
ter :fl: 42

-\
A DE iGENERATOR INTERFACE

T. Stuart
July 20, 1976

With more code generators for LITTLE being planned it is

appropriate to re-consider the data structures linking the parser

and the generators, especially the infamous VOA. The complexity of

these structures (six or seven tables and two or three score fields)

requires substantial time for familiarization for programmers who

wish to write new LITTLE code generators. The use of the generators

by parsers of other languages is also inhibited.

A series of independent steps or projects is suggested that will

lead to easier access. Replacement of the VOA itself is no longer

feasible because a parser and four generators rely on it. Rather, the

approach is to hide the data structures entirely from users. At a

later stage alternative, more efficient structures can be chosen. The

tasks proposed are:

1. Create a module which reads the tables.

2. :".::--'-~ate another one which writes them.

3. Design e.::-Ficient, compact structures.

4. Map the interior structures to an exterior representation -

an.intermediate language.

5. Create a symbol customizing module for generators that

produce assembly code.

The first of these is the only topic of this newsletter. The

others are dependent on the first and will be treated in subsequent

newsletters. For those readers with only a cursory interest in the

problem, it is suggested that you skip immediately to the results.

Pages 23-26, o:f the Appendix, Newsletter 42A, give examples of how

new code generators can be written.

LITTLE-42-2

Overview of the Code Reading Module

If the structures are to be hidden from code generators, then

two separate courses may be taken in providing information about the

operators and operands. The first is a functional approach in which

a large set of access functions may be designed; each function returns

some property when invoked. The second is a windowing approach where

a command from the generator causes display of many properties in a

window, or set of global variables. Choosing a window size (i.e.,

the number of properties) can be a problem. If there are too many

items one is hardly better off than with the present complex structure,

and if the kinds of data to be windowed are enormously varied then the

number of windows needed may also be too large for clarity.

A functional solution, on the other hand, poses several design

problems. Typically code generators must access a three level structure:

a property of an argument of an operator. Also quite typically, they

will often need to reference two such items at once; for example:

if size of argument 1 of operator 1 =
size of argument 2 of operator 2 then

There are three means of allowing this double access within a

single expres~ion.

First, once can introduce functions designed explicitly to set the

current operators and arguments, while yet other functions access

specific properties. Not only is this quite cumbersome in practice,

but it will be easy to introduce unpredictable side effects. A second

method would allow the access functions to read global variables in

retrieving a property. This method lends itself to simplicity and

brevity in the assembler code, e.g., if fsizel () = fsize2 ()

then ••. , but suffers the defect that multiple sets of functions are

needed to access multiple sets of global variables. The third means

LITTLE-42-3

is to design functions that neither read nor write global variables,

but have all such information specified in the calling parameters:

if fsizel(opl,argl) = fsize2(op2,arg2) then •.•

Obviously, brevity of code will not be an asset of this approach.

Overhead is another factor to consider in choosing between

a functional and a windowing solution. If the number of different

properties referenced with each encounter of an operand is small,

then there is a lot of overhead in displaying all the others, whereas

if the number of properties referenced is large, there are many functions

to invoke versus only one window. I think this is the crucial factor:

on one hand the overhead of the window approach is all in extra

execution time with little programming for the writer of the generator,

and on the other hand it is all in the programming if the functional

approach is taken. Our experience with four-pass generators suggests

that multiple pass costs are trivial.

What Questions Do Code Generators Ask?

The kinds of access needed by generators might be divided into

six categories

1. Sequential access to operands.

In this case there is no concern for operators. Examples

might be a routine that converts LITTLE symbols to legal assembler

symbols or a procedure for storage allocation.

2. Access to a single operand ~f ~n operator.

This type of access takes two forms, specific and

sequential. Specific access is by far the more frequent request;

most work in code generators deals with operands in a manner where

the purpose or function of the operand is germane, and access to

it must reasonably take into account whether it is an addend, a

field width, a label, etc.

LITTLE-42-4

Sequential access to each argument is often most appropriate

when the semantic class or purpose of the operand is of no concern;

when only a property or attribute is important. For instance if a

check is made on a relational operator for multi-word arguments in

a pre-emission pass, the left and right ope·rands are of no interest

as distinguishable quantities, and sequential access to the operands

of a particular operator is sufficient.

3. Access to all operands of an operator.

This is clearly required for code emission proper. A

simple one-pass template generator may be able to get by with this

single facility.

4. Comparison of operands in different operations.

This activity is most frequent in trying to optimize

code where the output of one operator is the imput to another. Thus,

the second operand is usually found by a sequential search over the

operator space following the first primitive.

5. Random access to operands

Seve·ral instances will occur during code generation where

operands of a given type or group will be treated collectively. For

example, a code generator might declare all external symbols in a

contiguous list. If the generator is to avoid perusing the entire

stack of operands every time it treats collections, an interface

must provide some facility for random access.

6. Access to all operands of two operators.

This situation arises often enough to be of concern. Most

common is the construction

IF A> B THEN •••

where better code will be obtained on many machines_ if the occurence

is dealt with as a joint operation rather than two separate ones.

However, the general solution for allowing access to all operands of

both operators implies too complex and too rarely invoked a procedure

LITTLE-42-5

to justify inclusion in a general module. We leave this situation

untouched, though it should be clear how a code generator could

include the extension.

Operator Descriptions

The most important thing about an operator is clearly its

type, and we have stolen 74 macros used in the LITTLE parser. A

few new operators have also been added: the subr entry, the fnct

entry, the begin, and the end operator. Their inclusion will

simplify code generation.· Space is reserved for two other primitives,

a block definition function to be fleshed out later by the optimizer,

and a comment operator to tie source code into assembler code for

aid in debugging.

The number of arguments of an operator is a second important

characteristic; in fact it is crucial in the case of operators with

a variable number of arguments (subr entry, fnct entry, subr call,

fnct call, data assignment and goby). Referring back to the second

situation (one by one operarid access) however, it seems advantageous

to provide an -argument count for all operators (rather than just

those that require it) to aid in sequential operand retrieval.

A third item needed in generation is the position of an operator

in the code buffer, but when this is important it seems so only in

the sense of being adjacent to or close to other operators. No

case appears where access to operators in a random manner is required.

(Though the current generators do frequently access the VOA in a

random fashion, these instances are operand references.) Thus, this

fact suggests that a stack mechanism is the appropriate one for

operator access to the code buffer; no operator pointers are needed.

The only other operator information we need, strictly speaking,

is the characteristics of its operands. These will be windowed by

display requests and are described in the next section.

LITTLE-42-6

The questions asked by code generators will require two

stacks and the second must be invoked relative to the first (for
searches over the adjacent operator space.) The following commands,
implemented as macros, can take care of these needs.

code-init;

The purpose of this command is to initialize both operator

stacks to point to the first primitive, the begin operator. An

argument stack, described later, is also initialized.

pop;

This command pops the next operator off the principal code

stack, setting two global variables, op and aount. Op is the

operation type, and count is the number of arguments. No corresponding

push command here seems useful. The command also initializes a

hidden pointer to a sequential l!st of the operator's arguments;

sequential retrieval may then be performed with the get-next command.

Yet another initialization is of the hidden pointer for subsequent

search of the operator space adjacent to op. This pointer is used

by the succeeding pop 2 and push 2 commands.

pop 2;

This command pops the subsidiary operator stack and sets the

global variables op2 and count2. The starting position of this

second stack is re-initialized with every pop executed.

push 2;

This searches the operator space in the reverse direction of

pop 2 and also sets op 2 and aount 2. A previous pop 2 has no effect

on push 2; both commands function relative to the current op. They

are therefore not identical to the usual type of push or pop stack

commands. To define them in a standard way introduces some minor

complications that are not justified by the simple needs of code

generation.

These four commands and four global variables constitute a

complete account of generator access to operators. Operands will

LITTLE-42-7

not be so easy.

Displaying Operand Properties

The type of an operand is often the first question a code

generator must ask. According to the different actions a generator

must take, eleven semantic quantities must be distinguishable by a

code generator. We list them with the internal,representation of

the corresponding value of the operand.

Representation When
Quantity Target is Host

Bit String Bit String

Negative Integer Bit String

Real Number Real Number

c.s. c.s.
Character String Code C.S.

Temporary No value

Variable C.S.

Formal Parameter C.S.

Label C.S.

External C.S.

Representation When
Target is Not Host

Bit String

Host Format Number

Character String (C.S.)

c.s.
c.s.
No v·alue

c.s.
c.s.
c.s.
c.s.

Note that the above values are not those presently in use.

In addition, to the quantity type and value of an operand, the size,

the number of bytes or characters, the dimension and the nameset are

static properties applying to some of these types and an·operator -

bound property is the use of the operand. The use (more precisely,

the scope of use) of operands in LITTLE is now defined only for

temporaries and no immediate extension is required; if the temporary

is used as an input argument to an operator its use is 'true' if

this is the final use. As an output argument, the temprary's use

is the number of subsequent operations between the output and the

final use. Note that this is a slight change from the Zastuse field

of the VOA.

LITTLE-42-8

Unlike operators, random access to operands is sometimes

necessary, If the code generator creates its own data structures

with partial or additional operand information, random access will

be frequent. To accomodate the need, a unique id is displayed

whenever an operand is windowed. For practical purposes it is not

significant whether the current HA location or the current VOA

location or any other convention is chosen.

To summarize the argument attributes are: the value, the quantity

type, the id, the size, the dimension, the nameset, the number of

bytes, and the use.

LITTLE-42-9

The Classes. of Operands

Operands are classified according to their semantic function

in an operation. The intent is to allow systematic treatment of

operands and encourage more easily understood source code by

imposing a class. With a couple of exceptions, pointed out below,

the imposi:.ion is neither unnaturally coercive nor ambiguous. The

definition binding operands to classes is given in full in a LEGAL

table in the appendix, newsletter 42A. Here we summarize the classes.

Source Class:

For each operator where there is a single principal input

operand it is assigned to the source class. This includes unary

operators, all assignments,extractions, ifs, and unformatted output.

For unformatted input, the external file is the source.

Result Class:

This is always a temporary. Every operation which creates a

temporary will have one result operand.

Target Class:

This is usually a local or global variable. It occurs in all

assignments (including data assignments) and unformatted input. On

unformatted output, the external file is the target.

Index Class:

For every indexed reference the operand will be in this class:

so too is the index of data operations and the indexed transfer (goby).

Left Class:

In all binary operations this is the left operand. In unformatted

I/0 this is the left (lowest) index of a dimensioned variable; there

LITTLE-42-10

is some slight forcing of the definition here.

Right Class:

The right operand in binary operations and the higher index

in unformatted I/0 belong to this class.

Location Class:

An operand in this class is either a label in the goto, label,

and if operations or it ip a routine name in a call or entry operation.

Width Class:

The number of bits in field operators and the number of

characters in self-defined string operators are in this class.

Origin Class:

The corresponding start-of-field postions for the same primitives

found in the width class are assigned to this class.

Multiple Class:

This applies to all subroutine and function entry parameters,

to all subroutine and function call arguments, to all constants in

data operations, and to the labels of the goby primitive. If the

designer of a code generator finds the treatment of this potpourri

in an identical manner obnoxious, then macros can be defined to

simulate more classes.

Windowing an Operand

The display of the eight argument attributes could be done in

three ways. Each attribute could be assigned to a simple variable,

to a field in a multi-word variable, or to an element of an array.

The first has the disadvantag€ that, since the number of windows

proposed is not small, the number of variable names will be too

LITTLE-42-11

cumbersome. There is no overriding reason for choosing between one

or the other of the latter two data structures. Field use in multi

word variables is somewhat more error-prone, while array use suffers

from the fixed size of its elements. Since the only one of the

attributes that can be unduly large is the value of an operand,

and since it can vary from 1 bit up to 2000, provision of space for

the value itself in every window is too expensive. (In addition, the

extraction of a character string from a field is a relatively awkward

activity.) So long as values are not always to be displayed, then

the array representati.on for windows seems slightly preferable. The

size of window arrays is implementation dependent, but would normally

be the host machine word size. We choose the convention that when a

value is too large to display in the value element of the window,

access may be had through a valu subroutine, the arguments of which

are the operand id and the returned value, V: call valu (id, v)

The subroutine will return the value, v whether or not it also appears

in the window. When a bit string value is returned it is the

responsibility of the writer of the code generator to insure that v

is sized large enough to accept the value; when the value is represented

as a character string the generator must pre-set the origin field, and

subroutine valu will test it magnitude, reporting an error if it is

insufficent to hold the argument. In general, then, the only quantity

types that will frequently be directly accessed though the value

element are bit strings, negative integers, and (when host and target

mc.~chines are identica1) real numbers.

One other function will be convenient to supplement the windows.

The representation of the nameset element, called nsid, has not been

specified. Though a self-defined string would be quite adequate,

the size of window eiements on some host machines may be too small

to be useful here, so we always stipulate that nsid is an identifier

which produces the character string when used as an argument of a

subroutine nm

call nm (nsidf nameset-name)

-.J

LITTLE-42-12

Window Generation

To decide how to formulate the opening of a window we look

back to the questions generators posed. For each situation a command

to supply the answer is specified here.

1. Sequential access to all operands.

Operands may be addressed in succesion by popping a stack.

Initialization of the stack is performed with the aforementioned

command -

code - init;

Popping the stack or que is done with -

pop-queue;

The window holding the operand is called que. The order of operands

is undefined, though every operand will appear once. The operator

bound attribute (the use) is undefined. When the stack is exhausted,

all attributes of an operand are once again zeroed. As an instance

of the use of this command, consider a search through all operands

to find those with a size greater than the machine word size. Example 1

shows such a search and may be found in the appendix, newsletter 42A,

to the present newsletter.

2. Access to a single operand of an operator.

The window opening command to retrieve an operand of the current

op is -

get-aPg (o);

or

get-aPg (class);

The argument of the command is either the semantic class of the

operand or zero. If a class is specified, then the window named for

the class is opened. Should the specified class be an undefined one

for the operator currently displayed on the stack, then the window

is zeroed. Successive commands with the same class are redundant

LITTLE-42-13

except for the mutipZe class. With this one each command produces

the succeeding operand on the list; when the list is exhausted all

attributes are zeroed. The multiple queue or stack is initialized

when the current operator is first produced with pop: no means of

re-initializing is provided. Example 2A shows how a code generator

determines whether the result of the current operation is used only

in the next one.

If the argument of the get-arg command is zero, then the next

operand in the current operator's list is shown in a window named

a~g. The operand queue is initialized by the pop command and, as

above, no re-initialization is possible. The attributes are zeroed

after the exhaustion of the argument count. The arg window and the

class windows are independently generated; thus the same argument

could appear in two windows at once. An arg window could be used

effectively to check all operands for a characteristic. Example 2B

shows a test of all operands of an operator for the presence of

formal parameters.

3. Access to All Operands of an Operator.

This command opens each of the windows defined for the current

op; it affects no other windows. The command is -

get-a'll;

In the case of operations with operands in the multiple class, only

the first one is immediately available. Example 3 shows a typical

framework for the principal code emission loop.

4. Comparison of Operands in Different Operations.

This command relies upon previous definition of the second

operator, op2, with either the pop2 or push2 commands. The access

of the second operand is accomplished with

get-arg2 (0):

get-arg2 (alass);

LITTLE-42-14

and it places an operand in the aPg2 window. The command argument,

like the get-arg command, may be a zero or a operand class. Unlike

the earlier command, however, the corresponding class windows are

not defined; only arg2 is available. This command is a no-op if

a pop2 or push2 has not been executed after the last pop. It zeroes

the window if the corresponding operand class is undefined for the

current op2, and it also zeroes all attributes when a muitipZe class

or a command argument of zero has exhausted the queue. This command

finds use in code generation when two LITTLE primitives are combined

or when subsequent operations are searched for a use of the result

of an earlier one. Many machines have "jump on condition" operators,

and example 4A shows a search for a conditional transfer primitive

following a op-gt primitive. Example 4B is a routine that searches

subsequent primitives and counts the number of uses of a result

temporary.

5. Random Access to Operands.

Any operand can be windowed by invoking the get-any command

with a previously saved id as argument -

get-any (id);

The operand is displayed in a window called any. Like the earlier que

window, operands here are not operator bound and hence do not have

their use attribute defined. An example here seems unnecessary.

Code Generator Control

A LITTLE code generator receives its input from a file containing

a sequence of routines. Opening this file, reading routines into the

data structures, and signalling the end of the file is all carried

out by a function called another. This routine takes a dummy argument

and returns a true value upon finding another routine, and a false

value otherwise. It also performs an implicit init-code command.

Example 5 shows a possible uppermost level routine of a 3-pass generator.

Summary of Commands

Command:

init-code

pop

pop-queue

pop2

push2

get-arg(J

get-all

ge t-a:eg2 (J

get-any(id)

Summary of Windows

LITTLE-42-15

Function:

initializes stacks for pop and pop-queue.

pops next operator into op and count.

initializes stacks for pop2, push2, and get-arg.

windows next operand into que.

pops operators in stack following op.

initializes stack for get-arg2.

pops operators in stack preceding op.

initializes stack for get-arg2.

windows an argument of the current op.

windows all arguments of the current op.

windows an argument of the current op2 in arg2.

windows operand id in any.

Operator-bound and classified windows:

source :eesult target left right

index location width length multiple

Operator-bound but unclassified:

arg arg2

Independent windows:

que any

Summary of Windows for Each Operator

begin and end

none

fnct entry

location, multiple (number of multiples=connt-1)

subr entry

location, multiple (count-1)

addition (same for all binary operations)

left, right, result

not (same for all unary operations)

source., result

fnct call

location., result,

subr call

location., multiple

simple assignment

source, target

data assignment

multiple

(count-1)

(count-2)

target., inde~, multiple (count-2)

field assignments

source, target, width, origin

binary or unformatted I/0

source, target, left, right

return

none

field extractions

source, result, width, origin

if

source, location

goto

location

LITTLE-42-16

goby

index, multiple (count-1)

indexed load

source, index, result

indexed store

source, target, index

indexed field assignments

source, target, index, ~idth, origin

Structure of the Interface

LITTLE-42-17

Some of the interface structure has been implied by the previous

discussion. Apparent characteristics governing the choice of interface

design are:

1. Ease of Coding

This is the paramount objective, and the examples of the appendix

should suffice as a measure of the success of that objective.

2. Hiding the data structures

This allows alteration of structures without impacting code

generation and new data structures will in turn lead to more efficient

use of memory and adaptability to dynamic storage allocation. The

hiding of data also leads to a prohibition on addition of information

to the parser created structures. Though all present code generators

now do this routinely, I view it as their principal defect. Forcing

the code generator designer to choose their own data structures can

only make them more appropriate for their purpose. ·

Several other influences or aspects of the design may not be

LITTLE-42-18

quite so obvious as the foregoing two. First, the interface

itself is layered; all macro, function, or subroutine calls in a

code generator involveupper level routines which perform error checking

on the calls and parcel out the work to lower level routines. The

upper level is also oblivious to much of the detail of the data which

it aids in retrieving: this will facilitate addition of new primitives,

operator classes, quantity types, or argument attributes with a

minimum of effort. (By a minimum I mean only adding a macro or two;

in complex cases, like converting a LITTLE interface to a FORTRAN

interface, it might mean a day's work.)

Implementing the Interface

Since the upper level parcels out retrieval work into a large

number of very small tasks to be performed by the lower layer, it

means there are many lower level routines to be written for any given

data structure, 26 in fact. Only one of the 26 is more than a few

lines, and the group as a whole could probably be written and debugged

with a week of work, assuming an understanding of the data structure

and of the interface. The specifications for all the routines are

given on pages 20-22 of the appendix. The one non-trivial routine

is rd-routine. Though most of its work is simply reading a routine

from a file (and for the VOA such a routine already exists} this

program might also map current VOA bits and fields into those required

by the definitions in the interface. One mapping seems highly advisable:

conv~rsion of the Zastuse field as presently defined to the new one.

Other mappings are more optional, and a determination should be

based on whether the pre-processing significantly reduces the source

code and execution time of the rest of the lower level routines. It

should be emphasized that the one week estimate above is valid only

for someone familiar with present data structures.

--.,

LITTLE-42-19

Comments

Richard Kenner is due thanks for reading and commenting on this

newsletter. The possible drawbacks to the interface, he suggested,

-were an increase in code length and an increase in execution time.

The length of the interface routines will be approximately 1500

words of 6600 memory; moreover this increase would be part of a

permanent root for any generator constructed with overlays. This length

is not horrendous, but any additional memory requirements must be viewed

with dissatisfaction because length is one of the LITTLE compiler's main

problems. However, the apparent increase will probably be illusory; a

decrease is expected for several reasons.

First, the extraction of information from the data structures is

now a cumbersome, inefficient, and repetitive process. For example, the

size of a quantity is obtained with this expression:

syze voal q)

This is a field extraction from a multi-word indexed array. Inspection

of the code generators from the CDC and the Honeywell machines showed

80 and 95 occurences respectively. On the other hand in the proposed

interface, the extraction of this datum occurs but once, and all sub

sequent references require only an indexed load from a word-sized array

{and the index is even a constant). For most computers the present

method will lead to code at least three times longer, and may even

involve a call to a library routine. Many quantity attributes are even

more complicated to access than the size, though few are accessed more

often. An accurate estimate of the decrease in code length caused by

adoption of the interface would be difficult. Nevertheless, it would

not be surprising if this single reason - the simplicity of attribute

access - more than compensated for the entire 1500 word interface.

A decrease in code length can also be expected if and when the data

structure is replaced. The design of a new structure is outside the

scope of this newsletter, but it is reasonable to expect that it will be

_ _,

LITTLE-42-20

much smaller, and will be generated by a program that copies parser

voa output to the new structure before the code generator begins

execution. I estimate that a well designed structure could be 25% of

,the present length, a saving of about 8000 words. Redesign of the data

structure to effect a reduction in its size is, of course, possible

without the superstructure of the proposed interface. However, without

hiding the structure - one purpose of the interface - it becomes rigid

as soon as two generators use it. In addition, an interface allows one

to design a more complex structure than the constraints of multiple use

by many programmers would allow.

A third reason for code length reduction may lie in the introduction

of dynamic storage allocation to LITTLE. It is impossible for me to see

a practical dynamic implementation of the current data structure, while

the new one should provide for it.

Moving on to the other drawback, execution time can be expected to

rise for a couple of reasons~ The command structure is designed to

produce all attributes of a quantity whenever any information at all is

retrieved, obviously an inefficient action if only one attribute is

needed. Secondly, the interface will be inefficient because it adds

three or four subroutine levels to the generator~ it was pointed out that

this will be particularly inefficient on an IBM 370.

Taking the overhead in the command structure first, it is question

~ble whether serious overhead does exist. A one-pass generator, for

example, needs almost all the attributes in any case. Even when multiple

passes are made, most of the attributes still seem to be needed - at

least in the case of the Honeywell generator. Also pertinent here are

repetitive accesses to the same attribute as found in present code

generators. Repetition is encouraged by the nature of the code generator

programming process: an initial, crude generator is progressively refined

to yield a better product, and the refinements lean towards additions

(with repetitive code) rather than re-programming. Though some of this

repetition may be removed from executing code by the optimizer, the

LITTLE-42-21

inherent inefficiency for the programmer of repeated expressions can

not be affected at all.

The interface, it is suggested, will also slow down a generator

'because of the number of subroutines introduced. This decrease can only

be charged to the calling process, i.e., can only be expected on machines

that impose a penalty on calls (by saving all registers). Otherwise, as

has been argued earlier, the increase in code in the interface will be

offset by reductions elsewhere. The interface itself has few loops;

they are short; and the only two inner loops are the shortest. It

cannot be denied that execution time will suffer on machines that penalize

subroutine calls, so it is worth re-examining the command structure to

try removing some subroutine levels.

Since the interface is addressed with command macros that call

upper level subroutines, the calls could be replaced by the text of the

routines. This route is unimportant when the command is rarely invoked

and is not practical when the subroutine text is long. These two

considerations eliminate commands init-code, get-arg, get-arg2, and the

two upper level, directly called routines valu and nm. The remaining

command macros are pop, pop2, push2, pop-queue, get-all, and get-any.

The replacement code in all these cases is between 10 and 15 instructions.

The only significant disadvantage in carrying out these macro expansions

is to open the interface to intrusion from the code generator (since all

variables used by the interface are now either in private namesets or

are subjected to error checks when provided by the code generator). The

les~ening of this protection seems outweighed by the efficiency advantages

of the macro redefinition. Richard Kenner is thanked for this suggestion.

On the other side of the interface, at the lowest level, many of

the 26 routines that address the data structure are called from only one

location in the interface, suggesting that simple code expansion in the

calling routine would be practical. However, the first implementation

will be done with the present VOA structure, and the current layered

design allows an easy transition to a second implementation based on a

LITTLE-42-22

new structure. Once this is done and if effic1ency is still a concern,

then the layer can be removed.

The question of speed for code generators must be put in perspective.

The two faster generators now account for 20 and 30 per cent of LITTLE

compile time. Both had their speeds pumped up substantially after spy

tests located poor I/0 practices and excessive use of multi-word routines.

The other generators can be expected to improve when similar studies are

made. Hence, our situation has some padding: every 10 per cent increase

in generator run-time leads to only 2 or 3 percent increase in compile

time.

There is one final point that should have been made in the opening

paragraphs of this newsletter. While the present generators are layered

on the output side (the code emission side) they access input directly

from the upper layer of subroutines. Another way of saying this is that

while output is relatively well-structured, input is not.

