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Qyeral.l Im.pact of the Programaing PrC?bl• 

l. ~ost (to users) of pro9ra-in9, 

2. APAR coat. 

3. Delay in i,•ple111entin9 application., 

•· Unpredictability ot larg~ projects. 

Difficulty of er9Sra-ing is the main obstacle to the 

application of computers. 

An obvious technolo~ical iffitalance: 

We are rapidly approaching a situation in which 

•th generation hardware will be available -- but 

progra.ung techniques are only 2nd generation. 

Conclusion• 

Substantial improvem,.,nts in all these r .. pecta 

are attainable 

••• Improved project predictability 

2'. Debugging methods reducing APAR fix c011t 

l '., 3' • Reduced progra=ing costJI 

(Higher level language systeu1 

hardware support to be worked out). 
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Response to this problem: 

'Modularization' 

-- combat all pressures which lead to 

interrelatedness of elements. 
. ' 

use small number of powerful elements governed 

by uniform simple conventions. 

'Language of maximum expressivity'. 

However: 

Systematic modularization leads to diminished efficiency. 

Expressivity-efficiency tradeoff. 
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Sources of difficulty in programming 

Programming is a construction process 

Elements E1, ••. ,En successively chosen 

Local context of element E.: 
) 

all aspects of other E's affecting choice of Ej. 

'complexity'of local context of 

Difficulty rises steeply with 
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Inefficient but highly c>;<pressive language 

can be useful as prototyping too~ 

Two-stage programming technique. 

Stage 1: Develop, debug algorithm using highly 

expressive algorithm-oriented language 

Stage 2: Transcribe algorithm to production 

language, using higher level version 

as 'developr,,ent matrix•. 

Advantages 

FUnction known in advance. 

Able to test function adequacy. 

Customer exposure to function. 

Design known to be consistent. 

Greatly .improved implementation predictability. 
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B. Uses in Universit~ or Laboratory Environment 

Non-production experimental programs 

Algorithm modeling and measure111ent 

Programs used for bootstrapping 

Documentation of algorithms for instruction . 

• 

Possible Mode of Application. 

The 'programming test stand': 

SO million inst/ sec micromachine with 

16 million memory bytes 

would appear as 

computer of 7094 class with l million bytes of storage 

on which 

programming was speeded up by factor of 10 

. 
Successful data structure elaborations would 

give practical programming tool for commercial 

programming.range. 



Sources of /\modularity and ~esponses 

Problem l: 'All at once' design of function, logical structure, 
efficient encoding: 

Response: 'decision postponement': 

break development into orderly stages: 

solve initial parts of problem without foreclosing 
possible approaches to remaining parts, 

postpone choice of·encoding until logical structure 
is worked out. 

Problem 2: common relationship of many processes to a smaller 
number of data structures. 

Rigidity and specificity of code which reflects 
data structure details. 

Response~ Use logically powerful family of default data 

structures which enable many others to be 
modeled •. 

Develop declaratory approach to details of data 
structuring. 

Allow functional treatment of storage sequences 

corresponding to presently available functional 
treatment of access sequences. 

Allow declaratory specification of a v~riety of data 

objects to which operators apply in an 
object-dependent manner. 

• - u $ \ ----...... 
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Problem 3: Present techniques require code to be written in 

order of eventual execution, rat.her th~n in 

logically most transparent arrangement. 

1lesoo11se: Bre.uc with linear coding style, and allow: 

'footnoted style' 

'remote code' dictions 

Study 'whenever• dictions 

'non-deterministic branch' diction• 

Problem ◄: Repetition of detail, with obligatory small variations, 
because of lan9uage-problem mismatch. 

Response: Develop extension mechanisms, especially to allow, 
extensions of semantic object classes 
available declarations 

global, rather than merely local, transformations 

of source text 

0ev.,1op mechanisms for reference resolution 

• 



Problem :>: 

Response: 

25 

Insufficiency of presently available 

debugging tools. 

Develop disciplined approach to statement 

of pr09rammer assumptions. 

Develop program-event oriented debugging language 

Use high-level language to debug 

lower-level production programs . 
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Attainable ~radcoffs: 

FORTRAN - PL/1 Standard 

Data expansion 1/l 

Execution slowdown 1/l 

Programming effort 1/1 

High-Level Algor i thin Oriented Language 

A. Without 'data strategy' elaborations 

or hardware enhancement 

Data expansion 8/1 

Execution slowdown 30/1 

Prograll1Tling speedup 10/1 

B. With 'data strategy' elaborations, but 

no hard1<are enhancement 

c. 

Data expansion 1/1 

Execution slowdown S/1 

Programming speedup 5/1 

With elaborations and hardware 

Data expansion 1/l 

&xecution slowdown l.S/1 

Programming speedup 5/1 

enhancement 
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Basic objects; Sets and atoms. Sets •a~ have atoms or sets 

as. members. 

Atoms may be; Integer, real, bitstring, charstring, label, 

subroutine, function 

or: Blank. newat is blank atom creator. 

Special undefined n 

All standard operations provided for atoms 

Qperations for 

X C a . . . 
a !9..b 

au b 

pow (a) 

Tuples: 

t (i) 

Set former: 

sets. {x} • {x,y,z), etc. 

nt 'ill a 

a ne b a incs 

a u · {x} = a with X 

a - . {x} -

• 

hd t = t (1) 

tuple x 

{x C a C(x)} 

·{e(x), x ca 

a less X 

tt t • 

pair x 

C (x)} 

fa 

b • etc. 

·{e(x,y), x ca, y 

·{e(n), • .!: n < llllD 

Functional applic3tion: 

c b(x) C(x,y)), etc. 

I C(n)l 

f(x} •·{tt x, x cf I pair xl 

{ ,,) • if ff{x} .£!l 1 then ~f{x} else fl 

l 



Coo,pound operator: 

[£P_: x c a) c(x) 

Example: (+: x c a) e{x) - I e(x) 
xca 

Quan ti fie rs: 

3x c a I C (x) 

3[x] c a I C(x) 

Yx c a I C (x) 

Algol 60 conditional express i.ons. 

111 < 3n .5 111111 I C (n) 

• .5 3[n] < 11111 I C(n) 

Statement forms: statements punctuated with semicolons. 

a• ~xpn; <a,b> • expn; 

f(a) • expn; 

means: remove all tuples with first component a 

from set f; then re-insert <a,expn> 

Algol 60 if-then-else 

go to <label>; 

' 

iteration headers: 

(while<cond>) <block>; 

or (while<cond>) <block> end while; 

(Yx C a I C (x)) <block>; 

(m ~ Yn < mm! C(n)) <block>; 

(mm;: Yn > m C(n)) <block>; -
quit Yx · • continue Vx; 

. j. 
"'} ,• , ., . .,_ 
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counting sort: 

place c nt; (Vx c set) place(x) • l{y c set I f(y) .i.e f(x)}; 

en4 'fx; 

Huffman encode: 

huffcode ,. [+: 1 < n < ~cstring] hufc(cstring(n)); 

Huffman decode: 

dehuf • nulc; node• top; 

(1 ~ \In < fbstring) 

newnode • if bstring(n) ~ I then .i.(11ode) else .r(node); 

if newnode ~ n then 

dehuf s dehuf + node; nodes top; 

else node ~ newnode; end if; end \In; 

Huffman tree: 

work•chars; wfreq= freq; .t=nt _, r=nt; 

(while twork &! 1) 

cl • getmin work; c2 C getmin work; 

nd -newat; .i. {nd) = cl· ' r(nd) • cZ· 
' 

wfreq(nd) • wfreq(cl) + wfreq(cZ); 

work c work with nd; 

end while; 

top c )work; • 

define£ getmin set; external wfreq; 

minfreq • [min: x c set) wfreq(x); 

xmin • j{x c set I wfreq(x) ~ minfreq}; 

set• set less xmin; return xmin; end getmin; 
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TOPOLOCICAL SORT 

Problem 

Suppose we are gi•en & set Sol arbitrary objects together with a 
p&rtia.l ordering P on S. Suppose P is given a-is a. aet of .pair• ~. b> with 
a, b • S. 

Arr&nse the members of S into a tuple T tuch that if a = T(i) and 
b = TUI, and <a, b> t P (meaning a, b), then i ~;: 

Solution 

I. We select .>n arbitrary member x of S which has no predecessor, 
• and append that to T CT ia initia1ly null). 

z. Having successfully placed x in T, we delete x from S and alto 
delete all pa.ir• beginning with x from P (if any exist). 

3. We contioue this process until Sis null. 

SETL Code 

T = nult; -(while S ne nl) 
x = a(y"';"sJ .!:!2!(Jpair •PI pair(Z) .tl y)}; 
T(IIT+l) = x; 
S = S leas x; 
P = P - {pair.i Pl pair(l) =x}; 
end while; 



All order~d irec is a de~cendent (unction dcse(node, j) defined 

!or j in some {i1,itc (possibly null) range. 

A binary tr~c is a pair of descendent {unctions L and R (left and 

right dcscendento). 

The o~dered and binary trees stand in an interetti_ng 1-1 .relationship 

tbat i• illustrated below. 

Ordered Tree Binary Tree 
, 

B D 

D<.:acendcnt FunctiOn De,cendent Functions 

A I B L R 

A 2 C A B B C 

A 3 D B E C D 

B I E D G E F" 

B 2 F £ H 
• 

D I Ci 

E I H 



OTB: 

BEGIN: 

Ordered To Binary Tree Transforma,tion 
' 

define OTB(d~""• L, ll); ' 
L = {<x(I ), x(3J>, x £ dcsc f x(Z) ~ i}·; 
Rs (<x(3), y(3J>, x t desc, y i des~I x(l) £g_ y(l) and 

(x(Z) + I) £9. y(2.)}; 
return; 
end OTB; 

PROCEDURE(DESC, L, IL, R, 1/R); 
DECLARE I DESC(*}, 

2·0F.$Cl CHAR(SO} VARYING, 
2 DESCZ FIXED BL'iAR Y, 
2 D};SC3 CHAf{(SOl,;VAR YING; 

DECLARE I L(•)) CONTROLLED, 
2. (LI, L2} CHAR(50) VARYING; 

DECLARE I R(•~) CONTROLLED, 
"· 2. (RI, RZ) CHAR.(50) VARYING; 

DECLARE (/;L, 1/R) FIXED BINARY; 

ALLOCATE L(Ol}.l(DESC 1, 1) ); 
ALLOCATE ll(DI:\-l(Dr:sc l. l )); 
DO l = I TO 011\-i(DJ•:sc I, 1 }; 

·Ll, L2 = 11 ; 

Rl, ll2 = 11 ; 

fL = O; 

IR= O; 

IF DESCZ'(l) = J THEN DO; i/L=/fL+J; 
Ll(I/L) = DESCl(l); 
LZ(I/L) = DESC3(I}; 
END; 

DO J = I TO DIM(DESCl, l); 
IF DESCl(J} = DESCJ(l) & DESCZ(J) = DESCZ(I) + I 

THEN DO; i/R = ltR + I; 
Rl(/iRl = DESC3(1); 
RZ(#.R) = DESC3(J); 
GO TO BUMP_!; 
END; 

END /* DO J •!; 
BUt.-!P_l; END f* DO 1 */; 

END OTB; 
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