Courant Institute of
Mathematical Sciences

HIGHER LEVEL PROGRAMMING

Introduction to the Use of the
Set-Theoretic Programming Language SETL

R.B.K. Dewar, E. Schonberg and J.T. Schwartz

PRELIMINARY TRIAL EDITION - SUMMER

Courant Institute of
Mathematical Sciences

Computer Science Department

(7
New York University

"HIGHER LEVEL PROGRAMMING"

Introduction to the use of the
Set-Theoretic programming language SETL.
by R. B. K. Dewar
E. Schonberg
and J. T. Schwartz

PRELIMINARY TRIAL EDITION -SUMMER 1981

Computer Science Department
Courant Institute of Mathematical Sciences
New York University

WARNING: THE PROGRAMS IN THIS TEXT ARE NEITHER DEBUGGED
NOR COMPLETE. THEY WILL APPEAR IN COMPLETED AND TESTED
FORM IN THE NEXT EDITION. USE THEM ONLY WITH CAUTION.

Copyright January 1, 1981
All Rights Reserved

"HIGHER IEVEL PROGRAMMING"

Introduction to the use of the
Set-Theoretic programming language SETL.
by R. B. K. Dewar :
E. Schonberg
and J. T. Schwartz

Table of Contents

Preface

Chapter I: Programming Concepts

1.1 Programs

1.2 An informal overview of SETL

1.3 The steps of programming; how to run

your program and read its results

1.4 Advice to the would-be programmer

1.5 How to type a program; character sets

1.6 Exercises

1.7 Appendix: More on how to read your output listing.

Chapter II: Data Objects and Expressions

2.1 The main classes of data objects
2.1.1 1Integer, Real, and Boolean constants
2.1.2 Constant Sets
2.1.2.1 Sets of successive integers
2.1.3 Tuples
2.1.3.1 Tuples of sequences of integers
2.1.4 Haps
2.1.5 The size of composite objects: the operator
2.2 Exercises
2.3 Expressions and statements
2.3.1 Variable identifiers
2.3.2 1Integer operators
2.3.2.1 Exercises
2.3.3 String operators
2.3.4 Boolean operators
2.3.4.1 Exercises: Boolean equivalences
2.4 Set operations and setformers.
2.4.1 Setformer expressions
2.4.2 Existential and universal quantifiers
2.4.3 Some illustrative one-statement programs
2.5 Tuple operators and tuple formers
2.5.1 Binary tuple operators
2.5.2 Unary tuple operators
2.5.3 Other tuple operators
2.6 Tuple formers. Simple tuple and string iterators
2.7 Map Operations
2.7.1 The image set operator f{x} and the image operator
2.7.2 The single-valued image operator f(x)
2.7.3 Some remarks on multi-valued maps
2.7.4 Two useful map operations
2.7.5 Multi-parameter maps
2.8 Compound operators
2.9 Types and type-testing operators
2.10 The ? operator
2.11 Exercises
2.12 General form of the SETL assignment
2.12.1 ‘Assigning forms’ of infix operators.

Assignment expressions

f(x)

Page 2

2.12.2
2.12.3

2.13
2.14
2.15

Other positions in which assignment operators are allowed
The operators FROM,

FROME, and FROMB

Operator precedence rules

Exercises

OMS and Errors

Chapter III:

w
.
¢« o

[l e e
-3 o o o

L]
wtnuau<»~amkns~wro-o TS WN~D

w W
.« o
WWWWWLWWWLWWWNWWWWWE-=
e o o o o o o e o o
WWWwWwwwWwww
.

Chapter 1IV:

4.4.2 Another recursive procedure:
4.4.3 Binary searching:
‘Towers of Hanoi”’

=)

(1]

o

wwwu

Basic Control Structures

IF statement

Omitting the ELSE branch of an IF statement
The null statement

Multiple alternatives in an IF statement

An important note on indentation and programming style

The IF expression
CASE statement

ops

Set iterators

Tuple iterators,
String iterators,

first form
first form

Numerical iterators

Additional loop control statements:
Map iterators

CONTINUE and QUIT

Compound iterators
The general loop construct

8.1
8.2
8.3

-8.4

The WHILE loop
The UNTIL 1loop
The DOING and STEP clause
The INIT and TERM clauses

The GOTO statement

Programming example:
Exercises

an interpreter for a simple language

Reading and writing data
Reading data for a terminal

7.1

Exercises

Procedures and Functions

Writing and Using Functions

«l1 Some simple sorting procedures

1.2 A character-conversion procedure
Name Scopes;

Programming Examples
3.1 The

the VAR declaration

‘buckets and well problem’- a simple artificial
intelligence example
4.4 Recursive Functions

4.4.1 Robert Floyd’s Quicksort procedure

mergesort
a fast recursive searching technique
problem

«5 Procedures Which Modify Their Parameters

Other Procedure-related Facilities

4-4.4 The
4
4.6 Exercises
4.7

b4

7.1 Procedures and functions with a variable number

of arguments

4.7.2 User-defined infix operators

Page 3

4.7.3 Refinements

4.8 Rules of Style in the Use of Procedures
4.9 Exercises

Chapter V: Data Objects and Expressions, Concluded

Real Operators

5.1
5.2 String Scanning Primitives

5.2.1 Examples of Use of the String Scanning Primitives

5.2.1.1 A Simple Lexical Scanner
5.2.1.2 A ‘Concordance’ Program
«2.1.3 A ‘Margin Justification’ Procedure

5
m
itional Examples

1 Solution of Systems of Linear Equations

2 An Interactive Text-editing Routine

3 A Simplified Financial Record-keeping System
r

Chapter VI: Control Structures, Concluded

6.1 Refinements
6.2 The CONST Declaration
6.3 The ASSERT Statement
6.4 Macros
4.1 Macro Definitions
4.2 Parameterless Macros
4.3 Macros with Parameters
«4.4 Macros with Generated Parameters
4.5 The Lexical Scope of Macros. Macro Nesting
4.6 Dropping and Redefining Macros
6.5 Programming Examples

6.5.1 Iteration Macros
6.6 Exercises

Capter VII: Programming Development, Testing, and Debugging

1 Bugs: how to minimize them
2 Finding Bugs
3 A checklist of common bugs
4 Program testing
7.4.1 Quality Assurance Testing
7.4.2 Regression Testing
7.5 Analysis of Program Efficiency
7.5.1 Efficiency of Some of the Basic SETL operations;
Estimating the Execution Time of Loops
Efficiency Analysis of Recursive Routines
More About the Efficiency of the Primitive SETL
operations. A warning Concerning Value Copying.
7.5.4 Data Structures for High-efficiency Realization
of Important Operations.
Exercises
Formal Verification of Programs
7.7.1 Formal Verification Using Floyd Assertions:
General Approach

7.5
7.5.

w N

N~
)
~N N

Page 4

Page

7.7.2 Formal Verification Using Floyd Assertions:
An Example
7.8 Formative influences on program development
7.9 Exercises
7.10 References to material on alternative data structures
References for Additional Material or Algorithms.

Chapter VIII: Additional I/0 and Environmental Functions; Backtracking

1 Input-output facilities

2 Backtracking

8.2.1 TImplementation of backtracking

8.2.2 Total failure; generation of all solutions

to combinatorial problems

8.
8

Tiling problems
Other uses of OK and FAIL
Nondeterministic programs, or it is OK after all
Auxiliary backtracking primitives
e of Auxiliary “Inclusion Libraries"
sting control commands
vironment operators and SETL command parameters
Standard SETL command options
1 Parse phase options
2 Semantic analysis phase options
3 Code generation phase options
4
5

e o
N NN DN
cmE e o
00 00O OWOWEXS H W NS W

o o
.
.
.

L]
o L & W oo 0o 0 0o

3
W

Run-time support library options
Other command parameters used for system

checkout and maintenance
8.6 Exercises

Chapter IX: Structuring Large SETL Programming

1 Textual structurs of complex programse.

2 Separate compilation and ‘binding’ of program subsections.
3 More on interpreters: the SETL machine

9.3.1 An interpreter for SETL

9.3.2 Memory management and data-structures

4 Appendix. A machine interpreter in SETL.

5 E

9.
9 xercises (TO BE ADDED)

Chapter X: The Data Representation Sublanguage

101 Implementation of the SETL primitives
10.2 The standard representation of sets
10.3 Type declarations
10.4 Basing declarations

10.4.1 Base sets

10.4.2 Based maps

10.4.3 Based representations for sets

10.4.4 Basing declarations for multi-valued maps
10.5 Base sets consisting of atoms only
10.6 Constant bases
10.7 The representation-quantifier PACKED
10.8 Guidelines for the effective use of the

Data Representation Sublanguage

Page 6

10.9 Exercises
10.10 Additional remarks on the effect of REPR declarations
10.11 Automatic choice of data representations (TO BE SUPPLIED)

Capter XI: The Language in Action: a Gallery of Programming Examples

11.1 Eulerian paths in a graph

11.2 Topological sorting

11.3 The ‘“stable assignment’ problem
11.4 A text preparation program

11.5 A commercial record-keeping system
11.6 A Turing-machine simulator

11.7 ‘Huffman coding’ of text files
11.8 A ‘game playing’ program

11.9 A Macroprocessor implementation
11.10 Discrete event simulation (TO BE SUPPLIED)
11.11 Exercises

Page 7

Preface

The computer programming language SETL is a relatively new member of
the so called “very-high-level’ class of languages, whose other well-known
members are LISP, APL, and SNOBOL. These languages all aim to reduce the
cost of programming, recognized today as a main obstacle to future progress
in the computer field, by allowing direct manipulation of 1large composite
objects, considerably more complex than the simple integers, strings, etce.
available in such well-known ‘middle level’ languages as PASCAL PL/I, ALGOL,
and Ada. For this purpose, LISP introduces structured 1lists as data
objects, APL introduces vectors and matrices, and SETL introduces the
objects characteristic for it, namely general finite sets and maps.

The direct availability of these abstract, composite objects, and of
very powerful mathematical operations upon them, improves programmer speed
and productivity significantly, and also enhances program clarity and
readability The classroom consequence is that students, freed of some of the
burden of petty programming detail, can advance their knowledge of
significant algorithms and of broader strategic 1issues in program
development more rapidly than with more conventional programming languages.

The price that very high level languages pay for their expressive power
is a certain loss of efficiency. SETL should therefore be regarded, not as
a tool for production-efficiency programming, but as a vehicle for rapid
experimentation with algorithms and program design and as an ideal vehicle
for writing ‘one-shot’ or infrequently used programs whose efficiency is of
little consequence. It 1is also an effective tool for prototyping large
systems purposes of design validation and early customer exposure, sSystems
which 1if important enough can then be hand-translated into more efficient
versions written in programming languages of medium or even 1low 1level.
Experience with SETL will show that it is efficient enough for a surprising
variety of purposes; nevertheless, it is still expensive to rumn, and will
remain so until a new generation of high-performance microcomputers appear.
In spite of this, SETL is a good vehicle for discussing program-efficiency
issues, since it allows a graded approach to these issues, algorithm design
being chosen first and data structures which realize them being chosen
second, It will also be seen that the data structure representation
sublanguage of SETL, described in Chapter X, is a powerful conceptual tool
aiding such ‘“programming by stepwise refinement’.

Fairly polished versions of SETL are currently available on the DEC VAX
and CDC Cyber, and less polished experimental versions on the IBM/370, DEC
10, and DEC 20. The systems running on all these machines are <close to
identical, all being produced from common system source by transporting an
underlying systems-writing language from machine to machine. The relatively
small differences between versions running on different machines (and under
different operating systems on a given machine) are documented 1in Appendix
X.

This book is intended for people who want to write programs in SETL.
It does not assume knowledge of any other programming language, and is
therefore suitable for use in an introductory course. We attempt to explain
most of the mathematical concepts which play a role in SETL programs, almost
all of which are in fact quite elementary. However, we do assume that the
reader has a working knowledge of such basic concepts as set, sequence, etc.

Page 8

The knowledge assumed is roughly equivalent to that which would be acquired
in a good high school ‘new mathematics’ course, or in the first month of a
freshman-level course in discrete mathematics. ‘

We present considerably more material than can be covered in a
one-semester introductory course. Chapter 1 provides an introduction to
computer programming and an introductory overview of the SETL language.
Chapter 2 introduces the major data objects of SETL, of which sets, maps,
and tuples are most characteristic, and describes many of the language’s
operations. By The end of Chapter 2, the student is in position to write
various interesting ‘one-liners’. Chapter 3 then presents various basic
control structure notions, qualifying the student to write interesting short
programs. Chapter 4 introduces the most important control structures,
namely PROCEDURES and their invocations.

Chapters 5 and 6 describe the remainder of the operations, expressions, and
control forms of the 1language, except for backtracking, which is covered
considerably later, in Chapter 8. Chapter 7 gives advice on program
development, testing, and debugging, completing what can be considered the
elementary part of the book.

The first seven chapters can be covered in a one semester introductory
course, and can be skimmed rapidly by any reader reasonably familiar with at

least one modern programming language, such as PASCAL, PL/1, ALGOL 60, ALGOL
68, or ADA. ’

The remaining chapters present more advanced material, which could be
covered in a second programming course. ~Chapter 8 describes the I/0
features of SETL systematically. Chapter 9 introduces the directory,
program, module, and 1library mechanisms used to structure large programs.
Chapter 10 presents SETL’s data representation sublanguage and reviews
various strategic considerations which play a role in data representation
choice. Chapter 11 shows the language in action by presenting several more
substantial applications of it, including a simple interactive editor and
various computational geometry and graph algorithms.

SETL was developed at the Computer Science Department of New York
University, by a group of which the present authors were members. The
language has now been wused by students 1in courses ranging from the
introductory wundergraduate to graduate courses in algorithm design. The
style and order of presentation adopted in this book reflects some of the

pedagogical experience gained in this way, especially at the undergraduate
level.

Thanks are due to the many persons who helped to define and develop the
SETL system. David Shields has been a mainstay throughout, inventing and
implementing many system improvements, and developing documentation from
which several of the sections of the book are drawn. Much of the first
version of the system was written by Arthur Grand, and brought to solidity
by Stefan Freudenberger. Thanks are also extended to Edith Deak, Micha
Sharir, Robert Paige, Kurt Maly, Phillip Owens, Aaron Stein, Earle Draughon,
Bernard Lang, Leonard Vanek, Steve Tihor, and Hank Warren, all of whom
contributed to the development of the SETL system. Valuable design
suggestions were contributed by our colleague Prof. Malcolm Harrison and
gleaned from his elegant BALM language. Essential thanks are due to the

Page 9

very helpful and hard-working group of summer interns who helped put this
maunscript together and remove many of its errors during the summer of 1981:-:
Leonid Fridman, Nathaniel Glasser, Barbara Okun, and Yi Tso. We also wish
to extend thanks to Prof. Andrei Ershov and his group at Novosibirsk, who
have aided the development and definition of the language from the very
first days, Prof. Anthony McCann of Leeds University, and Drs. Su Bogong
and Zhou Zhiying of Tsinghua University, whose more recent involvement has
been most valuable.

Finally, thanks are due to the research administrators who fostered the
development of SETL through 1its early, relatively isolated years. Among
these we should particularly like to thank Milton Rose, who launched our
development effort during his years at NSF, also Kent Curtis and Tom Keenan
of NSF, who fostered it during the period in which the NYU group was
struggling toward a reliable and acceptably efficient implementation. We
hope the success of the system will justify their confidence.

CHAPTER 1

PROGRAMMING CONCEPTS.

Chapter Table Of Contents

1.1 Programs ,
1.2 An informal overview of SETL

1.3 The steps of programming; how to run
your program and read its results
4 Advice to the would-be programmer
«5 How to type a program; character sets

6

7

Exercises
Appendix: More on how to read your output listing.

1.1 Programs

To program is to instruct a computer to perform certain desired
actions. For example, wusing the programming language to be described in
this book, you can write the instructions

print (54 + 45);
print(‘The difference of twelve and nine is:’, 12-9);
print (55%55);

and submit them to a computer. Then, if the instructions have been properly
typed and submitted, the computer, after first digesting them, will
obediently produce the following results;

99
The difference of twelve and nine is: 3
3025

The instructions you submit to the computer are known as source code or
input; the results which it prints are known as output. Programming is
therefore the art of devising inputs which describe the output that you want
to produce.

This first example suggests that programs can only deal with simple
numerical quantities and can only describe simple arithmetic calculations.
This is by no means the case. Computers are not just numerical calculating
machines, they are general information-processing engines and can manipulate
information of arbitrary structure and complexity. This basic fact will be
strongly emphasized by the programming- language, SETL, described in this
book. For example, you will see that it is easy to manipulate arbitrarily

PROGRAMMING CONCEPTS. Page 1-2

complex tables, for example, tables of names, addresses, telephone numbers,
birth dates, and salaries having the form

[[“Aldo Gonzalez’,” 45 Ellwood Ave’,”278-3591°,°12-12-45",21315],
[Jimmy Archibald’,“1315 Bole St°,"479-1919°,°5-31-78,0],
[‘Willa Cross’,“111 Mocking P1.°,°275-1212°,°7-19-00",6700],

Such tables can be built up, sorted, searched for particular elements or
combinations of elements, extracts and statistical summaries of them can be
prepared and printed, etc. All this will be =easy to do once you have
learned the programming language described in this book, which can handle a
table like that shown above just about as comfortably as it can handle a
simple number like 23.

However, although the programming language to be presented is powerful,
and although computers are extremely fast and perfectly accurate, they are
also unintelligently pedantic and narrowly literal in their reactions to the
instructions which they receive. This has two fundamental consequences,
which you as programmer (i.e. as a would-be author of programs), must
always keep in mind.

(i) The computer will always do exactly what it is instructed to do,
neither more nor 1less, and will do this if its instructions are legal,
irrespective of whether these instructions are reasonable or wunreasonable
from some larger point of view. This can be quite disconcerting at first,
since it can easily lead to unexpected consequences. When you ask a person
wearing a watch ‘Can you tell me what time it is?’, you expect an answer
like “It’s 3:15°. A person acting like a computer would instead answer,
‘Yes, I can’; but would never actually tell you the time until you actually
uttered a direct and unambiguous command like ‘Tell me the time’. Therefore
hints, even hints that a person might regard as utterly clear, are quite
useless to a computer. It does not know, or care, what you have in mind for

it to do: it only knows what it has been directly and unambiguously
commanded to do.

This it will do with perfect fidelity, even in circumstances 1in which
even a boundlessly faithful and determined person would realize that

something is quite wrong with the instructions given him and would ask for
more reasonable instructions. For example (though they would have to be

expressed a bit differently), the following instructions can be given to a
computer, and would then be followed literally:

instruction 1: print (‘Hello There’);
instruction 2: go back to instruction 1.

Given these instructions, the computer will, like a phonograph stuck on a
groove in a cracked record produce the output

Hello there
Hello there
Hello there
Hello there
Hello there
Hello there

PROGRAMMING CONCEPTS. Page 1-3

line after line, thousands, millions, or even billions of times, as long as
paper remains 1in its printer, power continues flowing to its circuits, the
building which houses it has not burned down or collapsed in an earthquake,
and as long as neither the human operator (nor the automatic operating
system) which regulates it have grown suspicious -enough to switch the
computer to another activity. 1In such circumstances, the exhilarating magic
of the computer sours after the fashion of the well-known tale of the
sorcercer’s apprentice.

(ii) In order to follow instructions givenm to it, the computer must
first be -able to digest and understand them. The linguistic abilities of
computers are limited, and their abilities to recover from errors are also
limited. Hence the approach it takes is extremely pedantic. 1In particular,
you will find that it insists that commands submitted to it must adhere
precisely to the grammatical rules, and even to the “petty rules of
punctuation, of the programming language which it is set up to handle. The
omission of so much as a dot, the misspelling of a single name or a single
command keyword, the substitution of a single colon where a semicolon 1is
wanted, the 1insertion of a single blank space where it is not wanted: all
these petty errors are fatal, and will cause the computer to reject a set of
instructions before it even attempts to follow them.

So, for example, the three commands appearing at the very beginning of
this section would not be executed if they were submitted as they stand, but
only if they were preceded by a required line serving to introduce and name
them, and followed by a required “trailer’ line, thusly:

PROGRAM sample_program_number_1;

print (54 + 45);

print (‘The difference of twelve and nine is:’, 12 - 9);
print (55%55);

END;

Packaged in this way, our three original commands come to constitute a
complete and valid program in the SETL language, acceptable as it stands.

The difficulty that computers have 1in coping adequately with error
causes them to react to tiny program details in a pedantic manner, to which
the beginning programmer must grow accustomed. If, for example, the program
shown above is submitted as

PROGRAM sample_program_number_1;

print(54 + 45),

primt (“The difference of twelve and nine is:’ 12 - 9);
print (55 * 55);

END;

it will be rejected without producing any output. In fact, three errors,
each fatal in spite of the fact that it can easily be corrected (and,
indeed, might never even be noticed) by the human reader of these
instructions, occur in the text shown above. These sins, damning in the
computer’s view though trivial to the human viewer, are:

PROGRAMMING CONCEPTS. Page 1-4

(a) Substitution of a comma for a semicolon in the second line.
(b) Omission of a comma after the terminating quote in line 3.

(c) Misspelling of print as primt, also in line 3.

Clearly, then, to interact in a satisfactory way with a computer you
will have to come some distance toward compromise with what will at times
seem like a maddeningly literal, detail oriented, robot mind. But these
initial irritations can be overcome, and, once you have overcome then, you
will find the amazing powers of an infinitely flexible machine at your
commande.

As a programmer, you will find it instructive to realise that programs
existed 1long before computers were invented, even though computers have
given them forms different from what they had before and hav vastly extended
their scope. Mankind first encountered programs early in-the new stone age
(or perhaps even in the old stone age), when basket-weaving and palm-leaf
weaving were invented. Basket patterns, palm-leaf weaves, rug patterns,
knitting patterns and musical scores are all programs, that 1is, are
sequences of instructions involving choice and repetition, whose execution
produces outputs which are larger and more 1interesting than the sets of
instructions from which they were produced. All of these activities exhibit
the elements of repetition and choice (i.e., repetition with planned
variations) which 1is so characteristic of programming, and which we will
constantly meet with in this book. Note in particular that

(a) In programming, as in knitting, it may be necessary to execute an
instruction, or a group of instructions, more than once. Most programs will
therefore involve repetitions, or even repetitions within repetitions, as in
“knit three stitches and then purl two, repeating twenty times for each row,
for ten successive rows; then knit five rows of 100 stitches each.’ The
number of repetitions desired can be specified either by an explicit count,
as in the preceding example, or by stating a condition which depends on the
state produced by prior repetitions (as in cooking: ‘beat steadily until
the mixture thickens’). Both forms of repetition will be encountered again
and again in the chapters which follow. Since computers execute more than a
million elementary instructions per second, computer programs are even more
dependent on repetition than knitting and weaving patterns are: a
repetition-free program would run for no more thamn a tiny fraction of a
second.

(b) Simple repetition, like the endless repetition of a single stitch
in knitting, can only produce an unending featureless cloth. To produce
something more interesting depends, in programming as 1in knitting, on
repetition with variation, and on proper combination of repetition with
choice, like the choice which appears in the example “If a size 25 sweater
is desired, repeat for 30 rows, but if a size 27 sweater is desired, repeat
for 36 rows’. The fact that conditional instructions of this kind can be
used in a program makes it possible to produce a wide variety of outputs and
write programs that can be used in an immense variety of circumstances. In
fact, complex sequences of choices are much more characteristic of programs
than of any other kind of plan, pattern, instruction, or recipe, since the
extreme accuracy of the computer makes it possible to plan and follow long
sequences of choices and variations that would soon leave a person trying to

PROGRAMMING CONCEPTS.) Page 1-5

carry them out exhausted and hopelessly confused.

(c) Programs, like knitting instructions, are relatively unchanging
objects; but their execution, 1like knitting, is a dynamic activity. A
program is no more the same thing as its output than a set of knitting
instructions are the same thing as the sweater they describe; nor should we
confuse a program with the computer on which it runs, any more than we would
confuse a set of knitting instructions with the needles used to execute
these instructions.

PROGRAMMING CONCEPTS. Page 1-6

1.2 An informal overview of SETL.

The programing language SETL has many powerful features, and it will
take well over a hundred pages to explain them all. Therefore this short
section can only give you a glimpse of some of these features.
Nevertheless, before we march forth to explore the terrain systematically,
it is worth previewing SETL’s most characteristic features informally. For
this purpose, we consider a simple example. As its name implies, SETL makes
it easy to work directly with sets. Suppose therefore that the following

set of numbers is given:
(1) {13, 11, 45, 0, -16, 21, 85, 46, 80}

and call it s. The problem we wish to consider 1is that of finding the
median of the numbers in s, namely the number which would come halfway
beween the first and the last element of s 1if the elements of s were
arranged in ascending sequence from lowest to highest, namely as

(2) (-16, O, 11, 13, 21, 45, 46, 80, 85]

(In our example, this median is clearly 21). If (as in our example) s has
an odd number of elements, then the median (which is often used in
statistics to represent a ‘“typical’ member of a set s) can be defined as
follows: it 1is the wunique element x o0f s such that there are as many
elements of s which are smaller than x as there are elements of s which are
larger than x. If s has an even number of elements there are (as it would
if we dropped the number 85 from our example) nothing lies exactly in the
middle, and we could argue about which of the two numbers (e.g. 13 or 21)
lying equally close to the middle of an ordered sequence like (2) should be
considered the median. To avoid this complication let us agree for the
moment that we will only consider sets having an odd number of members. For

such sets, the median 1is simply the number x defined by the following
condition:

(*) The number of members of s which are less than x is equal to the
number of members of s which are greater than x.

In SETL, a set like (1) can be read in (for example, from the keyboard

of a computer terminal, or from a punched card), simply by writing the
command

READ (s) ;

Once having read s in, we may want to find, and print, its median. As with
all programming tasks, this can be done in several different ways. If we
knew how to arrange the elements of s in order, we could simply find this
arrangement, take the element which comes in the middle, and print it out.
Arranging elements in order is called sorting; we will study many
techniques for sorting later in this book, and any one of them would put us
into position to use this approach to findng the median. However, it still
is too early to show you how to do anything quite this complex, and hence we
shall follow another path, namely we will use the definitionm (#*) directly.

PROGRAMMING CONCEPTS. Page 1-7

In order to do this, we must first be able to form ‘the number of
members y of s which are less than x°. Since SETL makes it easy for us to
form sets, and allows us to get the number of elements in any set t simply
by writing #t, this is easy: we simply form the set of all members y of s
which are less than x, and then take its number. The set we want can be
formed simply by writing

(3) {y INs | y <x} -
and its number of elements is therefore
(4) #{y IN s | y < x}

Similarly, the number of elements in s which are greater than x can be
written as '

(5) #{y IN s | y > x}

Concerning the construct (3), which is known in SETL as a set former, we can
make the following remarks: '

(a) It is written in a fairly standard mathematical notation, which
will be familiar to anyone who has studied much mathematics (even
grade-school or high-school level ‘New Math’).

(b) The notation (3) should be read as follows:

(bei) The curly brackets surrounding the rest of formula (3), which are
sometimes called “set brackets’, are simply read as ‘the set of’.

(beii) The next part, i.e. y IN s, is read more or less as it stands,
i.e. as ‘y in s’, or perhaps as “all y in s’, thus giving “the set of all y
in S’o

(beiii) The ‘|’ symbol is shorthand for “such that’.

(beiv) The condition following | is standard mathematical notation
which is read as it stands, giving altogether

‘the set of all y in s such that y is less than x’

as the English reading of (3), and similarly
“the number of elements in the set of all y in s such
that y is less than x’

and :
‘the number of elements in the set of all y in s such
that y is greater than x

as the readings of (4) and (5) respectively.

We can therefore express the condition (*) which defines the median
simply by writing

(6) #{y IN s | vy < x }= #{y IN s | y > x}

PROGRAMMING CONCEPTS. Page 1-8

There will exist such an x if and only if the number of elements in s is

odd. SETL allows one to test for existence of an x satisfying the condition
(6), and to find it if it exists, simply by writing

(7) EXISTS x IN s | #{y IN s | y < x}= #{y in s | y > x}

which in English reads roughly

“there exists an element x in s such that the
number of elements in s which are less than x equals the number
of elements in s which are greater than x°

(Note that the first | in (7), like the others, can be read as “such that’.)
If the median exists, i.e. if the number of elements in s is odd, we want
to print it out; otherwise, only a message announcing that s has an even
number of elements will be printed. This sort of conditional action,
determined by a condition which cannot be evaluated until actual data has
been read and examined, 1is expressed 1in SETL (as in most other modern
programming languages) by an ‘IF statement’. A full account of this
important command will be given in Chapter III; however, even without this
full account, the meaning of the following IF-statement, which does what
needs doing in the present case, should be clear:

(8) IF EXISTS x IN s #{y in s | y < x }=#{y in s | y > x} THEN
PRINT(‘ The median is:’, x);
ELSE
PRINT(°No median, the set s has an even number of elements.’);
END;

Note the following details concerning the command (8):

(1) To produce output printed on paper or displayed on a terminal, the
PRINT command is wused. This can either print a simple message (like the
second of the two PRINT commands shown above, or (like the first PRINT
command) can be wused to print both a message and a quantity that has been
calculated elsewhere in the same program (like the -x- in example (8)).

(ii) The IF-statement appearing in (8) must be terminated by an
occurrence of the word END, which 1is needed to mark the end of the
IF-statement unambiguously.

(1ii) The rules of SETL punctuation require both the PRINT commands

appearing in the above example, and also the whole IF-statement, to be
terminated with a semicolon.

As was already noted in Section l.1, both an introductory ‘header line”’
and a terminating “trailer line’ must be added to (8) before it can be run.
Adding these lines, we arrive at the following fully set-up program, which

can be used to read any set s of integers, and print out the median of s if
s has an odd number of members:

PROGRAM find_the_median;

READ (s); ‘

IF EXISTS x IN s | #{y IN s | y < x} = #{y in s | y > x} THEN
PRINT(’The median is:’, x);

PROGRAMMING CONCEPTS., Page 1-9

ELSE

PRINT(’“No median, the set s has an even number of elements’);
END; ’
END PROGRAM find_the_median;

Though simple, this program illustrates several of the most significant
features of the SETL language: SETL allows us to define, construct, compare
and in general manipulate sets of values ; such sets can be searched to
find whether elements exist that satisfy a given property; such sets can
also be read and written, and (as we shall see in Ch.2) modified in a number
of ways. We shall see, as our study of the language progresses, that sets
and set operations are particularly versatile concepts for problem-solving
and programming, and that SETL allows its skilled user to solve complex
problems with greater ease than that afforded by most other programming
languages.

PROGRAMMING CONCEPTS. Page 1-10

1.3 The steps of programming; how to rumn your program and
read its resultse.

Knitting instructions, basket weaving pattermns, recipes, even weaving
instructions for handlooms; all are intended to be executed manually by a
person, who can at least be trusted to stop if he starts to get into trouble
because something is wrong with the instructions. However, programs, like
weaving set-ups for large automatic looms, will be executed at high speed by
a machine. If this is not to lead immediately to failure, or still worse to
a high-speed outpouring of trash, programs must be planned, set up, and
tested carefully before they are released for full scale high-speed
execution. This involves a whole series of steps:

(I) One starts with an initial conception: what would be interesting,

useful, scientifically or commercially valuable, to have? The answers to
such questions come from outside the technical field of programminge.

(II) Once a goal has been formulated, what patterns of repetition and
choice, what ingenious shortcuts, allow the desired output to be produced
most simply and efficiently? These questions touch upon an area of program
and algorithm design that lies outside the scope of this introductory book;
however, the many programs presented 1in the chapters which follow will
illustrate some of the numerous techniques for clear and effective design
that are available to the knowledgeable programmer.

(I1I1I) Once both a goal and a general plan for realizing it have been
specified, there begins the detailed work of restating the plan in terms of
the specific toolkit of instructions made available by the programming
language that one 1is using. This is the labor of programming per se. As
will be seen, the SETL language presented in this book supplies its wuser
with very powerful tools of expression, and therefore allows programs to be
expressed more easily, simply, and directly than they would be in other,
less abstract programming languages. But these tools must be learned
carefully and then wused accurately: computers enforce a compulsive
attention to detail that takes some getting used to. If used accurately,
they will allow you to write both short programs, like the examples shown in
the preceding section, and sophisticated programs many hundreds or thousands
of lines long which realize very complex functions.

(IV) After being typed at a terminal or punched on cards, a program can
be passed to the computer on which it is to rum. This will trigger a whole
sequence of behind-the-scenes activities, with which you will only be
peripherally involved, but of which it 1is importamt to have some
understanding in order to cope with the various things that «can go wrong
between the time that your program is first entered into the computer and
the time, several seconds to several hours later, when output finally
emergese. Though differing somewhat from machine to machine, these steps
will generally be more or less as follows:

(i) Your program is passed, as a passive file of data, to another group
of programs, pre-stored in the computer. These programs, which collectively
comprise the computer’s operating system, share the computer’s power among
the many wusers entering jobs at card-readers and terminals, all of whom

require, and will eventually get, a quantum of service from the computer
system.

PROGRAMMING CONCEPTS. Page 1-11

The first thing that the operating system programs do is validate your
identity as an enrolled user of the computer. If this check fails, you will
be refused service. This will happen immediately if you are wusing a

~terminal and fail to identify yourself to the operating system’s

satisfaction. On the other hand, a ‘batch’ or ‘card oriented” system
normally looks for wuser identification on the first card of each deck
submitted to it; this identification wusually consists of a wuser name,
password, and perhaps a few other information items such as the account to
which the cost for a program run are to be charged. If any of this
information 1is 1invalid, the computer system rejects your job and only very
enigmatic information, for example a single sheet bearing your name and a
cryptic refusal to service your progam, is produced. However, if you pass
the operating system’s user validation check, the program you have submitted
will be entered onto a pending work queue, where it will wait, along with
work entered by other legitimate system user to be scheduled for future
attention by the operating system. In an interactive system run from a
terminal this should normally take no more than a few seconds; in a
card-oriented batch system it can wait anywhere from moments to hours.

(ii) When your turn to be served further comes up, the first 1line or
few 1lines of information supplied with your program are examined by the
operating system programs running on, the computer. These first lines, known
As command 1lines (or perhaps as control cards, job control cards, or JCL)
serve to tell the operating system, which provides many services to many

users and deals with many programming languages, which one of its services
you want.

To run a program in SETL, your command 1line or 1lines will have to
convey the following information to the operating system:

(1) The Language to be used (i.e., SETL).

(2) The location of the SETL program to be processed. In a batch
system this will generally be a deck of punched cards following immediately
after the comma nd lines, but in an interactive system it will more often be
a file of lines which you have previously entered into the computer using an
auxiliary ‘editor’ programe. In the latter case, the name of this pre-stored
program file must be indicated.

(3) The location of any inbut data which your SETL program needs to
read. In batch systems, the data may simply follow the text of your
program, in the same deck of punched cards. In terminal systems, this data
can either be obtained from a pre-stored file or read directly from your
terminal, in which case you will have to type it in, in response to queries
which your program sends to the terminal as it runs.

(4) The destination to which output produced by your program is to be
sente In batch runs, this will be a ‘temporary file’ which is printed after
your program has halted (or, in the event of trouble, after your program has
been halted forcibly by the operating system). In interactive runs, your
output either will be written to a file which you can examine after it has
been produced, or will be sent to the screen of your terminal, in which case
output will appear as your program runs.

PROGRAMMING CONCEPTS. Page 1-12

(5) You can supply additional information to select ‘options’ which

influence details of your run. Descriptive material concerning these
options is found in section 8.2.

If any of the information contained in the command line which initiates
execution of your program is defective, the result will be almost as
catastrophic as if your user validation had failed. Your program will not
run, and your only output (in a batch sytem) will be a page or two of
information recording the fact that your command lines contained an error.
To get ©past this barrier you must repair your command lines, entering them
in completely error-free form. Make sure you understand all details of the
required form for these few (but operating system dependent) lines; consult
an expert immediately if trouble persists.

(iii) Assuming now that both your identification and your command lines
have proper form, the operating system programs will prepare for the
processing and execution of the program which you have supplied. Though
this involves many detailed steps, some of which are described below, the
two basic things that the operating system needs to do are just the
following: '

(1) The program which you have supplied will be examined, checked
for exact conformity to the rules of the SETL language, and, if it
passes this check, translated into an internal program form with which
the computer can work directly. This first step, checking and
translation, is called compilation, and the program which carries it
out 1is called the SETL compiler. (Note that compilation is necessary
because the form of SETL which you write and submit to the computer is
designed for human, not for machine, convenience; it must be
translated into a more machine-convenient form before your program can
actually be run.)

(2) After translation into appropriate internal form, the
instructions give 1in your program are actually performed, (possibly)
producing output. This step is called execution, and the program which
carries it out is called the SETL run-time system.

(iv) Errors can, and often will, be detected during either of the two
preceding steps. Grammatical and other relatively ‘gross’ errors in the use
of the SETL language will be detected during compilation. Unless you have
switched off the ‘listing’ option of the compiler, it will print out and
number all the lines of your program exactly as it sees them, and 1if it
detects any grammatical errors it will flag them in the resulting ‘listing’
of your program, which forms the first part of the output which you receive.

If compilation errors (also called syntax errors) occur in your
program, then, as indicated by a message °“ABNORMAL TERMINATION’ which will
appear in the above processing of your program will end as soon as the
compiler finishes its work; your program will not actually be run. To get
further, you must correct all grammatical errors. Once this is done, all
diagnostic messages will disappear, the first part of your compilation

listing will appear as follows, and your program will move on, passing, as
one says, into execution.

PROGRAMMING CONCEPTS. Page 1-13

Substantially later in your listing there will appear the output which
your program has produced. The three lines of output produced by the sample
program we have been considering would look like this:

99
The difference of twelve and nine is: 3
3025

In looking for this output in your listing it is important to realize
that the output is actually preceded by several dozen more lines of standard
‘boiler Plate’ which you will grow accustomed to seeing in your output
listings and can normally scan over quite rapidly. This additional material
appears because the SETL compiler is a 1large and complex program which
actually operates in three phases: ,

(1) A ‘parse’ or ‘grammatical analysis’ phase, which analyzes your
program, checking it for syntactic validity and breaking it down into the
elementary clauses of which it is composed. This produces the section of
the listing, headed CIMS.SETL.PRS, which is shown X pages above.

(2) A “semantic analysis’ phase SEM which takes the collection of
elementary clauses ©produced by the PRS phase, applies additional validity
checks to then, and continues the process of transforming your program 1into
an internal form which can be interpreted directly by the computer.

(3) A ‘code generation’ phase COD, which completes the translation
process begun by SEM.

See Appendix 1.7 for a description of the standard boilerplate which
the SEM and COD compiler phases put into your compilation listing.

PROGRAMMING CONCEPTS. Page 1-14

Other common kinds of error.

Once the PRS, SEM, and COD phases of the SETL compiler have
successfully translated your program into its internal form, it is passed,
in this form, to the so called SETL ‘run-time’ or ‘execution’ system, which
then attempts to follow these translated instructions literally. (The
translated form of your program is logically equivalent to the program which

you have supplied, but is recast into a form that the run-time system can
work with more easily.

However, several further sources of error can still give your output an
appearance totally different from what you expect.

(a) You may have misunderstood what your program is really saying. For
example, you may not have realized that suitably placed “print’ commands are
necessary if any output is to be produced, and may have imagined that
results are printed merely by virtue of being calculated by your program.
In this case, no output at all may appear.

An endless variety of other small 1logical errors of this sort are
possible, and only experience will teach you how to avoid them. Removing
errors of this sort 1s «called debugging; hints concerning debugging
techniques are found in Section 7.2, 7.3.

(b) Attempts to execute illegal operations are another common
consequence of misunderstanding what a program is really saying. Suppose,
for example, that your program contains the command

print(x + y) 3

but that prior instructions have given x the integer value 1 but not defined
The value of the variable y. Addition of an integer and an undefined value
is illegal, and the SETL run-time system will detect this violation when it
attempts to evaluate x + y. The run-time system will then generate a so
called run-time or execution error, and program execution will be terminated
immediately (aborted). In such case , your output will end with a run-time
error message, describing the problem encountered. When this happens, you
may want to rerun the program, using some of the additional debugging

options described in Section 8.5.1, to gather additional information about
the location and cause of the error.

(c) If the logic of your program is in some way faulty, your program
may not reach its termination, but may instead loop endlessly, in which case
it can either produce output forever, or produce no output at all. (The
hypothetical program

instruction 1: print (‘Hello there’)
instruction 2: go back to instruction 1

illustrates the first of these possibilities.) If your program starts to
loop, then the operating systems programs (which always, so to speak, lurk
in the background, checking on what other programs are doing) will
eventually detect the fact that your program is producing an illegally large
volume of output or that it has outrun the time quota which the operating
system established for it. When this happens, your program will be forcibly

PROGRAMMING CONCEPTS. Page 1-15

terminated by the operating systems programs, which will write a message

explaining what has happened.

You will need to grow familiar with the appearance that your output
listing takes on when these various common problems are encountered. Here,
for example, is the output that results from mistyping the number ‘45° in
the second 1line of our sample program as “x5°, in which case it will be
interpreted as the name of a variable, which the run-time system will find
does not have any assigned value.

*%% ERROR AT STATEMENT 2 IN ROUTINE SS$MAIN
INCOMPATIBLE TYPES FOR -A- AND -B- IN -A + B-.

Note that this message identifies the offending statement, by number, as
‘statement 2° of your ‘main’ program (in this simple case, all that exists
is a ‘main’ program ; in the more complex cases which we will begin to
introduce in Chapter IV, both A ‘main program’ and numerous °‘subprocedures’
can exist). Beyond this rather terse statement, no other information 1is
given (however, more information can be produced using the debugging options
described in Section 8.5.1.)

PROGRAMMING CONCEPTS. Page 1-16

l.4 Advice to the would-be programmer

As will be seen, the SETL language presented in this book furnishes you
with many very powerful tools, and also makes it possible to create new
‘tools by combining more elementary ones into procedures which you yourself
can define. Nevertheless, it provides only certain specific facilities, and
not, in some magical way, everything that you might want, think it would be
convenient to have, or even imagine to be available. You will therefore
have to distinguish carefully between the facilities which the language
makes available and those which it does not, learning the nature, form, and
especially the purpose of every feature and facility of the language, but
also learning what it does not make available directly (especially if this
is something you would 1like to have and wish it did make available
directly). It is as senseless to plan programs that make use of nonexistent
programming language features as it is to work out seven-color,
three-hundred thread patterns for an automatic knitting machine that only
allows four colors and 180 separate threads.

Of course, since the computer is infinitely more flexible than any
other kind of machine, it is likely that you can find a way of building up
any well-defined facility which you can conceive <clearly and describe
precisely. However, this can only be done by accurate use of the facilities
of the language (SETL) that you will be using, not by imagining that you can
suddenly 1leap out of 1its confines. Thus, even to go successfully beyond
what is originally present in the 1language you will have to 1learn to
distinguish accurately between the tools it provides and those which it
omits.

Here, an important psychological point needs to be made. To accomplish
an operation which some feature of a programming language provides for
directly is easy, provided that one recalls the feature and can look up
whichever of its details are relevant. But this kind of memorization merely
skims the surface of programming. An infinite variety of more complex and
interesting operations can also be programmed, but to do so one needs to
decompose them into more elementary operations which can be carried out more
directly, and so on through progressive stages of decomposition, until one
reaches operations which can be expressed directly by single comands of the
programming language with which one is working. Though help ful hints about
how to do this can and will be given, this process of decomposition cannot
be accomplished by application of any simple recipe, it requires problem
solving and invention. Now, unless at some time in the past you have been
either a devoted and successful puzzle enthusiast, chess, bridge or checker
player, or a mathematics student, you will probably find that programing
makes unexpectedly strenuous demands on your problem-solving muscles,
demands for which your past education has probably given you very little
preparatione. Indeed, with few exceptions, school courses teach
memorization, or at best application of memorized procedures, but not true,
no-holds barred problem solving of the kind you will encounter in learning
to programe In History you have 1learned facts and interpretations, in
Chemistry more facts, in undergraduate Physics you have learned formulas and
how to apply them; in mathematics, up to and well into calculus, you have
also memorized various procedures and how to apply them. Therefore it may
very well be that in becoming a programmer you will have to master the
intellectual art of problem solving for the first time. The following

PROGRAMMING CONCEPTS. Page 1-17

paternal remarks are intended to help you cope with this challenge.

(a) Don“t panic. Although some people are better at problem solving
than others, the ability to solve problems, like the ability to cook a good
spaghetti sauce or dance the waltz acceptably, can be 1learned by anyone.
Don’t 1let your 1instructor’s problem-solving speed intimidate you. He
probably has both talent and years of experience; Of course you will need
time to catch up with him.

(b) On first facing a problem that you have never solved before, you
will feel <confused. Again, don’t panic. Remember that you are not trying
to remember a fact which you have forgotten, rather, you are trying to
search out, to devise, to discover something which, for you, is new. The
initial confusion (which everybody, even the strongest problem solver, is
bound to feel at first) is not the end of your efforts to solve the problem:
it is merely the start of the beginning. Don’t say to yourself: ‘I don’t
see the answer; I am confused; I give up’. Instead, say ‘I am in process
of wrestling with, and dispelling, the initial confusion which every new
problem generates,” and fight on. Significant problems, like nuts, have
hard shells, and can only be cracked if they are examined closely enough for
their 1lines of cleavage to be found. Pick the problem up, attach yourself
to it, and begin to turn it over, searching from all angles for the hints
which will unlock it.

(c) Explore the leads which occur to you, combining caution and
boldness. Can you see a fragment of the solution? Can you guess one
command which will be helpful? Can you solve any part of the problem? Can
you see any way of breaking the problem into two or more parts which look
easier to solve than the whole problem does? 1If you have solved some part
of the problem, what problem remains? Can you see any way of extending your
partial solution to cover more of the problem? If you can‘t solve the or
iginal problem, can you solve some easier problem that has significant
similarities to it? 1If so, can this solution be improved enough to solve
the original problem, or at least a problem substantially closer to it? 1If
not, what is the easiest similar problem which you cannot solve? Why not?
What feature of it prevents solution? What, if anything, can be done about
this feature?

(d) Don’t give up too easily. Remember that a programming problen,
like a jigsaw puzzle, may have to be solved one piece and one clue at a
time.

(e) If no progress seems to be possible along a given line of attack,
try to find another approach. Sleep on the problem and start afresh with a
new approach the next morninge.

(f) If a problem seems intractable, go to an appropriate book and 1look
up a solution, or to a helpful, more knowledgeable person and have the
solution explained. But take this help actively, not passively. Ask
yourself: What is the key trick that I failed to discover? 1In what other
situations can this new trick be useful? What part of the problem could I
have solved with what I knew before; what aspect really requires the new
method that has just been explained? Practice using the new method on a few
simple examples 7you make up for yourself, and ponder it carefully, to make
sure you digest it.

PROGRAMMING CONCEPTS. Page 1-18

(g) Accustom yourself to dealing with concepts and methods, not with
memorized program fragments. Although memorized fragments, like memorized
sequences of chess moves, are useful, and even though the experienced
programmer may have memorized dozens or hundreds of them, no two situations
are exactly the same in programing, any more than they are in chess. Your
basic need in learning to program is not to remember programs presented in a
book and adapt them slightly to new situations: it 1is to 1learn how to
invent general logical plans, and to master the principles which will allow
you to do this, along with the language in which you will have to explain
your plans to a computer. General methods, principles, and approaches will
retain their usefulness over a wide range of circumstances, while
ill-conceived attempts to adapt a textbook example to do something it Was
not designed to do will often be less profitable than wiping the slate clean
and starting afresh.

(h) Train yourself to accuracy, but don’t be overly afraid of errors.
Computers have only a limited capacity to deal sensibly with errors. On the
other hand they are infinitely patient, and will give you all the chances
you need to remove the errors initially present in your program. Because of
the high degree of accuracy with which programs need to be prepared, errors
are as omnipresent in programming as in clutter in kitchens and sawdust in
woodshops. Remember that no one is looking impatiently over your shoulder
as you develop a program; you can have all the tries you want, and only
your final success counts. The computer is infinitely patient; one must
scribble to write; everything along the way to final success is just
scrap-paper to be thrown out.

Your aim in dealing with errors should not be to avoid them fearfully,
but to 1learn to recognize them clearly, understand the violations of rule
and principle which let them creep in, and remove them swiftly. As long as
your programs are moving rapidly toward correctness, errors are tolerable.
Only errors which you cannot recognize and do not know how to remove need to
be considered major problems.

(i) On the other hand, accumulation of numerous unnecessary errors
through gross carelessness or misunderstanding will wind up wasting large
amounts of your time as you struggle to remove mistakes that a 1little more
care could simply have avoided. Hence it is really important to train
yourself in accuracy, and to learn to use the programming language to be
presented in this book cleanly and grammatically. You will want to study it
closelz, learning its facilities, restrictions, style, and 1inner rhythms.
As your programs evolve toward completion, you will want to review them
carefully and suspiciously, trying to search out all errors in programming
language wuse or in underlying logic; all hidden defects which might force
you to waste time later. As we have said, the programming language to be
presented in this book is a kit of powerful tools for your use: you will
want to inspect all the tools in this kit, and to wunderstand and reflect
upon their capabilities, restrictions, and intended use. This will help you
to develop into a skilled practitioner able to do everything in the
clearest, most direct, most effortless way.

PROGRAMMING CONCEPTS. Page 1-19

1.5 How to type a program; Character sets

If the terminal or keypunch machine with which you are working has all
the characters which appear in SETL programs in this book, then you can type

your programs exactly as this book will show them. The special punctuation
characters required are

less than

greater than

equals sign

left parenthesis
right parenthesis
quote mark (apostrophe)
period

comma

colon

semicolon

slash

plus sign

minus sign

dollar sign
question mark
number sign
underline

left set bracket
right set bracket
left square bracket
right square bracket
such that symbol

B0 | e e o S~~~ Il V A

.—-—a.—n:ﬁ\ﬁ-\|

When not all these characters are available, standard substitutions can be
used for some of them. These include the following

{ can be written as <<
{ can be written as >>
[can be written as (/
] can be written as /)
| can be writen as ST

The remaining characters are replaced if necessary by single characters
which type differently. For 1lists of these character substitutions, you
will have to consult implementation specific information available from the
computer center in which your programs are being run.

Some, but not all, implementations will make both upper case (capital)
and lower case (small) versions of all the alphabetic characters available.
When this is so, programs can be typed either in capital 1letters, small
letters, or any helpful and pleasing combination of the two. For example,
the command

print (3+5);
can also be typed as

PRINT(3+5);
or as

Print (3+5);

PROGRAMMING CONCEPTS. Page 1-20

or even as
PrInT (3+5);

The SETL system always transposes all “keywords’ like PRINT appearing in a
program into wupper <case, and works intermally with these wupper case
versions. Only characters appearing within quotation marks (i.e. in
“quoted strings’, see Section 2.1) are retained in their original lower case
forms. This means, for example, that the statement

PRINT(’hello there’) ;
will produce the output

hello there
whereas the statement

print(‘Hello There’) 3
will produce the output

Hello There

Extra blanks are generally ignored, and can therefore be used to space
out your program text to make it more readable. For example,

print (3+5)
print (3 + 5)
print (3 +5)

will all produce the same output, namely

8

The only places in which blanks are forbidden to appear (or have meaning if

they do appear) are within constants, standard keywords, and variable names.
For example,

print cannot be written as p rint
1000000 " 1 000 000
counter_1 " count er_1 .

SETL instructions are terminated by semicolons, and can be continued
over as many lines as necessary. This means that the instruction

print(3+5);

could also be typed as
print
(
3
+
5);

if there were any sensible reason for doing so. See Section XXX for rules
concerning the continuation of a quoted string from one line to the next.

The dollar sign “$° is used to indicate the points at which there begin
explanatory ‘comments’ that are intended to be helpful to a programs’ human
reader but which are ignored by the SETL compiler. See Section XXX for a

PROGRAMMING CONCEPTS. . Page 1-21

discussion of the use of comments in programs, a very important subject.

PROGRAMMING CONCEPTS. Page 1-22

1.6 Exercises

l. Find out how to run the program shown in Section 1 on your
computer, and run it.

2. How could you define the median of a set having an even number of
integer members? Can you modify the program shown in Section 3, so as to
make it work irrespectively of whether the set of integers supplied to it
has an even or odd number of members?

3. Take the median-finding program of Sec.l1.3, and introduce various
typing errors in it. Submit these mangled programs to the SETL compiler,
and study the resulting error messages. Try to predict what the response of
the compiler will be to each error you insert.

4. Jot down a personal inventory of your own history as a problem
solver, listing all your experience in such relevant activities as
mathematics and science classes (especially solution of ‘original’
programs), chess, bridge, crossword puzzles, jigsaw puzzles, recreational
puzzles, etc. Do you feel that you have quite considerable experience as a
problem solver, Or only a little?

PROGRAMMING CONCEPTS. Page 1-23

1.7 Appendix: More on how to read your output listing.

Here, for example, is how the compilation 1listing of the sample program
shown in the preceding section would 1look if it contained two small
grammatical errors, namely omission of the comma shown in the third line of

the program (see p. XXX) and replacement by a colon of the semicolon which
should end its fourth line:

PROGRAM sample_program_number_1;

1 1 PROGRAM sample_program_number_1;
2 2 print (54 + 45);
3 3 print(‘The difference of twelve and nine is:’ 12 - 9);

*k*xk%kkk*x* ERROR 3: EXPECT RIGHT PARENTHESIS
PARSING: 45) ; PRINT (‘The difference of twelve and nine is:’ 12
4 3 print (55%*55):
*kkxkkk** ERROR 9: EXPECT ASSIGNMENT OPERATOR
PARSING: ‘The difference of twelve and nine is:” 12 - 9) ; PRINT
5 3 END;
*k*k*kkk** ERROR 91: EXPECT VALID STATEMENT
PARSING: 55) : END ;
**%* COMPILATION TERMINATED BY UNEXPECTED END-OF-FILE **%
PARSING:) ¢ END ; ;

’

NUMBER OF ERRORS DETECTED = 3
ABNORMAL TERMINATION.

Note the following concerning this ‘compilation listing’

(1) The compiler numbers the lines of your program. Lines are numbered
sequentially down the 1left of the listing. (The compiler inserts these
numbers to make lines easier to refer to. Do mnot type in these numbers
yourself.)

(2) Just to the right of these ‘primary line numbers’, there appear
other, similar but slightly different, ‘secondary line numbers’. These
secondary line numbers are needed primarily for longer programs consisting
of multiple ©procedures (see Chapter 1IV), to allow line numbering to be
restarted at the beginning of each procedure. (Again, do not type in these
numbers yourself, the compiler will insert them.)

(3) Following these numbers, the appropriate 1line of your program
appearse. These lines constitute the definitive version of your program, as
it has actually been seen by the compiler. Check them carefully. If they
differ in any way from what you think you have typed, then a typing error
has occurred; this must be fixed before you can go any further.

PROGRAMMING CONCEPTS. Page 1-24

(4) Immediately following each line in which the compiler has detected
(or thinks it has detected) an error, there appears a so-called diagnostic
message, flagged with 8 stars and the word ERROR, as in

*%%%x%xkx*x ERROR 3: EXPECT RIGHT PARENTHESIS

After each such line, there appears a second diagnostic line, starting with
the capitalized word PARSING, as in

PARSING: 45) ;3 PRINT (‘The difference of twelve and nine is:’ 12

Parts of this latter line will be underlined, in part with dashes ‘=", in

part with equal signs ‘=

The diagnostic or ERROR message that the compiler supplies when it
detects or thinks that it has detected an error consists of an error number
(-3- in the example given above) and a short statement (in our example,
‘EXPECT RIGHT PARENTHESIS’) representing the compiler’s guess as to what the
error was. Concerning this, you must be aware that, while very accurate in
its treatment of error-free programs, the compiler has a very limited
ability to deal accurately with errors, and that these statements, which
represent rather nearsighted guesses only, are frequently wide of the mark.
In the above example, the compiler guessed (wrongly) that you meant to end
the print statement immediately after the first message, i.e. that what you
meant to type was

print(‘The difference of twelve and nine is:’);

Making this guess and not finding the -)- which it guesses should be there,
the compiler issues the message “EXPECT RIGHT PARENTHESIS’. Of course, a
person looking at this line would see that putting in a right parenthesis 1is
not a good way to correct the line, since it would still leave the rest of
the line, namely “12-9° unexplained. With this clue a person would easily
make the more 1illuminating guess that a comma was missing, and could then
issue a more intelligent message like -MISSING COMMA-. However the compiler
is much more myopic, easily confused, and the guesses which it makes when it
encounters an error must therefore be taken very skeptically. About all
that can be deduced from the appearance of an error message is that the line
which it follows probably contains an error. This 1line should then be
examined very carefully to see if you can spot the error. If in doubt as to
what rules of SETL grammar apply, 1look up the relevant rules 1in the
appropriate part of this book.

The diagnostic line following the 1line containing eight asterisks
(namely the 1line starting with the word PARSING) which follows the line
containing the word ERROR is actually of greater help than the first
diagnostic line when you are trying to locate a minor grammatical error. In
this line, the word PARSING is followed by the seven last ‘tokens’ (i.e.,
words, numbers, punctuation marks, or quoted strings) which precede the
point at which the compiler was sure that an error had occurred. In our
example, program 1line 3 1is followed by the word PARSING, and then by the
seven following ‘tokens’, which you will note occur in the program, just
before the point of error:)

45 (an integer)

PROGRAMMING CONCEPTS. Page 1-25

(punctuation mark)
(punctuation mark)

we

PRINT (a ‘keyword’)

((punctuation mark)
“The difference beween line and twelve is’ (quoted string)
12 (an integer)’

The compiler detected an error just between the last of these two tokens,
where, as we know, a comma is missing-.

It is normally not too hard to spot a grammatical error by looking
carefully over the 1line to which an error message has been attached, and
comparing it to the sequence of tokens following the word PARSING appearing
in the second line of the error message, especially to the last few tokens
of this sequence, which are likely to lie <close to the actual point of
errore However, this must be done with some caution, since after an error
has occurred it may take a few lines of error-free program text for the
resulting confusion (which affects the compiler) to dispel enough for
additional error Messages to become accurate again. This phenomenon, a
spurious error message 1issued in the wake of an initial error, is seen
following lines 4 and 5 of our example program. In line 5, the perfectly
correct ENDj; has been flagged as an error since, coming as soon after the
erroneous line 3 and 4 as it does, it is mistakenly taken as an illegal
continuation of line 4 and not as an independent statement.

The manner in which the seven tokens following the word PARSING in the
second line of an error message are underlined can also be helpful. Some of
these tokens are underlined with hyphens, others with double bars, others
not at all. The wunderlined symbols are those which are under active
consideration at the moment when a grammatical error is detected. ‘Reserved
words’, which cannot be used as variable names, and also punctuation marks,
are underlined with double bars, other tokens with single bars. (This clue
is valuable in cases in which you have accidentally used a reserved word as
the name of a variable. See Appendix XXX for a list of all reserved words.)

Missing Quotation Marks

If you accidentally omit a quote mark (apostrophe) 1in your program,
then whatever happens to follow the resulting unmatched quote mark will be
taken as part of a quoted message (i.e., “quoted string’). To prevent this
rule from affecting the whole of your program, an arbitrary limit of 128
characters is established as the maximum permitted length of a quoted
string; so recovery from this kind of error will normally take place a few
lines later. When this kind of error occurs it will give a
characteristically strange appearance to the list of tokens following the
word PARSING in the very next error message; this should tip you off to the
fact that the problem is a missing apostrophe

Comments preceded by dollar signs (°$°, see Section X) are bypassed by
the grammatical analysis process, and will never appear in the list of
tokens following an error message. This can give such 1lists a different
appearance from the ©program text to which they refer, especially if a
comment many lines (or even pages) long has been bypassed.

Other features of the compilation history.

PROGRAMMING CONCEPTS. Page 1-26

In your compilation 1listing, the 1lines that we have just been

discussing are actually preceded by a largely blank page, containing just a
few lines of information which looks approximately as follows:

CIMS.SETL.PRS(81121) THU 13 AUG 81 07:00:19 PAGE 1

PARAMETERS FOR THIS COMPILATION:

SOURCE FILE: I = DBCO: [NYUSETL.BERKOWITZ]TST.STL;2.

LISTING FILE: L = DBCO: [NYUSETL.BERKOWITZ]TST.LIS;1.
POLISH STRING FILE: POL = TST.POL.

AUXILIARY STRING FILE: XPOL = TST.XPL.
LIST DIRECTIVES: LIST = 1, AT = 1.

PARSE ERROR LIMIT: PEL = 999. PARSE ERROR FILE: TERM = SYSS$ERROR:.
CHARACTER SET: CSET = EXT. MEASUREMENTS: MEAS = O.

Don‘t pay too much attention to this material at first: it merely dates the
listing and records various standard options which the compiler is using.
You will only become concerned with these options (which are described more
fully in Section 8.5.1) when you are working with long complex programs or
want to secure one or another special effect.

Assuming that all goes well, the SEM phase will 1insert the following
information into your output listing:

CIMS.SETL.SEM(81121) THU 13 AUG 81 07:00:22 PAGE 1

PARAMETERS FOR THIS COMPILATION:

POLISH STRING FILE: POL = TST.POL. AUXILIARY STRING FILE: XPOL = TST.XPL.
BINDER FILE: BIND = . IND. BIND FILE: IBIND = .
LITTLE Q1 FILE: Ql = TST.LQl. SETL Ql FILE: SQl = .

SEMANTIC ERROR LIMIT: SEL = 999. SEMANTIC ERROR FILE: TERM = SYSSERROR:.
GLOBAL OPTIMIZATION: OPT = O. DIRECT ITERATION: DITER = 0.
USER DATA STRUCTURES: REPRS = 0.

NO ERRORS WERE DETECTED.

Ql STATISTICS:

SYMTAB(279,16383), VAL(242,16343), NAMES(746,16343).
FORMTAB(52,2047), MTTAB(35,2047).
CODETAB(23,8191), ARGTAB(33,16383), BLOCKTAB(3,1023).

NORMAL TERMINATION.

This will be followed one page later by similar output produced by the COD
phase, namely

PROGRAMMING CONCEPTS. : Page 1-27

CIMS.SETL.COD(81099) THU 13 AUG 81 07:00:30 PAGE 1

PARAMETERS FOR THIS COMPILATION:

LITTLE Q1 FILE: Q1 = TST.LQl. SETL Ql FILE: SQl = .

Q2 FILE: Q2 = TST.COD. SAVE INTERM FILES: SIF = 0.

CODEGEN ERROR LIMIT: CEL = 999. CODEGEN ERROR FILE: TERM = SYS$ERROR.
GLOBAL OPTIMIZATION: OPT = O. BACKTRACKING: BACK = 0. '

RUN-TIME ERROR MODE: REM = 2. ASSEMBLY CODE: ASM = 0.

CONSTANTS AREA SIZE: CA = 65535. SYMBOL TABLE SIZE: ST = 8191.
INITIAL HEAP SIZE: H = 600000.

NO ERRORS WERE DETECTED.

Q2 STATISTICS: A

MIN SYMTAB SIZE = 186. MIN CONSTANTS AREA = 47. MIN DYNAMIC HEAP = 483.
Q2 CODE SIZE = 38. INITIAL HEAP SIZE = 66018. MIN HEAP SIZE = 1088.
EXEC STATEMENTS = 4. Q2 INSTRUCTIONS = 19.

Q2 FORMAT DATE = 81099. ‘

NORMAL TERMINATION.

As for the PRS phase standard output, all this material merely records
various standard options which are being used for compilation. Since both
the SEM and (much more rarely) the COD phase of the SETL compiler can detect
a few subtle errors in your code which the PRS phase may he missed, you will
want at least to glance quickly at this output, to determine whether it ends
with the line =-- NORMAL TERMINATION -~ signifying the absence of error. 1If
‘not, the presence of errors is indicated. For an account of the errors
which might be detected during the SEM and COD phas es, see Section XXX.
Note however that errors in an earlier phase <can cause mistaken error
messages to be emitted by a later compiler phase. Thus, unless you have
become expert in the use of the SETL system, you will only want to pay
attention to error messages generated by the first compilation phase which
detects any errors at all.

Note also that the output produced by your program follows immediately
after the 1last 1line of standard material put out by the COD phase. Thus,
especially if your program has produced only a few short lines of output, it
is very weasy to lose sight of your program’s actual output, which may be
concealed from your eye by the larger mass of standard material which
precedes it. 1In this case, you may be confused into thinking that no output
has been produced. Grow accustumed to looking for output quite carefully.
The following shows the actual appearance of output from our sample program,
in its physical relationship to the standard material produced by the
compiler’s COD phase.

CIMS.SETL.COD(81099) THU 13 AUG 81 07:00:30 PAGE 1

PARAMETERS FOR THIS COMPILATION:

PROGRAMMING CONCEPTS. - Page 1-28

LITTLE Q1 FILE: Ql = TST.LQl. SETL Ql FILE: SQl = .

Q2 FILE: Q2 = TST.COD. SAVE INTERM FILES: SIF = 0.

CODEGEN ERROR LIMIT: CEL = 999. CODEGEN ERROR FILE: TERM = SYS$ERROR.
GLOBAL OPTIMIZATION: OPT = 0. BACKTRACKING: BACK = 0.

RUN-TIME ERROR MODE: REM = 2. ASSEMBLY CODE: ASM = 0.

CONSTANTS AREA SIZE: CA = 65535. SYMBOL TABLE SIZE: ST = 8191.
INITIAL HEAP SIZE: H = 600000. '

NO ERRORS WERE DETECTED.

Q2 STATISTICS:

MIN SYMTAB SIZE = 186. MIN CONSTANTS AREA = 47. MIN DYNAMIC HEAP = 483.
Q2 CODE SIZE = 38. INITIAL HEAP SIZE = 66018. MIN HEAP SIZE = 1088.
EXEC STATEMENTS = 4. Q2 INSTRUCTIONS = 19.

Q2 FORMAT DATE = 81099.

NORMAL TERMINATION.
99

The difference of twelve and nine is: 3
3025

Review of principal actions which occur when g Job is run

The following summary lists all the principal system actions performed
on your behalf between first submission of a program and the moment at which
output produced by your program appears. Normally all this will proceed
smoothly and require 1little attention on your part. However, trouble can
occasionally develop, and then you will need to have at least some 1idea of
all that 18 going on, if only in order to know whether the problems that
have developed trace back to something wrong with your program or to
difficulties elsewhere in the system:

l. User identity verified
2. Command lines analyzed and verified.

3. Operating systems programs (temporarily) pass control of computer
to PRS phase of SETL compiler program, which reads, analyzes, and validates
the SETL program which you have supplied.

4. PRS phase completes, producing listing as specified by initiating
command including error diagnostics if any errors detected. Run may end 1if
errors have been detected. Otherwise a data file representing the

half-digested version of your program is saved for use by the next (SEM)
compiler phase.

5. Operating system programs (temporarily) pass control of computer to
SEM phase of SETL compiler, which continues analysis and translation of the
SETL program which you have supplied.

PROGRAMMING CONCEPTS. : Page 1-29

6. Second (SEM) phase of SETL compiler is moved by operating system
programs to the computer’s central memory, and scheduled for execution.

7. The operating system programs (temporarily) pass control of
computer to COD phase of SETL compiler, which completes the translation of
the SETL program which you have supplied.

8. The SEM phase completes, adding to the output 1listing, and

returning control to operating system programs. Additional error
diagnostics may be tramnsmitted to the output 1listing. Otherwise a data

file representing the partially translated version of your program is saved
for use by the next (COD) phase of SETL compiler.

9. The third (COD) phase of the.SETL compiler is moved by operating
programs to the computer’s central memory, and scheduled for execution.

10. The operating system programs (temporarily) pass control of
computer to the COD phase of the SETL compiler, which completes the
translation of the SETL program which you have supplied.

11. The COD phase completes, adding final compilation messages to
output listing. Control is returned to the operating system programs, and a
data file representing the internal, translated version of your program is
saved for use by the SETL run-time system.

12. The SETL run-time system program is moved into central memory of
the computer by operating system programs, and is scheduled for execution.

13. The operating system programs (temporarily) pass control of
computer to the SETL run-time system, which follows the instructions found
in the translated version of your program, producing output, and eventually
either terminating, aborting if an 1illegal situation is found, or being
forceably terminated by the operating system if it rums for long or produces
too much output.

14, If your program is being run interactively from a terminal, the
terminal will return to ‘command mode’ to await your next general
instruction. If the program is being run on a ‘batch’ system, an additional
‘dayfile’ summary of system actions will be transmitted to the end of your
output file which will then be released for printing. Later it will be
printed and delivered to your standard output pick-up point.

$

"HAPTER 2

DATA AND EXPRESSIONS

This chapter has two parts. Sections 1 and 2 deal with the various
kinds of data which the SETL language allows and is able to manipulate. The
remainder, Sections 3 through X, describes the various kinds of expressions
provided by SETL, using which new data objects can be formed. SETL provides
data objects and expressions which are significantly richer than the objects
provided in most other programming languages, so this chapter will be a bit
longer than most others. :

Chapter Table Of Contents

2.1 The main classes of data objects
2.1.1 1Integer, Real, and Boolean constants
2.1. Constant Sets

2.1.2.1 Sets of successive integers

2
2.1.3 Tuples

2.1.3.1 Tuples of sequences of integers
4

E

1. Maps
.1. The size of composite objects: the operator
Exercises
xpressions and statements
Variable identifiers
Integer operators
«3.2.1 Exercises
String operators
Boolean operators
«3.4.1 Exercises: Boolean equivalences
et operations and setformers.
Setformer expressions

5

.3.

3.2

2

2 Existential and universal quantifiers
T

T

NN
°« o
w W

[

N
.

°« o
S
°« o

Some jillustrative one-statement programs

N
.

1
3
4
2
S
1
3

uple operators and tuple formers
1 Binary tuple operators
2
3
1
2
3
4

Unary tuple operators
Other tuple operators
uple formers. Simple tuple and string iterators

Map Operations
The image set operator f{x} and the image operator f(x)
The single-valued image operator f(x)
Some remarks on multi-valued maps
Two useful map operations

(S, NV, NV,]

NN
L]
NN OBNdDNDDND S

.
N NN

DATA AND EXPRESSIONS : Page 2-2

2.7.5 Multi-parameter maps
.8 Compound operators
9 Types and type-testing operators
1 The ? operator
o1 Exercises
o1 General form of the SETL assignment
2.12.1 ‘Assigning forms’ of infix operators.
Assignment expressions
2.12.2 Other positions in which assignment operators are allowed
2.12.3 The operators FROM, FROME, and FROMB
2.13 Operator precedence rules
2.14 Exercises
2.15 OMS and Errors

NNNNN
N - O

2.1. The main classes of data objects.

Like certain other programming languages, SETL allows one to manipulate

two main kinds of data items, namely simple data items and composite data
items. Four of the simple kinds of data items, namely

integers

floating point numbers
character strings
boolean values

are very much like those provided in most other programming languages. A
fifth kind of data item, called ‘atoms’, will be a bit less familiar, but
are still relatively easy to use. One very special quantity, mnamely the
undefined value (called -OM-) is used frequently in SETL programs, and its
somewhat nonstandard properties will become fully familiar as we go along-.
In addition to these simple data items, SETL provides exactly two kinds of
composite objects, namely

sets
and

tuples

It is the fact that it allows sets to be used freely that gives SETL its
name °‘SET-L’.

Sets of one particular kind, namely sets of ordered pairs, play

particularly important roles and therefore are sometimes referred to by a
special term, namely

maps

These are all the classes of data values which the SETL language
allowse.

2.1.1 Integer, real, and boolean constants

To use objects of any of these kinds in a program we occasionally need
to be able to write them out directly. For example, to give a variable x
the value 3.14159 we may want to write

DATA AND EXPRESSIONS Page 2-3

x = 3.14159;

A value written into a program in this way is called a constant, a constant

denotation or (by some authors) a literal. The rules for the various forms
of constants allowed in SETL are as follows:

(a) integers: 1Integers are written in the standard way, as sequences
of decimal digits possibly preceded by a + or - sign. Examples are

0
1066

=50

+35
001616232358

The way in which an integer denotation can be constructed can be summarized
by means of a diagram, or graph, which looks as follows :

\
> digit }_.-_)._
A N

The diagram consists of rounded boxes, square boxes, and paths with arrows
connecting these boxes. Each diagram has an edge that leads into it, and
and edge that exits from it. A path through the diagram that follows the
edges 1in the 1indicated directions 1s a valid instance of a language
construct. The two kinds of boxes have the following meaning :

N
+

L -

(i) A rounded box denotes a symbol of SETL, which must appear as is

when used. For example, the + and - signs, the parenthesis, keywords such
as IF, LOOP, EXISTS, and so on.

(ii) Square boxes correspond to other language constructs for which a
separate diagram 1is provided. For example, the construct -digit- is
described fully by a diagram that lists the 10 digits as valid instances of
this constructe A full list of diagrams for SETL is provided in Appendix A.
To test your understanding of these, verify that the diagram presented above
allows you to write -12345678 as a SETL integer, but forbids ->12345678.

(b) floating point numbers: Floating point numbers are written in one
of the notations that have become standard, namely either in decimal form or
in exponent form. A real number in decimal form is a sequence of decimal
digits, followed by a decimal point, followed by a second sequence of
decimal digits, and possibly preceded by a + or - sign. The initial but not
the final sequence of digits can be omitted. Examples are

0.0
<3156 (but note that 3. is illegal)
1066.6 '
-50.50
+35.50
3.1415928

DATA AND EXPRESSIONS Page Z-4

A real number in exponent form is a real number in decimal form, immediately

followed by the letter E, and then by an integer (the exponent). Examples
are

1.0E100
31415.9E-4
6.0E+23

This last form for real constants corresponds to the ordinary ‘scientific’
notation for decimals, e.ge. these three examples would be written in
ordinary scientific notation as

100 -4 23
as 1.0 * 10 s 31415.9 * 10 and 6.0 * 10 .

The previous description of floating point is summarized by the following
diagram:

e
— DS B CD D e Gl
?

This diagram makes it clear that any valid floating point constant must have
one digit or more after the decimal point, but may have none before it.

(c) string: A string 1is an ordered sequence of =zero or more
characters. To write a string as a constant we enclose it within (single)
quotes (i.e., apostrophes) as in the following examples:

‘Brother, can you spare a dime?’
Chllagk]L?

oo

This 1last example shows the null string, 1i.e., the (unique) string
consisting of 2zero characters. Note that blanks appearing within a string
are significant, i.e., are treated in the same way as any other character.
Thus, although the number of characters 1in “Hello’ is 5, the number of
characters in ‘Hello ° or ’ Hello’ is 6, and the number of characters in *
Hello ‘ 1is 7.

If the quote mark (i.e., apostrophe) 1itself 1is to appear within a
string 8 it must be written doubled, to indicate that it is part of s and
not the end of s. Thus, to write the string - Mary‘s mom - as a constant,
we would write

‘Mary’’s mom’

Note that the doubled apostrophe after the letter -y- serves to denote .
a single apostrophe in the actual string constant.’

Any of the characters available in the machine which you are using can
be wused in a string constant, although SETL programs which are to be rum on
a variety of different computers should restrict themselves to the

DATA AND EXPRESSIONS _ Page 2-5

characters available on all computers to avoid character-set translation
problems.

Sometimes one will need to write a long string constant, so long that
it must cross a line boundary. This can be done by ending the first part of
the string with a quote (i.e. apostrophe) and then continuing immediately
on the next 1line, with a second quote character to continue the stringe.
This "line break" sequence is called a string continuation and 1is not
included in the actual string value of the multiline string constant. This
means, for example, that we can write the string assignment statement

x :="Brother, can you spare a dime?’
on two lines as

x := ‘Brother, can you spa’
‘re a dime?’

when there appears to be any reason to do so.

(d) Boolean values: There are two Boolean values, truth and falsity,
in SETL. These are written as TRUE and FALSE respectively. These values
are typically produced as the results of tests, e.ge. the value of the
expression (3 > 1) is TRUE and the value of (1 < 3) is FALSE.

(e) atoms: atoms are generated names, or tags, that can be used to
label objects in a SETL program. Atoms are different enough from other data

types in their functions and use, that we will postpone their discussion
until Sec. 2.8.

Let us now discuss the rules for writing constant composite objects,
namely sets and tuples.

2.1.2 Constant sets.

Sets in SETL are finite collections of arbitrary values. To write a
set constant, we simply 1list the members of the set, with commas between
successive members, within the set brackets “{° and “}’. Three examples
are:

{1’2'a3,4}
{"Tom’, “Dick’, “Harry’}
{TRUE, FALSE}
The first of these is the set of all integers between 1 and 4; the second

is a set of three strings, namely, ‘Tom, ‘Dick’, and ‘“Harry’; the third is
the set consisting of the two possible boolean values TRUE and FALSE.

The ‘null’ or ‘empty’ set, i.e. the (unique) set having no members at
all, is a legal SETL value. It is written as follows:

{3

Any legal SETL value (with the sole exception of the undefined value OM) can

DATA AND EXPRESSIONS : Page 2-6

be a member of a set. Examples illustrating this are

{1, TRUE, “Tom’)}
{1,TRUE, “Tom’, {3})}

The first of these two examples is a perfectly legitimate set whose three
members are the 1integer 1, the Boolean value TRUE, and the string “Tom’.
The second has four elements, the integer 1, Boolean value TRUE, string
‘Tom”, and the set {3} , i.e., the “singleton’ set whose sole member is the
integer 3 . This shows that sets need not be homogeneous, 1i.e. are not
restricted to have members all of the same kind, and that sets can be
members of other sets. Note also that the integer 3 is not a member of the
set {1,TRUE, Tom’, {3 }} , but that the set {3}, which is quite a different
thing, is. A more complex example illustrating this same fact is

(*) {1, {23}, {{3}), {3}, {5,6}}

This is a set of five members, namely: the integer 1, the set {2} whose
sole member is the integer 2; the set {{3}) , whose sole member is the set
{3} ; the null set {} , and the set {5,6} consisting of the integers 5 and
6. Note that in this example the integer 3 is neither a member nor a member
of a member of set (*); rather, it is a member of a member of a member of

(*).

As ordinarily in mathematics, set values never actually contain
duplicate members, and the members of a set have no implied order. Thus the
sets (1,1} and {1} , both of which are legal, designate exactly the same
set, namely the set whose sole element is the integer 1. Similarly, {1,2}
‘and {2,1) designate the same set, namely the set whose members are the
integers 1 and 2. For a more complex example, note that

{1, 2, (3,4}}
{{4,3},2,1)

and

designate the same set, namely the set whose three elements are the integers

1 and 2 and the set {3,4)} (but {(1,2,3,4) , which is a set of four elements,
namely the integers 1 through 4, is different).

Since the elements of a set are not considered to have any particular
order within the set, it is incorrect to speak of the first, second, or last

element of a set. That is, it is incorrect to speak of the string ‘Tom’ as
the first element of the set

{‘Tom”, “Dick’, ‘Harry’}

or to speak of the string ‘Harry’ as its last element, since this same set
can as well be written as

{’Harry’, ‘Tom’, ‘Dick’}
or
{’Dick’, ‘Tom’, ‘Harry’}

In working with sets, one must always remember that their elements have no
particular order, and that duplicates are eliminated.

DATA AND EXPRESSIONS Page 2-7

2.1.2.1 Sets of successive integers.

Sets whose elements are successive integers, such as :
{1,2,3,4,5,6,7}, {-3,-2,-1,0,1,2,3}

arise often enough that a special notation 1is provided for them. To
describe the set of all integers lying in the range M to N inclusive, where
M and N are integers, we write :

{M..N}

The two dots (not three, and not commas!) stand for all the 1integers M+1,
M+2, and so on up to N-l. Sets of integers of the form :

{1,3,5,7,9» or {10,5,0,-5,-10,-15}

that is to say, sets that represent an arithmetic progression, are also
useful enough to be given their own notation in SETL: We represent such

sets by giving the first, second, and last element of the progression, as
follows:

{1,3.-9} {10,5.--15}

note again the use of two dots to indicate middle part of the sequence.
These notations will be used frequently in what follows.

When sets are printed, their elements can appear in any arbitrary
order. For example,

print({l..10}) ;

might be expected to produce {(1,2,3,4,5,6,7,8,9,10} « However, if you try
it out, you will see the following appear :

{4,5,6,7,1,2,3,9,10}

(or perhaps some similar permutation of the integers from 1 to 10). This
emphasizes the fact that the elements of a set have no particular order;
the set {l1..10} contains the integers in the range 1l..10, but 1in the set
these integers have no particular order.

2.1.3 TuEleS-

In contrast to sets, tuples (sometimes also called vectors) in SETL are
finite ordered sequences of arbitrary elements. To write a tuple constant,
we simply list 1its successive components, 1in order, within the tuple
brackets ‘[° and ‘]°. Components in such a list are separated by commas.
Three examples are

(1,2,3,4]
[Tom”, ‘Dick’, “Harry’]

DATA AND EXPRESSIONS Page 2-8

[TRUE, FALSE]

The successive components of a tuple, as distinct from the elements of 'a
set, do have a definite order within the tuple. Thus a tuple is a quite
different kind of object from a set, even though the components of the tuple
may all be elements of the set, and vice versa. As an example of these
rules, note that

(1,2,3,4] and {1,2,3,4}

are regarded in SETL as entirely different objects, and, indeed, as objects
of entirely different types; the first is a tuple, the second is a set.
Note also that [1,2,3,4] and [2,1,3,4) are different objects, since the
components of a tuple are considered to have a specific order and two tuples
are only equal if they have the same components in the same order; however,
the sets {(1,2,3,4} and {2,1,3,4) are the same, since a set, as distinct from
a tuple, is defined by the collection of its elements, not by their order.

Tuples, like sets, need not be homogeneous, i.e. the components of a
tuple need not all be of the same type. Tuples can have sets as their
components and sets can have tuples as their members. Indeed, sets and
tuples can be nested within each other to arbitrary depth as members and

components, permitting construction of a great variety of data objects.
Examples are

(1) [1, ‘Tom’, {‘Dick’}, [“Harry’]]
(2) { 1, Tom’, [‘Dick’], {(’Harry’}}
(3) [1, {Tom’, [‘Dick’, “Harry’]}]

The first of these constants represents a tuple of four components, which,
in order, are the integer 1, the string “Tom’, the singleton set {‘Dick’} ,
and the one-component tuple [‘Harry“]. The second represents a set of four
elements, which (in no particular order) are the integer 1, string “Tom’,
the one component tuple [“Dick’], and the singleton set {‘Harry’} . . The
third represents a tuple of just two components, namely the integer 1,
followed by the two-element set {‘Tom”, [‘Dick’, ‘Harry’]}. We can
therefore assert that the string ‘Harry’ is the first (and only) component
of the fourth component of the tuple (1); that “Harry’is also a member of a
member of the four-element set (2); and finally that ‘Harry’ is a member of
the second component of a member of the second component of the tuple (3).

Another ' example of a perfectly 1legal though highly nested SETL
construction 1is

({3 1)

this designates a set (let‘s call it s), and the empty set 1is the only
member of the only member of the only member of s. Such constructs are used
occasionally (though rarely) in real SETL programs.

Repetition of tuple components, as distinct from repetition of set

elements is logically possible and changes the tuple value. For example the
three tuples

["Tom”] , [*Tom’, “Tom’] , and [Tom’, ‘Tom’, ‘Tom’]

DATA AND EXPRESSIONS : : Page 2-9

are all distinct; the first has just one component and is of length 1; the
second 1is of 1length 2; and the third is of length three, and has three-
components: its first, second, and third components are all defined, and
each of them is the string “Tom“e In contrast, the constants

{“Tom” }, {"Tom’, Tom” }, and {"Tom’, Tom”, “Tom” }

designate the same set, which has just one element, namely the string “Tom’.

Since tuples, as distinct from sets, are considered to have a definite
order, It does make sense to refer to the ‘first’, ‘second’, ..., ‘last’

component of a tuple. For example, the first component of
["Tom”, ‘Dick’, ‘Tom’, “Tom’]

is the string “Tom”; 1its last (also fourth) component is also ‘Tom’; its
second component is “Dick’.

There is a (unique) ‘null’ or ‘“empty’ tuple, which is written as
[1

This plays much the same role for tuples that the important null set, 1i.e.
{}, plays for sets.

2.1.3.1 Tuples of sequences of integers.

Tuples whose components constitute an arithmetic progression can be written
in a special SETL notation similar to that used for sets of integers. The
tuple construct:

[M..N]

where M and N are integers, describes the tuple whose components are the
integers M, M+1l, M+2 and so forth, up to N. If N is less than M, this
construct is equivalent to the empty tuple.

Similarly, an arithmetic progression of the form
M, M+k, M+2*k, .. N

where k is some integer (positive or negative), can be described by writing
its first, second and 1last component; specifically, the tuple whose
components constitute such a sequence can be written as:

[N, N1 .. M]

where M1, the second term in the sequence, has the value (M+k). For
example, the construct [3,6..600] represents a tuple whose components are
the first 200 positive multiples of 3, in increasing order. This construct,
and the related set construct {N, Nl..M}, are simple instances of a general
numeric iterator construct, which will be discussed in detail in Sec.3.x.y.

2.1.4 MaES.

DATA AND EXPRESSIONS : Page 2-10

In SETL a map is simply a set all of whose elements are pairs, 1i.e.
are tuples of length 2. Some properties of maps can be deduced from their
structure, I.e. from the fact that all their components are pairs. But
maps are important enough to have a number of operations that apply solely
to them. We will see that maps are one of the most expressive programming
features of SETL, and that the proper use of maps is a hallmark of good SETL
style. Maps allow us to associate elements of various collections of
objects: countries with their capitals, numbers with their cubes, people
with their dates of birth, courses with their sets of students, and so
forth. Suppose for example, that the <children in a family, listed in
increasing order of age, are

Sue, Tom, Mary, Alphonse.

Suppose that we want to associate each child x in this family with the
number of younger sisters that x has. For this purpose, we could use the
following map:

(1) { [‘Sue’,0], [“TOM",1], [‘Mary’,1], [“Alphonse’,2]} .
Similarly, the map
(2) {["Sue’,0], [‘Tom",0], [“Mary’,1], [“Alphonse’,1]}

associates each child x with the number of younger brothers that x has. The
map

(3) {[“Sue’, {’Mary’}],[(’Tom’, {°Sue’, Mary’}],
[“Mary’, {°Sue’}], [“Alphonse’, {“Sue’,’Mary’}]}

associates each child x with the set of sisters of x. Note therefore that
maps can be wused to associate values of any type with other values of any
typee. ’

Another interesting map is

(4) {[°Sue’,"Mary’], [“Tom", Sue’]l, [“Tom", " Mary’]l},
{["Mary®,“Sue’], [“Alphonse’;“Sue’], [“Alphonse’, " Mary“]l}.

This contains a separate pair associating each child x with each of the
sisters of x (rather than one pair associating x with the set of all the
sisters of x (as in (3); (3) and (4) are different, but closely related and
record much the same information). Since several different pairs in (4)
(e.ge [‘Tom’, Sue’] and [“Tom’, Mary’]) have the same first compomnent, (4)
is called a multivalued map. Maps for which this does not happen, i.e. in
which no two distinct pairs share the same first component, are called
single-valued maps. :

Given a map M, we can form the set D of all first components of pairs
in M. This is called the domain of M, and is written

DOMAIN M

We can also form the set R of all second components of pairs in M, which is
called the range of M and is written

DATA AND EXPRESSIONS . Page 2-11

RANGE M

The following table shows the domain and range of the maps appearing 1in
examples just presented.

map domain M range M
number
(1) {“Sue’,“Tom”, "Mary’, Alphonse”} {0,1,2}
(2) {“Sue’,"Tom’, Mary’, “Alphonse’} ' {0,1}
(3) {’Sue’,"Tom’, Mary’, “Alphonse’}
{“Sue’}, {‘Mary’}, {’Sue’, ’Mary’}}
(4) {’Sue’,“Tom’, “Mary’, “Alphonse’} {’Sue’, "Mary’}

Maps and the map-related operations of SETL, which will be presented in
Section X below, are the most characteristic and important features of the
language. ‘

Be sure you understand the rules and distinctions concerning sets and
tuples, duplicates, ordering, nesting, and maps presented in the preceding
pages. Review this material if necessary, and work the exercises of Section
2.2. This material must be mastered before proceeding, since it will be
used constantly in all later chapters.

2.1.5 The size of composite objects: the # operator.

One of the most important characteristics of a composite object is the
number of components which it has. SETL provides provides a single operator
to determine the size of sets, tuples, maps and strings : the “#° operatore.
The “#° operator is called indifferently length, size, or cardinality.

When applied to a string it yields its 1length, 1i.e. the number of
characters 1is contains; when applied to a tuple, it yields the length of
the tuple, i.e. the largest position in the tuple that is occupied by a
component whose value is not OM ; and when applied to a set it yields its

cardinality, i.e. the number of its elements. For a map, it yields the
. number of pairs in it . Thus

#°Tom’ is 3, since ‘Tom” has 3 characters

#°Tom is hot’ is 10, since “Tom is hot’ has ten characters
(including 2 blanks)

#[°Tom’, Dick’, “Harry’] is 3, since this tuple has 3 components
#["Tom”, " Tom”, Tom”] is 3, since this tuple also has 3 components

{"Tom’, " Dick’, Harry’} is 3, since this set has 3 elements

{"Tom’, Tom’, "Tom’} is 1, since this set has “Tom’ as its only
member

#{} is 0, since the null set has no members

DATA AND EXPRESSIONS , Page 2-12

#11 is 0, since the null tuple has no components

$’ is 0, since the null string contains no
characters

{((4,2], [4,-2] [0,0]) is 3, becuase this set (or map) contains three

elements (pairs).

DATA AND EXPRESSIONS

2.2

Exercises

Which of the following objects are the same,
and which are different?

(l.a) ‘The’ and ‘The °

(l1.b) ‘The man’ and ‘Theman’
(lec) [‘The’, man’] and [‘man’, The’]
(le.d) {°The’, man’} and {’Man’,’The’}
(l.e) {’The man’} and {(’man The’}
(l1.f) { ‘The’,’The’, man’} and {(’The’,’man’}
(l.g) ["The’, The’, man’] and [‘The’,’man’]
(l.h) ([°The’,’man’] and {‘The’, man’}
(1.1i) [“The’, “man’] and {‘The, man’}

Write the size #x of the following strings, sets,
and tuples. For each set and tuple, also write
the list of all its integer elements or components
and the size of each of its set, tuple, or string
elements or components.

(2.a) {1,2,2,°Tom” }
(2.b) [1,2,2,°tom”]
(ZnC) {19{292} ,'Tom'}

(2.4d) {1 1 , {1}, {}}
(2.e) [< ,0 [1 11

(2.8.f) ‘abracadabra”’

(2.g) ‘abra cadabra”’

(2.h) ‘abra, cadabra’

(2.1) {1,”abra’, “cadabra’}
(2.3) {1,’abra’‘cadabra’}
(2.k) {1,’abra,cadabra’}
(2.1) {1,’abra’, cadabra’ }
(2.m) {1,”abra’’,““cadabra’}

(2.n) 01,77, {3 L701°,7 {01y *, ‘O

Write the size of the first, second, and last component
of each of the following tuples:

(3.a) ["Tom’, “Dick’, “Harry’]

(3.b) ["Tom’, “Dick’, Harry’, “Tom’]

(3.¢) [‘Tom’,["Tom’], [Tom]” ,"[]1°,7",""""]

Indicate whether Tom is a member, component, member of

component, component of member, component of component, etce.
of each of the following sets or tuples:

(4.a) [1,”Tom’]

(4.b) { ["Tom’,3]1,[°Dick’,4]),["Harry’,5]}

(4ec) { {("Tom’,’Dick’, Harry”}}

(4.d) [(([(‘Tom"]), " Tom"], ’Dick’, ‘Tom’, ‘“Harry’]]
(4.e) [“Tom’, “Dick’], " Tom", “Harry’]

Write a map which indicates the age of each of your brothers
and sisters by associating their age with their first name.

Page 2-13

DATA AND EXPRESSIONS ') Page 2-14

Write the range and domain of this map.

6. Write a map which associates each component of the tuple

[“Tom’, Dick’, Harry’] with the square of the component length.
Write the range and domain of this map.

7. How many maps are there whose domain is {’Tom’, Dick’}

and whose range is {“Sue’,’Mary’}? How many of these
maps are single-valued?

8. A map M associates the age of each child in a family
with the name of the child. The domain of M is {7,9,13)
and the range is {’Sue’, Mary’,“Tom’, "Dick’} .
What is interesting about this family?

9. Consider the fbllowing map M:

{[(°“Smith’, {[’Sue’,11),[°Jim",131} 1],
[*Jones’, {[’Albert’,1},(’Anna‘’,3},[("Ron’,9]} 1,
["Skallagrim’, {[’Thorolf’,7),["Egil’,5],["Asgerd’,4]}] }

What information might this map represent? What is its domain?
What is its range?

10. Let S be the set {"Tom’,{’Dick,[’Harry’, Arthur’,{ Tom”}]}}
‘Dick’ is a member of S. Match each name in the following list
with the manner in which it appears in S:

(a)Tom (i)component of member
(b)Harry (ii)member of component of member
(c)Arthur (iii)member

1l1. Consider the map M as a set. What are all the members of " this
set? Which of the components of the members of M are sets, and what are the
members of these members? What are all the components of the members of all
the components of the members of M which are sets? What are all the lengths
of all the components of the members of M which are not sets?

12. Write a map which associates each of the Pacific coast states with the
name of its state capital.

13. For how many integers between 1 and 100 is I=5*(I DIV 5) true? For

exactly which integers 1is this true? For how many integers between 1 and
100 is I=(5*I) DIV 5 true?

DATA AND EXPRESSIONS Page 2-15

2.3 Expressions and Statements

The use of expressions like those of algebra are one of the main

features of many programming languages, including SETL. Expressions denote
values, which can be printed, saved as the values of variables, etce. The

following are typical (though simple) expressions:

3+5%(7-11)

17.0/31.3131 + 19.9

x +y

x1+x2+x3+yl*y2*y3
As these examples show, an expression can involve both constants and.
variables (also called identifiers). Values are given to variables by

assignments, of which the following, which assigns the value 3 to the
variable zzl, is typical:

zzl := 3;

Note that an assignment is written wusing the := (colon-equal) sign,
sometimes called the assignment operator. The assignment is the first type
of statement that we will use. Statements are the basic building blocks out
of which programs are constructed. In this chapter we will only use two
types of statements : the assignment statement, and the print statement,
whose purpose 1is to display (on the screen, or on an output listing) the
result of a computation. The print statement has the format :

PRINT(expressionl,expression2...) 3

that is to say, it consists of the keyword PRINT, followed by a 1list "of
expressions, enclosed between parentheses, and separated by commas. Any
number of expressions can appear in a print statement. A print statement

that does not include a 1list of expressions will simply produce a blank
line.

A variable appearing in an expression always stands for 1its current
value. Thus, if we write the commands

zz1l := 3;
zz2 := 17
print(zzl
print ;3

print(zzl+zz2);

) s

The current value of the variables zzl1 and zz2 at the moment that the
-print- instruction 1is executed will be 3 and 17 respectively, so that the
output of this program fragment will be :

3
20

DATA AND EXPRESSIONS Page 2-16

(Note the blank line separating the two printed values).

Suppose next that we write the commands

zzl := 33

zz2 := 17;
print(zzl);

zzl := 4;
print(zzl + zz2);
print(zzl)

This will produce the output

3
21
4

because the value of the variable zzl has been changed by the assignment
statement “zzl := 4° after the first print statement but before the second
‘print’ statement, and because (we say it again) a variable apparing in an
expression always stands for 1its current value, i.e. the last previous
value given to the variable by any assignment (or assignment-like)
statement. Do not go on before you wunderstand this point. To test

yourself, see if you can tell what output the following sequence of command
will produce:

x := 1;
print(x);

8 = 2,
print(x);

y = 3;
print(x + y);

x := 0;
print(x + y);

y 3= 03
print(x + y);

print(x + x);
y i= 13

print(x + x);
print(x + y);

Expressions can be compounded, that is, an expression el <can be
substituted for any variable appearing in another expression e2, thereby
generating a more complicated but still legal expression. For example, by
substituting =x+y for z in 2%z, one generates the expresion 2*(x+y). Then,
by substituting 3%*a*b for y in the result, one generates the expression

DATA AND EXPRESSIONS : Page 2-17

2*(x+3*%a*b).

As in algebra, the order in which a compound expression containing many
operators 1is evaluated is determined by the ‘precedences’ of the operators
involved, as modified by the rule that subexpresions enclosed within
parentheses must always be evaluated before any operation is applied to
them. Multiplication and division are given higher precedence than addition
and subtractions, and are therefore performed before the latter. For
example, 1+2*3 has the value 7 rather than 9, because the multiplication 2%*3
is performed before the addition; but (1+2)*3 has the value 9 since the
parentheses force the addition to be performed first.

Both binary operators like the “+° in x+y, and unary operators like the
=’ in x+(-y) can appear in expressions. As these examples indicate, some
operator signs like ‘-’ can designate both binary and wunary operators:
unary if they are ©preceded by a left parenthesis or by another operator,
binary otherwise. On the other hand, some operator signs are only wused to
designate binary operators, while others are only used to designate unary
operators. All the (binary and unary) SETL operators will be described 1in
this Chapter and in Chapter V, and are summarized for ready reference in
Section XXX. Section 2.11 contains a table giving the precedences of all
operators.

DATA AND EXPRESSIONS Page 2-18

2.3.1. Variable identifiers

Almost all programming languages make it possible to perfofm
calculations and then save their results for re-use later. This is done by

assigning the results of calculations to a yvariable identifier (sometimes
abbreviated simply as variable, or as identifier). An example is

x =1+ 2+ 3+ 4 + 5;

which saves the result of the expression 1 + 2 + 3 + 4 + 5 appearing to the
right of the assignment operator :=, making the result the value of the
variable identifier x appearing to the left of this assignment operator.
Since the value in question is 15, the command

PRINT(x);
would then print the current value of the variable x, namely 15.

Identifiers are composed of the letters, digits, and the underscore
character °‘ ° The first character of an identifier must be a letter. The
following are examples of valid identifiers:

X

x23

bigl

End_of Input_flag
set_OF_garbage_symbols
2123456789

eta_

On the other hand, the following are not valid identifiers:

big 1
x-23
23x

because the first two contain characters other than 1letters, digits, and
underscores (blank in the first case, period in the second), while the third
begins with a digit rather than a letter.

Identifiers can be of any length, but cannot be split beween two lines.

Except within quoted string constants, capitalization is ignored by the
SETL compiler. Thus all the identifiers

Big_set
big_set
BIG_SET
big_ SET
BiG_sEt

are considered to be identical.

DATA AND EXPRESSIONS Page 2-19

The following diagram describes the structure of valid identifiers :

I

|
> @D R
| I I
{ |-->[digit }-->» 41«

The proper choice of identifiers can make an important contribution to
the clarity and professionalism of your programs. If you choose identifiers
thought fully, your program will be easier for others to read and understand,
and, equally important, will be =easier for you to understand. Careless
errors are also less 1likely to occur, since the inner ‘rhythm’ of a
well-chosen set of identifiers will make errors easier to detect when your
program is written, typed, and proofread. Here are some -useful guidelines
for the choice of identifiers:

(a) Choose “mnemonic’ identifiers, i.e. identifiers which explain the
meaning of the quantities which they represent. E.g., an identifier which
represents some sort of upper limit value in a program should be called
upper_limit or uplim rather than simply u or L.

(b) Avoid ambiguity in the choice of identifiers, and wuse standard
spellings. It 1is certainly bad practice to have two different identifiers
called, e.g., STACK and STAK. It 1is also bad practice to use variant
spellings 1like STAK, since without noticing it you may slip back to the
standard spelling. Use the standard spelling STACK instead. (Note 1in
connection with (a) and (b) that some of the SETL dump facilities, which
when switched on (see section X) print out information wuseful for
pinpointing program errors, truncate identifier names to eight characters.
It is therefore a good idea to ensure that variable names used in contiguous
contexts can be identified using their first eight characters only, i.e.
use names like TABLE_1 IDENTIFIER and TABLE_2_ IDENTIFIER rather than
TABLE_IDENTIFIER_1 AND TABLE_IDENTIFIER_2, which could not be told apart in
an error dump.)

DATA AND EXPRESSIONS ' _ Page 2-20

2.3.2 Integer operators: +,-,*,%¥*x DIV,MOD,=,/=, >, <>, >=, <>=, MAX, MIN,
ABS, EVEN, ODD, FLOAT, RANDOM. :

We begin our systematic description of the operators SETL by discussing
those operators that take arguments of 1integer type. Some of these
operators yield a value of the same type: for example the familiar
arithmetic operators of addition, subtraction, multiplication and division.
Another group of integer operators yields a truth value : TRUE or FALSE.
This is the case for the comparison operators (Greater than, equal to, etc.)
These operators are often <called predicates. Finally, a conversion
operator, namely FLOAT, allows us to convert an integer into a floating
point quantity. The binary integer operators provided by SETL are as
follows:

i+j computes the sum of i and j

i-j computes the difference of i and j

1%j computes the product of i and j

i**j computes i to the jth power. An error results if

j is negative or if i and j are both zero.

i DIV j computes the integer (whole number) part of the
quotient of i by j. The fractional part of the
quotient is simply discarded. An error results

if j = 0. See the examples given below for the
way in which i DIV j works if one of 1 or j is negative.

i MOD j computes the remainder left over when i is divided by j.
An error results if j = 0 . The result is always positive.

i MAX j yields the larger of i and j
i MIN j yields the smaller of i and j.

Integer predicates

i=3 y;elds TRUE if 1 and j are the same, FALSE otherwise

i /=3 yields TRUE if i and j are different, FALSE otherwise
i > yields TRUE if i is bigger than j, FALSE otherwise

i <3 same as j > i

i >= 3 yields TRUE if 1 is no smaller than j, FALSE otherwise

i <=3 same as jJ »>= 1

Examples of use -0of these operators are

print(1+1); ' yields 2
print(1-1, 1-10); yields 0 -9

DATA AND EXPRESSIONS

Page 2-21

print(1*2,1*%(-2),(-1)*2,(-1)*(=-2)); yields 2 -2 -2 2

print (2**3,(~-2)*%3,2%%0, (-2)**0); yields 8 -8
print(l DIV 3, 2 DIV 3, 3 DIV 3,

4 DIV 3); yields 0 0
print(1 MOD 3, 2 MOD 3, 3 MOD 3,

4 MOD 3); yields 1 2
print(7 DIV 3, (-7) DIV 3,

7 DIV(-3), (-7) DIV(-3)); yields 2 =2
print (7 MOD 3, (-7) MOD 3); yields 1 2
print (1l MAX 2, (-1) MAX (-2)); yields 2 -1
print (1 MIN 2, (-1) MIN (-2)); yields 1 -2
print(l = 1, 1 = 2); yields TRUE
print(l /=1, 1 /= 2); yields FALSE
print(l > 1, 1 > 2, 2 < 1); yields FALSE
print(l > 1, 1 < 2, 2 < 1); yields FALSE
print(l »>= 1, 1 »>= 2, 2 >= 1); yields TRUE
print(l >= 1, 1 <= 2, 2 <= 1); yields TRUE

Concerning 1 DIV j and i MOD j, it is useful to
positive we always have i = (i DIV j) *j+(i MOD j),
is false, e.ge.

(-7) DIV 3 is -2,
but
(-7) MOD 3 is 2.

1 1

1 1

0 1

-2 2
FALSE
TRUE

FALSE FALSE
TRUE FALSE
FALSE TRUE
TRUE FALSE

note that for i (and j)
but for i negative this

Unary integer operators compute a result value from a single input 1i.
Two of these operators are predicates, mnamely ODD and EVEN. The unary

integer operators provided are as follows:

+1i has the same value as i
-i computes the negative of 1
ABS i computes the absolute value of i

EVEN i yields TRUE if i is even, FALSE if i is odd

OoDD i yields FALSE if i is even, TRUE if i is odd

FIX i converts the floating-point (i.e. real) number i to
the corresponding integer value. (See Section 5.1 for a

discussion of real numbers)e.

FLOAT i converts the integer i to the correspondin
point (i.e. real) value. (See Section 5.1
of floating-point numbers).

If the conversion causes overflow, which is
if i has a very large value, then an error

g floating
for a discussion

possible
results.

DATA AND EXPRESSIONS Page 2-22

RANDOM i returns an integer selected at random from the range
from zero to i, including both end points. For example,
RANDOM 5 will give one of the six integers 0,1,2,3,4,5.
Successive uses of this operator will in general give
di fferent randomly selected values.

Examples. of these unary operators are:

print(+1, +(-100)); yields 1 -100

print(-1, -(-100)); yields -1 100

print (ABS 1, ABS(-2)); yields 1 2

print (EVEN 1, EVEN 2, EVEN (-1)); yields FALSE TRUE FALSE
print(ODD 1, ODD 2, ODD (-1)); yields TRUE FALSE TRUE

print (FLOAT 1, FLOAT (-1), FLOAT 2); yields 1.0 -1.0 2.0

print (RANDOM 5, RANDOM 5, RANDOM 5); yields 0 4 3, or
some other sequence of integers
chosen independently and at random

from the range 0 through 5
inclusive.

print (RANDOM(-5) ,RANDOM(-5) ,RANDOM(-5)); yields -2 0 =4 9or
some other sequence of integers
chosen independently and at random
from the range 0 through =5
inclusive.

DATA AND EXPRESSIONS

2.3.2.1 Exercises

Ex. 1 What output will be produced by the following code?

Program one ;
x:=l;y:=2
print (x+y);
x:=3;
print (x+y);
yi=x+y;
print (x+y);

END

Ex.2 What is the output producd by the following program

PROGRAM multiply_x_by_y;
x:=1l3v:=2;

print(xy);

END;

Exe 3 What output will the following code produce?

program thr3 ;
number:=1; Number:=2; NUMBER:=3;
print (number+Number+NUMBER) ;
number:=number*NUMBER;
print (number+Number+NUMBER) ;
END

Exe. 4 Which of the following are valid identifiers?
(4a) number_1 (4b) number 1 (4c) number.l
Exe 5 What output will the following code produce?
PROGRAM five;
numberl:=1; NUMBER1:=2; Number_1:=3;
print (numberl+Number_1+Numberl);
numberl: =Numberl*Number-1;

print (number_l1+Numberl+NUMBERL);
END PROGRAM;

Exe 6 What output will the following code produce?
PROGRAM xs3
x:=1; y:=2; z:=3; w:=4;
print (x+y), z*(x+y), z*x+y, wtz*(x+y));
wi=2;

print (w+z*x+y,z*y/w, y**(x+y)*z);

END PROGRAM xs;

Page

DATA AND EXPRESSIONS Page 2-24

Exe. 7 Which of the following are valid expressions?

(7.a) x (7.b) x+y (7.c) (x+y)**y
(7.d) (x+y)**wk*w (7.e) a_l DIV (x+y)**wkky

Ex. 8 Evaluate the following constant expressions:

(8.a) 2%%2 (8.b) 2%*2%%*3 : (8.c) (2%%2)%*%3
(8.d) 2%%(2%%3) (3.e) 3 DIV 2 (8.£f) 1 DIV 2
(8.g) (1+2) DIV 4 (8.h) (-11) MOD 5 (8.1) =11 MOD 5
(8.1) 2%%2%%3 /=64 (8.m) 3-0 / 3 (8.n) 3-0<3

(8.0) (-35) MIN 1

Ex. 9 Simplify the following expresions:

(9.a) +=-+--x

(9.b) ====x

(9.c) x MAX y MIN y
(9.d) x MAX (y MIN y)
(9.e) x MAX x

Ex. 10 Evaluate the following constant expressions:

(10.a) ABS -1 + ABS -2 (10.b) ABS(-1 + ABS =2)
(10.c) ABS (1 MIN -1) (10.d) ABS (1 MAX -1)
(10.e) 1 MIN 2 MIN 3 (10.f) 1 MAX 2 MAX 3
(10.g) 2 + 2 MAX 3 +3 (10.h) =2 -2 MAX -3 -3

Ex. 11 Re-express the following expressions in as simple a way.as you car
using the MAX, MIN, and ABS operators:

(l1l.a) x MAX -x (ll.b) x MIN -x
(1l.c) (x MAX o) + (x MIN 0)
(11.d) (x MAX 0) + (-x MAX 0)

DATA AND EXPRESSIONS _ Page 2-25

2.3.3. String operators: S(i), S(i.¢j), S(iee), +, *, =, /=, >, <,
>=, >=, #, ABS, CHAR, STR

Binary string operators compute a result value from two inputs, at
least one of which is a string. Some of these operators take two strings as
their arguments, while others take a string and a positive integer as their
arguments. Some of these operators are predicates, and perform string
comparisons analogous to the integer comparisons discussed above.

In what follows, s and ss are ‘always strings, while i and j are
integerse.

The string operators are the following:

s (i) computes the i-th character of the string s; the result
is a one-character string. If i is negative, an error
results; if 1 is greater than the length of s, then the
value OM is returned.

s(ieej) this “string slice’ operator computes and returns the
substring of s which extends from its i-th through its
j-th characters, inclusive. If i = j-1, a null string
is returned. See Table 2.1 below for a description of the
treatment of other marginal and exceptional cases for this
operator. (Note that this operator actually has three,
rather than two, arguments.)

s(i..) this computes and returns the substring of s which extends
from its i-th character through the end of s, inclusive.
See Table 2.1 below for a description of the treatment of
marginal cases of this operator.

s + ss concatenates the two strings s and ss.
i * s concatenates i successive copies of the string s.

If i = 0, then 1 * 8 is he null string. If i < O
then an error results.

s = 8 yields TRUE if s and ss are identical, FALSE otherwise.
s [= ss " Yields TRUE is s and ss are distinct, FALSE otherwise.
s > ss yields TRUE if s comes later than ss in standard

alphabetical order, FALSE otherwise. (Note that this
operation, as well as the other string comparisons

s < ss, s >=g8s, 8 <= g8’ are implementation
dependent, as they depend on an assumed alphabetical
order of characters (‘collating order’). Of course,
alphabetic characters will always have their standard
order, but the relative order of punctuation marks, and
also the way in which alphabetics compare to numerics,
may differ from implementation to implementation.)

s < ss yields TRUE if s comes earlier thanm ss in standard

DATA AND EXPRESSIONS Page 2-26

-] >= 88

8 <= gsg

s IN ss
s NOTIN ss

To give exa
the string

print(ss(1
print(s(1l.
print(s(1l.
print(s(1l.
print(s(6.
print(s(6)
print(s+ss
print (3#*s)
print(s >
print(“AA’
print (“AA’
print(s IN

The un
8 These o

#s

ABS s

CHAR i

alphabetic order, FALSE otherwise.

yields TRUE if s is either identical with is or
comes later in standard alphabetic order, FALSE
otherwise.

yields TRUE if s is either identical with ss or comes
earlier in standard alphabetic order, FALSE otherwise.

yields TRUE if s occurs as a substring of ss, FALSE if not.
yields FALSE if s occurs as a substring of ss, TRUE if not.

mples of these operators, we shall suppose that the value of s is
‘ABRA’, and that the value of ss is the string °“CADABRA’. Then

),s8s(4)); yields C A
¢2),8(2¢¢4),8(2:42)) yields AB BRA B
«0)); yields the null string
) 38(2e¢),8(3¢e)ys(bdes))s yields ABRA BRA RA A
) yields the null string
)3 yields OM
)s yields ABRACADABRA
5 yields ABRAABRAABRA
8ss,88 >8); yields FALSE TRUE

> A, A" > ") yields TRUE TRUE

< ‘A°, ‘AT <) yields FALSE FALSE
ss, ss IN s8); yields TRUE FALSE

ary string operators compute a value from a single string input
perators are

yields the number of characters in the string s.

here s must be a one-character string or an error results.
If s is a single character, then ABS 8 returns the internal
integer code for this character. Note that ABS and CHAR are
are inverse operators.

here 1 must be an integer which can be the internal code of
some character c. If this is so, then CHAR i yields the
single character ¢ (i.e., a l-character string). Otherwise,
an error results. (The range of integer values used as
character codes is implementation independent.)

DATA AND EXPRESSIONS Page 2-27
The following table shows the way that the string extraction operators

s(1), s(i..), and s(i..j) behave in various marginal cases.
Table 2.1. Behavior of String Operators in Marginal Cases
Operator Condition Ef fect

s(i) i negative or zero causes error

s(1i) i > #s yields OM

s(i..) 1 negative or zero causes error

s(i..) i = #s+1 returns null string

s(i..) i > #s+1 causes error

s(i..j) 1 negative or zero causes error

s(i.+]3) i > j+1 causes error

s(i..3) j negative causes error

s(i.¢3) j > s causes error

s(i«¢]) 1 = §+1 returns null string

To each string extraction operator there corresponds a string

assignment operator which modifies the string section which the
corresponding assignment operator would retrieve. These string assignments
are indicated by writing either s(i), s(i..), or s(i..j) to the left of the
assignment operator ‘:='. For example, if s is a string, we can modify the

section of it extending from its second to its fourth character
by writing

(1) $(2..4) :

where x is any string. Note that x need not be a string of

length

(inclusive)

3, so

that the assignment operation (1) can lengthen s (1if x has length greater
than 3) or shorten it (if x has length less than 3). Similar remarks apply
to the string assignment operation

s(i..) := x3
which is treated exactly as if it read

s(i..#s) := x;
However, the right-hand side of the simple string assignment

s(i) := x3
must be a single character, or an error will result.

For examples of all this, suppose that sl,s2,...,87 are seven
variables, all having the string value “ABRACADABRA’ initially. Then the
following assignments produce the indicated results.

sl(3..5) := ‘XXX’ $ now sl = ABXXXADABRA
s2(3..4) := ‘XXXXXX’; $ now s2 = ABXXXXXXCADABRA
s3(3..4) := ‘X" $ now 83 = ABXCADABRA
s4(3..4) 1= "7 $ now s4 = ABCADABRA
s5(7..) := “XXX’; $ now s5 = ABRACAXXX

DATA AND EXPRESSIONS

86(7..)
s7(1)

To summarize,

s(i) :

s(i..3) :

S(ioo) :

As an example of the case 1 =
and s2 are both initially equal to

and the as

X3

LN 4

= H $ now s6
‘Y’ $ now s7

the three string

and lie between 1 and #s,

This modifies the i-th character of

= X3
cannot exceed
equal to x,
i=j§+1,
position. The case 1
the end of s.

Se

X3

x must be a single character,

i1 must be an integer at least equal
to j+1 or an error results.
The section of s
which may expand or contract s.
x will be inserted into s immediately after its i-th
#fs+l,

this is treated exactly as if it read s(i..#s)

Page 2-28

ABRACA
YBRACADABRA

assignment operators are:

and 1
otherwise

must be an integer
an error results.
Se ‘

to 1 and at most equal
also be an integer, and
between i and j is made
Note that if

Jj must

j = #s is legal, and adds x to

Thus

HE x.l

i must be an integer which is at least 1 and at most #s+1.

"ABC’,

sl(4..3) :

= ‘XXX’ ;
signment

82(4..) := ’‘XXX’;

yield °ABCXXX’.

#s+1, which is allowed, note that

if sl

then both the assignment

DATA AND EXPRESSIONS . Page 2-29

2.3.4. Boolean Operators: AND, OR, IMPL, NOT

Boolean operators compute a boolean result from one or two input
boolean quantities ¢, cc. That is, both the inputs of these operations and
the results they produce must be one of the two possible boolean values TRUE
and FALSE. These operations are generally used to combine results produced

by prior comparisons or other tests, i.e. they typically appear in contexts
such as

IF (i > j AND j > k) OR (k > j AND j > i) ...
The binary boolean operators supported by SETL are as follows:
c AND cc yields TRUE if both ¢ and cc are TRUE, FALSE otherwise.

c OR cc yields TRUE if at least one of ¢ and cc is TRUE, FALSE
otherwise.

¢ IMPL cc This is the “logical implication’ operator, and yields TRUE
except when ¢ is TRUE and cc is FALSE. That is, if either c 1is
FALSE, or cc is TRUE, then ¢ IMPL cc yields TRUE; but if c is
TRUE and cc FALSE, then ¢ IMPL cc yields FALSE.

The only unary boolean operator provided is

NOT C yields the logical opposite of ¢, i.e., FALSE if ¢ is TRUE,
TRUE if ¢ is FALSE.

In using these operations one will often make use of various well-known
rules of logic like those called ‘De Morgan’s rules’. For example since

(NOT c¢) OR (NOT cc)

is TRUE if either ¢ or cc is FALSE, but is FALSE if both ¢ and cc are TRUE,
it is equivalent to

NOT (c AND cc) .

Various other equivalences between boolean expressions are 1listed in the
following table:

NOT (¢ OR cc) is equivalent to (NOT c¢) AND (NOT cc)
NOT (c IMPL cc) 1is equivalent to c AND (NOT cc)

¢ IMPL cc is equivalent to (NOT c) OR cc

NOT (NOT c) is equivalent to c

These and other related logical equivalences can often be wused to
- simplify Boolean expressions that occur in programs. For example, since

c OR ((NOT c) AND cc)

is TRUE if and only if at least one of c¢c and cc is TRUE, it simplifies to

DATA AND EXPRESSIONS Page 2-30

¢ OR cc .
Thus, instead of writing
IF i > j OR ((NOT i > j) AND k > j) e«
in a program we can simplify this to

IFi > JORk > 3§ oo

Other useful relationships of this sort appear in Exercises 1 through 8 of
Section 2.3.4.1.

DATA AND EXPRESSIONS Page 2-31

2.3.4.1 Exercises

Boolean Equivalences

A tautology is a Boolean expression E which evaluates to TRUE no matter
what Boolean values are given to the variables appearing in E. An
equivalence is a statement of the form El1=E2 which evaluates to TRUE no
matter what values are given to the variables appearing in it. Given any
Boolean statement, we can easily write a program which substitutes values in
all possible ways for the variables appearing in it, and this makes it easy
to detect Boolean tautologies and equivalences. For example, since

{[x,yl: x IN {TRUE,FALSE},y IN {TRUE,FALSE}|(x AND y)/=(y AND x)}
evaluates to null, it follows that
(x AND y)=(y AND x)

is a universally valid Boolean equivalence. The following exercises 1list
various tautologies and Boolean equivalences, which you are asked to prove
either in this way or by appropriate mathematical reasoning.

Exe. 1 Prove the equivalence (A OR B)=(B OR A).

Ex. 2 Prove the equivalence ((A OR B) OR C)=(A OR (B OR C)), and also ((A
AND B) AND C)=(A AND (B AND C)).

Exe. 3 Prove the equivalence (A AND A)=A, also (A OR A)=A.

Ex. 4 Prove the equivalence (A AND (B OR C))=((A AND B) OR (A AND C), also
(A OR (B AND C))=(A OR B) AND (A OR C).

Ex. 5 Prove the equivalence (A OR ((NOT A) AND B))=A OR B).

Ex. 6 (De Morgan’s Rules) Prove that (NOT (A AND B))=((NOT A) OR (NOT B)),-
also (NOT (A OR B))=((NOT A) AND (NOT B)).

Ex. 7 Prove that NOT(NOT A)=A. Using this fact and the results proved in
Ex.6, show that

(A AND B)=(NOT((NOT A) OR (NOT B))), also that

(A OR B)=(NOT((NOT A) AND (NOT B))).

Exe. 8 Prove the following equivalences: (A AND TRUE)=A, (A AND
FALSE)=FALSE, (A OR TRUE)=TRUE, (A OR FALSE)=A.

DATA AND EXPRESSIONS Page 2-32

2.4 Set Operations and Setformers.

SETL provides several important kinds of set operators, of which the
easiest to wunderstand are the built-in, elementary set operations and the
set formers discussed in Sec.2.4. We shall review these constructs in the

present section; the even more important map operations are presented in
Section X.

The binary set operations compute a result value from two 1inputs, one
or both of which must be a set. These operations are as follows (in what
follows, s and ss are always sets, while x can be an arbitrary value):

s + ss computes the ‘union’ of two sets, 1.e. the set of all
objects which belong either to s or to ss.

8§ - SS computes the ‘difference’ of two sets, i.e. the set of
all objects which belong to s but not to ss.

s * ss computes the “intersection’, or common part of two sets,
i.e. the set of all objects which belong to both s and ss.

x IN s tests x for membership in the set s. The value TRUE is
produced if x is a member of s, FALSE otherwise.

x NOTIN s tests x for nonmembership in the set s. The value TRUE
is produced if x is not a member of s, FALSE otherwise.

s WITH x produces a set whose members are the members of s, with
X inserted (if x is not already a member of s)

s LESS x produces a set whose members are the members of s,
with x removed (if necessary, i.e., if x is a member of s)

s = ss tests s and ss for equality, yielding TRUE if s and ss
have exactly the same members, FALSE otherwise.

s/=ss tests s and ss for inequality, yielding FALSE if s and ss
have exactly the same members, TRUE otherwise.

s INCS ss .tests ss for inclusion within s, yielding TRUE if every
member of ss is also a member of s, FALSE if ss has any
member which is not also a member of s.

s SUBSET ss tests s for inclusion within ss, yielding TRUE if every
member of s is also a member of ss, FALSE if s has any
member which is not also a member of ss.

n NPOW s here the first argument n must be a nonnegative integer.
This operation yields the collection of all subsets of s
which contain exactly n elements. An error results if n
is negative.

s NPOW n here the first argument is a set and the second is an
integer. This is equivalent to n NPOW s.

DATA AND EXPRESSIONS Page 2-33

Examples of these binary set operators are

print({1,2} + { Tom’,’Dick’}); yields {1 2 “Tom’ ‘Dick’}
print({} + (1,2 , {} + {(}); yields {1 2} {}
print({1,2,3} - (1,4}, {1,2,3} = {(}); yields {2 3} {1 2 3}
print({1,2,3} - {3,1,2}); yields 'S!

print({} -{1,2,3}); yields {}
print({1,2,3} * {2,5,3}); yields {2 3}
print({1,2} * { 3,4 }); yields O

print({} * {3,4}); yields {)
print({{1},2,3} - {(1,2,3)); yields {{1}}
print({{1}, {2,3}} - {1,2,3}); yields {1}, {2 ,3}}
print(l IN {1,2,3) , {1} IN {1,2,3}); yields TRUE FALSE
print({} IN {}, {} IN { {} }); yields FALSE TRUE

print (1l NOTIN {1}, {} NOTIN {}); yields FALSE TRUE
print({1,2,3}) WITH 5); yields {1 2 3 5)
print({1,2,3} WITH 1); yields {1 2 3}
print({1,2,3) LESS 1, {1,2,3} LESS 4); yields {2 3} {1 2 3}
print({1,2,3} = {3,2,1}); yields TRUE

print({} = []1 , {} = {{}}) ; yields FALSE FALSE
print({1,2} /= (2,1}, {1,2,2} /= {1,2}); yields FALSE FALSE
print(2 NPOW {1,2,3}); yields { (1 2} {2 3} {1 3}}
print ({1} INCS {3}, {} INCS ({1}); yields TRUE FALSE
print({1,2} INCS {1,2}) ; yields TRUE
print({2,2,2} SUBSET {1,2 }) ; yields TRUE

Unary set operators compute a result value from a single set input s.
The unary set operators are as follows:

its yields the number of (distinct) elements of the set s

POW s yields the set of all subsets of s (which is also called

DATA AND EXPRESSIONS Page 2-34

the ‘power set’ of s; hence the name POW)

RANDOM s yields a randomly selected element of s. Successive

uses of RANDOM s will yield independently selected elements
of s.

ARB 8 Yields an arbitrarily selected element of s.
(Depending on the particular SETL implementation used,
successive uses of ARB s may or may not yield the same
element of s).

Examples of these unary operators are:

print (# {2}, #{2,2,2,2}) ; yields 1 1
print(# (1,2,3,4,1,2,3,4,40}); yields 5
print (POW {1,2}) ; yields {{} {1} {2} {1 2}
print (ARB {1 2,3}, ARB {1,2,3}) ; yields 1 1
(or possibly 2 2 or 3 3)
print (ARB {1,2,3}, ARB {3,1,2}); can yield 1 2 (even
though

{1,2,3) = {3,2,1}
yields TRUE)

print (RANDOM {1,2,3}, RANDOM{1l,2,3}) ;
(possibly) yields something like 2 1 2 3

Of course, the basic construct

{XI,XZ,QQQ,XK}
which forms a set by enumerating its elements explicitly 1is also a
(multi-argument) set operator. The x1,x2,x3,¢..,xk appearing 1in this
construct can be arbitrary expressions. As several of the ©preceding

examples show, this construct can form a set of fewer than k elements. For

example, if x has the value {1,2) and y the value {1}, then {x,y,x+y} is the
two element set {(1,2}.

As already noted, the set of all integers in the range from m to n
(inclusive) can be written as

{n..m}

and the set of all integers n, n+k, n+2k, etc. up to m can be written

{n,n+ke..m}

In this last form, the “step’ k can be negative, and n+k need not actually
be a sum, but can be any arbitrary expression. For example,

DATA AND EXPRESSIONS Page 2-35

print({3,6—l..10}) yj-elds {3 5 7 9}

If the m in n..m is less than n, then the nullset results. Similar rules
appy to {n,n+k..m}, for example

print({3,5..1}) yields { }

print({(3,2..-3}) y {3 2 10 -1 -2 -3}

print({3,2..4}) yields { }

print({3,3<+5}) results in an error.
See section 3.3.4 for additional details.

Many interesting mathematical relationships connect the set operators
presented 1in this section. For example, the values of (s*sl) SUBSET s, and

(sl+s2)*s3 = sl*s3+s2*s3 are always TRUE. Many other relationships of this
sort appear in the exercises of Section 2.14.

DATA AND EXPRESSIONS Page 2-36 —

2.4.1 Setformer Expressions

Sets are the basic data objects of SETL, and the language provides a
number of ways of constructing sets. We have seen already in Sec.2.l.1 that
constant sets are constructed by listing thier elements and enclosing the
list between set brackets. More generally, sets can be constructed by

enumerating their elements, be they constants, variables or expressions.
For example, the set expression

{x, y, x+y, [1)

describes a set whose components are the value of the variable X, the value
of wvariable vy, the expression (x+y) and the null tuple. Such sets
constructed by enumeration can contain any number of expressions of any
type.

In mathematics, the most powerful and general way of forming a set 1is
simply to define it by stating a characteristic property of its elements.
The standard mathematical notation for this is

(1) {x | c}

read “the set of all x having the property C°, or equivalently “the set of
all x such that C’. Any Boolean-valued expression can be used for C, for
example we are allowed to write

(2) {x | x <0}

whichh is read “the set of all x such that x <0’. (As this example shows,

the Boolean expression C of (1) will almost always depend on the variable
Xe)

SETL supports, and generalizes, a notation very close to (1l). There
is, however, one restriction which is always imposed. SETL is not only an
abstract mathematical notation; it is also a programming language, which
can be wused to print out the actual value of any legal expression which it
allows one to write Hence it works only with finite, not with infinite sets.
This makes it necessary to 1impose a restriction on the way in which the
notation (1) can be wused, in order to prevent formation of obviously
infinite sets 1like (2), which describes all of the negative numbers. This
is done simply by insisting that the range of variation of the variable x in
(1) be 1limited, 1in advance, by the condition that x should belong to some
other finite object, e.ge some other set. That is, we allow, not exactly
(1), but only the significantly more restricted construct

(3) {x IN s l C} °

Then, since the set s used in (3) always has to be defined before (3) 1is
evaluated, it follows that s must be finite; and then (3) must also
designate a finite set whose list of elements can be calculated explicitly.
In (3), we have the basic SETL setformer constructe.

DATA AND EXPRESSIONS Page 2-37

Several important generalizations of the construct (3) are used 1in
mathematics and also allowed in SETL. Suppose, for example, that s is a set
of numbers. Rather than simply forming the set (3), we may want to form a
set of numbers obtained from (3) by applying some common transformation to
all its elements, for example, by squaring them. To form this set, we are
allowed to write

{x*x: x IN s | C}

which can be read: ‘the set of all values x squared, for all x ranging over
the set s such that C’. The general form of the more powerful kind of
set former 1is

(4) {e: x IN s | C}

In (4), e can be any expression, s any set valued expression, C any
Boolean-valued expression. We can read (4) as ‘the set of all values e,
formed for those x in s for which C has the value TRUE’. Usually both e and

C will depend on the value of x, i.e. on the various values of the members
of s.

This reading of the notation (4) suggests a further generalization,
which again 1is wused 1in standard mathematics and is also legal in SETL.
Specifically, there is no reason why in forming a set 1like (4) we should
only allow one variable x to range over one set s. Instead, we can allow
any number of variables to range over any number of sets. The notations

(5a) {e: x IN sl, y IN s2 | C}
(5b) {e: x IN sl, y IN s2, z IN s3 | C}

etce express this more general constructions that this remark suggests.
Note that (5b) can be read “the set of all values e, formed for x ranging
over sl, y (independently) ranging over s2, z ranging (again independently)
over s3, but only in combinations x,y,z for which C has the value TRUE.’

Subsequently we will see that even further generalizations of the
set former constructs (3), (4), (5a), (5b), etc. are allowed. But, even as
they stand, these constructs are extremely powerful, and we will now time to
exhibit their power by giving a few interesting examples of their use. For
this, we begin by considering the problem of printing out so-called prime
numbers, for example all prime numbers in a given range, let us say the
range {l...100}: We remind the reader that positive numbers like 6 = 2%3, 9
= 3%3, 4 = 2*%2 which are the product of two smaller numbers, are called
composite, and that numbers, larger tham 1 which are not composite are
called prime; examples of primes are 3,5,7,11,13,17... .

It is easy to express the set of all composite numbers up to 100 wusing
a setformer (of type (5b)), namely as

(6) {i*j: 1 IN {2...10}, j§ in {2...100} | 4 * j < 101} .

Since the prime numbers we want are exactly the elements of {2...100} which
do not belong to the set (6), we can print them out simply by writing

PRINT({2+...100} - {i*j: i IN {2...10}, j in {(2...50} | i*j < 100});

DATA AND EXPRESSIONS Page 2-38

Sometimes the condition C appearing in (4), (5a), (5b), etce. is
unnecessarye. For example, given a set s of numbers we may simply want to
form all the squares of numbers in s. In such cases one is simply allowed
to drop the condition C, i.e. to write {e: x IN s}, read “the set of all
values e formed for x IN s’. Similarly, we can write

{e: x IN sl, y IN s2},
{e: x IN sl, y IN s2, z IN 83}, etc.

For example, we can write the set of all pairs x,y, where x ranges over sl
and y ranges over s2, as

{Ilx,y] : x in sl, y in s2}.

(In mathematics, this set is called the “Cartesian product’ of sl and s2,
afer Rene Descartes, the inventor of coordinate geometry.) Using these
‘elided’ setformers we can print the sets of primes considered above a bit
more simply, for example we can print the primes up to 100 by writing

Mathematicians who study prime numbers are often interested in primes
having particular forms, for example primes p which are one more than a
multiple of four, or three more, than a multiple of four. Since the set of
all numbers (greater than 1) wup to 100 which are one more (resp. three
more) than a multiple of four can be expressed as

{4*n+1 : n in {0..24) | 4*n+1 < 101}
and
{4*n+3 : n in {0..24) | 4*n+3 < 101}

respectively, we can print the set of primes (up to 100) which are one more
than a multiple of four by writing

PRINT ({4*n+1: n IN {l..24)} | 4*n+l < 101}
- {(i*j: 1 IN {2..10), § IN {2..50) | i*j < 101)}) ;

and the corresponding set of primes which are three more than a multiple of
four by writing

PRINT({4*n+3: n IN {0..24) | 4*n+3 < 101}
- {1*33 i IN {20.10}, j in {20050} l i*j < 101}) M

2.4.2 Existential and Universal Quantifiers.

Very often, the key to a mathematical problem is to determine whether
there exists any element x satisfying a given condition C, and the key to a
programming problem 1lies in finding such an x 1f it exists. Using
setformers, it is easy to express the condition that there should exist an x
in s satisfying C: we have only to write

DATA AND EXPRESSIONS Page 2-39

(7) {x IN s | C} /= {} .

Moreover, if the condition (7) is satisfied, we can easily find such an x,
simply by writing

_(8) ARB {(x IN s | C} .

Since the test (7) is so important and common, a special abbreviation 1is
provided for it, namely

(9) EXISTS x IN s | C .

This is a boolean-valued expression, yielding éxactly the same value as (7).
Moreover, if it yields the value TRUE, it will set x to the value of (8),
i.e. to some value satisfying C. If (7) is false, then the variable x 1in
(8) gets

value OM.

As in a setformer, the s in (9) can be an arbitrary set-valued
expression, while C can be an arbitrary boolean valued expression.

Generalizations of (9) corresponding to the generalized setformers
(5a), (5b) are allowed. Specifically, one can write

(10a) EXISTS x IN sl, y IN s2 | C
(10b) EXISTS x IN sl, y IN s2, z in 83 | C

etc., where sl,s2,...are arbitrary set-valued expressions and C a Boolean
expressione. The constructs (10a), (10b), ec. search the set of all x in
sl, y in 82, ... for values satisfying the condition C. If such values are
found, then (10a) (or (l0b)) yields the value TRUE and the variables xX,y,ee.
are set to these values. Otherwise (10a) (or (10b)) yields the value FALSE
and x,y,.. get indeterminate values.

The constructs (9), (10a) (10b) etc. are called existential
quantifiers.

The existential quantifier allows us to express naturally the common
query : does there exist an object in a certain collection, which satisfies
a given criterion ? A related query, which is also very common 1in
programming contexts, is the following : do ALL the objects in a collection
satisfy some stated criterion ? Such queries are expressed in SETL by means
of constructs such as the following:

(1la) FORALL x IN s | C
(11b) FORALL x IN sl, y IN s2 | C
(l1le) FORALL x IN sl, y IN s2, z in s3 | C

which make use of the keyword “FORALL’ . These constructs which are called
universal quantifiers, are closely related to existential quantifiers. The
three cases just given are equivalent to:

(12a) NOT EXISTS x IN s | (NOT C)
(12b) NOT EXISTS x IN sl, y IN s2 | (NOT C)

DATA AND EXPRESSIONS Page 2-40

(12¢) NOT EXISTS x IN sl, y IN s2, z IN s3 | (NOT C)

respectively. For example, (llc) searches the set of all x in sl, y in 82,
z 1in 83 for values such that the condition C takes on the value FALSE. 1If
none exists then (llc) returns the value TRUE (and the variables x,y,z take
the value OM). HHowever, if values satisfying C exist, then (llc) returns
the value FALSE (and the variables x,y,z take on values (in sl, s2, and s3
respectively) fulfilling the condition C).

By using quantifiers we can write a simpler and more readable setformer
representing the set of all primes up to 100. Specifically, an integer n is
prime if there exists no smaller integer m (other than 1) which divides n
evenly, i.e. such that n MOD m = O. Hence

PRINT({n in {2..100} | NOT EXISTS m in {2..n-1} | n MOD m = 0});
will print the set of primes up to 100. Similarly,

PRINT({n in {2..100} | ((NOT EXISTS m in {2..n-1} | n MOD m
AND (n-1) MOD 4 = 0));

0)

will print all the primes up to 100 which are one more than a multiple of
four, while

PRINT({n in {2..100} | ((NOT EXISTS m in {2..n-1} | n MOD m
AND (n-3) MOD 4 = 0)});

0)

will print the set of all primes up to 100 which are three more than a
multiple of four.

As we have said, the existential quantifier (9) returns exactly the
same value as the expression (7). However, the quantifier calculates this
value more efficiently than (7) would, since to evaluate (9) the SETL system
will search systematically through the elements of s but stop searching and
return the value TRUE as soon as an x satisfying C has been found, whereas
to evaluate (7) 1it would always search through the whole of s building up
the set {x in S | C}, and only test it for nullity after it had been
evaluated fully. This distinction becomes particularly important 1if
evaluation of the boolean condition C causes side effects, since 1in this
case evaluation of the two expressions (8) and (9) will have different
cumulative side effects. Similar remarks apply to wuniversal quantifiers
(11), (11la), and (1l1lb).

A remark on bound variables in compound setformers and quantifiers

The variables x, y, z occurring in (9), (l10a-b),(lla-c), and (l2a-c)
are called bound variables, since the quantifiers in which they appear cause
them to be iterated over some set. Quantifiers (or setformers) such as
(10a-b), (llb-c), or (12b=-c) involving more than one bound variable cause
multiple iterations, e.g. 1in evaluating (10a) x is given successive values
from the set sl, and then for each of these values of x , y is given all
possible values from s2. For this reason, the expression 82 in (10a) 1is
allowed to depend on the bond variable x, but sl must be independent of y.
Similarly, in 10b), s3 can depend on both x and y, s2 can depend on x but

DATA AND EXPRESSIONS Page 2-41

not y, and sl cannot depend on either x or y. Similar rules apply to
universal quantifiers and to setformers.

DATA AND EXPRESSIONS Page 2-42

2.4.3., Some illustrative one-~statement programse.

Thus far we have introduced only a few of the facilities which the SETL
language makes available. Only one or two of the commands available to the
programmer have been described yet, so that we cannot yet show any
substantial programs. However, the mechanisms that have been described are
power ful enough to allow various interesting single-statement programs to be
written. In this section, we collect a few such progams.

as More about prime numbers.

As noted in the preceding section, an integer is called prime if it 1is
not evenly divisible by any smaller (positive) integer other than 1.

To form the set of all prime numbers up to 100 we can use the one-line
program given in the preceding section, which simply prints a setformer:

PRINT({n in 2..100] NOT EXISTS m in 2..n-1] (n MOD m) = 0});
The output of this single-statement program is
{2 357 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97}

Note however that since sets are not ordered the elements of this set can be
printed in any arbitrary order. The actual order used (which has no logical

significance) will depend on the particular SETL implementation which o ne
is usinge.

Mathematicians who study prime numbers are sometimes interested in find
‘not all the primes in a given range, but only those which have various
special properties. For example, a prime n is said to belong to a prime
pair 1if ©both n and n+2 are primes. (Note that, since all primes except 2
are odd, we cannot expect both n and n+l to be prime, because 1if n is a
prime then n+l will be even, hence not a prime.) To find all prime pairs up
to 100 we can simply write

PRINT({H IN {200100} |
(NOT EXISTS m in {2..n-1} | (n MOD m) = 0)
and (NOT EXISTS m in {2..n+l } | ((n+2) MOD m) = 0)});

The output of this program is
{3 5 11 17 29 41 59 71}
indicating that the only such twin-prime pairs are
(3,51, (5,71, (11,13}, (17,19}, [29,31), (&41,43], (59,61}, [(71,73],
Sometimes one 1is interested in primes which satisfy particular
quadratic equations, for example primes n of the form n = k**2+1. Since if

n is not larger than 100, any integer k solving this equation would have to
be smaller than 10, we can find all the primes of this form just by writing

DATA AND EXPRESSIONS Page 2-43
PRINT({n in {2..100} | (NOT EXISTS m IN {2..n=1} | (n MOD m) = 0)
and (EXISTS k IN 0..10 | n = k*k+1)});

Similarly, to find al the primes up to 100 which have the form 2k*#*24+3 we
can write '

PRINT({n in {2..100} -| (NOT EXISTS m IN {(2..n-1} | (n MOD m) = 0)
and (EXISTS k IN {0..10)} | n = 2*%k*k+3)});

the output of the first of these programs is
{2 517 37}
and the output of the second program is

{3 511 53}

b. Integer right triangles.

The famous theorem of Pythagoras states that the length h of the
hypotenuse of a right triangle and the lengths a and b of its two sides are
related by the equation a ** 2 + b ** 2 = h ** 2, Whole-number solutions of
this equation are useful to people who make up elementary mathematics exams
and want to invent problems that have whole number answers. Examples of
such ‘integer right triangles’ are 3,4,5 and 5,12,13. The following
single-statement program finds all integer right triangles a,b,h for which a
is less than b and both are less than 30. We let b range over the set
{1..30}, and a range over the set {l..b=-1}. To find 1if a*a + b*b 1is a
perfect square, we simply search for an integer h qhose square is equal to
that sume. The possible range of h is from 1 to a+b. (Approximately. Can
you give a more precise range for it ?).

Note that we eliminate all triangles for which a and b have a common
divisor, since these are simple multiples of smaller integer right
triangles.

PRINT({ [a,b,h}] : b IN {1l..30}, a IN {l..b=-1} |
(EXISTS h IN {(2..a+b} | (a*a+b*b = h*h)) and
NOT EXISTS ¢ IN {2..b=1} | ((b MOD c) = 0 and (a MOD c) = 0)1});
The output of this program is
{[(3 4 5] [5 12 13] [8 15 17] [20 21 29] [7 24 25]}.

It is not hard to prove mathematically that there exist infinitely many
different integer right triangles.

DATA AND EXPRESSIONS Page 2-44

2.5 Tuple Operations and Tuple Formers

We have mentioned repeatedly that sets are wunordered and can never have
duplicate or undefined members; tuples are ordered and can have both
duplicate and undefined components. For example,

(,0,1,0,0M,0M,1,0]

is a perfectly legal tuple; 1its first, third, and seventh components are
all 1, while its fifth and sixth components are undefined. 1In spite of this
very fundamental difference between sets and tuples, the binary and wunary
operators on tuples which SETL provides are similar to corresponding set
operatorse. In addition, tuple formers that construct tuples in the same
manner that set formers build sets, exist with a similar sybtax. In fact,
all set forming expressions can be transformed 1into tuple forming
expressions, by replacing the set brackets with tuple brackets.

2.5.1 Binary Tuple Operators

Binary tuple operators compute a result value from two inputs, one or
both of which must be a tuple. The binary tuple operators are as follows

(in what follows, t and tt are always tuples, while x can be an arbitrary
value):

t + tt concatenates tt to the end of t.

n * ¢t here, n must be an integer. This forms n
copies of t and concatenates them end to end,
to form a tuple n times as long as t.
If n = 0, then the null tuple (i.e. []) is obtained,
if n < 0, an error results.

t * n if n is an integer, this is equivalent to n*t

x IN t ylelds TRUE if x equals one of the components
of t; FALSE otherwise.

x NOTIN t yields FALSE if x equals one of the components
of t; TRUE otherwise.

t WITH x yields a new tuple identical to t except
that x is appended to it as an additional
final component

t = tt yields TRUE if all components of t are identical
to the corresponding components of tt,
FALSE otherwise.

t /= tt yields TRUE if some component of t differs from
the corresponding component of tt, FALSE otherwise.

It should be noted that a tuple is considered to extend from its first
component to its last defined component, i.e., its last component differen
from OM. That is, all tuples are regarded as ending with an indefinitel,

DATA AND EXPRESSIONS

long sequence of OM components, but when a tuple is printed
components are shown. For example,

[OM,0OM,0M,0M] is equivalent to []
[1,0M,2,0M] is equivalent to [1,0M,2]
[1,0M] WITH OM is equivalent to [1]

Some examples of the binary tuple operators are:

print([1,2] + [3,4]) yields [1,2,3,4]
print([1,2] WITH [3,4]); yields [1 2 [3 4]]
print(2*([1,2], [1,3]%*2); yields [1 2 1 2] (1 3 1 3]

print(l IN [1,2,3], [1,2] IN [1,2,3]);-
yields TRUE FALSE

print(OM IN [1,2,3], OM IN [1,0M,3]);
yields FALSE TRUE

print((1,2])=(2,1}, [1,2,1,2] = [1,21,2]);
yields FALSE FALSE

print([1,2,1,2]/= [1,2,1,2,1], [1,11/=(1,1,1], [1)/=[1,0M]);
yields TRUE TRUE FALSE

print({} /= [1); yields TRUE

2.5.2 Unary Tuple Operators

Page 2-45

only its non-OM

Unary tuple operators produce a value from a single tuple operand. The

unary tuple operators are:

#t yields the index of the last non-OM component of t

RANDOM ¢t yields a component of t picked at random from
its first to its last non-OM component.
All components, including OM components in this
range, have an equal chance to be picked.
Note that successive uses of RANDOM t will
generally yield different, independently chosen
random components.

The following are examples of the unary tuple operators.
print(#(3], #[1, #[1,0M]); yields 1
print(#[1,0M], #[oM,1], #([1,1,11); yields 1

print(#[1,0M,0M,0M,0M,11); yields

01

2 3

6

DATA AND EXPRESSIONS Page 2-40

print (#[1,0M,0M,0M,0M]); yields 1
print(#(1,2,3,4], #[1,2,(3,4]), #[[1,2,3,4]))); yields 4 31
print (RANDOM [1,2,3], RANDOM ([1,2,3], RANDOM [1,2,3], RANDOM [1,2,3]);

(probably) yields something like 2 1 2 3

2.5.3 Other Tuple Operators

As for sets, so for tuples the construct
[XI,xz,ooo,XR]

which forms a tuple by enumerating its elements explicitly, 1is also a
(multi-argument) tuple operator. As should be obvious, the various x]
appearing in this construct can be arbitrary expressions. If some of the x

appearing at the end of this construct evaluate to OM, then a tuple o

length less than k will be formed. For example, 1if t has the value
[1,0M,0M,2], then

(e(s4), t(3), t(2), t(3)]

forms the tuple [2, OM, OM, OM], i.e. the tuple [2], whose 1length 1is o
course 1.

The tuple of integers ranging from m to n (inclusive) can be written a

[no . om]

and the tuple of integers n, n+k, n+2k, etc. up to m can be written
[n, n+k,...,m].

In this last form, the “step’ k can be positive (producing an

ascending sequence) or negative (producing a descending sequence). The
quantity n+k need not actually be a sum, but can any integer-valued
expression. If the m in [n...m] is less than n, then the null tuple
results. Similar rules apply to [n, n+k,...,m]l]. For example,

print([3,5,-..,1]); yields
Print([(3,2,¢00,=-3]; yields
print([3,2,¢0¢,4]); yields
print([3,3,-..,5]); yields

— g g p—

]
3210 -1 -2 -3)
]
]

Tuple indexing, “slice’ and assignment operators, which resemble tt
string slice and assignment operators described in Section 2.3.3, az
provided. The indexing and slice operators are as follows (we assume as
before that t designates a tuple):

t(i) yields the i-th component of the tuple t.

DATA AND EXPRESSIONS

If i is zero or less, an error results;
if i exceeds the index of the last non-OM
component of t, then t(i) yields OM.

t(i.¢j) yields the section or ‘slice’ of t extending
from its i-th through its j-th components,
inclusive. If i is zero or negative, or 1if
i exceeds j+1, an error results.
If i = j+1, then t(i...j) always yields the
null tuple. If i exceeds the last non-OM
component of t, then a null tuple is returned.

t(i.s) yields the section or ‘slice’ of t extending
from its i-th through its last non-OM component,
inclusive. This operator is equivalent to
t(i..#t). Thus if i is zero or negative, or
if i exceeds #t+l, an error results.

If i = #t+1, then t(i..) yields the null tuple.

To give examples of these operators, we assume that t

[10,0M,30,0M,50,0M,70]. Then:

Page 2-47

is the tuple

print(t(l), t(2), t(3)); yields 10 oM 30

print(t(7), t(8)); yields 70 OM

print(t(2..5), t(2..6)); yields (OM 30 OM 50] ([OM 30 OM 50]
print(t(2..8)); yields [OM 30 OM 50 OM 70]
print(t(3..2)); yields [1]

print(t(8..11)); yields []

print(t(3..), t(8...)) 3 yields [30 oM 50 oM 70] []

print(t(9..)); results in an error

It should also be noted that if the ith component of

tuple or a string, then further indexing of t(i) is possible.

exanple, that t is the following tuple of tuples of strings:

t

is 1itself
Suppose,

[["Tom’,’Dick’, Harry’], [“Peter’, Paul’, Mary’], [“Mutt’,’Jeff’]]

Then:
t(2) yields [Peter Paul Mary]
t(2)(3) yields Mary
t(2)(3)(1) yields M
t(2..3) yields [[Peter Paul Mary] [Mutt Jeff]]
t(2..3)(2..) yields [[Mutt Jeffl]
t(2..3)(2..)(1) yields [Mutt Jeff]
t(2..3)(2..)(1)(2..) yields [Jeff]

£(2¢43)(2..)(1)(26)(1)(2) yields e

a
for

DATA AND EXPRESSIONS Page 2-48

Similar constructs involving map assignments are allowed; see Section 2.12.

The tuple assignment operators are as follows (we assume as before that
the values of t and tt are tuples):

t(i) := x 3 modifies the i-th component of the tuple t,
setting it equal to the value of x. If i is
zero or negative, an error results. If i exceeds
the index of the last non-OM component of t, then
t will be extended with as many OM components
as necessary, and then its i-th component will
be set equal to x. (Therefore the assignment

t(i) := X can increase the length of t by any
amount up to 1)

t(i.«j) := tt; modifies the section of t extending from its i-th
through its j=-th component, setting it equal to
tte. If i is zero or negative, or if i exceeds
j+1, an error results. If i = j+l1, then tt will
be inserted into t immediately following position
i. If i exceeds the index of the last non-0OM
component of t, then t will be extended with as
many OM components as necessary, and then tt will
be appended.

t(ioo)

..
]

(ad
(ud
ve

this assignment is equivalent to t(i..#t) := tt.

. Thus it modifies the section of t extending from
its i-th component to its last non-OM component,
setting it equal to tt. If i is zero or negative,
or if i exceeds #t+1l, an error results. If
i = #t+l, then tt is appended to the end of t.

To give examples of these operators, suppose that tl, t2, ..., t22 all
have the value [1,2,3,0M,0M,6]. Then

tl(2) := OM ; $ now tl = [1 OM 3 OM OM 6]
t2(4) := 40 ; $ now t2 = [1 2 3 40 OM 6]
t3(8) := 70 ;3 §$ now t3 = [1 2 3 OM OM 6 OM 8]
t4(9) := OM ; $ now t4 = [1 2 3 OM OM 6]

t5(2..4):= [OM 30 40] ; $ now t5

[1 OM 30 40 OM 6]
t6(2..2) := [20] ;3 $ now t6 = {1 20 3 OM OM 6]

t7(2)

20 ; $ now t7 = [1 20 3 OM OM 6]
t8(2) := [20] ;5 $§ now t8 = [1 20 3 OM OM 6]

t9(2..2) := 20 ; $ results in an error

DATA AND EXPRESSIONS Page 2-49

t10(2..1):

[20 OM 30] ; §$ now tl0 = [1 2 20 OM 30 3 OM OM 6]
tll(6..5):= [20 OM 30] ; $ now tll = [1 2 3 OM OM 6 20 OM 30]
t12(1..0):= [20 OM 30] ; $ now tl2 = [1 20 OM 30 2 3 OM OM 6]
t13(8..9):= [20 OM 30] ; $ now tl3 = [1 2 3 OM OM 6 OM 20 OM 30]
tl4(5..5):= [20 OM 30] ; $§ now tl4 = [1 2 3 OM 20 OM 30 6]
t15(5..5):= [20 OM OM] ; §$ now tl5 = [1 2 3 OM 20 6]A
tl6(4..5):= []; $ now tlé6 = [1 2 3 6]

t17(2..3):= [20] ; $ now tl7

[1 20 OM OM 6]

tl8(2..4):= [20] ;3 $ now tl8

[1 20 OM 6]

tl9(6..) =[] 3 $ now tl9 = [1 2 3]

t20(5..):= [50 60 70 80] ;3 $ now t20 = [1 2 3 OM 50 60 70 80]
t21(7..):= [50 60 OM 80] ; $ now t21 = [1 2 3 OM OM 6 50 60 OM 80]
t22(8..):= [20 OM 30] $ results in an error

Repeatedly indexed tuple (and map) assignments such as
t(i)(jeok)(l) := tt;

are possible in some cases; see Section 2.12 for a general discussion of
these assignments.

2.6 Tuple Formers. Simple Tuple and String Iterators.

The construct
(1) [e: x IN s | C]

read “the tuple of all values assumed by the expression e as x ranges over
the elements of s for which the condition C has value TRUE’ is similar to
the setformer

(2) {e: x IN s | C},

(see Section X) except that (2) eliminates duplicates and builds a set,
whereas 1) builds a tuple and does not eliminate duplicates. The order in
which the components of the tuple (1) are arranged 1is determined by the
order in which iteration proceeds over the elements X of the set s.

As in the case of setformers, the condition C appearing in (1) need not
appear, i.e. one can write

(1) [e: x IN s]

DATA AND EXPRESSIONS Page 2-50

read ‘the tuple of all values assumed by the expression e as x ranges over
all the elements of s’. Moreover, multiple iterations can be used in a
tuple formers, i.e. constructs like

(3a) [e: x IN sl, y IN s82]
(3b) [e: x IN sl, y IN 82, z in s3]

etc., are allowed. Again, the order in which the components of (3a) or (3b)
are arranged depends on the order in which iteration proceeds over the
elements of sl, s2, etc. However, in (3a) and (3b) a complete iteration
over 82 will always be made each time the variable x advances from one
element of sl to the next, and in (3b) a complete 4iteration over ¢3 will

always take place each time the variale y advances from one element of 82 to
the next.

If the e in (4) is simply x, then it can be elided, i.e. we can simply
write

[x IN s | C]

read ‘“the tuple of all x IN s for which the condition C evaluates to TRUE’.
It is even possible to elide both e and C, thereby writing

[x IN s]

this simply arranges the elements of the set s in (arbitrary) order as a
tuple. Notice that s 1itself could be a tuple, in which case [x in s8] 1is

simply another copy of the tuple s. Similar elisions are allowed for
set formers. '

As noted in Section 2.4.2, the “iterator’ x IN s appearing 1in such
constructs as the set former

(4) {e: x IN s | C}
and the existential quantifier

(5) +++EXISTS x IN s | C..

iterates over the elements of s, assigning each one of them in turn as the
value of x, until the iteration terminates, either because (as in (4)) all
elements of s have been processed, or because (as in (5)) an element x of s
satisfying the condition C has been found. Since iterative constructions
and searches of this kind are quite wuseful, corresponding 1iterators over
tuples and strings are also provided. If t is a tuple, then the iterator

-x IN t-, which can be used in such contexts as

(4a) {e: x IN t | C}
and
(Ab) «e o EXISTS x IN ¢t | Ceo

iterates over the components of t, in order, from its first component to its

DATA AND EXPRESSIONS Page 2-51

last non-OM component, assigning each component in turn as the value of the
variable x, until the iteration terminates for one of the two possible
reasons stated above. The iteration advances over all components, including
OM components, in turn, but components not satisfying the Boolean condition
C appearing in (4a) and (4b) are bypassed. We emphasize that, even though
the corresponding set iterator, e.ge.

«++EXISTS x IN s | C

can iterate over the elements of the set s in some unpredictable, arbitrary
order, the tuple iterator (4b) always iterates over the components of t in a
known order, namely from first component to last. Therefore, 1if the
existential search (4b) finds any component x of t satisfying the condition
C, it will always find the leftmost such component, which will become the
value of x.

We can iterate over the successive characters of a string in similar
fashion. If in (4a) t is a string, then (4a) iterates over its characters,
in order, from its first character to its last, assigning each character in
turn as the value of the variable x, until the iteration terminates for one
of the two possible reasons stated above. Characters not satisfying the
condition C appearing in (4a) are bypassed. Similar remarks apply to the
set former (4a) and to universal quantifiers which iterate over strings and
tuples.

Note, as an easy application of all this, that the set s of all
distinct components of a tuple t can be formed by writing

{X IN t}o

If t is a string, this same expression will form the set of all its distinct
characterse.

For a more general account of the iterator forms usable in setformers,
tuple formers, compound operators, and FOR-loops, see Section 3.3.

By writing the iterator

x IN [M..N]

as part of a set former or quantifier we can cause x to be iterated over all
the integers of the numerical range M through N inclusive in order.
Similarly, by writing the iterator

x IN [M,M+k..N]

we cause X to be iterated over integers lying between M and N, starting with
M and proceeding by steps of k. This iteration will proceed either in
increasing or in decreasing order, depending on whether k 1is positive or
" negative. (If k = 0, the iteration will be terminated as soon as it is
attempted.) For example, to find all the vowels in a string which are
followed by other vowels and print the corresponding set of all double
vowels or ‘dipthongs’, we can simply write

print({s(i..i+1): i IN l..#s-1 | s(i) IN vowels AND s(i+l) IN vowels});

DATA AND EXPRESSIONS Page 2-52

(where the variable -vowels- must first be assigned. the value
{‘a’",’e’,’1°,’0",’u’,’y"). Similarly, to find the set of all places in a
tuple of integers at which the sign of its component changes from + to -, we
can simply write

print({i IN ([l..#t-1] | t(i) > O AND t(i+l) < 0}).

DATA AND EXPRESSIONS Page 2-53

2.7 Map operations

Sets of a somewhat special kind, namely sets all of whose elements are
pairs (that 1is, all of whose elements are tuples of length 2) have a very
special importance in SETL because they can be used to record associations
between pairs of objects. Sets of this kind are called maps, and the most
significant operators of SETL, its so-called map operators, apply only to
such sets. In this section, we will describe these operators and review
their use.

2.7.1 The image-set operator f{x} and the image operator f(x).

Suppose that f is a map, i.e. a set of pairs
(1) {[xl,yl], [XZ,YZ], e e ey [Xk,yk]} .

Then f{x}, called the image set of f at the point x, is defined to be the

set of all second components of pairs in f whose first component is x.
Using the standard set former, we can write this set as

(2) {y(2): y in £ | y(1) = x}.

The significance of this operation lies in the fact that, if we regard f as
representing a certain abstract relationship R, then f{x} is precisely the
set of all elements which stand in the relationship R to the object x.

Suppose, for example, that f contains the pair [s,c] if and only 1if s
is a student 1in a particular school and ¢ 1is a course in which s is
registered. Then f{s} designates the set of all courses in which student s
is registered. Suppose next that g is another map, which contains the pair
[c,s)] if and only if f contains the pair [s,c]. (This map 1is <called the
inverse of the map f.) Then for each course c, g{c} is the set of all
students registered in the course.

For a still more specific example, suppose that f is the map

(3) {[“Jones’,"Tom”), [“Khalid’, Leila’], [“Smith’, Mary’],
[“Khalid’, Fatima“]}

Then:

f{‘Jones’} is {’Tom }; f{ Smith’} is {"Mary’}; f{“Khalid’} 1is
{’Leila’, Fatima’}

moreover
f{’Chang’} is the nullset ({})
Since no pair beginning with “Chang’ is present in the map (3).
Note that the DOMAIN of f, namely the set of all first components of

pairs in £, 1is also the set of all x for which f{x} is different from {},
and that the RANGE of f, namely the set of all second components of pairs in

DATA AND EXPRESSIONS Page 2-54

f, is also the set of all y which belong to at least one set of the form
f{X}o

2.7.2 The single-valued image operator f(x)

If the image set f{x)} contains exactly one element y, that is, if f{x}
is {y}, then we can also write this element y simply as f£f(x) (rather than as
ARB f{x}) The quantity £f(x) 1is called the 1image (or sometimes, for
additional emphasis, the single-valued image), of the element x under the
map f, and we say that the map f sends x into f(x). If x 1is not 1in the
domain of f, so that f{x} 1is empty, or if f{x} contains more than one
element, then f(x) yields the value -undefined- or OM.

This last rule can be understood as follows. If, as before, we regard
f as representing an abstract relationship R, then f(x) represents the
unique element y which stands in the relationship R to x. If x 1is not in
DOMAIN f, then f(x) is obviously undefined, since no element stands in the
relationship R to x. If f{x)} contains more than one element, then f(x) 1is
still wundefined, since we cannot tell which one of the several elements of
f{x}) the expressions f(x) is supposed to represent. We can only speak of
the element standing in the relationship R to x if f{x} contains exactly one
element; thus the case in which f(x) gives a non-OM value.

For an example of all this, suppose once more that f is the map (3).
Then

f(’Jones’) 1is ‘Tom’; £(°Smith’) 1is ‘Mary’;
f(‘Chang’) 1is OM, since ‘Chang’ is not in the domain of f;
£f(“Khalid’) is OM, since f{’Khalid’} is a set

containing more than one element.

A map f is said is called single-valued at x 1f f(x) 1is defined, but 1is
called multiple~-valued at x if f{x} contains more than one element. The map
f is said to be a single-valued map (or simply to be single valued) if it is
single-valued at each element x of its domain.

Note that maps are also sets (namely sets all of whose elements are
tuples of 1length 2), so that all set operations also apply to maps. 1In
particular, we can form the union, intersection, and difference of maps, add
elements to and subtract elements from a map using the WITH and LESS
operators, evaluate f where f is a map, etc. .Note that 1f f and g are both
maps, then f+g, f*g, and f-g are also maps since every element of any one of
these sets will be a pair; the same remark applies to f LESS z for any z.
Moreover, 1if f is a map and z is known to be a pair, then f WITH z is still
a map sice all its elements are pairs. For example, if f is the map (3) and
we 1let f2 be ‘f WITH [’Jones’,’Sue’], then f2 is still a map, moreover
£2{’Jones’} is {’Tom’, "Sue’}, and £f2(’Jones’) is OM. :

SETL allows us, not only to evaluate expressions like f{x} and f£f(x),
but also to use such expressions as assignment targets. If the value of f
is a map, the map assignment

(4) f(x) 1=y ;3

DATA AND EXPRESSIONS Page 2-55

is always legal. The effect of this assignment is to modify £, and, as the
notation (4) is intended to suggest, to modify it in such a way as to cause
the value of f(x) to be y 1if f(x) 1s evaluated immediately after the
assignment (4) is executed. This is done by modifying f as follows:

(a) First, all pairs [x,z] whose first component is x are removed from
f. (This has the effect of removing x from DOMAIN f). :

(b) Next (if y has a value other than OM), the single pair [x,y] 1is
inserted into f. Thus f will contain exactly one pair [x,y] whose first
component is x, guaranteeing that f(x) will evaluate to y.

(c) However, if y has the value OM, then only step (a), but not step
(b), is performed. 1In this case x will simply have been removed from DOMAINv
f, guaranteeing that f(x) will evaluate to OM.

Rules (a), (b), and (c) tell us that if y /= OM, then (4) has exactly
the same effect as the assignment

(5a) f := {z: z in £ | z(1) /= x} WITH [x,y];
while if y = OM, then (4) has the same effect as the assignment
(5b) Cf := {z: z in £ | z(1) /= x)}.

The intuitive significance of the assignment (4) can be explained as
-follows: it directs us to drop any prior association to the element x that
is recorded in f, and then to associate x with y (for which we 1insert the
‘pair [x,y] into f if y /= OM, but simply leave x without any associationm if
y = OM). This is exactly the effect of steps (a-c).

For examples of all this, suppose again that f is the map (3), and that
we first perform the assignment

f(“Jones’) := ‘Thomas”’;
This changes f to

{["Jones’, Thomas’], [“Khalid’,’Leila’], [“Smith’,’Mary“], [“Khalid’,
‘Fatima’]}

Suppose that the assignment
f(‘Chang’) := ‘“Zhong-Tien’ ;

is performed next. In this case, no pairs need to be removed from £, but
one pair is added, changing f to

{[’Jones’,'Thomas’], [‘Khalid’, Leila’],[“Smith’,"Mary’],
["Chang’, Zhong-Tien’], [‘Khalid’,‘Fatima’]}

DATA AND EXPRESSIONS : Page 2-56

Next, suppose that the assignment
f(‘Cohen’) := OM

is performed. This will simply remove all pairs with first component
‘Cohen’ from f3 but since there are none such, it will actually leave f
unchanged. After this, suppose that the assignment

f("Khalid’) :¢= ‘Nuri’ ;

is per formed. This removes the pairs [‘Rhalid’,‘Leila’] and
["Khalid®,"Fatima’] from f, and gives f the value

{[’Jones’,“Thomas’], [’Smith’,’Mary’], [‘Khalid’,’Nuri’],
(‘Chang’,“Zhong-Tien’])}

Assignments of the form (3), which change the element y associated with
an element x, are generally used for one of three purposes:

(1) to update an attribute f(x) of x;

(ii) to define an attribute of x which has previously
been undefined;

(1iii) to drop an attribute f(x) that is no longer needed,
which we do by executing f(x) := OM.

Suppose, for example, that f is being used to keep track of the number
of times that each word x has been seen in a body of text that is being
scanned. On encountering a word, we test to see if it has been seen before;
if so, we simply increment its count. Otherwise, we must initialize its
count attribute, which will be undefined, to the value 1. This is done by
the following code, which uses several map assignment operations.

IF f(x) = OM THEN $ word is new

f(x) := 1; $ establish initial count for new word
ELSE

f(x) := f(x)+1; $ increment count of word previously seen
END 1IF;

Note that a map assignment f(x) := y begins (see (a) above) by
attempting to remove a certain set of pairs from f, which assumes that f 1is
already a map. Hence the operation f(x) := y (like the operations y := f(x)
and y := f{x}) can only be applied if f is already a map. The question then

arises as to how to initialize a map f. This can be done 1in one of two
ways:

(1) If f is initially supposed to be the (‘everywhere undefined’) map
whose domain 1is null (so that initially f(x) = OM for all x and f{x)} = ()

for all x), we simply put
£ :={} ;

This makes f the everywhere undefined map with null domain and null raunge.

DATA AND EXPRESSIONS Page 2-57

(ii) A map value can be built up directly using a setformer, providing
that all elements of the set which is formed are pairs. For example, we can
write

f := {[x,#x]: x in {“Tom’, ’Dick’, Harry”}};

this makes f a map with domain {°Tom’, Dick’,’Harry’}, and f maps each
element x in its domain into the length of x. :

The multivalued map assignment

(6) f{x} :=y ;

is also legal in SETL. As the notation (6) suggests, this assignment
modifies f 1in such a way as to cause the value f{x} to be y 1if f{x)} is
evaluated immediately after the assignment (4) is executed. It follows that
(6) makes no sense, and will generate an error, if the value of y is not a
sete

The multivalued map assignment (6) is performed as follows.
(a) We first check that f is a map (i.e. a set <consisting of pairs
only), and that y is a set. TIf either of these conditions is violated, an

error is generated.

(b) All pairs x,y whose first component is x are removed from x. (This
has the effect of removing x from DOMAIN f.)

(c) After this, the set of all pairs x,z, for all y, 1is added to f.
This guarantees that f{x} will evaluate to y.

These rules tell us that (6) has exactly the same effect as the
" assignment '

(7) f := {u: u in £ | u(l) /= x} + {[x,2z]: z in y}.

Note therefore that if y /= OM, (4) has exactly
the same effect as the map assignment

(8a) f{x} := {y} ;
while if y = OM, then the effect of (4) is exactly that of

(8b) f{x} := {} ;
The value (5b) given to f by either f(x) := OM or by f{x} := {} can
also be written in another form, namely as the expression
(9) f LESSF x
which occasionally is more convenient. Note that (9), 1like the map

assignment operators, applies only to maps, and will generate an error if
applied to set f which contains any non-pair elements. '

DATA AND EXPRESSIONS Page 2-58

As an example of all this, suppose again that f is the map

(3°) {(’Jones’,’Tom”], [‘Khalid’,’Leila’], [’Smith’, Mary’],
{"Khalid’, ‘Fatima’])

Then the assignment
f{’Khalid’} := f{°Khalid’} WITH ‘Omar’ ;
gives f the value

{["Jones’,” Tom’), [‘Khalid’,’Leila’], [‘Khalid’,‘Omar’],
["Smith’, “Mary’, [“Khalid’, Fatima‘’] }

If we subsequently execute the assignment
f{’Jones’} := {} ;
then f will take on the value

{[°Khalid’,’Leila’], [‘Khalid’,’Omar’], [“Smith’,’Mary’],
' [Khalid’, Fatima’] }

Along with the general set former construct, the map operations f£(x),
f{x}, f(x):=y, and f{x}:=y are the most characteristic and important
operations of the SETL language. Their importance derives from the fact
that they allow arbitrary objects x to appear as “indices’, i.e. any object
can appear as the x in a construct like f(x) or f(x):=y. Of course, other
lower level programming languages, such as PL/1, PASCAL, and Ada, support
constructs with exactly this syntax and with a very similar intended use.
However, 1in these other languages, an f used in this way must be an ‘array’
(an object much like a SETL ‘tuple’), and the x appearing in £(x) or 1in an
assignment f(x):=y must be an integer. This complicates the manipulation of
attributes associated with arbitrary objects x (and attribute manipulation
is basic to programming). To manipulate attributes of a non-integer object
x (say string or a set) in these other languages, one must first find a way
of associating an integer with x, and then must use this integer, instead of
x itself, whenever the attributes of x need to be used or manipulated. This
introduces a layer of artifice into programs, making them less direct, less
readable, and more error- prone. This objection applies even to a 1language
as elegant and powerful as APL, which only allows integers (and arrays of
integers) to appear as indices. The only well-known languages which support
something 1like the map operations of SETL are SNOBOL (through its TABLE
feature) and some of the more advanced versions of LISP.

In deciding whether to use map operations like f{x) and £(x), or map

assignments 1like f{x} := y or f(x) :=y, it is important to realize that
they are performed efficiently.

The internal representation of a map f (described in more detail 1in
Sections 10.2, 10.4) makes it easy to locate all the pairs [x,y] of f which
share a common first component x. This is done by wusing an exceptionally
fast searching technique (known technically as ‘hashing”). If the value of
x is something relatively simple (like an integer or string) this makes it

DATA AND EXPRESSIONS Page 2-59

possible to retrieve either of the values f(x) or f{x)} in approximately a
hundred millionths of a second (assuming that your program is running on a
typical modern computer able to perform about a million addition operations
per second). Note that the map operation f{x) is performed in a time which
is essentially independent of the size of f. Similar remarks apply to the
important Boolean set membership operation x IN s. See Section X for
additional information on the way in which SETL objects are actually
represented within the memory of a computer, and on the way that primitive
SETL operatons, like the evaluation of f(x) or f{x}, are implemented.

2.7.3 Some remarks on Multi-Valued Maps

Set-valued maps can be handled (in SETL) 1in one of two nearly
equivalent styles. Either gtyle 1is acceptable, and neither has any
overwhelming advantage, but they are different, and to avoid error it 1is
important to distinguish clearly between them. These two possibilities are
as follows:

(i) A set-valued map f can be represented as a single-valued map
whose value f(x) is a set; but

(ii) The same map can be represented by a multivalued map g such
that g{x}=£f(x).

If f is available, then g can be produced by writing

(10) g:={[x,yl: s=f(x), y IN g)
Conversely, if g is availabla, then f can be produced by writing
(11) f:={[x,s8]:s=g{x}}

(See Section 3.3.6 for an explanation of the ‘map iterator’ construct
s = g{x} appearing in (11). Note also that if (10) is followed
immediately by (11), them elements x such that f(x)={ }
will drop out of the domain of f.)

A new pair [x,y] can be added to g :3imply by writing

g WITH:= [x,y]

(See Section 2.12.1 for an explanaticn of the ‘assigning operator’
WITH:= appearing here.)

The equivalent transformation of f must be written
f{x} WITH:= y;
which is a bit clumsier (see Sections 2.12.1 and 2.12.2).

To initialise g to a set of pairs defined by a condition C, one
would normally write something like

g:={[x,y)l: x IN sl, y IN s2]|C}

DATA AND EXPFRESSIONS Page 2-60

The corresponding initialisation of f, namely
f:={[x,{y IN 82|C}]):x in sl};

is a bit clumsier.

These small technical differences sometimes lead one to prefer the ‘g’
representation of set_valued maps to the “f° representatione.

2.7.4 Two useful map operations

The ‘inverse’ of a map g is the map h such that [x,y] IN h if and only
if [x,y] IN g. (If g is single-valued, this is equivalent to the condition

that y=h(x) if and only if x=g(y)). We can produce h from g simply by
writing

h:={[y,x]:[x,y] in g};
This important construction occurs frequently.

The ‘product’ or ‘composite’ of two maps gl, g2 is the map G such the
[x,y] IN G if and only if there exists a z such that [x,z] IN gl and [z,y]
in g2. (If gl and g2 are both single-valued , this 1is equivalent to

G(x)=g2(gl(x)).) To produce G from gl and g2, we can simply write
G:={[x,y]: z=gl{x)}, y IN g2{z)}};
or, in the single-valued case,

G:={[x,82(z)]: z=gl(x)|g2(z)/=0M};

This ‘map product’ operation is also cquite important. Note for example
that 1f Fa maps each person x onto the father of x, and Mo maps each person
y onto the mother of x, then the composite of Mo and Fa maps each person x

onto x°s paternal grandmother, while the composite of Fa by Mo maps each x
onto x°s maternal grandfather.

2¢7.5 Multi-parameter maps

As noted above, maps f are used to associate attributes f(x) or sets
f{x} of attributes with elements x. It is occasionally necessary to deal
with attributes f(xl,..,xk) that depend in two or more objects xl...xk. For
this purpose, the generalised map operations

(la) f{x1l,eee,xk}
(lb) f(xl,oooxk)

and the corresponding map asignments

(2&) f{xl,ooo,XR}:’y
(2b) f(xl,...,xk):=y

are provided. These simply abbrewviate

DATA AND EXPRESSIONS Page 2-61

(la') f{[xl,..-,xk]}
(lb') f([xl,ooc,xk])
and

(28') f{[xl,-..,xk]}:=y
(Zb') f([xl,-..xk]):“y

respectively. That is, a ‘multiparameter’ map f(xl,...,xk) of k parameters
is regarded simply as a map whose domain consists of tuples of length k.
Note that such a map cannot be used as a function ofany smaller number of
parameters, since for j < k we will always have f{xl,...xj}={ } (except for
j=1, where of course we have f{[xl,¢ec,xk]}=f(xl,cce,xk))s

All SETL’s map constructs can be used with multi-parameter maps if they
are regarded as one parameter maps whose domain elements are tuples. For
example, if f is a k-parameter map, then the setformer

{y:z=£(y)}

will form the domain DF f by iterating over all the k-tuples y
in DF. (See Section 3.3.6 for additional material concerning the ‘map
iterator’ construct appearing here.)

DATA AND EXPRESSIONS Page 2-62

2.8 Compound Operators

Binary operators like + or * are often used to sum or multiply all the
components or members of a set or tuple, as in

t(l) + t(2) 4eee+ t(n)

To make it more convenient to form combinations of this kind, SETL allows
any binary operator sign (including both built-in operators and user-defined
binary operators introduced by OP declarations, see Section 4.7.2 below) to
be followed immediately by a / (slash) mark. This introduces so called

compound operators, such as +/ or */. Such operators can be used either in
prefix or in infix position, i.e. either as

(14) bop/t
or as
(1B) x bop/t

The t appearing in (lA) or (1B) must be either a set or tuple. The prefix
form (lA) of the compound operator represents the result

(24) el bop e2 bop ... bop en

obtained by combining all the elements or components of ej of t together
using the underlying binary operator bop repeatedly. The infix form (1B) is
similar, but also includes its first argument x in the result, i.e. forms

(2.b) x bop el bop e2 bop ...bop en,

where again the ej are all the elements or components of t. If t 1is null,
the value of (lA) is OM and that of (1B) is x; 1if t has just one component
or element el the (l.1 represents x bop el, and (lA) simply represents el,
i.e. does not involve any application of -bop-.

The following are some typical uses of compound operators:

+/t $ sum of all the elements of t, OM is t is null

0+/t $ sum of all elements of t, 0 if t is null

MAX/s $ maximum element in s, OM if s is null

0 +/[a(i)*b(i):t in [l..#a)] §$ dot product of a and b

*/[x IN t|x/=0] $ product of all the nonzero components of t

As these last two examples illustrate, when a compound operator is wused to
combine an explicitly given sequence of terms, a tuple former should

normally be used. If a set former is used then duplicate elements will only
appear once, as in

0+/{x in t|x0} § duplicate elements not summed

DATA AND EXPRESSIONS Page 2-63

Moreover, the SETL compiler recognises expressions which apply compound
operators to tuple-formers and implements them efficiently, without actually
building an unnecessary tuple. For example, the sum t/[2*t(i): i IN
[l..#t]] is formed simply by iterating over t; no tuple is actually built.

The compound operator -bop/- can be formed with either built-in binary
operators of SETL or with user-defined binary operators. For example, if,
using the mechanisms described in Section 4.7.2, one 1introduces an infix

operator COMP which forms the composite -f COMP g- of two maps, as defined
by the formula

f COMP g = {[x,f(y)]l:x IN DOMAIN g, v IN g{x}lf(y)/=OM},

then COMP/t will form the composite fn COMP... COMP f2 COMP fl1 of a
sequence [fl,f2,..,fn] of maps, and therefore COMP/[f:k in [l..n]] will form

the ‘nth power’ of the map f, i.e the result of taking its composition with
itself n-1 times.

DATA AND EXPRESSIONS Page 2-64

2.9 Types and type-testing operators

The possible types of SETL values are Atom, Boolean, Integer, Real,
String, Set, and Tuple. The built-in monadic primitive operator TYPE
applies to any operator and produces its type, as a capitalised stringe.
I.e., for any x TYPE x 1is either “ATOM’, ‘BOOLEAN’, °‘INTEGER’, °‘REAL’,
"STRING’, ‘SET’, or ‘TUPLE’. The language also provides a set of built 1in
binary operators called IS_ATOM, IS_BOOLEAN, IS_INTEGER, IS_STRING, IS_SET,
IS_TUPLE, each of which yields TRUE if applied to an object of the
corresponding type, FALSE if applied to an object of any other type.

One additional monadic operator, IS_MAP, yields TRUE when applied to a
set all of whose elements are pairs, FALSE otherwise.

The undefined value Om cannot be expected to have a type, and indeed
the expression TYPE(OM) yields OM itself. In addition, any of the type
predicates, such as IS_SET(OM) or IS_ATOM(OM), yields FALSE.

2.10 The ? Operator

In certain situations undefined (i.e. OM) results can be expected to
appear and one will want to replace them by some other default values when
they do appear. A typical situation of this kind is that in which one 1is

counting the number of occurences of words in text: here it is natural to
use

count(wd):=count(wd)+1 ;

to update a map -count- representing the number of times each word -wd-
has been seen. But then, if -wd- has never been seen before, count(wd) will
be OM, and we will want to replace OM by the more meaningful default O. To

do this we could write (using a syntax to be described more precisely in Ch.
3)

(1) count(wd):=IF count(wd)=0M THEN O ELSE count(wd) + 1 END ;

however, since constructs 1like this occur so frequently, an

abbreviation x?y, which makes them easier to express, is provided. The
definition of x?y is simply

IF (temp:=x)/=0OM THEN temp ELSE y END,

where -temp- is a compiler-generated variable not otherwise accessible

to the SETL user. Using this convenient operator, we can write (1) very
conveniently as

count(wd) :=count (wd)?0+1.

DATA AND EXPRESSIONS Page 2-65

2.11 Exercises

Exe 1 Write a program which calculates the set of all integers from 2 to
100 which are the product of exactly two primes.

Ex. 2 The Goldbach conjecture states that every even number greater than 2
can be written as the sum of two prime numbers. Write a l-statement SETL

program which verifies that this conjecture is true for the first 100 even
numbers.

Ex. 3 Which of the following equations are valid for all tuples tl,t2,t3
and positive integers n,m?

(a) tl+t2= t2+tl

(b) tl+(t2+t3)= (tl+t2)+t3
(¢) #(n*tl)= n*ftl

(d) n*(tl+t2)= n*tl+n*t2
(e) (n+m)*tl= n*tl + m*tl
(£f) (n*m)*tl= n*(m*tl)

If an equation is not always true, give an example showing a case 1in which
it is false.

Exe 4 Given a tuple t, write an expression which forms a tuple tl in which
every distinct component of t occurs exactly once. For example, if t is
(1,2,1,2,3,3], tl should be [1,2,3]. Also, write an expression which forms
the set of all components of t which occur at least twice in t.

Ex. 5 Given a tuple t, write an expression which counts the number of
non-OM components of t. Also, write an expresion that produces a tuple with
the same components as t, but in reverse order.

Ex. 6 What are the values of the following Boolean expressions?

(a) (1,2,03,411=[1,2,3,4]

(b) 3 IN [1,2,(3,4]]

(c) #[1,2,0M,3,0M] =4

(d) [1a2’[3’4]’OM]/=[1’293’4]
(e) [lee4]=[1,2,3,4]

Exe. 7 The tuple t is [1,0M,2,0M,3]. Evaluate the following sequences:

(a) t(1),t(2),t(3),t(4),t(5)
(b) t(leoel),t(2e.2),t(3c0.3),t(4..4),t(5..5)
(c) t(lee),t(2ee),t(3ce),t(b4ea),t(5..)

Ex.8: write a tuple former that constructs the sequence of all prime
numbers from 2 to 100, in ascending order. :

Ex. 9 The tuple t is [“Tom’, ‘Dick’, ‘Harry’, ‘Sue’, ‘Lois’]. Write a

tuple-former whose components are those components of t which contain at
least two vowelse.

Ex. 10 Write a tuple assignment of the form t(i..j):=x which will convert

DATA AND EXPRESSIONS Page 2-66

the tuple t=[1,2,3] to each of the following:
(a) [4,5,6,7) (b) [] (e¢) [1,3] (d) [1,0M,0M,3] (e) [1,4,10,3]

Ex. 11 Write a program that reads a tuple t of numbers and prints its three
largest components in decreasing order.

Ex. 12 Changing as few of the elements of the set {[(1,2)], [3,4], [5], [1}
as possible, produce a set s such that IS_MAP(s) evaluates to true.

Ex. 13 Given a tuple t of integers, write an expression which yields the
index of the largest component of t.

Ex. 14 Assuming that sl and s2 are non-null sets of integers, in what cases
do the equations

+/(sl+s2)=+/s1 +/s2
and

*/(8l+s2)=%/sl */g2

hold? What happens if sl or s2 is null? How can we keep the null case from
being exceptional?

Ex. 15. Write a definition of the sets DOMAIN f and RANGE f wusing set
formers.

Ex. 16. The inverse INV f of a map f is the set of all pairs [y,x] for
which [x,y] belongs to f£. Express INV(INV £f) 1in terms of f using a
set former.
Ex. 17. Given a map f, express the set s of all x for which f(x) 1is
different from OM in terms of f. What is the relationship between s and
DOMAIN £f? In particular, when are s and DOMAIN f identical?
Ex. 18, Express the condition

[x,y] IN f
in terms of the image set f{x}.
Ex. 19. Let f denote the set

{[i,j]: i in [1-010], j in [10010]] i>j}
What is the domain of f? What is the range of f? For what x 1is f£f(x)
different from OM? What is f{5}? What is £(5)? What is the inverse map g
(cf. Ex.16) of the map f£?
Ex. 20. Answver question 19, but for the set f defined by the set former

{(1i,i*1]: 1 in [-5..5])

Ex. 21. Answer question 19, but for the set f defined by the set former

DATA AND EXPRESSIONS Page 2-67

{(i,i*(i-1): 1 in [=5..5]}

Ex. 22. The map f has the set of strings “Tom’, ‘Dick’, ‘Harry’, ‘Louis’
as 1its domain; the map fl has “Sue’, “Mary’, ‘Helen’, ‘Martha’ as its
domain. Each of these maps sends every string element s of its domain into
the 1length s of s. The maps F and Fl are the inverses of f and fl,
respectively (see Ex.16). Answer question 19, but for the sets F and Fl,
the union set F + Fl, and the intersection F*Fl.

Ex. 23. Let f be the map
{[i,i*1]: 1 in [-2..2]}

(a) Write a series of map assignments of the form f(x):=y which will make f
equal to the nullset { }. (b) Write a series of such assignments which make
f single-valued by reducing its domain progressively. (d) Write a series of
such assignments which make f single-valued without ever changing its range.

Ex. 24. The range of a map is the null set { }. What is the domain of the
map? What is the map?

Ex. 25. The range of a map consists of the two elements {TRUE,FALSE} and
its domain consists of the three elements {1,2,3}. (a) How many elements
can the map itself contain? (b) How many such maps are there? (c) How many
such single-valued maps are there? (c) How many such maps whose domain
includes all three elements {1,2,3} are there? (d) How many such maps whose
range includes both elements {TRUE,FALSE} are there? (e) Can you write SETL
expressions which would evaluate the answers to all these questions?

Ex. 26. (a) The range of a map consists of the two elements {TRUE, FALSE}.
How many elements can the map itself contain? (b) The domain of a map f
consists of the three elements {1,2,3}. How many elements can the map
itself contain? If we suppose that f is single-valued, how many elements
can the map itself contain, and how many elements can its domain contain?

Ex. 27 A set s is a subset of every other set. What is s? A map f 1is a
subset of every other map. What is £?

Ex. 28 Suppose that the variable s has a set value, the variable t has a
tuple wvalue, and the variables sl and s2 have string values. Write
expressions which produce the following quantities:

(a) A tuple whose components are the elements of s, arraged in some order.

(b) A set whose elements are the components of t, with duplicates
eliminated.

(¢) A tuple whose components are the successive characters of sl.

(d) Assuming that sl and s2 have the same length, a map from each character
of sl to the corresponding character of

Ex. 29 Given two sets sl and s2, express #(sl+s2) in terms of #sl, #s2, and
#(s1*s2). 1If s2 INCS sl is TRUE, express #(sl-s2) in terms of #sl and #s2.

DATA AND EXPRESSIONS Page 2-68

Ex. 30 Given two sets sl and s2, express the number of single-valued
maps f such that DOMAIN f=sl and RANGE f=s? in terms of sl and s2.

Ex. 31 The map part of a set s is the col.ection of all elements of s which
are ordered pairs. Write an expression whose value for any given s 1is the
map part of s. (Make sure that your expression can be evaluated for any

value of 8, whether or not this value is a set; 1if s is not a set, your
expression should have the value OM.)

Ex. 32 The single-valued part of a map s is the set of all pairs in s whose
first component is unique. taking the same precaution noted in Exercise 30,

write an expression whose value for any given s is the single-valued part of
Se s2.

DATA ARD EXPRESS1ONS ' .Rage 2-69

2.12 General form of the SETL assignment. The operators FROM, FROME,
and FROME.

In preceeding sections, we have observed that some of the constructs
which «can appear 1in an expression; and which retriéve values:eor parts of
values, can also appear on the left hand side of an:assignmdnt, iallowing the
corresponding values to be assigned or 'modified. Foar examplte, when it
appears in an expression the expression f{x} retrieves the image ‘'set of x
under the map f, but when it appears to the left of .ap.-assignment, as in

f{x} := e;
then the image set of x becomes e. ' .8imilarly, when the expressioéon 8(i..j)
appears in an expression it yields a string or tuple slicey' but:when it
appears to the left of an assignment, as in

8(i.ee3) 1= e

is causes the value of this string or tuple slibe to -become e.

Constructs which can appear to the left of an assignmeat operator can

also appear iIn expressions, and the relationship between left~hdnd and
right-hand appearances (i.e., ordinary appearances within. anmn expression) of
any such construct always exhibits an 4mportant -:logicail. -symmetry.

Specifically, if, ~lhs- denotes any construct which, 1like the. constructs
f{x} and s(i..j), can appear to the left of an assigment, then the' effect of
the assignwment

lhs = e
is £0o assnre that immediately subseguent evaluation of -~1lhs- A(within an
expression, i.e., 1in a ‘right-hand’ context) will yield the:-assigned value

e .

The elementary constructs which are allowed to appear to the 1left of an
assignment operatotr are the following:

(i) A variable identifier x. The assignment
X 1= e
modifies the vaiue of x.
(ii) A tuple-former ([x1l,..,xk].

(Notice that the elipsis: seee, stands for some unspecified number of
other components of the tuple. This should not be confused with the SETL
substring operation s(x..y)).

The assignment:
[x1,¢..xk] := e

modifies the value of each of xl,..,xke In such an assignment, any of the

DATA AND EXPRESSIONS Page 2-70

xj can be replaced by the dummy symbol ‘-° (dash), in which case no
assignment is performed for this particular xj. (This is the one exception
to the general rule that any construct which can appear to the left of an

assignment can also appear to its right.) As an example of this, note that
the assignment

(la) [x,=-,y] := [1,2,3];
gives x the value 1 and y the value 3. Moreover, the assignment
(1B) [x,-,y] := [1,2,3,4];
has the same effect, since the fact that y occurs as the third component of

the tuple on the 1left of (1B) means that the third component of the

right-hand side of (1B) will be assigned to y. For the same reason, the
assignment

(1C) I[xy=-,y,2,w] = [1,2,3,4];
gives x,y,z, and w the respective values 1,3,4, and OM.
(iii) A tuple, string, or map selection f(x). The assignment
f(1i) := e;
modifies component i of f if f is a tuple, character i of f 1if f is a
string, and the value f(i) 1if f is a map.
(iv) A multiparameter map selection f(xl,..,xk). This is equivalent to
f([xl,eeexk]), and the assignment
f(xl,e0e,xk) := e
is equivalent to f([xl,ecee,xk]) := e,
(v) A multivalued selection f{x}s The assigment
f{x) := e ;

modifies the set f{x}.

(vi) A multivalued, multiparameter map selection f{xl,...,xk}. This is
equivalent to f{[xl,...xk]}, and the corresponding assignment

f{XI,QoQ,Xk} = e 3

is equivalent to f{[xl,eee,xk]} := e

(viii) A string or tuple slice t(i..j) or t(i..)s The effect of

t(ieej) 2= e or t(i..) := e

DATA AND EXPRESSIONS Page 2-71

is to modify the portion t(i...j) of the string or tuple. Note that the
value of the string or tuple expression e may have a length different from
that of the subsection of t which e replaces, so these assignments can
increase or decrease length of t. See Sections 2.3.3 and 2.5.3, also Table
2.1, for a discussion of marginal cases of these assignments, e.g. j=i-1,
i= t+l. etce

Simple expressions, of any of the types we have just listed, which can
appear on the left of an assignment, can also be compounded to build up more
complex ‘assignment targets’ that are also allowed to appear to the left of
an assignment operator. For example, if f and g are maps, t is a tuple, and
s is a string, then the assignment

(1A) [[x,y],f(u),g{v},t(i),s8(je.)] := e

is a legal assignment, whose effect is the same as that of the following
sequence of assignments

(1B) [templ,temp2,temp3,tempb] := e;
[x,y] := templ;
f(u) := temp2;
g{v} : temp3;
s(jee) := tempéh;

Map and tuple component extraction operators can also be compounded,
eege we are allowed to write h{u}(v)(i) if h is a map such that Hl=h{u} is
also a map for which H1l(v) is a tuple whose i-th component can be extracted.
The value x that h{u}(v)(i) produces 1is exactly that produced by the
sequence

h{u};

H1(v);

H2(i); $§ H1 and H2 are otherwise unused, compiler-generated
$ variables

H1
H2
X

Compounds of this sort can also be used to the left of assignment operators,
for example we can write
(24) h{u}(v) (i) := e;

This has exactly the same effect as the following sequence, into which the
SETL compiler expands (2A):

(2B) H1 := h{u};
H2 t= H1(v);
H2(i) := e
Hl1(v) := H2;
h{u} := HIl;

The general rules used to expand compound assignments can be stated as
follows:

(i) An assignment of the form

DATA AND EXPRESSIONS Page 2-72

(3A) [el,ooo,ek] = X

is legal if, for each j between 1 and k, either ej is the sign ‘=" (dash),
or if an assignment of the form

ej =y
would be legal. If it is legal, (3A) is expanded into the code sequence

(3B) el := x(1);

ek := x(k);

but in (3B) every assignment corresponding to an ej of the form ‘=" |is
omitted.

(ii) An assigment of one of the forms

(4A) e(i) := x;

(43) e(il,oc,ik) t= X3
(4c) e{y} := x;

(4D) e{yl,ee,yk} = x;
(4E) e(ieej) 1= x3
(4F) e(i..) := x3

is legal if and only if e is an expression, other than a tuple- former
[z1,¢.,2k], which could appear to the left of an assignment operator, and if
in addition the corresponding code sequence

(54) temp_var := ej temp_var(i) := x; e := temp_var;

(5B) temp_var := e; temp_var(il,..,ik) := x; e := temp_var;

(5¢C) temp_var := e; temp_var{y} := x; e := temp_var;

(5D) temp_var := e; temp_var{yl,..,yk} := x; e := temp_var;

(5E) temp_var := e; temp_var(i..j) := x; e := temp_var;

(5F) temp_var := e; temp_var(i..) := x; e := temp_var;

would be legal. (Here, -temp_var- is an otherwise unused,
compiler-generated auxiliary variable). When an operation (4A-F) is legal,
it is expanded 1into the <corresponding assignment sequence (5A-F). of
course, the final assignment of each of these sequences may itself require
expansion; if necessary, this 1is performed recursively, 1leading to

expansions like those shown in (1B) and (2B) above.

2.12.1 'Assigning forms’ of infix operators. Assignment expressions.

SETL allows abbreviation of any assignment of the form

DATA AND EXPRESSIONS Page 2-73

(6) lhs := lhs OP e;

where OP designates any built-in (or user-defined, see Section 4.7.2)
infix operator, and -lhs- designates any simple or compound expression which
can legally appear to the left of an assignment operator. For example, we
can abbreviate

i = i+1;
and
x:=x MAX y;
as)
i +:= 1;
and
x MAX:= y;

respectively. One is always allowed to abbreviate (6) as

(7) lhs OP:=e}

2.12.2 Assignment expressions

Simple assignments x := y (and even more complex assignments such as
f{u}(v) :=y) can be used as expressions. The value of such an “assignment
expression’ is simply its right-hand side y, but of course ‘evaluation’ of
such an “expression’ always has a side effect, namely it modifies the value
of the variable x.

Assignment expressions of this sort are frequently used to abbreviate
sequences of assignments which initialise a <collection of variables by
giving the same value to all of them. For example, the assignment

X t=y 1= 2 :=w := 03
which is equivalent to
x := (y 1= (z = (w = 0)));

gives all four variables x,y,z,w the value =zero. Another common use of
assignment expressions is to save the value of quantities that one needs to
use just past the point at which they are first evaluated. The code
fragment

(8) IF (x := f(u) + g(v)) IN s THEN f(u) := x; ELSE...

illustrates this. Since the quantity f(u) + g(v) 1is needed 1immediately
after the test in which it is first evaluated, the programmer may find it
convenient to assign this quantity as the value of an auxiliary variable x,
saving re-evaluation, and, equally important, abbreviating the program

DATA AND EXPRESSIONS Page 2-74

source text. A related example, showing another common use of the
assignment expression construct, is

(9) 1IF (x := y+z) > 0 THEN
positives WITH:=x3
ELSE
negatives WITH:=x3;
END IF;

-

Over-enthusiastic use of assignment expressions will lead to a <crabbed
programming style in which important operations flit by without sufficient
syntactic emphasis. This will be bad if it deprives a program’s reader of
too much of the redundancy on which his understanding of the program
depends. A good rule of thumb is to use an assignment expression only when
the subsequent target variable of the expression occurs within a very few
lines after the assigning expression being written.

2.12.2.1 Other positions in which assignment targets are allowed

A few of the other positions in which variables can occur resemble the
left-hand sides of assignment operators, in that new values are assigned to
variables appearing in these positions when the contexts containing them are
evaluated. These “assigning positions’ are as follows:

(1) The position of x in an iterator

(FOR x IN Sl-oo)oac

is assigning, since the iterator will assign successive values to x. The
same remark applies to the position of x in an existential quantifier

EXISTS x IN s|...
and in a universal quantifier

FORALL x IN SI-..

Of course, the same remark applies to variables appearing in corresponding

positions in multiple iterators, as in the case of the variables x,y, and z
in

(FOR x IN s, vy IN t, z IN [leon]l]...)

(1ii) The position of x and i in a map, tuple, or string iterator
(FOR x-f(i)l..)
or in a multi-valued map iterator

(FOR x=f{i}loo)

is assigning. Of course, the corresponding positions in multiple iterators
and 1in quantifiers are also assigning positions. (See Section 3.3.6 for
aditional material concerning the “map iterator’ construct appearing here.)

DATA AND EXPRESSIONS Page 2-75

(iii) Argument positions in function and procedure invocations corresponding
to formal procedure or function parameters (see Chap. IV) that carry the
read/write qualifier RW are also assigning positions (see Section 4.5).

Precisely the same expressions that can appear to the left of an
assignment operator are allowed to appear in any other assigning position.
Thus, for example, the construction

(FOR x+y IN s|ees)
is illegal, since

X+y = e -

would also be illegal; x+y is not a legal assignment target. On the other
hand,

(10A) (FOR [x,y] IN s|C)...
(10B) (For f(x) IN s8|C)ee.
(10cC) (FOR [(u,v],y] IN s|C)

are all legal, and have the same respective meanings as the code fragments
(11A) (FOR temp_var IN s) [x,y] := temp_var; IF not C THEN QUIT; END;
(11B) (For temp_var IN s)f(x) := temp_var; IF NOT C THEN QUIT; END;

(11c) (For temp_var IN s)[[u,v],y] := temp_var; IF NOT C THEN QUIT; END;

into which the SETL compiler expands them. Much the same remark applies to
quantifiers containing iterators in assigning positions, for example in

(12) ««.EXISTS [x,y] IN s|C(xX,y)eee.
The iteration implicit in the existential quantifier (12) will generate
successive elements 2z of s and perform an implicit assignment [x,y] := z

before the Boolean expression C(x,y) is evaluated.

As already noted, the position of i in

(13A) (FOR X=f(i)lnn)'oo
and in
(13B) (FOR x=f{i}|ee)eee

also the positions of il,...,ik in
(130) (FOR ng(il,oon,ik)'oco)loo
and in

(13D) (For x‘f{il,ono,ik}].-o)noo

DATA AND EXPRESSIONS Page 2-76

are assigning. (See Section 3.3.6 for additional explanation of the ‘map
iterator appearing in (13A-D).).

Any expression which can appear to the left of an assignment operator can be

substituted for the i in (13A) or (13B), or for any of il thru ik in (13C)
or (13D). PFor example, we can write

(14) (FOR [x,yl=f([u,v])] C(x,¥y,u,V))euo

In (14), the iterator will generate successive elements z of the domain of f
and w of 1its range, and then perform implicit assignments [x,y] := w and
[u,v] := z before the Boolean expression C(x,y,u,v) is evaluated. Note also
that (13C) and (13D) are equivalent to

(ISC) (FOR x‘f([il,ooo,ik])'ooo)ooo
and
(ISD) (For x=f{[il,--.,ik]}|-.)...

respectively.

DATA AND EXPRESSIONS Page 2-77

2.12.3 The operators FROM, FROME, and FROMB

A useful, but somewhat nonstandard operator on sets s, and two similar
operators on tuples t, have assignment-like side effects. These are

(16) x FROM s;

and

(174) x FROME t; $ take x ‘from the end’ of t

(17B) x FROMB t: $ take x “from the beginning’ of t

The effect of (16) is to select an arbitrary element of s, assign it to
the variable x, and remove the selected element from s. Thus (16), like
(17A) and (17B), has a somewhat unusual effect in that it modifies two
variables. 1If s is null then X becomes OM and s remains null.

The form (16) can also be used as an expression; when wused 1in this
way, it yields the value assigned to x.

Similarly, the effect of (1l7A) is to remove the last (non-OM) component
of t and assign it to the variable x. If t is null, then x becomes OM and t
remains null. The effect of (17B) is to remove the first component of t and
assign 1t to the variable x. If this first component is OM, then x is
becomes OM, but t is reduced in length by 1 (its 1leading OM component 1is
removed) . If t is null, then x becomes OM and t remains null.

Like (16), the forms (17A) and (17B) can be used as expressions. When
used in this way they both yield the value assigned to x.

Note that, 1if t has OM components immediately preceding its last non-OM
component, then (17A) <can decrease the length of t by more thanm 1. For
example, the sequence

t := [1,2,0M,0M,3];

x FROME t; y FROME ¢t;

print(x,y,#t);
will produce the output

32 [1].
The position of x in (16), (17A), (17B) is assigning. Any expression which
could appear to the left of an assignment operator can also appear in this
position. For example, we can write

[x,y] FROM s;

this is equivalent to the sequence

temp_var FROM s; [x,y] := temp_var;

DATA AND EXPRESSIONS Page 2-78

2.13 Operator precedence rules

The table in this section shows the precedence rules which determine
the order in which the operators in an expression are evaluated. If two
operators share a common operand, then the one with the higher precedence is
evaluated first. If both operators have the same precedence, then the left
hand one is evaluated first (i.e. operators of a given precedence level are
evaluated in a left associative manner.)

Parentheses can be used freely to emphasize or alter the order of
operations as determined by this table.

Precedence Operators

11 := (on left side)
assigning operators (on left side)
FROM (both sides)

10 All unary operators except
NOT and the IS_xx operators.

9 * %

8 * [/ MOD DIV

7 + -

6 User defined binary operators

5 = [= < <= > >= IN NOTIN SUBSET INCS
4 NOT and the IS_type operators

3 AND

2 OR

1 IMPL

0 t= (on right side)

assigning operators (on right side)
The following examples of equivalent expressions with and without
parentheses illustrate the operation of these rules:
a+b+c *d
is the same as
(a + b)) + (c * 4)

a+ b +:= ¢ DIV 4

DATA AND EXPRESSIONS

is the same as

a + (b +:

a + CEIL

is the same as

‘
H

b

(c DIV 4d))

= C

a + (CEIL (b := ¢))

Page 2-79

DATA AND EXPRESSIONS Page 2-80

2.14 Exercises
Exe 1 Given that t is a tuple, explain the meaning of ?/t.

Ex. 2 Write a setformer which will produce the set of all proper subsets of
a set s, i.e. the set of all subsets sl of s which are different from s.

Exe 3 Express #pow(s) in terms of fs. 1Is there any set such that s=pow(s)?

For what sets is #pow(s)=1? 1Is there any set that #s=#pow(s)? 1Is there any
set such that #pow(s)=2?

Exe 4 Given two sets s and t, their Cartesian product cprod(s,t) is
{lx,yl:s IN s, y 1IN t}. Express #cprod(s,t) in terms of #s and #t. 1If
cprod(s,t)={ }, what are s and t? Express #cprod(s,t) in terms of
ffcprod(t,s). '

Ex. 5 It can be shown that two set expressions el and e2 involving any
number of wvariables xl,..,xn and formed wusing only the set union,
intersection, and difference operations are equal for all possible set
values of the wvariables xl,...,xn if and only if they are equal whenever
each of these variables has one of the two values { } and {1}. There fore,
we can check a set-theoretic idengity lke x*y=y*x simply by evaluating

#{Ix,yl:x IN {{ },{1}}, y IN {{ },{1}}|x*y/=y*x)

and observing that its value is zero. Moreover since x INCS y 1is
equivalent to x*y=y, this same technique can be used to check inclusions of
the form el INCS e2. Using this technique, verify that the following
set-theoretic identities and inclusions are true for all possible set values
of x,y, and z:

(a) (x*y)=(y*x)

(b) (x+y)=(y+x)

(c) ((x*y)*z)=(x*(y*z)), also ((x+ty)+z)=(x+(y+z))

(d) ((x+y)=-2z)=((x-2z)+(y=-2))

(e) (x*x)=x, also (x+x)=x

(f) (x-x)={ }

(g) ((x+y)*z)=(x*z+y*z), also ((x*y)+z)=((x+z)*(y+z))
(h) (x+(y-x))=(x+y)

(1) (x=(y+2))=((x-y) *(x-2))

(1 (x*{ })={ }, also(x+{ })=x

If £ is a map and 8 is a set, then the image set of s wunder f,
sometimes written f[(s], is by definition the set {y:[x,y] IN f|x IN s}. The
inverse image of s under f, sometimes written f_inv([s], is by definition the
set {x:[x,y] IN £ | y IN s})e These notations will be used in the next group
of exercisese.

Ex. 6 Express f[s] in terms of the sets f{x}, using a compound operator.
What is f[DOMAIN £f]? What 1is f-inv[RANGE f£f]?

Exs. 7 In how many ways can two pairs of parentheses be 1inserted into the
expression

DATA AND EXPRESSIONS Page 2-81

1 +2 -3 %4 DIV S5

to produce a legal expression? Take twenty of these expressions and
write their values. Do the same for

1 +2 --3 % 4 DIV 5.

Ex. 8 Determine the type of the value of x in each of the following

code fragments, assuming that the code shown executes without causing any
errore. :

(a) 4

z+1;

(b)Y x := z+"1";

.
[

(c) x z={1};

(d) x :

z--[1];

(e) read(x);
IF x>0 THEN print(x); END;

(f) x := ARB s;
(FORALL y IN s|y>0)print(y); END;

(g) 1IF EXISTS x IN s |#x(ieeej)<j-i THEN print(x); END;
Ex. 9 Execute the programs
[A,A,A]:=[1,2,3]; print(A);
and
[A,B,A,B] := [1,2,3,4]; print(A,B);
What result do you expect? What is going on?

Exe. 10 Write expressions which will find the following positions in a
string s:

(a) The position of the first occurence of the letter “a’ (b) The position
of the second occurence of the 1letter “a’ (c) The position of the n-th
occurence of the letter “a” (d) The position of the last occurence of “a’

4 4

that is preceded by no more than five occurences of “e’.

If the desired occurences do not exist, your expression should return the
value OM.

Exe. 11 Write an expression which, given a tuple t of integers, forms the
tuple t2 of all “partial sums’ of the components of t. That is, the j-th
component of t2 should be the sum of components 1 thru j of t.

Exe. 12 A tuple t of tuples, all of the same length n, can be regarded as an
m X n rectangular array of items. Write a program which rearranges this
array by turning it 90 degrees, so that it becomes an n x m rectangular

DATA AND EXPRESSIONS Page 2-82

array of items, represented by a tuple t2 of tuples all of length me 1If
this operation is repeated twice, what happens?

DATA AND EXPRESSIONS Page 2-83

2.15 OMS and Errors

When an illegal operation or an operation having an undefined result is
evaluated during the running of a SETL program, one of two possible things
will happen. Errors classified (somewhat arbitrarily) as ‘severe’ will
cause execution to terminate. In this case, a brief error indication will
be placed at the end of the program’s output file. Moreover, 1if the
terminal dump option has been switched on (section 8.5.1.4 below explains
how this can be done), a terminal dump will be written to the dump file
specified; wvaluable hints concerning the cause of error can then be gleaned
by examining this dump.

The following errors terminate execution:’
(i) Type errors, e.ge. an attempt to evaluate

1+{0}, 1.0+2, ([O0]+{1}, “1°+2. s{y} where s is a string or tuple etc.
(1ii) 1Illegal use of OM, e.g. attempts to evaluate

{oM}, f(OM), OM IN s, s WITH OM, OM WITH x, etc.

(iii) String or tuple parameters which are grossly out of bounds,
e.ge. attempts to evaluate

s(0) or s(-1),
where s is a string or tuple.

(iv) Illegal file operations, e.ge. attempts to manipulate files which Thave
not been opened.

(v) Floating point operations which overflow out of the range of a
particular SETL operation, and also conversions of very large integers to
floating point form.

‘Mildly erroneous’, deliberately intended, operations whose result 1is
undefined will return the undefined value OM. These include

(a) selection of an element from an empty set or tuple, as in

x FROM { }, x FROM [], x FROME [], or ARB { }
(b) evaluation of a map at a point at which it is undefined or multiple
valued, as in f(0) or f(l) where f is

{{1,11, [1,2]1};
also evaluation of an undefined component of a tuple. Since in these cases
execution is not immedately terminated, it is possible to test for an OM
result in this case, giving greater semantic flexibility. Some typical

constructs exploiting this flexibility are:

IF (x FROM s)/=0OM THEN... $ test a set for nullity and extract

DATA AND EXPRESSIONS Page 2-84

$ an element if not null

IF f(x)/=0OM THEN.. $ see 1f the map f is uniquely defined at x

On the other hand, since the 1legal uses of OM are severly restricted,
unexpected OM values are likely to force error termination soon after they

appear. Consequently, errors of this sort can generally be tracked down
rather quickly.

"HAPTER 3

CONTROL STRUCTURES

Chapter 3. Control structures

Execution of a SETL program proceeds sequentially , one statement being
executed after the other. In the simplest case, the order of execution is
simply the order in which the statements are written in the program. For
example, consider:

a := 1;
print(“Initially, a = °, a);
a := a + 1;
print(‘Finally, a = ‘,a);
In this example, the variable a is assigned the value 1; then the first

message is printed; a is then assigned the value 2; and finally the second
. mesaage is printed.

Only the simplest computations can be carried out by such straight-line
programs. In order to perform more complex calculations, we need to be able
to describe conditional computations, i.e. computations that are to be
executed only when certain conditions are met, and we also need to program
repeated computations, i.e. computations to be executed a number of times,
(100 times, or for all elements in a set, or until a certain calculation
converges, or as long as a certain value has not been reached, etc).

The order in which these more complex computations are to be executed
is specified 1in the program text by means of language constructs commonly

called control structures. In this chapter we will examine the most
important control structures of the SETL 1language, namely: the IF
statement, CASE statement, LOOP statement, and GOTO statemente. The 1IF,

CASE, GOTO and some variant of the LOOP constructs are commonly found in
most modern programming languages, and are regarded as the "basic tools of
“structured programming’. The LOOP construct in SETL is a bit richer than
the loop constructs provided by most other languages, and some of its
features are specially tailored for the objects that characterize SETL,
namely sets, tuples and maps.

Chapter Table of Contents

CONTROL STRUCTURES Page 3-2
3.1 The IF statement
3.1.1 Omitting the ELSE branch of an IF statement
3.1.2 The null statement
3.1.3 Multiple alternatives in an IF statement
3.1.4 An important note on indentation and programming style
3.1.5 The IF expression
3.2 The CASE statement
3.3 Loops
3.3.1 Set iterators
3.3.2 Tuple iterators, first form
3.3.3 String iterators, first form
3.3.4 Numerical iterators
3.3.5 Additional loop control statements: CONTINUE and QUIT
3.3.6 Map iterators
3.3.7 Compound iterators
3.3.8 The general loop construct
3.3.8.1 The WHILE loop
3.3.8.2 The UNTIL loop
3.3.8.3 The DOING and STEP clause
3.3.8.4 The INIT and TERM clauses
3.4 The GOTO and STOP statements
3.5 Programming example: an interpreter for a simple language
3.6 Exercises
3.7 Reading and writing data
3.7.1 Reading data for a terminal
3.8 Exercises
3.1 The IF statement.
The IF statement is used to route program execution along one of several

alternate paths, chosen according to some stated condition. An example is

IF balance > 0 THEN

print(‘Your line of credit is: °,
ELSE

print(“you are overdrawn by: °,
END IF;
print (‘Do you want additional information (y/n)?7);

balance);

-balance);

Here, the condition (i.e. whether the value of
negative) determines which of

-balance- 1<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>