
·--. ··p,-. ~r ..
,. ;.I
) ! t

, ./ LITTLE Newsletter # 41

Dynamic Arrays in LITTLE

R. Dewar
December 1, 1975

,This newsletter contains two suggestions for extension

to the LITTLE language. The first adds a dynamic array facility,

the second deals with variable size item handling.

One of the advantages of requiring all indirect references

to be in base+offset form (e.g., indexed array operations}

rather than direct pointer form is that flexible arrays in

the ALGOL-68 sense are easily implemented. This.is because

the' operation of increasing the size of an arrayCBn be implemented

by copying the array to another location in memory without

worrying about instances of pointers to the original copy.

The need for such a feature is clear, even at the LITTLE

level. All modern computer systems (that I know of) allow

dynamic determination and use of available memory. Many

systems also allow dynamic allocation and deallocation of

m~mory at run time (e.g, CDC 6600, UNIVAC 1100, DEC 10, but not the

IBM 370). The failure of LITTLE to provide such a feature

results in objectionable constraints leading to (for example)

the phenomena of fixed table sizes in the LITTLE compiler

itself and the small-medium-large versions of SETL. Without

this feature the implementation of heap languages (e.g., ALGOL-6 8,

SIMULA-67, SNOBOL4) is quite unsatisfactory in a LITTLE

environment.

It appears that this feature can be added to LITTLE with

a minimum of 'effort and in an efficient manner. The remainder

of this note details a specific suggestion.

1. Declaration of Dynamic Arrays

An array would be declared dynamic by omitting the bounds

specification, e.g.

DIMS X ()

Such declaration could appear anywhere that DIMS declarations

are allowed.

LITTLE-41-2

2. Allocation of Dynamic Arrays

The allocation or reallocation (change of upper bound) of

an array is effected by:

SETDIMS (arrayname, newupperbound)

Elements with common subscripts would be retained. New

element values would be undefined (or in general, treated the

same way as initial values of static arrays in the absence

of DATA statements).

The initial allocation gives an upper bound of zero,

prohibiting references until a SETDIMS occurs and also

prohibiting compile time DATA statements for dynamic arrays.

(There i.s a temptation to provide a feature for initial

allocation specification but it would be hard to implement).

3. Use in SUBROUTINE Calls

The use of SETDIMS while any dynamic array is currently

bound as a parameter causes unacceptable implementation difficulties.

There are two possibilities:

(a) Prohibit use of SETDIMS while any dynamic array is

bound as a parameter.

{b) Prohibit the use of dynamic arrays as parameters.

(b) is much clearer but is probably arer restrictive,

but this choice is left open.

IMPLEMENTATION

The following describes a general implementation scheme

which includes provision for subscript checking. This latter

provision is generally applicable to static as well as dynamic

arrays.

LITTLE-41-3

An "array value" appears as·follows

BACK POINTER

SIZE

CURRENT DIMS

1st VALUE

2nd VALUE

~
etc.

}
zero for
static arrays

LITTLE-41-4

A dynamic array declaration allocates a static word whose

value is a pointer to the current array value (the pointer

probably points to the first value for historical consistency).

The {nitial pointer points to a dummy array value whose current

DIMS is set to zero and whose backpointer points to the static

word.

At the start of execution a heap area is allocated. The

mechanism varies from system to system, but all systems I know

of cater to this requirement. A next-available location pointer

is set to point to the start of the area.

On execution of a SETDIMS, there are two cases:

l) The array is currently not allocated, as indicated

by the fact that its value address is not in the heap. In

this case a new value is allocated at the end of the heap;

and the static pointer (accessible through the back pointer

in the dummy value) is made to point to the new array.

2) The array is currently on the heap. In this case,

its size is changed by moving any arrays beyond it up or

down (their backpointers allow corresponding adjustment of

their static pointer cells). Note that this approach obviates

the "double storage" required by reallocation schemes.

Reference to elements of dynamic arrays generate code

entirely analogous to that for formal parameters, the array

address being taken from the static pointer location instead

of the parameter list. The penalty for such accesses will

vary from machine to machine. Note in particular that the

arbitrary choice of ones origin is unfortunate; it may be

worth changing the dynamic array pointers to·,be zero origin

at the expense of some inconsistency between such pointe=s

and subroutine parameter· pointers. This latter choice is even

more attractive if dynamic arrays are not allowed as sub

rou~ine parameters.

•

LITTLE-41-5

On some machines (e.g., UNIVAC 1100, CDC 6600), which

are typically those for which the access penalty is highest,

it is possible to access one array (the one at the start of

the heap) directly and avoid the penalty. One possibility

is to treat the first dynamic array in the START routine in

this manner and tell users that this is the case. This would

allow the heap of a SETL, SNOBOL4 etc., implementation to be

handled in this more efficient manner.

The current DIMS of an array is always behind the first

element and this may be used to check subscripts, even for

formal parameters of subroutines. It could also be used to

implement a GETDIMS(arxay) function which would give the

current size of a (static or dynamic) array.

If it is decided to allow dynamic arrays to be passed

as parameters, then the SETDIMS restriction can be checked

by maintaining a global counter incremented before such a

call and decremented after, SETDIMS being allowed only when zero.

The size field of arrays can be used to check parameter

consistency, although such a check is much safer if the base

address of an array is the most significant (rather than the

least significant) word of the first element.

Given the introduction of the DIMS X() notation, it

might as well be used for subroutine parameters,eliminating

the current integer which has syntactic but not semantic

significance. SETDIMS is of course not allowed for subroutine

parameters in any case.

Handling variable size items in LITTLE

Although not stated in the manual, it seems reasonable that

the size of a subroutine parameter must match the size of the

corresponding argument. The current LITTLE compiler will in

general generate wrong code if this is not the case, where

wrong means uninterpretable by the published rules.

LITTLE-41-6

There is however a need for handling multi-word items in

a more dynamic manner. For example, the system routines LOR,

LAND disobey the SIZE matching requirement and work only

because the meaning of undefined is "known" in this case. The

fact that "cheating" is going on here is made clear by the

fact that these particular routines failed in one recent

transportation effort which would otherwise have worked.

The following is an attempt to define and codify the

cheat used in LOR and LAND.

The meaning of SIZE X(N} where Xis a parameter will be

that N is the largest possible size which the argument may have.

If the parameter is only used with field extractors or

as an argument in a further call, no temporaries are needed

anyway (this is the case in LAND and LOR). In this case an

effectively infinite value can be used for N to indicate that

arbitrary size items can be handled.

Alternately an extra notation

SIZE X () ;

might be introduced to correspond to this situation, in which

case accesses would be limited to these two types (field

extraction and calls}.

Where other kinds of references are present (assignments,

direct operations} temporaries of size N are allocated, as is

appropriate to handle the largest possible item.

Note That extracting a field outside the actual size

{even if within the declared size) is undefined, just like

referencing an argument vector outside its actual bounds.

