
'
I r· i .
\, I' l .
• t t

I

~ ~.
~. 'LITTLE Newsletter 3 7

Proposal for MIDL (GLITTLE)

Edith Deak

9/74

This newsletter will describe a proposed major extension to

LITTLE, which we provisionally designate as MIDL. The MIDL

language is intended for

1. implementation of the SETL optimizer (for which LITTLE

appears too limited)

2. the writing of SETL-compatible new primitives, when SETL

programs are to be brought to 'production' levels of efficiency

by an essentially 'manual' procedure.

The MIDL language will provide:

(a) pointers, a garbage-collected memory millieu, recursive calls.;

all compatible with the present SETL garbage collector.

(b) ·features facilitating communication with SETL.

As far as possible MIDL s·hould preserve the machine indepen­

dence which characterizes LITl'LE and SETL. ·

Literature: Newsletter 73; SETL specification in

Installment II of On Programming;

Item 6 of Installment I of On Programming.

Detailed Language Specifications follow.

1. Data objects, heap blocks, pointers, hash tables.

Several basic new semantic objects will be added to LITTLE.

These include

i. Pointers (to heap blocks)

ii. Code addresses (for supporting recursion).

Pointers will be discussed in this section; code addresses in

Section 4.

Heap blocks will have the formats described in Item 6, p. 50

(of Installment I of On Programming). Our aims are the following:

'
LITTLE 37-2

(a) to avoid word-length dependencies (and, in particular,

involvement with the question of the number of pointers that can

be stored in a word)

(b) to avoid explicit restrictions on the position of pointers

within a word {by leaving these positions flexible, we may hope

to exploit field-related special operators available on one or

another machine)

(c) to make it easy to communicate with the SETL run-time

library

(d) to attain reasonably high efficiency (for this, a

machine-oriented peephole optimizer may be required). This central

requirement will keep us closer to the 'low level' semantic

approach of LITTLE than would otherwise be suitable.

(e) to allow the programmer to deal in a conveninent way

with objects possessing large numbers of miscellaneous attributes.

For this to be accomplished successfully, our language will have

to include mechanisms which avoid 'name conflicts' between the

names of attributes of objects of different types.

MIDL should be upwardly compatible with LITTLE. All existing

dictions in LITTLE, including the macro facility, will have

the same semantics and syntax in MIDL.

Our s~ecific approach is as follows:

i. We introduce several new primitive types of data object,

extending the fundamental bit string of LITTLE. An object can

be either atomia, a Cl-dimensional) aPPay objeat, a maptabZe,

or a SETL objeat.

ii. Atomic objects are either bitstrings (of stated size);

integers (signed and of implementation-determined size and

internal format); real numbers (of implementation-determined

size and internal format); pointers (of implementation­

determined size); stPuatures {see below); and (procedure) entries.

LITTLE 37-3

A pointer is of an implementation-determined size, and

points to a heap object.

Variables are declared in the form

{1) DCL name 1 typename 2, ... , namek typenamek; ... ,

Here, name. names a variable, and typename. gives its type.
J J

Types are introduced by type definitions.

The predefined types are BITS, REAL, PTR, SETLOBJ, ENTRY.

New types are introduced by type declarations. The simplest

form of type declaration, which introduces a structure, is

{2) TYPE typename: partname 1 typedesc1 , •.• ,partnamen typedescn;

An example would be

{3) TYPE LISTNODE: PREV PTR(LISTNODE),

NEXT PTR(LISTNODE), VALUE BITS(l0);

In (2), typename is any admissible LITTLE name, which becomes

the name of the type introduced by (2); partname 1, ... ,partnamen

are valid names, all distinct, which come to name the components

of the type introduced by (2). The syntactic objects

typedesc
1

, ... ,typedescn are all type descriptors.

A type descriptor will either be of one of the forms REAL,

BITS(n), where n is an integer constant, ENTRY, or will be

a pointer type descriptor having one of the forms

(4a)

(4b)

(4c)

(4d)

PTR(typedesc')

PTR

MAP (ns,typedesc)

SETLOBJ

LITTLE 37-4

The typedeea' which follows the word PTR in (4a) has a

somewhat different structure than an ordinary typedesa.

Specifically, we allow the construction

(5) PTR (* typedesc)

(which describes a pointer to an array of elements, all of

type typedesa). A pointer declared in the form (5) is called

an array pointer. A pointer declared by (4b) is called an

unqualified pointer; a pointer declared by (4a) is called

qualified.

To access a component of the object pointed to by a qualified

pointer v, one writes

(6a) partname V

if V points to a non-array structure;

(6b) V (index)

if V points to an array, or

(6c) partname V(index)

To define the nature of the object pointed to by an

unqualified pointer V qualification operators are provided.

Qualification operators have the syntactic form

(7) t : : V ,

where tis either a type name or a type descriptor. An

occurrence of Vin the context (7) is understood to be an

object of type t.

LITTLE 37-5

An object of type PTR typedesa~ can be assigned to any
J

variable declared to have the type (4b); and conversely.

By using qualification operators, the fields of such an

object can be retrieved subsequently and treated properly.

As an example, suppose that P is a variable of type .·PTR and

that Risa variable of type PTR(* tr) •

Then the assignments

(Sa) P(j) = R(k) and (Sb) R (k) = P (j)

are legal. Moroever, after the assignment (Sa) the

expressions

. (9) fietd tr::P(j) and fietd R(k)

retrieve the same quantity (here, we assume that fietd designates

some component name that has been declared for structures of

type tr). Finally, we observe that the sequence of the

assignments

P (j) = R (k) ;

fietd tr::P(j) = X;

is legal, and has the same effect on Pas

(11) fietd R(k) = X;

P(j) = R(k);

Next, suppose that Pl and P2 are declared as PTR(t),

where tis tiefined by:

(12) TYPE t: fl BITS(l6), f2 PTR(t);

That is, tis a structure which consists of a 16 bit field

and a pointer to a structure of type t. The assignment

LITTLE .37-6

(13) Pl= P2;

will set Pl to point to the same heap object pointed to by P2.

The assignment

(14)

sets Pl to point to the structure referenced by the field f2

in the structured referenced by P2.

As an additional convenience making it easy to transfer all

the fields of one structure to the fields of a variable

of identical structure, we introduce the diction

(15) t V

which accesses the whole of a ~on-array object pointed to by a

pointer v. The form (15), like the forms (Ga-c), may be used

on the left-hand side of an assignment statement.

Thus, the assignment

(16} tPl = tP2;

sets the value of the structure referenced by Pl to the

value of the structure referenced by P2. Finally, the

assignment

(17) t(f2 Pl)= tP2;

sets the value of the structure pointed to by f2 of Pl to

the value of the structure referenced by P2.

The option of explicitly dereferencing pointers to access

components of structures is also provided by the forms:

(18a)

(18b)

(18c)

partnarne t V

t V (index)

partnarne t V (index)

LITTLE 37-7

Semantically,

respectively.

dictions 18(a-c} are equivalent to 6(a-c)

An expression of the form

{19) F V

is legal if and only if Vis of a declared or qualified type

which has a component named F. Otherwise the compiler will issue

a diagnostic.

Storage in the heap for structures must be explicitly allocated.

A non-array heap object of type tis created by a function call

of the form

(20) NEW(t)

An array heap object with n components of type t is created

by a function call of the form

(21) NEW (t, n)

. .The ..function NEW returns pointers to the heap block allocated.

The length n of an allocated object is obtained by use

of the prefix operator .NELT.

All fields of the newly created block are initialized to zero, and

all pointers to the system undefined atom, omega, which may be

written in a source program as the symbol .OM. (see Section Bon

interface with SRTL).

To reduce the size of the heap array object referenced by

pointer P, eliminating all but the first n of its components,

we can use the function (note: with a side effect on P)

(22) TRIM(P ,N)

Heap blocks as we have introduced them give a quite acceptable

'dynamic array' capability, and thus make it possible to deal

comfortably with functions defined on a dense range of integers.

However, we find ourselves in quite a different situation in

attempting to deal with a function defined on a sparse range

LITTLE 37-8

of integers. Ln SETL this is no proble-m, since the general

'mapping' concept which SETL provides handles sparsely defined

functions in quite a reasonable way. The technique. underlying

this SETL primitive is of course hashing. The most customary

lower level techniques for dealing with sparsely defined mappings

are not necessarily superior to hashing. For example, the use

of arrays or lists in which argument values x are coupled with

functional values f(x) is common, but this can lead to quite

inefficient implementations of value retrieval and modification.

Faced with a sparsely defined map, a programmer attempting to

acoieve efficiency by working in a low level language will often

attempt the invention of ad hoa encodings or data arrangements

which expedite access to map-values. However, in all but the

most·successful cases, a standardized hash-access technique

should be competitive with more special techniques. Moreover,

the use of specially invented access techniques will often hide

the algorithmic kernel of a program behind a distorting mass of

accessing and filing procedures which grow to something much

larger than the algorithm from which the program has been

developed. The use within MIDL of a suitably devised standard

hashing · __ technique can avoid these difficulties, and allow MIDL

programs to stay much closer to their SETL prototypes. For this

reason, we shall provide standardized hashing primitives as a part

of MIDL.

For this, we introduce an additional data object, the maptable,

into MIDL. MIDL maptables, like the tables used in SETL to

represent sets, will grow and shrink, probably by binary jumps,

as functional values are added to and delete.d from them.

A maptable is capable 'of storing one of several functions of a

bit-string argument; these functions may be bit-string or pointer

. valued.

To declare a maptable, we write

LITTLE 37-9

(23) DCL X MAP (argsiz, tp);

(as usual, the declarat on of several successive hashtables

may be strung together). Here argsiz,. a compile-time constant,

denotes the size, in bits, of the intended argument to X;

tp, a type name denoting the type of value V which X returns.

(In effect, the value which X returns is as if declared by

(24) PTR X(tp)

To retrieve a value from a maptable X, we write one of

(25a) X(s}

(25b) fieZdX(s)

The form (25a) retrieves the 'entire' value V of X(s).

The form (25b) retrieves the item pointed to by a field of X(s).

If accessed, undefined maptable entries are returned with

omega in all pointer points and O in all bit positions.

The diction

(26) .DEF. X (s)

returns O if X(s) is undefined, 1 if X(s) is defined.

The dictions (25a-b) may be used on the left-hand side of

assignment statements, where they act either to define new

maptable entries or to modify old ones. When a maptable

entry is created by such an assignment, all :the pointers

contained in the new entry, with the possible exception of

the very pointer which is the assignment target, are

initialized to nil.

To drop a maptable entry, one writes

(27) .DROP. X(s);

LITTLE 37-10

To drop all entries in a rnaptable, one writes

(28) .DROP. X

The following remark concerning implementation will clarify

the semantics of maptables. A maptable is always accessed

(in logically 'indirect' fashion) through an auxiliary pointer

P stored in a single location; when the maptable grows and

must be recopied, this pointer is changed, thus

'instantaneously' changing all other references to this table

from the old to the new copy. If there exists only one program

reference to the maptable, the pointer P can be stored in

this location. If there exist several such references, and

especially if a maptable can be accessed via many stored

pointers, all of these pointers should point to the single

pointer P. This adds an additional level of indirection in

the access path leading to a particular table entry.

No.te that we allow pointers to point at maptables, and

allow maptables to be assigned. Therefore maptables act

like quantiteis of type pointer. To give one• .quantity of type

'maptable' the same reference as another, we may simply write

(29) X = Y;

To cause a pointer field to point at a maptable, we write

(30) . field V = Y •

For (22) to be used where Y is a maptable, the field etc.

must have been declared as a maptable of similar type.

A pointer field f in a structure is declared to point to a n
maptable by writing

(31) I • • • I f MAP(argsz, tp); n

Here, the field his a pointer to a maptable. argsz and tp

are as in (23).

As in LITTLE, static variables may also be declared in a

size or real statement. For example, the statements

LITTLE 37-11

REAL A,B,C;

SIZE D(WS), E(PS), F(PS);

have the same meaning as in LITTLE.

2. Dimensioned Subfields of Structures; Commonality Rules.

We allow the fields of a structured type (2) to be 'repeated'.,

i.e. to be defined with dimensions. This is done by writing

(32a) TYPE typename: partname(n) typedesc,

in place of the simpler, undimensioned,

(32b) TYPE typename: partname typedesc,

In (32a), n is an integer constant denoting the number of times

that the field partname is to be repeated. If a variable .x
is .. .de.clared to be of a type (32a), an extra index is required

in order to extract (or insert) elements of x. For example,

in the presence of the declarations

(33a) TYPE WITHDATA: P PTR(WITHDATA), DATUM(3) REAL;

(33b) TYPE WITH.ARRAY: PTR(* WITHDATA) ,

(33c) DCL X WITH.ARRAY, • • • I

the second entry in the 'DATUM' field of the J-th entry in the

array to which X points is referenced by

(34a) DATUM(2) X(J) .

Adapting a useful syntactic convention from SIMULA 67, we

now specify that in addition to unprefixed declarations of

the form {2), MIDL will provide prefixed type declarations

of the syntactic form

LITTLE 37-12

(35) TYPE typename: typename0 : partname1 typedesc
1

, ••• ,

partname typedesc; n n
An example (cf. (3)) would be

(36) TYPE BIGNODE: LISTNODE: SUBLIST POINTER(LISTHEAD),

MEMBERNO BITS(l0);

In (35), as in (2), typename is any admissible LITTLE name,

which becomes the name of the type introduced by (35);

partname 1, .•. ,partnamen are valid names, all distinct, which

come to name components of the type introduced by (35).

Finally, the syntactic objects typedesa 1 , ... ,typedesan are all

type descriptors. A structure introduced by a prefixed declara­

tion (35) inherits all the components of a structure of the

prefixing typename0 , plus the additional components

partname 1, .•• ,partnamen which appear explicitly in (35}.

Moreover, the new and the inherited components are arranged

compatibly, so that expressions of the form

fieZd obj

can be used for objects obj of type typename, whether fieZd

names an inherited component or a newly defined component of

such an object.

3. Conversion between SETL and MIDL Object Forms.

Access to SRTL Entries.

Under the present heading we shall propose conventions which

secure two principal ends:

i. It should be possible to link MIDL to SETL so as to

use SETL programs as frameworks within which developing MIDL

programs can be debugged.

ii. It should be possible, by transcribing.some 'innermost'

part of a SETL program into MIDL, to produce a hybrid SETL/MIDL

program which attains reasonable efficiency.

LITTLE 37-13

(a) Pointers as SETL Objects.

We allow MIDL objects declared as pointers to be members of

SETL sets, and more generally to introduce such pointers as a

new type of semantic object in SETL (as extended for communica­

tion with MIDL). This can be done with minimum modification to

SRTL; pointers can be handled es~entially as blank atoms, which

are however flagged to show a different type. MIDL pointers

differ from SETL blank atoms only in that field and indexing

operators, i.e., constructions

(37) index pt and pt(index) , etc.,

may meaningfully be applied to them. Note that a pointer has

a continuing identity irrespective of the values stored in the

data object to which it points, e.g., an assignment

(38) fie Zd pt = 0;

does not either remove pt from a set from which it happens to

be a member or insert pt into any other set.

(b) SETL Primitives in MIDL.

A MIDL .variable or structure field may be declared to be

a SETL data object by writing

(39a)

(39b)

DCL v SETLOBJ;

TYPE t:f SETLOBJ;

The following SETL constants are available in MIDL:

MIDL SETLB MEANING

.NL. NL. null set

• NULC. NULC . null character

. NULT. NULT . null tuple

• TRUE. T • SETL true

.FALSE. F. SETL false

• OM. OM . undefined

string

;.

LITTLE 37-14

Note that there is a distinction between SETL true and false

and MIDL true and false. MIDL true and false are defined in the

same way as in LITTLE.

Variables which are declared to be SETL objects may be used in

standard algebraic expressions. The compiler, when it detects

operands which are SETL objects, will compile a call to a routine

in SRTL, which will perform type checking and call the appropriate

routine for the operation. 'Mixed mode' expressions between

SETL and MIDL operands are illegal and result in compile-time

diagnostics.

Type constants are as follows:

MIDL

.INT.

.BLANK.

.SET.

.TUPL.

.STR.

.LAB.

.BITS.

.PTR.

meaning

integer

blank atomic

set

tuple

SETL character string

label

boolean string

pointer

The following operators which already are defined may be

used with SETL objects:

OPERATOR

+

*
I

[continued]

SRTL Routine Invoked

PLUS

MINUS

MULT

DIVIDE·

LITTLE 37-15

OPERATOR

=, .EQ.

-, =, .NE.

< =, .LE.

> =, .GE.

<

>
-,

A

V

, .LT.

, .GT.

, .NOT.

, .AND.

, .OR.

.EXOR.

(unary)

·SRTL. Routine Invoked

EQUAL

EQUAL

LE

LE

LT

LT

BOOLNOT

BOOLAND

BOOLOR

BOOLEX

PMINUS

A few remarks need to be made to clarify the semantics of

comparison operations.

i. Comparison between two SETL object yields a MIDL true

or .false result.

ii. Since SETL is a value language, it is clear that if A

and Bare long SETL objects in the expression

{40) A .EQ. B

the values of objects A and Bare compared to their full depth.

However, if A and B are pointers to MIDL heap structures of the

same type, the expression (40) results only in the comparison

of the pointers to check whether they point to the same heap

object. We therefore provide in the language the operations

(41a)

(41b)

Pl .EQL. P2

Pl .NEQL. P2

where Pl and P2 are pointers. The result is true if the value

of the object referenced by Pl is equal to the value of the

object referenced by P2.

Other primitive SETL operations which are made available,

generally in the form of infix or prefix operators, are listed

below.

LITTLE 37-16

MIDL

.NEWAT.

EL .ELMT. E2

.TYPE. E

.NELT. E

.ARB. E

.DEC. E

SRTL Routine

NEWAT

ELMT

TYPE

NELT

ARB

DEC

Value Obtained

root word

1 or 0

type constant

MIDL integer

root word

root word

• OCT. E OCT root word

SETOF (El, ••• ,En) forms {E 1 , ... ,En}

TUPLOF(E 1 , ... ,En) forms <E 1 , ... ,En>

DIMINISHF(X,S); SETL lesf and lesfn operations call

DIMINISHF(X1 , ... ,Xn,S); dimf, dimfaok, or depending on

the number and type of arguments.

F (X) if F and X are SETL objects, will call

either of, ofbstr, ofcstr, oftupZe,

F(X1 , ... ,Xn)

F{X}

F {Xl, •.. , xn}

F[X]

F [Xl, •.• , xn 1

.MIN. , .MAX.

• BOT • , . TOP •

or ofset. This operation is also

available if Fis declared to be a vector,

bitstring, or character string; and

Xis a MIDL integer or bitstring.

available if F and X are SETL objects;

have the same meaning as do the corres­

ponding SETL forms. We also allow these

forms to be used in sinister position,

to call the routines sof, sofbstr,

softupZ, sofset, sofn, sofa, sofan,

sofb, sofbn.

for SETL objects, these call the SETL

min and max library .routines (infix).

the SETL bot and top functions (prefix)

• POW. , .NPOW. the SETL 'pow' and 'npow' functions

(.SPOW. is prefix, .SNPOW. binary) •

The .NELT. function may be applied to a MIDL pointer

as -well as a SETL object. It computes the dimension of an array

object and the number of entires in a map table.

';

LITTLE 37-17

To add an element to a set or remove an element from a set

we use the following statements, adapted from SETL:

(42a)

(42b)

El .WITH. E2;

El .LESS. E2;

(AUGMENT)

(LESS)

There is no implicit copying of E2 in dictions 42(a-b).

The operation F(X), where Fis a eetZobj, may be used

in dexter and sinister positon. Note that if F is a vector,

bit string or character string, one may not write F(3), for

example, since 3 is a MIDL constant, not a SETL object.

(Cf. the se.ction on MIDL to SETL conversion operators, below.)

We provide a function

(43) COPY(V)

which creates a copy of the heap object V and returns a pointer

to the copy.

Here, V must be declared as a pointer or a setZobj.

Following the LITTLE style of extract operations and

assignments, we also allow extraction to be performed on SETL

bitstrings, character strings and tuples. This is provided by

(44a)

(44b)

.SUB. El, E2, E3

.SUB. El, E2, E3 = E4;

Diction (44a) results in a call to SRI'L routine SUBSTR and

(44b) to routine SSUBSTR. Operands El,E2,E3, and E4 must

be SETL objects. (More specifically, expressions El and E2

must evaluate to SETL integers, and E3 to a string or tuple.)

In order to make the SETL iterator accessible through MIDL,

we make available an iteration header

(45) FOR E IN X;

Here X and E should have been declared as SETL objects. The

scope of the iterator (45) is closed in the normal LITTLE style by

(46) END FOR;

LITTLE 37-18

The same diction is available with ~IDL maps; the elements

returned on successive iterations being the 'domain' elements

of the 'pairs' implicitly stored by the map.

Input/output will apply to MIDL and SETL objects in syntacti­

cally similar forms but with different.semantic implications.

Two forms are provided: unformatted and formatted. The

unformatted forms are (cf. LITTLE Newsletter 34, p. 9):

(47a)

and

(4 7b)

PUT filename var,var, .•• ;

GET filename expn,expn, ••• ;

Here filename names the source (or target) file to be used.

The statements (47a), (47b) are intended to invoke binary input

and output processes which are inverse to each other.

·To clarify the semantic intent of (47a,b), we must say something

about the input and output of MIDL objects, which can, of course,

contain pointers. When such an item X is written to a file,

we ,~roceed as follows: X and recursively all the i terns to which

fields in X point, all i terns to whi·ch fields in these first

items point, etc., are copied into a contiguous block of memory.

This is a garbage-collector-like process. A binary copy of the

resulting block of memory is then written out. The READ operator

is then a function which takes the binary record generated by a

write operation and brings it in, supplying an appropriate addi­

tive offset for each pointer field.

Formatted i/o is provided (as in LITTLE Newsletter 34) by GET

and PUT statements with 'formatted output lists' (see NL 34,

page 11). To allow SETL objects to be handled, we propose to

introduce 'setlformat' as a new format type •.

(c) Conversion Operators.

Certain of the atomic objects of MIDL can be converted to

SETL objects, and vice versa. This <J.pplies to MIDL objects

which are bitstrings, reals, and self-defining strings.

LITTLE 37-19

To make it possible for a programmer.to call for these conver­

sions, we provide a conversion operator in the two syntactic

forms:

(48a)

(48b)

.CN. n, .obj

.cN. setltype, obj

where obj is the object to be converted.

In (48a), obj is a SETL object which will be converted to a

MIDL object. If obj is an integer or a bit string, the

constant n. specifies the number of bits of the resulting LITTLE

bit string. If obj is a SETL character string, the result will

be a self-defining string, and the constant n gives the maximum

number of characters.

In (48b), obj is a LITTLE value, and it will be converted to

a SETL object of type indicated by setltype. Setltype may be:

SETLINT

SETLSTR

SETLBSTR

SETLREAL

integer

character string

bit string

real number

If the result is to be a SETLSTR, obj must be a self-defining

string. For example, the following expression yields a SETL

character string:

(49) .CN. SETLSTR, 'this is an SDS'

4. Namescoping, Recursion, Parameter Transmission. ENTRY Variables.

The namescoping conventions in MIDL are modelled on LITTLE

with the aims of preserving modularity and the ability to compile

incrementally, and supporting recursion. Variables declared in

the first routine are global, and, additionally, the NAMESET and

ACCESS statements will be available.

All variables which are declared in routines after the first

routine are local, except as declared global by use of NAMESET

and ACCESS statements.

LITTLE 37-20

The EXTERNAL statement has the form

(50) EXTERNAL name typedesa;

and declares name to be the name of a function which is called from

a LITTLE program but which will be supplied by the loader from

a library that is not of the standard MIDL form. Here,

typedesa defines the type of the _value which is returned by

the external function name. The purpose of this statement

is to make it possible to link routines written in FORTRAN etc.

with MIDL programs. This involves supplying the MIDL compiler

with the information it needs to compile correct code. Of course,

it is assumed that ,loader supplied external routines use calling

sequences which at the machine level are compatible with those

generated by the MIDL compiler.

To match the SETL semantics we provide recursive routines,

which are handled in an essentially conventional way.

A routine or function which is used recursively must be

declared in either of the forms:

(Sla)

(Slb)

SUBR name RECURSIVE;

FNCT name RECURSIVE;

When a recursive routine is entered, the code address of the

call and the recursive variables are stacked. When returning

from a routine declared recursive, the return address is then

obtained from the stack, and not from the entry point. We

allow the keyword STACK to be appended to the declaration of

variables known in a routine. The value of each such variable

will be transferred to the system stack when the routine is

entered at a level of recursion greater than 1, and will be

restored from this stack when return is made from the routine.

For local variables of recursive routines, STACK is the

default, and the appended keyword NOSTACK may be used to.

suppress stacking.

LITTLE 37-21

In part because the semantics of SETL procedures cannot

readily be mimicked in their absence, we provide objects and

variables of the type ENTRY in MIDL. An ENTRY object is

created each time a procedure is compiled by the MIDL compiler.

We may think of the compilation of such a procedure as

initializing a variable of type ENTRY, whose symbolic name is

that of the SUBR or FNCT which is compiled. However, names

declared in this implicit way behave in a somewhat special

manner as 'entry constants', which cannot properly be assign­

ment targets. The fact that the values of such names are

invariant is exploited to allow the generation of efficient

linkages when these names appear in function or subroutine calls.

In addition to these 'entry constants', we also allow entry

variables, which are declared in the form

(53) DCL varname ENTRY

for subroutines and also for function-variables which may return

a value -of one of. -several types. For function variables which

return a value of fixed type we provide the declaration

(54) DCL varname ENTRY typedesa

More generally, ENTRY and ENTRY typedesa are allowed as type

descriptozs. An ENTRY variable, and more generally a field or

array component of type ENTRY, can be the target of an assign­

ment whose right-hand side is an entry constant, entry variable,

and in general any entry quantity.

In compiling a call to an entry constant we generate informa­

tion which will cause the laoder to set up a fixed linkage to

a known object (of type 'procedure') when an executable, closed

package of subroutines is being built. A call involving an

entry variable will be compiled differently, with code which

sets up a parameter list and then transfers to an entry address

·which will have been transmitted dynamically rather than being

supplied statically by the loader.

LITTLE 37-22

When compiling a call to a functio·n, the MIDL compiler requires

information concerning the type of value returned by the function.

The ENTRY descriptors defined above serve in the case of calls

to variable procedures to make this information available.

For corresponding use when we deal with procedure constants,

we provide a statement of the form

(54) EXPECT function-name (typedesc);

where function-name is the name of a function whose definition

will follow its first use, and where typedesc defines the type

of value which this function returns. If the definition of a

function precedes its first use, no EXPECT statement is

necessary.

For an initial implementation of MIDL, we propose to generate

LITTLE source code. The code output will be similar to that gene­

rated by the SETL translator system (SETLBEAST). This will

avoid adding an extra layer of complexity to the LITTLE compiler,

which is currently being worked on by several people. Further­

more, the source may be undergoing major modifications in order

to install global optimizations. At a later time a suitable

intermediate language should be implemented as the target of

both the translator system and MIDL.

The decision to generate LITTLE as target code from MIDL will

probably require some changes to the LITTLE compiler. There is,

in particular, a problem with the current parameter-passing

convention. Currently, if the actual parameter is simple, its

address is passed. However, if the parameter is indexed, the

value is passed. This convention has proved to be somewhat awkward

in that in order to modify an array location which is a parameter,

the base array address and the index must be transmitted as 2

separate parameters. In the LITTLE code generated from MIDL,

this will be more of a problem, since all variables which are

declared as pointers will be compiled into indexed expressions

of the form

STORAGE (I)

LITTLE 37-23

Suppose a pointer variable V, which is a SETL object, is passed

as a parameter. If Vis a short object, the value of the item

is passed, and an assignment to the parameter within the called

routine will not change the value of the variable. If Vis

a long object, however, the heap address will be .passed, and

an assignment to the parameter will change the value of v.
The conventions of LITTLE should be changed to avoid such

inconsistencies.

LITTLE 37-24

Appendix. MIDL BNF Grammar {without I/O).

In the grammar below, an asterisk following a metavariable

name means the item may appear 0 or more times. An asterisk

preceding a name designates a lexical token type. The lexical

types are:

<*name>

<*compname>

<*const>.

<*notsemicolon>

<*binop>

<*unop>

LITTLE identifier name

component name: LITTLE identifier

constant

any token but ' ; '

binary operator

unary operator

(1) <program>+ <routine> <routine*>

(2) <routine>+ <routhdr><block> <ender>

(3} <block> + <labstatement> <labstatement•>

(4) <labstatement> +/<*name>/ <statement>

+ <statement>

(5) <statement>+ <declstat>

+ <compstat>

+ <simplifstat>

+ <simplstat>

(6) <routhdr> + <rhdr>;

(7) <rhdr>

+ <rhdr> RECURSIVE;

+ SUBR <•name> <arglist>

+ FNCT <•name> <arglist>

LITTLE 37-25

(8) <declstat> + <declaration> STACK;

+ <declaration> UNSTACK;

-+ <declaration>;

-+ ACCESS <*name> <cname•>;

(Sa) -+ DATA <dataspec> <coldataspec*>;

-+ DIMS <attrspec> <cattrspec•>;

-+ EXPECT <vardcl> <cvardcl•>

-+ EXTERNAL <vardcl> <cvardcl•>;

-+ <typedef>

(9) <declaration>+ SIZE <attrspec> <cattrspec•>

-+ REAL <•name> <cnarne•>

(10) <vardcl>

-+ DCL <vardcl> <cvardcl•>

+ <•name> <typedesc>

(11) <typedesc> + <*name>

-+ <typexpr>

(12) <typexpr> + PTR

-+ PTR { <typedesc>)

-+ BITS {<constexpr>)

-+ REAL

-+ SETLOBJ

+ ENTRY

-+ ENTRY <typedesc>

-+ MAP {<constexpr>, <typedesc>)

+ PTR {•<typedesc>)

(13) <cvardcl> + , <vardcl>

(14) <typedef> + TYPE <typename> <tdescpart>;

(15) <typename> + <•name>:

(16) <tdescpart> + <typename*> <tdescsp> <ctdescsp*>

+ <typexpr>

(17) <tdescsp> + <*compname> <typexpr>

-+ <*compname> {<constexpr>) <typexpr>

LITTLE 37-26

(18) <ctdescsp> +, <tdescsp>

(19) <attrspec> + <*name> (<constexpr>)

(20)

(21)

<cattrspec> + ,<attrspec>

<dataspec> + <*name> (<constexpr>)

+ <*name> = <dataval*>

(22) <dataval> + <dataexpr> <ctlataexpr*>

(23) <cdataexpr> +, <dataexpr>

(24) <coldataspec> +: <dataspec>

(25) <dataexpr> + <constexpr> (<constexpr>)

+ <constexpr>

(.26) <compstat> + <opener> <block> <ender>

(27) <opener>+ NAMESET <*name>;

+ WHILE <expr>;

+ UNTIL <expr>;

+ DO <*name>= <expr> TO <expr> BY -<expr>;

+ DO <*name>= <expr> TO <expr> BY <expr>;

+ DO <*name>= <expr> TO <expr>;

+ IF <expr> THEN <block> ELSE

+ IF <expr> THEN

+ FOR <expr> IN <expr>;

(28) <ender> + END <notsemi*>;

(29) <notsemi> + <*notsemicolon>

(30) <simplifstat> + IF <expr> <simplstat>

(31) <simplstat> + CALL <*name> (<expr>icexpr*>);

+ CALL <*name>;

+ CONT <notsemi*>;

+ GOTO <*name>;

+ GOBY (<*expr>) (<*name> <cname*>);

+ GOBY <*name> (<*name> <cname*>);

LITTLE 37-27

~ QUIT <notsemi*>;

~ RETURN;

~ .DROP. <expr> (<expr>);

~ .DROP. <expr>;

~ <expr> • IN. <expr>;

~ <expr> .OUT. <expr>;

~ <assignstat>

(32) <assignstat> ~ <lhside> = <expr>;

~ <setaccs> = <expr>;

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

<cexpr>

<arglist>

<cname>

<lhside>

<expr>

<term>

<exprbeg>

<unop>

<extbeg>

~ , <expr>

~ (<*name> <cname*>)

~, <•name>

~ <extbeg> <lhside>

~ (<lhside>)

~ <vatom>

~ <expr> <*binop> <expr>

~ <term>

~ <exprbeg*> <atom>

~ <unop>

~ <extbeg>

~ <•unop>

~ .CN. <cndesc>, <expr>,

~ .F. <expr>, <expr>,

~ .s. <expr>, <expr>,

~ .E. <expr>, <expr>,.

~ .SUB. <expr>, <expr>,

~ .CH. <expr>,

~ <•compname>

~ <•compname> (<constexpr>)

~ <•name>::

~ t

LITTLE 37-28

(42} <cndesc> -+ BITS(n)

-+ CHARS (n)

-+ PTR

-+ SETLINT
-+ SETLSTR

-+ SETLBSTR

-+ SETLREAL

-+ SETLPTR

(43} <atom> -+ (<expr>)

-+ <vatom>

-+ .DEF. <*name> (<expr>)

-+ • DEF. <*name>

(43a} -+ <*const>

-+ <setaccs>

(44) <setaccs> -+ <*name> (<expr> <cexpr> <cexpr*>)

-+ <*name> [<expr> <cexpr*>]

-+ <*name> { <expr> <cexpr*>}

(45) <vatom> -+ <*name>

-+ <*name> (<expr>)

COMMENTS:

(Ba) Variables appearing in DATA statements must be static •

. For example,

DCL V BITS (83); DATA V = 17;

is valid, while

DCL V PTR (heapobj); DATA V = 7;

is illegal.

(17) A oompname is any valid LITTLE name. A component

name may be used to name a component of one or more

structures, but the name may not be used to name anything

else (e.g., variable, subr).

Except for component names, all identifiers must

be unique.

';

LITTLE 37-29

(19) <constexpr> is a constant expression; i.e. an

arithmetic expression which must evaluate at compile

time to a constant.

(32) The f9llowing are examples of valid assignments:

compnamel compname2 V = E;

compnamel (compname2 V(I)) = E;

compnamel t compname2 t V = E;

-eompname t t V = E; /* two dereferences */
t tp .. V = E; /* tp qualifies V */ ...
tp .. t V = E; /* tp qualifies object . .

tpl .. tp2 . . V = E; /* tpl

The following are illegal:

compname F{X} = E;

compname F[X] = E;

referenced by V

qualifies V.

tp2 ignored. */

compname F(Xl,X2, ••• ,XN) = E;

*I

(37) Binary operators are listed below with operand

type and a number indicating operator precedence strength.

The stronger the operator strength, the higher the number.

Operand types are coded as follows:

· M MIDL primitive object (painter)

L - LITTLE object (bit string)

L(SDS) - self-defining string

s ':"' SETL object

o:eerator :erecedence o:eerandl o:eerand2 • result

.c. 1 L L L

.cc. 1 L (SDS) L (SOS) L (SOS)

.OR., V 2 LS LS LS

(continued) •••

LITTLE 37-30

012erator 12recedence 012erandl o:eerand2 result

.Ex., .EXOR. 2 LS LS LS ,

.AND., .A. I V 3 LS LS LS

.EQ., = 4 LMS LMS L

.NE., _,. = 4 LMS LMS L

.EQL. I .NEQL. 4 LMS LMS L

.LE., <= 4 LS LS L

.GE., >= 4 LS LS L

.GT., >. 4 LS LS L

.LT., < 4 LS LS L

+ 5 LS LS LS

5 LS LS LS

* 6 LS LS LS

I 6 LS LS LS

.INS. 7 L (SOS) L (SOS) L

.ELMT. 4 s s L

(40) Unary 9perators are:

OEerator OEerand result
-, , .NOT., .N. SL L

SL SL

.NB• L L

.FB. L L

.TYPE. SM L

.NEL'l'. SM L

.ARB. s s

.DEC. s s

.OCT. s s

.MIN. s s

.MAX. s s

.BOT. s s

.TOP. s s

.POW. s s

.NPOW. s s

J

LITTLE 37-31

{43a) Constants include the type constants:

• INT •

• BLANK.

• SET.

• TUPL.

.STR •

.LAB •

.BITS •

.PTR.

and other SETL constants:

.NL.

• NULC.

• NOLT.

.TRUE •

• FALSE •

.OM •

Additionally, the following are reserved words,

which are system function names:

NEW

TRIM

COPY

DIMF

SETOF

TUPLOF

