
T H E S E T L P R O G R A M M I N G L A N G U A G E

Robert B. K. Dewar

© 1979 All rights reserved

TABLE OF CONTENTS

1.1 An Introductory Example .. 2
1.2 Assignment Statements & Expressions ... 3
1.3 Errors & Omega ... 7
1.4 Tuples ... 7
1.5 Sets ... 11
1.6 Maps ... 13
1.7 Conditional Statements .. 15

1.7.1 If Statements .. 15
1.7.2 Boolean Values & Operators .. 16
1.7.3 Case Statement ... 18

1.8 Loops .. 19
1.8.1 Set & Tuple Formers .. 22
1.8.2 Quantified Tests ... 23
1.8.3 Compound Operators ... 24

1.9 Input/Output ... 24
1.10 Labels and the Goto Statements ... 28
1.11 Stop Statement ... 28
1.12 Pass Statement ... 28
1.13 Program Form .. 29

1.13.1 Declarations ... 29
1.13.2 Main Program Block .. 29
1.13.3 Procedure Definitions ... 31
1.13.4 Operator Definitions ... 33

2.1 A Curriculum Planning Problem ... 35
3.1 Character Set .. 43
3.2 Syntactical Tokens ... 45
3.3 Datatypes .. 47
3.4 Denotations .. 48

3.4.1 Integer Denotations .. 48

Table of Contents The SETL Programming Language

Table of Contents The SETL Programming Language

3.4.2 Real Denotations .. 48
3.4.3 String Denotations ... 49
3.4.4 Boolean Denotations .. 49
3.4.5 Other Denotations .. 50

4.1 Basic Operands and Special System Values .. 51
4.2 Operators .. 56

4.2.1 Unary Operators ... 56
4.2.2 Binary Operators .. 60
4.2.3 Compound Operators ... 64

4.3 Assignment Statements .. 65
4.3.1 Assigning Operatoss .. 69
4.3.2 Quantified Tests ... 71
4.3.3 Operator Precedence Rules .. 72
4.3.4 Side Effects .. 74

5.1 Conditional Statements & Expressions .. 75
5.1.1 If Statement .. 75
5.1.2 If Expression .. 78
5.1.3 Case Statement ... 78
5.1.4 Case Expression ... 81

5.2 Loop Statement .. 82
5.2.1 Quit & Continue Statements .. 84
5.2.2 Iterator Forms ... 84
5.2.3 Set & Tuple Formers .. 86

5.3 Goto Statement ... 87
5.4 Stop Statement ... 88
5.5 Pass Statement ... 88
5.6 Assert Statement .. 88
7.1 Type Test Operators ... 91
7.2 Operator Definitions ... 92
8.1 Syntax Rules .. 109
8.2 Token Types ... 116

INTRODUCTION

SETL (for SET Language) is a high level general purpose language which allows a large
variety of programming problems to be solved in an efficient manner with a minimum
amount of effort.
This book describes the entire SETL language. The reader is assumed to be familiar with
some programming language and to have a basic knowledge of the principles of algorithmic
programming, but no advanced knowledge of programming languages is assumed. A mathe-
matical background at the college algebra level is sufficient. In particular, no prior knowl-
edge of set theory is required, although the constructions of SETL do frequently resemble
those notations commonly used by mathematicians using set theory.
Chapter I introduces the main features of the language in sufficient detail that many pro-
grams can be written. Remaining chapters discuss various aspects of the language in detail.
Although the description in this book is complete, it is not a precise formal definition. How-
ev er, there is an appendix which contains a formal description of the permitted syntax.

CHAPTER 1

ELEMENTS OF THE SETL LANGUAGE

This chapter gives an informal survey of most of the features of the SETL language. The
features described in this chapter are all included to the "SETL-S" subset of SETL. Thus it can be
assumed that the features described in this chapter are available in all SETL implementations.

1.1. An Introductory Example
The following is a small example of a complete SETL program. It is presented to give some

perspective to the presentation which follows. It is not necessary to understand all the details of
this program at this stage.

program primes;

$ This program prints out a list of prime numbers which includes all primes
$ less than a parameter value which is specified as input data.

read(n); $ read input parameter
primes := { }; $ set of primes output so far
p := 2; $ initial value to test

$ Loop to test successive values

loop while p < n do $ loop as long as p less than n
if notexists t in primes | p mod t = 0 then

print(p); $ no divisors, it’s a prime
primes with:= p; $ add it to set of primes

end if;
p := p + 1; $ move to next test value
end loop;

end program primes;

This is not a particularly efficient program, and it is not even the easiest way of approaching the
problem in SETL, but it deliberately only uses a small set of simple features. The $ acts as a com-
ment delimiter, the compiler ignores all text on a line which follows a dollar sign.

Chapter 1 The SETL Programming Language Page 2

Chapter 1 The SETL Programming Language Page 3

Now that we have seen one small program, we can study the features of the language in
more detail.

1.2. Assignment Statements & Expressions
As in most programming languages, a fundamental notion in SETL is that of assignment.

The form of an assignment statement in SETL is:

identifier := expression;

Statements are free form and may be entered anywhere on a line, or split over line boundaries
(except that a single token, such as an identifier, cannot be split over a line boundary). As indicated
in the above example, every statement is terminated by a semicolon. Blanks may be used freely to
separate tokens, and at least one blank or a line return must separate tokens in the case where one
token ends with an alphanumeric (letter or digit), and the next one begins with an alphanumeric.

In the assignment statement, the identifier name is of arbitrary length, starting with a letter,
and contains letters, digits or a special break character (usually an underline character). Unlike
some other languages, a given identifier is not associated with a particular datatype. Instead, the
type of the value in a variable associated with the identifier is determined by the last value
assigned:

abc := 4; $ abc now contains an integer
abc := 4.5; $ abc now contains a real

The above lines contain comments which are introduced by the $ character. All text following a $
sign on a line is ignored. Another way of putting this is that the $ sign acts as an end of line signal
to the compiler. Lines with a $ in column 1 are entirely ignored (except for being listed).

The datatypes we shall consider initially are integer, real and string. Integer values are of
unlimited range (actually limited only by the available memory). Real values have some range and
precision defined by the implementation, and strings are arbitrary length sequences of characters
(like most other languages, SETL does not exactly define the set of available characters, which
depends on the implementation).
Corresponding to these three datatypes are constant denotations or literal values, which may be
used wherever the corresponding value is required. The following are examples of valid constants:

123 $ integer
134134145767671 $ integer
3.1415926535 $ real
0.45E+13 $ real
´abc´ $ string
´123´ $ string
´don’’t´ $ string

The last example shows how a single quote can be included in a string by writing two quote marks

Chapter 1 The SETL Programming Language Page 4

together. The null string which contains no characters is written as ’’.
Expressions are built up from constants, identifiers and operators, using parentheses for

grouping in the usual manner. The following list shows the most commonly used binary operators,
which compute a result from two operand values:

Binary Integer Operators

+ Integer addition
− Integer subtraction
* Integer multiplication
/ Integer division, real result
div Integer division, integer result
** Integer exponentiation
mod Integer remainder

Binary Real Operators

+ Real addition
− Real subtraction
* Real multiplication
/ Real division
** Real exponentiation

Binary String Operators

+ String concatenation

The meaning of an operator depends on the datatypes of the operands. For example, + means
either integer addition, real addition, or string concatenation, depending on the operands. Arith-
metic operators must be applied to either real or integer operands. If an operation is to be per-
formed on one integer and one real value (for example, addition), then the float or fix operators
must be used as described later. The one exception to this rule occurs with exponentiation, which
allows a real value to be raised to a non-negative integer value.

Some operators (such as div) and other tokens in SETL are written in capital letters in this
book. This means that they are keywords, and are written in capital letters to distinguish them
from identifiers. Any such names are reserved words, in the sense that they may not be used as
identifier names. A complete list of reserved words is given in Appendix nn. When the program is
actually entered, the compiler ignores cases, so that both reserved words and identifier names may
be entered in upper case or lower case or even in a mixture of cases.

The string concatenation operator (+) joins two strings together:

Chapter 1 The SETL Programming Language Page 5

a := ’abc’;
b := ’cd’;
c := a + b; $ c now contains ’abccd’

A special set of operators, called assigning operators, not only yield a value, but also store the
value into the left operand, which must be appropriate for this purpose (e.g. an identifier). There
is one such operator corresponding to each binary operator. The name of an assigning operator is
formed by appending the characters := to the usual operator name. For example, +:= is the addi-
tion (or concatenation) assigning operator which may be used as shown in the following example:

a := 3; $ a = 3
a +:= 4; $ a = 7
b := a +:= 1; $ a = 8, b = 8

As indicated by the last line above, assigning operators can be used within an expression, as well
as standing alone in a statement. Actually, the assignment operator itself is a special case of an
assigning operator, and may also be used within an expression:

a := 3 + b := 5 + 2; $ a = 10, b = 7

Unary operators compute a value from a single operand and are written in front of the operator:

Unary Integer Operators

+ Positive (no effect)
− Negation
str String equivalent
float Converts string to real
type Gives string ’INTEGER’

Unary Real Operators

+ Positive (no effect)
− Negation
ceil Ceiling
floor Floor
str String equivalent
fix Truncates to corresponding integer
type Gives string ’REAL’

Unary String Operators

Chapter 1 The SETL Programming Language Page 6

Number of characters (integer)
val Real or integer equivalent
type Gives string ’STRING’

The str operator yields a string representation of an integer or real operand. Var converts a
numeric string into its corresponding real or integer value:

a := str (2 + 3); $ a = ’5’
b := val ’1234’; $ b = 1234
c := str 003.000; $ c = ’3.0’

Ceil applied to a real gives the smallest integer which is not less than the operand, and floor gives
the largest integer which is not greater than the operand. fix converts a real to a corresponding
integer value by dropping the fractional part, if any.

a := ceil 3.7; $ a = 4.0
a := ceil −3.7; $ a = −3.0
a := floor 3.7; $ a = 3.0
a := floor −3.7; $ a = −4.0
a := fix 3.7; $ a = 3.0
a := fix −3.7; $ a = −3.0

Strings may be sliced to extract substrings. The format is:

string(a..b)

The expressions a and b are integers which select the starting and ending character in the sub-
string. For example:

abc := ’the quick brown fox’;
cde := abc(5..8); $ cde = ’quic’

The following default slices are allowed:

abc(5) $ same as abc(5..5)
cde := abc(5); $ cde = ’q’
abc(5..) $ means 5 to end of string
cde := abc(5..); $ cde = ’quick brown fox’

These substring notations can also be used on the left side of an assignment statement. Note from
the following examples that such assignments can shorten or lengthen strings:

Chapter 1 The SETL Programming Language Page 7

abc := ’hello’;
abc(3..4) := ’xyz’; $ abc = ’hexyzo’
abc(4..) := ’m’; $ abc = ’hexm’

1.3. Errors & Omega
Improper operations, such as applying the / operator to string operands, normally cause ter-

mination of the program with an appropriate error message. In some implementations, there may
be a provision for optionally continuing execution following such an error, the details of such pro-
visions are considered to be part of the implementation rather than the SETL language itself. In
this book, the phrases "causes an error" and "error results" always refer to such a situation, and the
details of the implementation must be consulted to determine exactly what happens.

In addition to this class of errors, there is a special undefined state called om (for omega).
Identifiers which have not been set to any particular value are in this undefined state, and may be
thought of as containing the value om, although strictly speaking, om is not a value (but rather the
absence of any value).

If an identifier contains a value (other than om), it may be reset to an undefined state by an
assignment of the form:

a := om; $ a is now undefined

Any attempt to perform an operation on the undefined value causes an error. The one exception to
this rule is that there is a provision for using the equality operator to test whether a given value is
undefined or not.

1.4. Tuples
A tuple is an ordered sequence of zero or more values. Tuples in SETL are similar to one

dimensional vectors in other programming languages, but are more flexible.
A tuple may be created using the tuple brackets [and]. The following example assigns a

four element tuple to the variable associated with identifier t:

t := [1, 9, ’abc’, [1, 5]];

As shown, the tuple can contain any values, even other tuple values, and may be of arbitrary
length.

In some implementations, the characters for the tuple brackets may not be available. To deal
with this possibility, the alternate sequences (/ and /) can be used as replacements, so the above
assignment could have been written:

t := (/ 1, 9, ’abc’, (/ 1, 5 /) /);

Individual elements of a tuple can be extracted by subscripting, and subscripting on the left side of
an assignment allows a specified element to be modified:

Chapter 1 The SETL Programming Language Page 8

t := [1,9,’abc’,’def ’];
x := t(3); $ x = ’abc’
t(4) := 0; $ t = [1,9,’abc’,0]

Note that ordinary parentheses are used for subscripting, not tuple brackets. If a non-existent ele-
ment (e.g. t(7) in the above case) is selected, then om is obtained as a result. It is perfectly valid to
assign a value to a non-existent element, and may result in increasing the length of the tuple:

t := [1,9,’abc’,0];
t(5) := 5; $ t = [1,9,’abc’,0,5]

If such an assignment creates "holes" in a tuple, the missing element values are set to undefined
(i.e. to contain om). There is no maximum size of a tuple, although the available memory will
limit the size in practice. It is possible to undefine a previously defined element by assigning om
to it. This will either create a "hole" in the tuple value, or it will decrease the length of the tuple in
the case where the last element is undefined in this manner.

The following operators can be applied to tuple operands:

Binary Tuple Operators

+ Tuple concatenation

Unary Tuple Operators

Index of highest defined element
type Returns the string ’tuple’

The concatenation operator + joins two tuples end to end to yield a new tuple as shown by the fol-
lowing example:

a := [1,2,3];
b := [6,7];
c := a + b; $ c = [1,2,3,6,7]

The cardinality operator # gives the index of the highest defined element. This will be equal to the
number of defined elements in the case where the tuple contains no "holes".

Subtuples can be extracted using a notation similar to that used in extracting a substring:

a := [1,2,3,4,5,6,7,8,9];
b := a(6..8); $ b = [6,7,8]

Chapter 1 The SETL Programming Language Page 9

c := a(7..); $ c = [7,8,9]
d := a(8..11); $ d = [8,9]

These subtuple operations extend to use on the left side of assignments in the same manner as for
substring assignments:

t := [1,2,3,4,5,6];
t(2..5) := [7,10]; $ t = [1,7,10,6]
t(3..) := []; $ t = [1,7]

The null tuple (which contains no elements) is written as [], i.e. a tuple with no elements. If the #
operator is applied to a null tuple value, the result is zero. A typical technique is to create tuple
values by first assigning [] to a variable, then executing a series of assignments which define the
required element values.

A special notation is available for constructing tuples whose values consist of regular
sequences of integers as shown by the following examples:

[1..10] same as [1,2,3,4,5,6,7,8,9,10]
[1,3..12] same as [1,3,5,7,9,11]
[2..1] same as []
[9,8..1] same as [9,8,7,6,5,4,3,2,1]
[9,7..1] same as [9,7,5,3,1]

The general form of this abbreviation is:

[first,next .. last]

The expression first gives the first value generated in the sequence. The expression next implies
both the direction of the sequence (ascending or descending) and the step between successive ele-
ments. The expression last gives the limit value (either the maximum for an ascending sequence,
or the minimum for a descending sequence). The next expression, together with its preceding
comma, may be omitted for ascending sequences with a step of 1. As we shall see in a later sec-
tion, tuples of this type play an important role in constructing loops.

Tuples may appear on the left side of an assignment statement, providing that the right hand
side is a tuple value. The effect is to perform a sequence of assignments:

[a,b,c] := s; $ a = s(1), b = s(2), c = s(3)
[d,−,f] := s; $ d = s(1), f = s(3)
[e,f] := [2,4]; $ e = 2, f = 4
[a,b] := [b,a]; $ interchange a and b

All the components in the tuple on the left side must be valid assignment left sides, or, as shown in

Chapter 1 The SETL Programming Language Page 10

the second example above, a minus sign may be used to indicate that the corresponding assign-
ment is to be skipped.

One important point is that SETL treats tuples as values when it comes to assignments. Con-
sider the following sections of code:

abc := 12;
cde := abc;
abc := abc + 2; $ cde still = 12

abc := [1,2,3];
cde := abc;
abc(2) := 0; $ cde still = [1,2,3]

In SETL the two sequences have similar effects. If you expected cde to change in the second
sequence, then study it carefully. If not, then you have the correct idea already.

The operator with adds a single element at the end of a tuple and is most often used in its
assigning form as shown in the following examples:

a := [1,5,10];
b := a with 6; $ a = [1,5,10], b = [1,5,10,6]
a with:= 7; $ a = [1,5,10,7]

The binary operator fromb removes the first element of a tuple (i.e. the element at the beginning
of the tuple) and assigns it to the left operand. The right operand, which contained the original
tuple operand is reassigned to contain the remainder of the tuple after removing this element.
fromb is most often used on its own as a statement form, but it can also be used within an expres-
sion, in which case it yields the first element as its value (as well as performing the two assign-
ments). The binary operator frome is similar except that it removes the element from the end of
the tuple. If fromb or frome is applied to a null tuple value, then om is obtained and the tuple
value is unchanged:

a := [11,26,37,17];
b fromb a; $ b = 11, a = [26,37,17]
c fromb a; $ c = 26, a = [37,17]
d fromb a; $ d = 17, a = [37]
e fromb a; $ e = 37, a = []
f fromb a; $ f = om, a = []

The operators with:= and fromb used in conjunction allow a tuple to be used as a queue, with:=
being the queue operation and fromb the dequeue operation:

Chapter 1 The SETL Programming Language Page 11

q := [];
q with:= 5; $ q = [5]
q with:= 7; $ q = [5,7]
e fromb q; $ e = 5, q = [7]
e fromb q; $ e = 7, q = []
e fromb q; $ e = om, q = [] (queue empty)

In a similar manner, the operators with:= and frome used in conjunction allow a tuple to be used
as a stack, with:= being the push and frome being the pop:

s := [];
s with:= 5; $ s = [5]
s with:= 7 $ s = [5,7]
e frome s; $ e = 7, s = [5]
e frome s; $ e = 5, s = []
e frome s; $ e = om, s = [] (stack empty)

1.5. Sets
Finally we get to the datatype in SETL which gives SETL its name. A set is like a tuple,

except that it is unordered, and a given value can appear only once (i.e. an attempt to place a value
into a set more than once is ignored). Set values are written using a similar notation to tuples,
except that the set brackets are { and }.

s := {1,2,’abc’};
t := {2,1,’abc’};
u := {2,1,’abc’,2}; $ s = t = u

In some implementations, the set bracket characters may not be available. To deal with this possi-
bility, an alternate notation is available which uses << as the left set bracket and >> as the right set
bracket, so the above examples could have been written:

s := <<1,2,’abc’>>;
t := <<2,1,’abc’>>;
u := <<2,1,’abc’,2>>;

The following set of operators can be applied to set operands:

Binary Set Operators

+ Set union

Chapter 1 The SETL Programming Language Page 12

− Set difference
* Set intersection
with Add one element to a set
less Remove an element from a set
from Remove an element and assign remainder

Unary Set Operators

Number of elements as integer
type Yields the string ’SET’
arb Select arbitrary element

The operators + * and − applied to sets perform standard set operations of union, intersection and
difference as shown by the following examples:

a := {1,2,3,4};
b := {3,4,5,6};
c := a + b; $ c = {1,2,3,4,5,6}
c := a * b; $ c = {3,4}
c := a − b; $ c = {1,2}

The operators with and less add or remove an element from a set and are most often used in their
assigning forms. With has no effect if the element is already present, and less has no effect if the
element is not present:

s := {5,2,8};
a := s with 7; $ s = {5,2,8}, a = {5,2,7,8}
s with:= 6; $ s = {5,6,2,8}
s with:= 5; $ s = {5,6,2,8}
s less:= 5; $ s = {6,2,8}
s less:= 0; $ s = {6,2,8}

Arb selects an element from the set in a non-deterministic manner. In other words, there is no way
to predict which element will be selected. It may even be the case that a different value will be
selected in different runs of the program, even if no changes are made to the program or data. Arb
is thus used precisely in those cases where it does not matter which element is picked. The opera-
tor from picks an arbitrary element from its right operand in a similar manner, but also assigns the
set with this element removed as the new value of the right operand, the picked value being
assigned to the left operand. Both arb and from yield om if applied to a null set, and in the case
of from, the set value is unchanged.

Chapter 1 The SETL Programming Language Page 13

a := {1,5};
b := arb a; $ b = 1 or 5
c from a; $ c = 1 (or 5!)

$ a = {5} (or {1})
d from a; $ d = 1 (if c was 5)

$ d = 5 (if c was 1)
$ a = { }

e from a; $ e = om, a = { }

The null set is the set which contains no elements. It is written as {}, i.e. a set with zero elements
listed. The # operator applied to the null set yields zero. A typical technique is to build a set value
by first assigning { } to a variable, and then using with:= to add the desired elements to the set.

As for tuples, an abbreviated form is permitted for constructing sets of integers:

{1..10} means {1,2,3,4,5,6,7,8,9,10}
{3,5..11} means {3,5,7,9,11}

The general form of this construction is exactly the same as that used in the tuple case:

{first,next .. last}

As with tuples, the second expression indicates the direction and step size, although backwards
sequences are not usually used in the set case, since the order of the elements is not meaningful in
a set:

{1,2..10} same set as {10,9..1}

1.6. Maps
A map in SETL is a set all of whose elements are tuples of length 2 (called pairs). For exam-

ple, the following assigns a map value to the identifier sqroot:

sqroot := {[1,1], [4,2], [9,3], [16,4]};

If a set has this special form, its values may be accessed using map notation:

x := sqroot(9); $ x = 3

The actual meaning of such a map reference is to search the set for the pair whose first element
matches the given domain value (9 in this case), and then the second element of this pair is yielded
as the range value. Map reference notation can also be used on the left side of an assignment, the
effect is to modify the value of the map appropriately:

sqroot(25) := 5; $ adds the pair [25,5] to sqroot

Chapter 1 The SETL Programming Language Page 14

The exact meaning of this assignment is to compute a new map value by first removing all pairs
starting with the given domain value (there were none to remove in the above example), and then
to add the specified pair. Often maps are constructed by a sequence of assignment statements. For
example, the map sqroot could have been constructed by the sequence:

sqroot := { };
sqroot(1) := 1;
sqroot(4) := 2;
sqroot(9) := 3;
sqroot(16) := 4;
sqroot(25) := 5;

Reference to a non-existent element of a map (e.g. sqroot(19) in the example given) yields om.
Maps are a general associative device, and represent one of the fundamental data structuring

devices in SETL. For example, a structure represented as a one dimensional vector in FORTRAN
is probably better treated as a map from integers in SETL. Actually it is usually possible to repre-
sent data in a more direct way than integer indexing. For example, given a class of students, and
associated test scores, rather than use two vectors based on integer indices, one containing the
names and the other containing the scores, it is more convenient to represent this data as a single
map from student names onto integer scores.

For the map notation shown above, an error results if there are any duplicate elements in the
domain, i.e. more than one pair with the same first element value. However, it is possible for a
map to contain such a duplication, using set brackets { } instead of parentheses to access the ele-
ments. The result of such a reference is to yield the set of all range values corresponding to the
given domain value:

a := {[1,2], [1,3], [2,4], [5,5], [2,7], [2,8]};
c := a(1); $ causes an error
d := a{1}; $ d = {2,3}
e := a{5}; $ e = {7}
g := a{7}; $ g = { }

Maps which have duplicated values like this are called multi-valued maps, and the corresponding
reference is a multi-valued reference. This form can also be used on the left side of an assignment:

a := {[1,0], [1,2], [1,5], [2,5], [2,7]};
a{1} := {5,7}; $ a = {[1,5], [1,7], [2,5], [2,7]}

Since maps are just a special case of sets, all the operators which apply to sets (such as + for set
union) can also be applied to maps. In addition the following special operators

are provided for operating on maps:

Chapter 1 The SETL Programming Language Page 15

Binary Map Operators

lessf Removes pairs for one domain value

Unary Map Operators

domain Yields domain of a map
range Yields range of a map

Domain and range yield the set of values of the first element or second element respectively of all
pairs. Lessf creates a new map in which all pairs starting with a particular value are removed, and
is most often used in its assigning form. All three operators cause an error if they are applied to a
set which is not a map, i.e. a set which contains at least one element which is not a pair. The effect
of lessf can also be obtained by an explicit assignment as shown in the following examples:

a := {[1,2], [1,3], [2,2], [2,4], [3,6], [3,7]};
b := domain a; $ b = {1,2,3}
c := range a; $ c = {2,3,4,6,7}
a lessf:= 1; $ removes [1,2] and [1,3]
a(2) := om; $ removes [2,2] and [2,4]
a{3} := { }; $ removes [3,6] and [3,7]

1.7. Conditional Statements
Conditional statements allow the flow of control to be modified by the use of tests.

1.7.1. If Statements
The if statement allows one of two paths of control to be selected on the basis of a test:

if test
then

statement;
statement;
statement;

else
statement;
statement;
statement;

end if;

The test either succeeds or fails. If it succeeds, then the sequence of statements after the then
(called a block) is executed. If the test fails, then the block following the else is executed. Note that
since every statement is terminated by a semicolon in SETL, there must be a semicolon following

Chapter 1 The SETL Programming Language Page 16

the last statement of each block. Since the entire if construction is also considered to be a state-
ment, it is also terminated by a semicolon. The fact that if is considered to be a statement means
that if’s can be nested, an if appearing as one of the statements in the then or else block. This nest-
ing can be carried to any depth.

The end if; which terminates the if statement can be written in any of the following man-
ners:

end;
end if;
end if tokens;

In the last case, tokens is one or more tokens copied from the text following the corresponding if.
They must exactly match or an error results. The use of these identifying tokens helps to keep
end’s straight and is particularly valuable when an if or similar construction is lengthy:

if a > b
then

(long sequence of statements)
end if a > b;

The else and its following block are optional and may be omitted. If they are omitted and the test
fails, then control passes out of the if which then has no effect.

1.7.2. Boolean Values & Operators
The tests used in if statements and other similar constructions are usually constructed using

one of the test operators. The following list indicates the condition under which the test performed
by the operator succeeds:

Binary Test Operators

= Types and values match
/= Types or values do not match
> Left operand greater than right
>= Left operand greater than or equal to right
< Left operand less than right
<= Left operand less than or equal to right
in Left operand is an element of right
notin Left operand is not an element of right
subset Left operand is a subset of right
incs Left operand includes right

Unary Test Operators

Chapter 1 The SETL Programming Language Page 17

ev en Operand is even
odd Operand is odd
is integer Operand is integer type
is real Operand is real type
is tuple Operand is tuple type
is set Operand is set type
is map Operand is map (set of pairs)

The equality and inequality comparisons may be used to compare values of any type for exact
identity, including testing for equality with om. Tw o tuples are equal if each pair of elements in
corresponding positions are equal. Two sets are equal if they hav e the same number of elements,
and every element of the left operand is contained in the right operand.

The remaining comparisons apply only to numeric values and to strings. In the string case,
the ordering is like a telephone directory (e.g. "ab" is less than "aba"). The order among characters
in the set depends on the implementation.

The membership tests in and notin require that the right argument is a tuple or set and test
for exact equality between the left operand and one of the elements of the right operand.

The operators incs and subset can only be used if both operands are sets. The operators are
inverses of one another, i.e. a subset b is equivalent to b incs a.

The operators odd and ev en can only be applied to an integer operand and test for divisibil-
ity by two.

The is type operators test to see if the operand is of the specified type. Note that even
though there is no type map in SETL (all maps are sets), the is map operator is available, and
tests whether the operand has the form of a map (i.e. is a set all of whose elements are pairs).

Test operators are not restricted to appearing in a context where a test is expected. If they are
used in other situations (e.g. as the right hand side of an assignment), then one of two special val-
ues is yielded:

TRUE if the test succeeds
FALSE if the test fails

These values are of type boolean and are distinct from any other values. The following operators
may be applied to boolean values:

Binary Boolean Operators

and Logical and of two boolean values
or Logical inclusive or

Chapter 1 The SETL Programming Language Page 18

Unary Boolean Operators

not Logical negation
type Yields the string ’BOOLEAN’
is boolean Tests whether an operand is of boolean type

The operator and yields TRUE if both its operands are TRUE and FALSE otherwise. OR yields
TRUE if either or both of its operands are TRUE and FALSE otherwise. And does not evaluate its
right operand if the left operand is FALSE and similarly or does not evaluate its right operand if
the left operand is TRUE. This means that a compound test of the following type is legal in SETL:

if a = 0 and b / a > 3 then ...

since the division definitely will not be performed if the divisor a is zero.
The operator not yields TRUE if its operand is FALSE and FALSE if its operand is TRUE.
If an expression other than a test constructed with a test operator appears in a test context,

then the value must be either TRUE (in which case the test succeeds) or FALSE (in which case the
test fails). Any other value used in a test context causes an error.

1.7.3. Case Statement
Another form of conditional branch is provided by the case statement, which has the follow-

ing form:

case of
(test1): block1
(test2): block2
else blocke
end CASE; $ or simply end;

This statement causes one of the specified blocks (sequences of statements) to be executed. The
block which is executed is the one whose corresponding test succeeds. The else block is executed
if all the tests fail. If more than one test succeeds, then only one of the blocks is executed, the
choice of which block to execute being made in an arbitrary manner (in the same sense that the
arb operator selects an arbitrary element from a set).

A very common use of the case statement involves tests of the form t=x where t is a quantity
to be tested, and the various values of x are attached to statements which are to be executed if t has
the specified value. A special abbreviated form of the case statement is available for this purpose,
which has the form:

case expression of
(const1): block1
(const2): block2
else blocke
end case; $ or end; or end case tokens;

Chapter 1 The SETL Programming Language Page 19

In this case, the expression is evaluated, and then compared with each of the constants. The block
whose associated constant value matches is then executed. If no value matches then the else block
is executed.

In either of the case forms, the else and its associated block may be omitted. If none of the
branches of a else with no else block match, then execution continues with the next statement
without executing any of the blocks.

More than one test or constant can be attached to a given case branch by:

(e1,e2,..en): block
(test1,test2,..testn): block

in which case the block will be executed if the expression matches any of the given values or if
any of the tests succeed.

1.8. Loops
A loop is used where a block of statements is to be executed repeatedly until some specified

condition is met, or for some specified number of times. One form of a loop in SETL is:

loop iterator do
block

end loop; $ or end; or end loop tokens;

An alternate form (with the same meaning) is:

(iterator)
block

end; $ or end tokens;
In the latter case tokens, if given in the terminator, does not include the left parenthesis used to
open the loop.
Either form causes the block of statements to be executed repeatedly under control of the iterator.
Within the body of the loop, any statements can be used, as well as two special statements:

continue;
continue tokens;

Execution of the continue statement causes the rest of the statements in the body of the loop to be
skipped, and execution continues with the next iteration (if there is one). The form in which tokens
are copied from the corresponding loop statement is useful where loops are nested, to specify
which loop is being continued.

quit;
quit tokens;

This statement causes execution of the loop to be immediately terminated, and control resumes
with the statement past the end loop. As with continue, the form with tokens copied from the
loop statement may be used to indicate which loop is to be terminated when loops are nested.

Chapter 1 The SETL Programming Language Page 20

The iterator itself has one of several forms. A full description of iterator forms appears in
chapter 5. In this chapter we discuss the two forms which are most commonly used:

for x in set
for x in tuple

In these forms, set and tuple are expressions which yield values of type set and tuple respecively,
and x is the iteration variable, which is set to successive values from the set or tuple. In the case of
a tuple, the number of iterations is equal to the index of the last defined element, and the element
values are selected in sequence. In the set case, the number of iterations is equal to the number of
elements in the set and the order in which the elements are taken is arbitrary (in the same sense
that arb yields an arbitrary element).

(for x in s)
print(x); $ prints elements of s

end loop;

loop for x in [1,10,50] do
...

end loop x;

The iteration variable x can actually be any valid assignment left hand side. In the case of the set
iterator, this provides a convenient notation for iterating through a map:

(for [number,root] in sqrt) ...

If the set is null, then the loop body is not executed at all, and control skips immediately past the
end.

Iterations through a sequence of integers (similar to the do or for loops of other languages)
may be conveniently specified using the special form of tuple constructor for constructing tuples
of integers:

loop for i in [1..100] do
(statements executed 100 times with i=1,2...)

end loop;

(for i in [1,3..99])
(statements executed 50 times with i=1,3,5..)

end for i;

An interesting possibility in SETL is to use a set former for such loops:

loop for i in {1..100} do
(statements executed 100 times)

end loop;

Chapter 1 The SETL Programming Language Page 21

This loop has a similar effect to the one using a tuple former except that there is no implication as
to the order in which the 100 possible values of i are selected. Good SETL style suggests using
the set former except in cases where the order is significant, thus avoiding unnecessary overspeci-
fication.

Either of these iterator forms may be combined with a test which selects only certain values
meeting some condition to be included in the iteration:

(for x in s | x > 5) ...
(for i in [1,2..10] | f(i) > 0) ...

The | is read "such that" and may be replaced by the keyword st if the vertical bar character is not
available. The effect is to skip any values not meeting the test. For example, the following loop
executes 5 times with even values of i:

(for i in {1,2..10} | ev en i) end;
Three other loop forms which can be written are:

loop while test do $ loop while test succeeds
...

end loop; $ or end; or end loop tokens;

loop until test do $ loop until test fails
...

end loop; $ or end; or end loop tokens;

loop do $ indefinite loop
...

end loop; $ or end; or end loop tokens;

The first of these forms, the while loop, iterates the body of the loop until the specified condition
is FALSE. The test is performed at the start of the loop, so that it is possible to skip the loop
execution entirely if the test condition is FALSE on initial entry to the loop.
The second form, the until loop, iterates the body of the loop until the specified condition is
TRUE. The test is performed at the end of the loop, so the body of the loop is executed at least
once, even if the condition is TRUE the first time.
The third form is an indefinite loop. The loop will continue to execute until it is terminated by
executing a stop or quit statement or a goto which leads out of the loop.

As with the iterator form of the loop, parentheses can replace the loop and do keywords:

(while test) $ loop while test succeeds
...

Chapter 1 The SETL Programming Language Page 22

end; $ or end tokens;

(until test) $ loop till test fails
...

end; $ or end tokens;

() $ indefinite loop
...

end;

1.8.1. Set & Tuple Formers
So far, we hav e formed sets by enumerating the elements. The set former is a special form

of a loop which computes a set value with an iteration. The form is:

{expression : iterator}

The iterator has exactly the same form as a loop iterator, except that the keyword for is omitted.
The effect is to iterate the calculation of the expression, and build a set from the values. The most
frequently used form involves a set or numeric iterator as shown by the following examples:

{n : n in {1..100}} $ integers from 1 to 100
{[x**2,x] : x in {1..5} $ square root map
{a : a in y | a>5} $ elements > 5

The following abbreviation is permitted, allowing expression to be elided where it corresponds
exactly to the loop variable of an iterator provided that the iterator contains a | (or st) clause:

{a in expr | c} $ {a : a in expr | c}
{a in [x,y..z] | c} $ {a : a in [x,y..z] | c}

Notes:
If two or more iterations produce the same value in a set former, then only one copy of the
value is placed in the set.
If the iterator terminates after zero iterations, i.e. expression is never calculated, then the
result is a null set.
Error termination results from an attempt to place om into a set.
Tuple formers are identical in form, but written with tuple brackets, rather than set brackets.

For a tuple former, the successive values, which may include duplicated values, are placed into the
tuple in sequence:

Chapter 1 The SETL Programming Language Page 23

[0 : i in [1..100]] $ tuple of length 100, all 0
[x in s | x < 0] $ tuple of negative elements of s

1.8.2. Quantified Tests
Tw o special forms, called quantified tests, can be used in contexts requiring a test, or to gen-

erate one of the two values TRUE or FALSE in other contexts:

exists iterator | test
forall iterator | test

The exists test executes an implied loop specified by the iterator, which has the same form as a
loop iterator, except that the keyword for is omitted. On each loop, the test after the | is evaluated.
If the test succeeds, then the loop is immediately terminated, leaving the loop variable set to the
value which caused the test to succeed, and the exists test itself succeeds. If the specified test fails
for all iterations of the loop, then the loop is terminated, setting the iteration variable to undefined,
and the exists test fails.

In the case of the forall test, the loop is terminated as soon as the test fails, leaving the itera-
tion variables set to the values which caused the failure. If the test succeeds for all loops, then the
iteration variables are set to undefined and the forall succeeds.

The following are some examples of the use of these quantified tests:

s := {1,2,10,20};
t := [1,2,10,20];

if exists x in s | x > 3
then $ will be executed with x = 20 or 10
else $ will not be executed

end;

if exists x in t | x > 3
then $ will be executed with x = 10
else $ will not be executed

end;

if forall x in a | x < 30
then $ will be executed with x = om
else $ will not be executed

end;

if exists x in t | x > 30
then $ will not be executed

Chapter 1 The SETL Programming Language Page 24

else $ will be executed with x = om
end;

if forall x in t | x < 10
then $ will not be executed
else $ will be executed with x = 10

end;

1.8.3. Compound Operators
Another specialized form of loop in SETL is the compound operator. A compound operator

can be formed from any binary operator by appending a slash / to the name of the operator. Such a
compound operator can be used in one of two expression forms:

bop/ exprs
expre bop/ exprs

The effect is to apply the binary operator bop to the sequence of element values e1,e2.. in exprs,
which must be a set or tuple, as follows:

bop/ exprs means e1 bop e2 bop e3 ...
expre bop/ exprs means expre bop e1 bop e2 ...

If the compound operator form is used with a null set or null tuple, then the result is expre in the
second form and om in the first form where expre is omitted. Thus expre typically functions as an
identity element in the second form. The following examples show how the compound operator
forms can be used:

+/t $ sum of values in tuple
0+/t $ same, but 0 rather than om for []

*/ [a in s | 3 in a]
$ computes intersection over all sets in s (s is a set of sets) which contain the value 3

´´+/t $ builds string from tuple of characters

1.9. Input/Output
There are three distinct types of input/output in SETL:

Stream Input/Output
Stream input/output is used primarily with "card reader" input files and "printer" output
files, and is intended for direct input of human prepared input, and output of human readable
printout. This type of input/output is oriented to transmission of individual values in string

Chapter 1 The SETL Programming Language Page 25

form.
Record Input/Output

Record input/output deals only with strings. An input operation obtains a record as a string,
and an output operation outputs a string as a single record. Record input/output is intended
for communication with programs written in languages other than SETL, and is also used to
read directly prepared input if such input is more naturally treated as strings, rather than as
individual items as in the stream case.

Binary Input/Output
Binary input/output deals with SETL values of any type and transmits then in a special effi-
cient internal form. Binary output is only used to output values which are to be read into
either the same SETL program, or some other SETL program, using binary input state-
ments.
Full details of all three kinds of input/output are given in the chapter devoted to this purpose.

In this introduction, we describe only the most frequently used input/output calls for reading stan-
dard "card reader" input, and generation of standard "printer" output.

The read procedure is used to read values from data lines from the standard input source in
stream mode:

read(lhs,lhs,...);

This procedure call reads successive values separated by blanks or commas. Data values are
entered in the following form:
Integers are entered as strings of digits preceded by an optional sign.
Reals are entered in the same format as real denotations except that an optional preceding sign is
permitted.
Strings can be entered in the same format as string constants in SETL, including the surrounding
quotes. They may be split across line boundaries. In addition, strings which have the form of
SETL identifiers (i.e. start with a letter and contain only letters, digits and the underline character)
may be entered without surrounding quote marks. Such string items may not be split across line
boundaries.
An * in the input stream causes the corresponding value to be set to undefined (om).
The values TRUE and FALSE are entered as #T and #F (or #t and #f, either upper or lower case
may be used).
Set values are input using either { } or << >> set brackets. The list of values in the set are in the
format described in this section, and may be separated either by blanks or by commas.
Tuple values are input in a similar manner using [] or (/ /) brackets and in addition, simple paren-
theses are accepted as tuple brackets in input data.

The arguments used in the call to read are any valid assignment left hand sides, and the
effect of the read call is to input the appropriate number of items from successive input lines (as
required) and make the assignments in sequence.

The special symbol eof (actually it is a special system function call) may be used as a test
following a read call. This test succeeds if the last read attempted to read past the end of file, and

Chapter 1 The SETL Programming Language Page 26

fails if the end of file was not encountered. Any input values which were not available because of
encountering the end of file cause the corresponding variables to be set to undefined (om). The
following example shows how a series of input items (up to the end of file) can be stored in a
tuple:

input data := [];
loop do

read(next);
if eof then quit; end;
input data with:= next;

end loop;

The get function may be used to read input lines one at a time as strings. This allows string data to
be entered without surrounding quote marks, and the program determines the required format of
the input. The get function must be provided with the file name of the file to be read. A null string
may be used to specify the standard input file in an implementation independant manner:

get(’’,lhs);

This call to get will cause the next input line to be read from the standard input file and assigned as
a string value to lhs. Eof is set as described above to indicate whether or not the call attempted to
read past the end of file.

Printed output is generated with the print function, which gives a list of items to be printed
in stream mode:

print(expression,expression, ... expression);

Each expression is evaluated and printed in a manner appropriate to its datatype as follows:

Integer

The integer value is converted to a string of decimal digits of appropriate length with no leading
zeroes (except in the case of zero itself). A preceding minus sign is used if the value is negative
(but positive values do not generate a plus sign).

Real

Real values are converted either in fixed point format or exponent notation, dpending on the range.
The number of digits is chosen to be appropriate to the accuracy with which real values are stored.

String

The handling of strings depends on whether they appear directly in the print list, or as elements of
tuples or maps. If they appear in the print list, they are printed literally, without surronding quotes,
and without any special treatment of internal quotes. Strings which appear as elements of tuples
or sets are treated in a different manner. If the string values are of the form of identifiers (starting

Chapter 1 The SETL Programming Language Page 27

with a letter and containing only letters, digits and the underline), then the value is printed literally.
All other string values appearing as elements of sets or tuples are printed with surrounding quotes,
and any internal quotes are printed as two successive quotes.

Boolean

The boolean values TRUE and FALSE are printed as #T and #F respectively.

Om (undefined)

An undefined value is printed as a single * (asterisk) character.

Tuples

Tuple values are output as a series of values separated by single blanks and surrounded by tuple
brackets [], or, in implementations which do not have these characters, simple parentheses. The
values within the tuple are converted individually, strings being output with surrounding quotes
unless they hav e the form of identifiers.

Sets

Sets are output in the same manner as tuples except that the list of values is surrounded by set
brackets { }, or by << and >> if these characters are unavailable.

>From this description, it can be seen that the format used is essentially exactly compatible
with the input format accepted by read with the exception that strings appearing directly in the
print list are printed without quotes. This discrepancy allows the convenient output of titling infor-
mation as in:

print(’Value of’, a, ’ +’, b, ’ =’, a+b);

Each new call to print causes a new line to be started. Blanks are inserted to separate consecutive
values, and if the value to be printed does not fit one a single line, line returns are inserted in an
attempt to make the output as readable as possible. Calling print with a null argument list gener-
ates a blank line:

print(); $ Print blank line
or
print; $ Print blank line

The eject procedure, which uses no arguments, causes a page eject, and the title procedure sets a
title string which is printed at the head of each page of output. In the absence of a call to the title
procedure, the printout resulting from the print procedure prints continuously (over the creases)
unless the eject procedure is used. After calling title, automatic page ejects are generated when the
page is full (the appropriate definition of full being dependant on the environment). In titling

Chapter 1 The SETL Programming Language Page 28

mode, all page ejects result in printing the title together with a page number, and actual printout
starts on the third line of each page. More than one call to title is permitted, the title being
changed, but the page numbering is undisturbed. A call to title causes an automatic eject, so that
the new title is established immediately. Calling title with no argument disconnects titling mode
and returns to the normal (continuous printing) mode.

eject; $ eject to new page
title(string); $ set title to string
title; $ disconnect titling mode

1.10. Labels and the Goto Statements
Any statement in SETL may be labeled:

label: statement;

where label is an identifier not used for any other purpose. The goto statement:

goto label;

causes control to pass to the labeled statement. As in any langauge which provides structured con-
ditionals and looping statements, the use of the goto should be minimized. The obvious restric-
tions on the use of goto’s (e.g. against jumping into loops, or into a case statement from outside)
apply, although it is permissible to jump out of loops and other structures.

1.11. Stop Statement
The stop statement:

stop;

may be executed at any point in the program and causes immediate termination of execution. Exe-
cution termination can also result simply from executing the last statement of the main program
block.

1.12. Pass Statement
The pass statement:

pass;

has no effect and thus acts as a null statement. It is sometimes useful in connection with condi-
tional statements in the case where no actions are to be performed under some conditions, for
example in:

case i of

Chapter 1 The SETL Programming Language Page 29

(1,3,5): print(i);
(2,4,7): print(i+1);
(0,6,9): pass; $ do nothing in these cases
else print(’no good’);
end case;

1.13. Program Form
A complete program in SETL has the form:

program name;
(global variable declarations)
(main program block)
(procedure and operator definitions)
end program name; $ or end; or end program;

1.13.1. Declarations
The global declarations, which are used if there are variables which are to be accessed

directly by more than one procedure, or by the main program and some other procedure, have the
form:

var name,name,...;
const name=value, name=value, ...;
init name:=value, name:=value, ...;

The var statement merely names a list of global variables which are assigned an initial om value
as usual. The const statement defines identifiers to be associated with specified constant values.
Such constant identifiers cannot appear on the left side of assignments. The right hand sides in
const declarations may be denotations, previously declared constant names, or sets or tuples of
constant values. The init statement has is similar in form to the const statement, but declares vari-
ables which are initialized to the given constant value, but may be subsequently modified.

All variables and constants declared in the global declarations section may be accessed by
any part of the program, including any procedures or operator definitions.

Any identifiers which are referenced in the main program block, but which are not included
in the global declarations are private to the main program block and may not be accessed by proce-
dure and operator definitions.

1.13.2. Main Program Block
The main program block consists of a series of statements followed by any refinements ref-

erenced in this series of statements. A refinement is a block of statements which is labeled with an
identifier. Within the main sequence of statements, a refinement can be referenced by using its
label as a statement. Refinements can themselves reference other refinements, but the definitions of
refinements do not nest, they are written in a linear sequence, one after another. The following is
an example of a main program block which uses refinements. Note that the definitions of the

Chapter 1 The SETL Programming Language Page 30

refinements themselves are similar in form to normal label definitions, except that the name is fol-
lowed by two colons.

Chapter 1 The SETL Programming Language Page 31

program quadratic;

input data;
solve equation;
output results;

input data::
read(a,b,c);
print(a,b,c);
check eof;

solve equation::
x := (-b + sqrt(b:b-4:a:c)) / (2*a);

output results::
print(’ root is ’, x);

check eof::
if eor then print(’improper data’); stop; end if;

end program quadratic;

Refinements are executed by inserting the series of statements of the refinement in place of the ref-
erence to the refinement. Unlike procedures, there is no way of passing parameters, and the state-
ments of the refinement have full access to all identifiers of the main program, including its labels.
A giv en refinement may be referenced only once. If a section of code is to be used more than once,
it should be made a procedure rather than a refinement.

1.13.3. Procedure Definitions
The form of a procedure definition is:

proc prname(arg1, arg2, arg3);
(local declarations)
block
(refinements)

end proc tokens; $ or end proc; or end;

This defines a procedure whose name is prname, which must be an identifier not used for
any other purpose in the program. The list of parameters arg1, arg2 are identifiers which are
assigned the argument values when the procedure is called. These names are strictly local to the
procedure, and must be different from the names of any globally declared identifiers. Within the
procedure, these names act as ordinary identifiers. It is permissible to reassign new values to these
identifiers in the body of the procedure, but such assignments do not affect the parameters in the
call since the call is a call by value. If there are no arguments, then the parentheses surrounding
the argument list may be omitted, or a null list may be retained.

Chapter 1 The SETL Programming Language Page 32

The declaration section, if it is present, contains var, const and init statements in the same
format as that used in the global declaration section. Any names declared in this manner are
strictly local to the procedure, and must be different from any names declared as global. Identifiers
used in the body of the procedure which are not declared either locally or globally are taken to be
local, as though they had been declared locally using a var statement. The initialization of vari-
ables to om (if declared by var, or implicitly declared) or to the specified values in the init state-
ments occurs on each entry to the procedure.

Within the body of the procedure, the return statement is used to return control to the caller,
and provide a returned value. The format is:

return expression;
return; $ means return om

If no return statement is executed, the procedure returns after executing the final statement in the
block, the returned result being om.

Procedures may be called either as a statement (in which case the returned value is ignored),
or as a function in an expression, in which case the returned value is the value of the function call:

prname(10,120,30); $ call as a statement
a := b + prname(1,2,3); $ call as a function

Multiple values can conveniently be returned from a procedure by using tuple formers and tuple
assignment:

[x,y,z] := prname(2,3);
proc prname(arg1,arg2);
return [10,20,a+b];
end proc;

Procedures in SETL may be called recursively (i.e. they may call themselves directly or indi-
rectly). All identifiers which are local to the procedure are saved recursively to avoid confusion
between values at different recursion levels:

proc factorial(arg);
if arg=1 then

return 1;
else

return arg * factorial(arg-1);
end if;

end proc factorial;

Procedures may use refinements in the same manner as described for the main program block.
These refinements are private to the procedure, and their definitions occur prior to the end proc;
which terminates the procedure definition. There is no nesting of procedure definitions, all

Chapter 1 The SETL Programming Language Page 33

procedures can be called from anywhere in the program.
Procedures declared in the manner given above allow only call by value. The following extended
form of procedure definition allows one or more arguments to be specified as value receiving:

proc name (type arg, type arg, type arg, ...);

where type is one of the following:

rd

The argument is read only. This is the default value obtained if type is omitted, and causes the
argument to be passed by value in the manner already described. Within the body of the procedure
the parameter name is treated as a variable, but modifications to the value of such variables do not
affect the arguments in the call.

rw

The argument is read/write. The value of the argument will be passed as the initial value of the
parameter. The parameter identifier is treated as a variable in the body of the procedure, and may
be reassigned a new value. On return from the procedure, whatever final value is in this variable at
the point when the return statement is executed is transmitted back as the new value of the calling
argument (which must have the proper syntax for an assignment left hand side).

wr

The argument is write only. On entry to the function, the initial value of the corresponding param-
eter is set to om. The parameter is treated as a variable and assigned to the calling argument on
return in the same manner as described for a read/write parameter.

There is also a form which allows a variable number of arguments to be passed to a proce-
dure:

proc name (type arg1, type arg2, .. type argn (*));

Such a procedure may be called with any number of arguments greater than n-1. The extra argu-
ments are gathered into a tuple which is assigned as the value of the argn parameter. Thus the ref-
erence argn(2) in the body of the procedure refers to the n+1’th argument in the call. The special
symbol nargs gives the total number of arguments present in the call. Only the last parameter may
be followed by (*) to indicate that it is variable in length. A variable length parameter may as
usual be specified to be rd, rw or wr (with rd being the default). In the wr case, the initial value
of argn is the null tuple value.

1.13.4. Operator Definitions
A special form of procedure definition is used to introduce a program defined operator. It is

identical to an ordinary procedure except for the initial definition line which replaces the proc line:

Chapter 1 The SETL Programming Language Page 34

op .name(a); $ to define a unary operator
op .name(a,b); $ to define a binary operator

The effect of such a definition is similar to that of the corresponding procedure declaration, except
the call uses ordinary operator (expression) format. The operator name is preceded by a period,
both in the definition (as shown above) and when the operator is used in an expression.

The precedence of all binary operators defined in this manner is lower than that of the stan-
dard system operators except for the assigning operators. Operators defined in this manner always
have read only arguments (as though rd were specified). In the case of a defined binary operator,
the corresponding assignment operator and compound operator forms are automatically made
available.

CHAPTER 2

PROGRAMMING EXAMPLES

At this stage we have seen enough of the SETL language to show some complete programs.
All programming languages have an associated style of programming. The purpose of this chapter
is to give an idea of typical SETL programming style.

In each case, the statement of the problem is given first (in quotations). Following this, the
program is developed in a "stream of conciousness" fashion, explaining the steps in obtain-
ing the solution, and giving fragments of the program as they are created. Finally, the entire
program is given.

2.1. A Curriculum Planning Problem
"In planning the sequence of presentation of topics in a course, one objective is to present

topics in an order which ensures that all necessary prerequisites for understanding one topic have
been covered before it is presented." (The same problem arises in writing a book -- hopefully this
book is an example of a solution to this problem!)

"The purpose of the program is to compute a possible sequence of topics given data on pre-
requisites. The input data will be pairs of topics, each of which is identified by a string name. For
example, one input line might be:

’prime numbers’ , ’greatest common divisor’

which means that "prime numbers" must be presented before "greatest common divisor" is consid-
ered. In general it will be necessary to trace back chains of requirements. If there is also an input
line:

’division’ , ’prime numbers’

then of course it will be necessary to present division before discussing the greatest common divi-
sor problem.

"For a given set of data, more than one order may be possible. For example, suppose the
input data is as follows:

Chapter 2 The SETL Programming Language Page 35

Chapter 2 The SETL Programming Language Page 36

’a’ , ’b’
’b’ , ’c’
’d’ , ’c’

then three possible orderings exist:

’a’ , ’b’ , ’d’ , ’c’
’a’ , ’d’ , ’b’ , ’c’
’d’ , ’a’ , ’b’ , ’c’

For this problem, the program is only required to print out one (arbitrarily chosen) possibility
where more than one exists.

"Another possible situation is that no acceptable ordering exists as in the following example:

’a’ , ’b’
’b’ , ’c’
’c’ , ’a’

where it is obviously impossible to satisfy the required condition. If this situation is encountered,
the program is expected to print an error message."

In approaching a problem of this complexity, the first decision to be made is the form in
which data is to be represented inside the program. If this decision is made incorrectly, then trou-
ble will be encountered in constructing the algorithm. For example, the decision to store the pairs
of prerequisite information in a tuple would be an error in this case, as will become clear later on.
The general rule in SETL is to use maps wherever possible. This may take some practice, espe-
cially if you are used to programming in some other language, but remember this simple principle:
find the maps, they are always there!

In the problem at hand, we can naturally represent the pairs of data as a map. This map will
be multi-valued, since a given topic may be a prerequisite for more than one other topic. The fol-
lowing example (for a course on wine-making) will be used throughout the remaining discussion:

’grapevines’ , ’harvest’
’hiring’ , ’harvest’
’harvest’ , ’fermentation’
’yeast’ , ’fermentation’
’alcohol’ , ’yeast’
’bottles’ , ’bottling’
’hiring’ , ’bottling’
’fermentation’ , ’bottling’
’bottling’ , ’marketing’
’hiring’ , ’marketing’

In addition to the basic map which contains the prerequisite data, it will be useful to build an aux-
iliary set which contains the list of topics. The following initial code for the program will read in
the data and build these structures:

Chapter 2 The SETL Programming Language Page 37

program course;
follows := topics := { };
loop do

read(a,b);
if eof then quit; end;
follows with:= [a,b];
topics with:= a;
topics with:= b;

end;

Note that since topics is a set, it cannot contain duplicate elements, so each topic occurs only once
in topics, even if it occurs more than once in the input data.

As the initial step we can output any topic which has no prerequisites. In terms of our data
structure we are looking for an element in topics which has the property that there is no other ele-
ment in topics which is its prerequisite. In SETL this can be expressed by:

if exists next in topics
| not exists a in topics

| [a,next] in follows

After evaluating this test, next will be a possible choice for the first topic to be output. If there is
more than one topic which meets the requirement, then one of them is arbitrarily chosen. In the
example being considered, a possible selection for next would be ’bottles’, which has no prerequi-
sites.

We can build an algorithm using this approach by successively removing elements from top-
ics. The above test can then be used to extract topics in sequence which meet the requirement that
they do not have prerequisites among those topics not yet chosen. The test will finally fail when
there are no topics which meet the requirement. If this happens because topics is null (i.e. all top-
ics have been output), then all is well, otherwise there is a "cycle" in the data which means that it
is impossible to find an acceptable order. This approach results in the following completion of the
program:

loop while exists next in topics
| not exists a in topics

| [a,next] in follows
do

topics less:= next;
print(next);

end loop;

if topics /= { }
then

print(’No ordering is possible’);
end if;

end program course;

Chapter 2 The SETL Programming Language Page 38

The second time through the loop, assuming ’bottles’ was picked on the first loop, ’bottling’ might
be picked. Although the pair [’bottles’,’bottling’] is in follows, it does not prevent the choice,
since ’bottles’ was removed from topics in the first loop.

This program is complete but inefficient, in that each time one element is removed from top-
ics, the entire search process is repeated. Except for skipping the one element which was just out-
put, the calculations involved in this search are unchanged. This means that we are repeating work
unnecessarily.

This is a typical situation which arises in the construction of efficient algorithms. What we
need is some way of "remembering" the results of the previous computation (in this case the
search). After an element is removed, we just need to modify the remembered result to reflect the
change which has occurred.

In this particular example, the key is to build an auxiliary map which shows the number of
prerequisites of each topic, counting only topics which have not yet been output. At each stage,
looking for a topic with no prerequisites means finding a topic whose number of prerequisites is
zero, as determined by reference to the auxiliary map. When this element is removed, the auxiliary
map is adjusted to reflect the change, which can be done without recalculating the entire map. To
implement this idea, we must first build the auxiliary map:

numpre := {[a,0] : a in topics};
(for [a,b] in follows) numpre(b) +:= 1; end;

For the example at hand, the numpre map would contain:

{ [’grapevines’ , 0],
[’harvest’ , 2],
[’hiring’ , 0],
[’fermentation’ , 2],
[’yeast’ , 1],
[’alcohol’ , 0],
[’bottles’ , 0],
[’bottling’ , 3],
[’marketing’ , 2] }

Now the main loop of the algorithm appears as follows:

loop while exists next in topics
| numpre(next) = 0

do
topics less:= next;
print(next);
(for a in follows{next})

numpre(a) -:= 1;
end;

end loop;

Chapter 2 The SETL Programming Language Page 39

The test for cycles is unchanged. For the current example, a possible choice for next in the first
loop is ’hiring’, since numpre(’hiring’) is zero. In the adjustment loop following this choice, fol-
lows{’hiring’} is the set of topics which had ’hiring’ as a prerequisite, i.e. the set:

{’harvest’ , ’bottling’ , ’marketing’}

Since ’hiring’ is to be removed from topics, the number of predecessors of each of these elements
should be reduced by one to give:

numpre(’harvest’) = 1
numpre(’bottling’) = 2
numpre(’marketing’) = 1

The remainder of the numpre map is unchanged. On the next loop, we might get ’grapevines’
since numpre(’grapevines’) is zero. Now follows{’grapevines’} is the singleton set {’harvest’} so
we make one change to the numpre map:

numpre(’harvest’) = 0

making ’harvest’ an eligible possibility for selection on the third loop.
This is a more efficient procedure than our previous attempt. However, we still have a source

of inefficiency, since numpre is searched at each step to find zero entries. Applying the same prin-
ciple of avoiding doing the same thing twice, we can make one final improvement in the program.
To avoid the search of numpre, we maintain an auxiliary set, called nopre, which is the set of top-
ics whose numpre value is zero. At each stage we need merely pick an element from nopre. As the
numpre map is adjusted when the element is removed, we check for any entries whose numpre
value becomes zero, and add them to nopre. This avoids all searching. The first step in following
this approach is to initialize the nopre set right after the initialization of numpre:

nopre := {a in topics | numpre(a) = 0};

For the example we are using, nopre would have the initial value:

{’alcohol’, ’hiring’, ’grapevines’, ’bottles’}

Remember that the order of elements in a set is not defined, so that when an element is picked
from nopre, there is a four way uncertainty. This aspect of the SETL program models the fact that
there is more than one acceptable solution to the problem. The main loop of the program now
becomes:

loop while nopre /= { } do
next from nopre;
topics less:= next;
print(next);
(for a in follows{next})

numpre(a) -:= 1;

Chapter 2 The SETL Programming Language Page 40

if numpre(a)=0 then nopre with:= a; end;
end;

end loop;

If ’hiring’ is picked in the first loop, then numpre is adjusted as described above and nopre
becomes:

{’alcohol’ , ’grapevines’ , ’bottles’}

In the second loop, suppose that ’grapevines’ is selected. As numpre(’harvest’) is decremented, it
becomes zero, so ’harvest’ is added to nopre, giving the new nopre value:

{’harvest’ , ’alcohol’ , ’bottles’}

We now giv e the complete program with comments added. This final version contains two addi-
tional refinements. The input data is printed out, which is a good general procedure to follow and
makes the program easier to use. The second change is a change in the test for cycles which avoids
the need to remove elements from topics in the loop.

program course;

$ follows is map showing prerequisites
$ topics is set of all topics

follows := topics := { };

$ loop to read in data, building follows, topics

loop do
read(a,b);
if eof then quit; end;
follows with:= [a,b];
topics with:= a;
topics with:= b;
print(a,’ ’,b);

end loop;

$ build auxiliary information structures
$ numpre(x) = count of remaining prerequisites of x
$ nopre is set of topics with numpre(x) = 0

print();
numpre := {[a,0] : a in topics};
(for [a,b] in follows) numpre(b)+:=1; end;
nopre := {a in topics | numpre(a)=0};

Chapter 2 The SETL Programming Language Page 41

$ loop to print elements in appropriate order
$ adjusting numpre and nopre for element picked

loop while nopre /= { } do
next from nopre;
print(next);
(for a in follows{next})

numpre(a) -:= 1;
if numpre(a)=0 then nopre with:= a; end;

end for;
end loop;

$ test for cycles, indicated by a remaining
$ topic with numpre non-zero

if exists a in topics | numpre(a) > 0 then
print(’No ordering is possible’);

end;

end program course;

This problem is actually a specific example of a general problem known as "topological
sorting", in which a linear order must be generated from a partial order. A partial order is essen-
tially a directed graph. In fact a multi-valued map, such as we have used in this program, is often a
convenient representation for a directed graph. For the data used in the example, the map "fol-
lows" may be thought of as representing the following graph:

Chapter 2 The SETL Programming Language Page 42

grapevines

harvest

fermentation

bottling

marketing

bottles

alcohol yeast

hiring

CHAPTER 3

CHARACTER SET & DAT ATYPES

This chapter describes the most elemental aspects of the SETL language: how characters
can grouped together to form those symbols which are the main consituent components of a SETL
program.

3.1. Character Set
SETL programs are written using characters from the standard SETL character set which

contains the following characters:

A-Z upper case letters
0-9 numeric digits
< less than
> greater than
(left parenthesis
) right parenthesis
´ quote
. period
, comma
: colon
; semicolon
/ slash
+ plus
− minus
$ dollar sign
? interrogation
number sign

underline
{ left set bracket
} right set bracket

Chapter 3 The SETL Programming Language Page 43

Chapter 3 The SETL Programming Language Page 44

[left tuple bracket
] right tuple bracket
| such that character

When using SETL on a particular machine, it may be the case that certain of these characters are
not available. For the last five characters in the list, standard substitutes are available (since these
are the characters which are most likely to be missing):

Chapter 3 The SETL Programming Language Page 45

{ can be written as <<
} can be written as >>
[can be written as (/
] can be written as /)
| can be written as ST

The remaining characters are always available (at worst the graphic used will vary from the one
printed in the above list). This means that the process of translating a SETL program written in
the standard character set into the required character set for actually running the program is at
most a one to one substitution.

Certain implementations may augment this character set. In particular, if two cases of letters
are available, then lower case letters are permitted. SETL treats upper and lower case letters as
indistinguishable (except in string constants as further described below).

In addition to this standard character set, there is also defined a publication character set
which is fully described in appendix nn. The publication set contains various "mathematical" sym-
bols and is chosen without regard to availability of characters on actual computers. Nevertheless,
on many computers it will be possible to implement some of these characters, or at least to supply
acceptable substitutes for them. A particular implementation will describe which if any of the
characters in the publication set it implements. A program may use such characters as are defined
to be implemented, but if the program is moved to another implementation which does not imple-
ment the same subset of publication characters, then a translation problem may be encountered.
Therefore the general rule is to use only the standard character set if there is any possibility that
the program will be moved to another implementation.

The above discussion of character sets applies in all contexts except for input data and string
constants appearing in the program. In both these cases, the full character set available on the par-
ticular computer in use are used. Since such character sets vary widely from one machine to
another, SETL makes no attempt to define the set of available characters for these uses. Note also
that upper and lower case letters are distinct in these contexts. Programs which are intended to be
moved from one implementation to another can minimize conversion difficulties by restricting
data and string constants to the standard character set.

3.2. Syntactical Tokens
A program is a stream of syntactical tokens which are in one of the following categories:

Identifier
A string of letters, digits and a special character called the break character (in this book, and
in most implementations, the break character is an underline). An identifier must start with
a letter and contain no blanks. It can be any length, but must not be split across a line bound-
ary. Upper and lower case letters can be used interchangably and are equivalent.

Chapter 3 The SETL Programming Language Page 46

Examples: thisisalongidentifier
this is a longer identifier
i
j107x

None of these identifier names can be the same as any reserved keyword or operator name.
Appendix nn contains a complete list of such reserved names.

Ke yword
A keyword is a string of letters which is used for a special purpose such as introducing a
control structure. All keyword names are reserved words and may not be used as identifiers.
Appendix nn contains a complete list of standard keywords in SETL.

Punctuation
Certain special characters and sequences of special characters appear as separators:

; semicolon
(left parenthesis
) right parenthesis
[left tuple bracket
] right tuple bracket
(/ alternate left tuple bracket
/) alternate right tuple bracket
{ left set bracket
} right set bracket
<< alternate left set bracket
>> alternate right set bracket
: colon
| such that
, comma
.. integer range
... alternate for integer range

Operators
Certain special characters and sequences of special characters are used for names of stan-
dard operators:

:= assignment, assigning operator suffix
+ addition, set union, concatenation
− subtraction, set difference
* multiplication, set intersection
/ division, compound operator suffix
** exponentiation

Chapter 3 The SETL Programming Language Page 47

< less than
> greater than
<= less than or equals
>= greater than or equals
= equals
/= not equals
cardinality
? interrogation

Other standard operators have names which are similar in form to identifier names. All such names
are reserved and cannot be used as identifier names in a program. Appendix nn contains a com-
plete list of such reserved names.
User Defined Operators

User defined operators have names which start with a period. The names themselves may
match other identifier names, or reserved words, although such multiple usage is usually not
desirable. A given operator name may be used for only one operator.

Denotations
Constant values of basic datatypes are represented by tokens called denotations (e.g. 123 is a
token representing an integer value). A subsequent section gives the rules for constructing
denotation tokens.

Comments
Normally the SETL compiler processes all columns of each input line. However, the charac-
ter $ (dollar) is treated as an end of line signal and any text following the $ is ignored (apart
from being listed in the program listing generated by the compiler). This means that arbi-
trary comment text may be written on any line following a $ sign. In particular, lines which
have a $ in column one are entirely ignored and thus function as comment lines. The SETL
compiler always ignores blank lines, so they may be used freely to space the program and
comment text.

3.3. Datatypes
The following primitive datatypes appear in SETL:

integer
Integers are signed integer values. Unlike many other programming languages, SETL places
no limit on the magnitude of integers, although enormous integers might eventually exceed
the available storage. Of course the programmer should expect that adding two one digit
numbers will be more efficient than adding two ten thousand digit numbers. There is only
one zero in SETL and it is considered to be neither positive nor negative.

real Real number values correspond to those available on the machine in use. Typically this will
mean that implementation dependant limits and accuracy will apply. SETL has only one pre-
cision of real numbers, and will choose to use "double precision" values on machines whose
word size is small (e.g. 32 bits). There is only one real zero value in SETL and it is consid-
ered to be neither positive nor negative.

Chapter 3 The SETL Programming Language Page 48

string
These are arbitrary length strings of characters. As in other languages, SETL is vague about
what set of characters will be permitted in STRING values. In practice, the allowed set will
correspond to the characters available on the particular machine in use.

boolean
There are two boolean values, TRUE and FALSE. These values are yielded as the result of
test operators and are often used to control the flow of execution.

atom These are special unique values which are used in constructing data structuring maps. The
use of atoms is described in the chapter on data structures.

om Om is used to represent an undefined value in the following circumstances:

Undefined variable
Undefined element of a tuple
Value of map at undefined point
Element selected from the null set
Compound operator applied to null set or tuple

Om is not a value from a technical point of view and does not have a type (the type operator
applied to om causes an error), however it is sometimes convenient to regard om as being
the "value" of an undefined variable or element.

3.4. Denotations
For each of the basic datatypes, denotation tokens can be constructed which represent con-

stant values of particular datatypes.

3.4.1. Integer Denotations
An integer denotation consists of a sequence of digits of any length and has as its value the

corresponding decimal number. No blanks may appear within the constant and a single constant
must appear entirely on one input line.

There are no negative denotations as such, if −123 appears in a program, then it is composed
of two tokens: the − sign is a unary operator, and the 123 is an unsigned integer denotation.

Examples:

0
13
0013 $ same value as 13
123497697623476124976734671249237612467676712497614

3.4.2. Real Denotations
A real denotation consist of an optional integer part consisting of a string of digits, followed

by a period (decimal point), followed by a non-empty string of digits which is the fractional part,
followed by an optional exponent.

Chapter 3 The SETL Programming Language Page 49

An exponent consists of the letter E (upper or lower case if both are available), followed by
an optional sign (+ or −), followed by a non-empty string of digits.

Blanks may not be used within the denotation, and a single denotation must be contained
entirely on one line of the program.

Examples:

3.141592653589793
0.0

.0 $ but not 0.

.01e+10

.01e-10
1.0E0
1.0E+10 $ but not 1.E10 or 1E10

3.4.3. String Denotations
String denotations consist of a series of zero or more characters enclosed in apostrophe

characters ("single quotes"). If blanks appear in this sequence, they are significant, and represent
blank character values.

Any of the characters available on the machine in use may appear in a string value,
although programs which are intended to be run on a variety of different computers should restrict
their use to commonly available characters (e.g. those used within the SETL language itself) to
avoid translation problems.

If the string quote mark itself appears within a string value, then it must be represented as a
sequence of two successive string quotes with no intervening blank.

If the sequence of characters crosses a line boundary, then a string quote must signal the end
of the characters on the first line, and another quote signals the start of the characters on the sec-
ond line. This sequence of quote, line break, quote is called a string break and is not included in
the actual string value.

Examples

’Don’’t tread on the grass’
’a m ,;;;;;’
’’ $ the null character string

3.4.4. Boolean Denotations
The denotations TRUE and FALSE can be used to stand for the two possible boolean values.

Chapter 3 The SETL Programming Language Page 50

3.4.5. Other Denotations
The symbol om may be used to represent the undefined value (it is not strictly a denotation,

since om is not strictly a value). The only sensible contexts for the appearence of om are the right
hand side of an assignment, and as an operand for an = or /= test whose purpose is to test for unde-
fined.

There are no denotations for atom values.

CHAPTER 4

EXPRESSIONS & ASSIGNMENT STATEMENTS

An expression in SETL is used to compute a value or test some condition. There are five
forms for an expression:
• Basic operand, includes identifiers, denotations, set and tuple formers, subscripted refer-

ences to tuples, map references, conditional expressions and parenthesized expressions.
• Special system value (eof, newat, nargs, ok, lev, time, date).
• Unary operator, which is written in front of its operand which is itself an expression and

which causes a computation to be made using the operand value as input.
• Binary operator, which is written in between its two operands, which are themselves expres-

sions. Causes a computation to be made using the two operand values as input.
• Quantified test, one of three forms (exists, notexists, forall) which excute an implied loop

testing a condition and yield a boolean result.
These rules leave some ambiguity in forming an expression, for example in the expression a+b*c,
is the operator + applied to the two operands a and b*c, or is the operator * applied to the two
operands a+b and c? These ambiguities are resolved by the precedence rules described later in this
chapter, for example these rules specify that the first alternative is the one taken in this case. It is
also possible to use parentheses to alter or emphasize the order prescribed by these rules. For
example:

1 + 2 * 3 $ = 7 by precedence rules
1 + (2 * 3) $ = 7
(1 + 2) * 3 $ = 9

The following sections give the exact rules for forming basic operands, together with a list of all
the standardly defined operators.

4.1. Basic Operands and Special System Values
This section describes the various possibilities for basic operands in expressions.

Chapter 4 The SETL Programming Language Page 51

Chapter 4 The SETL Programming Language Page 52

Denotations
Denotations stand for the value which they denote. For example the denotation 123 stands
for the integer value 123.

Identifiers
Identifiers stand for the value contained in the associated variable, as set by a previous
assignment statement.

Tuple Enumeration
A tuple value constructed by enumeration consists of zero or more arbitrary expressions,
separated by commas, with values other than om and enclosed in tuple brackets [and].

Integer tuple former
An integer tuple former has one of the two forms:

[expression1, expression2 .. expression3]
[expression1 .. expression3]

The effect is to construct a tuple containing the specified range of integer values. The starting
value is given by expression1. If expression2 is present, then it specifies both the step size and
direction of the sequence which produces the remaining values. The step is the difference expres-
sion2 minus expression1. This value must be non-zero. If it is positive, then expression3 is the
maximum value which terminates the sequence, if negative, then it is the minimum value terminat-
ing a reverse sequence. If expression2 is omitted, then the default step size is 1 and the sequence is
ascending (i.e. the default for expression2 is expression1 plus 1).
Tuple Former

A tuple former is written:

[expression : iterator]

and computes a tuple value in an implied loop. The syntax and meaning of tuple formers is
further described in the section on loops.

Set Enumeration
A set value constructed by enumeration consists of zero or more arbitrary computational
expressions with value other than om, separated by commas, and enclosed in set brackets {
and }.

Set Former
A set former is written

{expression : iterator}

and computes a set value in an implied loop. The syntax and meaning of set formers is fur-
ther described in the section on loops.

Integer set former
An integer set former has one of two possible forms:

{ expression1, expression2 .. expression3 }

Chapter 4 The SETL Programming Language Page 53

{ expression1 .. expression3 }

The effect is to construct a set using the sequence of integers specified. This sequence of
integers is the same as that implied in an integer tuple former as previously described,
except that the resulting set does not retain the order of the elements, since sets are always
unordered.

String Slice
A string slice obtains a substring from a string value. The syntax is:

string(start..end)

where string is the string value, which must be a basic operand, and start and length are arbi-
trary expressions yielding integer results. Start is the starting position (with the first charac-
ter in the string numbered 1), and end is the ending position numbered in the same manner.
The resulting string is the substring which includes both the starting and ending characters.
Both the start and end values must be in range (greater than zero and less than or equal to
the length of the string). The one exception to this rule occurs when the end value is less
than the start value. In this case the start and end values need not be in range and the result is
always a null string. The following abbreviated forms are permitted:

string(start) $ means string(start..start)
string(start..) $ means string(start..#string)
string(..start) $ means string(1..start)

Tuple Slices
Tuple slices have the same basic format as string slices:

tuple(start..end)

The value tuple, which must be a basic operand, is the tuple from which a slice is to be
selected. Start and end are arbitrary integer expressions which specify the desired subtuple.
Both start and end must be in range (greater than zero and less than or equal to the length of
the tuple). As in the case of string slices, the one exception occurs if the end value is less
than the start value, in which case a null tuple is obtained as the result regardless of whether
or not the start and end values are in range. Note that a tuple can never hav e any undefined
values at the end, so the resulting tuple is shortened if necessary to meet this requirement as
illustrated by the following examples:

a := [1,3,7,9];
a(8) := 13;
b := a(2..3); $ b = [3,7]
b := a(2..4); $ b = [3,7,9]

Chapter 4 The SETL Programming Language Page 54

b := a(2..5); $ b = [3,7,9]
b := a(11..10); $ b = []

The following short hand notations are available:

tuple(start..) $ means tuple(start..#start)
tuple(..start) $ means tuple(1..start)

Note that, in contrast to string slicing notation, the form tuple(start) is a selection, not a one
element slice.

Tuple Selection
A tuple selection, or tuple subscripting operation yields a specified single element from a
tuple. The form is:

tuple(index)

where tuple is a basic operand yielding the tuple value to be subscripted, and index is an
arbitrary expression with a positive value which selects the desired element. If index
exceeds the maximum index, or corresponds to an undefined element value, the result is
undefined (om). An error results if the index value is zero or negative.

Single Valued Map Reference
A single valued map reference is written:

map(domval)

where map is a basic operand which yields a set value which must contain only pairs (two
element tuples), and domval is an arbitrary expression giving the domain value. Domval
must not be om, and there must be exactly one pair [x,y] in map such that domval=x. The
result of the map reference is the range value y.

Multi-valued Map Reference
A multi-valued map reference is written:

map{domval}

where map is a basic operand or parenthesized expression which yields a set value which
must contain only pairs (two element tuples), and domval is an arbitrary expression giving
the domain value. The result is expressed by the following equation:

map{domval} = {y : [x,y] in map | x = domval}

In particular, the value is { } if there is no pair in the set with a matching domain value. If
there is only one pair, the result is a singleton set containing the one range value.

Chapter 4 The SETL Programming Language Page 55

Multi-argument Map References
It is sometimes convenient to have a multi-argument map, i.e. a map whose elements are
retrieved using two or more subscript values. Such maps are modeled in SETL by using a
map where the elements of the domain are themselves tuples of values. For example, the
equivalent of a 2 by 2 array can be modeled as the map:

{ [[1,1] , v11],
[[1,2] , v12],
[[2,1] , v21],
[[2,2] , v22] }

A special notation is available to facilitate references to such a map:

map(a,b..n) means map([a,b...n])
map{a,b..n} means map{[a,b...n]}

This means that the extra tuple brackets can be omitted in such a reference, giving a notation
similar to multi-dimensional array references in other languages.

Function Calls
A function call is a call to a procedure which returns a value, and has the general form:

fname(expression,expression,...expression)

Further details on function calls are contained in the chapter on procedures.
Special Value

Certain special reserved names correspond to values available from the SETL run time sys-
tem. The following is a list of all such names:

newat $ yields a unique atom
eof $ tests for end of file
nargs $ number of arguments
lev $ current backtracking level
ok $ backtracking environment switch
time $ time of day
date $ current date

Newat yields a new atom value which has the property of being different from any previ-
ously obtained atom. The use of atoms in general, and the newat function in particular, is further
described in the chapter on data structures.

Eof is used following a read or other input function call. It returns a boolean value (TRUE
or FALSE) indicating whether the read just performed caused an end of file to be encountered
(TRUE means that an end of file was encountered). If eof is referenced before any input operation
has been performed, the result is FALSE.

Chapter 4 The SETL Programming Language Page 56

Nargs yields the number of arguments which appear in the call to a procedure. It is used
within the procedure, and is most useful in conjunction with the feature which allows a variable
number of arguments to a procedure. If nargs is used outside any procedure (in the "main" pro-
gram), the value is zero.

Lev and ok are only used in conjunction with the backtracking feature, which is fully
described in a separate chapter.
Parenthesized Expression

Any expression enclosed in parentheses can be used as a basic operand. This is the rule
which allows the use of parentheses to control the order of operations.

Conditional Expressions
Conditional expressions (if expressions and case expressions) may be used as basic
operands. These constructions are fully explained in the following chapter.

expr Blocks
The expr block allows a value to be computed from a sequence of statements, and used as a
basic operand in any suitable context, e.g. as the operand of some other operator. The form
is:

expr block end
The effect is to execute the sequence of statements in block. At least one of these state-

ments will be, or contain, a yield statement:

yield expression;

As soon as the yield statement is encountered, execution of the expr block is terminated,
and the value of the expr block is the value of the expression in the yield statement. It is possible
to have more than one yield yield statement in the same expr block, and the last statement is not
required to be a yield statement, although it often will be. If execution of the expr block completes
without executing a yield statement, then the result is om. It is possible, though unusual, to nest
expr blocks, i.e. to use an expr block as an operand within another expr block, but in this case, a
yield statement in the inner block always refers to the inner block. The use of a yield statement
other that statically inside an expr block is erroneous, in particular, it is not valid to execute the
yield in a function or refinement called within the expr block.
4.2. Operators

Operators yield a value using as input one (unary) or two (binary) operands. The following
is a complete list of predefined operators in the SETL system. The effect of each operator is
defined informally in this section. A more formal set of definitions appears in appendix nn where
each operator is defined precisely using a SETL operator definition. This appendix may be con-
sulted to determine the exact effect of the operator in special cases.

4.2.1. Unary Operators
Unary operators compute a value from a single input operand which is written to the right of

the operator token. In the following list, the allowable operand datatype is indicated. If an operator
is used with a datatype which is not in the list, then an error results.

Chapter 4 The SETL Programming Language Page 57

+ integer The result is the integer operand, unchanged in value.
+ real The result is the real operand, unchanged in value.
− integer The result is the negative of the integer operand. −0 is equal to 0.
− real The result is the negative of the real operand. −0.0 is equal to 0.0.
set Number of elements in the set as an integer.
string Number of characters in the string as an integer.
tuple Index of highest defined element in the tuple, zero if applied to the null

tuple. This is equal to the number of defined elements in the tuple in
the case where there are no "holes".

abs integer Yields the absolute value of the integer operand. Returns the value
unchanged if it is zero or positive, and negates it if it is negative, so
that the result is always non-negative.

abs real Yields the absolute value of the real operand. Returns the value
unchanged if it is zero or positive, and negates it if it is negative, so
that the result is always non-negative.

abs string The operand value must be a one character string or an error results.
The returned result is the internal integer code for the character. Note
that abs and char are inverse operators.

acos real Yields the arccosine of the real operand which is given in radians. An
error results if the operand is out of range.

arb set The result is an arbitrary element from the set. If the set is the null set,
then the result is om.

asin real Yields the arcsine of the real operand which is given in radians. An
error results if the operand is out of range.

atan real Yields the arctangent of the real operand which is given in radians.
ceil real Ceil yields the smallest integer x such that x >= real. For example ceil

3.5 and ceil 4.0 both yield 4.0 and ceil −3.5 and ceil −3.0 both yield
−3.0.

char integer Yields a string consisting of the character whose internal code is equal
to the value of the integer operand. The range of permissible input
operands and their interpretation is implementation dependent. An
error results if the operand is out of range.

cos real Yields the cosine of the real operand which is given in radians.
domain set The set operand must be a map, i.e. it must consist entirely of pairs.

The reference yields the domain set as defined by the equation:

domain set = {a : [a,b] in set}

ev en integer Yields TRUE if the integer operand is exactly divisible by two, and
FALSE if it is not divisible by two.

Chapter 4 The SETL Programming Language Page 58

expr real Yields the exponential of the real operand (i.e. the value e**operand
where e is the base of natural logarithms). An error results if the com-
putation causes real overflow.

fix real Returns the integer part of the real operand as an integer, dropping the
fractional part. The conversion is always possible, although precision
may be lost in the least significant digits for numbers of large magni-
tude.

float integer Converts the integer operand to its corresponding real value. If the con-
version causes overflow (which is possible in the case of very large
integer operands), then an error results.

is atom any Yields TRUE if the operand is of type atom, and FALSE otherwise.
is boolean any Yields TRUE if the operand is of type boolean, and FALSE otherwise.
is integer any Yields TRUE if the operand is of type integer, and FALSE otherwise.
is map any Yields TRUE if the operand is a map (i.e. it is of type set and contains

only pairs as element values), and FALSE otherwise.
is real any Yields TRUE if the operand is of type real, and false otherwise.
is set any Yields TRUE if the operand is of type set, and FALSE otherwise.
is tuple any Yields TRUE if the operand is of type tuple, and FALSE otherwise.
floor real Floor returns the largest integer x, such that x <= real. For example,

floor 3.5 and floor of 3.0 are both 3.0 and floor −3.5 and floor −4.0 are
both −4.0.

log real Yields the natural logarithm of the real operand. An error results if the
operand value is zero or negative.

not boolean Yields TRUE if the operand value is FALSE and FALSE if the operand
value is TRUE.

odd integer Yields FALSE if the integer operand is exactly divisible by two, and
TRUE if it is not divisible.

pow set Returns a set whose elements are all the subsets of the set operand,
including the null set. The number of elements will be 2**n where n is
the cardinality of the operand. pow applied to the null set yields a one
element set containing the null set as its value.

random integer Returns an integer which is pseudo-randomly distributed over the
range from zero to the given operand value, including both end points.
For example random 6 will give one of the seven integers
0,1,2,3,4,5,6.

random real Returns a real which is pseudo-randomly distributed over the range
from zero to the given operand value, including zero but not including
the operand value.

random set Returns an element from the set where the choice is governed by a
pseudo-random distribution which ensures that the probability of

Chapter 4 The SETL Programming Language Page 59

picking any particular element is the same as that for any other ele-
ment. Contrast this with arb which picks an arbitrary element, but
makes no similar guarantee on the distribution (and might in fact pick
the same element each time).

random tuple Returns an element from the tuple where the choice is goverened by a
pseudo-random distribution which ensures that the probability of any
element of the tuple (including any "holes") being picked is the same
as the probability of picking any other element.

range set The set operand must be a map, i.e. it must consist entirely of pairs.
The reference yields the range set as defined by the equation:

range set = {b : (a,b) in set}

sign integer Yields one of the integer results −1, 0 or +1 depending on whether the
integer operand is negative, zero or positive.

sign real Yields one of the integer results −1,0 or +1 depending on whether the
real operand is negative, zero or positive.

sin real Yields the sine of the real operand, which is given in radians.
sqrt real Returns the square root of the real operand. An error results if the

operand value is negative.
str integer This reference yields the decimal string corresponding to the value of

the integer, preceded by a minus sign if the value is negative (but posi-
tive values are not preceded by a plus sign).

str real Yields the decimal string corresponding to the value of the integer
using a format consistent with range and precision of the implementa-
tion. Negative values are preceded by a minus sign, but postitive values
are not preceded by a plus sign.

str string If the string operand has the form of an identifier (i.e. it starts with a
letter and contains only letters, digits and the underline character), then
str returns its operand unchanged, otherwise str yields the string value
surrounded by quotes, and with any internal quotes doubled, i.e. it
yields the string denotation corresponding to the string value.

str atom Yields a string consisting of a number sign (#) followed by an integer
value which uniquely identifies the atom value.

str boolean Yields one of the two strings ’#T’ or ’#F’ depending on whether the
operand is true or false respectively.

str om Yields the string ’*’.
str set Yields the string consisting of a left set bracket {, followed by a blank,

followed by the results of applying str to each element in the set, the
values being separated by the sequence blank, comma, blank. Follow-
ing the last value is a final blank and a right set bracket }. The null set
as an operand results in the string ’{ }’. If the set brackets are

Chapter 4 The SETL Programming Language Page 60

unavailable, then << and >> are used as replacements.
str tuple Similar result to str set except that the elements are in order by tuple

index, and the brackets are either [] or simple parentheses if these
characters are unavailable, unless the tuple has one element, in which
case tuple brackets [and] are used.

tan real Yields the tangent of the real operand which is given in radians.
tanh real Yields the hyperbolic tangent of the real operand. An error results if

the calculation causes real overflow.
type atom Yields the string ’atom’.
type boolean Yields the string ’boolean’.
type integer Yields the string ’integer’.
type set Yields the string ’set’.
type real Yields the string ’real’
type string Yields the string ’string’.
type tuple Yields the string ’tuple’.

4.2.2. Binary Operators
Binary operators compute a result value from two input operands. The operator token

appears between the two operands which are referred to as the left and right operands of the opera-
tor. In the following list, the allowable combinations of operand datatypes are indicated. If an
operator is used with a combination of datatypes not in the list, then an error results.
integer + integer Yields the sum of the two integer operand values. Overflow is not pos-

sible, since integers can be of arbitrary magnitude.
real + real Yields the real sum of the two operands. An error results if the addi-

tion causes real overflow.
set + set Yields the set which is the union of the two set operands.
string + string Yields the string which is the concatenation of the two operand strings.
tuple + tuple Concatenates its two tuple operands.
integer - integer Yields the difference of the two integer operands. Overflow is not pos-

sible.
real - real Yields the real difference of the two operands. An error results if the

subtraction causes real overflow.
set - set Yields the difference between the two set operands, i.e. the set of all

elements which are contained in the first operand, but not contained in
the second operand.

integer * integer Yields the product of the two integer operands as an integer. Overflow
is not possible.

Chapter 4 The SETL Programming Language Page 61

real * real Yields the read product of the two operands. An error results if the
multiplication causes real overflow.

set * set Yields the set which is the intersection of the two set operands.
string * integer Yields a string consisting of integer number of duplications of string.

For example, ’ab’*3 is the string ’ababab’. If the integer operand is
zero, then the result is the null string. An error results if the integer
operand is negative.

integer * string Means the same as string * integer (i.e. the two operands can appear in
either order).

tuple * integer Yields a tuple consisting of integer number of duplications of tuple.
For example, 3*[1,2] is the tuple [1,2,1,2,1,2]. If the integer operand is
zero, then the result is the null tuple. An error results if the operand is
negative.

integer * tuple Means the same as tuple * integer (i.e. the two operand can appear in
either order).

integer / integer Yields the quotient of the two integer operands as a real. An error
results if the divisor is zero, or if the division causes real overflow, or if
either operand is outside the range of values which can be converted to
real.

real / real Yields the real quotient of the two operands as a real. An error results
if the divisor is zero, or if the division causes real overflow.

integer ** integer Yields the integer result of exponentiating the left operand by the right.
Overflow is not possible. An error results if the right operand is neg-
ative, or if both operands are zero.

real ** integer Yields the real result of exponentiating the left operand by the right
operand. An error results if the exponentiation causes real overflow, or
if the right operand is negative, or if both operands are zero.

real ** real Yields the real result of exponentiating the left operand is complex, or
in the case of zero to the power of zero, or if the result causes real
overflow.

any#?#any Yields the left operand if it is defined, or the right operand if the left
operand is undefined (om).

any = any Yields TRUE if both operands have the same type and value, or if both
operands are undefined (om) and FALSE otherwise.

any /= any Yields FALSE if both operands have the same type and value, or if
both operands are undefined (om) and TRUE otherwise.

integer < integer Yields TRUE if the left operand is less than the right operand and
FALSE otherwise.

real < real Yields TRUE if the left operand is less than the right operand and
FALSE otherwise.

Chapter 4 The SETL Programming Language Page 62

string < string Yields TRUE if the left operand is lexically less than the right operand.
The lexical ordering of characters is implementation dependant.
Strings are compared left to right. A string is considered to be less than
a longer string which matches its initial characters (e.g. ’abc’ is less
than ’abcf’).

integer <= integer Yields TRUE if the left operand is less than the right operand, or if the
operands are equal, and FALSE otherwise.

real <= real Yields TRUE if the left operand is less than the right operand, or if the
operands are equal, and FALSE otherwise.

string <= string Yields TRUE if the left operand is lexically less than the right operand,
or if both operands are equal, and FALSE otherwise.

integer > integer Yields TRUE if the left operand is greater than the right operand, and
FALSE otherwise.

real > real Yields TRUE if the left operand is greater than the right operand, and
FALSE otherwise.

string > string Yields true if the left operand is lexically greater than the right
operand, and FALSE otherwise.

integer >= integer Yields TRUE if the left operand is greater than the right operand, or if
the operands are equal, and FALSE otherwise.

real >= real Yields TRUE if the left operand is greater than the right operand, or if
the operands are equal, and FALSE otherwise.

string >= string Yields TRUE if the left operand is lexically greater than the right
operand, or if the operands are equal, and FALSE otherwise.

boolean and boolean Yields TRUE if both operands have the value TRUE and FALSE other-
wise. The right operand is not evaluated (and therefore not even
required to be of type boolean) in the event that the left operand is
FALSE.

real atan2 real Yields the arc tangent of the quotient of the operands, taking into
account their signs. The result is yielded in radians.

integer div integer Yields the integer part of the quotient of the two operands as an integer.
Overflow is not possible. An error results if the divisor is zero. The
treatment of negative operands, which is not consistent with that of the
mod operator is shown by the following table of examples:

+7 div +3 = +2
−7 div +3 = −2
+7 div −3 = −2
−7 div −3 = +2

Chapter 4 The SETL Programming Language Page 63

boolean impl boolean Yields FALSE if the first operand is TRUE and the second operand is
FALSE, and TRUE otherwise.

string in string Yields TRUE if the left operand appears as a substring of the right
operand, and FALSE otherwise. For the case of a single character left
operand, the effect is to test whether the character appears in the string.

any in set Yields TRUE if the left operand appears as an element in the right
operand, and FALSE otherwise. An error results if the left operand is
undefined (om).

any in tuple Yields TRUE if the left operand appears as an element in the right
operand, and FALSE otherwise. An error results if the left operand is
undefined (om).

set incs set Yields true if the left operand includes the right operand, i.e. if every
element in the right operand appears as an element in the left operand,
and FALSE otherwise.

set less any If the right operand value appears as an element of the left operand set
value, then the result is the set with this one element removed, other-
wise the result is the unchanged left operand value. An error results if
the right operand is undefined (om).

set lessf any The left operand must be a map, i.e. a set containing only pairs. The
result yielded is the set of all pairs in this map operand value whose
first element does not match the right operand value. If the right
operand does not appear in the domain of the left operand value, then
the left operand value is yielded unchanged. An error results if the
right operand is undefined (om).

integer max integer Yields the larger of the two integer operands.
real max real Yields the larger of the two real operands.
integer min integer Yields the smaller of the two integer operands.
real min real Yields the smaller of the two real operands.
integer mod integer Yields the integer remainder or modulus from dividing the first

operand by the second. An error results if the divisor is zero or neg-
ative. The result is always positive, so that, for example, −7 mod 5 has
the value +3.

string notin string Yields FALSE if the left operand appears as a substring of the right
operand, and TRUE otherwise. For the case of a single character left
operand, the effect is to test whether the character is not included in the
string.

any notin set Yields FALSE if the left operand is contained as an element in the right
operand, and TRUE otherwise. An error results if the left operand is
undefined (om).

any notin tuple Yields FALSE if the left operand is contained as an element in the right
operand, and TRUE otherwise. An error results if the left operand is

Chapter 4 The SETL Programming Language Page 64

undefined (om).
integer npow set Yields the set containing all subsets of the right set operand whose car-

dinality (number of elements) matches the integer value given as the
left operand. An error results if the left operand is negative.

set npow integer Means the same as integer npow set (i.e. the operands may appear in
either order).

set subset set Yields TRUE if the left operand is a subset of the right operand (i.e. if
ev ery element of the left operand appears as an element of the right
operand), and FALSE otherwise.

set with any Yields the value obtained by adding the value of the right operand as
an element to the left operand set value. If this value is already in the
set, then the first operand value is yielded unchanged. An error results
if the right operand is undefined (om).

tuple with any The result is a tuple whose length is one longer than the original left
operand value as a result of concatenating the right operand value as a
new last element. An error results if the right operand is undefined.

4.2.3. Compound Operators
For each binary operator, including user defined binary operators from op declarations, a

corresponding compound operator exists whose name is formed by appending a / (slash) to the
usual operator name, for example **/ is the name of the compound operator corresponding to the
exponentiation operator. The slash may either immediately follow the operator name, or blanks
may intervene (i.e. the operator name is actually composed of two separate tokens).

The compound operator may be used in one of two ways. It can be used as though it were a
unary operator. In this case, the operand must be either a set or tuple, i.e. the expression form is
one of:

bop / set
bop / tuple

where bop is the name of the base operator. The effect is to calculate a result by applying the
binary operator successively to the elements of the set or tuple:

e1 bop e2 bop e3 bop ...

where e1,e2,e3 are successive elements of the set or tuple. In the case of a set these elements are
in an arbitrary order. In the tuple case, the elements are in sequence and include undefined (om)
values from "holes" in the tuple. Normal usage is that in the case of sets, it only makes sense to
use an operator which is commutative (because of the arbitrary order of the elements). In the tuple
case, the use of a non-commutative operator is well defined although unusual. Since most opera-
tors cause an error if given undefined operands, the use of a compound operator form with a tuple
operand which contains holes will usually cause an error.

If there is only one element in the tuple or set, then this element value is returned as the
result (and the operator is never applied). If the unary compound operator form is applied to a null

Chapter 4 The SETL Programming Language Page 65

set or tuple, the result is undefined (i.e. om).
The other form of use of the compound operator is binary with two operands. The right

operand must be a set or tuple, as in the unary case, but the left operand may be any value:

any bop / set
any bop / tuple

The effect is to include the value of the left operand as the first operand value in the computed
sequence:

any bop e1 bop e2 bop ...

where e1,e2,.. are elements from the set or tuple operand as in the unary case. If the binary form is
applied to a null set or null tuple, then the left operand value is yielded as the result. The left
operand thus acts as an initial value for the computation. If the operator is commutative and asso-
ciative, then this value is often the identity element, for example 0 in the case of addition.

The following examples indicate some of uses of the compound operator form. Note that the
set or tuple operand may be an explicit set or tuple former to obtain the effect of a direct iteration:

a := +/t; $ sum of elements in t, om if t=[]
a := 0+/t; $ same, but 0 if t=[]
0+/[a(i) * b(i) : i in {1..#a}] $ dot product
min/s $ minimum element in a set
*/[x in t | x /= 0] $ product of non-zero elements in t

If the iteration is explicitly given using a former, a tuple former should normally be used. If a set
former is used then duplicate elements will only appear once:

0+/{x in t | x > 0}$ duplicate elements not included

A more detailed and precise description of the meaning of compound operator forms can be found
in appendix nn where a translation in terms of equivalent SETL code is given.

4.3. Assignment Statements
Assignment statements in SETL have the general form:

lhs := expression;

The expression is formed from basic operands and operators as described in the previous sections.
Lhs is the target of the assignment, and has several possibilities as described later on. The semi-
colon at the end terminates the statement and is considered to be part of it. All statements in SETL
are terminated by a semicolon.

Chapter 4 The SETL Programming Language Page 66

The basic action of an assignment statement is to compute the value represented by the right
hand side expression and then to perform the assignment. The assignment action depends on the
form of the left side which has several different possibilities.
Identifier

If the left hand side is a simple identifier, then the result is simply to assign the value of the
right hand side as its new value, the old value being lost. This may have the effect of dynam-
ically changing the datatype of the identifier.

String Slice
A string slice can only be used on the left side if the corresponding right hand side is a string
value, otherwise an error results. The effect is to modify the string value by replacing the
selected slice with the right hand side value. This may cause the length of the string to be
increased or decreased as shown in the following examples:

a := ’ABCDEF’;
a(2..4) := ’XY’; $ a = ’AXYEF’
a(4..) := ’1234’; $ a = ’AXY1234’
a(2) := ’()’; $ a = ’A()Y1234’

As indicated in the above examples, the usual defaults are permitted. An error results if the
specified limits do not select a defined substring of the original string. It is possible to spec-
ify a null string by using a value for the lower bound which is exactly one greater than the
upper bound. The effect is specified by the following rule:

a(b..c) := d means a := a(1..b-1) + d + a(c+1..#a)

Tuple Slice
A tuple slice can be used on the left side of an assignment only if the corresponding right
hand side value is a tuple. The effect is similar to the use of a string slice on the left side:

t := [10,20,30,40];
t[2..2] := [5,6,7]; $ t = [10,5,6,7,30,40]
t[3..] := [7,8]; $ t = [10,5,7,8]
t[1..2] := []; $ t = [7,8]

Tuple Selection
A tuple selection as a left side for an assignment allows a single specified element of a tuple
to be modified:

t := [10,20,30,40];
t(2) := 15; $ t = [10,15,30,40]
t(4) := om; $ t = [10,15,30]

Chapter 4 The SETL Programming Language Page 67

t(6) := 5; $ t = [10,15,30,om,om,5]

As shown in the above examples, the assignment may cause the length to decrease (if the
last element is assigned the value om), or increase (if an assignment is made to a previously
non-existent element).

Tuple An enumerated tuple can be used as a left hand side of an assignment if each element of the
enumeration is itself a valid left hand side. The corresponding right hand side must itself be
a tuple and the effect is to perform a series of assignments using corresponding values
extracted from the right hand side tuple.

a := [10,20];
[b,c] := a; $ b = 10, c = 20
[x,y] := [2,3]; $ x = 2, y = 3
[c,d] := [d,c]; $ interchanges c,d

The last example works because the right hand side is evaluated first, forming a tuple with
copies of the old values of c and d before the assignment is made.
It is permissible for the tuple on the right to be longer (extra values are ignored), or shorter

(om’s are supplied) than the tuple on the left. It is also possible to use a minus sign as one of the
components of the left side tuple, indicating that the corresponding assignment should be skipped:

[a,b,c] := [1,2]; $ a = 1, b = 2, c = om
[a,b] := [10,20,30]; $ a = 10, b = 20
[a,−,c] := [10,20,30]; $ a = 10, c = 30

A special case occurs when the right hand side is om. The effect if to undefine all the left side val-
ues:

[a,b,c] := om $ a = b = c = om

Single Valued Map Reference
If a single valued map reference is used as a left side, then the effect is to remove the pair
which starts with the specified domain value (if it is already present), and add the pair corre-
sponding to the new value.

m := {[1,2], [2,4], [3,5]};
m(1) := 5; $ m = {[1,5], [2,4], [3,5]}
m(4) := 9; $ m = {[1,5], [2,4], [3,5], [4,9]}

If the right hand side is om, then the pair is still removed, but no pair is added:

m(2) := om; $ m = {[1,5], [3,5], [4,9]}

Chapter 4 The SETL Programming Language Page 68

An error results if the original set value is not a single valued map, i.e. if it contains any ele-
ment which is not a two element tuple, or if two pairs have the same first element value.

Multi-Valued Map Reference
If a multi-valued map reference is used as a left side, then the effect is to remove all existing
pairs starting with the specified domain element, and add the set of pairs specified by the
right side value:

m := {[1,1],[1,2],[2,4]};
m{1} := {3,4}; $ m = {[1,3],[1,4],[2,4]}

If the right hand side is not a set, or if the left side set value is not a map, then an error
results. If the right hand side is the null set, then no pairs are added:

m{1} := { }; $ m = {[2,4]}

Chapter 4 The SETL Programming Language Page 69

Multiple Subscripting
In the above examples of subscript forms on the left side:

(x..y) String slice
(x..y) Tuple slice
(x) Tuple selection
(x) Single valued map reference
{x} Multi-valued map reference

the subscripted quantity was a simple identifier. SETL actually permits this quantity to be itself
any valid left hand side. The meaning of such a compound assignment is described by the follow-
ing equivalence, where (x) stands for any of the above subscript forms:

lhs(x) := y;

means

t0 := lhs;
t0(x) := y;
lhs := t0;

Since the lhs may itself have compound form, this definition is recursive, and the third line of the
translation may itself need expanding.

Although this definition seems complex, its aim is actually simple. The object of the assign-
ment statement is to make the left side have the appropriate value after the assignment is complete,
and this effect is achieved even in complex cases by the above rule.
Multi-variable Map References

The same short hand notations for dealing with maps of more than one variable which can
appear in expressions are also permitted as left hand sides of assignments with similar
meaning:

a(b,c..n) := x; $ means a([b,c..n]) := x;
a{b,c..n} := x; $ means a{[b,c..n]} := x;

4.3.1. Assigning Operatoss
For each defined binary operator, including user defined operators introduced with an op

statement, there is a corresponding assigning operator, whose name is formed by appending the
characters := to the operator name. The effect of such an operator is to perform the usual computa-
tion and then assign the result back to the left operand, which must therefore have the form of a
valid assignment left hand side. Most often these assigning operators are used directly in statement
forms as in the following examples:

Chapter 4 The SETL Programming Language Page 70

a max:= 5; $ set a to maximum of current value and 5
b with:= 6; $ adds the element 6 to the set b
i +:= 1; $ increment integer value of i by one

It is also possible to use assigning operators within an expression, in which case the value yielded
is the computed result and the assignment occurs as a side effect:

a(i+:=1) := 5; $ increment i by 1, assign i’th element

The assignment operator itself is a special case of an assigning operator and thus may also be used
within an expression, the value being the assigned result:

a:=b:=1; $ multiple assignment, a = b = 1
a:=3+c:=5; $ c = 5, a = 8

The following special assigning operators modify both their operands which must therefore both
have the form of valid assignment left hand sides. It is not possible to append := to any of these
operator names, nor is it possible to form compound operator forms by appending a slash.
lhs from set an arbitrary element (in the same sense as the arb operator) is selected

from the right hand set operand if it is non-null. This value is assigned
as the new value of lhs. The right operand is assigned a new set value
consisting of the old set value less the selected element. If the right
operand is the null set, then the lhs is set to undefined (om) and the
right operand value is unchanged.

lhs fromb tuple If the right operand is not the null tuple, then the first element of the
tuple (i.e. the element indexed by the index value 1) is assigned as the
value of lhs, and the right operand is assigned a new tuple value con-
sisting of the remaining elements of the tuple. If the right operand is
the null tuple, then lhs is set to undefined (om) and the right operand
value is unchanged.

lhs fromb string If the right operand is not the null string, then the first character of the
string is assigned as the value of lhs, and the right operand is is
assigned a new string value consisting of the remaining characters of
the string. If the right operand is the null string, then lhs is set to unde-
fined (om) and the right operand value is unchanged.

lhs frome tuple If the right operand is not the null tuple, then the last element of the
tuple is assigned as the value of lhs, and the right operand is assigned a
new tuple value obtained by removing the last element (i.e. setting it to
undefined). If the right operand is the null tuple, then lhs is set to
undefined (om) and the right operand value is unchanged.

lhs frome string If the right operand is not the null string, then the last character of the
string is assigned as the value of lhs, and the right operand is assigned

Chapter 4 The SETL Programming Language Page 71

a new string value consisting of the remaining characters. If the right
operand is the null string, then lhs is set to undefined (om) and the
right operand value is unchanged.

4.3.2. Quantified Tests
Quantified tests are special expression forms yielding a boolean result (TRUE or FALSE)

and which therefore can be used in contexts requiring a test. Quantified tests involve an implied
loop and appear in three forms:

exists iterator | test
notexists iterator | test
forall iterator | test

The syntax and interpretation of the iterator is further described in the section on iterator forms
which appears in the next chapter. As indicated, the iterator must contain a such that test preceded
by the | character (or the equivalent st keyword).

In each case, the iterator causes an implied loop to be executed.
In the case of the exists test, the result is TRUE if the test succeeds (yields TRUE) on any of

the loops. As soon as the test succeeds, the iteration is abandoned (leaving any iteration variables
set to the values for which the test succeeded) and the result of the expression is TRUE. If the test
fails for all loops, or if the loop is not executed at all, then the result is FALSE and the iteration
variables, if any, are set to undefined. The notexists form executes the same test loop, but yields
TRUE if the test never succeeds and FALSE if the test does succeed one some iteration.

if exists i in [1..#t] | t(i) /= 0 then
... $ with i = 1st non-zero element in t

else
... $ if no non-zero elements, i = om

end if;

if notexists [a,b] in m | a=b then
... $ if no such element, a=b= om

else
... $ a,b set to element with a=b

end if;

The forall test also sets up a loop. For each iteration of the loop, the specified test is evaluated. If
this test yields FALSE on any iteration of the loop, then evaluation of the loop is immediately ter-
minated, the result of the forall test is FALSE, and the loop variables, if any, are left with the val-
ues causing the test to fail. If the loop terminates with the test condition evaluating to TRUE for all
iterations, then the result of the forall test is TRUE. A special case of this last rule arises when
there are no iterations (e.g. a test on a null set). Such a test always returns a result of TRUE.

Chapter 4 The SETL Programming Language Page 72

if forall i in [1..#t-1] | t(i) < t(i+1) then
... $ tuple elements are sorted, i= om

else
... $ i is index of out of order pair

end if;

if forall x in s, y in s | (x .op y) in s then
... $ s is closed under operator .op

else
... $ x,y set to counter example

end if;

It is possible to use these quantified test forms as parts of larger expressions, but parenthesization
is required except when a quantified test is used as the test in another quantified test:

exists a in x | c(a) and d(a)
exists a in x | (c(a) and d(a)) $ means the same
(exists a in x | c(a)) and d(a) $ to get the other meaning

if exists a in c |
exists b in x |

forall y in z :
exists r in s | a = r then ...

4.3.3. Operator Precedence Rules
The table in this section shows the precedence rules which determine the order in which the

operators in an expression are evaluated. If two operators share a common operand, then the one
with the higher precedence is evaluated first. If both operators have the same precedence, then the
left hand one is evaluated first (i.e. operators of a given precedence level are evaluated in a left
associative manner.)

Parentheses may be used freely to emphasize or alter the order of operations as determined
by this table.

Chapter 4 The SETL Programming Language Page 73

Precedence Operators
11 := (on left side)

assigning operators (on left side)
from (both sides)

10 All unary operators except
not and the is xx operators.

9 **

8 * / mod div

7 + −

6 User defined binary operators

5 = /= < <= > >= in notin subset incs

4 not and the is xx operators

3 and

2 or

1 impl

0 := (on right side)
assigning operators (on right side)

The following examples of equivalent expressions with and without parentheses illustrate the oper-
ation of these rules:

a + b + c * d
(a + b) + (c * d)

a + b +:= c div d
a + (b +:= (c div d))

a + ceil b := c
a + (ceil (b := c))

Compound operators used in the unary form (with no left operand) have the same precedence as
other unary operators. Compound operators used in the binary form have the same precedence as
the operator from which they are constructed.

Chapter 4 The SETL Programming Language Page 74

The precedence rules also exclude the use of quantified tests as operands of any operator,
unless they are enclosed in parentheses. The only case in which a quantified test can appear as part
of a larger expression is when one test appears as the iterator test of another quantified test.

4.3.4. Side Effects
The fact that assigning operators can be used within expressions gives rise to questions

about possible orders of side effects. For example, what is the value of the expression:

(i +:= 3) + i + (i := 5)

and what is the value of i after computing this expression?
SETL deals with this question by specifying that the order of operations within a single

expression is unpredictable. This means that any expression having side effects whose result
depends on the order in which the various parts of the expression are evaluated gives an undefined
result.

In general, the use of multiple assignments to the same variable within a single expression
may give rise to such an undefined result and should be avoided. It is also risky to assign a value to
a variable in one part of an expression and reference this same variable in another part of the
expression which may be evaluated before or after the assignment.

Another case of possible side effects arises in connection with the left operand of an assign-
ing operator which has a side effect itself, typified by the following question:

a(x)+:=1 means a(x):=a(x)+1

How many times does a(j+:=1)+:=1 increment j?
The rule followed here is that the result is undefined if the answer to the question matters,

that is if the result of the assignment, or the resulting value of any identifiers assigned as a side
effect, depends on whether there are one or two evaluations, then the result is undefined. Thus the
assignment a(j+:=1)+:=1 is inv alid.

The purpose of making all these nasty cases undefined is to give the compiler freedom to
choose the easiest or most efficient translation without being hampered by worrying about peculiar
cases which do not occur in practice. The programmer’s job in this respect is to avoid "tricky" use
of side effects and make sure that these cases do not appear at all!

CHAPTER 5

CONTROL STATEMENTS

This chapter describes the statements in SETL which are used to control the flow of process-
ing.
5.1. Conditional Statements & Expressions

The conditional statements in SETL allow the flow of control to be determined on the basis
of specified tests. Conditional expressions allow selection of a calculation in an expression
depending on the outcome of a test.

5.1.1. If Statement
A basic control structure in SETL is the if conditional statement, which allows selection

among sequences of program statements to be executed depending on the outcome of a test. The
simplest form is a two way if statement:

if test then
block1

else
block2

end if;

The test after the if is evaluated. If it succeeds, then the series of statements (zero or more) which
comprise block1 are executed. If the test fails, then the series of statements in block2 are executed.
The following are some examples of this two way if structure:

if a > 3 or status = ’error’ then
print(’BAD A VALUE OR OTHER ERROR’);
a := 3;
status := ’ok’;

else
x(a) := 2;
print(y(a));

end if;

Chapter 5 The SETL Programming Language Page 75

Chapter 5 The SETL Programming Language Page 76

if marked(’x’) then stop; else goto x; end if;

if (a > 3 or b < 2) and not c > 3 then
d := a + b + c;

else
a := 2;
b := 0;

end if;

The indentation used in the above examples (except for the last one which can fit all on one line) is
not required by the SETL language, but it represents a recommended style which improves read-
ability of programs.

The else keyword and its following statements in block2 may be omitted, in which case no
action occurs if the test fails:

if d = 0 then
print(’zero diagonal element’);
stop;

end if;

The end if terminator may be written in two other styles. It can be shortened to end; which is use-
ful in the case of short if statements where no confusion can arise. Alternatively it can be
expanded by copying one or more tokens from the test in the corresponding if as shown in the fol-
lowing examples:

if a > 3 then print(a); end if;
if a > 3 then print(a); end if a;
if a > 3 then print(a); end if a > 3;

This expanded form is particularly useful for very long if statements, since it helps the reader to
match up end’s with their corresponding if tests. It also helps the compiler perform this match up
if errors have been made in the program.

Since an if statement is considered to be a single statement itself, ending with a semicolon
as usual, it may appear as one of the statements in the then or else block, allowing nesting of con-
ditional tests to an arbitrary level. A special case of such nesting occurs when several conditions
are tested in sequence as in the following example.

if day = ’sun’ then
d := 1;

else
if day = ’mon’ then

d := 2;
else

if day = ’tue’ then
d := 3;

Chapter 5 The SETL Programming Language Page 77

else
if day = ’wed’ then

d := 4;
else

if day = ’thu’ then
d := 5;

else
if day = ’fri’ then

d := 6;
else

d := 7;
end;

end;
end;

end;
end;

end;

Although this achieves the intended effect, it illustrates the awkwardness of making sure that all
the end statements match up. The following alternative approach is easier to write, but less effi-
cient since all the tests are made in every case.

if day = ’sun’ then d := 1; end;
if day = ’mon’ then d := 2; end;
if day = ’tue’ then d := 3; end;
if day = ’wed’ then d := 4; end;
if day = ’thu’ then d := 5; end;
if day = ’fri’ then d := 6; end;
if day = ’sat’ then d := 7; end;

Furthermore, there are cases, unlike this example, where it is not merely inefficient, but definitely
wrong, to perform a test when an earlier test has succeeded.

A special keyword elseif allows the sequence to be written in an efficient manner without
having to count end statements. Whenever else and if keywords appear immediately adjacent to
one other, they may be replaced by the single keyword elseif, and the corresponding end termina-
tor is omitted. Thus we can write:

if day = ’sun’ then d := 1;
elseif day = ’mon’ then d := 2;
elseif day = ’tue’ then d := 3;
elseif day = ’wed’ then d := 4;
elseif day = ’thu’ then d := 5;
elseif day = ’fri’ then d := 6;
elseif d := 7;
end;

Chapter 5 The SETL Programming Language Page 78

In this form, the tests are in sequence and as soon as one test is TRUE and its corresponding block
is executed, the remainder of the tests are abandoned.

5.1.2. If Expression
A special form of expression called a conditional expression or if expression is similar in

form to an if statement:

if test then expr1 else expr2 end

This may be used anywhere that a expression is permitted. The effect is to evaluate either expr1 or
expr2 depending on the result of the test. The result of the entire if expression is then the value of
the single expression evaluated. The terminator must be end as shown (not end if or end if with
extra tokens). Some examples of conditional expressions are:

print(if a > 5 then b else f(a) end);
maxab := if a > b then a else b end;

5.1.3. Case Statement
The case statement is a generalization of the if concept which allows one of several

sequences of statements to be selected depending on a set of associated tests. The general form is:

case of
(test1): block1
(test2): block2
(test3): block3
(testn): blockn
else blocke
end case; $ or simply end;

Each of block1,block2,.. and blocke is a sequence of one or more statements. Each of the expres-
sions test1,test2,.. is evaluated and must yield a value of TRUE or FALSE. If none of the expres-
sions yields TRUE, then the else block, blocke, is executed. If one or more of the tests yields
TRUE, then one of the associated blocks of statements is executed. If more than one test yields
TRUE, the choice of which block to execute is made in an arbitrary manner. The case statement
thus differs from a similar sequence of if and elseif tests where the tests are made in sequence.
It is possible to attach more than one test to a given branch of the case by:

(test1,test2,.. testn): blockn

In this case, blockn is a candidate for being executed if any one of the tests test1,test2,.. yields
TRUE.

The else clause, together with its associated block of statements can be omitted, in which
case, the case statement has no effect if none of the tests evaluates to TRUE.

Chapter 5 The SETL Programming Language Page 79

If there is at least one test which evaluates to TRUE, then the other tests may or may not be evalu-
ated. Effectively the separate tests are evaluated in some arbitrary order, or even at the same time
in an unspecified sequence, and the program can make no assumptions about the order or about
which tests are actually evaluated.

We can now write the days of the week example as a case statement:

case of
(day=’sun’): d := 1;
(day=’mon’): d := 2;
(day=’tue’): d := 3;
(day=’wed’): d := 4;
(day=’thu’): d :(eq 5;
(day=’fri’): d := 6
(day=’sat’): d := 7;
end case;

In this particular case, at most one of the case branches could be true, so there is no difference in
effect between this case statement and the sequence of if and elseif tests given in the previous sec-
tion. The following example shows a case in which there is a difference:

if k>10 then
print(’k>10’);

elseif k<5 then
print(’k<5’);

elseif k<10 then
print(’k<10’);

else
print(’k=10’);

end if;

case of
(k>10):

print(’k>10’);
(k<5):

print(’k<5’);
(k<10):

print(’k<10’);
else

print(’k=10’);
end case;

If these two sequences are executed with k having the value 4, then the top example using if and
elseif will always print k<5 since this test is always made before the k<10 test. In the CASE state-
ment, either k<5 or k<10 might be printed since both conditions are satisfied and the order in
which these two tests are made is not specified. A general rule is to use if and elseif only when the
order is important. This serves to warn the reader of the program that the order of test evaluations

Chapter 5 The SETL Programming Language Page 80

is important.
One particular application of the undefined order in which the tests are made is illustrated by the
following:

case of
(true):
(true):
end case;

This construction can be used if two possible sequences of statements can be executed and it does
not matter which is executed, or in any case the programmer does not wish to indicate a choice
between the two possibilities. The implication is that the program will work no matter which of
the two branches is executed. This gives a control flow analog to the use of the arb operator in
expressions and allows the programmer to avoid specifying choices which are not important to the
algorithm. A similar situation might arise in a sorting program where the equal comparison condi-
tion can be treated as either less than or greater than:

case of
(a(i) <= a(i+1)):
(a(i) >= a(i+1)):
end case;

It is quite common for the tests in a case statement to have the form of testing some particular
variable or expression value for equality with a series of constants. The days of the week example
is in this form. A special form of the case statement is available to simplify the writing of such
cases:

case expr of
(constant1): block1
(constant2): block2
(constant3): block3
(constantn): blockn
else blocke
end case; $ or end; or end case <tokens>;

The expression in the header expr is evaluated (once) to give a test value. A block is executed if its
associated constanti expression is equal to the test value. As in the full form of the case statement,
if more than one value matches, then an arbitrary choice is made between the matching alterna-
tives. The else block is executed if no values match and can be omitted if no action is required in
the case where no values match. As in the full form, multiple tests can be attached to one branch
by:

(constant1,constant2,...constantn): block

in which case the block is a candidate for execution if any of the attached values match.

Chapter 5 The SETL Programming Language Page 81

The actual rules for what can appear as constants here are the same as for const declarations, i.e.
denotations, previous declared constant values, or sets or tuples of constant values.

We can now write the days of the week example in a more compact form using this version
of the case statement:

case day of
(’sun’): d := 1;
(’mon’): d := 2;
(’tue’): d := 3;
(’wed’): d := 4;
(’thu’): d := 5;
(’fri’): d := 6;
(’sat’): d := 7;
end case day;

Note that the expressions attached to the branches in this form are general expressions and are not
required to be constants, although the use of constants in this context is common. As in the full
form of the case, no assumptions can be made about the order of evaluation of these expressions,
or even about whether or not they will be evaluated if there is a matching alternative.

5.1.4. Case Expression
Just as there is an if expression corresponding to an if statement, there is a case expression

which corresponds to a case statement. The form is:

case expression of
(value1): expression1,
(value2): expression2,
(value3): expression3,
(valuen): expressionn
else expressione
end

The value of the case expression is the value of the selected expression, or the value of the else
expression if no expressions match. If the else and its following expression are omitted, and there
is no matching entry, then the result of the case expression is om. As in the case statement, a sin-
gle expression branch may be labeled with more than one constant. Note that there is no comma
following the last branch of the case (whether or not an else is present).

We will complete this section by rewriting the days of the week one final time using a case
expression:

d := case day of
(’sun’): 1,

Chapter 5 The SETL Programming Language Page 82

(’mon’): 2,
(’tue’): 3,
(’wed’): 4,
(’thu’): 5,
(’fri’): 6,
(’sat’): 7

end;

5.2. Loop Statement
The loop statement in SETL allows a series of one or more statements to be executed repeat-

edly. There are two basic forms. The first form uses an iterator:

loop for iterator do
... $ loop body
... $ zero or more statements

end loop; $ or end; or end loop tokens;

In addition, parentheses can be used to replace the oop and do:

(for iterator)
...
...

end; $ or end tokens;

In this case, the token sequence after end copies tokens starting immediately after the left paren-
thesis which opens the loop.

The iterator, whose possible forms are discussed in the following section, controls the num-
ber of times the loop is executed and also may assign values to one or more iteration variables.

The other form of loop is written:

loop
init blocki $ loop initialization statements
doing blockd $ step statements at start of loop
while testw $ termination test at start of loop
step blocks $ step statements at end of loop
until; testu $ termination test at end of loop
term blockt $ loop termination statements

do
blockb $ body of loop

Chapter 5 The SETL Programming Language Page 83

end loop $ or end; or end loop tokens;

As with the iterator form of loops, the keywords loop and do can be replaced by parentheses:

(iniut b doing b while t step b until t term b)
end; $ or end tokens;

The easiest way of describing the precise effect of this loop form is to write out the sequence of
statements which are executed when this form is used to construct a loop:

blocki $ init block
head:

blockd $ doing block

if not (testw) $ while test
then goto term;
end if;

blockb $ body of loop

step:
blocks $ step block

if (testu) $ until test
then goto term;
end if;

gotohead;

term:
blockt $ term block

If a quit statement is executed within the loop (i.e within the doing or step blocks or in the loop
body), then it is equivalent to goto term in the above translation. A continue statement is similary
equivalent to goto step.

If any of the init, doing, step or term clauses are omitted from the iterator, then the corre-
sponding block is simply removed from the loop. Similarly with the while and until tests, if either
of these is omitted then the corresponding test is omitted from the loop. Some common forms of
loops using simple cases of the iterator construction are as follows:

loop while test do $ while loop, test at start
loop until test do $ until loop, test at end

Chapter 5 The SETL Programming Language Page 84

loop do $ indefinite loop

5.2.1. Quit & Continue Statements
Within a loop, two special statements are available. The quit statement causes immediate

termination of execution of the loop, and is written:

quit;
quit loop;
quit tokens;
quit loop tokens;

The last forms are useful in the case where loops are nested. By copying tokens from the corre-
sponding iterator (including the token loop only if the loop was written in the loop-do form), it is
possible to specify which loop is to be terminated.

The continue statement causes the current iteration of the loop to be abandoned, and the
execution of the loop continues with the next iteration (if there is one left to go). The form is:

continue;
continue loop;
continue tokens;
continue loop tokens;

As in the case of the quit statement, the forms which copy tokens from the corresponding loop
iterator can be used to specify which loop is to be continued in the case of nested loops.
Normally quit and continue statements appear within the body of the loop, but they can also occur
in the doing and step forms of the alternate loop form. Note that they cannot occur in the init or
term blocks (unless referring to a surrounding loop).
The use of the quit or continue statements other than statically inside a loop is erroneous. In par-
ticular, it is not possible to execute the quit or continue from a procedure or refinement called
within the loop body.

5.2.2. Iterator Forms
Iterators are used to control loops, in set and tuple formers, and in quantified tests (exists,

forall). The form of an iterator determines the number of times the associated loop is executed
and also assigns values to one of more identifiers called iteration variables.

The following section describes the basic iterator forms. More precise definitions of these
iterator forms can be found in Appendix nn, where translations into equivalent loop forms with
explicit step statements and tests are given.
lhs in set The iteration variable lhs is set to successive values from the set, cho-

sen in arbitrary order. The number of iterations is equal to the number
of elements in the set. One particular form which is useful in iterating
through a map uses a lhs of the form [a,b] which causes a and b to be

Chapter 5 The SETL Programming Language Page 85

set to successive domain and range values.
lhs in string The iteration variable is set to successive characters of the string value

starting with the first and ending with the last. The number of iterations
is equal to the length of the string. No iterations are performed if the
string is null.

lhs in tuple The iteration variable lhs is set to successive elements of the tuple in
order by increasing index. The number of iterations is equal to the
index of the highest defined element. If there are no holes (embedded
undefined values), then this is equal to the number of defined elements.
If there are holes, then the iteration variable will be set to om for the
undefined index positions.

lhs1 = map(lhs2) This form is used to iterate through the elements of a map, which must
be single valued. The iteration variables lhs1 and lhs2 are set to succes-
sive domain and range values respectively, the order in which pairs are
taken being arbitrary. The number of iterations is equal to the number
of elements in the map.

lhs1 = map{lhs2} This form of map iterator can be used with multi-valued maps. On suc-
cessive iterations, lhs1 is set to the values in the domain of the map and
lhs is set to the corresponding image set. The number of iterations is
thus equal to the cardinality of the domain.

lhs1 = string(lhs2) The iteration variable lhs2 is set to successive integer values 1,2... up to
the length of the string. The iteration variable lhs1 is set to the corre-
sponding character from the string. The number of iterations is thus
equal to the length of the string.

lhs1 = tuple(lhs2) The iteration variable lhs2 is set to successive integer values 1,2,.. up to
the highest index for which the tuple is defined (which is therefore the
number of iterations). The iteration variable lhs1 is set to the corre-
sponding tuple value.

In these iterator forms, the iteration variables can be any valid left hand side. For example [a,b]
can be used as an iteration variable if all the iteration values are pairs, and the effect is to set a and
b to successive values of the elements of the pairs. On normal completion of a loop (but not on
premature termination from a quit, satisfied exists etc.) the iteration variables are all set to unde-
fined (om), so the final values are not available outside the loop.

The usual shorthand notation can be used in iterator contexts for iterating through multi-
argument maps:

lhs = map(a,b..n) means lhs = map([a,b..n])
lhs = map{a,b..n} means lhs = map{[a,b..n]}

It is permissible to modify the values of any iteration variables or other identifiers mentioned in the
iterator, although such usage is not recommended. Such modifications do not affect the values
yielded by the iteration. For example, the following iteration:

Chapter 5 The SETL Programming Language Page 86

a := [1,2,3,4,5,6,7,8,9];
(for i in a) a:=a+a; i+:=1; end;

still iterates nine times with i being set to the successive values 1 through 9.
Any context requiring an iterator (loops, set formers, tuple formers, quantified tests) can use

any of the iterator forms described. More complicated iterator forms can be built up from these
basic iterator forms given:

Compound iterators are formed as a sequence of basic iterators separated by commas. The
effect is that of a series of nested loops, in which the last iterator is stepped most rapidly and
the first iterator least rapidly. Note that a quit statement will leave all the nested loops in this
case and a continue will continue the inner loop (in this respect the effect is slightly differ-
ent from actually writing nested loops).

Any iterator consisting of one or more basic iterator forms can be followed by a such that
clause:

iterator | test

The effect is that the iterator is stepped as usual, but on each iteration test is evaluated. If
the result is FALSE, then the iteration is skipped, i.e. the iterator is immediately moved to
the next step. If the test is TRUE, then the iteration is completed as usual. It is often the
case, but is not required, that the test will perform tests on the values of iteration variables.
The following are examples of loops constructed from iterator forms:

(for i in [1..#a], j in [i..#a])
c := a(i)*a(j);

end;
(for x in y, a in b | x = a)
end;

(for x = c(i) | x = ’,’)
end;

5.2.3. Set & Tuple Formers
The effect of set and tuple formers can be described exactly by writing equivalent loop

forms. First the set former:

{expression : iterator}

is equivalent to the following expr block:

expr
t1 := { };
loop for iterator do

t1 with:(eq expression;

Chapter 5 The SETL Programming Language Page 87

end;
yields t1;

end

The tuple former:

[expression : iterator]

differs only in that a tuple is formed, and is equivalent to the following expr block:

expr
t1 := [];
loop for iterator do

t1 with:= expression;
end;
yield t1;

end

As implied by the translations, the result is the null set or null tuple if the iterator does not cause
any iterations of the loop.
Multiple iterators are permitted, as in the following example:

{x+y : x in seta, y in f(x) | x/=y}

If the iterator is a single (non-compound) iterator with a such that test, then the following abbrevi-
ated forms are available:

{a in expr | t} $ for {a : a in expr | t}
[a in ... | t] $ for [a : a in expr | t]

5.3. Goto Statement
Any statement in SETL can be labeled:

label: statement;

As shown, a single statement can have only one label. The label names are local identifier names
which are not explicitly declared and which are not used for any other purpose.
The goto statement, which has the form:

goto label;

has the effect of transferring control to the labeled statement. Goto statements are forbidden to
make any of the following types of transfer:

Chapter 5 The SETL Programming Language Page 88

>From outside the body of a loop into the body
Into the then block of an if from outside
Into the else block of an if from outside
Into the init, doing, step, until blocks from outside
Into the blocks in a case or if statement from outside
>From one block in a case or if statement into another
>From outside an expr block into its body
Since all labels are local, it is also impossible to transfer from one procedure to another, or

from a procedure body to the main program.

5.4. Stop Statement
The stop statement, written simply as:

stop;

may appear anywhere in a SETL program and causes immediate termination of program execu-
tion. The two ways of terminating a SETL program normally are by execution of a stop state-
ment, or by executing "off the end" of the main program block.

5.5. Pass Statement
The pass statement, written as:

pass;

has no effect when it is executed. It is used for placing labels at the end of a block, for branches of
a case statement where no action is performed, for a loop body when the actual processing is com-
pleted in the loop header, and in any other situation where a dummy statement is required.

5.6. Assert Statement
The assert statement, written as:

assert expression;

signals an error if the value of the expression is not TRUE.

CHAPTER 6

THE DAT A STRUCTURE SPECIFICATION SUBLANGUAGE

Unlike most of the sections of this book so far, the title of this chapter probably seems mys-
terious. This is not surprising since it describes a feature of SETL which is unique and therefore
unfamiliar from the use of other programming languages.

The general idea is the following. SETL allows programs to be written without much con-
cern for the detailed data structures required for efficient execution. For example in the curriculum
planning problem in chapter 2 (the topological sort), the basic data structure was a graph which
showed the prerequisite structure. In most other programming languages, a program using such a
graph must decide exactly how to represent the graph in the memory of the computer. This is a
rather complicated matter, and there are several different ways of representing graphs (linked lists,
adjacency tables, bit matrices etc.) Furthermore, once a decision is made on the exact manner in
which the data structure should be represented, then the details of this representation must be kept
in mind throughout the program and the text of the program reflects this choice throughout.

In SETL, such detailed decisions do not have to be made by the programmer. In this particu-
lar example, the graph was simply a set of pairs corresponding to the edges of the graph as read in.
The programmer did not need to have any concern with the exact manner in which the graph
would be represented. This is highly convenient from the programmers point of view, since it obvi-
ously reduces the amount of work in writing the program. However, there is a penalty paid for this
approach in terms of reduced execution efficiency. The choice of data structure representations is
a delicate task. The choice which leads to the most efficient program depends on the exact opera-
tions which are performed and the frequency with which the various operations are performed.
Since the SETL programmer omits this choice, it is left up to the compiler. The SETL compiler is
not capable of making the best possible choice since it does not have enough information, so it
chooses rather general representations which have the property that they are not disastrously bad,
no matter what operations are performed. On the other hand these general structures are often not
perfect for the particular case at hand and the result is longer than necessary running time.

In some cases, this inefficiency may not be a problem. If a program runs in one second, it
may not matter that it could have run in one tenth of a second if better data structure decisions had
been made. If all the programs you write are in this category, then you can abandon reading the
rest of this chapter. On the other hand, if you have programs which run for a long time, then the
subject matter of this chapter will be of interest, particularly if you are paying for your own com-
puter time!

Chapter 6 The SETL Programming Language Page 89

Chapter 6 The SETL Programming Language Page 90

Suppose that we have a SETL program which is running perfectly, but slowly, and the rea-
son for the slowness can be traced t failure to use efficient data structure representations. One
approach would be to reprogram in some other lower level language in which the data structure
representation would be under direct control of the programmer. This would have two obvious dis-
advantages. First the sheer effort of dealing with another language and recoding the entire pro-
gram would be a substantial effort. Second, this approach requires that once the data structure rep-
resentation is chosen, it must be kept in mind throughout the program and every operation on the
structure must be thought out in terms of this representation.

The data structure representation sublanguage of SETL provides an alternate approach.
Instead of rewriting the entire program, statements are added which direct the compiler to use cer-
tain specific (and hopefully appropriate) data structures. Given this information, SETL can gener-
ate a more efficient program and the compiler assumes the burden of going though the program
making the necessary modifications. Assuming that the programmer did indeed specify an appro-
priate choice, the desired improvement is thus obtained with a minimum amount of error prone
clerical work on the part of the programmer and with no change to the text of the working pro-
gram. The general design of the data structure specification language is that statements specifying
representations cannot change the meaning of the program, the worst that can happen is that the
program actually runs slower if an inappropriate choice is made.

The concept is thus reasonably straightforward, but the details of the representation lan-
guage are technical and the rest of this chapter explains them. Again you are invited to skip the
rest of this chapter if you can live with the efficiency you are getting now using "pure" SETL. If on
the other hand, your monthly computer bills are causing headaches, then read on!

{to be supplied later}

CHAPTER 7

SEMANTIC DEFINITIONS

This chapter contains a more formal definition of most of the semantics of the SETL lan-
guage. As far as possible the definitions are written in SETL. In those few cases where it is not
possible to use SETL, a construction called a pseudo-comment is used. A pseudo-comment is an
english language description enclosed in the brackets /* and */. It may appear in place of a state-
ment or expression and is conceptually replaced by code which carries out the intent of the
description.

One pseudo-comment which appears frequently is /*error*/ which implies that an error is
caused. The exact effect of such an error depends on the implementation, in most cases,
execution is terminated with an error message. However, some implementations may have
the capability of continuing execution after such an error has occured.

7.1. Type Test Operators
Since the type test operators are used throughout the definitions of the remaining operators, they
are defined first.

op type (a);
if a = om then /*error*/;
else

return
/* one of the following strings indicating the type of the operand a:

´atom’ ´boolean’ ´integer’ ´real’ ´set’ ´string’ ´tuple’ */ ;
end if;

end op type;

op is boolean (a); $ test argument is type Boolean
return type a = ’boolean’;

end op is boolean;

Chapter 7 The SETL Programming Language Page 91

Chapter 7 The SETL Programming Language Page 92

op is integer(a); $ test argument is type integer
return type a = ’integer’;

end op is integer;

op is real(a); $ test argument is type real
return type a = ’real’;

end op is real;

op is string(a); $ test argument is type string
return type a = ’string’;

end op is string;

op is atom(a); $ test argument is type atom
return type a = ’atom’;

end op is atom;

op is tuple(a); $ test argument is type tuple
return type a = ’tuple’;

end op is tuple;

op is set(a); $ test argument is type set
return type a = ’set’;

end op is set;

op is max(a); $ test argument has form of map
if is set a then

return forall x in a |
is tuple x and #x = 2;

else
return false;

end if;
end op is map;

7.2. Operator Definitions
This section contains SETL definitions of the SETL operators. The definitions are written in

standard SETL with three minor extensions as follows:
The names of the operators which appear in these OP definitions are the actual operator names and
do not meet the normal requirements for declared operator names.
In some cases (from, fromb, frome), the arguments are specified as wr (write) or rw (read/write).

In a few cases (e.g. real multiplication), the semantics of the operator cannot be specified in
SETL. In such cases, a pseudo-comment is used to specify the intended result.

Chapter 7 The SETL Programming Language Page 93

op +(a);
case of
(is integer a): $ integer affirmation

return a;
(is real a): $ real affirmation

return a;
else /*error*/;
end case;

end op +;

op +(a,b);
case of
(is integer a and is integer b): $ integer addition

return a - -b;
(is real a and is real b): $ real addition

return a - -b;
(is string a and is string b): $ string concatenation

return /* concatenation of a and b */;
(is tuple a and is tuple b): $ tuple concatenation

x := a;
(for i in [1..#b])

x(#a + i) := b(i);
end for i;
return x;

(is set a and is set b): $ set union
return (a with/ {x : x in b});

else /*error*/;
end case;

end op +;

op -(a);
case of
(is integer a): $ integer negation

return 0 - a;
(is real a): $ real negation

return 0.0 - a;
else /*error*/;
end case;

end op -;

op -(a,b);
case of
(is integer a and is integer b): $ integer subtraction

Chapter 7 The SETL Programming Language Page 94

return /* integer difference a-b */;
(is real a and is real b): $ real subtraction

return /* real difference a-b */;
(is set a and is set b): $ set difference

return (a less/ x : x in b);
else /*error*/;
end case;

end op -;

op *(a,b);
case of
(is integer a and is integer b): $ integer multiplication
x := (0 +/ a : 1..abs b);

return if b>=0 then x else -x end;
(is real a and is real b): $ real multiplication

return /* real product a*b */;
(is set a and is set b): $ set intersection

return {x : x in a | x in b};
(is string a and is integer b): $ string duplication

if b < 0 then /*error*/; end if;
return ’’ +/ [a : i in {1..b}];

(is integer a and is string b): $ string duplication
if a < 0 then /*error*/; end if;
return ’’ +/ [b : i in {1..a}];

(is tuple a and is integer b): $ tuple duplication
if b < 0 then /*error*/; end if;
x := [];

(for i in [1..#b])
j := #x;
(for k in [1..#a])

x(j + k) := a(k);
end for k;

end for i;
return x;

(is integer a and is tuple b): $ tuple duplication
return b * a;

else /*error*/;
end case;

end op *;

op /(a,b);
case of
(is integer a and is integer b): $ integer division, real quotient

return float a / float b;
(is real a and is real b): $ real division

Chapter 7 The SETL Programming Language Page 95

return /* quotient a/b */;
else /*error*/;

end op /;

op **(a,b);
case of
(is integer a and is integer b): $ integer exponentiation

if b < 0 then /*error*/; end if;
return (1 */ a : 1..b);

(is real a and is integer b): $ real to power of integer
if b < 0 then /*error*/; end if;
return (1.0 */ a : 1..b);

else /*error*/;
end case;

end op **;

op ?(a,b); $ undefined interrogation
case of
(a /= om):

return a;
(a = om):

return b;
end case;

end op ?;

op #(a);
case of
(is string a): $ length of string

x := 0;
(for y in a) x +:= 1; end;
return x;

(is set a): $ cardinality of set
x := 0;
(for y in a) x +:= 1; end;
return x;

(is tuple a): $ length of tuple
x := 0;
(for y in a) x +:= 1; end;
return x;

else /*error*/;
end case;

end op #;

op =(a,b); $ equality test
case a of

Chapter 7 The SETL Programming Language Page 96

(b):
return TRUE;

else
return FALSE;

end case;
end op =;

op /=(a,b);
return if a = b then FALSE else TRUE end;

end op /=;

op <(a,b);
case of
(is integer a and is integer b): $ integer less than

if /* a less then b */ then
return TRUE;

else
return FALSE;

end if;
(is real a and is real b): $ real less than

if /* a less than b */ then
return TRUE;

else
return FALSE;

end if;
(is string a and is string b): $ string less than

if a = ’’ then
return b /= ’’;

elseif b = ’’ then
return FALSE;

else
case of
(a(1) = b(1)):

return a(2..) < b(2..);
(/* a(1) precedes b(1) in order */):

return TRUE;
else

return FALSE;
end case;

end if;
else /*error*/;
end case;

end op <;

op <=(a,b);

Chapter 7 The SETL Programming Language Page 97

case of
(is integer a and is integer b): $ integer less or equals

return a<b or a=b;
(is real a and is real b): $ real less than or equals

return a<b or a=b;
(is string a and is string b): $ string less than or equals

return a<b or a=b;
end case;

end op <=;

op >(a,b):
case of
(is integer a and is integer b): $ integer greater than

return b < a;
(is real a and is real b): $ real greater than

return b < a;
(is string a and is string b): $ string greater than

return b < a;
else /*error*/;
end case;

end op >;

op >=(a,b):
case of
(is integer a and is integer b): $ integer greater or equals

return a>b or a=b;
(is real a and is real b): $ real greater or equals

return a>b or a=b;
(is string a and is string b): $ string greater or equals

return a>b or a=b;
else /*error*/;
end case;

end op >=;

op abs(a);
case of
(is integer a): $ absolute value of integer

case of
(a < 0):
return -a;
(a >= 0):

return a;
end case;

(is real a): $ absolute value of real
case of

Chapter 7 The SETL Programming Language Page 98

(a < 0.0):
return -a;

(a >= 0.0):
return a;

end case;
(is string a): $ absolute value of string

if #a /= 1 then
/*error*/;

else
return /* integer code for a */;

end if;
else /*error*/;
end case;

end op abs;

op and(a,b): $ logical and
case of
(a = FALSE);

$ skip evaluation of b and
return FALSE;

(a = TRUE):
$ evaluate b and do

case of
(b = TRUE):

return TRUE;
(b = FALSE):

return FALSE;
else /*error*/;
end case;

else /*error*/;
end case;

end op and;

op arb(a);
case of
(is set a): $ arbitrary element of set

if a = { } then
return om;

else
return /* arbitrary element from a */;

end if;
else /*error*/;
end case;

end op arb;

Chapter 7 The SETL Programming Language Page 99

op ceil(a);
case of
(is real a): $ ceiling of real

case of
(a < 0.0):

loop init x := 0; doing x -:= 1; do
if float x < a then return x + 1;

end loop;
(a >= 0.0):

loop init x := 0; doing x +:= 1; do
if float x >= a then return x;

end loop;
end case;

else /*error*/;
end case;

end op ceil;

op div(a,b);
case of
(is integer a and is integer b): $ integer division

if b = 0 then /*error*/; end if;
x := abs a;
y := 0;
(while x >= abs b)

x -:= abs b;
y +:= 1;

end while;
return y * sign a * sign b;

else /*error*/;
end case;

end op div;

op domain(a);
case of
(is map a): $ domain of map

return {x : [x,y] in a};
else /*error*/;
end case;

end op domain;

op even(a);
case of
(is integer a): $ test even integer

Chapter 7 The SETL Programming Language Page 100

return a mod 2 = 0;
else /*error*/;
end case;

end op even;

op fix(a);
case of
(is real a): $ convert real to integer

assert exists x:=1,2.. | float x > abs a;
return (x - 1) * sign a;

else /*error*/;
end case;

end op fix;

op float(a);
case of
(is integer a): $ convert integer to real

return /* result of converting a to real */;
else /*error*/;
end case;

end op float;

op floor(a);
case of
(is real a): $ floor of real

case of
(a < 0.0):

loop init x := 0; doing x -:= 1; do
if float y <= a then return x;

end loop;
(a >= 0.0):

loop init i := 0; doing i +:= 1; do
if float i > a then return i - 1;

end loop;
end case;

else /*error*/;
end case;

end op floor;

op from(wr a, rw b);
case of
(is set b): $ take from set

a := arb b;
if a /= om then b less:= a; end;
return a;

Chapter 7 The SETL Programming Language Page 101

else /*error*/;
end case;

end op from;

op fromb(wr a, rw b);
case of
(is string b): $ take from start of string

if b = ’’ then
a := om;

else
a := b(1);
b := b(2..);

end if;
(is tuple b): $ take from start of tuple

if b = [] then
a := om;

else
a := b(1);
b := b(2..);

end if;
else /*error*/;

end op fromb;

op frome(wr a, rw b);
case of
(is tuple b): $ take from end of tuple

if b = [] then
a := om;

else
a := b(#b);
b := b(1..#b-1);

end if;
(is string b): $ take from end of string

if b = ’’ then
a := om;

else
a := b(#b);
b := b(1..#b-1);
end if;
return a;

else /*error*/;
end case;

end op frome;

Chapter 7 The SETL Programming Language Page 102

op impl(a,b);
case of
(is boolean a and is boolean b):

return (not a) or b;
else /*error*/;
end case;

end op impl;

op in(a,b);
if a = om then /*error*/; end if;
case of
(is set b): $ test element in set

return exists x in b | x = a;
(is string a and is string b): $ test character in string
if #a /= 1 then /*error*/; end;
return exists x:=1..#b | a = b(x);

(is tuple b): $ test element in tuple
return exists x:=1..#b | a = b(x);

else /*error*/;
end case;

op incs(a,b);
case of
(is set a and is set b): $ set inclusion test

return forall x in b | x in a;
else /*error*/;
end case;

end op incs;

op less(a,b);
case of
(is set a): $ remove set element

return {x in a | x /= b};
else /*error*/;

end op less;

op lessf(a,b);
case of
(is map a): $ remove map element

return {[x,y] in a | x /= b};
else /*error*/;

Chapter 7 The SETL Programming Language Page 103

end case;
end op lessf;

op max(a,b);
case of
(is integer a and is integer b): $ integer maximum

case of
(a>=b): return a;
(a<=b): return b;
end case;

(is real a and is real b): $ real maximum
case of
(a>=b): return a;
(a<=b): return b;
end case;

else /*error*/;
end case;

end op max;

op min(a,b);
case of
(is integer a and is integer b): $ integer minimum

case of
(a<=b): return a;
(a>=b): return b;
end case;

(is real a and is real b): $ real minimum
case of
(a<=b): return a;
(a>=b): return b;
end case;

else /*error*/;
end case;

end op min;

op mod(a,b);
case of
(is integer a and is integer b): $ integer modulus

return a - b * (a div b);
else /*error*/;
end case;

end op mod;

op not(a); $ logical not
case of

Chapter 7 The SETL Programming Language Page 104

(a=TRUE):
return FALSE;

(a=FALSE):
return TRUE;

else /*error*/;
end case;

end op not;

op notin(a,b):
case of
(is set b): $ test element not in set

return not a in b;
(is string a and is string b): $ test character not in string

return not a in b;
(is tuple b): $ test element not in tuple

return not a in b;
else /*error*/;
end case;

end op notin;

op npow(a,b);
case of
(is integer a and is set b): $ subsets of given size

if a<0 then /*error*/; end;
return {x in pow b | #x = a};

(is set a and is integer b): $ subsets of given size
if b<0 then /*error*/; end;

return {x in pow a | #x = b};
else /*error*/;
end case;

end op npow;

op odd(a);
case of
(is integer a): $ test odd integer

return a mod 2 /= 0;
else /*error*/;
end case;

end op odd;

op or(a,b); $ logical inclusive or
case of
(a = TRUE):

Chapter 7 The SETL Programming Language Page 105

$ skip evaluation of b and
return TRUE;

(a = FALSE):
$ evaluate b and do

case of
(b = TRUE):

return TRUE;
(b = FALSE):

\ return FALSE;
else /*error*/;
end case;

else /*error*/;
end case;

end op or;

op pow(a);
case of
(is set a): $ power set of set

if a={ } then
return {{ }};

else
x := arb a;
y := pow (A less x);

return y + {z with x : z in y};
end;

else /*error*/;
end case;

end op pow;

op random(a);
case of
(is integer a): $ random integer

if a >= 0 then
return fix random float (a+1);

else
return fix random float (a-1);

end if;
(is real a): $ random real

if a = 0.0 then
return 0.0;

elseif a < 0.0 then
return - random -a;

else
return /* random real in the

half open interval [0,a) */;

Chapter 7 The SETL Programming Language Page 106

(is tuple a): $ random element from tuple
if #a = 0 then

return om;
else

return a(1 + random (#a-1));
end if;

(is set a): $ random element from set
if a = { } then

return om;
else

return random [x: x in a];
end if;

else /*error*/;
end case;

end op random;

op range(a);
case of
(is map a): $ range of map

return {y : [x,y] in a};
else /*error*/;
end case;

end op range;

op sign(a);
case of
(is integer a): $ integer sign

case of
(a<0): return -1;
(a=0): return 0;
(a>0): return +1;
end case;

(is real a): $ real sign
case of
(a<0.0): return -1;
(a=0.0): return 0;
(a>0.0): return +1;
end case;

else /*error*/;
end case;

end op sign;

op str(a);

Chapter 7 The SETL Programming Language Page 107

const dg = ’0123456789’,
uc = ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’,
lc = ’abcdefghijklmnopqrstuvwxyz’,
q = ’’’’;

case of
(is boolean a): $ boolean to string

case a of
(’TRUE’): return ’#T’;
(’FALSE’): return ’#F’;

end case;
(is integer a): $ integer to string

y := abs a;
(until y=0)

x +:= dg(y mod 10);
y := y div 10;

end;
return if a < 0 then ’-’ + x else x end;

(is string a): $ string to string
if a /= ’’ and a(1) in uc + lc and

forall x in a(2..) | x in uc+lc+dg+’_’ then
return a;

else
return q +/ [if y=q then q+q else y end : y in a] + q;

end if;
(a=om): $ undefined to string

return ’*’;
(is tuple a): $ tuple to string

x := ’’;
(for y in a)

x +:= ’ ’ + str y;
end;
return ’[’ + x(2..) + ’]’;

(is set a): $ set to string
(for y in a)

x +:= ’ ’ + str y;
end;
return ’{’ + X(2..) + ’}’;

end op str;

op susbset(a,b);
case of
(is set a and is set b): $ subset test

return forall x in a | x in b;
else /*error*/;
end case;

Chapter 7 The SETL Programming Language Page 108

end op subset;

op with(a,b);
case of
(is set a): $ add element to set

return {x : x in [y : y in a] with b};
(tuple(a)): $ add element to tuple

x := a;
x(#x+1) := b;
return x;

else /*error*/;
end case;

end op with;

CHAPTER 8

SYNTAX

This chapter contains a formal definition of the permitted syntax of SETL programs.
8.1. Syntax Rules

This section contains the syntax rules. A modified form of bnf is used. The syntactic types
(or non-terminals) are strings of small letters, possibly including a underline. The possible alter-
natives, if there is more than one, are separated by the | character. Terminals are expressed in one
of the following possible notations:

A string of upper case letters represents a reserved word and can appear in either upper or
lower case letters, or a mixture, in the final program.
A special character, or sequence of special characters, represents itself as a terminal symbol.
In the case of the characters []{ } |, enclosing quotes are used to avoid confusion with the
meta-syntactic use of these characters in the description.
Special non-terminal types whose names begin with tok represent sets of terminals which
are described in the following section.

The following notations are used to extend the normal bnf conventions:
A sequence of items surrounded by brackets [] is used to indicate that the sequence of items
is optional.
A sequence of items surrounded by braces { } is used to indicate that the sequence of items
may be repeated any number of times, or entirely omitted.
The sequence [...] is used to represent the token sequences in an ender where the tokens are
copied from the corresponding start construction.

In some cases, the bnf notation given is inadequate to state certain restrictions or additional rules.
Special comments preceded by a dollar sign are given after the rule in question to provide the
needed additional information.
A SETL program consists of a terminal string of type setl prog, together with any referenced
libraries, which are obtained as terminal strings of type lib unit.

Chapter 8 The SETL Programming Language Page 109

Chapter 8 The SETL Programming Language Page 110

setl prog simple prog | module prog

simple prog program tok nam;
{lib item}
{decl}
{stmt}
{refine}
{routine}

end [program [...]] ;

module prog direc unit prog unit {module unit}

direc unit directory tok nam ;
{lib item}
{decl}
program tok nam - tok nam : dir spec
{module tok nam - tok nam : dir spec }

end [directory [...]] ;

lib unit library tok nam ;
{lib item}
{export item}
{decl}
routine
{routine}

end [library [...]] ;

dir spec {dir item} {decl repr}

dir item read item | write item |
imports item | exports item

read item reads tok nam {, tok nam} ;

write item writes tok nam {, tok nam} ;

imports item imports pspec {, pspec} ;

exports item exports pspec {, pspec} ;

lib item libraries tok nam {, tok nam} ;

pspec tok nam [(pspeca {, pspeca})] |
tok nam [({pspeca ,} pspeca (*)]

Chapter 8 The SETL Programming Language Page 111

pspeca rd [tok nam]
wr [tok nam]
rw [tok nam]
[tok nam]

prog unit program tok nam - tok nam ;
{lib item}

dir spec
{decl}
{stmt}
{refine}
{routine}

end [program [...]] ;

module unit module tok nam - tok nam ;
{lib item}

ir spec
{decl}
routine
{routine}

end [module [...]] ;

decl var tok nam {, tok nam} [: BACK] ; |
const declcon {, declcon} ; |
init tok nam := constant {, tok nam := constant} ;
decl repr

declcon tok nam [= constant]

constant [sign] tok int | [sign] tok rea |
tok str | tok rea |
"{" [constant {, constant}] "}" |
"[" [constant {, constant}] "]" |
"{" constant [, constant] .. constant "}" |
"[" constant [, constant] .. constant "]"

sign +
−

decl repr repr repr {repr} end [repr [...]] ;

repr tok nam {, tok nam} : mode ; |
mode tok nam : mode ; |
base tok nam {, tok nam} : mode ; |
plex base tok nam {, tok nam} ;

Chapter 8 The SETL Programming Language Page 112

mode atom | boolean | real | string |
integer [(tok int .. tok int)] |
tuple [(mode) [(tok int)]] |
tuple (mode , mode {, mode}) |
set [(mode)] |
basetype set (emode) |
maptype (mode) [mode] |
basetype maptype (emode) [mode] |
procedure [([mode {, mode}])] [mode] |
op (mode [, mode]) mode |
* | emode | tok nam

emode elmt tok nam | tok nam

basetype local | remote | sparse

maptype map | mmap | smapa

routine procedure | opdef

procedure proc tok nam [arglist] ;
body

end [proc [...]] ;

arglist (formal {, formal}) |
({formal ,} formal (*))

formal [formtype] tok nam

formtype rd | rw | wr

opdef op tok ubo (tok nam , tok nam) ;
body

end [op [...]] ; |
op tok uuo (tok nam) ;

body
end [op [...]] ;

body {decl}
{stmt}
{refine}

refine tok nam :: {stmt}

Chapter 8 The SETL Programming Language Page 113

stmt {tok nam :} stmt body

stmt body assert stm |
assign stm |
call stm |
case stm |
cont stm |
exit stm |
fail stm |
goto stm |
if stm |
loop stm |
pass stm |
quit stm |
return stm |
stop stm |
succeed stm |
yield stm

assert stm assert expr;

assign stm lhs [tok bop] := expr ;

call stm toknam [([expr {, expr}])] ;

case stm case stm t | case stm c
case stm c

case stmt case of
{ (expr {, expr}) : {stmt} }
[else {stmt}]

end [case] ;

case stm c case expr of
{ (constant {, constant}) : {stmt} }
[else {stmt}]

end [case [...]];

cont stm continue [...] ;

exit stm exit ;

fail stm fail ;

goto stm goto tok nam ;

Chapter 8 The SETL Programming Language Page 114

if stm if expr then
{stmt}
{elseif expr then {stmt}}
[else {stmt}]

end [if [...]] ;

loop stm loop loopiter do {stmt} end [loop [...]] ;
(loopiter) {stmt} end [...] ;

loopiter for iterator |
[init] [doing] [while] [step] [until] [term]

init init {stmt}

doing doing {stmt}

while while expr

step step {stmt}

until until expr

term term {stmt}

pass stm pass ;

quit stm quit [...] ;

return stm return [expr] ;

stop stm stop ;

succeed stm succeed ;

yield stm yield expr ;

iterator iterelmt {, iterelmt} ["|" expr]

iterelmt lhs in expr |
lhs = tok nam (lhs {, lhs}) |
lhs = tok nam { lhs {, lhs} }

lhs tok nam |
[" lhst [, lhst} "]" |

Chapter 8 The SETL Programming Language Page 115

lhs (expr {, expr}) |
lhs { expr {, expr} }

lhst lhs | -

expr tok uop expr |
tok bop / expr |
expr tok bop expr |
expr [tok.bop] :\(eq expr |
expr tok bop / expr |
bopnd |
lhs from lhs |
lhs fromb lhs |
lhs frome lhs |
exists iterelmt {, iterelmt} "|" expr |
notexists iterelmt {, iterelmt} "|" expr |
forall iterelmt {, iterelmt} "|" expr |

bopnd tok int | tok rea | tok str | tok nam |
TRUE | FALSE | om | newat | eof | nargs | lev | ok | date | time |
(expr) | case expr | if expr |
"[" [expr {, expr}] "]" |
"[" former "]" |
"{" [expr {, expr}] "}" |
"{" former "}" |
bopnd (expr {, expr}) |
bopnd (expr .. [expr]) |
bopnd "{" expr {, expr} "}" |
expr {stmt} end

former expr : iterator |
expr [, expr] .. expr |
lhs in expr "|" expr

case expr case expr t | case expr c

case expr t case of
casetb {, casetb} else expr

end

casetb (expr {, expr}) : expr

case expr e case expr of
caseeb {, caseeb} else expr

end

Chapter 8 The SETL Programming Language Page 116

caseeb (constant {, constant}) : expr

if expr if expr then
expr

{elseif expr then expr}
else expr
end

In these rules, there are certain token substitutions which are allowed. The following rules indicate
the possible substitutions. The only reason that these are stated as separate rules is to avoid an
unnecessary duplication of many rules which would otherwise be required.

In any rule where the set brackets "{" and "}" appear, the substitutions << and >> may be
made, to effectively generate an extra alternative.

In any rule where the tuple brackets [and] appear, the substitutions (/ and /) may be made,
to effectively generate an extra alternative.

The sequence of two dots .. which is used for various range constructs may always be
replaced by ... instead, a sequence of three dots.

The character " | " may be replaced by the keyword st wherever it occurs.

8.2. Token Types
This section describes the token types which were referenced in the previous section.

tok p binary operator
All defined binary operator names, including those defined using op definitions.

tok int integer denotation
An integer denotation is a string of digits 0-9 of any length which fits on one line of the source
program. It does not include any sign characters.

tok nam identifer name
Formed as a sequence of letters, digits and the underline character, starting with a letter. Upper and
lower case are equivalent. Excludes any of the reserved names corresponding to standard keyword
and operator names, as listed in Appendix nn.

tok rea real denotation
A real denotation is an optional string of digits, followed by a period, followed by a non-empty
string of digits (note that there must be at least one digit after the decimal point). An optional
exponent may follow consisting of the letter e (upper or lower case) followed by an optional sign
(+ or −) followed by a non-empty digit string.

tok str string denotation
A string denotation is an arbitrary sequence of characters enclosed using the character ’ (single

Chapter 8 The SETL Programming Language Page 117

quote mark or apostrophe). If this character is to appear inside the string, it is written as two suc-
cessive apostrophe characters. Note that a string denotation, like any other token, must fit on a sin-
gle line. If a longer string is required, the effect is obtained by writing two or more successive
string denotations on successive lines. Since the SETL language never allows two strings in adja-
cent positions, this can be unambiguously interpreted as a single long string constant.

tok ubo user binary operator name
Consists of a period, immediately followed by a sequence of characters which meets the normal
rules for an identifier (tok nam). It is permissible for the name to be the same as an identifier name
used elsewhere, the period serving to distinguish the uses.

tok uop unary operator
Includes all standard unary operator names, together with any unary operators defined using an op
definition.

tok uuo user unary operator name
An identifier preceded by a period, exactly as for a binary operator.

	Table of contents
	Introduction
	1. Elements of the SETL language
	2. Programming examples
	3. Character set & datatypes
	4. Expressions & assignment statements
	5. Control statements
	6. The Data Structure Specification Sublanguage
	7. Semantic definitions
	8. Syntax

