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With more code generators for LITTLE being planned it is 

appropriate to re-consider the data structures linking the parser 

and the generators, especially the infamous VOA. The complexity of 

these structures (six or seven tables and two or three score fields) 

requires substantial time for familiarization for programmers who 

wish to write new LITTLE code generators. The use of the generators 

by parsers of other languages is also inhibited. 

A series of independent steps or projects is suggested that will 

lead to easier access. Replacement of the VOA itself is no longer 

feasible because a parser and four generators rely on it. Rather, the 

approach is to hide the data structures entirely from users. At a 

later stage alternative, more efficient structures can be chosen. The 

tasks proposed are: 

1. Create a module which reads the tables. 

2. :".::--'-~ate another one which writes them. 

3. Design e.::-Ficient, compact structures. 

4. Map the interior structures to an exterior representation -

an.intermediate language. 

5. Create a symbol customizing module for generators that 

produce assembly code. 

The first of these is the only topic of this newsletter. The 

others are dependent on the first and will be treated in subsequent 

newsletters. For those readers with only a cursory interest in the 

problem, it is suggested that you skip immediately to the results. 

Pages 23-26, o:f the Appendix, Newsletter 42A, give examples of how 

new code generators can be written. 
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Overview of the Code Reading Module 

If the structures are to be hidden from code generators, then 

two separate courses may be taken in providing information about the 

operators and operands. The first is a functional approach in which 

a large set of access functions may be designed; each function returns 

some property when invoked. The second is a windowing approach where 

a command from the generator causes display of many properties in a 

window, or set of global variables. Choosing a window size (i.e., 

the number of properties) can be a problem. If there are too many 

items one is hardly better off than with the present complex structure, 

and if the kinds of data to be windowed are enormously varied then the 

number of windows needed may also be too large for clarity. 

A functional solution, on the other hand, poses several design 

problems. Typically code generators must access a three level structure: 

a property of an argument of an operator. Also quite typically, they 

will often need to reference two such items at once; for example: 

if size of argument 1 of operator 1 = 
size of argument 2 of operator 2 then 

There are three means of allowing this double access within a 

single expres~ion. 

First, once can introduce functions designed explicitly to set the 

current operators and arguments, while yet other functions access 

specific properties. Not only is this quite cumbersome in practice, 

but it will be easy to introduce unpredictable side effects. A second 

method would allow the access functions to read global variables in 

retrieving a property. This method lends itself to simplicity and 

brevity in the assembler code, e.g., if fsizel () = fsize2 () 

then ••. , but suffers the defect that multiple sets of functions are 

needed to access multiple sets of global variables. The third means 
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is to design functions that neither read nor write global variables, 

but have all such information specified in the calling parameters: 

if fsizel(opl,argl) = fsize2(op2,arg2) then •.• 

Obviously, brevity of code will not be an asset of this approach. 

Overhead is another factor to consider in choosing between 

a functional and a windowing solution. If the number of different 

properties referenced with each encounter of an operand is small, 

then there is a lot of overhead in displaying all the others, whereas 

if the number of properties referenced is large, there are many functions 

to invoke versus only one window. I think this is the crucial factor: 

on one hand the overhead of the window approach is all in extra 

execution time with little programming for the writer of the generator, 

and on the other hand it is all in the programming if the functional 

approach is taken. Our experience with four-pass generators suggests 

that multiple pass costs are trivial. 

What Questions Do Code Generators Ask? 

The kinds of access needed by generators might be divided into 

six categories 

1. Sequential access to operands. 

In this case there is no concern for operators. Examples 

might be a routine that converts LITTLE symbols to legal assembler 

symbols or a procedure for storage allocation. 

2. Access to a single operand ~f ~n operator. 

This type of access takes two forms, specific and 

sequential. Specific access is by far the more frequent request; 

most work in code generators deals with operands in a manner where 

the purpose or function of the operand is germane, and access to 

it must reasonably take into account whether it is an addend, a 

field width, a label, etc. 
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Sequential access to each argument is often most appropriate 

when the semantic class or purpose of the operand is of no concern; 

when only a property or attribute is important. For instance if a 

check is made on a relational operator for multi-word arguments in 

a pre-emission pass, the left and right ope·rands are of no interest 

as distinguishable quantities, and sequential access to the operands 

of a particular operator is sufficient. 

3. Access to all operands of an operator. 

This is clearly required for code emission proper. A 

simple one-pass template generator may be able to get by with this 

single facility. 

4. Comparison of operands in different operations. 

This activity is most frequent in trying to optimize 

code where the output of one operator is the imput to another. Thus, 

the second operand is usually found by a sequential search over the 

operator space following the first primitive. 

5. Random access to operands 

Seve·ral instances will occur during code generation where 

operands of a given type or group will be treated collectively. For 

example, a code generator might declare all external symbols in a 

contiguous list. If the generator is to avoid perusing the entire 

stack of operands every time it treats collections, an interface 

must provide some facility for random access. 

6. Access to all operands of two operators. 

This situation arises often enough to be of concern. Most 

common is the construction 

IF A> B THEN ••• 

where better code will be obtained on many machines_ if the occurence 

is dealt with as a joint operation rather than two separate ones. 

However, the general solution for allowing access to all operands of 

both operators implies too complex and too rarely invoked a procedure 
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to justify inclusion in a general module. We leave this situation 

untouched, though it should be clear how a code generator could 

include the extension. 

Operator Descriptions 

The most important thing about an operator is clearly its 

type, and we have stolen 74 macros used in the LITTLE parser. A 

few new operators have also been added: the subr entry, the fnct 

entry, the begin, and the end operator. Their inclusion will 

simplify code generation.· Space is reserved for two other primitives, 

a block definition function to be fleshed out later by the optimizer, 

and a comment operator to tie source code into assembler code for 

aid in debugging. 

The number of arguments of an operator is a second important 

characteristic; in fact it is crucial in the case of operators with 

a variable number of arguments (subr entry, fnct entry, subr call, 

fnct call, data assignment and goby). Referring back to the second 

situation (one by one operarid access) however, it seems advantageous 

to provide an -argument count for all operators (rather than just 

those that require it) to aid in sequential operand retrieval. 

A third item needed in generation is the position of an operator 

in the code buffer, but when this is important it seems so only in 

the sense of being adjacent to or close to other operators. No 

case appears where access to operators in a random manner is required. 

(Though the current generators do frequently access the VOA in a 

random fashion, these instances are operand references.) Thus, this 

fact suggests that a stack mechanism is the appropriate one for 

operator access to the code buffer; no operator pointers are needed. 

The only other operator information we need, strictly speaking, 

is the characteristics of its operands. These will be windowed by 

display requests and are described in the next section. 
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The questions asked by code generators will require two 

stacks and the second must be invoked relative to the first (for 
searches over the adjacent operator space.) The following commands, 
implemented as macros, can take care of these needs. 

code-init; 

The purpose of this command is to initialize both operator 

stacks to point to the first primitive, the begin operator. An 

argument stack, described later, is also initialized. 

pop; 

This command pops the next operator off the principal code 

stack, setting two global variables, op and aount. Op is the 

operation type, and count is the number of arguments. No corresponding 

push command here seems useful. The command also initializes a 

hidden pointer to a sequential l!st of the operator's arguments; 

sequential retrieval may then be performed with the get-next command. 

Yet another initialization is of the hidden pointer for subsequent 

search of the operator space adjacent to op. This pointer is used 

by the succeeding pop 2 and push 2 commands. 

pop 2; 

This command pops the subsidiary operator stack and sets the 

global variables op2 and count2. The starting position of this 

second stack is re-initialized with every pop executed. 

push 2; 

This searches the operator space in the reverse direction of 

pop 2 and also sets op 2 and aount 2. A previous pop 2 has no effect 

on push 2; both commands function relative to the current op. They 

are therefore not identical to the usual type of push or pop stack 

commands. To define them in a standard way introduces some minor 

complications that are not justified by the simple needs of code 

generation. 

These four commands and four global variables constitute a 

complete account of generator access to operators. Operands will 
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not be so easy. 

Displaying Operand Properties 

The type of an operand is often the first question a code 

generator must ask. According to the different actions a generator 

must take, eleven semantic quantities must be distinguishable by a 

code generator. We list them with the internal,representation of 

the corresponding value of the operand. 

Representation When 
Quantity Target is Host 

Bit String Bit String 

Negative Integer Bit String 

Real Number Real Number 

c.s. c.s. 
Character String Code C.S. 

Temporary No value 

Variable C.S. 

Formal Parameter C.S. 

Label C.S. 

External C.S. 

Representation When 
Target is Not Host 

Bit String 

Host Format Number 

Character String (C.S.) 

c.s. 
c.s. 
No v·alue 

c.s. 
c.s. 
c.s. 
c.s. 

Note that the above values are not those presently in use. 

In addition, to the quantity type and value of an operand, the size, 

the number of bytes or characters, the dimension and the nameset are 

static properties applying to some of these types and an·operator -

bound property is the use of the operand. The use (more precisely, 

the scope of use) of operands in LITTLE is now defined only for 

temporaries and no immediate extension is required; if the temporary 

is used as an input argument to an operator its use is 'true' if 

this is the final use. As an output argument, the temprary's use 

is the number of subsequent operations between the output and the 

final use. Note that this is a slight change from the Zastuse field 

of the VOA. 
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Unlike operators, random access to operands is sometimes 

necessary, If the code generator creates its own data structures 

with partial or additional operand information, random access will 

be frequent. To accomodate the need, a unique id is displayed 

whenever an operand is windowed. For practical purposes it is not 

significant whether the current HA location or the current VOA 

location or any other convention is chosen. 

To summarize the argument attributes are: the value, the quantity 

type, the id, the size, the dimension, the nameset, the number of 

bytes, and the use. 
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The Classes. of Operands 

Operands are classified according to their semantic function 

in an operation. The intent is to allow systematic treatment of 

operands and encourage more easily understood source code by 

imposing a class. With a couple of exceptions, pointed out below, 

the imposi:.ion is neither unnaturally coercive nor ambiguous. The 

definition binding operands to classes is given in full in a LEGAL 

table in the appendix, newsletter 42A. Here we summarize the classes. 

Source Class: 

For each operator where there is a single principal input 

operand it is assigned to the source class. This includes unary 

operators, all assignments,extractions, ifs, and unformatted output. 

For unformatted input, the external file is the source. 

Result Class: 

This is always a temporary. Every operation which creates a 

temporary will have one result operand. 

Target Class: 

This is usually a local or global variable. It occurs in all 

assignments (including data assignments) and unformatted input. On 

unformatted output, the external file is the target. 

Index Class: 

For every indexed reference the operand will be in this class: 

so too is the index of data operations and the indexed transfer (goby). 

Left Class: 

In all binary operations this is the left operand. In unformatted 

I/0 this is the left (lowest) index of a dimensioned variable; there 
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is some slight forcing of the definition here. 

Right Class: 

The right operand in binary operations and the higher index 

in unformatted I/0 belong to this class. 

Location Class: 

An operand in this class is either a label in the goto, label, 

and if operations or it ip a routine name in a call or entry operation. 

Width Class: 

The number of bits in field operators and the number of 

characters in self-defined string operators are in this class. 

Origin Class: 

The corresponding start-of-field postions for the same primitives 

found in the width class are assigned to this class. 

Multiple Class: 

This applies to all subroutine and function entry parameters, 

to all subroutine and function call arguments, to all constants in 

data operations, and to the labels of the goby primitive. If the 

designer of a code generator finds the treatment of this potpourri 

in an identical manner obnoxious, then macros can be defined to 

simulate more classes. 

Windowing an Operand 

The display of the eight argument attributes could be done in 

three ways. Each attribute could be assigned to a simple variable, 

to a field in a multi-word variable, or to an element of an array. 

The first has the disadvantag€ that, since the number of windows 

proposed is not small, the number of variable names will be too 
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cumbersome. There is no overriding reason for choosing between one 

or the other of the latter two data structures. Field use in multi

word variables is somewhat more error-prone, while array use suffers 

from the fixed size of its elements. Since the only one of the 

attributes that can be unduly large is the value of an operand, 

and since it can vary from 1 bit up to 2000, provision of space for 

the value itself in every window is too expensive. (In addition, the 

extraction of a character string from a field is a relatively awkward 

activity.) So long as values are not always to be displayed, then 

the array representati.on for windows seems slightly preferable. The 

size of window arrays is implementation dependent, but would normally 

be the host machine word size. We choose the convention that when a 

value is too large to display in the value element of the window, 

access may be had through a valu subroutine, the arguments of which 

are the operand id and the returned value, V: call valu (id, v) 

The subroutine will return the value, v whether or not it also appears 

in the window. When a bit string value is returned it is the 

responsibility of the writer of the code generator to insure that v 

is sized large enough to accept the value; when the value is represented 

as a character string the generator must pre-set the origin field, and 

subroutine valu will test it magnitude, reporting an error if it is 

insufficent to hold the argument. In general, then, the only quantity 

types that will frequently be directly accessed though the value 

element are bit strings, negative integers, and (when host and target 

mc.~chines are identica1) real numbers. 

One other function will be convenient to supplement the windows. 

The representation of the nameset element, called nsid, has not been 

specified. Though a self-defined string would be quite adequate, 

the size of window eiements on some host machines may be too small 

to be useful here, so we always stipulate that nsid is an identifier 

which produces the character string when used as an argument of a 

subroutine nm 

call nm (nsidf nameset-name) 
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Window Generation 

To decide how to formulate the opening of a window we look 

back to the questions generators posed. For each situation a command 

to supply the answer is specified here. 

1. Sequential access to all operands. 

Operands may be addressed in succesion by popping a stack. 

Initialization of the stack is performed with the aforementioned 

command -

code - init; 

Popping the stack or que is done with -

pop-queue; 

The window holding the operand is called que. The order of operands 

is undefined, though every operand will appear once. The operator 

bound attribute (the use) is undefined. When the stack is exhausted, 

all attributes of an operand are once again zeroed. As an instance 

of the use of this command, consider a search through all operands 

to find those with a size greater than the machine word size. Example 1 

shows such a search and may be found in the appendix, newsletter 42A, 

to the present newsletter. 

2. Access to a single operand of an operator. 

The window opening command to retrieve an operand of the current 

op is -

get-aPg (o); 

or 

get-aPg (class); 

The argument of the command is either the semantic class of the 

operand or zero. If a class is specified, then the window named for 

the class is opened. Should the specified class be an undefined one 

for the operator currently displayed on the stack, then the window 

is zeroed. Successive commands with the same class are redundant 
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except for the mutipZe class. With this one each command produces 

the succeeding operand on the list; when the list is exhausted all 

attributes are zeroed. The multiple queue or stack is initialized 

when the current operator is first produced with pop: no means of 

re-initializing is provided. Example 2A shows how a code generator 

determines whether the result of the current operation is used only 

in the next one. 

If the argument of the get-arg command is zero, then the next 

operand in the current operator's list is shown in a window named 

a~g. The operand queue is initialized by the pop command and, as 

above, no re-initialization is possible. The attributes are zeroed 

after the exhaustion of the argument count. The arg window and the 

class windows are independently generated; thus the same argument 

could appear in two windows at once. An arg window could be used 

effectively to check all operands for a characteristic. Example 2B 

shows a test of all operands of an operator for the presence of 

formal parameters. 

3. Access to All Operands of an Operator. 

This command opens each of the windows defined for the current 

op; it affects no other windows. The command is -

get-a'll; 

In the case of operations with operands in the multiple class, only 

the first one is immediately available. Example 3 shows a typical 

framework for the principal code emission loop. 

4. Comparison of Operands in Different Operations. 

This command relies upon previous definition of the second 

operator, op2, with either the pop2 or push2 commands. The access 

of the second operand is accomplished with 

get-arg2 (0): 

get-arg2 (alass); 
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and it places an operand in the aPg2 window. The command argument, 

like the get-arg command, may be a zero or a operand class. Unlike 

the earlier command, however, the corresponding class windows are 

not defined; only arg2 is available. This command is a no-op if 

a pop2 or push2 has not been executed after the last pop. It zeroes 

the window if the corresponding operand class is undefined for the 

current op2, and it also zeroes all attributes when a muitipZe class 

or a command argument of zero has exhausted the queue. This command 

finds use in code generation when two LITTLE primitives are combined 

or when subsequent operations are searched for a use of the result 

of an earlier one. Many machines have "jump on condition" operators, 

and example 4A shows a search for a conditional transfer primitive 

following a op-gt primitive. Example 4B is a routine that searches 

subsequent primitives and counts the number of uses of a result 

temporary. 

5. Random Access to Operands. 

Any operand can be windowed by invoking the get-any command 

with a previously saved id as argument -

get-any (id); 

The operand is displayed in a window called any. Like the earlier que 

window, operands here are not operator bound and hence do not have 

their use attribute defined. An example here seems unnecessary. 

Code Generator Control 

A LITTLE code generator receives its input from a file containing 

a sequence of routines. Opening this file, reading routines into the 

data structures, and signalling the end of the file is all carried 

out by a function called another. This routine takes a dummy argument 

and returns a true value upon finding another routine, and a false 

value otherwise. It also performs an implicit init-code command. 

Example 5 shows a possible uppermost level routine of a 3-pass generator. 



Summary of Commands 

Command: 

init-code 

pop 

pop-queue 

pop2 

push2 

get-arg( J 

get-all 

ge t-a:eg2 ( J 

get-any(id) 

Summary of Windows 

LITTLE-42-15 

Function: 

initializes stacks for pop and pop-queue. 

pops next operator into op and count. 

initializes stacks for pop2, push2, and get-arg. 

windows next operand into que. 

pops operators in stack following op. 

initializes stack for get-arg2. 

pops operators in stack preceding op. 

initializes stack for get-arg2. 

windows an argument of the current op. 

windows all arguments of the current op. 

windows an argument of the current op2 in arg2. 

windows operand id in any. 

Operator-bound and classified windows: 

source :eesult target left right 

index location width length multiple 

Operator-bound but unclassified: 

arg arg2 

Independent windows: 

que any 

Summary of Windows for Each Operator 

begin and end 

none 

fnct entry 

location, multiple (number of multiples=connt-1) 



subr entry 

location, multiple (count-1) 

addition (same for all binary operations) 

left, right, result 

not (same for all unary operations) 

source., result 

fnct call 

location., result, 

subr call 

location., multiple 

simple assignment 

source, target 

data assignment 

multiple 

(count-1) 

(count-2) 

target., inde~, multiple (count-2) 

field assignments 

source, target, width, origin 

binary or unformatted I/0 

source, target, left, right 

return 

none 

field extractions 

source, result, width, origin 

if 

source, location 

goto 

location 
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goby 

index, multiple (count-1) 

indexed load 

source, index, result 

indexed store 

source, target, index 

indexed field assignments 

source, target, index, ~idth, origin 

Structure of the Interface 

LITTLE-42-17 

Some of the interface structure has been implied by the previous 

discussion. Apparent characteristics governing the choice of interface 

design are: 

1. Ease of Coding 

This is the paramount objective, and the examples of the appendix 

should suffice as a measure of the success of that objective. 

2. Hiding the data structures 

This allows alteration of structures without impacting code 

generation and new data structures will in turn lead to more efficient 

use of memory and adaptability to dynamic storage allocation. The 

hiding of data also leads to a prohibition on addition of information 

to the parser created structures. Though all present code generators 

now do this routinely, I view it as their principal defect. Forcing 

the code generator designer to choose their own data structures can 

only make them more appropriate for their purpose. · 

Several other influences or aspects of the design may not be 
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quite so obvious as the foregoing two. First, the interface 

itself is layered; all macro, function, or subroutine calls in a 

code generator involveupper level routines which perform error checking 

on the calls and parcel out the work to lower level routines. The 

upper level is also oblivious to much of the detail of the data which 

it aids in retrieving: this will facilitate addition of new primitives, 

operator classes, quantity types, or argument attributes with a 

minimum of effort. (By a minimum I mean only adding a macro or two; 

in complex cases, like converting a LITTLE interface to a FORTRAN 

interface, it might mean a day's work.) 

Implementing the Interface 

Since the upper level parcels out retrieval work into a large 

number of very small tasks to be performed by the lower layer, it 

means there are many lower level routines to be written for any given 

data structure, 26 in fact. Only one of the 26 is more than a few 

lines, and the group as a whole could probably be written and debugged 

with a week of work, assuming an understanding of the data structure 

and of the interface. The specifications for all the routines are 

given on pages 20-22 of the appendix. The one non-trivial routine 

is rd-routine. Though most of its work is simply reading a routine 

from a file (and for the VOA such a routine already exists} this 

program might also map current VOA bits and fields into those required 

by the definitions in the interface. One mapping seems highly advisable: 

conv~rsion of the Zastuse field as presently defined to the new one. 

Other mappings are more optional, and a determination should be 

based on whether the pre-processing significantly reduces the source 

code and execution time of the rest of the lower level routines. It 

should be emphasized that the one week estimate above is valid only 

for someone familiar with present data structures. 
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Comments 

Richard Kenner is due thanks for reading and commenting on this 

newsletter. The possible drawbacks to the interface, he suggested, 

-were an increase in code length and an increase in execution time. 

The length of the interface routines will be approximately 1500 

words of 6600 memory; moreover this increase would be part of a 

permanent root for any generator constructed with overlays. This length 

is not horrendous, but any additional memory requirements must be viewed 

with dissatisfaction because length is one of the LITTLE compiler's main 

problems. However, the apparent increase will probably be illusory; a 

decrease is expected for several reasons. 

First, the extraction of information from the data structures is 

now a cumbersome, inefficient, and repetitive process. For example, the 

size of a quantity is obtained with this expression: 

syze voal q) 

This is a field extraction from a multi-word indexed array. Inspection 

of the code generators from the CDC and the Honeywell machines showed 

80 and 95 occurences respectively. On the other hand in the proposed 

interface, the extraction of this datum occurs but once, and all sub

sequent references require only an indexed load from a word-sized array 

{and the index is even a constant). For most computers the present 

method will lead to code at least three times longer, and may even 

involve a call to a library routine. Many quantity attributes are even 

more complicated to access than the size, though few are accessed more 

often. An accurate estimate of the decrease in code length caused by 

adoption of the interface would be difficult. Nevertheless, it would 

not be surprising if this single reason - the simplicity of attribute 

access - more than compensated for the entire 1500 word interface. 

A decrease in code length can also be expected if and when the data 

structure is replaced. The design of a new structure is outside the 

scope of this newsletter, but it is reasonable to expect that it will be 
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much smaller, and will be generated by a program that copies parser

voa output to the new structure before the code generator begins 

execution. I estimate that a well designed structure could be 25% of 

,the present length, a saving of about 8000 words. Redesign of the data 

structure to effect a reduction in its size is, of course, possible 

without the superstructure of the proposed interface. However, without 

hiding the structure - one purpose of the interface - it becomes rigid 

as soon as two generators use it. In addition, an interface allows one 

to design a more complex structure than the constraints of multiple use 

by many programmers would allow. 

A third reason for code length reduction may lie in the introduction 

of dynamic storage allocation to LITTLE. It is impossible for me to see 

a practical dynamic implementation of the current data structure, while 

the new one should provide for it. 

Moving on to the other drawback, execution time can be expected to 

rise for a couple of reasons~ The command structure is designed to 

produce all attributes of a quantity whenever any information at all is 

retrieved, obviously an inefficient action if only one attribute is 

needed. Secondly, the interface will be inefficient because it adds 

three or four subroutine levels to the generator~ it was pointed out that 

this will be particularly inefficient on an IBM 370. 

Taking the overhead in the command structure first, it is question

~ble whether serious overhead does exist. A one-pass generator, for 

example, needs almost all the attributes in any case. Even when multiple 

passes are made, most of the attributes still seem to be needed - at 

least in the case of the Honeywell generator. Also pertinent here are 

repetitive accesses to the same attribute as found in present code 

generators. Repetition is encouraged by the nature of the code generator 

programming process: an initial, crude generator is progressively refined 

to yield a better product, and the refinements lean towards additions 

(with repetitive code) rather than re-programming. Though some of this 

repetition may be removed from executing code by the optimizer, the 
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inherent inefficiency for the programmer of repeated expressions can 

not be affected at all. 

The interface, it is suggested, will also slow down a generator 

'because of the number of subroutines introduced. This decrease can only 

be charged to the calling process, i.e., can only be expected on machines 

that impose a penalty on calls (by saving all registers). Otherwise, as 

has been argued earlier, the increase in code in the interface will be 

offset by reductions elsewhere. The interface itself has few loops; 

they are short; and the only two inner loops are the shortest. It 

cannot be denied that execution time will suffer on machines that penalize 

subroutine calls, so it is worth re-examining the command structure to 

try removing some subroutine levels. 

Since the interface is addressed with command macros that call 

upper level subroutines, the calls could be replaced by the text of the 

routines. This route is unimportant when the command is rarely invoked 

and is not practical when the subroutine text is long. These two 

considerations eliminate commands init-code, get-arg, get-arg2, and the 

two upper level, directly called routines valu and nm. The remaining 

command macros are pop, pop2, push2, pop-queue, get-all, and get-any. 

The replacement code in all these cases is between 10 and 15 instructions. 

The only significant disadvantage in carrying out these macro expansions 

is to open the interface to intrusion from the code generator (since all 

variables used by the interface are now either in private namesets or 

are subjected to error checks when provided by the code generator). The 

les~ening of this protection seems outweighed by the efficiency advantages 

of the macro redefinition. Richard Kenner is thanked for this suggestion. 

On the other side of the interface, at the lowest level, many of 

the 26 routines that address the data structure are called from only one 

location in the interface, suggesting that simple code expansion in the 

calling routine would be practical. However, the first implementation 

will be done with the present VOA structure, and the current layered 

design allows an easy transition to a second implementation based on a 
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new structure. Once this is done and if effic1ency is still a concern, 

then the layer can be removed. 

The question of speed for code generators must be put in perspective. 

The two faster generators now account for 20 and 30 per cent of LITTLE 

compile time. Both had their speeds pumped up substantially after spy 

tests located poor I/0 practices and excessive use of multi-word routines. 

The other generators can be expected to improve when similar studies are 

made. Hence, our situation has some padding: every 10 per cent increase 

in generator run-time leads to only 2 or 3 percent increase in compile 

time. 

There is one final point that should have been made in the opening 

paragraphs of this newsletter. While the present generators are layered 

on the output side (the code emission side) they access input directly 

from the upper layer of subroutines. Another way of saying this is that 

while output is relatively well-structured, input is not. 




