GENPROC, GENEND, and GENSUB are syntax checks

to prohibit code or subroutines between processes; to

prohibit code between subprograms, and to check for

a single END card in processes that have no subprograms.

The COSA stack is used to keep track of compound statement

openers and a 'p~ocess-type'_entry for the current process

is the first entry in the COSA stack.

Since the basic unit of compilation for the LITTLE

compiler is a subprogram and some compiler tables are

cleared at the end of each routine, the code and declara­

tions of the main routine are made into a special routine

with no parameters, entered by a transfer instruction.

The name of the process becomes the routine name. GENPROC

calls GENSUB to build a VOA entry for a subroutine; then

GENPROC builds a VOA 'process-operation' entry. This first

subroutine is ended upon encountering a SUBR, FNCT, or END

statement. If the process has other subprograms, then the

GENSUB routine flags the end of the main routine and calls

GENEND to do the standard 'end-of-routine' processing.

If the process has no other subprogrcuns, GENEND flags the

end of the main routine, performs the 'end-of-routine'

processing and then performs any 'end-of~process' processing

needed. As a result of the above actions, all intermediate

code is sent to the assembler phase in the form of sub~

programs, which minimizes the amount of changes needed in the

assembler phase for 'processes'. The detailed changes needed

in target code compilation are directed by.new VOA

operation types within the bounds of a subroutine. The

generator GENRET checks that no RETURN statements occur

in the source code for the main routine.

4.2.B Names coping

ROUTINES: GENNS, GENPNS, GENACC, GENPROC, GENSUB,

GENEND, GENQNAM, INSGLOR, IFAGLOR, INSNAMR

DATA STRUCTURES: NBLOCKTAB, PPNSETS, DEFACCESSTAB,

ACCESSTAB, HA, XHA, VOA, NL

Public namesets are processed by the GENPNS routine

in much the same way as private namesets are processed in

GENNS. The nameset name is saved for use by the ACCESS

statement generator. An entry is made in NBLOCKTAB for the

new nameset and a corresponding entry is flagged in an

auxiliary table, PPNSETS. GENNS flags a nameset's PPNSETS

entry as private and GENPNS flags a nameset's PPNSETS

entry as public. These two routines also set bits in the

ACCESSTAB making the nameset accessible to the current

33

routine. At the end of a process, GENEND flags all private

nameset entries in PPNSETS as nonaccessible to other processes.

The GENACC routine prevents accessing of namesets private to

another process.

In handling the first routine nameset control card

option, GENSUB sets bits in ACCESSTAB making the new nameset

accessible to the first routine. No other modification is

needed since GENPROC reinitializes the subroutine count

for each new process. The defau1t·access option, when

requested on a control card, is implemented by clearing

DEFACCESSTAB at the beginning of each process. In GENEND

at the end of the first routine in the process, ACCESSTAB

is paged into the DEFACCESSTAB table. Then in each

subsequent routine GENSUB pages DEFACCESSTAB back into

ACCESSTAB making all the namesets available to the first

routine of a process accessible to subsequent routines.

34

GENPROC saves process names and their sequential

numbers by calling INSGLOR to hash the name into the XHA

global table, which now includes a new field for the process

number. No entry is needed for process names in the NL

array of global attributes.

The INSGLOR routine hashes new private global operands

into the XHA, also using the new field for the process

number. The IFAGLOR routine, when .requested to check if a

private global operand has been previously defined, checks

the process number field for a match. The process number

field is set to the sequential index number of the process

in which the operand is declared.

The GENQNAM routine intercepts references to private

global variables from another process by calling INSGLOR

to hash the processname provided into the XHA and using

the process number found from that hash probe as the

process number for the private quantity name-XHA hash probe.

35

GENQNAM flags an error if the variable name was not

previously defined in the given process. GENQNAM then calls

INSNAMR to hash the private quantity into the HA symbol

table with a new HA field for the process nwnber.

GENQNAM pages the appropriate attributes of the operand

from the global NL table into the VOA. Of course, a new

VOA entry is made for a particular operand only on its

first occurrence in a subprogram. The EMIT2 routine is

called to build a fetch operation VOA entry for the access­

ing of an indexed private global variable.

4.2.C Statement Processors

ROUTINES: GENPROC, GENSETUP, GENGOL, GENEND,

GENATCH, GENDATEN, GENSIML, GENINTR, GENIMASK,

GENCALL, GENENAB, GENSAVSTAT

DATA STRUCTURES: VOA, HA, NL, ARGSTACK

The new interrupt handling statements are processed by

a group of new generator routines. These routines build

VOA entries using previously defined operation codes where

possible and new VOA operation codes where necessary.

Eleven new operation types are added. The statement generator

routines are invoked by ACTGEN, the action routine in the

parser. This section also discusses the processing of

dictions that form parts of the interrupt handling state­

ments, the processing of. the PSIZE builtin function, the

processing of labels as entry points, and assignments made

to INTMASK.

36

GENPROC, the process declaration generator, generates

the public global arrays and variables used for the execu­

tion time implementation of the interrupt handling facilities.

These are the ATTACHMENTS array, the ATTINDICES array, the

pointer CDP' the WAS+ENABLED flag' the ENABLE flag, and

the counter EXEC+COUNT. They are declared in a nameset

named PUBLOCK. (A LITTLE nameset may be accessed in an

assembly language routine by a COMMON block declaration of

the same name.)

In simulation mode GENPROC checks if the current process

is the simulation process. For the first routine of a

s:imulation process, GENPROC generates a parameter named

INTMASK. For other processes, GENPROC builds VOA entries

to restore the state of the process when reentered by a

simple recall. It also generates a private nameset for such

a process, containing variables named INTMASK and PROCENABLE,

representing the interrupt mask value and the enable state

of the process. The INPROC flag, which is used throughout

GEN for conditional code compilation for processes, is set.

The SETUP statement generator, GENSETUP, when proces­

sing statement forms (3) and (4) explicitly assigns a new

machine address to the variables INTMASK and PROCENABLE.

Using the named aPPay and specified index given in the

statement as a base address. (aPPay(index)) for the status

package storage area. GENSETUP assigns the address of the

second location in the storage area to the variable INTMASK,

37

and the address of the third location in the storage area

to PROCENABLE. The VOA and NL entries of these names are

modified to reflect these new addresses. GENDAT is called

to build 'data' VOA entries for operands initialized on

an INITIAL SETUP statement after checking the global names

tables to verify that they were previously defined as

private variables within the named process. In processing

a statement form (4), GENSETUP saves the processname, array

name, index value, and label name from the statement and sets

a flag to direct the GENEND routine to build a subprogram

named START. After the current routine is processed,

GENEND uses the information saved above to generate a routine

containing a

RECALL processname(array,index) FROM Zabel;

instruction.

Labels in the main routine of a process are intercepted

by the GENGOL routine. This routine builds an 'entry point'

VOA entry and a 'load interrupt mask' VOA entry at each

label. Then it calls GENENAB to emit an 'enable interrupt'

operation for processes that are entered at labels with

interrupts enabled.

GENENAB implements the code expansion for the ENABLE

and DISABLE statements l::y calling the GENIF and GENASIN

routines to emit the following code:

for ENABLE:

ENABLE = l;
PROCENABLE = l;

for DISABLE:

IF ENABLE THEN
WAS-+ENABLED = l;

ENABLE = 0;
PROCENABLE = 0;
ELSE WAS-+ENABLED = 0;
END IF;

GENENAB builds VOA entries for the primitive enable and

disable operations to be used in code generation mode by

the assembler.

The GENATCH routine processes all recall and attach

statements. In processing the attach operation it calls

GENENAB to generate code to disable interrupts for this

critical section and to reenable them if necessary after

the attach, which itself is emitted as a new VOA entry.

38

In processing a recall statement, GENATCH calls GENENAB to

disable interrupts, calls GENSAVSTAT to build VOA entries

for the save process-state operation, and finally builds

a recall VOA entry. The basic block is ended here in

simulation mode for consistency with the processing of

simulated interrupts. No block is ended in code generation

mode for consistency with the action of external interrupts.

In either situation, however, action is taken to save the

enable state of the process before the prel,iminary disable

takes place.

GENDATEN processes the data environment diction

(14) proaessname(array,index)

for the RECALL and ATTACH statements. If reentrancy is

provided in a future compiler, GENDATEN is to be used to

process this diction for the run time SETUP statement (5)

and for qualified name references (a) and (b). GENDATEN

checks that the named array has been correctly sized and

dimensioned. It builds a VOA entry which calculates the

data area base address.

The GENSIML routine processes ·a SIMULATE statement,

saves the process name, and sets flags to indicate simula­

tion mode. It initializes the variable LASTINTR used to

estimate at compile time the number of instructions since

the previous simulated interrupt.

The routine GENINTR processes the INTERRUPT statement

by verifying that the statement occurs inside a simulation

process. It calls GENASIN to generate the assignment

CDP= ATTINDICES(interrupt source number)

and builds an interrupt-VOA-entry which effects an

39

indirect jump according to the address in the array element

ATTACHMENTS(interrupt source number)

The 'interrupt source number' is the value of the n-expres­

sion given on the interrupt statement (14).

An assignment to the variable INTMASK is handled by

the GENIMASK routine. Interrupts are disabled during this

critical code section by a call to GENENAB. The parser

calls GENASIN to emit code for the global variable assign­

ment. GENIMASK subsequently builds the VOA entry need.ed in

code generation mode to load the interrupt mask register.

GENIF and GENENAB are called to generate code which reenables

interrupts if necessary.

The PSIZE builtin function is intercepted in the GENCALL

routine. An implementation dependent constant value is pushed

on the ARGSTACK to be used in whatever expression is

being parsed.

4.2.D Interrupt Simulation

40

ROUTINES: GENLABL, GENCALL, GENSAVSTAT,GENSIM,EMCALL

DATA STRUCTURES: VOA

Interrupt simulation is handled by the GENCALL routine

for subroutine calls and by the GENLABL routine for user­

defined labels. GENSIM is called to estimate the number of

instructions since the last simulated interrupt and to call

other generators to emit preliminary code from the sequence

specified in Section 3.6. GENCALL and GENLABL call the.

GENSAVSTAT routine to build a 'save process-state' voA·entry,

and use the EMCALL routine to generate a call to the simula­

tion process.

4.2.E Miscellaneous

ROUTINES: BLOCKEN, COSADMP, VOAJUNK

DATA STRUCTURES: KIND, TYPES, JOBLAB

Entries are made for the new VOA operations in the KIND

array, for use by the BLOCKEN routine, in processing basic

blocks.

New entries are made in the COSADMP routine's TYPES

array. and in the VOAJUNK routine's JOBLAB table and GOBY

statements for printing the VOA and COSA tables during

compiler debugging.

41

The following table summarizes VOA fields of all

new, interrupt-related VOA entries. The operations and

fields are used to generate target code for both simula­

tion and code generation modes unless specified otherwise.

Opcode Operation Field

66

67

68

69

*70

71

data area INPl

base addr INP2

OUP

save NAYM

process- INPl
state

attach

recall

INP2

INPl

INP2

INP3

ARGBEG

ARGLEN

INPl

INP2

INP3

inte~rupt INPl

INP2

process
opener

no
fields

Use

VOA ptr to array

VOA p~r to index

VOA ptr to result

HA ptr to label

VOA ptr to CDP

LABLIST ptr to label

HA ptr to process entry point

VOA ptr to data area base address

VOA ptr to interrupt source number

XARG ptr to builtin arrays

number of arrays ~= 2)

(first XARG - VOA ptr to ATTACHMENTS)

(second XARG- ·• VOA ptr to ATTINDICES)

HA ptr to process entry point

VOA ptr to data area base address

VOA ptr to CDP

VOA ptr to ATTACHMENTS array

VOA ptr to interrupt source number

[continued]

42

Opcode Operation Field Use

72 entry NAYM HA ptr to entry point name
point

**73 enable no
fields

**74 disable no
fields

**75 load INP2 VOA ptr to INTMASK
interrupt
mask

76 restore INPl VOA ptr to CDP
process
state INP2*** switch for enable or disable

interrupts

* operation used in simulation mode only

** operation used in code generation mode only.

*** field used in code generation mode only.

43

4.2.F Variable Dictionary (Generator Phase)

BEGARRAY

Saves array name, as a self-defined string, for process

to be invoked at first. Saved in GENSETUP, used in GENEND.

BEGINDEX

Saves index value, as a constant, for process to be

invoked at first. Saved in GENSETUP, used in GENEND.

BEGLABL

Saves label, as a self-defined string, for process to

be invoked at first. Saved in GENSETUP, used in GENEND.

BEGPROC

Saves process name, as a self-defined string, for

process to be invoked at first. Saved in GENSETUP, used

in GENEND.

DOUBLENDFLG

If OFF, checking for a process without subprograms.

ENDFLG

Flag to prevent interrupt simulation at point of call

to the 'abort system' routine.

GENRECALL

HA

Flag set if generating a RECALL operation, used in

GENENAB to prevent changing value of process enable

status.

New field used for private global variables.

PROCNUM

gives process number (NUMPROC) in which variable was
defined.

IMASKFLG

Set if assignment to INTMASK ·being processed.

IMPLPSIZE

Implementation dependent dimension of status package

area for a single process.

INITBEGFLAG

Set if 'INITIAL SETUP FROM label' statement

encountered. used in GENEND to initiate generation

of s·TART routine •

INPROC

Flag set if compiler is processing a 'process'.

Flag set in GENPROC.

INPROCHDR

44

Flag set if processing the main routine of a process.

INSIMLPROC

Flag set if processing the simulation process.

INTHNDFCL

Flag set if interrupt handling facilities are being

used. Used in GENSUB to prohibit singular subprograms

outside the bounds of a process.

INTRSTAT

Set if process' initial enable status is 'enabled',

OFF if 'disabled'.

LASTINTR

VOA pointer to beginning of preceding interrupt simula­

tion code sequence. Used to estimate the ntlillber of

instructions since last simulated interrupt.

MDATENVSZ

Implementation dependent size needed for arrays, used

to hold process' data environment.

NEVERINPROC

Flag set at beginning of a compilation. Used to

perform process initializations needed only once,

such as the generation of a public nameset used for

the interrupt handling facilities.

NUMINSTR

Cowiter for number of VOA operation entries. Used

in simulating interrupts.

NUMPROC

Number of processes encountered in compilation.

NUMSOURCES

Implementation dependent value giving the number of

interrupt sources re.cognized in the system.

PPNSETS

Table used to indicate type of nameset. Values may

indicate public, private to process being compiled,

or private to another process.

PNTOUSE

Process number to use in HA, and XHA hash probes

for private global variables. Value used to set a

new field in the HA and XHA.

PRCHECK

Flag set when hashing a process name into the global

names table.

45

PROCBLOCK

'
Machine block number (nameset.number) of compiler

generated private nameset.

PROCNAME

Name of process being compiled, as a self-defined

string.

PUBPROCBLOCK

Machine block number (nameset number) of compiler

generated public nameset.

QUALNAME

46

Set if processing private global variablesfrom another

process. Used in IFAGLOR to omit checking the

ACCESSTAB and in INSNAMR to include checking the

'process number' field for an HA probe.

SIMLFLAG

Set if in simulation mode. Used to generate simulated

interrupts •

SIMLPROC

Name of the simulation process, as a self-defined string.

VOA

New operations for interrupt-handling are:

OPCODE Operation Code

66 DATENV, calculates data area base address

67 SAVSTATE, save process-state

68 ATTACH

69 RECALL

[continued]

XHA

OPCODE operation code

70 INTERRUPT

71 PROCESS, opener

72 ENTRY POINT, multiple entry point for entering

from label

73 ENABLE

74 DISABLE

75 INTERRUPT MASK LOAD

76 RESTORSTAT, restore process-state

47

New field used for private global variables

XPROCNUM

4.2.G

gives process number (NUMPROC) in which variable

was defined.

Macro Dictionary (Generator Phase)

GETNAME (HC, R)

Gets HA pointer of a previously defined variable.

Risa self-defining string and HC is its HA index

returned.

GETPROCNUM(XGLHAP, XHAP)

Hashes process name into global hash table XHA by

using IFAGLOB macro. XHAP is the HA index of the

process name. If name found, XGLHAP is the XHA index.

Otherwise, XGLHAP is o.

LASTVOA

Last VOA entry built •

. PROCINVOA(XHAP)

Builds a 'SUBR' type VOA entry for a process, XHAP

is its HA pointer.

4.2.H Routine Dictionary (Generator Phase)

GENLABL.

Called from ACTGEN, uses GENGOL to generate user­

defined labels.

GENATCH(OPTYPE,LTYPE)

Generator for ATTACH and RECALL statements. Builds

new VOA entries.

generators.

OPTYPE = 1,

OPTYPE = 2,

LTYPE = 1,

LTYPE = 2,

GENDATEN

Called from ACTGEN an,d other

generate attach sequence

generate recall sequence

simple recall or attach

recall or attach ••• from label

Generator for data environment base address. Builds

VOA for address calculation. Called from ACTGEN and

other generators.

GENENAB(EDW)

Generator for ENABLE (EDW = 1) and DISABLE (EDW = 2)

statements. Called from ACTGEN and other generator

48

routines. Calls GENASIN and GENIF for part of

implementation. Builds 'enable' and 'disable'

VOA entries for code generation mode.

GENIFEND

Implements an 'END IF' statement, closing a compiler

generated 'IF' statement.

GENIMASK(CASE)

49

Called from ACTGEN to process an assignment to INTMASK,

builds a VOA entry for the register load.

CASE= 1, calls GENENAB to disable interrupts before

the assignment.

CASE= 2, calls GENENAB to reenable interrupts after

building 'load-interrupt-mask' VOA.

GENINTR

Generator for interrupt statement. Called from ACTGEN.

Builds VOA entry. Calls GENASIN for assignment to

CDP variable.

GENPNS

Generator for public nameset declarations. Called from

ACTGEN.

GENPROC(STAT)

Generator for process declaration statement.

STAT= 1, process entered enabled;

STAT= O, process entered disabled.

Generates necessary public and private global

variables for interrupt handling. Calls GENSUB to

initialize a new routine. Does program level syntax

checking and builds 'process entry' and 'restore

process state' VOA entries.

·GENQNAM(OPTYPE,INDXD)

Generator for reference to private global variables.

Called from ACTGEN. Checks if quantity named is an

appropriately predefined private global variable.

so

OPTYPE = O, access variable; INDXD = 0, simple variable.

OPTYPE = 1, modify variable; INDXD = 1, indexed variable.

Calls ARITH to generate fetch operation for indexed

variable.

GENSAVSTAT(LABPTR)

Generator for save process-state operation. Called by

GENATCH for recall statement and by GENCALL and GENLABL

for interrupt simulation. Builds VOA entry.

GENSETUP(CASE, SUBCASE)

Processes the various SETUP statements. Called by ACTGEN.

CASE= 1, INITIAL SETUP

CASE= 2, INITIAL SETUP

CASE = 3 , SETUP ••.

FROM LABEL •.•

CASE= 4, data initializations.

SUBCASEs 1-4, same as four cases of GENDAT·routine.

GENSETUP calls GENDAT to build VOA entries for data

initializations.

GENSIM

Implements preliminary code for interrupt simulation.

Called by GENCALL and GENLABL.

GENSIML
Processes simulate statement. Saves process name and sets

appropriate compiler flags. Called from ACTGEN.

51

4.3 Assembler (ASM) Modification

Our addition to the assembler (ASM) program consists

of new code generator routines and an addition to the loader

tables produced by the compiler for the CDC 6600.

4.3.A Code Generation

ROUTINES: ASSEMBL, ASMPROC, ASMDATENV, ASMRCLL,

ASMATCH, ASMSVSTAT, ASMINTRPT

DATA STRUCTURES: OPKIND, CB, VOA

The new code generation routines are invoked from

ASSEMBL, the main routine of ASM, using the VOA operation

description from the OPKIND table. The ASMPROC routine

invoked by a 'process-operation' VOA entry reinitializes

the buffer, -CB, to begin a ,code block that is entered by

a transfer instruction and without parameters.

The code generator routines ASMPROC, ASMRCLL, ASMATCH,

ASMINTRPT, ASMSVSTAT, and ASMDATENV, generate in-line code

for the 'restore process-state', 'recall', 'attach',

'interrupt', 'save process-state', and 'calculate data

environment base address' VOA operations respectively.

Constant folding code optimization is performed in the

ASMATCH and ASMINTRPT routines.

4.3.B Loader Table Addition

ROUTINES: ASSEMBL, LDRENTR, LDROUT

DATA STRUCTURES: LGOEXENTPNTS, VOA, ENTR

The LDRENTR routine is invoked by the ASSEMBL routine

upon encountering an 'entry point' VOA entry. LDRENTR

sayes the name and address of the process' multiple entry

points in the LGOEXENTPNTS table, to be written out as part

of the ENTR loader table by the LDROUT routine.

4.3.C Variable Dictionary (Assembler Phase)

LGOEXENTPNTS

Table for extra entry points. To be written out as

part of the ENTR loader table.

4.3.D Routine Dictionary (Assembler Phase)

ASMATCH

52

Code generator for attach operation, called from ASSEMBL.

Emits code to save process entry point and process data

area address in run-time tables.

ASMDATENV

Code generator for calculating base address of a

proce~s data environment area. Called from ASSEMBL.

ASMINTRPT

Code generator for interrupt operation. Emits code to

transfer to process attached to a particular.interrupt

source. Called from ASSEMBL.

ASMPROC(OPSWITCH)

Initializes a process' main routine (OPSWITCH = O)

and generates code to restore the process-state

(OPSWITCH = 1). Called from ASSEMBL.

ASMRCLL

53

Code generator for recall operation. Emits code to save data

area base address of next process and to transfer to

next process. Called from ASSEMBL.

ASMSVSTAT

Code generator to save process-state. Saves program

location counter by generating code to save a label

address. Called from ASSE:M.BL.

LDRENTR(ENTNAME)

Routine to save name and relocation address of an

entry point in the table LGOEXENTPNTS. ENTNAME is the

entry point name-string. Called from ASSEMBL.

54

APPENDIX A. Guide to the LITTLE Interrupt Handling Statements

In this appendix, we present the statements of the

Interrupt Facilities extension to the LITTLE language.

We begin with an index of the statement names and formats:

PAGE NAME

ACCESS

ATTACH

A. SIMPLE

B. FROM LABEL

DISABLE

ENABLE

INTERRUPT

NAMESET

PROCESS

A. ENABLED

B •. DISABLED

PSIZE

PUBLIC NAMESET

RECALL

A. SIMPLE

B. FROM LABEL

FORMAT

ACCESS ID1,ID2, ••. ;

ATTACH El TO ID(A,E2);

ATTACH El TO ID(A,E2) FROM L;

DISABLE;

ENABLE;

INTERRUPT E;

NAMESET ID;

PROCESS ID ENABLED;

PROCESS ID DISABLED;

PSIZE (ID) .

PUBLIC NAMESET ID;

RECALL ID (A, E) ;

RECALL ID(A,E) FROM L;

[continued]

PAGE NAME

SETUP

A. INITIAL

B. FIRST TO BEGIN

SIMULATE

FORMAT

INITIAL SETUP ID(A,El)

V = VAL: V = E2 , E 3, ••• ;

INITIAL SETUP ID (A,E 1) FROM L

V = VAL: V = E2,E3, ••• ;

SIMULATE IN ID;

55

ACCESS statement

PURPOSE

56

To allow a subprogram to refer to public or private

global variables, previously defined in a NAMESET or PUBLIC

NAMESET statement, and to indicate the namesets to be

accessed.

FORMAT

ACCESS NAMESETl, NAMESET2, ••• , NAMESETK;

ACCESS NAMESETl;

ADDITIONAL RULES:

1. Except as noted below, all rules given for the

ACCESS statement in the User's Guide for the basic

LITTLE language are applicable.

2. Routines (main routine or subprogram) ~ay access

any previously defined public nameset.

3. Routines may access any previously defined ordinary

(priv?te) nameset, defined within the same process.

Routines may not access private namesets defined in

other processes.

EXAMPLES:

ACCESS INTRVARS, PROCTABLE;

ATTACH (simple) statement

PURPOSE

To associate an interrupt coming from a particular

source with a process to be recalled when that interrupt

occurs. To indicate the location in the process where

execution is to begin, to name the process and to locate

the process' data environment.

FORMAT

ATTACH C TO ID(A,E);

RULES

57

1. C specifies the specific interrupt source and must be

a positive integer-valued expression. We assume the

set of external interrupt sources recognized by the

system is numbered 1,2,3, ••••

2. ID must be a process name, A must be a previously

defined array, and E must be an integer-valued expres­

sion. ID identifies the process to be recalled and

array A at location E specifies the beginning of the

process data area.

3. The execution of an attach statement automqtically

detaches an interrupt source from any other process

to which it may have been attached •.

4. When external interrupt C occurs, the process-state

of the current process is saved in its data

environment and control transfers to process ID.

[continued]

Execution begins from the instruction recorded in

process ID's data environment.after registers and

status indicators are restored from values recorded

in the same data area. The process' enable status

is also restored.

EXAMPLES

ATTACH 1 TO PROCl(ARRAY,l);

ATTACH N-1 TO PROC2(ARRAY2,M);

58

ATTACH {from label) statement

PURPOSE

To associate an interrupt coming from a particular

source with a process to be recalled when that interrupt

occurs. To name the process, to locate the process' data

env~ronment, and to indicate the location in the process

where execution is to begin.

FORMAT

ATTACH C TO ID{A,E) FROM L;

RULES

59

1. C specifies the specific interrupt source and must be

a positive integer-valued expression. We assume

the set of external interrupt sources recognized by

the system is numbered 1,2,3, •..•

2. ID must be a process name, A must be a previously

defined array, E must be an integer-valued expression

and L must be a label in the main routine of the

process. ID identifies the process to be recalled,

and array A at location E specifies the beginning of

the process data area.

3. The execution of an attach statement automatically

detaches an interrupt source from any other process

to which it may have been attached.

4. When external interrupt C occurs, the process-state

of the current process is saved in its data environ­

ment, and control transfers to process ID.· Execution

begins there at label Lin the main routine after

reloading the interrupt mask register from the value

recorded in the process' data environment.

EXAMPLES

ATTACH 1 TO PROCl(ARRAYl,1) FROM Ll;

ATTACH N-1 TO PROC2(ARRAY2,M) FROM L2;

60

61

DISABLE statement

PURPOSE

To disable all interrupts; to clear a public global flag

'ENABLE' indicating the system enable status; to save the

previous system enable status.

FORMAT

DISABLE;

RULES

1. When the disable statement is executed, the previous

enable status is saved in the 1-bit global public

variable WAS+ENABLED. This variable is set to 1 if

interrupts were enabled, and is set to O if interrupts

were disabled.

2. Execution of the disable statement clears the

1-bit public global variable ENABLE. This variable

may be accessed but not modified.

3. The user is advised to save the value of WAS+ENABLED

after a:Q.Y invocation of the disable statement since

this variable's value may unpredictably be modified

by other interrupt handling statements.

EXAMPLES

DISABLE;

PREVENAB = WAS+ENABLED; $SAVE PREVIOUS STATUS

IF PREVENAB CALL BACKUP;

62

ENABLE statement

PURPOSE

To enable all interrupts; to set a public global

flag indicating the system enable status.

FORMAT

RULES

I.

ENABLE;

When the enable statement is executed, a one-bit public

global flag, ENABLE, is set. This variable may be

accessed but not modified.

2. All interrupts not masked out by the interrupt mask

are eriabled when an enable statement is executed.

The interrupt mask is represented by a private global

variable. INTMASK, of a size equal to the number of

external interrupt sources recognized in the system.

The jth bit in INTMASK corresponds to the jth interrupt

source. When the jth bit is 1, the interrupt source

is individually en~bled. An assignment to the variable

INTMASK causes a reload of the interrupt mask register.

EXAMPLES

INTMASK = 7; $ BECOMES CURRENT MASK VALUE

ENABLE; $ INTERRUPTS 1, 2, 3 ARE ENABLED

INTMASK = 3; $ INTERRUPTS 1,2 ARE ENABLED

63

INTERRUPT statement

PURPOSE

To recall a process attached to a particular interrupt

source: to specify the interrupt source.

FORMAT

INTERRUPT NUM;

RULES

1. NUM must be a positive integer-valued expression. The

interrupt sources in a particular system are numbered

1,2,3, •••• NUM refers to a particular interrupt source.

2. Some process must have previously been attached to the

specified source.

3. An interrupt statement may be used only within a simula­

tion process, i.e. , a process named on ·a SIMULATE

statement.

. 4. Upon execution of an INTERRUPT statement, control passes

to the process currently attached to interrupt source NUM.

Execution begins in that process either at a location

recorded in that process' data environment or from a

label in the process' main routine, depending on which

type of ATTACH statement was .used.

EXAMPLES

INTERRUPT 6 ;

INTERRUPT NEXTOEXEC;

64

NAMESET statement

PURPOSE

To indicate the name of a set of private global variables,

to begin definition of a set of private global variables.

FORMAT

NAMESET ID;

RULES

The rules are the same as those for the NAMESET state­

ment in the LITTLE User's Manual except rule #5, which is

replaced by:

Sa. Variables in a nameset may be referred to in other

subprograms in the same process, by using the

ACCESS statement.

Sb. No variable may belong to more than one nameset

defined within a single process.

Sc. Nameset names must be unique within a single compilation

run.

EXAMPLES

PROCESS A DISABLED;

NAMESET B;

SIZE SYMBA (WS!;

SIZE SYMBB(WS); DIMS SYMBB(lOO);

END NAMESET;

END PROCESS;

PROCESS X DISABLED;

NAMESET Y;

[continued]

SIZE SYMBA(WS); $ THESE VARIABLES ARE

SIZE SYMBB(WS); $ DIFFERENT FROM THOSE

DIMS SYMBB(l00}; $ IN PROCESS A

END NAMESET;

END PROCESS i

65

66

PROCESS statement

PURPOSE

To give the name of a process; to indicate its initial

interrupt enable status; to initiate definition of a process.

FORMAT

PROCESS ID ENABLED;

PROCESS ID DISABLED;

RULES

1. The PROCESS statement is an opener. The body of a process

consists of all the following statements up to the

matching END statement.

2. The body of a process may not contain a PROCESS

statement.

3. The main routine of a process consists of all the

declarations and statements following the PROCESS

statement up to the first SUBR, FNCT, or END statement.

RETURN statements are not permitted in the main routine.

4. The body of a process consists of a main routine followed

by any number of well-formed subprograms. Processes

need not have subprograms.

5. No code may appear between subprograms. No code or

subprograms may appear between processes.

6. If execution is attempted past the last statement of

the main routine, an error condition occurs. Control

does not return to a process eptry point or to any

previously executing process.

7. Routines in one process may not CALL routines in

another process.

67

8. Execution of a process may begin with the first execut­

able statement after one of the labels in the main

routine. At this point, the process has the enable

status given on the process statement. The interrupt

mask register has been reloaded from the value recorded

in the process' data environment. If the process has

never been entered before the value is taken from an

initializing statement, i.e., either an INITIAL SETUP

or a DATA statement.

9. The execution of a RECALL statement or the occurrence

of an external interrupt suspendscontrol in the process.

Control may return by an explicit recall of the process

or by the occurrence of an external interrupt attached

to the process.

10. A process may be resumed after being suspended. Execu­

tion begins from a location recorded in the process'

data environment after restoring registers from the

values recorded in this data area. The process' enable

status is restored; i.e., if interrupts were previously

enabled when the process was last executing, thay are

reenabled.

EXAMPLES

PROCESS T ENABLED;

ACCESS PUBLICSET;

INITIAL SETUP T(ARRAY,1);

DATA INTMASK = 7;

68

/ENTTl/. CALL BUMPl(Y); $ INTERRUPT SOURCES 1,2,3 ARE ENABLED

RECALL EXEC(ARRAYB,1) FROM EXIT;

SUBR BUMP! (X) ;

SIZE X(WS);

X = X+l;

RETURN;

END SUBR;

END PROCESS;

PROCESS X DISABLED;

ACCESS PUBLICSET;

INITIAL SETUP V(D,1) FROM ENTV2 INTMASK = 3;

/ENTVi/ A= 2; $ ALL INTERRUPTS DISABLED

RECALL V(E,l);

/ENTV2/ ENABLE;

RECALL K(F ,1);

END PROCESS X;

$ INTERRUPT SOURCES 1, 2 ARE ENABLED

$ AT INITIAL ENTRY

PSIZE builtin function

PURPOSE

To return a value equal to the nwnber of words of

storage needed for a process' data environment.

FORMAT

PSIZE(ID}

69

RULES

1. When this function call occurs in an expression, an

implementation dependent constant,equal to the number

of words of storage needed for a process' data environ­

ment, replaces the sequence of tokens which invoked

the function, and evaluation of the original expression

continues.

2. The function argument is a process name.

EXAMPLES

SIZE STORARRAY(WS);

DIMS STORARRAY(6 * PSIZE(A));

PUBLIC NAMESET statement

PURPOSE

To indicate the name of a set of public global

variables; to begin definition of a set of public global

variables.

FORMAT

70

PUBLIC NAMESET ID;

RULES

1. The public nameset is an opener. The body consists of

all the following statements up to the END statement

which terminates the public nameset group.

2. Any size statement within the body of the nameset

statement defines a public global variable, which is

a member of the public nameset.

3. The member variables of a public nameset must have

distinct names.

4. No variable may belong to more than one nameset defined

within a single process.

5. Variables in a public nameset may be referred to in other

subprograms or the main routine in any process, using

the access statement.

6. A public nameset body may not contain a public nameset

or ordinary nameset statement.

7. Variables in a public nameset may be referred to within

the routine in which they are defined. No separate

access statement is needed.

8. Nameset names must be unique within a single

compilation run.

EXAMPLES

PUBLIC NAMESET SYMTAB;

SIZE SYMTABPTR(PS); $ TOP OF SYMBOL TABLE

SIZE SYMTAB(WS); DIMS SYMTAB(l00);

END PUBLIC NAMESET;

71

RECALL (simple) statement

PURPOSE

72

To suspend execution in the current process and give

control to another process; to specify the name of the new

process, to specify the first locat_ion of the data environ­

ment of the new process; to specify the manner in which the

new process is given control.

FORMAT

RECALL ID(A,INDEX);

RULES

1. ID is the name of the next process to execute. The

data environment of that process must be allocated to

array A beginning at the location specified by INDEX.

A must be a previously defined array and INDEX an

integer-valued expression.

· 2. When a simple recall statement is executed, the

process-state of the currently executing process is

saved in its data environment, the process-state of

the newprocess is restored from the values saved in its

data environment and execution begins at the location

stored in that data environment.

(See PROCESS statement for a descr~ption of the

restoring of the process state.)

3. Execution of a simple recall assumes that the. new

process has been entered before and that execution

was suspended there by the action of an external

interrupt or by the execution of a prior RECALL

statement in process IO.,,

EXAMPLES

RECALL PROCA (STORARRAY, 1);

RECALL PROCB (STORARRAY ,N) ;

..

73

74

RECALL (from label) statement

PURPOSE

To suspend execution in the current process and give

control to another process; to specify the name of the new

process; to specify the first location of the data environ­

ment of the new process; to specify the manner in which

the new process is given control.

FORMAT

RECALL ID(A,INDEX) FROM L;

RULES

1. ID is the name of the next process to execute. The

data environment of that process must be allocated to

array A beginning at the locati.on specified by INDEX.

A must be a previously defined array and INDEX an

integer-valued expression. L must be a label in the

main routine of ID.

2. When a 'RECALL ••• FROM label' statement is executed,

the process-state of the currently executing process

is saved in its data environment, and execution in the

new process begins at the specified label L. Other

details of restarting a process from a label in the

main routine are given in the PROCE~S statement descrip­

tion.

EXAMPLES ...

RECALL PROCA(STORARRAY,1) FROM.Ll;

RECALL PROCB(STORARRAY,N) FROM L2;

INITIAL SETUP (simple) statement

PURPOSE

To reserve storage for a process data environment;

to initiate a status package for the process; to initiate

private global variables in the process.

FORMAT

INITIAL SETUP ID(A,INDEX);

INITIAL SETUP ID(A,INDEX)

75

INITVARl = INITDATALISTl: INITVAR2 = INITDATALIST2 ... ;

RULES

1. Storage is reserved for process ID in array A, begin­

ning at the location specified by INDEX, for process

ID's data environment area.

2. ID must be a process name, A must be a previously defined

array, and INDEX an integer-valued constant expression.

Array A must be defined with a fixed implementation size.

The number of array elements in A beginning with loca­

tion INDEX must be sufficient to hold the process

status package.

3. The variables to be initialized must be private global

variables declared in process ID.

4. If the data variable is an array element, the sub­

script must be a compile-time constant.

5. The data list consists of a single compile-time

constant expression, unless the data variable is an

array element, in which case several values; separated

by commas, may occur.

6. Repeated instances of the same value in a data list

may be written by writing the. value followed by a

repetition factor in parentheses. For example:

ARRAY= o,o,o,o,o;

is eqqivalent to

ARRAY= 0(5);

7. The initial setup statement must occur after the

named process declaration statement and after any

named variables are declared.

EXAMPLES

INITIAL SETUP PROCl(C,1);

INITIAL SETUP PROC2(C,11)

I= 1: J(3) = 2: ARRAY = 1,2,6,28:

BARRY= 1, 0(10), 3(5);

76

INITIAL SETUP (first process to execute) statement

PURPOSE

To reserve storage for a process data environment;

to initiate a status package for the process; to initiate

private global variables in the process; to name the first

process to begin executing; to specify the location in

the process where execution begins.

FORMAT

INITIAL SETUP ID(A,INDEX) FROM L;

INITIAL SETUP ID (A, INDEX) FROM L

77

INITDATAVARl = INITDATALISTl: INITDATAVAR2=INITDATAVAR2 ... ;

RULES

1. All of the rules for the simple INITIAL SETUP statement

form apply to this form.

2. L must be a label in process ID's main routine.

3. At execution time, process ID is the 'first to begin.

Execution begins with the first executable statement

after label Lin the main routine. Interrupts are

enabled or disabled according to the rules given in

the process statement description for restarting a

process from a label in the main routine.

EXAMPLES

INITIAL SETUP PROCl{C,1) FROM Ll;

INITIAL SETUP PROC2{C,ll) FROM L2

I= l: J{3) = 2 : ARRAY= 1,2,3,6,8

BARRAY = 1, 0(10), 3(5);

SIMULATE statement

PURPOSE

To initiate the compilation of simulated interrupts

within the source code; to name the process given control

when an interrupt is simulated in the source code during

execution.

FORMAT

SIMULATE IN ID;

RULES

78

1. ID must be the process name of a user-supplied simulation

process.

2. The compilation of LITTLE source text, following the

simulation statement, is modified to include code

to simulate interrupts.

3. The frequency of simulated interrupts is controlled
,•

by resetting the builtin public global variable EXEC7 COUNT,

within the simulation process, to some positive value.

This variable should be initialized.on a DATA statement.

4. The simulate statement must appear before the process

header declaration of the named simulation process.

5. The simulation process name may not appear on an

ATTACH, RECALL, or any SETUP statem~nt. RECALL state­

ments may not appear within a simulation process.

6. RETURN statements may appear in the simulation process'

main routine. They will cause a return to the

interrupted process.

7. A reference to .the variable INTMASK, within the

text of a simulation process gives the value of

the interrupt mask in the interrupted process.

No assignment should be made to this variable

within the simulated process.

8. Execution in a simulation process begins with

79

the first executable statement after the simulation

process declaration statement. A simulation process

need not have a label in the main routine.

EXAMPLES

SIMULATE IN SIMPROC;

PROCESS SIMPROC DISABLED;

IF ENABLE .AND •• F. 1,1,INTMASK THEN

INTERRUPT l;

ELSE RETURN i

END SIMPROC;

