
---1•~1j1~
1

,1t,::•-.. ; mll:$~4f"IIStiiil'lii:IIIIIIIMllllli7iili:o/ii,ii'.:,./;..;.•··.;ll1'1'.fi:lfi~lii"""'il;ll:ilt":111ilk~:'iil;"':",~·""illil%~!!iiilliillllU:r~f"-tiil'Sliiill¥iiiii'Mlllli,lll'ftlltjlil----•------------•-_,....,.,._~

~ 1 ••

\';: :

\:.: ,,

LITTLE Newsletter# 36

Run-Time Consderations for MIDL

E. Deak
November 1, 1974

This proposal describes a run-time environment, compatible

with the current SETL system for · MIDL.

LITTLE-36-2

To be compatible with the SETLB system, the MIDL run-time

environment will utilize the same STACK, HEAP, and garbage

collector as the SETLB run-time library (SRTL). All objects

in the STACK and HEAP must conform to the word formats described

in On Programming, Vol. 1, Item 6.

The target language of the MIDL compiler will be LITTLE.

Because the type declarations in MIDL enable the compiler to

compute address offsets at compile time, most references to

MIDL structures, with the exception of MAPTABLES, can be

generated as in-line code. Operations involving SETL objects

will become calls to SRTL routines. For several of the more

·complex MIDL operations, involving storage allocation, conversion

between MIDL and SETL objects, and MAPTABLES, new entries must

be added to SRTL.

The discussion below details the internal representation

of MIDL data objects, and LITTLE code fragments which various

MIDL operations generate. We use the following notations,

relating to the STACK and HEAP word formats of the system:

ws
POINTERl, PTRl

~OINTER2, PTR2

POINTER3, PTR3

SWDS

HDRSZ

PTRSZ

OFFSTRHDR

number of bits in a STACK word

first pointer field of STACK word

second pointer field of a STACK word

third pointer field of a STACK word

STACK word descriptor size-number of

bits needed for the block type field and

number of pointers field in a STACK word.

header area size of a type O heap block

pointer area size of a type O block

number of words in a heap structure header

I

LITTLE -36-3

POINTERS.

A MIDL pointer is an index to the HEAP. A pointer which

is not defined has the value UNDEFPTR, which is the system

pointer to the undefined word.

Pointers which are components of a structure of more than

one component may be packed. However, variables which are

declared as pointers are not packed. The variable is allocated

one word from the STACK. The pointer is stored in the POINTER!

field of the STACK word allocated to the variable.

A new pointer primitive is to be introduced into SRTL

so that pointers may become elements of SETS and TUPLES.

MIDL pointers must be converted to SETL pointers before using

them as SETL objects. A SETL pointer has a root word of the

format:

t ··~:--~1,-------) (structure L Q in HEAP)

The SETL pointer will be treated by SRTL as a short blank

atom with two pointer fields.

LITTLE-36-4

STRUCTURES.

A structure is defined by a TYPE statement • A structure

is represented as a block of one or more words in STACK word

format, which may or may not contain pointers to objects in

the heap. An array of structures is represented as a contiguous

block of structures.

The components of a structure are packed. Each STACK

word may contain up the three pointers, and a STACK word may

accomodate bit strings of length no more than WS - SWDS.

A component bit string which is longer than this will become

a long· structure string, and will be allocated as a separate

HEAP block, and a pointer to the HEAP block is stored in the

structure. This adds a level of indirection when accessing

long structure objects.

Various kinds of structure components may be handled in

the following manner:

PTR

MAP

SETLOBJ

BITS(n)

REAL

A pointer component is mapped onto a

STACK word pointer field. Initially UNDEFPTR.

A MAP component is a pointer to a map table,

and is mapped onto a STACK word pointer

field. Initially, UNDEFPTR.

A machine word is allocated to store a

SETL root word. Initially, UNDEFPTR.

If n .LE. ws-swcs, then n bits are

allocate, initially O. Otherwise, a pointer

field, initiallized to point to allocated

HEAP block.

A REAL number is a long object, and a pointer

field is_allocated. Initially points to

allocated HEAP block.

LITTLE-36-5

ENTRY Requires pointer-sized field to contain

code address. Each structure component is mapped onto the

triple <field, offset, ib>, where-offset-is the word offset

from the base of the structure, -field- is the position within

the machine word, and -ib- is an indirect bit to flag whether

the component is a long string.

Variables associated with structures determine whether

the structure is allocated statically or dynamically. If a

variable is declared to be a pointer to a structure, the

structure is dynamic and is allocated from the HEAP, upon

execution of the NEW function. Variables which are themselves

structures of more than one component are allocated storage

at compile time from the STACK if the structure contains any

pointers to the HEAP, otherwise, they become static LITTLE

variables.

LITTLE-36-6

For example, consider the ·following definition~:

TYPE TP; Fl PTR, F2 SETLOBJ;

TYPE TS: Fl BITS(15), F2 bits(30);

DCL AS TP, AH PTR(TP), BS TS, BH PTR(TS);

Both variables AH and BH are pointers to heap structures of

type TP and TS respectively. These structures will be allocated

dynamically. Variable AS is itself a structure which contains

pointers to the HEAP. The structure is allocated storage at

compile time (statically) from the STACK. BS is a structure

which does not contain pointers to the HEAP, and will be

allocated static LITTLE storage.

Structures and arrays of structures in the HEAP which

are of size n words, where n is greater than 2, are stored

in type-O HEAP blocks, prefixed by a header of OFFSTRHDR(l)

number of words. If n is 1 or 2, the structure is stored in

a type-1 or type-2 block respectively. (All arrays of structures

of dimension greater than 1 will be stored in type~O blocks.)

If the HEAP structure itself contains pointer components,

the pointer area size PTRSZ is equal ton, and the header

area size HDRSZ is equal too.

A long structure string of n words will be stored. in a

type-O HEAP block, with PTRSZ equal to O and HDRSZ equal ton.

For each structure defined in a program, the compiler must

compute the internal representation, or template for the structure

that is, how many machine words are needed to store the structure

and the component-field mapping. The template is computed at the

time of the structure type declaration, and is therefore not

dependent on the types of variables which are associated with

it (eg array, static, dynamic).

LITTLE-36-7

After the template is computed, the compiler will reserve a

STACK location to point to a HEAP block which contains the

skeleton form of the template(i.e. all PTR fields initiallized

to UNDEFPTR and all bit fields initiallized to 0.)

Both statically and dynamically allocated structures will

be initiallized to copies of their associated templates. The

template for a pointer variable is simply UNDEFPTR. The

skeleton template is also used in connection with MAP TABLES,

which are described in the next section.

We give a simple example of code that might be produced

by a TYPE definition:

TYPE TN: Fl PTR, F2 PTR, F3 SETLOBJ:

This structure may be mapped onto 2 machine words, as

illustrated below:

f /////// /If/I;/~' f 2 I f 1 I
We generate the following LITTLE code for this declaration:

GET(2, TEMP); $ get a block of 2-words from the HEAP

TPZZZn = UNDEFPTR; $ TPZZZn is STACK location for template

PTRl TPZZZn = TEMP; HEAP(TEMP) = UNDEFPTR2;

HEAP(TEMP + 1) = UNDEFPTR; $ SETLOBJ

if Vl is a variable of type PTR(TN), the statement Vl = NEW(TN)

compiles into

STACK(K) = CO~Y(TPZZZn); $K is the STACK index associated with Vl.

LITTLE-36-8

Static variables are initiallized at Foint of declaration.

It variable V2 is declared by:

DCL V2 TN;

the code generated will perform:

STACK(K) = UNDEFPTR2;

STACK(K + 1) = UNDEFPTR;

LITTLE-36-9

. MAP TABLES •

MAP TABLES are stored as hash tables, which grow and

shrink in the same way as do SRTL sets. The hash table is

accessed indirectly as specified in LITTLE Newsletter 37, via

a pointer Pin the HEAP, which is updated each time the•

hashtable is reallocated. All pointers to the hashtable will

actually store references to P.

The hash table index is computed from a bit string argument

of a fixed, declared number of bits. Each non-empty entry in

the hash table stores the argument bit string which indexes

that element or if the bit string is too long (greater than

WS - 2*PS - SWDS), a pointer to the bit string. ·A pointer to

the structure which is the image of its argument is also stored

in a table entry. Entries which hash to the same slot in

the table are chained together, as are members of SRTL set.

WE reserve a pointer field in each word for this purpose.

If undefined entries are accessed, the skeleton template

if returned.

The internal representation for a MAP table is shown below;

I i I ➔
s+2 1 ·s

1 I ·4t mems load A s
entry t
entry tt

I\,,
AS ;:. Argument size

entry t

entry

4 6

(undefined)

LITTLE-36-10

Each entry in the table can be illustrated by the following:

I ~ -, argument I t
STRUCTURE

LITTLE-36-11

VARIABLES AND STACK ALLOCATION ,MANAGEMENT.

In this section we outline how the compiler allocates

storage for variables, and how references for different classes

of variables are generated.

First we discuss static bit string variables.

All variables which do not contain pointers to the HEAP

become static LITTLE variables. The compiler generates SIZE

and DIMS statements corresponding to the MIDL declarations.

For example, suppose we have the declarations:

TYPE T: Fl BITS(30), F2 BITS(l7);

DCL A BITS{WS), BT; DIMS B(l0);

The code produced would be:

SIZE

SIZE

DIMS

A(WS)7

B(WS);

B (10) ;

The reference

F2 B

would then become:

.F. 30 + 1, 17, B

Other variables, that is those which are SETL objects, ..
pointers, maps, and in general store pointers to the HEAP,

are allocated STACK locations. (The STACK address allocated

is always a negative offset from a base.)

All variables which are either structures or pointers to

structures must be initiallized to the skeleton template at

the time during execution, when the S'l'ACK space is reserved.

At the start of execution, STACK space is reserved for global

~;Jlo';Jf/&illilllli1ll!ll.;imio.-.illo'IIII _________________________________ _

LITTLE-36-12

STACK variables. (The global variable GT points to the top

of the global variables area, and global variables are re

ferenced by a negative constant offset from GT}

LITTLE-36-13

In the prologue of each routine, :sTACK space is reserved

for local variables and temporaries. Local pointer variables

are initiallized at this time. (The variable LT points to the

top of the local variable area). When a routine returns, the

storage that was allocated for locals and temporaries is released.

Below is exhibited LITTLE code produced from variable

references.

Suppose A is a variable which stores a structure with

pointers. A reference to A becomes

STACK(T - CA)

where Tis the base for the variable block, and CA the STACK

address assigned to A. If A is dimensioned, and the number

of words occupied by each array element is 1, a reference

to A(I) becomes:

STACK(T - CA+ I).

An indexed field reference Fl A(I) becomes in LITTLE

.F. Cl, C2, STACK(T - CA + c3 + I*nwordsA). Cl and C2

specify the field. C3 is the offset of the field from the

base of the structure, and -nwordsA- is the number of words

needed to store a single structure array element.

Let us now suppose that variable Bis a pointer to a

structure in the HEAP. Below is code produced by a simple

reference B, an indexed reference B(I), and an indexed field

reference Fl B(I), where comparable conditions hold as in the

example above.

STACK(T - c8)

HEAP(PTRl STACK(T - CB) + OFFSTRHDR + I)

.F. Cl, C2, HEAP(PTRl STACK(T - CB) + OFFSTRHDR + c
3

+ I*nwordsB)

LITTLE-36-14

OFFSTRHDR is the offset of the header. _word of a type-0 HEAl? block.

(if the structure is not longer than 2 words,there is no header.)

If the field Fl in the above example happened to be a

word sized long structure string, the resulting code would be:

HEAP{.F. Cl, C2, HEAP(PTRl STACK(T ~ CB} + OFFSTRHDR

+ c3 + I*nwordsB} + OFFLSSHDR)

where OFFLSSHDR is the header offset of a long structure string.

If a variable Mis a MAPTABLE, Mis referenced through

run-time subroutine -SOFMAP- in the case of sinister assignments

and -OFMAP- in the case of retrieval. For the expression M(B}

we

For

we

generate

ARGl = M;

ARG2 = TPZZZm;

CALL OFMAP(B);

the assignment

generate

ARGl = M;

ARG2 = UNDEFPTR;

$ pointer to template of result

$ pointer to result is returned in ARG2

M(B) = S;

TEMP= COPY(TPZZZm); $ obtain copy of template

PTRl ARG2 = TEMP;

$ Here initialize HEAP(TEMP) to the value of S

CALL SOFMAP{B),

LITTLE-36-15

PARAMETER PASSING, ENTRY OBJECTS, RECURSION.

The parameter passing mechanism in MIDL is to be the same

as in LITTLE. LITTLE passes the address of an actual parameter

if the parameter is a simple variable. Otherwise, the address

of a temporary is passed.

To get this effect for parameters which are STACK objects,

the calling routine will obtain the STACK indices of the actual

parameters. These indices will be stored on the top of the

STACK. A reference to the ith formal parameter then has the

form:

STACK {S'rACK (TL - LL - nfp + i))

where LL is the number of words reserved at routine entry and

nfp is the number of formal parameters.

In order to implement the ENTRY object feature, the

scheme used by the SETL translator system may be adapted.

At the beginning of execution, entry constants will be initialized

to contain the entry point of each routine. This is easily

done by emitting the sequence

CALL ENTCON(TEMP);

CALL SUBNAM;

SUBNAM = TEMP;

for each routine. -ENTCON- is an assembly routine which will

return the address of SUBNAM, obtained from the subsequent

CALL statement.

If Risa variable declared to be of type ENTRY, and

storing SUBNAM the statement CALL R; will compile into

CALL KALLENT(R);

-KALLENT- is another assembly routine which will perform a

return jump to SUBNAM.

I

LITTLE-36-16

In order to implement recursion, several additional items

must be stacked by the prologue of a recursive routine.

These include the following:

1) The return address must be stacked. This can be done

in the following manner. In the prologue of the recursive

routine, we generate a call to a compass routine RASAVE, which

obtains the return address and stacks it at a given STACK

address.

2) The variables which are static and local to a recursive

routine must be stacked. Since these variables do not normally

store quantities in STACK word format, we supply an additional

stack RSTACK, which will not be scanned by the garbage

collector as it will never contain any pointers to the HEAP.

References to a local variable A in a recursive routine will

become

RSTACK(RT - CA)

where RT is the top of the RSTACK and CA the relative address

assigned to A.

3) The actual parameters of a recursive routine must be

stacked. Upon routine entry, the values of the actual STACK

parameters are retrieved and stored in space reserved for

parameters. The values of STATIC parameters in recursive

routines will be retrieved and stored on RSTACK.

