
\
\LITTLE Newsletter #32 P. Shaw

Feburary 4, 1974

Interrupt Handling in LITTLE: Possible Revisions

Contents

1. Introduction

1.1 Overview

1.2 Basic Statements

1.3 Macro Statements

1.4 Lock Enforcement

1.5 Deadlock Prevention

1.6 Summary

2. Basic Statement Definitions

2.1 PROCESS

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9
2.10

ALLOCATE

FREE

BLOCK

WAI{EUP

DISABLE

ENABLE

TSET

INT HANDLER

CURRENT_PS

3. Macro Statements

3.1 P, V, SEM

3.2 LOCK, UNLOCK

3.3 SIGNAL INTERRUPT

4. Lock Enforcement

4.1 Dynamic Enforcement

4.2 Static Enforcement

5. Deadlock Prevention

5.1 Dynamic Checking

5.2 Static Checking

LITTLE 32-2

1. Introduction

1.1 Overview

This memo outlines a set of possible revisions and additions
to the interrupt handling mechanism described in LITTLE

Newsletter #30. The basic themes of these changes are:

1) Centralization of scheduling operations;

2) "bundling" of features that are likely to be naturally

associated, and "fixing" of features that are unlikely
to need to be varied dynamically;

3) introduction of a "test and set" instruction, and use of it
and other primitives to program simpler synchronization

macro operations; and

4) consideration of checkable facilities (both statically

checkable and dynamically checked features are described)

for lock enforcement and deadlock prevention.

Some of the resulting language is therefore at a slightly

higher semantic level than the rest of LITTLE: several of the

proposed operations "package" more function than is common in

LITTLE; also, a rudimentary runtime system for simple
scheduling and (extremely primitive) dynamic storage allocation

is required. The justification offered for these .deviations

from the LITTLE design philosophy is the difficulty of

concurrent programming -- coding and more especially testing.

It is felt that the proposed features would simplify the

development of interrupt handlers to an extent that would
more than make up for the attendant loss of flexibility and

increase in implementation overhead.

The remainder of this section provides an overview of the

proposed features which are then described in more detail

in sections 2 through 5.

r

LITTLE 32-3

1.2 Basic Statements

Section 2 describes the basic set of statements which are

proposed. The ENABLE and DISABLE statements are unchanged

from i30; PROCESS, ALLOCATE and FREE are substantial revisions

of features from i30, which "re-package" the Newsletter #30

functions of PROCESS, SETUP, PSIZE, INITIAL SETUP, PRENABLE/

PREDISABLE, and ATTACH. The BLOCK, WAKEUP, and TSET statements

are scheduling and synchronizing primitives not found in #30,

which are felt to be important for use in programming the

higher level operations of section 3. INT-HANDLER and

CURRENT-PS are simple state-query functions which are also·

required for the operations of section 3.

The #30 operation of RECALL is not explicitly provided,

but can be programmed by BLOCK and WAKEUP, as shown in the

SIGNAL_INTERRUPT macro (section 3.3). The #30 operation of

fetching variable-values from process-states was omitted as

hopefully not required.

The remainder of this section provides an informal descrip­

tion of each of the section 2 statements.

1) PROCESS

This declaration statement, like the PROCESS statement in #30,

defines a group of subroutines and namesets as constituting

a process. This statement differs from that of i30 in that

it includes optional clauses for INITIAL, INT_SOURCE, DISABLED/

ENABLED, and INT_MASK attributes. In 130 these attributes were

specified dynamically in the SETUP and ATTACH and PRENABLE/

PREDISABLE statements. It was felt, however, that most

processes would be written explicitly for a particular

INT_SOURCE, with the requirement that they be entered with

a given ENABLE status and INT MASK. It was therefore

decided to make all of those features static attributes

of a process.

LITTLE 32-4

Note that INT_SOURCE may be either a hardware or software
interrupt-source (the codes for INT_SOURCE's are not

specified herein). The SIGNAL_INTERRUPT macro (section 3.3)

illustrates how interrupts could be raised by a program.

2) ALLOCATE

This is the same as the SETUP statement from· #30; with

what was felt to be a more accurately suggestive name.

It differs from SETUP in that it doesn't have an INITIAL

option (that option was moved to the PROCESS declaration),

and it doesn't have the initial value clauses -- it was

felt that initial values should be taken from those specified

in the PROCESS declaration and its constituent subroutine

declarations, and that parameter-passing for processes

would not be required.

ALLOCATE also differs from the SETUP of #30 in that, if the

process has an INT_SOURCE clause, ALLOCATE connects the new

process-state to the specified interrupt source. If the

interrupt source is already connected to a process-state

the existing connection is not broken and ·an error return

is made (the previous connection can be located by an

INT_HANDLER statement and broken by a FREE statement).

ALLOCATE also provides feedback in the array-index parameter,

indicating either an error return (-1 if the interrupt source

was already connected, 1 if the process-state won't fit in the

array) or indicating the next available position in the array

(or #array+l if the process-state exactly fills it) -- the

latter information eliminates the need for the separate

PSIZE statement of #30.

Note that the storage management functions implied are

extremely rudimentary. It is assumed that a "loader"

will provide storage for all PROCESSes with the INITIAL

clause (if this is problematic an allocation-source array

clause could be added to the INITIAL PROCESS declaration).

)

LITTLE 32-5

,ALLOCATE simply determines if a new process-state will
"fit" -- it doesn't maintain the "next position" index
or a "free list" and certainly doesn't garbage collect, etc.

The "allocation" functions of ALLOCATE (as distinct from

the connection of interrupt sources, which ALLOCATE also

performs) could be programmed as macros using the PSIZE

statement described in #30.

3) FREE

This statement disconnects the specified process state from

its interrupt source, then "destroys" it so it cannot be

re-used inadvertently.
4) BLOCK

This statement stops execution of the current process.

It is assumed that a scheduler then switches to some

other process on a "READY" list. The blocked process is

not put on that READY list. The macros P and LOCK in

section 3 show the use of BLOCK.

5) WAKEUP

This statement adds the specified process-state to the

READY list. Macros V and UNLOCK in section 3 show the

use of WAKEUP.

6) DISABLE,

7) ENABLE

These are as described in #30. Macros P, V and LOCK, UNLOCK

in section 3 show the use· of ENABLE and DISABLE .

8) TSET

This is the.common test-and-set instruction, which is

necessary for coordination of data accesses in multi-processor

configurations.

9) INT HANDLER

This is a query statement which returns a pointer to the

process-state,' if any, connected to the specified interrupt

source. The SIGNAL INTERRUPT macro in section 3 illustrates

its use.

LITTLE 32-6

10) CURRENT PS

This is another query statement, returning a pointer to

the currently running process-state. Its use is illustrated

in the P and LOCK macros.

1.3 Macro Statements

The basic statements described above provide adequate

primitives for synchronizing multiple processes. These

primitives are, howev~r, somewhat tricky to use, so that

macro statements providing simpler synchronizing capabilities

are desirable. Section 3 below describes two sets of such

macros -- P and V, and LOCK and UNLOCK. A SIGNAL INTERRUPT

macro is also described. These macros can be summarized

as follows:

1) P , V and SEM

The SEM macro generates a data structure for the traditional

"semaphore" object. P and V are the usual operations on

semaphores, sometimes called DOWN and UP or wait and send.

2) LOCK and UNLOCK

These operations assume that PUBLIC NAMESET 1 s are implemented

with an unnamed "lock" field which is accessible to the

LOCK and UNLOCK macros. The macros then take as argument

a public nameset name and lock or unlock it.

If a LOCK is issued when the public nameset has already

been locked by another process, then the process issuing the

LOCK is BLOCKed until the other process issues an UNLOCK.

The locking is not enforced, but depends on all users of

a public nameset voluntarily issuing LOCK and UNLOCK

before and after accessing its elements. Sections 1.4

and 4 discuss lock enforcement.

The locks are made attributes of namesets, rather than an

explicit separate data type (in the manner of the SEM macro)

in anticipation of the lock enforcement described in

sections 1.4 and 4.

LITTLE 32-7

The locks are on namesets rather than on individual variables.
This is because it is assumed that namesets represent logical
groupings of variables such that it is relatively likely

one would wish to lock several of the variables at a time,

and fairly unlikely that one would need to lock several

namesets at a time -- although the latter is not precluded.

No distinction is made between locking for read access
versus locking for write access. This is because it is

assumed that the public namesets will be "control block"

type of data, so that pure read accessing will be rare,

and not worth the rather more complicated mechanism of
distinct READLOCK's and WRITELOCK's.

3) SIGNAL INTERRUPT

This macro illustrates the use of the INT HANDLER and

WAKEUP instructions to achieve a simulated interrupt.

1.4 Lock Enforcement

The LOCK and UNLOCK macro statements provide a method of

locking public namesets, but do not provide for lock enforce­

ment -- a process could still read or write a public nameset
field without having LOCKed the nameset.

It would be advantageous to provide for enforcement of

locks. This could be done in two ways: statically or

dynamically. Both could probably be implemented with the

macro facility (if it has roughly the capability of the

PL/I compile-time facility) , but would probably be more easily
handled in the basic translator. Sections 4.1 and 4.2

outline respectively a dynamic and a static lock enforcement

scheme. Both schemes are of course only as good as the

ability of the LITTLE translator to recognize accesses to

public nameset data.

LITTLE 32-8

1.5 Deadlock Prevention

The LOCK and UNLOCK facilities, whether enforced or not,

are completely general, permitting deadlocks to arise if not

used carefully. Rudimentary deadlock prevention could easily

be added. The simplest approach, quite probably adequate for

most "control block" type interactions, would be to permit a

process to own at most one lock at a time -- such a restric­

tion could easily be added to either the unenforced mechanism

or to the static or dynamic enforcement mechanism.

A slightly more general approach is outlined in section 5.

In this approach the programmer defines a partial ordering

on the public namesets: those for which deadlock prevention

is not to be done are assigned to "level number" zero (the

default); those for which deadlock prevention is desired are

assigned positive level numbers (in the nameset declaration).

The rule is then that a process which currently owns a lock

with a positive level number i can only obtain locks which

are either level zero or have level numbers strictly greater

than i (until the lock at level i is released). Unrelated

namesets (those which will never need to be locked simul­

taneously) can of course be assigned the same level numbers.

Sections 5.1 and 5.2 outline respectively dynamic and

static enforcement of that rule.

1.6 Summary

This memo outlines a wide range of facilities, which

considerable functional overlap. It is to be hoped that a

small selection from among the facilities would be adequate

for the intended interrupt handling applications. I would

recommend assessment of those applications to determine

1) whether the fixed assocation of PROCESS, INT_SOURCE,

DISABLE/ENABLE and INT_MASK is adequate;

2) whether the dynamic creation of process-states (ALLOCATE)

is really needed, or whether instead the INITIAL option

can be used exclusively;

LITTLE 32-9

3) If ALLOCATE is required, is it valid to have it imply

connection of the process-state with its INT_SOURCE;
4) Are P, V, and SEM type synchronizations required, or

are data locks sufficient;

5) Will the type of shared data be such as to make a

one-lock-at-a-time rule workable;

6) If a one-lock rule isn't practiable, are deadlock
patterns of use likely;

7) Will there be enough sharing of data to make lock enforce­
ment worthwhile; if so are the restrictions on program

structure which are necessary for static checking endurable.

To summarize: asynchronous programs are difficult to

understand and worse to test. It therefore seems desirable

to introduce structural restrictions which simplify the

programs, which reduce the opportunity for error, and which

introduce the possibility of automatic validity checks at

points of asynchronous interaction.

2. Basic Statement Definitions

2.1 PROCESS declaration

[INITIAL] PROCESS processname;

[INT_SOURCE n;]

[DISABLED/ENABLED;]

[INT_MASK b;]

(nameset declarations}
(main program)

(subprocedure-list)

END processname [BEGIN];

LITTLE 32-10

1) If the INITIAL option is specified then storage for the

process-state is allocated implicitly (in unnamed storage)

at the time the system is "loaded"; otherwise the process­

state storage is allocated by use of an ALLOCATE

statement.

2) If the INT SOURCE option is ~pecified, then the process

and process-state are associated with interrupt source n;

the association is made when the process-state is

(implicitly or explicitly) allocated, and applies to the

processor on which the allocation is executed. There can

be at most one INITIAL PROCESS having an INT SOURCE

option for any given n.

3) If the DISABLED option is specified then the processor will

be set to DISABLED on entry to the process; otherwise it

will be ENABLED (i.e. ENABLED is the default). If the

INT MASK option is specified, then on entry to the process

the interrupt sources of the processor will be masked as

specified by bit-string b; otherwise the interrupt sources

will be masked as they were prior to entry to the process.

4) The nameset-declarations, main program and subprocedure

list are as described in #30.

5) Exactly one process should have the BEGIN option.

2.2 Allocate Statement

ALLOCATE p IN. (x, i)

1) p must be a PROCESS; x an ARRAY; and i an INTEGER

2) If p has an INT_SOURCE option n, then if there is already

a process-state associated with interrupt source non the

current processor, then set i to -1 and return.

3) If there is room for a process-state record for pin x

beginning at position i, then allocate and initialize one,

and set i to either the next location in x or, if this alloca­

tion fills x, to #x+l; if there is not sufficient room in x

then set i to zero and return.

LITTLE 32-11

4) If process p has an INT_SOURCE option n, then associate
the new process state with interrupt source non the
current processor.

3. Free Statement

FREE p IN (x,i)

1) DISABLE. If p has an INT_SOURCE option, and if there is

a process-state for pat x(i), then dissociate that process­

state from the interrupt source on the current processor.
ENABLE.

2) If there isn't a process-state record for pat x(i),

.:then set i to -1 and return; otherwise "destroy" the

process-state record and return.

2.4 Block Statement

BLOCK

The processor-state of the current processor is stored

into the fields of the process-state which is currently

running. An entry on the READY list is then selected, and

the processor-state is loaded from the corresponding fields
of its process-state, thereby starting it to running.

Note that the process issuing BLOCK is not added to the

READY list, and will only be "re-activated" by a subsequent

WAKEUP issued by some other process.

2.5 Wakeup Statement

WAKEUP ps

ps must be a pointer to a process-state record. A pointer

tops is added to the READY list. It is unspecified whether

the scheduler will switch tops (or to some other process­

state on the READY list) or will continue with the current

process; if the scheduler were to switch then the current

process-state would of course be put on the READY list.

LITTLE 32-12

2.6 Disable Statement

DISABLE

The enabling status of the current processor is set to

DISABLED. Note that this does not destroy the current

interrupt mask.

2.7 Enable Statement

ENABLE

The enabling status of the current processor is set to

ENABLED.

2.8 TSET Statement

TSET R.v, rv

If the value of iv is zero, then it is set to 1 and a

value of 1 is returned in rvi otherwise a value of~ is

returned in rv.

Note: Execution of this statement is atomic relative to

all other processes and processors. It is assumed to be

implemented by an identical test-and-set instruction which

most systems (certainly those which are available in multi­

processor configurations) have, or by a DISABLE-ENABLE

expansion on machines which don't have test-and-set.

2.9 Int-handler Statement

INT HANDLER i , ps

The address of the process-state associated currently with

interrupt source ion the current processor is returned in ps;

if there is no currently associated process-state then a

value of zero is returned in ps.

LITTLE 32-13

2.10 Current-ps Statement

CURRENT_PS ps

The address of the current process-state is returned in ps.

3. Macro Statements

3.1 P, V, SEM

1) SEM x(i,n)

This macro generates a data structure as follows:

01 X
02 TS BIN INIT ($1)

02 V BIN INIT(i)

02 NI BIN INIT(l)

02 NR BIN INIT(l)

02 Q(n) BIN

X.TS is a lock for the semaphores

x.v is the value of the semaphore, which is initialized to i

and which will never be allowed to be less than -n;

Q is an array of addresses of process-state's which are

enqueued on the semaphore; NI and NR are indexes of the

next positions in Q at which entries should be inserted (NI)

or removed (NR) •

2) V(S)

s must have been created by the SEM macro.

The expansion is:

LITTLE 32-14

DISABLE;

LOOP: TSET S.TS, TEMP;

IF TEMP .NE. 1 THEN GOTO LOOP;

S.V = S.V + l;

IF S. V . GE. 1

THEN DO; S.TS = J1;
ENABLE;

RETURN;

END;

WAKEUP S.Q(S.NR);

S.NR = MOD(S.NR; #S.Q) + 1

S.TS = f1;

ENABLE;

RETURN;

Explanation: fields of a semaphore S should be referenced

only by the P and V expansions; the P and V expansions obey

the convention that S.TS will be set to 1 if any process

is executing a P or Vons, and set to f1 otherwise.

The P and V expansions both DISABLE so that a process

won't be descheduled while it's in the middle of a P or v.
On a uni-processor configuration the TSET will therefore

always return a 1 and is thus redundant; on a multiprocessor

configuration the TSET will return a zero if a process on

another processor is in the middle of a P or Vons -- in

this case we have chosen to go into a loop, or "busy wait",

since we know that the other processor will set S.TS to zero

"soon" -- i.e. in the number of instructions it takes to

finish the P or V -- so that the busy wait is probably more

efficient than a process-switch.

Other approaches are therefore possible:

i) we could permit processes to be interrupted in the middle

of P or V operations;

ii) we could bump the current process and schedule another if

the semaphore is busy.

LITTLE 32-15

On a uniprocessor (i) implies (ii), since the semaphore

which is busy must have been locked by a process which had

been interrupted; on a multiprocess configuration the process

which is referencing the semaphore in (ii) may be running on

another processor, or, only if (i) is permitted, may not be

running, so that (i) and (ii) are independent alternatives.

Both (i) and (ii), however, introduce complications which

seem certain to offset potential gains in efficiency.

The treatment of DISABLE and TSET in this expansion of the

V macro is also followed in the P, LOCK and UNLOCK macros

below.

RETURN statements mean exit from the expansion.

3) P{S)

S must have been generated by the SEM macro. The expansion is:

DISABLE;

LOOP: TSET S.TS, TEMP;

IF TEMP .NE. 1 THEN GO TO LOOP;

S.V = S.V - l;

IF S.V .GE.~

THEN DO; S.TS = 1;
ENABLE;

RETURN;

END;

IF - S.V .GT. # S.Q THEN ERROR;

CURRENT_PS TEMP;

S.Q {S.NI) = TEMP;

S.NI = MOD(S.NI, #S.Q) + l;

S.TS = 1;
ENABLE;

BLOCK;

RETURN;

LITTLE 32-16

3.2 LOCK, UNLOCK

1) Locks

Public namesets should have an implicit lock associated

with them, whose structre would be:

01 LOCK

02 OWNER BINARY INIT(}J)

02 TS BINARY INIT (JJ)

02 NI BINARY INIT (1)

02 NR BINARY INIT(l)

02 NQ BINARY INIT(}J)

02 Q(N) BINARY

TS, NI, NR and Q are as in the SEM macro; ·N is an

implementation defined limit; NQ will be the number of

entries currently in Q; OWNER will be a pointer to the

process state, if any, which currently "owns" the nameset

lock.

2) LOCK NS

NS must be a public nameset. · Let L be the associated lock.

The expansion is:

DISABLE;

LOOP: TSET L.TS, TEMP;

IF TEMP .NE. l THEN GOTO LOOP;

CURRENT _PS TEMP;

IF L.OWNER = 0 OR L.OWNER = TEMP

THEN DO; L.OWNER = TEMP;

L. TS = fl;

ENABLE;

RETURN;

· END;

IF L.NQ = #L.Q THEN ERROR;

L.NQ = L.NQ + l;

L.Q (L.NI) = TEMP;

L.NI = MOD(L.NI, #L.Q) + l;

LITTLE 32-17

L.TS = fl;

ENABLE;

BLOCK;

RETURN;

3) UNLOCK NS

NS must be a public nameset. Let L be the associated lock.

The expansion is:

DISABLE;

LOOP: TSET L.TS, TEMP;

IF TEMP .NE. 1 THEN GOTO LOOP;

CURRENT_PS TEMP;

IF L.OWNER .NE. TEMP THEN ERROR;

IF L.NQ = fl
THEN DO; L.OWNER = fl;

L.TS = fl;

ENABLE;

RETURN;

END;

L.NQ = L.NQ-1;

L.OWNER = L.Q (L.NR);

WAKEUP(L.Q(L.NR));

L.NR = MOD(L.NR, #L.Q) + l;

L.TS = fl;

ENABLE;

RETURN;

3.3 Signal-Interrupt Macro

Expansion:

'SIG INT N

INT_HANDLER N, TEMP;

IF TEMP= f1 THEN ERROR;

WAKEUP TEMP;

BLOCK; /*optional*/

LITTLE 32-18

4. Lock Enforcement

The mechanisms to follow assume that PUBLIC NAMESET's

have the implicit lock field described in Section 3.2.

4.1 Dynamic Enforcement

Each time a field in a public nameset is referenced, generate
code to dynamically test to see that the current process-state

is the OWNER of the implicit lock field of the public nameset.

Optimizations are of course possible: recognizing that the

current statement is only reachable along a path that has a LOCK

statement. Even without optimization, however, the gain in

integrity should justify the increased execution cost of access

to public variables.

4.2 Static Enforcement

This involves two new statrn.ents:

REGION ns;

ENDREGION;

The REGION expansion issues a LOCK on the public nameset ns;

ENDREGION generates an UNLOCK on thens specified in the

(textually) most recent REGION statement. The REGION and
ENDREGION statements must occur paired, in that order, and

may be nested (unless it is decided to prohibit multiple locks).

The following restrictions then apply:
i) If a variable v is a field of. a public name set ns, then

references to v may only occur between a REGION statement

which specifies ns and the corresponding ENDREGION

ii) Branches into and out of a REGION-ENDREGION block are

prohibited.

LITTLE 32-19

5. Deadlock Prevention

The facilities to follow assume that PUBLIC NAMESET's have

the implicit lock field described in Section 3.2. They also

assume that the PUBLIC NAMESET declaration is extended to

include an optional "level number" integer, perhaps with syntax

PUBLIC LEVEL(integer) NAMESET

name (name-list)

If the LEVEL clause is omitted a level number of zero is defaulted.

5.1 Dynamic Checking

This approach assumes either no lock enforcement, or

the dynamic enforcement of section 4.1. The approach adds

dynamic level number checking logic to the LOCK macro

of section 3.2.

Include in each lock item a LEVEL-NO field vith the default

or explicit level number specified for the na.rne,set, together

with a PREVIOUS LOCK field which will either be zero or contain

a pointer to another lock owned by the same _process. Include

in each process-state record a LAST_LOCK field which will have

either zero or a pointer to the lock most recently obtained by

the process.

When a LOCK is issued, if the level number in the lock field

of the specified nameset is zero then perform no further tests

{and don't connect the lock to LASTLOCK); otherwise, check to

see that the new level number is strictly greater than the one

{if any) pointed to by the LASTLOCK field of the current

process-state. Set the PREVIOUS LOCK field of the new lock to

the-current value of the LASTLOCK field of the process-state;

set the LASTLOCK field to point to the new lock.

On an UNLOCK, first verify that the current process-state

is the owner of the specified lock; then unlock all locks

owned by the process-state from the one pointed to by LASTLOCK

through the one specified in the current UNLOCK; set the LASTLOCK

LITTLE 32-20

field of the process-state to the value of the PREVIOUS_LOCK

field of the specified lock.

5.2 Static Checking

This approach assumes that the static lock enforcement of

section 4.2 is used. The approach does not require the extra

fields (LAST LOCK, LEVEL NO and PREVIOUS_LOCK) which were

specified above.

At compile time, maintain a LEVELS integer stack, initially

empty. When a REGION statement is processed, if the level

number of the specified nameset is zero, then perform no checks;

otherwise, ensure that the level number is strictly greater than

the number at the top of the LEVELS stack. Then push the new

level number onto LEVELS. When an ENDREGION is processed,

pop the top entry off the LEVELS stack.

