
LITTLE Newsletter# 39

Post--ya:c,.,,tup reflections on the

Honeywell.minicomput~r imolemetitation

of LI'I'11 LE. l'HnLcomputer Software

T. Stuart
September 15, 197~

Dismay is the most likely response for a programmer confronted

with developing substantial systems on a rninicomputer(l). If any

language other than the machine language exists, it is most likely

to be FORTRAN or BASIC at which point the manufacturer's software

budget ran out. And if they are available, they surely will not be
.

optimizing compilers. In a few instances a machine oriented language

is available, for example PL-11 and BLiss~11 on the PDP-11, PL516 on

the Honeywell Series 16, and ALIAS on the PDP-9. All of these

languages are improvements over the alternative assembly code for

systems programming. They all provide access to machine characteris

tics and produce efficient code and should have received wider use.

The efficiency is not the result of any optimization techniques but

rather the low level and direct references to registers or addresses

and imbedded assembly code. The size of minicomputers generally die-

tates the exclusion of very much imization in any case, so a higher

level language in which optimization becori1es imperative is not practical.

For a general discmrnj_on of these minicomputer systems implementation

gvages and several otners for larger systems, see Reference 2.

Faced with implementing a graphics system of some si:c:e on a

Honeywell Series 16 comput~r, and having previously worked in a

combination of FORTJ.AN and an assembly hmgu.age for the same l.il.:rpo:_,e ,

there was every reason to consider a systens aevelopm0nt language. An

additional criterion was machine ir1dependence, needed partly because

soms graphic,-:; tw:i:•;,;, \-Jould proce~u on the rninicomputer, whi otners

would run on a larger stem, and still others on both, and Jy

becE1.tu,e other mi.n:ico1r1vut.erc 111i.ght cventt1a1 Jy be used.

LITTLE-39-2

Choosing LIT'TLE

The choice to implement LITTLE was made primarily on the basis

of its design around the twin goals of machine independence and

efficiency. The resolution of the conflict between these somewhat

contradictory goals through design decisions involving the language

syntax and the cor~iler structure has been described earlier.

Beyond these assets there were some characteristics of special note

for this implementation. First, the presence of macros within LITTLE

had a benefit other than the obvious increase in the language's power.

cifically, in graphics the capability for expressing command or

drawing instructions in a natural, more English-Llke manner was a

desirable feature; macros enable this approach. Second, the size of

the LI'I'TLE c.ompiler is much larger than any minicomputer will support.

Thus, it runs as a cross-compiler. Perhaps, this would seem a dis

advantage, but not so. Since LI'rTLE is machine independent, prograr:,

development and debugging take place on the larger machine with its

extensive aids. Third is the inclusion of most of the FORTRAN syntax

in LITTLE, Though code written by experienced LITTLE programmers

generally looks more like ALGOL, programmers suffering from an exclusive

FORTRAN background can express themselves without difficulty.

Few systems :i.mplementation languages can support a claim for

machine independence. Of those with independent qualities none are

both efficient and possess these added characteristics. On the other

hand probably none are as fficult to :unplernent well as LIT11LE is.

L I'I'T LE-3 9 - 3
'I'arget Machine

The Honeywell series 16 computero are characterized quickly as

sectorized, accumulator,twos-complernent machines. The two useful

registers are the accumulator and the index register. Machine in

structions are all one word in length and have a single operand.

For instructions that reference memory, the operand field occupies

nine bits, thus limiting references to 512 words, the size of sectors.

The references are absolute, not relative to the instruction. One bit

of the instruction allows switching the reference to the first sector

of memory, sector zero. References to locations outside both sector

zero and the sector of the instruction must be accessed through indexing

or indirect addressing or both. When both are used there is a con~li-

cation. It arises because the original version of the machine caused

indexing to be specified on the indirect address rather than the final

direct address. This design fault was corrected by a hardware option

that allows one to switch addressing modes. Not all machines possess

it. The machine instruction repertory is rather standard. Multipli

cation and division are options absent from many configur~tions.

The only software provided by the manufacturer of interest to this

project was the FORTRAN compiler, the assembler, and the loader.

FORTRMl was of interest ma.inly in order to define the calling convention

for routines; except for four short library routines nothing of that

language has been used. Two versions of the assembJ.er were availab1e,

the standard one and another which ran as a cross assenililer on the CDC

6600. The 1atter was used, and of its use, more 1ater. The loader m,E:d

was the most complex of those ,ivail3ble, but was ~;till. prirnit:Lve. "rhe

mo3t serious defect was a laqk of provision for data b1ocks of cloba]

va1 iubles. 1J1hough a "common" c:sxi::.;t,.Jd for. tho Joader, its propG:i_"tic:::

LJ()re no relation to a tu~u;=d bluck ,;f' tlli~ type.

LITTLE-39-~

.Given the macnine crmr·acteristics, one can see a number

of problems:

1. Compilation must handle two addressing modes. (Mode independent

code is possible but inefficienc.) Execution requires two run-time

libraries.

2. Operands of machine instructions preferably will not refer to

addresses in other sectors, because this costs space and execution

time.

3. Effective use of sector zero will mean placing the most frequently

used quantities there.

4. Some convention must be devised for linking global data blocks.

These problems are unique for this implementation~ but every

machine will have an equivalent set to superimpose on the basic

task of code ration.

LI'I'rLE-39-5

Design Decisions

The 1~irst choice to be made was the number of LITTLE tives

to implement. Since there were expectations of a substantial need

for machine independent code riE;ht from the be nning of the compiler's

use, a larger set of primitives, forty, were chosen than is necessary

for a useful compiler. The only primitives omitted were real number

operators and functions. Most systems work has no need for real numbers,

and in the exception, FORTRAN routines could take care of the lem.

Two score primit1ves would not constitute a major task for implementation

in many languages, but because the primitives output by the parser are

still devoid of any features of a machine dependent nature, and because

the goal of efficiency must be attained ly through the work of the

code generator, the task in LITTLi is major.

rrt1e second choice was the form of the output, binary or symbolic.

Proceeding directly to binary output and bypassing an assembler h2s two

distinct advantages. It is more efficient in terms of execution time

for the compilati~n process, and it avoids the idiosyncracies of an

assembler, expecially the limitations on symbols. On the other hand,

employ an assembler also has a couple of advantages. ri1he assembler

will perform a service by checking for errors in the translation. And

the presence of assembly code will then enable modifications or exten

sions on the machine level to handle operations not available in the

njgher level source code. Symbolic code emission was the choice, and as

it turned out, the first reason for choosing it was the major justifi

cat:Lon. 'I'lrnre has never yet been any code tinkerine;; v1hen a hardware

dev:i.cc must be c1ddre:::n.:;ed, an asserribly language routine is writtt:,n.

iiu:,;cv8r, a third reason d.ici surI'ace; another lnstallation des :3or,tc,

0 of'V1rnre, but witr10ut a LI'l"l'SE :::ompllcr, Wi'l~; r,upplied 1:d.th the ::,.s,,n;rJ

LI'TTLE-39-6

Another rnajor problem involved communication between object

modules. As noted earlier., the loader provided no means of linking

global data blocks. To be precise, the problem is to enable reference

to global variables from assembly language programs. One solution

that would have been easy on the LITTLE program writer is to adopt a

convention for naming these blocks, and then passing them off to the

assembler and loader as subroutines. There were several disadvantages

to this. First, the assembler and the r.rrTLE compiler accept the same

set of characters as legal; hence no special character is available
.

that would be an acceptable convention for linking to assembly programs.

The unacceptable alternative is to impose restrictions on symbol use in

LITTLE source code. Furthermore, referencing an element of an array

that is in turn a member of a global block would be a cumbersome and

error prone task in assembly language.

Yet another aspect of the problem is that the Series 16 machines

have dedicated machine locations that it would be advantageous to

address from LIT'l'LE. Since we are writing systems programs, the lack

of a capability to tie locations to variables causes a resort to

assembly programming. Treating global blocks as external, relocatable

routines aids not at all.

It is even debatable whether there is always an advantage in

treating a global block that appears as an entity in source code as an

entity in object code; storage allocation can be more efficient when

the variables are treated separately, and this is discussed later.

Considering the above, two reRlistic solutions appeared; one was

to re-wr1te the loader, to change our universe as it were, and the other

was to establjsl1 a procedure for ~pecifying machine addresses to the

compi.ler to be m3ed vJhcnever a co1mnunications linl{ to an ass9mbJ.y p:ro[,;r2.'.;:

or a c1ed1catecl location war:; r·t:c11Llreci.. '.Phe code generator then pl,,,,,.,,:; L:1,

LITTLE-39-7

global block or names et at the :::~pecified location. Direct1 ves to th~

compiler take a simple form. For example,

/CHANNEL/= 73;

puts block CHANNEL at location 73. The directives are on a fj_le

entirely separated from source code, source code of course has no

access to the addresses, and the solution imposes no conventions or

limitations on LITTLE source code.

'11he three prec problems involve the world external to the

code generator; its internal structure cor1stituted the next to last

major design problem. 'l'hough the top most structure of the translator

could have been quite simple vdth just two passes over the parser output,

one for resolving "forward referencesn and a second for code generation,

the extravagant choice of four• passes was made. Partly it was done to

separate processes that were conceptually different so program develop

ment could proceed independent and so that debugging and compiler

modification would be more straightforward. But it was also done to

allow more chances for optimization; the longer one can postpone st

allocation, the better the job becomes. The philosophy here is simply

that in implementation of a language for systems development, almost no

effort by the compiler in behalf of optimization is too excessive. Not

surprisingly, there was some expectation that the translator would run

rather slowly. This did not, however, prove to be the case; the code

generator accounts for about one-third of the execution time of the

compiler. The functions performed in each of the four passes were·

1, symbol resolution to adapt LI'l''I'L!~ source into legal, non-redundant

assembly language symbols,

2, a ory pass to dc:tcrmine the optimum code to generate F,dld cet

LrrTLE-39-8

3, uode generation itself, and

4, a ~toraGe allocation pass.

'rhis gross description of the structure is amplified in a detailed

systems manual (3).

The final decision transformed the structure of the object

output. The usual compiler converts a series of programs or routines

or procedures into a series of independent object modules, to be linked

by a loader. The translator creates a single assembly language program

with multiple entry points. A single program causes all symbols to
.

become global, so of course this creates work: the decision is the major

cause of the first pass over the data, although some syr~ol resolution

would have been necessary without it because, like any higher level

language, Lrrl'TLE is not as restrictive in its use of symbols as an

assembly language. r.rhe justification for the trans formatjon lies, once

aGain, in the optimizations it allows; these advant

later in the account of storage allocation.

s are discussed

LIT'rLE-39-9

Optimizing Machine Code

If the LITTLE goal of efficiency is v!ewed seriously in writ

a code generator, then at least haJ.f of the result will depend on the

care taken in choosing the machine instructions to implement each

LITTLE primitive. For many machines a concurrent concern with register

allocation is also important in reduc connective (loading and storing)

code; for the accumulator machine here it is insignificant. Without

going into any details of the code, the following paragraphs discuss a

number of' subjects that offer opportun:Lties for optimization, ,and that

might· be of benefit in generating code for any language.

Varied Realizations

It is not uncommon pract:i8e to reallze a prlmiti ve with a single

macro or template, but for this LITTLE generator a single implementation

is the exception. Most primitive □ give rise to several code sequences.

In some cases the determinating influence is the code environment

(preceding or succeeding primitives) while in others it is the chara~ter

istics of the arguments of the primittve itself. A good example of the

latter type is the LITTLE field extraction operator. This primitive can

lead to more than two dozen machine code sequences depending on the

nature of the variable from which the field is extracted, the size of the

field, its position, whether or not the size and position are constants,

etc. Generally, for this primitive it is difficult to think of many

situations where the assembly language programmer could turn out better

code.

Space versus fime

UsuaTLy when two mean::, to nt :1 prtmitive are availa.ble, one

of' them will be both slwrtEn h1 coJe leng;th and f3ster 1n executinc;.

'Ii1ere vdll be no d:ifficulty 1n c1100::dng the better one. B11t or~cni; c•,alJ?

LITTLE-39-10

execution time and code space are in conflict. One way this may happen

is when the code required by a primitive is a few instructions too long

to be entirely reasonable in line, but as a run time library routine

would require two or three times as long to execute. A typical solution

is to allow the progra~ner to choose between the two possible optimiza~ion~

at compile time; and the original design of this generator incorporated

such a feature. Once the generators were begun, however, there appeared

only three primitives that could pose any conflict of this sort, and two

of them were rarely used. After hearing of a case where a version of a

FORTRAN compiler that had been optimized to produce fast code actually

turned out slower code than the unoptimized version, the design decision

was reversed and the choice was made arbitrarily.

For library routines a substantial factor in execution time can

sometimes be found in the transfer of arguments. Though an inefficient

procedure may be chosen for other characteristics such as traceback

facilities or inter-language commun:i.cations, there is no reason to rr:aintair.

the same procedure in designing library routines; several more efficient

ones were used here.

Compile Time Optimization at Run Time

Every good compiler will take a division by two or a power of two

and optimize with a register shift if the machine has no hardware for

the operation. As a rule this optimization is confined to situations

where the divisor is a compile time constant, but this need not be the

case. If Dis the divisor then the expression (7)

D /'\ (D-1)

is zero if Dis a power of 2. It is, on the average, ~uch faster to

perfor·m this te3t and car.cy out djv_b Lon only npon failure than to supµ

a somewhat shorter divislon routtne lDckJ the test. Of course the s me

situation e sts for tiplicG.tion, ;,nd ,iil ana.Lugous o;;,timh'.,1t:iuI1 i:J

LI'J·TLE-39-11

Run Time Library

Several considerations here cause conflict in choosing a best

i:rnplementation. On the one hand, the use of previously written machine

independent code for the library routines is preferable because it re

quires no work. On the other hand, these routines are at the lowest level

and an argument can be made for writing machine dependent, efficient

code. An individual who has written the code generators has an excellent

assessment of what source level code gives good machine level code, and

what is impractical to express at the higher level. In this instance

there might be about 100 words of assembly code in the run time library

that could not be avoided, but the actual library has about 400 words on

the basis of efficiency. Half the remaining LITTLE coded library was

taken from previous libraries and the other half was re written mainly

because of differing conventions.

Another aspect of the library mirrors the multiple realization□

discussed above. Just as it makes sense to optimize with several code

sequences in-line, so does it in the library. For example, both field

extraction and field assignment operators can generate use of four

different library routines.

Addressing

If one wishes to take advantage of procedures written in ano~her

language then adherence to the language's addressing conventions is

helpful. In this case compatibility with FORTRAN was desirable, but

its conventior1s were not. The point of dispute was the convention which

stipulates that the address of an array is the address of the first

element of the array. In every reference to an element, then, an extra

opcrat:ion is required to c:orrect the address by one word. Moreover, the

calculation can sometimes require a r2gi~tor and cause extra memu1·J

references for bumped temporaries. For the sake of efficiency :1. t ;; 1a·;:e0

LIT'rLE-39-12

good sense to define the address of an element (where the number of

bits in the element is equal to the number of bits in a machine word)

as either the sum or difference of the address of the array and the

index to the element; whether memory is accessed up or down is not of

consequence to efficiency.

LI'I'TLE-39-13

Storage Allocation

For the Honeywell Series 16 machines storage allocation offers

the compiler writer a real challenge. F'or computers that have homage-

nous memory and homogeneous address in the machine instructions,

there will be no gains from any particular allocation scheme. For

computers unlike the Honeywell but with addressing relative to the

instruction, some of the problems and opportunities may be the same as

those described here. Storage allocation does not often get serious

consideration in compilers, but for a terns implementation :J_anguage

it should. Assembly language programme2s only occassionally take the

pains to optimize their storage, and for good reason: it takes too

much time. But in writing a code generator for the general case the

effort is made only once> and the excuse is insufficient. Herewith,

some improvements.

Use of High Priority Memory

As noted earlier the target machine has a sector zero of 512 words

that may be referenced from anywhere in core. With another computer

the priority of a part of memory might be high because access is

especially fast. In either case one is concerned with using the space

to best advantage. Here, several disparate quantities were ass d

to this sector. First were intersector references. Sometimes source

code can generate ~ignificant numbers of cross sector addresses; even up

to ten per cent of a sector can consist of these resolutions. Since

there is much duplication an10ng sectors, plac them in sector zero

reduces code length. A second type of quantity is the literal.

constants get d use, while others appesr but once; it was as

matter to keep track of the rHU'tbcr of rouGines in wh-lch a c0:1r?tant. oc •1JJ';c::,

If it appears more than
. . .

once; :1-t :u, ass d to sector zero. 'J'hj_s

LI'l"J1LE-39-14

procedure would have been impractical without the global symbol, one

program approach. A third category is the global variable. Though

this is a natural choice, space in the sector is quite limited and

might easily be exhausted, so only global variables no larger than

the machine word size were assigned. In ~ddition, some address constants

pointing to word size arrays are placed here, again eliminat

duplication.

Juxtapos Operators and Operands

much

This t machine is similar to a number of others in dE:riving

space and time advantages from close proximity of operators and operands;

specifically, if the operand is not in sector zero, there is advant

to having it in the same sector. Several tacks were made in this

direction. The simplest was merely to allocate variables and oraries

to storage as soon as they were referenced in the code (actually after

the first succeeding unconditional transfer). A second was generally to

allocate storage for a nameset immediately after the routine in which it

was declared. A third procedure created a new set of temporaries when

ever a sector boundary was crossed. 4nd the last procedure attempted to

avoid loops over sector boundaries: on the average half the memory refer

ences in a loop will lie in the other sector. This attempt was quite

difficult to implement and, although productive occasionally, was perhaps

not worth the effort.

Minor optimizations

Two means causing slight improvements were an allocation check and

a packing algorithm. 'rhe check merely prevented assignnent of a variable

to storage if it had not been referenced. Though newly written routines

neldom contain instances to rn;,J,l(o it worthvJhiJ.e, older, modified

programs need some garbage collection. J\ simple pack:l.ng ale;or:Lthm p:r•oveu

LIT'I'LE- 3 15

quite effictent in cramming small routj_nes into sectors, alr.10 alway,·.

filling ty to ninety pe:,_' cent of the space. Of cours0 it i;_;

possible to emit code without regard for sector boundaries, but the

number of inter-sector references r:Lses so sharply that more rather

than less space is required.

LI'l'TLE-39-16

Unexpected Problems

There are always a few of these, but the list is not terrib

iong. The biggest problem was that the translator was rather

difficult to debug. 'rhe most important causes were the difficulty

of following directions given during one pass in a subsequent one,

the lack of enough top down design in standardizing procedures or

macros for code emission, and the slow growth of storage optimization

features during the writing of the translator. rrhis last cause gave

rise to patchwork-like source and in one case a procedure got.so

complicated it had to be abandoned and redesigned as a structured

program.

A second problem was the parser. The translator was one of the

first large application programs for the compiler, so a few bugs would

not be entirely surprising. Bxcept for one, they were ~inor. The

exception resulted from a confusion over the word size the par3er

host and the word size in the target code, and illustrated once

the difficulty in writing machine independent software. What was a

surprise in the parser is that the only parameters needed by it at

compile time to shift to another target were the new word and character

sizes. One other change in the parser to produce more efficient code

has been shelved; the loop dictions in , such as do, whjle and

until, are not pri1nitives and the choice of primitives to implement them

is not the most efficient on all machines.

Another source of problems was the assembler. Though this progr·am

had been executing for severed.· yes.rs, it broke under the impact of

LITTLE. Two principal causes could be discerned; one was the product of

the extensive st &llocat.:ion mechanisms in the translator which

employed many pseudo oper-atjons rarely encountered in the sn12.ll pro

LITTLE-39·-

previously asse~bled; the other cause was the sheer size of LITTLE

programs which overi'lowed the assembler's tables. During the diffi

culties it would have been possible (if not very convenient) to have

jumped to the other assembler running on the target machine, but after

some experience with the loader, there was no longer any confidence in

official software.

Like the assembler the loader had been around for a while. Like

the assembler it tao cracked under the impact. To begin with it was a

rather difficult piece of system software to use with complex input,

but when it finally failed to meet its own specifications, a rewrite

and extension was undertaken. The new code was written mostly in LITTLE,

making this one of the few minicomputer loaders not in asse~bly code.

The task was particularly ful in that, if a new loader had been

foreseen, then it would have been written at the start, and the structur8

of the code generator would have been more standard with conventional

global blocks and storage allocation.

The biggest surprise of all was the length of time needed to do it

all - almost a man year.

LITTLE-39-18
Results and Expected Problems

Some test of the quality of code produced was desirable. There

is, however, a difficulty in that any comparison of code among

languages will reflect their biases. The choice of an algorithm should

be grounded in some domain where the languages are at least not at their

most awkward. The Heapsort algorithm of Williams (4) met this criterion

for FORTRAN and LIT'I'LE; it consists entirely of simple arithmetic, a few

comparisons, and program flow statements. It was programmed in these

two languages, and then the intermediate assembly code was inspected to

find possible short cuts, giving an estimate of the shortest and fastest

code obtainable.

Language

FORTRAH

LJCl'TLE

Assembler

Execution '1'1me

100

15

13

Code Length

2L!6

160

138

FORTRAN is actually worse than shown in terms of code length, because

the library routines it invoked were not included; LITTLE code was all

in-line.

While the comparison between LI~TLE and assembly code looks good,

it is in reality even better. rl'be test excluded two very important

features that would be imperative to consider in an evaluation for

systems programming. One of LITTLE 1 s major assets is its bit and field

operations. Even a good assembly language programmer will not always

find the shortest code for each and every case of field manipulation.

Second, and more important, no prograr~er has the time for all the global

optimization undertal,;:en and de:JcrilJod in the preceding section on storage

allocn t j on. For a single,. ::;ho2t rou1::. lnc: ;:_, ucli as the Heap sort test this

does not come into play, but for .L programs it is signiflcant.

LITTLE-39-19

Taking account, there seems no reason to prevent the assertion: for

systems programming the LITTLE object eode may run faster than assembly

code. It is certainly easier to debug.

Currently, efforts are nearing completion on implementing the

extensive I/O of LITTLE and at leaRt the most frequently used portions

should be operational shortly. There are still no plans to implement

real numbers. Conversely, the interrupt facilities of LITTLE are ninety

per cent complete, and with some luck may become useful within weeks.

Two projects remain to complete the wor·k on Series 16 LITTLE.

First, the machine dependencies of' the translator should be 1;emoved to

allow execution on other hosts. These mainly result from poor character

handling and could require two or three weeks to finish. Second, the

generator should be extended to handle the PRIME computer, which in

cludes the Series 16 machine languag(~ as an incomplete subset.

Brief guides to compiling for the Series 16 machines (5) and

running on them (6) are available.

Acknowledgements

Day to day advice from E. Deak and D. Shields was a life saver,

and the assistance of E. Guth with the code generators is much

appreciated.

This work was supported by grant NS-10072 from the Public

Health Service.

LI'l"TLE-39-2 0

References

1. C. Weitzman, Mintcomputer- Sys terns, Prentice-Hall (19 7 4).
A discussion or software availability may be found herein.

2. Machine Oriented Hi ---""--L.A. Maarsen, eds.
Level Languages, W.L. van der Poel and
~an Elsevier (1974).

3. T. Stuart, 11 The LITTLE Compiler for the Honeywe 11," ernal
report, Courant Institute of Mathematics, New York (1975).

4. J.W.J. Williams, CACM 1 (1964) p.347.

5. T. Stuart, 11 A Guide to LITTLE on the Honeywell Series 16 Il!achine s, 11

internal report, Courant Institute of Mathemtics, New York'(l975).

6, T. Stuart 11 Loading and Running on the H-316, 11 internal repo::.·i;,
Courant Institute of Mathematics, Hew York (1975).

7. D.H. Lehmer, "'rhe Machine rrools of Combinatorics 0 in Applied
Combinatorial Mathematics, E.F. Bechenbach,ed., John iiliiley and Sons>
New York (1964 .

1

l
J

'

t
l
l

