
PR0F. M. KLINE
2b wAVCHLY PLACE

AEC Computing and

Applied Mathematics Center

AEC RESEARCH AND DEVELOPMENT REPORT

TiD-4500
35th Ed.

NYO-1480-9

THE NU-SPEAK SYSTEM

by

Judith Glasner, Stanley Ocken,
David Rosenberg, Jack Schwartz,

George Shapiro and Alan Silverman

November 1964

^ Courant Institute of Mathematical Sciences

o

~
I

o 5

NEW YORK UNIVERSITY
NEW YORK. NEW YORK

This report was prepared as an account of Government sponsored work. Neither

the United States, nor the Commission, nor any person acting on behalf of the

Commission:

A. Makes any warranty or representation, express or implied, with respect to

the accuracy, completeness, or usefulness of the information contained in

this report, or that the use of any information, apparatus, method, or

process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting

from the use of any information, apparatus, method, or process disclosed

in this report.

As used in the above, "person acting on behalf of the Commission" includes

any employee or contractor of the Commission, or employee of such contractor,

to the extent that such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access to, any information
pursuant to his employment or contract with the Commission, or his employment
with such contractor.

UNCLASSIFIED

AEC Computing and Applied Mathematics Center
Courant Institute of Mathematical Sciences

New York University

TlD-4500 NYO-1480-9
35th Ed.

THE NU-SPEAK SYSTEM

by

Judith Glasner, Stanley Ocken,
David Rosenberg, Jack Schwartz,

George Shapiro and Alan Silverman

November 1964

Contract No. AT(50-l)-l480

- 1 -

UNCLASSIFIED

NYO-1^80-9

ABSTRACT

Nu-Speak Is a list processing language embedded

in PAP. This manual describes the use of the Nu-Speak

system, the use of a corresponding Fortran version of

the system, and some applications.

- 2 -

TABLE OP CONTENTS

A. INTRODUCTION

Al . Fortran Nu-Speak 4

A2. The Chaining Requirement 23

B. FAP NU-SPEAK

Bl. Introduction 24

B2. Allocation of Core Storage in Nu-Speak 50

B5. Use of the Nu-Speak Macros of the First
(Recursion) Group 31

B4. The Second (String-Manipulation) Set of
Nu-Speak Macros 4-9

B5. The Nu-Speak Macros of the Third (Sublist
Manipulating) Group 63

b6. Principles of Operation of the Automatic
Erasing Mechanisms 67

B7. The Macros PREESP(ace) and FREEHD 75

B8. Miscellaneous Macros 77

B9' Forbidden Macro-Words and Entry Symbols 77

BIO. Special Procedures for Dealing with
Self-Reflexive List Structures 78

Bll. The Form of a Nu-Speak Deck 80

CI. The Auxiliary Routines WRTLIS and INLSTR 82
a) Output of List Structures
b) Input of List Structures

C2. An Auxiliary Package of Subroutines for
Letter Manipulation 89

03. An Example of Nu-Speak Applications
Programming: P^LPAC 95

INDEX 102

- 3 -

NYO-1480-9

THE NU-SPEAK SYSTEM

by

Judith Glasner, Stanley Ocken, David Rosenberg,

Jack Schwartz, George Shapiro and Alan Silverman

A . Introduction .

The Nu-Speak list processing system Is available In

two versions, a Fortran version and a PAP version. In

the following report, the use and some of the underlying

structure of both versions of Nu-Speak will be outlined.

While many users will prefer to write Nu-Speak programs

In Fortran, It should be noted that only In the FAP

version can full advantage be taken of Nu-Speak

flexibility.

Al. Fortran Nu-Speak .

To the two types of objects normally considered

In Fortran •— variables and arrays — Fortran Nu-Speak

adds a third — the list . The logical structure of a

Nu-Speak list is as follows:

Each list consists of a finite number of items . Each

item is of one of three types: a listhead , a link, or a

data item . Each list contains one and only one head, called

the head of the list . The remaining items of the list

follow in serial order, the last item being followed by

_ i| -

the head of the list. Thus, lists have a kind of 'looped'

or 'circular' form. A list may contain no items other than

its head in which case it is called a nullist. If squares

designate llstheads, rhomboids designate links, and circles

designate data items, a typical list might he represented

as follows

Each list may have one or several name

s

; the name of a

list is an ordinary Fortran variable. To the ordinary

Fortran system, Nu-Speak adds a number of functions and

subroutines which enable the manipulation of lists. These

subroutines and functions are as follows: NEXT, PREV,

READY, SUBLIS, ERASER, HANG, UNHANG, NAMLIS, C0PYT0, JUMPT0,

REM0VE, CUPL, NCPLT0, GLERNM, INSERT, TYPE, DSTR0Y, CREATE,

SAVER, GETTER, N0WW, and CURRNT, A final set of subroutines,

C0MEIN and C0M0UT, enable recursive subroutines to be

written within the Nu-Speak Fortran system.

One other concept, not present in the ordinary use of

Fortran, enters the Nu-Speak Fortran system. At any given

step of Nu-Speak list processing, we will say that the

computer is looking at or examining a given item on a given

list. The manner in which the various Nu-Speak list processes

affect the list item at which the computer is looking will be

--_ - 5 -

explained In what follows.

The Initialising command

CALL READY

should be the first command of any Portran/Nu-Speak main

program. This prepares the computer for list processing

and recursive function usage.

A list is created by the Fortran statement

CALL CREATE (LIST) j

here LIST is a Fortran variable which becomes the name of

the newly created list. The list, when created, is a

nullist. The computer is left examining the head of the

newly created nullist.

Suppose now that the computer is examining a given

item on a given list. The Fortran statement

A = TYPE (DUMMY)

will make the variable A positive if the item currently

being examined is a data item, zero if the item currently

being examined is a link, and negative if the item

currently being examined is a head. Here, DUMMY is any

arbitrary Fortran variable, needed only for compatibility

between Fortran and the underlying Nu-Speak programs.

After executing this statement, the computer is left

examining the same list element as before. The function

TYPE can also be used in Fortran statements of IF-kind

.

Thus, the statement

IP (TYPE (DUMMY)) 1,2,3

'

- 6 -

will transfer control to statements 1, 2 or 3 of a program,

depending on whether the list element under examination by

the computer is a head, a link, or a data item.

Suppose again that the computer is examining a given

item on a given list. The Fortran statement

CALL NEXT (DIDMY)

will cause the computer to examine the next item on the

given list. The Fortran statement CALL PREV (DIMMY) will

cause the computer to examine the previous item on the

given list. The Fortran statements

CURREN = PREV (DUMMY)

and

CURREN = NEXT (DUMMY)

will cause the computer to examine the previous and the

next element on the given list respectively, and will set

the variable CURREN equal to the previous or the next list

item respectively. (If this previous (resp. next) item

is a listhead or a link, the variable CURREN will be set

equal to a mysterious octal integer.)

The Nu-Speak functions can be compounded in the

manner usual in Fortran. Thus the statement

VAR = TYPE (PREV(NEXT(DUIVDyrY)))

is legitimate, and has the same effect as

VAR = TYPE(DUM^) .

The Fortran statement

CALL INSERT(E)

- 7 -

will insert the value of the expression E on the list

currently being examined, immediately after the item

currently being examined. The computer will be left

examining the newly inserted item. Thus, e.g., suppose

that the variables A(l) , . .
.
,A(6) are the data words N0W,

IS, TIME, P0R, ALL, G00D, read in from the input tape

using an a6 format. Then the code

CALL

Both of these lines of code remove froin a list the

single particular item at which the computer is looking,

and cause the computer to look at the immediately follow-

ing item. The second of the above lines of code also sets

the variable VAR equal to the value of the immediately

following data item (or to a mysterious octal number if

the following item is a link or a head) .

The function JUMPTJZJ is used in the form

CALL JUMPT0 (LIST) ,

whose LIST is the name of a' previously created list.

This code will cause the com.puter to examine the head of

the list named LIST. Thus, e.g., to count the number of

items in a list named LIST, we may use the following code.

CALL JUMPT0 (LIST)

N =

11 IP (TYPE(NEXT(DU]yD}/[Y)))2,l,l

1 N = N + 1

G0 T0 11

2 ... [here follows the rest of program]

If it is desired to erase a list once created, the

code

CALL ERASER (LIST)

may be used. This will cause the list named LIST to be

erased, and the storage cells which this list formerly

occupied to be returned to a master 'junkpile' of space

available for re-use. It is, of course, quite important

^^
- 9 -

to erase lists when the data represented by them Is no

longer of use. After a call to ERASER of this sort, the

computer will be left looking at the same data word of

the same list at which it was looking at the time of the

call. If, however, the list erased happens to contain

the element at which the computer was looking, then,

after the erasure, the computer is no longer looking

at any item. To recommence list processing, a statement

either of the type

CALL JUMPT0 (LIST)

or

CALL GETTER (VAR) (cf. below)

or

CALL CREATE (LIST)

must be executed. A list should never be erased more

than once, nor should a nonexistent list ever be erased .

If the computer is looking at the head of a list,

the statement

CALL C0PYT0 (VAR)

will cause it to produce a copy of the list at whose

head it is looking, and to make the variable VAR into a

name of the copied list. After the command is executed,

the computer will be left looking at the head of the

newly produced copy.

Suppose that the computer is looking at a given

item on a given list. Then the statement

CALL NCPLT0 (VAR)

- 10 -

will cause the computer to break the list at which it is

looking into two parts. The first part will consist of

all items up to and including the item at which the

computer was looking; the second part will consist of all

remaining items. The first part of the list will have

same name (or names) as it originally had; the second will

receive the name VAR. Thus, e.g., if the Fortran variables

A(l) , . .
.
,A(6) are, as previously, the data words N0W, IS,

TIME, F0R, ALL, G00D, the code

CALL CREATE (LISTl)

D0 7 I = 1,6

CALL INSERT (A(I))

7 CALL PSEV(DUMMY)

CALL C0PYT0(LIST2)

A = NEXT(NEXl'(NEXT(DU]y[MY)))

CALL NCPLT0(LIST5)

would result in the production of three lists: LISTl,

consisting of a head and of the data items G00D, ALL,

F0R; LIST2, consisting of a head and of the data items

G00D, ALL, P0R, TIME, IS, N0¥; and LIST3, consisting

cf a head and of the data items TIME, IS, N0W,

The inverse of NCPLT0 is CUPL, which may be used

either in the form

CALL CUPL (LIST)

or

VAR = CUPL (LIST)

- 11 -

The action of these commands Is as follows: Suppose that

the computer Is looking at a given element on a given llst^

say^ LISTl. Then either of the above commands will cause

the whole body of the list named LIST (except its head) to

be interpolated into LISTl immediately following the

element at which the computer was looking, and, immediately

preceding what was originally the next following item.

In this process, the LIST being UUPL-d loses its head and

its separate identity; its head is automatically returned

to a junkpile of free heads for reuse. The computer is

left looking at the first inserted item. The second of

the above form of the CUPL command sets the value of the

variable VAR equal to the first inserted item in addition

to performing the above functions.

Thus, if the Fortran variables A and B are the data

words AXE and BOX, the code

CALL CREATE (LISTl)

CALL CREATE (LIST2)

D0 7 J =1,3^:

CALL JUMPT0 (LISTl

)

CUR = INSERT (A)

CALL JUMPT0(LIST2)'

7 CUR = INSERT (B)

CUR = NEXT (DUMMY)

CUR = CUPL (LISTl)

would leave LIST2 consisting of a head and of the data

items BOX, BOX, AXE, AXE, AXE, BOX; LISTl would no longer

- 12 -

exist, though it could be recreated as a nullist, if

desired, by the subsequent command

CALL CREATE (LISTl) .

We also note that in the above coding, the final value

of the variable CUR is AXE, and that the computer is

left looking at the first item AXE on LIST2.

The function of a link is to designate a list as

a sublist of the list on which the link occurs. Each

link 'points' in this sense to some sublist. To intro-

duce such a link, the command

CALL HANG (LIST)

is used. This command will interpolate a link pointing

at the list named LIST immediately after the item at

which the computer was looking; the computer is then

left looking at the newly inserted link. To remove a

link at which the computer is looking, the inverse

command

CALL UNHANG (DUMiyiY

)

or

CUR = UNHANG (DUMMY)

should be used. This will remove the link and leave

the computer looking at the item which had followed

the link. The second of the above forms of the UNHANG

command will also set the variable CUR equal to the

value of the next following item in addition to perform-

ing the above functions.

If the computer is looking at a link, the command

CALL SUBLIS(DUMMY)

will cause the computer to look at the head of the

sublist at which the link points. In this way the

computer can proceed from a list to one of its

sublists

.

In terms of the symbols for heads, links, and data

introduced above, a typical 'list structure' of lists

and sublists might be represented as follows:

HEAD -^r_ /"A_) KLI^>—(^^)-—(^J)—<U^

^
HEAD\CKxy

It is even possible that a sublist, say LIST2, of a

certain list, say LISTl, should itself have LISTl as

a sublist, or even that LISTl should be a sublist of

itself, a situation represented graphically by a

diagram such as the following

HEAD /~^) J^ J^^^^^^^

It is vital to the proper functioning of Nu-Speak that

no sublist of a list ever be erased before the list

- 14 -

Itself Is erased . If the subllst is to be erased, It

should be 'unhung' first. Thus, the code

CALL CREATE (LISTl)

'CALL CREATE (LIST2)

CALL HANG (LISTl)

CALL ERASER (LISTl)

is inadmissible , while

CALL CREATE (LISTl)

CALL CREATE (LIST2)

CALL HANG (LISTl)

CALL UNHANG (LISTl)

CALL ERASER (LISTl)

is admissible.

The requirement that no subllst of a list be erased

before the main list is erased naturally makes it difficult

to deal with such 'reflexive' structures as the one

pictured Just above. For an account of the prcoedures to

be employed in dealing with such structures, see the

section. Special procedures for dealing with self-reflexive

list structures , in the attached FAP-Nu-Speak manual.

The command NAMLIS has the form

CALL NAMLIS (VAR)

where VAR is a Fortran variable. Its effect is to

designate VAR as a name of the list at (an element of)

which the computer is looking. The inverse operation to

- 15 -

NAMLIS is provided by the command CLERNM, which has the form

CALL CLERNM(NAME) ,

and which frees the variable NAME from being a list name.

Both commands CLERNM and NAMLIS leave the item at which

the computer is looking unaltered. Thus the code

CALL CREATE (LISTl)

CALL CREATE (LIST2)

CALL NAMLIS (T0M)

CALL NAMLIS (DICK)

CALL NAMLIS (HARRY^I

CALL JUMPT0(LISTl)

CALL NAMLIS (J0E)

CALL NAMLIS (T0M)

CALL CLERNM (DICK)

will leave the list named LISTl with the two additional

names J0E and T0M, and the LIST named LIST2 with the

single additional name HARRY. The variable DICK will

not be a list name.

The functions CURRNT and N0¥W permit the user to

obtain the current data item. In particular, performing

arithmetic may have destroyed the MQ, register which

contained the current data item. (see "conventions involved

in looking at a list element' in Sec. B4 of the Nu-Speak

PAP Section of this manual). Either

X = CURRNT (DUMMY)

or

I = N0W¥ (DUM^IY)

- 16 -

will restore the MQ and set the left hand side to the

current data item. CURRENTand N0WW are identical except

that the former should be used for floating, alphabetic

or boolean data and the latter for integer data.

Similarly, all the function type subprograms in

Nu-Speak have alternate but equivalent names in the

opposite mode. Specifically

FIXED FL0ATING

NEXT PNEXT

IPREV PREV

NHANG UNHANG

IREM0V REM0VE

INSERT FINSRT

ICUPL CUPL

ITYPE TYPE

In assignment or IF statements care.. mast be taken

to use the name with the appropriate mode. In CALL

statements, of course, either name may be used.

It may now be mentioned that, as Nu-Speak list

processing proceeds, a running count of the number of

current references to each list is kept. This number

is defined as the sum of the number of names of a list

and the niimber of links pointing to the list. If this

number reaches (logically implying that there is no

way of referring to the list), the list concerned is

automatically erased. The following coding, with

- 17 -

coniments, will Illustrate the points involved

CALL CREATE (LIS Tl)

CALL CREATE (LIST2)

CALL NA]yLIS(T0M)

CALL NAMLIS(DICK)

CALL NAMLIS (HARRY

)

CALL CLERNM(DICK)

CALL JUMPT0(LIST1)

CALL HANG(T0M)

CALL CLERNTy[(LIST2)

CALL CLERN]y[(T0M)

CALL CLERNM(HARRY)

THIS = UNHANG (DUM^TY)

LISTl HAS 1 REF.

LIST2 HAS 1 REP.

LIST2 HAS 2 REPS

LIST2 HAS 3 REPS

LIST2 HAS 4 REPS

LIST2 HAS 5 REPS

LIST2 HAS h REPS

'LIST2' HAS 3 REPS

'LIST2' HAS 2 REPS

P0RMER 'LIST2' HAS 1 REP,

N0 NAME ANY L0NGER

P0RMER 'LIST2' L0SES ALL

REPS, IS AUT0MATICALLY

ERASED

.

The coinmand DSTR0Y has the form

CALL DSTR0Y(LIST)

.

Its effect is to erase the designated list, all its

sublists, all their sublists, etc., thus erasing an

entire list structure with a single command. It should

never he used if the list structure contains lists which

are sublists of more than one list, that is, if the list

structure is not 'treelike.'

The instructions

- 18 -

CALL SAVER (A)

and

CALL GETTER (A)

are used to 'remember' the item at which the computer was

looking at a given point in a list manipulation process,

in order to be able to return to it later. The notation

of the item is made with SAVER, and return may subsequently

be made with GETTER. The variable A occurring in SAVER or

GETTER should have ''a Fortran DI]yiENSI0N of J>.

The user is warned that SAVER and GETTER will work

properly only if noMl&ts are created either by CREATE or

by C0PyT0 between a given use of SAA/ER and the correspond-

ing subsequent use of GETTER. Thus, e.g., suppose that the

computer is at a given moment examining a given item on a

list named LIST. Then the code:

CALL SAVER (A)

CALL JUMPT0 (LIST)

CALL C0PYT0(LIST2)

CALL GETTER (A)

may fail to bring the computer back to 'the list element

originally under examination. To return to a list element

even after an ensuing list creation, the following more

round about coding can be used.

- 19 -

BREAK INT0 T¥0 PARTS

C0PIES FIRST PART

C0PIES SEC0ND PART

J0INS FIRST AND SECOND PARTS

CALL NCPLT0 (AUXLIS

)

CALL JUMPT0(LIST)

CALL C0PYT0(LIST2)

CALL JUMPT0 (AUXLIS

)

CALL C0PYT0(AUX2)

CALL JUMPT0(LIST2)

CALL PREV(DUMMY)

CALL CUPL(AUX2)

CALL JUMPT0(LIST)

CALL PREV(DUMMY)

CALL CUPL(AUXLIS) REST0RES LIST T0 FIRST

C0NDITI0N

CALL PREV G0ES BACK T0 0RIGINAL

ELEMENT

To enable the use of recursive processes within the

Nu-Speak/Fortran system, two auxiliary subroutines, C0MIN

and C0I^UT,' are provided. These subroutines provide for

the recursive bookkeeping of the non- input and non-output

variables which are used within the recursive subroutine.

The definition of a Fortran subroutine which is to

be used recursively and which uses internal variables

should begin:

SUBR0UTINE NAME(Llst of subroutine arguments)

CALL ''CpfMIN(L0C, list of internal variables of

the subroutine and their dimensions);

here L0C is to be a Fortran variable not used otherwise

in the subroutine, except In a CALL C0M0UT statement (see

- 20 -

below) . The remaining argument list of C0MEIN will have

the form VARl, dimension of VARl, VAR2, dimension of VAR2,

..., etc. The internal variables of a subroutine are

those variables whose values must be preserved around a

recursive call to the subroutine.

When a recursive subroutine, say PR0CES, is to call

itself, the statement:

CALL PR0CES (list of arguments)

may not be used. Instead, a call of the form:

CALL DUMMY (list of arguments)

should be used where DUMMY is a user coded FAF subroutine

(see RECURSIVE SUBROUTINES in the FAF section of this

manual) of the following form:

1 8 16 73

* FAF

ENTRY DUMMMY (Note: Nu-Speak subroutines should
have six letter names.)

REWIND 16

UPDATE 16

REWIND 16 . NSIZZZZZ

SUBR DUMMY, INPUTS, (list of input args)

,

ETC 0UTPTS, (list of output args)

CALL PR0CES, list of args.

RETPRM DUMMMY

END

- 21 -

All dummy recursion programs in a job may be

included in a single FAP deck; each routine having

an ENTRY card (before the first REWIND card) as

well as SUBR, USE, RETPRM, and FINI cards.

Finally, any RETURN statement in the F0RTRAN

subroutine must be preceded by the statement

CALL 'C0M0UT(L0C)

where L0C is the variable which occurs as the first

argument of the CALL C0MEIN statement of the subroutine

A number of restrictions attach to the use of

recursive subroutines in Fortran/Nu-Speak.

1. A recursive CALL statement should not occur

within a do-loop. Thus

D0 7 J = 1,10

• • •

CALL PR0CES(ARG1,ARG2)

7 C0NTINUE

is illegal. More generally, one should never CALL from

within a do-loop to a routine which might directly or

indirectly CALL back to the calling routine.

2. A Fortran/Nu-Speak program involving recursion

is required to use the Fortran standard error procedure.

3. Error messages and termination of execution

will result from attempts to execute various illegal

operations (e.g. REM0VE a listhead, C0PYT0 when not

looking at a listhead, etc.). These error messages

22

should in each case be self-explanatory.

The true power and efficiency of the Nu-Speak

recursive subroutine feature can best be realized In

the Nu-Speak FAP system. Programs, then, which center

on recursiveness should, whenever possible, be coded

in FAP.

Fortran/Nu-Speak list operations are executed by

the routines described in additional detail in the

following FAP/Nu-Speak section of the present manual.

A user's Fortran program reaches these underlying

programs after transit through a short interface

program. Thus the user may consult the PAP/Nu-Speak

section of this manual for additional details on the

operation of the Nu-Speak system required from time

to time. By reading a listing of the interface program

it should be possible to clear up even the most subtle

of difficulties

.

A2. The Chaining Requirement .

The main link of a Portran/Nu-Speak job must be

designated as a chain job with a card * CHAIN(101,3)

preceding the job. A two card binary program

designated as * CHAIN (102,5) is provided; this calls

in a library program containing final error messages as

required. This second link program must follow the main

link (* CHAIN(101,3)), and generally conform to all the

standard Fortran rules for chain jobs.

- 23 -

B. FAP Nu-5peak .

Bl . Introduction .

The FAP Nu-Speak System Is embedded in FAP. Thus

the user writes a program of PAP type, and may write any

709^ machine operation code, any FAP pseudo-operation,

and may make use of the FAP macro-operation feature.

To the basic FAP package, Nu-Speak adds a number of macros

and associated programs. These macros and programs fall

naturally into seven groups.

a. The first set of macros belongs to the basic

subroutine package, providing for a completely recursive

system of subroutine calls, with automatic freezing and

unfreezing of stored data on a pushdown list as necessary.

A debugging feature and a number of arithmetic macros,

which make up for the absence of Fortran-type compiling,

are also provided.

The macros of this group are SUBR (creates a recur-

sively usable subroutine), INTARS (provides storage for

the internal arguments of a subroutine), RETFRM (return

from a subroutine), USE (use a subroutine), FINI (desig-

nates the end of a subprogram), DgfBEG (begins a do-loop),

D^END (ends a do-loop), RD0BEG (begins a recursive

do-loop), RDEND (ends a recursive do-loop), USESV4

(explained below), CALSV4 (explained below), DEBUG

(assemble subroutine including debug feature to provide

report on entry and leaving), BEGSTK (reserve a storage

area for a pushdown stack), PUTIN (put contents of AC into

- 2h -

pushdown stack), TAKFRM (fill accumulator from top of

pushdown stack), and CNTSTK (counts' the number of entries

In a stack) . The arithmetic m.acros are ARITH, ARITHA,

PL0AT, and PL0ATA . Two additional macros KEPT and STEP

are provided as debugging aids . The use of most of these

features will be made plain to the FAP-writer by the follow-

ing program to calculate Ackerman's recursive function.

CALL NimAT,5.P0RMTl,A,l,B,l

use of the programs which maintain a list of free space

and provide free space as needed for the other operations.

These latter programs are entered by the macros RREESP

(provides free space for new list elements), and FREEHD

(provides free space for new list heads). A final macro,

READY, Initializes for list operations.

In advancing, via NEXT or PREV, from one list element

to another, the data item of the new list element appears

in the MQ register.

The following program section, which Interchanges

the first two elements of a list named LISTA, and then

changes the name of the list to LISTS will Illustrate the

use of some of the above features.

JUMPT0 LISTA JUMP T0 HEAD 0P LISTA

NEXT

STQ

REM0VE

ST0RIJ

INSERT ST0RIJ

CLERNM

NAMLIS

LISTA

LISTB

N0¥ EXAMINING FIRST ENTRY

SAVE DATA ITEM

DELETES FIRST DATA LEFT

L00KING AT SEG0ND ITEM

INSERTS DATA ITEM IN

ST0RIJ AFTER SEC0ND ITEM

FREES NAME F0R 0THER USE

GWES NEW NAME T0 PRESENT LIST

ST0RIJ BSS 1

c. The third set of macros constitutes the remainder

of the list package, and enables operations on lists with

- 27

subllsts. This group of macros Includes HANG ("hangs"

a list as a subllst of another list), UNHANG (removes a

subllst from a list), TELINK (tests a list element to

see If it is a pointer to a sublist), SUBLIS (descends

to a suhlist through such a pointer), and DSTR0Y (erases

a list and all its sublists). The following program, to

find and enter the first sublist of a list, if any such

sublists exist, will illustrate the use of some of these

macros

.

JUMPT0 LISTA

L00P NEXT G0 T0 NEXT ELEMENT

TELINK HAVE WE P0UND A SUBLIST?

TRA SBPIND IF S0, TRANSFER 0UT 0F L00P

TEHEAD ARE WE AT END 0F LIST?

TRA L00P IF N0T, C0NTINUE IN L00P

SBFIND SUBLIS IF SUBLIST P0INTER F0UND,

DESCEND T0 SUBLIST.

d. The fourth set of macros constitutes a

miscellaneous set, some of which are not particularly

intended for ordinary use by the programmer using

Nu-Speak, but which may be so used, if desired. This

fourth set includes ERASYR (for deleting a link),

PRNTMC (replaces the PAP pseudo-op PMC to assure print-

ing of macro-cards in an assembly) , HEADER (provides a

heading character), and a few others described in more

detail below. ^„
- 28 -

e. The fifth set of macros pertains to the special

Nu-Speak input/output system provided as an option, and

will be explained later in this manual.

f

.

The sixth set of macros provides for the manipu-

lation of BCD letters within data words in a manner similar

to the manipulation of data words within blocks.

g. The seventh set of macros are intermediate macros,

used by the system for the definition of the macros listed

above, which the programmer will practically never use, and

which he must know about only in order to avoid defining

macros with the same name (which would, of course, destroy

the whole house of cards) . These macros have names of

6 characters starting with two periods.

The Nu-Speak user interested in saving core space

will be able to use only part of the system, rather than

the whole. The three options provided are:

(a) The small economy size. Only the recursive

subroutine, list, and string macros.

(b) The macros of (a) and the arithmetic package.

(c) The whole works.

An additional core storage saving is provided by the

WRITE m.acro of the Nu-Speak 1/0 system (described below)

which uses chaining to restrict main-line l/0 operations

to binary operations using (I0B), thereby saving 2,000

words which otherwise would be occupied by various programs

of the (I0H) complex. Note however that use of the DEBUG

feature of Nu-Speak (which uses NUWAT) will call in

- 29 -

the (I0H) complex, thus requiring extra space.

Again as a space-saving measure, various terminal

error messages and programs are relegated to a third

chain link.

B2, Allocation of core storage in Nu-Speak .

Core storage in Nu-Speak will normally be allocated

as follows:

(a) At bottom, the 100 reserved system locations.

(b) Then the program area, including blocks

reserved for linear or other Fortran type arrays.

(c) Prom the end of the program area to the bottom

of common, the listspace and pushdown-list area, divided

as follows:

(cl) an area, growing upwards, in which occupied

and free llstheads are found;

(c2) an area above this, growing upwards, in which

occupied and once used but presently unoccupied list cells

are found;

(c3) an ever-shrinking area of the still unused core,

bounded below by the listspace area and above by the

(c4) pushdown list area associated with the recur-

sive use of subroutines, growing downward from upper core

and shrinking back up as recursions proceed;

(d) The common area near the top of core;

(e) The usual desolate area of erasable common at

the very top of core.

- 50 -

The boundaries of all these various areas of core

are initialized automatically in the case of programs

using only the minimal Nu-Speak package, and hy the macro

READY which must be the first instruction of any program

using the Nu-Speak list macros.

B3. Use of the Nu-Speak Macros of the First (Recursion)

Group

.

Glendower: I can call spirits from the vasty deep.

Hotspur: Why so can I, or so can any man;

But will they come when you do call

for them?

— Henry IV - Part I.

The form of the SUBR macro is

SUBR NAME, INPUTS, (LISTl) ,0UTPTS, (LIST 2) , (LIST^)

where

NAME is the subroutine name

LISTl is the list of dummy inputs (with names

normally but not necessarily less than

6 characters)

LIST2 is the list of dummy outputs (with names

normally but not neces . less than 6 char.)

LIST3 is a list of registers used in the subroutine

and to be restored on exit. Index register H-

is always saved. Index register N, N 7^ 4, is

specified by the symbol XN. Q specifies that

- 31

the MQ is to be saved; I the sense

indicators. In addition, L specifies that

all the list-involved registers are to be

saved, i.e., L is equivalent to X6, X7, I

and Q.

If a subroutine has no explicit input or output

variables, the corresponding words INPUTS or 0UTPTS

should be omitted. LIST3, too, may be omitted should

the saving of the machine registers be unnecessary.

If a subroutine uses certain arguments internally

and if these arguments do not remain constant during

recursive use of the subroutine, a list of these

arguments should appear in the INTARS macro

INTARS (List)

within the SUBR . At most one use of the INTARS macro

may occur in any SUBR .

ArgiMients not logically needed in a recursion may

be specified by any of the usual methods. (INTARS will

work Just as well for them, but will waste XEQ time and

stack space .

)

Storage will automatically be provided for any dummy

variable explicitly designated as an input, output or

internal argument by the INTARS macro, see below. None

of these variables should be otherwise defined (in the

ordinary FAP sense), or the assembly will fail owing to

multiply defined symbols.

THE F0RTRAN USER IS WARNED that a subroutine entered

- 52 -

by the macro SUBR will bring in only those variables

explicitly designated as INPUTS and will return only

those variables explicitly designated as 0UTPTS . Thus,

the lines

USE PR0CES, (A,B),C

SUBR PR0CES, INPUTS, (A, B),0UTPTS, (C)

CLA A

ADD =1

ST0 A

• • •

will change the values of A and B for use during the

execution of PROCES, but will restore them to their

original values upon executing a subsequent RETFRM.

Similarly, the line

USE PR0CES, (A,B),C

followed by

SUBR PR0CES , INTPUTS , (A , B) , 0UTPTS , (C

)

CLA C

* • •

will leave PR0CES operating on whatever value of C was

left stored upon the last RETFRM PR0CES

.

Subroutine names can be inputs to, and outputs

from, other subroutines. Just as in FORTRAN (and in

this sense operate as transfer vectors). The following

code will set C equal to the value obtained by applying

a function called PR0CES 30 times iteratively to C.

33 -

USE ITERAT, (PR0CES,=3O,0),C

BEGl

ENDl

SUBR

D0BEG

USE

D0END

PINI

ITERAT, INPUTS, (PCN,N0,VAR)
,0UTPTS, (VAL)

Eiroi,l, = l,N0

FCN,VAR,VAL

BEG1,1

the above lines also illustrate the use of the do-loop

pair D0BEG and D0END, which is described more carefully

below.

The following code will calculate F(2), P being

that one of the functions PUNCl and FUNC2 for which

P(l) assumes the larger value,

USE SELECT, (PUNCl, FUNG 2), WINNER

USE WINNER, =2,RESULT

SUBR SELECT, INPUTS, (PR0C1,PR0C2) ,0UTPTS,BETTR

USE PR0C1,=1,VAL1

USE PR0C2,=1,VAL2

INTARS (VAL1,VAL2)

CLA VALl

SUB VAL

2

TMI 2BETR

CLA PR0C1

- 34 -

2BETR

ST0

to successive SUBR's. If there are more than 35 SUBR's

in a program, the HEADER mechanism will begin again from

Z. The line FINI, which should normally be the last

line of each SUBR, assembles simply as HEAD 0, PAP symbols

with head being the same as unheaded symbols.

Since FAP symbols are at most 6 characters long,

6 letter symbols will not be headed, and will therefore

be accessible to all SUBR's. The use of the same

6-character symbol as an explicit INPUT, 0UTPUT, or INTAR

of two different SUBR's will therefore lead to multiply

defined symbols. On the other hand, by using a six charac-

ter symbol as a variable in a single SUBR, one allows

other SUBR's to have access to it, and this possibility

provides what is in effect a "named common" which can

replace the "numbered" C0MM0N of the F0RTRAN-FAP system.

However, if one SUBR accesses and changes an argument of

another SUBR in this way, the recursiveness of the system

may be spoiled. (For a detailed understanding of this

point, see appendix below, or listing of the macros SUBR

and SUBBDY.) Thus, the heading system makes it advisable,

as a matter of ordinary practice, to name subroutines with

six letter symbols (so that they may be USE-d within other

SUBR's), and to name variables and other locations with

symbols of five characters or less.

Programs written with more than 35 SUBR's may

inadvertently produce multiply defined symbols, owing to

- 36 -

the re-use of heads. In the (hopefully few) cases In which

this occurs, it can be cured by appropriately renaming the

offending variables and locations.

The macro RETPRM assembles as a single line of

machine code, e.g.

RETPRM PR0CES

assembles as

TRA ' PR0CES+5

It is used to return from a subroutine to the calling

routine, and is analogous in function to the F0RTRAN

word RETURN.

The macro USE assembles the same lines of code, and

is used in much the same way, as the FAP pseudo-operation

CALL, but with the exception that it makes no transfer-

vector entry (naturally notl)- Its form is

USE NAME, (LIS Tl), (LIST2)

where

NAME is the name of the subroutine to be used

LISTl is a list of the Inputs provided to it or

the word N0INPS

LIST2 is a list of the outputs which it is to

provide or the word N00UPS

.

The variables of these two lists must coincide in number

and correspond in order with the INPUTS and 0UTPUTS

declared in the first line of the SUBR named NAME.

- 57 -

If a NU"Speak SUBR located In a given program Is to

be used in an external program, it should be called in

the more conventional form

CALL NAME,LIST1,LIST2

where LISTl is a list of input arguments, and LIST2 is a

list of output arguments. In addition, the first card

group of the program containing the SUBR in question must

contain a card of the form

ENTRY NAME

for each SUBR which is to be used by an outside program.

Since the assembly of the m.acros CALL and USE

generate a line of the form TSX SUBNAM,4 they involve

an implicit use of index register XR4, and hence will

change its contents. In order that the contents of

XR4 may be restored on return from a SUBR if desired,

secondary forms CALSV4 and USESV4 of these macros

have been provided ("call saving XR4" and "use saving

XR4"). These act in just the sam.e way as CALL

and USE, except that XR4 is stored before the CALL

' or USE and restored immediately after return from the

SUBR. Normal Nu-Speak practice, however, will omit those

saves and restorations, and consider the value of XR4

within any given SUBR to be indefinite. The proper

"existing" value of XR4 will in all cases be saved on

entry to a SUBR, and XR4 will be restored to its initial

38

value just prior to a return from the SUBR . (Cf. the

discussion above of XR-save specifications in a SUBR

head .

)

The DEBUG feature of Nu-Speak Is controlled by a

card of the form

DEBUG blank, or 0N, or 0PP.

The appearance of a DEBUG 0N card will cause the assembly

of all following SUBR's, up to the next DEBUG 0PP or

DEBUG card, to be modified. As a consequence of this

m_odification, each entry into the SUBR will produce a

message of the form SUBR0UTINE NAMED (name of subroutine)

HAS JUST BEEN ENTERED, together with a statement (in

octal) of the condition of the accumulator, P+Q bits,

MQ register, sense indicators, and XR4 (complemented),

and input arguments while each subsequent return from

the SUBR will produce a message of the form SUBR0UTINE

NAMED (name of subroutine) IS BEING LEFT, together with

the condition of the same principal registers as above

(excepting XR4, however), and a statement (in octal) of

the values of all output arguments. The DEBUG 0PP card

terminates the debug feature; alternate appearances of

the card DEBUG switch this feature off and on. While

using the DEBUG feature, the Nu-Speak binary deck marked

DEBUGPR0G must be included with the deck being loaded

(see below, form of decks for Nu-Speak jobs). This

- 39 -

program calls in the 4,000-odd words of the (I0H) complex ,

and so may reduce the amount of core space available to the

new program complex by a considerable amount.

When the debugging of a Nu-Speak program is complete,

all the DEBUG cards may be removed from the source symbolic

deck; the binary DEBUG PR0G deck is to be removed also.

The source deck will then assemble into final form.

The macros ARITH and ARITHA provide a rudimentary

set of floating point and double-precision floating point

arithmetic macros. Their form is

ARITH variable, word, (list), equals, variable 2

and

ARITHA word, (list), equals, variable 2.

Here

(a) "word" denotes one of the four single-precision

control words PLUS, MINUS, TIMES, or 0VER, with obvious

arithmetic operational significance, or one of the four

double-precision control words DPLUS, DMINUS, DTIMES, or

D0VER, of corresponding significance.

(b) "equals" denotes the control word EQUALS, which

may however be absent, in which case the word "variable 2"

may as well be absent also (cf. below).

(c) variable 2 is the symbolic name of a variable

which is to be set equal to the result of the preceding

arithmetic operations. (If this variable, together with

the word EQUALS, are omitted, the result will be left in

- 40 -

the accumulator (or accumulator and MQ, in case of

double-precision variables.)

(d) "list" is a list of the variables to be

successively combined using the operation specified

by "word."

(e) "variable" in the ARITH macro is the variable

to be brought into the central processing unit at the

start of the desired arithmetic operations; the macro

ARITHA finds its first variable already in the accumulator,

The use of ARITH and ARITHA are illustrated in the

following program, which has the same effect as the

F0RTRAN statement A- (SQRTF(X*Y*Z*W-1 .0))/Xl

.

ARITH X, TIMES, (Y,Z,W)

ARITHA MINUS, =1.0

CALL SORT

ARITHA 0VER, XI, EQUALS, A

The form of the macro FL0AT is

PL0AT variable, equals, variable 2;

the form of the macro FL0ATA is

FL0ATA equals, variable 2.

Here "equals," and "variable 2" have the same signifi-

cance as above in the macros ARITH and ARITHA, and may

be omitted with the same consequences as above.

"Variable" is the symbolic name of the full word

- 41 -

(P0RTRAN USERS WARNED) integer to be converted to float-

ing point. The macro FL0ATA finds its variable in the

accumulator

.

The do'loop pair D^BEG (do-loop beginning) and

D0END (do-loop ending) have the following form:

location 1 D0BEG location 2, numb. A, B

location 2 D0END location 1, numb

Here "location 1" and "location 2" must be valid

PAP symbols designating the location of the beginning

and end of the do-loop, "numb" is an integer from 1 to

7 designating the index register in which the count

for the do-loop is to be kept, and A and B are loca-

tions ("variables") whose ADDRESS P0RTI0NS (P0RTRAN

USERS WARNED) contain respectively the lower and upper

count limits for the do-loop.

The alternate do-loop pair RD0BEG (recursive do-

loop beginning) and R0END (recursive do-loop ending)

have exactly the same form and much the same use, but

are more suitable in certain circumstances for use in

recursive subroutines. The distinction is most easily

perceived by examining the expansion of these macros.

D0BEG expands as

- 42 -

START D0BEG

To avoid this nuisance, the alternate do-loop pair

may be employed. RD0BEG expands as

RD0BEG MACR0 END,XR,A,B

LXA

CLA =1000

ST0 C0UNT

FL0AT =0, EQUALS, B

HERE D0BEG THERE, 1,=1, C0UNT

ARITH B, PLUS, C, EQUALS,

C

THERE D0EKD HERE,1

• • •

Much the same code could be written more simply as

PL0AT =0, EQUALS,

B

WHENS D0BEG WITHR, 1,=1,=1000

ARITH B, PLUS, C, EQUALS,

C

WITHR D0END WHENS,

1

If the upper limit of such a do-loop lies below

its lower limit, it will not be executed at all.

Pairs of D0BEG's and D0ENI) ' s using different index

registers may be nested within each other in obvious

fashion.

The user is warned that the location symbol written

in the location field of a D0BEG macro-operation does not

describe the location of the first line of generated machine

code. For a detailed understanding of the point, a listing

of the D0BEG macro should be consulted.

The programmer wishing to obtain an automatic dump

when freespace becomes exhausted in a program using only

_ il5 _

the minimal Nu-Speak package may Include the control card

ALDUMP as the first instruction of his program. (WARNING :

a 6ump produced in these circumstances will normally be

approximately 200 pages long.) The four macros BEGSTK,

PUTIN, TAKFRM, and CNTSTK enable the user to automatically

construct and use any number of "LAST IN/FIRST 0UT" type

push down stacks.

The macro BEGSTK has the form

BEGSTK slze,wd,loc

where size is a decimal integer equal to the number of core

locations to be reserved for the operation of the stack.

This defines the size of the stack, and provides

either for the production of an error message or for a

specific transfer of control on stack overflow or underflow.

A stack of nominal size N will actually occupy N+4 core

locations

.

If the macro is used without the last 2 words, wd and

size, as e.g. in

STACKl BEGSTK 5OO

an error message and termination of execution will result

on stack overflow or underflow. If the macrovariable is

replaced by the control word RETURN, as in

STACKl BEGSTK 5OO, RETURN, L0CL

return on overflow or underflow will be made to the

program location L0CL.

If the programmer desires to return control after

» 46 -

the stack has been filled or emptied to some point

designated by himself (by using the long form of the

BEGSTK macro Instruction) ^ he will probably want one

set of Instructions to be executed after the stack has

been filled, and another after It has been emptied.

In the case of stack underflow or overflow control

will always be transferred to the location specified by

the user In his BEGSTK statement. (If no return location

Is specified, stack underflow or overflow will pr'oduce an

error message and program termination.) If, when the

CPU arrives at the specified location, XRl contains 0,

a stack underflow condition exists. If XRl contains

-SIZE-2, a stack overflow exists. It is suggested that

the instruction at location L0CL be:

L0GL TXL EMPTY, 1,0

EMPTY

Since -SIZE-2 is stored in XRl as a positive number

(the 2's complement) control will then pass to one set of

statements after the stack has been emptied (XRl = 0)

and to another set of statements after the stack has

been filled (XRl = -SIZE-2).

Note that XRl may be used within the program since

it Is saved and restored by the stack macros.

BEGSTK must be placed in a portion of the program to

which control can never pass (e.g. after a CALL EXIT state-

- ^7

ment) . Control will then only pass to it via the PUTIN

or TAKPRM macros. Also there must be a symbol in the

location field of the macro-instruction. This is the name

of the stack and is defined as the location of the first

machine instruction in the macro. It must not be omitted .

The form of the macro PUTIN is

PUTIN A

where A is the name of a stack created by" the macro

BEGSTK. It stored the contents of the accumulator in

successive locations of the stack A. The inverse

operation is performed by the macro TAKPRM which has

the corresponding form.

TAKPRM A

PUTIN MYSTAK

CALL EXIT

MYSTAK BEGSTK 500

A BEGSTK 28

The first element PUTIN a stack is always the last

element TAKen FRM the stack.

Both PUTIN and TAKERM work must more rapidly (12

cycles) than the corresponding list macros INSERT and

REM0VE, and should be used in preference to the list

- 48 -

macros where the additional flexibility and logical

connections of the list macros are unnecessary.

The final macro of the Nu-Speak pushdown-stack

set is CNTSTK, which has the form

CNTSTK NAM,SIZE,RMNING.

Here NAM is the name of a stack, SIZE is its size, and

RMNING is a core location. Use of this macro will store

the number of locations remaining in the stack in the

address of the location RMNING.

b4. The Second (String-Manipulation) Set of Nu-Speak

Macros .

To understand the use of the Nu-Speak list-processes,

it is necessary to understand something of the Nu-Speak

representation of lists within the 709^- Lists are

constructed out of three t;^TDes of elements: data

elements, llstheads, and links.

(a) Data elements. Data elements are stored in

core in blocks, always containing an even number from 2-l6

of successive core words, and always beginning at an even

core location. The first word of a block is its identifier ;

the remaining words represent successive data items on a

list. The structure of the identifier is as follows

ioi

where

(al) "next" denotes the address of the identifier of

the next block in the list; the NEXT of the last identifier

in a string points back to the head of the string (see below).

(a2) "prev" denotes the address of the identifier of the

previous block in the listj

(a3) T is an octal integer between and 7 representing

the number of words in the block according to the convention

no + 2(T+1);

(a4) The prefix 01 (with Indeterminate sign bit)

indicates that the block v\fhich follows is data (rather

than a head or a link)

.

(b) Head elements. A head element is stored in a

block of two words consisting of an even location and the

next successive odd location. The first word of this

block is the head identifier, and has the form

1

here refns is the n\imber of current references to the list

(see below), while bits S-20 are unaffected by any of the

built in Nu-Speak list macros (see, however, the account

below of special procedures affecting self-referent lists)

and are available for use by the programmer.

A list contains one and only one head .

(c) Link elements. Link elements are pointers to

sublists; since strings are distinguished from more general

lists by having no sublists, we postpone a discussion of

the structure and function of these elements to the next

section. Here, however, we shall note that a link, like

a head, occupies a pair of locations, the first being even;

and that the first word of the pair is the link identifier.

The computer is said to be "looking at" an element of

a list (data item, head, or, for that matter, link) if

1. A copy of the identifier of the block in which

the element lies is in the sense indicator register SI;

ii. The address of the identifier of the head of

the list containing the element is contained in comple -

mented form in the index register X6;

iii. An integer from 1 to I5, and denoting the

position of the data word within its block is contained

in the index register XT;

iv. A copy of the data word concerned (or, in the

case of heads (or links, cf. next section), the odd-

location word following the identifier) is contained in

the MQ register.

- 51 -

With this understanding, we may proceed to explain the

effect of the Nu-Speak list macros of the string-manipula-

tion group

.

The macros NEXT and PREV have the form

NEXT

and

PREV

respectively. If the computer is looking at an element of

a list (whether head, data, or link) these macros cause it

to look at the next and the previous elements respectively.

The macro CUPL has the form

CUPL listname,

where listname is the symbolic name of a certain list.

If the computer is looking at an element on a list when this

macro is encountered, it will couple the list named "list-

name" into the list containing the element being examined;

that is, transform the list being examined by insertion of

all data items and links of the list named "listname," the

insertion beginning immediately after the data item origi-

nally being examined. The inserted items then precede the

item originally following the item at which the computer

was looking. The computer is left looking at the same

element

.

The list "listname" being coupled loses its separate

identity in this process, and its head is erased and returned

- 52 -

to a pile of spare head locations. Thus, for example, if

two lists, named LISTl and LIST2 are contained in core,

if LISTl contains, besides its head, the 3 data

ALPHA, BETA, and GAMMA, and if LIST2 contains, besides

its head, the 3 data HEE, HAW, H00, then, if the

computer encounters the macro

CUPL LIST2

while looking at the datum ALPHA on LISTl, the result

will be that LISTl will come to have the six data

ALPHA, HEE, HAW, H00, BETA, GAMMA, and LIST2 will have

ceased to exist. The computer will be left looking at

ALPHA. On the other hand, the lines

PREV

CUPL LIST2

will produce a LISTl containing the six data HEE, HAW,

H00, ALPHA, BETA, GAMMA; LIST2 will again have ceased

to exist. The computer will be left looking at the head

of LISTl.

The macros INSERT and REM0VE have the form

INSERT variable,

and

REM0VE

where "variable" is the symbolic name of a variable. If

the computer is looking at a data item or link, REM0VE

will cause this item to be properly deleted from the list,

- 53 -

and will leave the computer looking at the next element

of the list. An attempt to delete a head will cause an

error return.

If the computer is looking at a list item, "INSERT

variable" will cause the contents of location named

variable to be Inserted In the list immediately follow-

ing the said item, and will leave the computer looking

at the inserted item.

The macros NAMLIS and 'CLERNM have the form

NAMLIS listname,

and

CLERNM listname

respectively, where "listname" is the symbolic name of

a variable which, in the first case, is to become the

name of a list, and, in the second, is to cease being

the name of a list.

It should be said here that the name of a list is,

in machine terms, a storage location whose address part

contains the address of the identifier word of the head

of the list.

The significance of the last two macros, and

especially of CLERNM, may be further elucidated, as

follows. As Nu-Speak list processing proceeds, a

running account of the number of references to a list

is automatically kept in 21-55 of the second word of

the listhead. (If this number exceeds J>2,j67, trouble

- 54 -

will ensue) . This number of references Is determined as

the total of all the names of the list, (plus all the links

pointing to the listhead, that is the number of times the

list occurs as a sublist, as explained in Section 5

below) . Whenever the number of references to a list

is reduced to zero, the list will automatically be erased .

Care should therefore be taken not to disturb the count

of references to a list inadvertently.

The macro "NAMLIS llstname" increases the reference-

count of the list, an element of which is currently being

looked at, by 1, and delivers the address of its head to

the location "llstname." In this way, "llstname" becomes

a name of the said list.

The macro "CLERNM llstname" reduces the number of

references to the list named "llstname" by 1 . It leaves

the MQ and SI registers, and the index registers of the

central processor unaltered.

The macro JUMPT0 has the form

JimPT0 llstname

where "llstname" is the name of a list; and acts as

follows: if the central processor is looking at an

element on a certain list when it encounters the instruc-

tion JIMPT0 llstname, then the central processor will be

left looking at the head of the list named "llstname".

The two test operations TEHEAD and TEDATA cause

"skips" like the standard PAP "test-type" orders, and have

- 55 -

the following effect: if the central processor is looking

at a list element, then TEDATA will cause the next machine

instruction (WARNING: N0T MACR0 INSTRUCTI0N) to be skipped

if this list element is data; if the list element being

looked at is not data, the control processor will execute

the next instruction. TEHEAD operates similarly, causing

the central processor to skip the next machine instruction

if the central processor is looking at a head, but to

execute the next machine instruction if the central proces-

sor is not looking at a head. These instructions should

be used only when it is known that the central processor

is looking at some element on some list, as they may

otherwise result in unaccountable skips.

The Nu-Speak macro CREATE has the form

CREATE listnarae

where "listname" is the name of a variable. This macro

creates a list with no entries (and hence consisting

exclusively of a head which is its own NEXT and PREV),

and stores the address of the identifier of this head

in the variable "listname," so that the variable becomes

the name of the nullist. The central processor is left

looking at the head of the newly created list. This

macro can be used even at a point in a program where

the central processor is not looking at any list element.

If the central processor is examining an item on a

list, the macro NCPLT0, which has the form

- 56 -

NCPLT0 variable

will break the list immediately after the item being examined

removing from the list all items from this point on and up to

but not including its head (which is both first and last item

on every list). A new list will be formed^ consisting of

the items deleted, and having the name "variable." The

central processor is left looking at the head of the newly

formed list. Thus, e.g., if the central processor encoun-

ters the instruction

NCPLT0 LISTl

while looking at the item ALPHA on a list named LIST2 whose

entries are ALPHA, BETA, GAMMA, LIST2 will be reduced to

the single entry ALPHA, while LISTl will have the entries

BETA, GAMMA. In the same situation, the lines

PRE7

NGPLT0 LISTl

will leave LIST2 as a list without any entries (consisting

only of a head) and LISTl will have the entries ALPHA, BETA,

GAMMA. Again in the same situation, on using the lines,

PREV

PREV

NCPLT0 LISTl

the list LIST2 will retain the entries ALPHA, BETA, and

GAMMA, and LISTl will have no entries.

- 57 -

The macro C0PYT0 has the form

C0PYT0 listname

where "listname" Is a PAP variable, that Is a FAP

location. If the central processor Is not looking at

a llsthead when It encounters this Instruction, an

error message will result, and execution will be

terminated. On the other hand. If "C0PYT0 listname"

Is encountered when the central processor Is looking at

the head of a list, a copy of the list, with all data

Items and links Included will be produced, and the newly

produced list will be named "listname." The central

processor will be left looking at the head of the

original list, with the second word of the original

llsthead in its MQ. (The arrangement of data words

within blocks of core is not necessarily the same in

the copy as in the original list, however.)

The pair of macros ERASER and ERAS0R have the form

ERASER

and

ERAS0R

respectively. Both of these instructions may be used

when the address of a llsthead identifier is contained

in the address portion of the accumulator; either will

then proceed to erase the list in question by attaching

to it the bottom of a special "Junkplle list" of

- 58 -

elements available for re-use. (See Section 5A for a

more detailed account of the Internal procedures

Involved.) ERASER tests the location concerned to

verify that It contains a llsthead and provides an

error return If an error Is detected; ERAS0R omits

this test. ERASER should therefore normally be

preferred

.

The macros RELEAS has the form

RELEAS A,B

the macro will form a headless string of B words

beginning with location A and extending upward

through consecutive core locations. This headless

string will then be attached to the top of the

freespace Junkplle (see below). Thus, B core loca-

tions, beginning with location A, are in effect

"released" for future reassignment by the FREESP

macro. Since a data identifier will be Inserted

in A, A must be an even location. If odd, A will

be Increased by 1 and B will be decreased by 1,

Care must be taken not to RELEAS the same block of

core twice unless that block has completely been

reassigned by FREESP.

59 -

The macro-instruction READY should be the first

Instruction In any Nu-Speak program using any of the

(other) list macros. It Initializes various counters

and pointers In the basic Nu-Speak programs, thus

preparing for the list processing operations which are

to follow. This macro also provides the programmer

with control over the Nu-Speak automatic dump procedures,

which are as follows:

(a) If any one of a number of detectable errors

(e.g., attempting to delete the head of a list, begin-

ning to copy a list at a position other than Its head,

etc.) occurs In a Nu-Speak program, execution will be

terminated, an appropriate error message will be produced,

and a core dump In octal with mnemonics will be given

automatically before EXIT is called.

(b) If the generation of lists or the growth of

the pushdown list exhausts all available freespace,

execution will be terminated, and message to this

effect will be produced, but no dump will be given.

To suppress the dump that would otherwise be

produced In case (a), the READY card should have the

form

READY N0DUMP

To give a dump in case (b), the ready card should

have the form

READY ALDUMP

- 60 -

(WARNING: a dump produced when freespace is exhausted

will normally be 200 PAGES LONG.)

The program (FPT), which provides for automatic

recovery from situations of floating point overflow or

underflow, is automatically called in by an Nu-Speak

program.

The auxiliary list macro TESTBL (test and break

block if necessary) has the form

TESTBL

If this command is received while the processor is

looking at a list element, it will check to see if the

element is a data element embedded in a block of data

elements of length longer than 1. If this is the case,

the computer will proceed to break the block (normally

into three segments) in such a way that the data element

concerned becomes the end of the subblock containing it.

After the block is thus broken, insertions, etc., can be

made in normal fashion. The computer is left by TESTBL

looking at the same list element as previously, (and with

the data word of this element brought back into the MQ)

.

The following precautions are to be observed when

using list processes and the SUBR and related macros

together.

a. All the list processes make use of index

registers XR6 and XR7, as well as the sense indicator

- 61 -

register SI (and naturally the accumulator and MQ) . Thus

a list-processing SUBR will effect these registers. The

Index register XR6 and XR7 will be restored to their

entering condition if the symbols X6 and XT or the letter L

is included among the declared XR's in the normal SUBR

heading. Similarly the sense indicators and MQ register

will be saved if Q or L is specified in this heading.

All of the list operations of the present group will

function properly even when the contents of the MQ (i.e.,

data word;, or second word of a list head) have been

destroyed by processing or testing. Thus

NEXT

and

LDQ =0

NEXT

have precisely the same result, etc.

All the Nu-Speak list-macros which have variable

location addresses as sole arguments obtain these arguments

from the first line of the macro-generated machine code.

Thus, to obtain the effect of

JTJMPT0 llstname

but with a more easily variable "listname," lines like

CLA listname

STA *+l

JUMPT0 **

are permissible.

- 62 -

The arguments, however, may not he tagged, nor may

tags be stored into the macros in a manner similar to

the above.

B5. The Nu-Speak Macros of the Third (Sublist Manipulat -

ing) Group .

Sublists are introduced into Nu-Speak lists by insert-

ing into a main list "links" which point to a sublist. A

link always occupies two successive words in core, the first

in an even location. The first word of a link is its

identifier, and has the following structure

^

links In exactly the same way as a data item of a list.

The macro TELINK operates as follows. If the central

processor is looking at a list element when It encounters

TELINK, It will skip the next machine instruction if the

data item is not a link. The macro TELINK should not be

used if the central processor is not looking at a list

entry, as it may lead to unaccountable skips.

The macro HANG has the form

HANG llstname

where "llstname" is the name of a list. Its effect is

as follows . If the central processor is looking at an

item on a list when It encounters HANG llstname, it will

insert a link immediately after the item at which it is

looking. The second word of this link will contain 21

leading zeros, followed by the address of the identifier

of the list named "llstname;" thus the link will "point"

at the list named "llstname." In this way, the list

named "llstname" becomes a "sublist" of the original

list. The number of references to "llstname" as

enumerated in the head of the list named "llstname,"

is augmented by 1, The central processor is left

looking at the newly Inserted link.

Thus, if we use circles to denote data items, squares

to denote listheads, and rhomboids to denote links, the

structure of a typical system of Nu-Speak lists might be

graphically represented by a structure something like the

- 64 -

following;

It is even possible that a subllst, say LIST2, of a

certain list, say LISTl, should Itself have LISTl as a

subllst, or even that LISTl should be a subllst of

Itself, a situation represented graphically by the

fdllQ--wing dlagpam ;,". ,-.-•;.

- 65

If a list structure is such that its lists may be

arranged in an ordered hierarchy, in such a way that no

list has either itself or any list higher in the hierarchy

as a suhlist, the structure is said to be non-reflexive j

otherwise^ it is said to be reflexive . The proper treat-

ment of reflexive list structures, especially insofar as

erasing and procedures which lead to the erasure of lists

are concerned, is logically complicated and must involve

the use of special subroutines. The programmer anticipat-

ing the development of such list structures should consult

the special section below concerned with reflexive list

structures

.

The inverse operation to HANG is provided by the

macro UNHANG, which has the form

UNHANG

If this instruction is encountered while the central

processor is looking at a list item which is not a link,

an error return will be produced, and execution terminated.

If the instruction is encountered while the central proces-

sor is looking at a link, then

i) the link will be deleted;

ii) the numbev of references to the sublist to which

the deleted link pointed will be diminished by 1;

Hi) if no references to the aforesaid sublist remain,

the sublist will AUTOMATICALLY BE ERASEDj

iv) the central processor will be left looking at

the next item on the list which had previously

contained the said link^.

Access from lists to subllsts is provided by the macro

SUBLIS, which has the form

SUBLIS

If this instruction is encountered while the central

processor is looking at a list item which is not a link,

an error message will be produced, and execution terminated.

If the macro-instruction is encountered while the central

processor is looking at a link, the instruction SUBLIS will

leave the central processor looking at the head of the

sublist to which the link points,

b6. Principles of Operation of the Automatic Erasing

Mechanisms .

When a list is erased it is placed at the bottom of

a list of released space ("junkpile list").

Whenever one of the Nu-Speak list macros (e.g.

INSERT, C0PYT0) requires a pair of free spaces for the

formation of a new list element, an element is supplied,

either from the topmost list on the Junkpile, or from

hitherto unused regions of core. Conversely, whenever

space is released (e.g, by ERASER, RELEAS or REM0VE)

it is automatically added to the junkpile. Heads are

treated similarly, but have their own junkpile, cf

.

below, however.

As the progressive release of freespace proceeds,

links pointing to sublists may be encountered in erased

lists. In each such case, the number of references to

- 67 -

the indicated sublist is reduced by 1. If the number of

references thereby falls to zero, the sublist is itself

erased, and placed on the bottom of the junkpile list.

When the freespace mechanism encounters the head of a

list on the ordinary junkpile, it transfers it to the

head junkpile.

The macro DSTR0y has the form

'DSTR0Y

Its effect is as follows. If the address portion of the

accumulator contains the address of a listhead identifier,

the prefix of the identifier will be changed from the

normal [^ 1 1
|

to the special |^ 1
| , and the

list erased by attaching it to the bottom of the junk"

pile in the ordinary way. The marking of a list in this

way has the consequence that when the mechanism for

progressive release of freespace subsequently reaches a

link in the marked list, pointing to one of its sublists,

this sublist will automatically be erased , irrespective

of the number of references to it. However, it also will

inherit the prefixed "mark of Cain" j;^ 1
| , so that

sub=subllsts, etc., will be treated in the same way.

Thus, by using DSTR0Y, an entire list structure can be

erased with a single command.

Note however that, as the above description of the

operation of the underlying Nu-Speak mechanisms should

make plain, it is always fatal to erase a sublist of a

list before the main list Is erased. Indeed, In this

case, an irrelevant link Is left in the main list, and

if, e.g., the main list is subsequently erased, the

consequence will be that when this link is reached by

the freespace providing mechanism, a change, quite

unanticipated by the programmer, will be made at the

location to which this link points, and at various

related locations. One such error can easily

suffice to disrupt everything.

Thus the macro DSTR0Y should be used cautiously,

and only to erase the lists of a list structure which

is known to have the property that each of its sub=

lists, sub-sublists, etc., hangs from only one link,

so that each of these sublists, sub-sublists, etc.,

which has a number of references larger than 1 has

this number only because it has been given one or more

names

.

In such situations "DSTR0Y" can be useful, in that

it can spare the programmer the necessity of repeatedly

using "CLERNM" in order to erase the whole structure

with a single command.

A special routine, REGLAR (regularize lists) will

be made available at a date in the near future. This

routine will process and rearrange the core storage of

all the data stored on any Nu-Speak list, compressing

as much of it as possible into I5 word data blocks, etc.,

- 69 -

and in this way attempting to make more efficient use

of available core storage. The desire to permit such

a process accounts for a number of important pecularltles

of the Nu-Speak freespace-provlding mechanisms.

In the regularization process described above, heads

(to which program locations may refer) must remain unmoved.

For this reason Nu-Speak makes an effort to keep all list-

heads confined to as limited a region as is feasible; more

precisely, to a belt in core extending from the top of the

program area to the bottom of the area used for list

elements other than heads . The following diagram, showing

the utilization of core storage by Nu-Speak, will make

this point clearer.

r
e
s
e
r
V
e
d

program
and

array
area

head
area

data
elements
and link

area

program head
boundary bdry

still
unused
core

list-
space
bdry

pushdown
list

c
o
m
m
o
n

e

a
s
a
b
1
e

push-
down
bdry

common 32,767
bdry

When a Nu-Speak macro requires a pair of locations to

form a llsthead (e.g. C0PYT0, CREATE); the required

locations are supplied from the head junkplle, if any

such heads are available. '- If no such heads are

available, the list item stored in the lowest pair of

core positions above the head area is moved to another

- 70

location, this position used for the newly formed head, and

the head area boundary advanced upward a corresponding

number of locations.

Prom the programmer's point of view, this means

that the actual storage location of a list item is quite

indeterminate, and that list items (other than heads),

once found and left cannot be found again by returning

to a given core position. (There is, moreover, another

process which will shift the location in core of a given

data item: the automatic breaking of a block of data in

a list when an additional item of data is INSERT-d in its

middle, or REM0VED from its middle, etc.).

It follows from the above that any list operation

but NEXT, PREV, TEDATA and the other tests, JUMPT0,

NAMLIS, and CLERNM, may change the actual core location

of a word of data. To be able to return to a word of

data, even when the central processor Jumps out of the

list containing the word, the following procedures may

be used.

a. Keep a count of the location of the word

relative to its listhead, and return to it by the

sequence

JUMPT0 listhead

BEGIN D0BEG END,1,=1,N

NEXT

END D0END BEG,1

- 71

where N is the position number of the desired item in

its list.

b. If the list is long, the above procedure may

be unduly time-consuming. In this case, the following

procedure may be used. Before leaving the list item

in question, execute

NCPLT0 auxiliary name

then return by

JIMPT0 listhead

PREV

CUPL auxiliary name

c. The two procedures described above may be used

without any special preparation within recursive systems

of SUBR's. In situations in which recursion is not used,

the following faster procedure may be used. Before

leaving the data item to which a subsequent return is

to be made, execute the following lines of machine code,

or some similar lines:

SAVEXRl

BREAK BL0CK 0P DATA IF NECS

SAVE XR7

GET IDENTIFIER WD

SUPPLY ADR. 0P NEXT WD

XR1=-(ADR 0F CURRENT WD)

NEXT 0P CURRENT WD BEC0MES

* NEXT 0P AUXIL

- 72 -

SXA

SCD

CLA

GET MACR0

FREEHD has moved the "next" or "previous" element of this

list element, or a word originally in the same block as

this list element, etc.

ii. The process of rearranging list elements in core

which may be consequent on using FREEHD ass"ujnes that all

lists have their normal structure. Thus FREEHD should

never be used unless all "next pointers" and "previous

pointers" of all lists are appropriately set. (The

Nu-Speak list operations will never disturb this condition,

but, unless the programmer takes care, his own intermediate

steps of additional PAP list processes might.)

In view of the touchiness of FREEHD, the programmer

will normally prefer to use CREATE in order to obtain a

new listhead.

The following remarks summarize the effect of the

Nu-Speak list operations on the number of references to

the lists they concern NEXT, PREV, CUPL, INSERT, REM0VE,

JUMPT0, SUBLIS, and the various tests (TEHEAD, etc.) have

no effect. NCPLT0 does not affect the reference number

of the list which it breaks up; the computer is left

looking at the head of the newly broken off second part

of the list, which hence has a reference niimber of 1.

CREATE does not affect the number of references to any

list, but leaves the computer looking at the head of the

newly created list, which therefore has a reference

number of i; NAMLIS increases the number of references

- 76 -

to the newly named list by 1; CLERNM does the opposite.

HANG increases the member of references to the subllst

being hung by Ij and UNHANG decreases this same reference

number by 1.

b8. Miscellaneous macros .

In a Nu-Speak assembly, the control PRNTMC replaces

the FAP control PMC (print macro-generated cards). Use

of PMC will fall in erratic ways.

The control card HEADER may be used to provide a

heading character; these characters will lae provided in

sequence from the list Z, X, Y, ..., k, 9> ••'> 1; other

characters chosen from this list will head'the variables

occurring in SUBRS . The heading of a section of code

can be terminated by the normal PAP card HEAD 0.

B9. Forbidden macro-words and entry symbols .

The following symbols are used as intermediate

macro-names in Nu-Speak, and should never be used as

macro-names by a programmer using Nu-Speak who has not

pondered long over the profound changes in the system

thereby introduced.

P0N,.., P0P..., Q0N..., PSW..., H0D..., HED...,

HEADER, HAD..., BGS o .
. , STR . .

.
, RST..., SBl . . . , SB2...,

IRS..., MICR0, RPR..., 0PA..., IP0 . .
.

, TIMESA, 0VERA,

ST0..., CLA. . . , MUGR0 .

- 11 -

The following wierd symbols are used as control

symbols or as entries to various Nu-Speak programs, and

should not be used by the Nu-Speak user unless he knows

what he is doing.

..0.. ., . .1. .., . .2. . ., . .3-. •, . .5..., ..6. . .,

..1..., ..9. .., . .A..., ..B. . ., . .C. .., . .D...,

..E..., ..F..., ..G..., ..H..., ..J..., ..K..., ..N...,

..0..., ..Z...,)....(,).[{.{,).(..(,).)(.(, ..IN...,

..NN..., ..0T..., ..0G..., ..0W...,)()(.),)))))),

..HT.. ,

EXHAUS, C0NL0C, (ERRl) through (ER12) and (ER20),

..BN.., ..BB.., ..B0.., ..BC.., . .LNK2, (.LG.), (.LB.),

.R.PLT, .LET..., .L2.., ..LO.., .R

HDCNTR, CARDSW, BUGZZQ, XI , X2 , X3 ,

X5 , X6 , X7 , SI , MQ , 1 , 2 ,

XXSIXX, XXX 4XX, XXMQXX, REPTSW, C0UNTR, C0UNTO, MULTSW,

..GG.., ..GH.., ..GI..

BIO . Special Procedures for Dealing with Self-Reflexive

List Structures .

The S-bit and first 20 bits of the second word of a

listhead as formed by the Nu-Speak list-creating opera-

tions CREATE, NCPLT0, C0PYT0 will always be blank; and

the remaining Nu-Speak list processes will not affect these

bits. (A similar remark can be made concerning links.)

If the programmer takes the precaution never to tamper

- 78 -

with the S-blt of these listhead words, the following

procedures may be used to deal with reflexive list

structures

.

I. A recursive routine MARKER, called by the

sequence

CALL MARKER, listname

where "llstname" Is the name of a list In a self-reflexive

structure, Is available. This Instruction will cause the

1-blt of the second word of the list head "llstname",

every one of Its subllsts, every subllst of a subllst,

etc ., to be set to 1.

II. Recursive procedures may then be applied to

the lists of a self-reflexive structure and their subllsts

provided that

a. A subllst Is marked as "entered" by setting the

1-blt of the second word of Its head equal to zero as

soon as It is reached by the recursive procedure.

b. The recursive procedure avoids entering a list

whose head shows that it has already been entered.

ill. In view of the catastrophe which will always

ensue on erasing a subllst of a list either before

unhanging the subllst or before erasing the main list,

special care must be taken in the erasure of self-

reflexive list structures or subllsts thereof. These

Include:

- 79 -

a. To erase the whole structure, use a recursive

procedure as above to UNHANG every sublist of every list,

creating at the same time a (non-redundant) auxiliary

list of the locations of all the llstheads of the structure

b. To erase one list of a structure, use a recursive

procedure as above to UNHANG it from every list of the

structure. Then erase the list in question.

Bll. The Form of a Nu-Speak Deck .

In an attempt to save as much core space as possible

from unessential uses, Nu-Speak utilizes chaining.

Nu-Speak Jobs are chained as follows:

a. A first link, created by the chain control routine

* CHAIN (101,5)

This link contains the main program section. A second

link contains the error and freespace-exhausted messages

and procedures, and is created by a chain control card

* CHAIN (102,3)

* FAP

TRA $..LNK2

END

These conventions cause the Nu-Speak deck to have

the following form

80

1 User's *ID card, either with or without an *XEQ

execution order card

2 Nu-Speak control deck, always provided already-

containing all necessary ^FAP and chain-creating

control cards, and containing binary cards for

first (preliminary) link programs. This deck

will cause a single Instruction, TSX $..W...,4

to assemble (which executes a preliminary

initialization before returning to the user's

program)

.

3 User's symbolic program, terminated by an END card

h User's binary decks

5 Nu-Speak binary decks, either

I. minimum package,

II. string manipulation package,

- 81 -

ill. total package^ or

iv. any of the above, plus the "debug" binary package

6 Data cards. If any, preceded by the control *DATA

,
By installing some of the Nu-Speak programs on the

library tape, and by installing the macros on an auxiliary

update tape, various of these deck sections can be

abbreviated or eliminated.

To provide a subtitle for his output, the user

can either

a) put a *FAP immediately after his first *ID

and *XEQ cards, followed by the title of his program, or

b) use an appropriate TTL card early in the

symbolic deck.

CI. The Auxiliary Routines WRTLIS and INLSTR .

a) Output of List Structures .

For writing out lists or list structures, three

routines are provided.

WRTSTR -- a routine for writing out any list structure

WRINGS -- a routine for writing out a non-reflexive

list structure

WRTLIS — a routine for writing out the elements of

a single list.

82 -

These three list output routines write out a list

or an entire structure, ten list elements per line, in

both alphabetic and octal formats. (A list element is

a head, link, or data element.) In addition, the word

HEAD or LINK is written out next to a list element

which is a head or link.

The routine MRTLIS writes out only the elements

of a single list; it does not descend to sublists.

It is called by a statement of the form

CALL WRTLIS, LIST

where list is a listname.

Both WRINGS and WRTSTR recursively write out the

entire structure of a list. WRTSTR calls MARKER and

can write out any list structure, even one which is

reflexive. WRINGS does not call MARKER and can

successfully write out only a non-reflexive list

structure. These routines are called by statements

of the form

CALL WRTSTR, LIST

and

CALL WRINGS, LIST

These routines perform the recursive output of

list structures as follows:

1) The argument of the routine becomes the "present"

list, which is written out in its entirety. (The

location of the listhead is written out prior to

- 85 -

the list itself.) The present list is marked

as having been processed.

2) The first previously unprocessed subllst of the

"present" list Is searched for. If such a list

exists. It becomes the argument of the recursive

routine (step 1) . Otherwise, the substructure

of the "present" list has been completely written

out; exit Is made from this level of the recursive

routine

.

b) Input of List Structures

The subroutine INLSTR Is provided for the Input of

data into list form. The statement

CALL INLSTR, NAME

will cause the data which is next on line to be read from

the monitor input tape to be read into core as a list with

name NAME. The data to be read in by INLSTR should be in

a regular monitor data deck which is headed by a -^DATA

card. The data to be put into list form should have the

format described below.

Data Format

A list is begun on and continued on cards with a "1"

in column 1, a series of 5 symbol redefinitions (described

below) in columns 2 through 6, and the actual list elements

and list control characters beginning in column 7 and not

running beyond columan 72. A list is ended by a blank card.

- 84 -

List Control Characters

The following characters have special control

functions which communicate to INLSTR the form In which

the list Is to be stored In core. These characters

cannot he used as letters of the actual list elements

unless redefined In the symbol redefinitions field of

the card throughout which the redefinitions are to

hold.

These are the control characters:

, The comma Is used to separate list elements.

A, BC, BETA, . ..

(The left parenthesis Is used to begin a subllst.

Thus, the data

A, BC, BETA (SUB, LIST

will cause a subllst beginning with the words

"SUB" and "LIST" to be hung on the list of which

"A", "BC", and "BETA" are elements. The left

parenthesis must be the symbol In column seven

of the first card of a list .

) The right parenthesis Is used to end a subllst.

Thus, the data

A, B, (C, D), E

will cause the data word E to be an element of

the same list as "A" and "B" . The main list

must be ended by a right parenthesis.

h -

$ The dollar sign Is used to signify the end of a card.

Thus, the data

A, B$

will cause INLSTR to begin processing the next

data card In the deck after processing "A" and "B"

.

/ The slash Is used to Indicate that the word

following Is to be recognized as a decimal nxAmber

and Is to be converted Into a 36 bit binary fixed

or floating point core word. A minus sign preced-

ing the number will cause It to be stored In core

with the S-blt on (negative number) . The absence

of a minus sign designates the number as positive.

The plus sign should never be used. The appear-

ance of a decimal point In the number will cause

It to be converted to a floating point core word.

The absence of a decimal point designates the

nuunber as an Integer. The magnitude of an Integer

must not exceed 2.^-^- \, and floating point quantities

should have no more than 8 significant digits.

The appearance of an directly after the slash

causes the word following to be taken as an octal

integer. An octal integer may have from to 12

octal digits.

- 86 -

A list may be continued from one card to another

by simply ending the first card In the pair with a dollar

sign and continuing where the list was cut off In

column 7 of the next card. Columns 1-6 of the second

card must contain the normal control Information (see

below) . Single words cannot be continued from one card

to another

.

Redefinitions of Control Characters

Since It Is sometimes necessary to treat the above

special characters as actual letters, to be read Into

core as part of data words rather than as symbols which

only perform a control function and which are not read

Into core, an optional redefinition feature is provided.

To redefine a control character, place a valid BCD

character in the appropriate column of the redefinition

field of the card throughout which the redefinition is

to hold. The inserted character will be taken to have

the function of the control character it redefines. The

old control character is then free for use as an actual

letter. Redefinitions hold only over the card on which

they appear . A blank in a redefinition column causes

the corresponding control character to remain as shown

on previous pages (control characters). The original

cbntrol characters are reinstated at the beginning of

the processing of each new card.

- 87 -

The redefinition columns are as follows;

Column 2 redefines (

II

LSTNAM

(Note: This convention Is violated by certain

of the letter macros, see below.)

4) XR7 contains the number of the word containing

the letter in its block.

5) XR5 contains the number of the letter in its word

counting from left to right as the word appears

in storage.

In each program using letter processing, the code

AXT 0, 5

should be executed before the first of the letter macros

is reached .

The BCD blank, octal 6o , is treated as a normal

character by the letter macros. The special Nu-Speak

functional blank, octal JJ , should be used when the

absence of a normal BCD character is required.

The macros NEXT LETTER and PREVIOUS LETTER have

the form:

NEXTL

and

PREVL

These macros cause the computer to look at the next and

previous "non-functional blank" character in the word

respectively. Nu-Speak functional blanks are skipped

but will affect the count in XR5. Execution of a NEXTL

while the computer is looking at the end of a word,

(XR5 = 6), will cause the CPU to look at the first

- 90 -

non-functional blank character In the next word of the

list. Should the next word in the list be non-data (i.e.

head or link)^ the CPU will look at it in the normal

Nu-Speak fashion^ and XR5 will be set to 0. The analogous

feature is included in PREVL. (Note: If PREVL should run

into a non-data word, XR5 will be set to 7,) Execution

of a NEXTL or PREVL while the computer is looking at a

non-data word will cause the CPU to look at the first

non-functional blank character in the NEXT and PREVIOUS

words respectively. The new letter found by either

NEXTL or PREVL will always be placed in positions 29-35

of the AC.

Please note the following examples of the use of

NEXTL and PREVL:

Note: ¥£' is taken to follow WD , in its list,
n n-1

XR5 should initially be set to by the programmer,

WD-,_ = head of LIST,

WDg = A(T7)(77)(77)P(77)

TO^ - (77)X(77)(77)(77)(77)

WLi^ = (77)(77)(77)(77)(77)T

WD^ = link pointing to subllst 1

WD/- = link pointing to subllst 2

MACRO MQ XR3

JUMPT0 LIST WD^

NEXTL (77)(77)(77)P(77)A 1

NEXTL (77)A(77)(77)(77)P 5

NEXTL (77)(77)(77)(77)(77)X 2

- 91 -

MACRO (Cont'd.) MQ XR5

NEXTL (T7)(77)(77)(77)(77)T 6

NEXTL WD^

NEXTL WDg

PREVL \m^ 7
5

PREVL (77)(77)(77)(77)(77)T 6

Note that if the contents of the MQ are changed, for example

at step (4), the results at step (5) would not be altered.

All letter macros refer to the contents of XR5 and of core

for data on which to base their operations — not to 'the MQ.

The macro REPLACE LETTER has the form:

REPLET A

The macro will replace the letter being looked at with

the letter in positions 29-35 of location A. The change

will appear in the AC, the MQ, and in storage. The CPU

will be left looking at the new letter.

To delete a letter, two procedures may be used:

1) The code REPLET = 077 will replace the letter being

looked at by (77). Thus, in effect, the letter is

deleted since the macros NEXTL and PREVL skip functional

blanks. The CPU will be left looking at the functional

blank. The AC will be set to 77-

2) The macro DELETE may be used. DELETE will replace the

letter being looked at by a functional blank and will

cause the CPU to look at the next letter in the list (i.e

DELETE automatically calls NEXTL) . Should the CPU be

looking at a non-data word upon executing a DELTL, the

- 92 -

entire data word will be deleted (i.e. as with REMQVE) .

The CPU will then be left looking at the next word in

the list but not at any particular letter in the word.

XR5 will be set to zero.

The macro TEST AND BREAK ¥^RD has the form

TESTL

The macro will check to see whether the letter being looked

at by the CPU is the last letter in its word (i.e. if XRf = 6)

If it is, the macro will perform no additional function. If

it is not, the macro will split the word containing the

letter being looked at into two words in a manner illustrated

by the following example:

before TESTL, XR5 = 4, MQ = ?^HMATZ, and WD. = MATZAH

after TESTL, XR5 = 4, MQ = (77) (77)MATZ, WD^= MATZ(77) (77)

,

and ^i]+l
" (77)(77)(77)(77)0H

WD,. -,
will be inserted, in normal Nu-Speak fashion, after

WD in the list. The CPU will be left looking at the same

letter as it had before the execution of the TESTL.

The macro INSERT LETTER has the form

INSERL L?fC

The macro will cause the letter, or letters, found in

location L0'C to be inserted directly after the letter being

looked at. If the number of letters to be Inserted is less

than 6, the surplus digits in L^'C must contain functional

blanks. The Insert -will be made in the following manner:

1) A TESTL will be executed

2) An INSERT L^C will be executed

Please note the following example:
- 95 -

Before INSERL - XR5 =4 MQ = ^HMATZ WD = MATZ0H

L^C = (77)(77)XYQ(77)

After INSERL - XR5 =3 MQ = YQ(77) (77) (77)X

WDj^ = MATZ(77)(77)

^N+1 = (77)(77)XYQ(77)

^N+2 " (77)(77)(77)(77)?^H

Note that letters X, Y, and Q, are In effect inserted

between Z and 0. This is due to the fact NEXTL and

PREVL skip functional blanks.

The CPU will be left looking at the first

non- functional blank letter in L^C

.

The macro IP LETTER has the form

IPLET A, B, C

If the letter contained in positions 29-35 of

location A is identical with the letter being looked at

by the CPU, control will be transferred to location B.

If not, control will be transferred to location C.

The macro C0UPLE LETTER has the form

CUPLL A

The macro will form a TESTL word break directly after

the letter being looked at and will then execute a

Nu-Speak

CUPL A

XR5 will be set to 0. Thus, in effect, the letters of

the list named A are inserted directly after the letter

at which the CPU was looking, and directly before the

letter which preceded it.

- 9^ -

The macro UNC0UPLE LETTER has the form

NCPLTL A

The macro will form a TESTL word break directly

after the letter being looked at by the CPU and

will then execute a Nu-Speak

NCPLT0 A

XR5 will be set to 0. Thus, in effect, all the

letters in the list which had followed the letter

under examination are UNCOUPLED from the list.

03 • An Example of Nu-Speak Applications Programming :

P0LPAC .

The P0LPAC package is coded in Nu-Speak and is

designed for substituting , partially differentiating,

and algebraically manipulating symbolic polynomials.

A P0LPAC polynomial is a Nu-Speak list structure

of the following form:

The polynomial is a list which consists entirely

of links. The sublist to which each link points is a

term of the polynomial. The first element of each term

is a floating point number and is the coefficient of

the term. Succeeding elem.ents of the term are variables

raised to powers, each in the format

VARIABLE-

That is, the variable name occupies positions S, 1-20,

and the exponent Is a right-adjusted address integer.

The coefficient is always the first data element

of a term. Within a given term, the variables are

arranged according to Increasing numeric order, with

the S-blt treated in the sense of the "logical" machine

Instructions

.

Example :

2 2
The polynomial 1.5 + 3-5 x y would be

generated as follows:

CREATE TERMl

INSERT 1 .

5

CREATE TERM2

INSERT 5 .

5

INSERT X2

INSERT Y3

CREATE P0LY

HANG TERMl

HANG TERM2

TERMl

At this point we will define a checklist , which is

used to truncate the high-order terms of a polynomial.

A checklist has the same form as a term of a polynomial

except for the absence of a coefficient in the checklist.

A term is said to exceed a checklist if and only if any

one of the variables in the checklist appears in the

term raised to a power higher than its exponent in the

checklist

.

The P0LPAC routines are as follows:

Subroutine C0MPAR - compares a given term to a checklist

Calling sequence: CALL C0MPAR,TERM,CKLIS,YESN0

TERM is the name of a term of a polynomial

CKLIS is the name of a checklist

YESN0 is a core location.

Upon return from C0MPAR, YESN0 is zero if and only

if TERM does not exceed CKLIS. Note: The variables

of CKLIS must be alphabetically ordered.

Subroutine 0RDERR - orders variables within a term.

Calling sequence: CALL 0RDERR,TERM1,TERM2

TERM1,TERM2 are both names of terms.

0RDERR alphabetically orders the input term TERMl,

which is erased. Upon return from 0RDERR, TERM2

is the alphabetization of TERMl

.

- 97 -

Subroutine ISSAME - tests for identity of two terms.

Calling sequence: CALL ISSAME, TERM1;TERM2, YESN0

TERMl, TERM2 are names of terms

YESN0 is a core location

Upon return from ISSAME, YESN0 is non-zero if and

only if TERMl and TERM2 are identical, except for

coefficients. Thus the terms I.5 and 2.7 are

2 ^ 2 ^identical, as are I.5 x y-^ and 3.7 x y^ , but

2.5 X y z and 2.5 x y are not.

Subroutine VARP0W - arranges the terms of a polynomial

according to the exponent of a

given variable.

Calling sequence: CALL VARP0W,P0LYN,VAR, ERASE, P0LY0

P0LYN, P0LY0 are polynomial names

VAR, ERASE are core storage locations

VARP0W rearranges the terms of P0LYN into

a new pDlynomial,- P0LY0, by ascending order

of the exponent of the variable name in

S, 1-20 of the word VAR. This change is

effected by reordering the links of the

list P0LYN into the new list P0LY0 . The

decrement of the second word of each link

of P0LY0 contains the exponent of VAR in

the term to which the link points. The

variable VAR will be deleted from the term

of P0LYN if and only if ERASE is zero. With

- 58 -

the exception of the possible deletion

of the variable VAR, the terms of P0LYN

will not be changed and are hung from P0LY0.

The list P0LYN (that Is, only the sequence

of links) will be erased by VARP0M.

Subroutine C0LECT - collects terms of a polynomial.

Calling sequence: CALL C0LECT,P0LY

P0LY is the name of a polynomial

C0LECT condenses the polynomial P0LY by adding

together the coefficients of matching terms.

(Two terms, TERMl and TERM2, are said to

match if

CALL ISSAME, TERMl, TERM2,YESN0

returns a zero to YESN0c) Any terms which

match and follow a given term of P0LY are

unhung from P0LY and erased.

Subroutine P0LYMP - multiplies two polynomials while

truncating according to a checklist.

Calling sequence: CALL P0LYMP,P0LYA,P0LYB,CKLIS,P0LYC

P0LYA,P0LYB,P0LYC are polynomial names

CKLIS is the name of a checklist

P0LYC contains the product of P0LYA and P0LYB.

Only those terms of the product which do

not exceed CKLIS appear in P0LYC . Those

terms which do appear are alphabetically

ordered. P0LYA and P0LYB are unchanged.

Subroutine PRTIAL - partially differentiates a polynomial

with respect to a given variable.

Calling sequence: CALL PRTIAL, P0LYA,VAR,P0L'YB

P0LYA, P0LYB are polynomial names

VAR Is a core storage location

PRTIAL differentiates P0LYA with respect to the

variable name in positions S, 1-20 of VAR.

P0LYB is the partial derivative; P0LYA is

left untouched.

Subroutine SUBSTI - substitutes a polynomial for a given

variable of another polynomial while

truncating according to a checklist.

Calling sequence: CALL SUBSTI,P0LYN,P0LYS,VAR, CKLIS,
P0LY0

P0LYN, P0LYS, P0LY0 are polynomial names

CKLIS is the name of a checklist

VAR is a core storage location

SUBSTI substitutes the polynomial P0LYS for each

appearance in P0LYN of the variable whose

name appears in positions S, 1-20 of

location VAR. The expanded polynomial is

named P0LY0. P0LYN is destroyed. P0LYS

is left unchanged. Only those terms which

do not exceed the checklist will appear in

P0LY0

.

- KK) -

Subroutine P0LYRC - Tinds the reciprocal of a polynomial

to a given degree, while concurrently

truncating according to a checklist.

Calling sequence: CALL P0LYRC,P0LYN,DEG,CKLIS,P0LY0

P0LYN, P0LY0 are polynomial names.

CKLIS Is the name of a checklist

DEG is an address Integer

P0LYRC finds the reciprocal of a polynomial

P0LYN according to the following algorithm:

Let

P0LYN = c(l + P0LYI)

Then

P0LY0 = p^j^ = ^ ^1 - P^LYI + P0LYI^. . .)

c is the unique non-zero constant term

of P0LYN.

The address Integer DEG specifies the number

of terms which are to be computed in the

above expansion. Only those terms of the

expansion which do not exceed the checklist

will appear in P0LY0. P0LYN is left unchanged

Subroutine P0L(})UT - polynomial output routine.

Calling sequence: CALL P0L0UT,P0LY

P0LY will be written out in easily understandable

format.

- 101 -

INDEX

A

ERASYR 28

Error messages 80

FINI 24

Fixed point mode in Fortran Nu-Speak I7

PL0AT

FL0ATA

FREEHD

FREES

P

G GET

GETTER

H HANG

HEADER

I IFLET

INLSTR

INSERL

INSERT

INTARS

J JUMPT0

L List

25, 41

25, 41

27, 75

27, 75

75

5, 19

5, 13, 64

28, 35, 77

94

84-89

93

5, 8, 26, 53

24, 32

5, 9, 26, 55

Automatic erasure of I7, I8, 55, 67

Elements, of

automatic shifting around core of 71,75-6

data 9, 49

head 4, 50

formation of 70

junkpile 70

link 4, 51, 63

- 103 -

List (Cont'd.)

link (Cont'd.)

procedures for keeping
track of shifting of 71-75

Erasiire of entire structure of 18,28,68-9

cautions involved in 1^,15,68-9

Identifier 49

Input-Output of 82-89

Identifier 49

Reference number of 50,51,55,64

Reflexive 14,15,65

special procedures involved
in dealing with 78-8O

Structure of 4,14,65,66

Sublist 5, 63

M MARKER 79

N NAMLIS 5, 15, 26, 28, 5^-55

NCPLTL 95

NCPLT0 5, 10, 26, 56

NEXT 5, 7, 26, 52

NEXTL 90-92

N0DUMP 60

N0W¥ 5, 16

Nu-Speak System package options 29

p PMC failure of 77

substitute for 28, 77

P0LPAC C0LLECT 99

- 104

P0LPAC

Recursive Subroutine 20y31-9

as an argument of a subroutine ^^-^

automatic heading of variables in 35-6

calling

by external programs 38

