
Courant Institute of

Mathematical Sciences

HIGHER LEVEL PROGRAMMING

Introduction to the Use of the
Set-Theoretic Programming Language SETL

R.B .K. Dewar, E. Schonberg and J.T. Schwartz

PRELIMINARY TRIAL EDITION - SUMMER

Courant Institute of
Mathematical Sciences

Computer Science Department

New Yark University

"HIGHER LEVEL PROGRAMMING"

Introduction to the use of the
Set-Theoretic programming language SETL.

by R. B. K. Dewar
E. Schonberg

and J. T. Schwartz

PRELIMINARY TRIAL EDITION -SUMMER 1981

Computer Science Department
Courant Institute of Mathematical Sciences

New York University

WARNING: THE PROGRAMS IN THIS TEXT ARE NEITHER DEBUGGED

NOR COMPLETE. THEY WILL APPEAR IN COMPLETED AND TESTED

FORM IN THE NEXT EDITION. USE THEM ONLY WITH CAUTION.

Copyright January 1, 1981

All Rights Reserved

''HIGHER IiEVEL PROGR»HING"

Introduction to the use of the
Set-Theoretic programming language SETL.

by R. B. K. Dewar
E. Schonberg

and J. T. Schwartz

Table of Contents

Pre face

Chapter I: Programming Concepts

1.1 Programs
1.2 An informal overview of SETL
1.3 The steps of programming; how to run

your program and read its results
1.4 Advice to the would-be programmer
1.5 How to type a program; character sets
1.6 Exercises
1.7 Appendix: More on how to read your output listing.

Chapter II: Data Objects and Expressions

2.1 The main classes of data objects
2.1.1 Integer, Real, and Boolean constants
2.1.2 Constant Sets

2.1.2.1 Sets of successive integers
2.1.3 Tuples

2.1.3.1 Tuples of sequences of integers
2.1.4 Maps
2.1.s The size of composite objects: the operator

2.2 Exercises
2.3 Expressions and statements

2.3.1 Variable identifiers
2.3.2 Integer operators

2.3.2.1 Exercises
2.3.3 String operators
2.3.4 Boolean operators

2.3.4.1 Exercises: Boolean equivalences
2.4 Set operations and setforffiers.

2.4.1 Setformer expressions
2.4.2 Existential and universal quantifiers
2.4.3 Some illustrative one-statement programs

2.5 Tuple operators and tuple formers
2.s.1 Binary tuple operators
2.5.2 Unary tuple operators
2.5.3 Other tuple operators

2.6 Tuple formers. Simple tuple and string iterators
2.7 Map Operations

2.7.1 The image set operator f{x} and the image operator f(x)
2.7.2 The single-valued image operator f(x)
2.7.3 Some remarks on multi-valued maps
2.7.4 Two useful map operations
2.7.5 Multi-parameter maps

2.8 Compound operators
2.9 Types and type-testing operators
2.10 The ? operator
2.11 Exercises
2.12 General form of the SETL assignment

2.12.1 'Assigning forms' of infix operators.
Assignment expressions

Page 2

2.12.2 Other positions in which assignment operators are allowed
2.12.3 The operators FROM, FROME, and FROMB

2.13 Operator precedence rules
2.14 Exercises
2.15 OMS and Errors

Chapter III: Basic Control Structures

3.1 The IF statement
3.1.1 Omitting the ELSE branch of an IF statement
3.1.2 The null statement
3.1.3 Multiple alternatives in an IF statement
3.1.4 An important note on indentation and programming style
3.1.5 The IF expression

3.2 The CASE statement
3.3 Loops

3.3.1 Set iterators
3.3.2 Tuple iterators, first form
3.3.3 String iterators, first form
3.3.4 Numerical iterators
3.3.5 Additional loop control statements: CONTINUE and QUIT
3.3.6 Map iterators
3.3.7 Compound iterators
3.3.8 The general loop construct

~.3.8.1 The WHILE loop
3.3.8.2 The UNTIL loop
3.3.8.3 The DOING and STEP clause
3.3.8.4 The !NIT and TERM clauses

3.4 The GOTO statement
3.5 Programming example: an interpreter for a simple language
3.6 Exercises
3.7 Reading and writing data

3.7.1 Reading data for a terminal
3.8 Exercises

Chapter IV: Procedures and Functions

4.1 Writing and Using Functions
4.1.1 Some simple sorting procedures
4.1.2 A character-conversion procedure

4.2 Name Scopes; the VAR declaration
4.3 Programming Examples
4.3.1 The 'buckets and well problem'- a simple artificial

intelligence example
4.4 Recursive Functions
4.4.1 Robert Floyd's Quicksort procedure
4.4.2 Another recursive procedure: mergesort
4.4.3 Binary searching: a fast recursive searching technique
4.4.4 The 'Towers of Hanoi' problem

4.5 Procedures Which Modify Their Parameters
4.6 Exercises
4.7 Other Procedure-related Facilities

4.7.1 P~ocedures and functions with a variable number
of arguments

4.7.2 User-defined infix operators

Page 3

4.7.3 Refinements
4.8 Rules of Style in the Use of Procedures
4.9 Exercises

Chapter V: Data Objects and Expressions, Concluded

5.1
5.2

Real Operators
String Scanning Primitives

5.2.1 Examples of Use of the String Scanning Primitives
5.2.1.1 A Simple Lexical Scanner
5.2.1.2 A 'Concordance' Program
5.2.1.3 A 'Margin Justification' Procedure

5.3 Atoms
5.4 Additional Examples

5.4.1 Solution of Systems of Linear Equations
5.4.2 An Interactive Text-editing Routine
5.4.3 A Simplified Financial Record-keeping System

5.5 Exercises

Chapter VI: Control Structures, Concluded

6.1 Refinements
6.2 The CONST Declaration
6.3 The ASSERT Statement
6.4 Macros

6.4.1 Macro Definitions
6.4.2 Parameterless Macros
6.4.3 Macros with Parameters
6.4.4 Macros with Generated Parameters
6.4.5 The Lexical Scope of Macros. Macro Nesting
6.4.6 Dropping and Redefining Macros

6.5 Programming Examples
6.5.1 Iteration Macros

6.6 Exercises

Capter VII: Programming Development, Testing, and Debugging

7.1 Bugs: how to minimize them
7.2 Finding Bugs
7.3 A checklist of common bugs
7.4 Program testing

7.4.1 Quality Assurance Testing
7.4.2 Regression Testing

7.5 Analysis of Program Efficiency
7.5.1 Efficiency of Some of the Basic SETL operations;

Estimating the Execution Time of Loops
7.5.2 Efficiency Analysis of Recursive Routines
7.5.3 More About the Efficiency of the Primitive SETL

operations. A warning Concerning Value Copying.
7.5.4 Data Structures for High-efficiency Realization

of Important Operations.
7.6 Exercises
7.7 Formal Verific~tion of Programs

7.7.1 Formal Verification Using Floyd Assertions:
General Approach

Page 4

7.7.2 Formal Verification Using Floyd Assertions:
An Example

Formative influences on program development
Exercises
References to material on alternative data structures
References for Additional Material or Algorithms.

Chapter VIII: Additional I/0 and Environmental Functions; Backtracking

8.1 Input-output facilities
8.2 Backtracking

8.2.1 Implementation of backtracking
8.2.2 Total failure; generation of all solutions

to combinatorial problems
8.2.3 Tiling problems
8.2.4 Other uses of OK and FAIL
8.2.5 Nondeterministic programs, or it is OK after all
8.2.6 Auxiliary backtracking primitives

8.3 Use of Auxiliary 'Inclusion Libraries"
8.4 Listing control commands
8.5 Environment operators and SETL command parameters

8.5.1 Standard SETL command options
8.5.1.1 Parse phase options
8.5.1.2 Semantic analysis phase options
8.5.1.3 Code generation phase options
8.5.1.4 Run-time support library options
8.5.1.5 Other command parameters used for system

ch•ckout and maintenance
8.6 Exercises

Chapter IX: Structuring Large SETL Programming

9.1 Textual structurs of complex programs.
9.2 Separate compilation and 'binding' of program subsections.
9.3 More on interpreters: the SETL machin~

9.3.1 An interpreter for SETL
9.3.2 Memory management and data-structures

9.4 Appendix. A machine interpreter in SETL.
9.5 Exercises (TO BE ADDED)

Chapter X: The Data Representation Sublanguage

10.1 Implementation of the SETL primitives
10.2 The standard representation of sets
10.3 Type declarations
10.4 Basing declarations

10.4.1 Base sets
10.4.2 Based maps
10.4.3 Based representations for sets
10.4.4 Basing declarations for multi-valued maps

10.5 Base sets consisting of atoms only
10.6 Constant bases
10.7 The representation-quantifier PACKED
10.8 Guidelines for the effective use of the

Data Representation Sublanguage

Page 5

10.9 Exercises
10.10 Additional remarks on the effect of REPR declarations
10.11 Automatic choice of data representations (TO BE SUPPLIED)

Capter XI: The Language in Action: a Gallery of Programming Examples

11. 1
11.2
11.3
11.4
11.s
11.6
11.1
11.8
11.9
11.10
11. 11

Eulerian paths in a graph
Topological sorting
The 'stable assignment' problem
A text preparation program
A commercial record-keeping system
A Turing-machine simulator
'Huffman coding' of text files
A 'game playing' program
A Macroprocessor implementation
Discrete event simulation (TO BE SUPPLIED)
Exercises

Page 6

Page 7

Pre face

The computer programming language SETL is a relatively new member of
the so called 'very-high-level' class of languages, whose other well-known
members are LISP, APL, and SNOBOL. These languages all aim to reduce the
cost of programming, recognized today as a main obstacle to future progress
in the computer field, by allowing direct manipulation of large composite
objects, considerably more complex than the simple integers, strings, etc.
available in such well-known 'middle level' languages as PASCAL PL/I, ALGOL,
and Ada. For this purpose, LISP introduces structured lists as data
objects, APL introduces vectors and matrices, and SETL introduces the
objects characteristic for it, namely general finite sets and maps.

The direct availability of these abstract, composite objects, and of
very powerful mathematical operations upon them, improves programmer speed
and productivity significantly, and also enhances program clarity and
readability The classroom consequence is that students, freed of some of the
burden of petty programming detail, can advance their knowledge of
significant algorithms and of broader strategic issues in program
development more rapidly than with more conventional programming languages.

The price that very high level languages pay for their expressive power
is a certain loss of efficiency. SETL should therefore be regarded, not as
a tool for production-efficiency programming, but as a vehicle for rapid
experimentation with algorithms and program design and as an ideal vehicle
for writing 'one-shot' or infrequently used programs whose efficiency is of
little consequence. It is also an effective tool for prototyping large
systems purposes of design validation and early-customer exposure, systems
which if important enough can then be hand-translated into more efficient
versions written in programming languages of medium or even low level.
Experience with SETL will show that it is efficient enough for a surprising
variety of purposes; nevertheless, it is still expensive to run, and will
remain so until a new generation of high-performance microcomputers appear.
In spite of this, SETL is a good vehicle for discussing program-efficiency
issues, since it allows a graded approach to these issues, algorithm design
being chosen first and data structures which realize them being chosen
second, It will also be seen that the data structure representation
sublanguage of SETL, described in Chapter X, is a powerful conceptual tool
aiding such 'programming by stepwise refinement'.

Fairly polished versions of SETL are currently available on the DEC VAX
and CDC Cyber, and less polished experimental versions on the IBM/370, DEC
10, and DEC 20. The systems running on all these machines are close to
identical, all being produced from common system source by transporting an
underlying systems-writing language from machine to machine. The relatively
small differences between versions running on different machines (and under
different operating systems on a given machine) are documented in Appendix
x.

This book is intended for people who want to write programs in SETL.
It does not assume knowledge of any other programming language, and is
therefore suitable for use in an introductory course. We attempt to explain
most of the mathematical concepts which play a role in SETL programs, almost
all of which are in fact quite elementary. However, we do assume that the
reader has a working knowledge of such basic concepts as set, sequence, etc.

Page 8

The knowledge assumed is roughly equivalent to that which would be acquired
in a good high school 'new mathematics' course, or ~n the first month of a
freshman-level course in discrete mathematics.

We present considerably more material than can be covered in a
one-semester introductory course. Chapter 1 provides an introduction to
computer programming and an introductory overview of the SETL language.
Chapter 2 introduces the major data objects of SETL, of which sets, maps,
and tuples are most characteristic, and describes many of the language's
operations. By The end of Chapter 2, the student is in position to write
various interesting 'one-liners'. Chapter 3 then presents various basic
control structure notions, qualifying the student to write interesting short
progiams. Chapter 4 introduces the most important control structures,
namely PROCEDURES and their invocations.

Chapters 5 and 6 describe the remainder of the operations, expressions, and
control forms of the language, except for backtracking, which is covered
considerably later, in Chapter 8. Chapter 7 gives advice on program
development, testing, and debugging, completing what can be considered the
elementary part of the book.

The first seven chapters can be covered in a one semester introductory
course, and can be skimmed rapidly by any reader reas9nably familiar with at
least one modern programming language, such as PASCAL, PL/1, ALGOL 60, ALGOL
68, or ADA.

The remaining chapters present more advanced material, which could be
covered in a second programming course. Chapter 8 describes the I/0
features of SETL systematically. Chapter 9 introduces the directory,
program, module, and library mechanisms used to structure large programs.
Chapter 10 presents SETL's data representation sublanguage and reviews
various strategic considerations which play a role in data representation
choice. Chapter 11 shows the language in action by presenting several more
substantial applications of it, including a simple interactive editor and
various computational geometry and graph algorithms.

SETL was developed at the Computer Science Department of New York
University, by a group of which· the present authors were members. The
language has now been used by students in courses ranging from the
introductory undergraduate to graduate courses in algorithm design. The
style and order of presentation adopted in this book reflects some of the
pedagogical experience gained in this way, especially at the undergraduate
level.

Thanks are due to the many persons who helped to define and develop the
SETL system. David Shields has been a mainstay throughout, inventing and
implementing many system improvements, and developing documentation from
which several of the sections of the book are drawn. Much of the first
version of the system was written by Arthur Grand, and brought to solidity
by Stefan Freudenberger. Thanks are also extended to Edith Deak, Micha
Sharir, Robert Paige, Kurt Maly, Phillip Owens, Aaron Stein, Earle Draughon,
Bernard Lang, Leonard Vanek, Steve Tibor, and Hank Warren, all of whom
contributed to th~ development of the SETL system. Valuable design
suggestions were contributed by our colleague Prof. Malcolm Harrison and
gleaned from his elegant BALM language. Essential thanks are due to the

Page 9

very helpful and hard-working group of summer interns who helped put this
maunscript together and remove many of its errors during the summer of 1981:·
Leonid Fridman, Nathaniel Glasser, Barbara Okun, and Yi Tso. We also wish
to extend thanks to Prof. Andrei Ershov and his group at Novosibirsk, who
have aided the development and definition of the language from the very
first days, Prof. Anthony Mccann of Leeds University, and Drs. Su Bogong
and Zhou Zhiying of Tsinghua University, whose more recent involvement has
been most valuable.

Finally, thanks are due to the research administrators who fostered the
development of SETL through its early, relatively isolated years. Among
these we should particularly like to thank Milton Rose, who launched our
development effort during his years at NSF, also Kent Curtis and Tom Keenan
of NSF, who fostered it during the period in which the NYlJ group was
struggling toward a reliable and acceptably efficient implementation. We
hope the success of the system will justify their confidence.

Chapter Table Of Contents
1.1 Programs

CHAPTER 1

PROGRAMMING CONCEPTS.

1.2 An informal overview of SETL
1.3 The steps of programming; how to run

your program and read its results
Advice to the would-be programmer
How to type a program; character sets
Exercises
Appendix: More on how to read your output listing.

1.1 Programs

To program is to instruct a computer to perform certain desired
actions. For example, using the programming language to be described in
this book, you can write the instructions

print(54 + 45);
print('The difference of twelve and nine is:', 12-9);
print(55*55);

and submit them to a computer. Then, if the instructions have been properly
typed and submitted, the computer, after first digesting them, will
obediently produce the following results;

99
The difference of twelve and nine is: 3
3025

The instructions you submit to the computer are known as source code or
input; the results which it prints are known as output. Programming is
therefore the art of devising inputs which describe the output that you want
to produce.

This first example suggests that programs can only deal with simple
numerical quantities and can only describe simple arithmetic calculations.
This is by no means the case. Computers are not just numerical calculating
machines, they are general information-processing engines and can manipulate
information of arbitrary structure and complexity. This basic fact will be
strongly emphasized by the programming language, SETL, described in this
book. For example, you will see that it is easy to manipulate arbitrarily

------------------ ---- -----

PROGRAMMING CONCEPTS. Page 1-2

complex tables, for example, tables of names, addresses, telephone numbers,
birth dates, and salaries having the form

[['Aldo Gonzalez','45 Ellwood Ave','278-3591','12-12-45',21315],
['Jimmy Archibald','1315 Bole St','479-1919','5-31-78',OJ,
['Willa Cross','111 Mocking Pl.','275-1212','7-19-OO',67OO],

Such tables can be built up, sorted, searched for particular elements or
combinations of elements, extracts and statistical summaries of them can be
prepared and printed, etc. All this will be easy to do once you have
learned the programming language described in this book, which can handle a
table like that shown above just about as comfortably as it can handle a
simple number like 23.

However, although the programming language to be presented is powerful,
and although computers are extremely fast and perfectly ~ccurate, they are
also unintelligently pedantic and narrowly literal in their reactions to the
instructions which they receive. This has two fundamental consequences,
which you as programmer (i.e. as a would-be author of programs), must
always keep in mind.

(i) The computer will always do exactly what it is instructed to do,
neither more nor less, and will do this if its instructions are legal,
irrespective of whether these instructions are reasonable or unreasonable
from some larger point of view. This can be quite disconcerting at first,
since it can easily lead to unexpected consequences. When you ask a person
wearing a watch 'Can you tell me what time it is?', you expect an answer
like 'It's 3:15'. A person acting like a computer would instead answer,
'Yes, I can'; but would never actually tell you the time until you actually
uttered a direct and unambiguous command like 'Tell me the time'. Therefore
hints, even hints that a person might regard as utterly clear, are quite
useless to a computer. It does not know, or care, what you have in mind for
it to do: it only knows what it has been directly and unambiguously
commanded to do.

This it will do with perfect fidelity, even in circumstances in which
even a boundlessly faithful and determined person would realize that
something is quite wrong with the instructions given him and would ask for
more reasonable instructions. For example (though they would have to be
expressed a bit differently), the following instructions can be given to a
computer, and would then be followed literally:

instruction 1:
instruction 2:

print ('Hello There');
go back to instruction 1.

Given these ins~ructions, the computer will, like a phonograph stuck on a
groove in a cracked record produce the output

Hello there
Hello there
Hello there
Hello there
Hello there
Hello there

PROGRAMMING CONCEPTS. Page 1-3

line after line, thousands, millions, or even billions of times, as long as
paper remains in its printer, power continues flowing to its circuits, the
building which houses it has not burned down or collapsed in an earthquake,
and as long as neither the human operator (nor the automatic operating
system) which regulates it have grown suspicious enough to switch the
computer to another activity. In such circumstances, the exhilarating magic
of the computer sours after the fashion of the well-known tale of the
sorcercer's apprentice.

(ii) In order to follow instructions given to it, the computer must
first be able to digest and understand them. The linguistic abilities of
computers are limited, and their abilities to recover from errors are also
limited. Hence the approach it takes is extremely pedantic. In particular,
you will find that it insists that commands submitted to it must adhere
precisely to the grammatical rules, and even to the /petty rules of
punctuation, of the programming language which it is set up to handle. The
omission of so much as a dot, the misspelling of a single name or a single
command keyword, the substitution of a single colon where a semicolon is
wanted, the insertion of a single blank space where it is not wanted: all
these petty errors are fatal, and will cause the computer to reject a set of
instructions before it even attempts to follow them.

So, for example, the three commands appearing at the very beginning of
this section would not be executed if they were submitted as they stand, but
only if they were preceded by a required line serving to introduce and name
them, and followed by a required 'trailer' line, thusly:

PROGRAM sample_program_number_l;
print(54 + 45);
print('The difference of twelve and nine is:', 12 - 9);
print(55*55);
END;

Packaged in this way, our three original commands come to constitute a
complete and valid program in the SETL language, acceptable as it stands.

The difficulty that computers have in coping adequately with error
causes them to react to tiny program details in a pedantic manner, to which
the beginning programmer must grow accustomed. If, for example, the program
shown above is submitted as

PROGRAM sample_program_number_l;
print(54 + 45),
primt('The difference of twelve and nine is:' 12 - 9);
print(55 * 55);
END;

it will be rejected without producing any output. In fact, three errors,
each fatal in spite of the fact that it can easily be corrected (and,
indeed, might never even be noticed) by the human reader of these
instructions, occur in the text shown above. These sins, damning in the
computer's view though trivial to the human viewer, are:

------ -- --

PROGRAMMING CONCEPTS.

(a) Substitution of a comma for a semicolon in the second line.

(b) Omission of a comma after the terminating quote in line 3.

(c) Misspelling of print as primt, also in line 3.

Page 1-4

Clearly, then, to interact in a satisfactory way with a computer you
will have to come some distance toward compromise with what will at times
seem like a maddeningly literal, detail oriented, robot mind. But these
initial irritations can be overcome, and, once you have overcome then, you
will find the amazing powers of an infinitely flexible machine at your
command.

As a programmer, you will find it instructive to realise that programs
existed long before computers were invented, even though computers have
given them forms different from what they had before and hav vastly extended
their scope. Mankind first encountered programs early in-the new stone age
(or perhaps even in the old stone age), when basket-weaving and palm-leaf
weaving were invented. Basket patterns, palm-leaf weaves, rug patterns,
knitting patterns and musical scores are all programs, that is, are
sequences of instructions involving choice and repetition, whose execution
produces outputs which are larger and more interesting than the sets of
instructions from which they were produced. All of these activities exhibit
the elements of repetition and choice (i.e., repetition with planned
variations) which is so characteristic of programming, and which we will
constantly meet with in this book. Note in particular that

(a) In programming, as in knitting, it may be necessary to. execute an
instruction, or a group of instructions, more than once. Most programs will
therefore involve repetitions, or even repetitions within repetitions, as in
'knit three stitches and then purl two, repeating twenty times for each row,
for ten successive rows; then knit five rows of 100 stitches each.' The
number of repetitions desired can be specified either by an explicit count,
as in the preceding example, or by stating a condition which depends on the
state produced by prior repetitions (as in cooking: 'beat steadily until
the mixture thickens'). Both forms of repetition will be encountered again
and again in the chapters which follow. Since computers execute more than a
million elementary instructions per second, computer programs are even more
dependent on repetition than knitting and weaving patterns are: a
repetition-free program would run for no more than a tiny fraction of a
second.

(b) Simple repetition, like the endless repetition of a single stitch
in knitting, can only produce an unending featureless cloth. To produce
something more interesting depends, in programming as in knitting, on
repetition with variation, and on proper combination of repetition with
choice, like the choice which appears in the example 'If a size 25 sweater
is desired, repeat for 30 rows, but if a size 27 sweater is desired, repeat
for 36 rows'. The fact that conditional instructions of this kind can be
used in a program makes it possible to produce a wide variety of outputs and
write programs that can be used in an immense variety of circumstances. In
fact, complex sequences of choices are much more characteristic of programs
than of any other ~ind of plan, pattern, instruction, or recipe, since the
extreme accuracy of the computer makes it possible to plan and follow long
sequences of choices and variations that would soon leave a person trying to

PROGRAMMING CONCEPTS. Page 1-5

carry them out exhausted and hopelessly confused.

(c) Programs, like knitting instructions, are relatively unchanging
objects; but their execution, like knitting, is a dynamic activity. A
program is no more the same thing as its output than a set of knitting
instructions are the same thing as the sweater they describe; nor should we
confuse a program with the computer on which it runs, any more than we would
confuse a set of knitting instructions with the needles used to execute
these instructions.

PROGRAMMING CONCEPTS. Page 1-6

1.2 An informal overview of SETL.

The programing language SETL has many powerful features, and it will
take well over a hundred pages to explain them all. Therefore this short
section can only give you a glimpse of some of these features.
Nevertheless, before we march forth to explore the terrain systematically,
it is worth previewing SETL's most characteristic features informally. For
this purpose, we consider a simple example. As its name implies, SETL makes
it easy to work directly with sets. Suppose therefore that the following

set of numbers is given:

{13, 11, 45, O, -16, 21, 85, 46, 80}

and call its. The problem we wish to consider is that of
median of the numbers in s, namely the number which would
beween the first and the last element of s if the ele~ents
arranged in ascending sequence from lowest to highest, namely as

(2) [-16, o, 11, 13, 21, 45, 46, 80, 85]

finding the
come halfway
of s were

(In our example, this median is clearly 21). If (as in our example) s has
an odd number of elements, then the median (which is often used in
statistics to represent a 'typical' member of a sets) can be defined as
follows: it is the unique element x of s such that there are as many
elements of s which are smaller than x as there are elements of s which are
larger than x. Ifs has an even number of elements there are (as it would
if we dropped the number 85 from our example) nothing lies exactly in the
middle, and we could argue about which of the two numbers (e.g. 13 or 21)
lying equally close to the middle of an ordered sequence like (2) should be
considered the median. To avoid this complication let us agree for the
moment that we will only consider sets having an odd number of members. For
such sets, the median is simply the number x defined by the following
condition:

(*) The number of members of s which are less than xis equal to the
number of members of s which are greater than x.

In SETL, a set like (1) can be read in (for example, from the keyboard
of a computer terminal, or from a punched card), simply by writing the
command

READ(s)

Once having reads in, we may want to find, and print, its median. As with
all programming tasks, this can be done in several different ways. If we
knew how to arrange the elements of sin order, we could simply find this
arrangement, take the element which comes in the middle, and print it out.
Arranging elements in order is called sorting; we will study many
techniques for sorting later in this book, and any one of them would put us
into position to use this approach to findng the median. However, it still
is too early to show you how to do anything quite this complex, and hence we
shall follow anoth~r path, namely we will use the definition (*) directly.

PROGRAMMING CONCEPTS.

In order to do this, we must first be able to form
members y of s which are less than x'. Since SETL makes
form sets, and allows us to get the number of elements in
by writing #t, this is easy: we simply form the set of
which are less than x, and then take its number. The set
formed simply by writing

(3) {y IN s I y < X}

and its number of elements is therefore

(4) #{y IN s I y < x}

Page 1-7

'the number of
it easy for us to

any set t simply
all members y of s

we want can be

Similarly, the number of elements ins which are greater than x can be
written as

(5) #{y IN s I y > x}

Concerning the construct (3), which is known in SETL as a set former, we can
make the following remarks:

(a) It is written in a fairly standard mathematical
will be familiar to anyone who has studied much
grade-school or high-school level 'New Math').

(b) The notation (3) should be read as follows:

notation,
mathematics

which
(even

(b.i) The curly brackets surrounding the rest of formula (3), which are
sometimes called 'set brackets', are simply read as 'the set of'.

(b.ii) The next part, i.e. y IN s, is read more or less as it stands,
i.e. as 'yins', or perhaps as 'ally ins', thus giving 'the set of ally
ins'.

(b.iii) The 'I' symbol is shorthand for 'such that'.

(b.iv) The condition following is standard mathematical notation
which is read as it stands, giving altogether

'the set of ally ins such that y is less than x'

as the English reading of (3), and similarly

and

'the number of elements in the set of ally ins such
that y is less than x'

'the number of elements in the set of ally ins such
that y is greater than x

as the readings of (4) and (5) respectively.

We can therefore express the condition {*) which defines the median
simply by writing

(6) #{y IN s y < x }= #{y IN s I y > x}

PROGRAMMING CONCEPTS. Page 1-8

There will exist such an x if and only if the number of elements in s is
odd. SETL allows one to test for existence of an x satisfying the condition
(6), and to find it if it exists, simply by writing

(7) EXISTS x IN s I #{y IN s I y < x}= H{y ins I y > x}

which in English reads roughly

'there exists an element x ins such that the
number of elements ins which are less than x equals the number

of elements ins which are greater than x'

(Note that the first I in (7), like the others, can be read as 'such that'.)
If the median exists, i.e. if the number of elements ins is odd, we want
to print it out; otherwise, only a message announcing thats has an even
number of elements will be printed. This sort of conditional action,
determined by a condition which cannot be evaluated until actual data has
been read and examined, is expressed in SETL (as in most other modern
programming languages) by an 'IF statement'. A full account of this
important command will be given in Chapter III; however, even without this
full account, the meaning of the following IF-statement, which does what
needs doing in the present case, should be clear:

(8) IF EXISTS x IN
PRINT('The

ELSE

s #{yins
median is:',

y < X }=#{yin S

x);
y > x} THEN

PRINT('No
END;

median, the sets has an even number of elements.');

Note the following details concerning the command (8):

(i) To produce output printed on paper or displayed on a terminal, the
PRINT command is used. This can either print a simple message (like the
second of the two PRINT commands shown above, or (like the first PRINT
command) can be used to print both a message and a quantity that has been
calculated elsewhere in the same program (like the -x- in example (8)).

(ii) The IF-statement appearing
occurrence of the word END, which
IF-statement unambiguously.

in
is

(8) must be terminated by an
needed to mark the end of the

(iii) The rules of SETL punctuation require both the PRINT commands
appearing in the above example, and also the whole IF-statement, to be
terminated with a semicolon.

As was already noted in Section 1.1, both an introductory 'header line'
and a terminating 'trailer line' must be added to (8) before it can be run.
Adding these lines, we arrive at the following fully set-up program, which
can be used to read any sets of integers, and print out the median of s if
s has an odd number of members:

PROGRAM find_the_median;
READ (s);
IF EXISTS X IN s l H{y IN s

PRINT('The median is:',
y < x} = H{y
x);

ins I y > x} THEN

PROGRAMMING CONCEPTS.

ELSE
PRINT('No median, the sets has an even number of elements');

END;
END PROGRAM find_the_median;

Page 1-9

Though simple, this program illustrates several of the most significant
features of the SETL language: SETL allows us to define, construct, compare
and in general manipulate sets of values ; such sets can be searched to
find whether elements exist that satisfy a given property; such sets can
also be read and written, and (as we shall see in Ch.2) modified in a number
of ways. We shall see, as our study of the language progresses, that sets
and set operations are particularly versatile concepts for problem-solving
and programming, and that SETL allows its skilled user to solve complex
problems with greater ease than that afforded by most other programming
languages.

- --

PROGRAMMING CONCEPTS.

1.3 The steps£.!. programming; how to run your program and
read its results.

Page 1-10

Knitting instructions, basket weaving patterns, recipes, even weaving
instructions for handlooms; all are intended to be executed manually by a
person, who can at least be trusted to stop if he starts to get into trouble
because something is wrong with the instructions. However, programs, like
weaving set-ups for large automatic looms, will be executed at high speed by
a machine. If this is not to lead immediately to failure, or still worse to
a high-speed outpouring of trash, programs must be planned, set up, and
tested carefully before they are released for full scale high-speed
execution. This involves a whole series of steps:

(I) One starts with an initial conception: what would be interesting,
useful, scientifically or commercially valuable, to have? The answers to
such questions come from outside the technical field of programming.

(II) Once a goal has been formulated, what patterns of repetition and
choice, what ingenious shortcuts, allow the desired output to be produced
most simply and efficiently? These questions touch upon an area of program
and algorithm design that lies outside the scope of this introductory book;
however, the many programs presented in the chapters which follow will
illustrate some of the numerous techniques for clear and effective design
that are available to the knowledgeable programmer.

(III) Once both a goal and a general plan for realizing it have been
specified, there begins the detailed work of restating the plan in terms of
the specific toolkit of instructions made available by the programming
language that one is using. This is the labor of programming~~- As
will be seen, the SETL language presented in this book supplies its user
with very powerful tools of expression, and therefore allows programs to be
expressed more easily, simply, and directly than they would be in other,
less abstract programming languages. But these tools must be learned
carefully and then used accurately: computers enforce a compulsive
attention to detail that takes some getting used to. If used accurately,
they will allow you to write both short programs, like the examples shown in
the preceding section, and sophisticated programs many hundreds or thousands
of lines long which realize very complex functions.

(IV) After being typed at a terminal or punched on cards, a program can
be passed to the computer on which it is to run. This will trigger a whole
sequence of behind-the-scenes activities, with which you will only be
peripherally involved, but of which it is important to have some
understanding in order to cope with the various things that can go wrong
between the time that your program is first entered into the computer and
the time, several seconds to several hours later, when output finally
emerges. Though differing somewhat from machine to machine, these steps
will generally be more or less as follows:

(i) Your program is passed, as a passive file of data, to another group
of programs, pre-stored in the computer. These programs, which collectively
comprise the computer's operating system, share the computer's power among
the many users entering jobs at card-readers and terminals, all of whom
require, and will eventually get, a quantum of service from the computer
system.

PROGRAMMING CONCEPTS. Page 1-11

The first thing that the operating system programs do is validate your
identity as an enrolled user of the computer. If this check fails, you will
be refused service. This will happen immediately if you are using a
terminal and fail to identify yourself to the operating system's
satisfaction. On the other hand, a 'batch' or 'card oriented' system
normally looks for user identification on the first card of each deck
submitted to it; this identification usually consists of a user name,
password, and perhaps a few other information items such as the account to
which the cost for a program run are to be charged. If any of this
information is invalid, the computer system rejects your job and only very
enigmatic information, for example a single sheet bearing your name and a
cryptic refusal to service your progam, is produced. However, if you pass
the operating system's user validation check, the program you have submitted
will be entered onto a pending work queue, where it will wait, along with
work entered by other legitimate system user to be scheduled for future
attention by the operating system. In an interactive system run from a
terminal this should normally take no more than a few seconds; in a
card-oriented batch system it can wait anywhere from moments to hours.

(ii) When your turn to be served further comes up, the first line or
few lines of information supplied with your program are examined by the
operating system programs running on, the computer. These first lines, known
As command lines (or perhaps as control cards, job control cards, or JCL)
serve to tell the operating system, which provides many services to many
users and deals with many programming languages, which one of its services
you want.

To run a program in SETL, your command line or lines will have to
convey the following information to the operating system:

(1) The Language to be used (i.e., SETL).

(2) The location of the SETL program to be processed. In a batch
system this will generally be a deck of punched cards following immediately
after the command lines, but in an interactive system it will more often be
a file of lines which you have previously entered into the computer using an
auxiliary 'editor' program. In the latter case, the name of this pre-stored
program file must be indicated.

(3) The location of any input data which your SETL program needs to
read. In batch systems, the data may simply follow the text of your
program, in the same deck of punched cards. In terminal systems, this data
can either be obtained from a pre-stored file or read directly from your
terminal, in which case you will have to type it in, in response to queries
which your program sends to the terminal as it runs.

(4) The destination to which output produced by your program is to be
sent. In batch runs, this will be a 'tempor~ry file' which is printed after
your program has halted (or, in the event of trouble, after your program has
been halted forcibly by the operating system). In interactive runs, your
output either will be written to a file which you can examine after it has
been produced, or will be sent to the screen of your terminal, in which case
output will appear as your program runs.

PROGRAMMING CONCEPTS. Page 1-12

(5) You can supply additional information
influence details of your run. Descriptive
options is found in section 8.2.

to select
material

'options' which
concerning these

If any of the information contained in the command line which initiates
execution of your program is defective, the result will be almost as
catastrophic as if your user validation had failed. Your program will not
run, and your only output (in a batch sytem) will be a page or two of
information recording the fact that your command lines contained an error.
To get past this barrier you must repair your command lines, entering them
in completely error-free form. Kake sure you understand all details of the
required form for these few (but operating system dependent) lines; consult
an expert immediately if trouble persists.

(iii) Assuming now that both your identification and your command lines
have proper form, the operating system programs will prepare for the
processing and execution of the program which you have supplied. Though
this involves many detailed steps, some of which are described below, the
two basic things that the operating system needs to do are just the
following:

(1) The program which you have supplied will be examined, checked
for exact conformity to the rules of the SETL language, and, if it
passes this check, translated into an internal program form with which
the computer can work directly. This first step, checking and
translation, is called compilation, and the program which carries it
out is called the SETL compiler. (Note that compilation is necessary
because the form of SETL which you write and submit to the. computer is
designed for human, not for machine, convenience; it must be
translated into a more machine-cQnvenient form before your program can
actually be run.)

(2) After translation
instructions give in your
producing output. This step
carries it out is called the

into appropriate internal form, the
program are actually performed, (possibly)
is called execution, and the program which
SETL run-time system.

(iv) Errors can, and often will, be detected during either of the two
preceding steps. Grammatical and other relatively 'gross' errors in the use
of the SETL language will be detected during compilation. Unless you have
switched off the 'listing' option of the compiler, it will print out and
number all the lines of your program exactly as it sees them, and if it
detects any grammatical errors it will flag them in the resulting 'listing'
of your program, which forms the first part of the output which you receive.

If compilation errors (also called syntax errors) occur in your
program, then, as indicated by a message 'ABNORMAL TERMINATION' which will
appear in the above processing of your program will end as soon as the
compiler finishes its work; your program will not actually be run. To get
further, you must correct all grammatical errors. Once this is done, all
diagnostic messages will disappear, the first part of your compilation
listing will appear as follows, and your program will move on, passing, as
one says, into execution.

PROGRAMMING CONCEPTS. Page 1-13

Substantially later in your listing there will appear the output which
your program has produced. The three lines of output produced by the sample
program we have been considering would look like this:

99
The difference of twelve and nine is: 3
3025

In looking for this output in your listing it is important to realize
that the oµ~put is actually preceded by several dozen more lines of standard
'boiler Plate' which you will grow accustomed to seeing in your output
listings and can normally scan over quite rapidly. This additional material
appears because the SETL compiler is a large and complex program which
actually operates in three phases:

(1) A 'parse' or 'grammatical analysis' phase, which analyzes your
program, checking it for syntactic validity and breaking it down into the
elementary clauses of which it is composed. This produces the section of
the listing, headed CIMS.SETL.PRS, which is shown X pages above.

(2) A 'semantic analysis' phase SEM
elementary clauses produced by the PRS
checks to then, and continues the process
an internal form which can be interpreted

(3) A 'code generation' phase COD,
process begun by SEM.

which takes the collection of
phase, applies additional validity
of transforming your program into
directly by the computer.

which completes the translation

See Appendix 1.7 for a description of the standard boilerplate which
the SEM and COD compiler phases put into your compilation listing.

PROGRAMMING CONCEPTS. Page 1-14

Other common kinds of error.

Once the PRS, SEM, and COD phases of the SETL compiler have
successfully translated your program into its internal form, it is passed,
in this form, to the so called SETL 'run-time' or 'execution' system, which
then attempts to follow these translated instructions literally. (The
translated form of your program is logically equivalent to the program which
you have supplied, but is recast into a form that the run-time system can
work with more easily.

However, several further sources of error can still give your output an
appearance totally different from what you expect.

(a) You may have misunderstood what your program is really saying. For
example, you may not have realized that suitably placed 'print' commands are
necessary if any output is to be produced, and may have imagined that
results are printed merely by virtue of being calculated by your program.
In this case, no output at all may appear.

An endle~s variety of other small logical
possible, and only experience will teach you
errors of this sort is called debugging;
techniques are found in Section 7.2, 7.3.

errors of this
how to avoid them.
hints concerning

(b) Attempts to execute illegal operations are another
consequence of misunderstanding what a program is really saying.
for example, that your program contains the command

print(x + y) ;

sort are
Removing

debugging

common
Suppose,

but that prior instructions have given x the integer value 1 but not defined
The value of the variable y. Addition of an integer and an undefined value
is illegal, and the SETL run-time system will detect this violation when it
attempts to evaluate x + y. The run-time system will then generate a so
called run-time or execution error, and program execution will be terminated
immediately (aborted). In such case, your output will end with a run-time
error message, describing the problem encountered. When this happens, you
may want to rerun the program, using some of the additional debugging
options described in Section 8.5.1, to gather additional information about
the location and cause of the error.

(c) If the logic of your program is in some way faulty, your program
may not reach its termination, but may instead loop endlessly, in which case
it can either produce output forever, or produce no output at all. (The
hypothetical program

instruction 1:
instruction 2:

print ('Hello there')
go back to instruction 1

illustrates the first of these possibilities.) If your program starts to
loop, then the operating systems programs (which always, so to speak, lurk
in the background, checking on what other programs are doing) will
eventually detect the fact that your program is producing an illegally large
volume of output or that it has outrun the time quota which the operating
system established for it. When this h~ppens, your program will be forcibly

PROGRAMMING CONCEPTS. Page 1-15

terminated by the operating systems programs, which will write a message
explaining what has happened.

You will need to grow familiar with the appearance that your output
listing takes on when these various common problems are encountered. Here,
for example, is the output that results from mistyping the number '45' in
the second line of our sample program as 'x5', in which case it will be
interpreted as the name of a variable, which the run-time system will find
does not have any assigned value.

*** ERROR AT STATEMENT 2 IN ROUTINE S$MAIN
INCOMPATIBLE TYPES FOR -A- AND -B- IN -A+ B-.

Note that this message identifies the offending statement, by number, as
'statement 2' of your 'main' program (in this simple case, all that exists
is a 'main' program; in the more complex cases which we will begin to
introduce in Chapter IV, both A 'main program' and numerous 'subprocedures'
can exist). Beyond this rather terse statement, no other information is
given (however, more information can be produced using the debugging options
described in Section 8.5.1.)

PROGRAMMING CONCEPTS. Page 1-16

1.4 Advice to the would-be programmer

As will be seen, the SETL language presented in this book furnishes you
with many very powerful tools, and also makes it possible to create new
·tools by combining more elementary ones into procedures which you yourself
can define. Nevertheless, it provides only certain specific facilities, and
not, in some magical way, everything that you might want, think it would be
convenient to have, or even imagine to be available. You will therefore
have to distinguish carefully between the facilities which the language
makes available and those which il does not, learning the nature, form, and
especially the purpose ..Q..f every feature and facility ..Q..f the language, but
also learning what.!!_ does not make available directly (especially if this
is something you would like to have and wish it did make available
directly). It is as senseless to plan programs that make use of nonexistent
programming language features as it is to work out seven-color,
three-hundred thread patterns for an automatic knitting machine that only
allows four colors and 180 separate threads.

Of course, since the computer is infinitely more flexible than any
other kind of machine, it is likely that you can find a way of building up
any well-defined facility which you can conceive clearly and describe
precisely. However, this can only be done by accurate use of the facilities
of the language (SETL) that you will be using, not by imagining that you can
suddenly leap out of its confines. Thus, even to go successfully beyond
what is originally present in the language you will have to learn to
distinguish accurately between the tools it provides and those which it
omits.

Here, an important psychological point needs to be made. To accomplish
an operation which some feature of a programming language provides for
directly is easy, provided that one recalls the feature and can look up
whichever of its details are relevant. But this kind of memorization merely
skims the surface of programming. An infinite variety of more complex and
interesting operations can also be programmed, but to do so one needs to
decompose them into more elementary operations which can be carried out more
directly, and so on through progressive stages of decomposition, until one
reaches operations which can be expressed directly by single comands of the
programming language with which one is working. Though helpful hints about
how to do this can and will be given, this process of decomposition cannot
be accomplished by application of any simple recipe, it requires problem
solving and invention. Now, unless at some time in the past you have been
either a devoted and successful puzzle enthusiast, chess, bridge or checker
player, or a mathematics student, you will probably find that programing
makes unexpectedly strenuous demands on your problem-solving muscles,
demands for which your past education has probably given you very little
preparation. Indeed, with few exceptions, school courses teach
memorization, or at best application of memorized procedures, but not true,
no-holds barred problem solving of the kind you will encounter in learning
to program. In History you have learned facts and interpretations, in
Chemistry more facts, in undergraduate Physics you have learned formulas and
how to apply them; in mathematics, up to and well into calculus, you have
also memorized v~rious procedures and how to apply them. Therefore it may
very well be that in becoming a programmer you will have to master the
intellectual art of problem solving for the first time. The following

PROGRAMMING CONCEPTS. Page 1-17

paternal remarks are intended to help you cope with this challenge.

(a) Don't panic. Although some people are better at problem solving
than others, the ability to solve problems, like the ability to cook a good
spaghetti sauce or dance the waltz acceptably, can be learned by anyone.
Don't let your instructor's problem-solving speed intimidate you. He
probably has both talent and years of experience; Of course you will need
time to catch up with him.

(b) On first facing a problem that you have never solved before, you
will feel confused. Again, don't panic. Remember that you are not trying
to remember a fact which you have forgotten, rather, you are trying to
search out, to devise, to discover something which, for you, is new. The
initial confusion (which everybody, even the strongest problem solver, is
bound to feel at first) is not the end of your efforts to solve the problem:
it is merely the start of the beginning. Don't say to yourself: 'I don't
see the answer; I am confused; I give up'. Instead, say 'I am in process
of wrestling with, and dispelling, the initial confusion which every new
problem generates,' and fight on. Significant problems, like nuts, have
hard shells, and can only be cracked if they are examined closely enough for
their lines of cleavage to be found. Pick the problem up, attach yourself
to it, and begin to turn it over, searching from all angles for the hints
which will unlock it.

(c) Explore the leads which occur to you, co~bining caution and
boldness. Can you see a fragment of the solution? Can you guess one
command which will be helpful? Can you solve any part of the problem? Can
you see any way of breaking the problem into two or more parts which look
easier to solve than the whole problem does? If you have solved some part
of the problem, what problem remains? Can you see any way of extending your
partial solution to cover more of the problem? If you can't solve the or
iginal problem, can you solve some easier problem that has significant
similarities to it? If so, can this solution be improved enough to solve
the original problem, or at least a problem substantially closer to it? If
not, what is the easiest similar problem which you cannot solve? Why not?
What feature of it prevents solution? What, if anything, can be done about
this feature?

(d) Don't give up too easily. Remember that a programming problem,
like a jigsaw puzzle, may have to be solved one piece and one clue at a
time.

(e) If no progress seems to be possible along a given line of attack,
try to find another approach. Sleep on the problem and start afresh with a
new approach the next morning.

(f) If a problem seems intractable, go to an appropriate book and look
up a solution, or to a helpful, more knowledgeable person and have the
solution explained. But take this help actively, not passively. Ask
yourself: What is the key trick that I failed to discover? In what other
situations can this new trick be useful? What part of the problem could I
have solved with what I knew before; what aspect really requires the new
method that has just been explained? Practice using the new method on a few
simple examples you make up for yourself, and ponder it carefully, to make
sure you digest it.

PROGRAMMING CONCEPTS. Page 1-18

(g) Accustom yourself to dealing with concepts and methods, not with
memorized program fragments. Although memorized fragments, like memorized
sequences of chess moves, are useful, and even though the experienced
programmer may have memorized dozens or hundreds of them, no two situations
are exactly the same in programing, any more than they are in chess. Your
basic need in learning to program is not to remember programs presented in a
book and adapt them slightly to new situations: it is to learn how to
invent general logical plans, and to master the principles which will allow
you to do this, along with the language in which you will have to explain
your plans to a computer. General methods, principles, and approaches will
retain their usefulness over a wide range of circumstances, while
ill-conceived attempts to adapt a textbook example to do something it Was
not designed to do will often be less profitable than wiping the slate clean
and starting afresh.

(h) Train yourself to accuracy, but don't be overly afraid of errors.
Computers have only a limited capacity to deal sensibly with errors. On the
other hand they are infinitely patient, and will give you all the chances
you need to remove the errors initially present in your program. Because of
the high degree of accuracy with which programs need to be prepared, errors
are as omnipresent in programming as in clutter in kitchens and sawdust in
woodshops. Remember that no one is looking impatiently over your shoulder
as you develop a program; you can have all the tries you want, and only
your final success counts. The computer is infinitely patient; one must
scribble to write; everything along the way to final success is just
scrap-paper to be thrown out.

Your aim in dealing with errors should not be to avoid them fearfully,
but to learn to recognize them clearly, understand the violations of rule
and principle which let them creep in, and remove them swiftly. As long as
your programs are moving rapidly toward correctness, errors are tolerable.
Only errors which you cannot recognize and do not know how to remove need to
be considered major problems.

{i) On the other hand, accumulation of numerous unnecessary errors
through gross carelessness or misunderstanding will wind up wasting large
amounts of your time as you struggle to remove mistakes that a little more
care could simply have avoided. Hence it is really important to train
yourself in accuracy, and to learn to use the programming language to be
presented in this book cleanly and grammatically. You will want to study_!!.
closely, learning its facilities, restrictions, style, and inner rhythms.
As your programs evolve toward completion, you will want to review them
carefully and suspiciously, trying to search out all errors in programming
language use or in underlying logic; all hidden defects which might force
you to waste time later. As we have said, the programming language to be
presented in this book is a kit of priw~rful tools for your use: you will
want to inspect all the tools in this kit, and to understand and reflect
upon their capabilities, restrictions, and intended use. This will help you
to develop into a skilled practitioner able to do everything in the
clearest, most direct, most effortless way.

PROGRAMMING CONCEPTS. Page 1-19

1.5 How to~~ program; Character sets

If the terminal or keypunch machine with which you are working has all
the characters which appear in SETL programs in this book, then you can type
your programs exactly as this book will show them. The special punctuation
characters required are

< less than
> greater than
= equals sign
(left parenthesis
) right parenthesis ,

quote mark (apostrophe) . period
, comma

colon . semicolon ,
I slash
+ plus sign

minus sign
$ dollar sign
? question mark
II number sign

underline
{ le ft set bracket
{ right set bracket
[le ft square bracket
] right square bracket
I such that symbol

When not all these characters are available, standard substitutions
used for some of them. These include the following

can be

{ can be written as <<
{ can be written as >>
[can be written as (/
] can be written as /)

I can be writen as ST

The remaining characters are replaced if necessary by single characters
which type differently. For lists of these character substitutions, you
will have to consult implementation specific information available from the
computer center in which your programs are being run.

Some, but not all, implementations
and lower case (small) versions of all
When this is so, programs can be typed
letters, or any helpful and pleasing
the command

print(3+5);
can also be typed as

PRINT(3+5);
or as

Print (3+5);

will make both upper case (capital)
the alphabetic characters available.
either in capital letters, small

combination of the two. For example,

PROGRAMMING CONCEPTS. Page 1-20

or even as
PrlnT (3+5);

The SETL system always transposes all 'keywords' like PRINT appearing in a
program into upper case, and works internally with these upper case
versions. Only characters appearing within quotation marks (i.e. in
'quoted strings', see Section 2.1) are retained in their original lower case
forms. This means, for example, that the statement

PRINT('hello there') ;
will produce the output

hello there
whereas the statement

will produce the output
print('Hello There')

Hello There

. ,

Extra blanks are generally ignored, and can therefore be used to space
out your program text to make it more readable. For example,

print(3+5)
print(3 +
print (3

5)
+5)

will all produce the same output, namely

8

The only places in which blanks are forbidden to appear (or have meaning if
they do appear) are within constants, standard keywords, and variable names.
For example,

print
1000000
counter_l

cannot be written as
II

II

p rint
1 000 000
count er 1 •

SETL instructions are terminated by semicolons, and can be continued
over as many lines as necessary. This means that the instruction

print (3+5);

could also be typed as
print

(

3
+

5) ;

if there were any sensible reason for doing so. See Section XXX for rules
concerning the continuation of a quoted string from one line to the next.

The dollar sign '$' is used to indicate the points at which there begin
explanatory 'comments' that are intended to be helpful to a programs' human
reader but which are ignored by the SETL compiler. See Section XXX for a

PROGRAMMING CONCEPTS. Page 1-21

discussion of the use of comments in programs, a very important subject.

PROGRAMMING CONCEPTS. Page 1-22

1.6 Exercises

1. Find out how to run the program shown in Section 1 on your
computer, and run it.

2. How could you define the median of a set having an even number of
integer members? Can you modify the program shown in Section 3, so as to
make it work irrespectively of whether the set of integers supplied to it
has an even or odd number of members?

3. Take the median-finding program of Sec.1.3, and introduce various
typing errors in it. Submit these mangled programs to the SETL compiler,
and study the resulting error messages. Try to predict what the response of
the compiler will be to each error you insert.

4. Jot down a personal inventory of your own history as a problem
solver, listing all your experience in such relevant activities as
mathematics and science classes {especially solution of 'original'
programs), chess, bridge, crossword puzzles, jigsaw puzzles, recreational
puzzles, etc. Do you feel that you have quite considerable experience as a
problem solver, Or only a little?

PROGRAMMING CONCEPTS. Page 1-23

1.7 Appendix: More on how!_£ read your output listing.

Here, for example, is how the compilation
shown in the preceding section would
grammatical errors, namely omission of the
the program (see P• XXX) and replacement
should end its fourth line:

PROGRAM sample_program_number_l;
1 1 PROGRAM sample_program_number_l;
2 2 print(54 + 45);

listing of the sample program
look if it contained two small
comma shown in the third line of
by a colon of the semicolon which

3 3 print('The difference of twelve and nine is:' 12 - 9);
******** ERROR 3: EXPECT RIGHT PARENTHESIS

PARSING: 45) ; PRINT ('The difference of twelve and nine is:' 12

4 3 print(55*55):
******** ERROR 9: EXPECT ASSIGNMENT OPERATOR

PARSING: 'The difference of twelve and nine is:' 12 - 9) ; PRINT

5 3

END;
ERROR 91: EXPECT VALID STATEMENT
PARSING: 55) : END

=
*** COMPILATION TERMINATED BY UNEXPECTED END-OF-FILE***

PARSING:) : END; ;

NUMBER OF ERRORS DETECTED= 3
ABNORMAL TERMINATION.

=

Note the following concerning this 'compilation listing'

=------

(1) The compiler numbers the lines of your progiam. Lines are numbered
sequentially down the left of the listing. (The compiler inserts these
numbers to make lines easier to refer to. Do not type in these numbers
yourself.)

(2) Just to the right of these 'primary line numbers', there appear
other, similar but slightly different, 'secondary line numbers'. These
secondary line numbers are needed primarily for longer programs consisting
of multiple procedures (see Chapter IV), to allow line numbering to be
restarted at the beginning of each procedure. (Again, do not type in these
numbers yourself, the compiler will insert them.)

(3) Following these numbers, the appropriate line of your program
appears. These lines constitute the definitive version of your program, as
it has actually been seen by the compiler. Check them carefully. If they
differ in any way from what you think you have typed, then a typing error
has occurred; this must be fixed before you can go any further.

PROGRAMMING CONCEPTS. Page 1-24

(4) Immediately following each line in which the compiler has detected
(or thinks it has detected) an error, there appears a so-called diagnostic
message, flagged with 8 stars and the word ERROR, as in

******** ERROR 3: EXPECT RIGHT PARENTHESIS

After each such line, there appears a second diagnostic line, starting with
the capitalized word PARSING, as in

PARS ING : 4 5) PRINT ('The difference of twelve and nine is:' 12

Parts of this latter line will be underlined, in part with dashes
part with equal signs'='•

, , in

The diagnostic or ERROR message that the compiler supplies when it
detects or thinks that it has detected an error consists of an error number
(-3- in the example given above) and a short statement (in our example,
'EXPECT RIGHT PARENTHESIS') representing the compiler's guess as to what the
error was. Concerning this, you must be aware that, while very accurate in
its treatment of error-free programs, the compiler has a very limited
ability to deal accurately with errors, and that these statements, which
represent rather nearsighted guesses only, are frequently wide of the mark.
In the above example, the compiler guessed (wrongly) that you meant to end
the print statement immediately after the first message, i.e. that what you
meant to type was

print('The difference of twelve and nine is:');

Making this guess and not finding the-)- which it guesses should be there,
the compiler issues the message 'EXPECT RIGHT PARENTHESIS'. Of course, a
person looking at this line would see that putting in a right parenthesis is
not a good way to correct the line, since it would still leave the rest of
the line, namely '12-9' unexplained. With this clue a person would easily
make the more illuminating guess that a comma was missing, and could then
issue a more intelligent message like -MISSING COMMA-. However the compiler
is much more myopic, easily confused, and the guesses which it makes when it
encounters an error must therefore be taken very skeptically. About all
that can be deduced from the appearance of an error message is that the line
which it follows probably contains an error. This line should then be
examined very carefully to see if you can spot the error. If in doubt as to
what rules of SETL grammar apply, look up the relevant rules in the
appropriate part of this book.

The diagnostic line following the line containing eight asterisks
(namely the line starting with the word PARSING) which follows the line
containing the word ERROR is actually of greater help than the first
diagnostic line when you are trying to locate a minor grammatical error. In
this line, the word PARSING is followed by the seven last 'tokens' (i.e.,
words, numbers, punctuation marks, or quoted strings) which precede the
point at which the compiler was sure that an error had occurred. In our
example, program line 3 is followed by the word PARSING, and then by the
seven following 'tokens', which you will note occur in the program, just
before the point of error:

45 (an integer)

PROGRAMMING CONCEPTS.

)

PRINT
(
'The difference beween line and
12

(punctuation mark)
(punctuation mark)
(a 'keyword')
(punctuation mark)

twelve is' (quoted string)
(an integer)·

Page 1-25

The compiler detected an error just between the last of these two tokens,
where, as we know, a comma is missing.

It is normally not too hard to spot a grammatical error by looking
carefully over the line to which an error message has been attached, and
comparing it to the sequence of tokens following the word PARSING appearing
in the second line of the error message, especially to the last few tokens
of this sequence, which are likely to lie close to the actual point of
error. However, this must be done with some caution, since after an error
has occurred it may take a few lines of error-free program text for the
resulting confusion (which affects the compiler) to dispel enough for
additional error Messages to become accurate again. This phenomenon, a
spurious error message issued in the wake of an initial error, is seen
following lines 4 and 5 of our example program. In line 5, the perfectly
correct END; has been flagged as an error since, coming as soon after the
erroneous line 3 and 4 as it does, it is mistakenly taken as an illegal
continuation of line 4 and not as an independent statement.

The manner in which the seven tokens following the word PARSING in the
second line of an error message are underlined can also be helpful. Some of
these tokens are underlined with hyphens, others with double bars, others
not at all. The underlined symbols are those which are under active
consideration at the moment when a grammatical error is detected. 'Reserved
words', which cannot be used as variable names, and also punctuation marks,
are underlined with double bars, other tokens with single bars. (This clue
is valuable in cases in which you have accidentally used a reserved word as
the name of a variable. See Appendix XXX for a list of all reserved words.)

Missing Quotation Marks

If you accidentally omit a quote mark (apostrophe) in your program,
then whatever happens to follow the resulting unmatched quote mark will be
taken as part of a quoted message (i.e., 'quoted string'). To prevent this
rule from affecting the whole of your program, an arbitrary limit of 128
characters is e«tablished as the maximum permitted length of a quoted
string; so recovery from this kind of error will normally take place a few
lines later. When this kind of error occurs it will give a
characteristically strange appearance to the list of tokens following the
word PARSING in the very next error message; this should tip you off to the
fact that the problem is a missing apostrophe

Comments preceded by dollar signs ('$', see Section X) are bypassed by
the grammatical analysis process, and will never appear in the list of
tokens following an error message. This can give such lists a different
appearance from the program text to which they refer, especially if a
comment many lines (or even pages) long has been bypassed.

Other features of the compilation history.

PROGRAMMING CONCEPTS. Page 1-26

In your compilation listing, the lines that we have just been
discussing are actually preceded by a largely blank page, containing just a
few lines of information which looks approximately as follows:

CIMS.SETL.PRS(81121} THU 13 AUG 81 07:00:19 PAGE 1

PARAMETERS FOR THIS COMPILATION:

S OUR C E FIL E : I = DB C O : [NY USE TL • BERKOWITZ] T ST • ST L ; 2 •
LISTING FILE: L = DBCO: [NYUSETL.BERKOWITZ]TST.LIS;l.

POLISH STRING FILE: POL= TST.POL.
AUXILIARY STRING FILE: XPOL = TST.XPL.

LIST DIRECTIVES: LIST= l, AT= l.
PARSE ERROR LIMIT: PEL= 999. PARSE ERROR FILE: TERM= SYS$ERROR:.
CHARACTER SET: CSET =EXT.MEASUREMENTS: MEAS= O.

Don't pay too much attention to this material at first: it merely dates the
listing and records various standard options which the compiler is using.
You will only become concerned with these options (which are described more
fully in Section 8.5.1) when you are working with long complex programs or
want to secure one or another special effect.

Assuming that all goes well, the SEM phase will insert the following
information into your output listing:

CIMS.SETL.SEM(81121} THU 13 AUG 81 07:00:22 PAGE l

PARAMETERS FOR THIS COMPILATION:

POLISH STRING FILE: POL= TST.POL. AUXILIARY STRING FILE: XPOL = TST.XPL.
BINDER FILE: BIND•. IND. BIND FILE: IBIND •.
LITTLE Ql FILE: Ql • TST.LQl. SETL Ql FILE: SQl =.
SEMANTIC ERROR LIMIT: SEL • 999. SEMANTIC ERROR FILE: TERM s SYS$ERROR:.
GLOBAL OPTIMIZATION: OPT• O. DIRECT ITERATION: DITER • O.
USER DATA STRUCTURES: REPRS • O.

NO ERRORS WERE DETECTED.

Ql STATISTICS:
SYMTAB(279,16383}, VAL(242,16343), NAMES(746,16343).
FORMTAB(52,2047), MTTAB(35,2047).
CODETAB(23,8191), ARGTAB(33,16383}, BLOCKTAB(3,1023).

NORMAL TERMINATION.

This will be followed one page later by similar output produced by the COD
phase, namely

PROGRAMMING CONCEPTS. Page 1-27

CIMS.SETL.COD(81099) THU 13 AUG 81 07:00:30

PARAMETERS FOR THIS COMPILATION:

LITTLE Ql FILE: Ql • TST.LQl. SETL Ql FILE: SQl •.
Q2 FILE: Q2 • TST.COD. SAVE INTERM FILES: SIF • O.

PAGE

CODEGEN ERROR LIMIT: CEL • 999. CODEGEN ERROR FILE: TERM• SYS$ERROR.
GLOBAL OPTIMIZATION: OPT• O. BACKTRACKING: BACK• O.
RUN-TIME ERROR MODE: REM• 2. ASSEMBLY CODE: ASM • O.
CONSTANTS AREA SIZE: CA• 65535. SYMBOL TABLE SIZE: ST• 8191.
INITIAL HEAP SIZE: H = 600000.

NO ERRORS WERE DETECTED.

Q2 STATISTICS:
MIN SYMTAB SIZE= 186. MIN CONSTANTS AREA• 47. MIN DYNAMIC HEAP• 483.
Q2 CODE SIZE• 38. INITIAL HEAP SIZE• 66018. MIN HEAP SIZE• 1088.
EXEC STATEMENTS• 4. Q2 INSTRUCTIONS• 19.
Q2 FORMAT DATE• 81099.

NORMAL TERMINATION.

1

As for the PRS phase standard output, all this material merely records
various standard options which are being used for compilation. Since both
the SEM and (much more rarely) the COD phase of the SETL compiler can detect
a few subtle errors in your code which the PRS phase may he missed, you will
want at least to glance quickly at this output, to determine whether it ends
with the line -- NORMAL TERMINATION -- signifying the absence of error. If
not; the presence of errors is indicated. For an account of the errors
which might be detected during the SEM and COD phases, see Section XXX.
Note however that errors in an earlier phase can cause mistaken error
messages to be emitted by a later compiler phase. Thus, unless you have
become expert in the use of the SETL system, you will only want to pay
attention to error messages generated by the first compilation phase which
detects any errors at all.

Note also that the output produced by your program follows immediately
after the last line of standard material put out by the COD phase. Thus,
especially if your program has produced only a few short lines of output, it
is very easy to lose sight of your program's actual output, which may be
concealed from your eye by the larger mass of standard material which
precedes it. In this case, you may be confused into thinking that no output
has been produced. Grow accustumed to looking for output quite carefully.
The following shows the actual appearance of output from our sample program,
in its physical relationship to the standard material produced by the
compiler's COD phase.

CIMS.SETL.COD(81099) THU 13 AUG 81 07:00:30 PAGE 1

PARAMETERS FOR THIS COMPILATION:

PROGRAMMING CONCEPTS.

LITTLE Ql FILE: Ql • TST.LQl. SETL Ql FILE: SQl •.
Q2 FILE: Q2 • TST.COD. SAVE INTERM FILES: SIF • O.

Page 1-28

CODEGEN ERROR LIMIT: CEL • 999. CODEGEN ERROR FILE: TERM• SYS$ERROR.
GLOBAL OPTIMIZATION: OPT• O. BACKTRACKING: BACK• O.
RUN-TIME ERROR MODE: REM• 2. ASSEMBLY CODE: ASK• O.
CONSTANTS AREA SIZE: CA• 65535. SYMBOL TABLE SIZE: ST• 8191.
INITIAL HEAP SIZE: H • 600000.

NO ERRORS WERE DETECTED.

Q2 STATISTICS:
KIN SYKTAB SIZE• 186. MIN CONSTANTS AREA• 47. KIN DYNAMIC HEAP• 483.
Q2 CODE SIZE• 38. INITIAL HEAP SIZE• 66018. KIN HEAP SIZE• 1088.
EXEC STATEMENTS• 4. Q2 INSTRUCTIONS• 19.
Q2 FORMAT DATE• 81099.

NORMAL TERMINATION.
99
The difference of twelve and nine is: 3
3025

Review of principal actions which occur when~~ ism

The following summary lists all the principal system actio~s performed
on your behalf between first submission of a program and the moment at which
output produced by your program appears. Normally all this will proceed
smoothly and require little attention on your part. However, trouble can
occasionally develop, and then you will need to have at least some idea of
all that is going on, if only in order to know whether the problems that
have developed trace back to something wrong with your program or to
difficulties elsewhe%e in the system:

1. User identity verified

2. Command lines analyzed and verified.

3. Ope~ating systems prograas (temporarily) pass contrbl of computer
to PRS phase of SETL compiler program, which reads, analyzes, and validates
the SETL program which you hav~ supplied.

4. PRS phase completes, producing listing as
command including error diagnostics if any errors
errors have been detected. Otherwise a data
half-digested version of your program is saved
compiler phase.

specified by initiating
detected. Run may end if
file representing the

for use by the next (SEK)

s. Operating system programs (temporarily) pass control of computer to
SEK phase of SETL compiler, which continues analysis and translation of the
SETL program which you have supplied.

PROGRAMMING CONCEPTS. Page 1-29

6. Second (SEM) phase of SETL compiler is moved by operating system
programs to the computer's central memory, and scheduled for execution.

7. The operating system programs (temporarily) pass control of
computer to COD phase of SETL compiler, which completes the translation of
the SETL program which you have supplied.

8. The SEM phase completes, adding to the output listing, and
returning control to operating system programs. Additional error
diagnostics may be tramnsmitted to the output listing. Otherwise a data
file representing the partially translated version of your program is saved
for use by the next (COD) phase of SETL compiler.

9. The third· (COD) phase of the SETL compiler is moved by operating
programs to the computer's central memory, and scheduled for execution.

10. The operating system programs (temporarily) pass control of
computer to the COD phase of the SETL compiler, which completes the
translation of the SETL program which you have supplied.

11. The COD phase completes, adding final compilation messages to
output listing. Control is returned to the operating system programs, and a
data file representing the internal, translated version of your program is
saved for use by the SETL run-time system.

12. The SETL run-time system-program is moved into central memory of
the computer by operating system programs, and is scheduled for execution.

13. The operating system programs (temporarily) pass control of
computer to the SETL run-time system, which follows the instructions found
in the translated version of your program, producing output, and eventually
either terminating, aborting if an illegal situation is found, or being
forceably terminated by the operating system if it runs for long or produces
too much output.

14. If your program is being run interactively from a terminal, the
terminal will return to 'command mode' to await your next general
instruction. If the program is being run on a 'batch' system, an additional
'dayfile' summary of system actions will be transmitted to the end of your
output file which will then be released for printing. Later it will be
printed and delivered to your standard output pick-up point.

$

---------------------- ------

"HAPTER 2

DATA AND EXPRESSIONS

This chapter has two parts. Sections 1 and 2 deal with the various
kinds of data which the SETL language allows and is able to manipulate. The
remainder, Sections 3 through X, describes the various kinds of expressions
provided by SETL, using which new data objects can be formed. SETL provides
data objects and expressions which are significantly ~icher than the objects
provided in most other programming languages, so this chapter will be a bit
longer than most others.

Chapter Table Of Contents

2.1 The main classes of data objects
2.1.1 Integer, Real, and Boolean constants
2.1.2 Constant Sets

2.1.2.1 Sets of successive integers
2.1.3 Tuples

2.1.3.1 Tuples of sequences of integers
2.1.4 Maps
2.1.5 The size of composite objects: the operator

2.2 Exercises
2.3 Expressions and statements

2.3.1 Variable identifiers
2.3.2 Integer operators

2.3.2.1 Exercises
2.3.3 String operators
2.3.4 Boolean operators

2.3.4.1 Exercises: Boolean equivalences
2.4 Set operations and setformers.

2.4.1 Setformer expressions
2.4.2 Existential and universal quantifiers
2.4.3 Some illustrative one-statement programs

2.5 Tuple operators and tuple formers
2.5.1 Binary tuple operators
2.s.2 Unary tuple operators
2.5.3 Other tuple operators

2.6 Tuple formers. Simple tuple and string iterators
2.7 Map Operations

2.1.1 The image set operator f{x} and the image operator f(x)
2.7.2 The single-valued image operator f(x)
2.7.3 Some remarks on multi-valued maps
2.7.4 Two useful map operations

DATA AND EXPRESSIONS Page 2-2

2.7.5 Multi-parameter maps
2.8 Compound operators
2.9 Types and type-testing operators
2.10 The? operator
2.11 Exercises
2.12 General form of the SETL assignment

2.12.1 'Assigning forms' of infix operators.
Assignment expressions

2.12.2 Other positions in which assignment operators are allowed
2.12.3 The operators FROM, FROME, and FROMB

2.13 Operator precedence rules
2.14 Exercises
2.15 OMS and Errors

2.1. The main classes of data objects.

Like certain other programming languages, SETL allows one to manipulate
two main kinds of data items, namely simple data items and composite data
items. Four of the simple kinds of data items, namely

integers
floating point numbers
character strings
boolean values

are very much like those provided in most other programming languages. A
fifth kind of data item, called 'atoms', will be a bit less familiar, but
are still relatively easy to use. One very special quantity,. namely the
undefined value (called -OM-) is used frequently in SETL programs, and its
somewhat nonstandard properties will become fully familiar as we go along.
In addition to these simple data items, SETL provides exactly two kinds of
composite objects, namely

sets
and

tuples

It is the fact that it allows sets to be used freely that gives SETL its
name 'SET-L'.

Sets of _one particular kind, namely sets of ordered pairs, play
particularly important roles and therefore are sometimes referred t-0 by a
special term, namely

maps

These are all the classes of data values which the SETL language
allows.

2.1.1 Integer, real, and boolean constants

To use object~ of any of these kinds in a program we occasionally need
to be able to write them out directly. For example, to give a variable x
the value 3.14159 we may want to write

DATA AND EXPRESSIONS Page 2-3

X := 3.14159;

A value written into a program in this way is called a constant, a constant
denotation or (by some authors) a literal. The rules for the various forms
of constants allowed in SETL are as follows:

(a) integers: Integers are written in the standard way, as sequences
of decimal digits possibly preceded by a+ or - sign. Examples are

0
1066

-50
+35

001616232358

The way in which an integer denotation can be constructed can be summarized
by means of a diagram, or graph, which looks as follows :

+ digit

The diagram consists of rounded boxes, square boxes, and paths
connecting these boxes. Each diagram has an edge that leads
and edge that exits from it. A path through the diagram that
edges in the indicated directions is a valid instance
construct. The two kinds of boxes have the following meaning

with arrows
into it, and
follows the

of a language

(i) A rounded box denotes a symbol of SETL, which must appear as is
when used. For example, the+ and - signs, the parenthesis, keywords such
as IF, LOOP, EXISTS, and so on.

(ii) Square boxes correspond to other language constructs for which a
separate diagram is provided. For example, the construct -digit- is
described fully by a diagram that lists the 10 digits as valid instances of
this construct. A full list of diagrams for SETL is provided in Appendix A.
To test your understanding of these, ~erify that the diagram presented above
allows you to write -12345678 as a SETL integer, but forbids ->12345678.

(b) floating point numbers: Floating point numbers are written in one
of the notations that have become standard, namely either in decimal form or
in exponent form. A real number in decimal form is a sequence of decimal
digits, followed by a decimal point, followed by a second sequence of
decimal digits, and possibly preceded by a+ or - sign. The initial but not
the final sequence of digits can be omitted. Examples are

o.o
.3156 (but note that 3. is illegal)

1066.6
-so.so
+35.50

3.1415928

DATA AND EXPRESSIONS Page Z-4

A real number in exponent form is a real number in decimal form, immediately
followed by the letter E, and then by an integer (the exponent). Exampl~s
are

This last
notation
ordinary

l.OElOO
31415.9E-4
6.0E+23

form for real constants corresponds to the ordinary 'scientific'
for decimals, e.g. these three examples would be written in

scientific notation as

100
as 1.0 * 10

-4
, 31415.9 * 10

23
and 6.0 * 10 •

The previous description of floating point is summarized by the following
diagram:

• E sign

This diagram makes it clear that any valid floating point constant must have
one digit or more after the decimal point, but may have none before it.

(c) string: A string is an ordered sequence of zero or more
characters. To write a string as a constant we enclose it within (single)
quotes (i.e., apostrophes) as in the following examples:

'Brother, can you spare a dime?'
'*11-;*11'
, ,

This last example shows the null string, i.e., the (unique) string
consisting of zero characters. Note that blanks appearing within a string
are significant,·i.e., are treated in the same way as any other character.
Thus, although the number of characters in 'Hello' is 5, the number of
characters in 'Hello 'or' Hello' is 6, and the number of characters in '
Bello' is 7.

If the quote mark (i.e., apostrophe) itself is to appear within a
string s it must be written doubled, to indicate that it is part of sand
not the end of s. Thus, to write the string - Mary's mom - as a constant,
we would write

'Mary''s mom'

Note that the doubled apostrophe after the letter -y- serves to denote
a single apostrophe in the actual string constant.·

Any of the characters available in the machine which you are using can
be used in a string constant, although SETL programs which are to be run on
a variety of different computers should restrict themselves to the

DATA AND EXPRESSIONS Page 2-5

characters available on all computers to avoid character-set translation
problems.

Sometimes one will need to write a long string constant, so long that
it must cross a line boundary. This can be done by ending the first part of
the string with a quote {i.e. apostrophe) and then' continuing immediately
on the next line, with a second quote character to continue the string.
This "line break" sequence is called a string continuation and is not
included in the actual string value of the multiline string constant. This
means, for example, that we can write the string assignment statement

x :='Brother, can you spare a dime?'

on two lines as

x := 'Brother, can you spa'
're a dime?'

when there appears to be any reason to do so.

{d) Boolean values: There are two Boolean values, truth and falsity,
in SETL. These are written as TRUE and FALSE respectively. These values
are typically produced as the results of tests, e.g. the value of the
expression {3 > 1) is TRUE and the value of {1 < 3) is FALSE.

(e) atoms: atoms are generated names, or tags, that can be used to
label objects in a SETL program. Atoms are different enough from other data
types in their functions and use, that we will postpone their discussion
until Sec. 2.8.

Let us now discuss the rules for writing constant composite objects,
namely sets and tuples.

2.1.2 Constant sets.

Sets in SETL are finite collections of arbitrary values. To write a
set constant, we simply list the members of the set, with commas between
successive members, within th~ set brackets '{' and '}'. Three examples
are:

{1,2,3,4}
{'Tom', 'Dick', 'Harry'}
{TRUE,FALSE}

The first of these is the set of all integers between 1 and 4; the second
is a set of three strings, namely, 'Tom, 'Dick', and 'Harry'; the third is
the set consisting of the two possible boolean values TRUE and FALSE.

The 'null' or 'empty' set, i.e. the (unique) set having no members at
all, is a legal SETL value. It is written as follows:

{ }

Any legal SETL value {with the sole exception of the undefined value OM) can

DATA AND EXPRESSIONS Page 2-6

be a member of a set. Examples illustrating this are

{1,TRUE,'Tom'}
{1,TRUE,'Tom', {3}}

The first of these two examples is a perfectly legitimate set whose three
members are the integer 1, the Boolean value TRUE, and the string 'Tom'.
The second has four elements, the integer 1, Boolean value TRUE, string
'Tom', and the set {3} , i.e., the 'singleton' set whose sole member is the
integer 3 • This shows that sets need not be homog.eneous, i.e. are not
restricted to have members all _of the same kind, and that sets can be
members of other sets. Note also that the integer 3 is not a member of the
set {l,TRUE,'Tom', {3 }} , but that the set {3}, which is quite a different
thing, is. A more complex example illustrating this same fact is

(*) {l, {2}, {{3}}, {}, {5,6}}

This is a set of five members, namely: the integer 1, the set {2} whose
sole member is the integer 2; the set {{3}}, whose sole member is the set
{3} ; the null set{} , and the set {5,6} consisting of the integers 5 and
6. Note that in this example the integer 3 is neither a member nor a member
of a member of set (*); rather, it is a member of a member of a member of
(*).

As ordinarily in mathematics, set values never actually contain
duplicate members, and the members of a set have no implied order. Thus the
sets {1,1} and {1}, both of which are legal, designate exactly the same
set, namely the set whose sole element is the integer 1. Similarly, {1,2}
and {2,1} designate the same set, namely the set whose memb~rs are the
integers land 2. For a more complex example, note that

{l, 2, {3,4}}
and

{{4,3},2,l}

designate the same set, namely the set whose three elements are the integers
l and 2 and the set {3,4} (but {1,2,3,4}, which is a set of four elements,
namely the integers l through 4, is different).

Since the elements of a set are not considered to have any particular
order within the set, it is incorrect to speak of the first, second, or last
element of a set. That is, it is incorrect to speak of the string 'Tom' as
the first element of the set

{'Tom', 'Dick', 'Harry'}

or to speak of the string 'Harry' as its last element, since this same set
can as well be written as

{'Harry', 'Tom', 'Dick'}
or

{'Dick', 'Tom', 'Harry'}

In working with sets, one must always remember that their elements have no
particular order, and that duplicates are eliminated.

DATA AND EXPRESSIONS Page 2-7

2.1.2.1 Sets of successive integers.

Sets whose elements are successive integers, such as

{1,2,3,4,5,6,7}, {-3,-2,-1,0,l,2,3}

arise often enough that a special notation is provided for them. To
describe the set of all integers lying in the range M to N inclusive, where
Mand N are integers, we write:

{M •• N}

The two dots (not three, and not commas!) stand for all the integers M+l,
M+2, and so on up to N-1. Sets of integers of the form:

{1,3,5,7,9} or {10,5,0,-5,-10,-15}

that is to say, sets that represent an arithmetic progression, are also
useful enough to be given their own notation in SETL: We represent such
sets by giving the first, second, and last element of the progression, as
follows:

{1,3 •• 9} {10,5 •• -15}

note again the use of two dots to indicate middle part of the sequence.
These notations will be used frequently in what follows.

When sets are printed, their elements can appear in any arbitrary
order. For example,

print({l •• 10})

might be expected to produce {1,2,3,4,5,6,7,8,9,10} •
it out, you will see the following appear:

However, if you ~ry

{4,5,6,7,1,2,3,9,10}

(or perhaps some similar permutation of the integers from 1
emphasizes the fact that the elements of a set have no
the set {1 •• 10} contains the integers in the range 1 •• 10,
these integers have no particular order.

2.1.3 Tuples.

to 10). This
particular order;
but in the set

In contrast to sets, tuples (sometimes also called vectors) in SETL are
finite ordered sequences of arbitrary elements. To write a tuple constant,
we simply list its successive components, in order, within the tuple
brackets '[' and ']'. Components in such a list are separated by commas.
Three examples are

[1,2,3,4]
['Tom', 'Dick', 'Harry']

DATA AND EXPRESSIONS Page 2-8

[TRUE, FALSE]

The successive components of a tuple, as distinct from the elements
set, do have a definite order within the tuple. Thus a tuple is a
different kind of object from a set, even though the components of the
may all be elements of the set, and vice versa. As an example of
rules, note that

[1,2,3,4] and {1,2,3,4}

of · a
quite
tuple
these

are regarded in SETL as entirely different objects, and, indeed, as objects
of entirely different types; the first is a tuple, the second is a set.
Note also that [1,2,3,4] and [2,1,3,4] are different objects, since the
components of a tuple are considered to have a specific order and two tuples
are only equal if they have the same components in the same order; however,
the sets {1,2,3,4} and {2,1,3,4} are the same, since a set, as distinct from
a tuple, is defined by the collection of its elements, not by their order.

Tuples, like sets, need not be homogeneous, i.e. the components of a
tuple need not all be of the same type. Tuples can have sets as their
components and sets can have tuples as their members. Indeed, sets and
tuples can be nested within each other to arbitrary depth as members and
components, permitting construction of a great variety of data objects.
Examples are

(1)
(2)
(3)

[1, 'Tom', {'Dick'}, ['Harry']]
{ 1, 'Tom', ['Dick'], {'Harry'}}
[1, {'Tom', ['Dick', 'Harry']}]

The first of these constants represents a tuple of four components, which,
in order, are the integer 1, the string 'Tom', the singleton set {'Dick'},
and the one-component tuple ['Harry']. The second represents a set of four
elements, which (in no particular order) are the integer 1, string 'Tom',
the one component tuple ['Dick'], and the singleton set {'Harry'} • The
third represents a tuple of just two components, namely the integer 1,
followed by the two-element set {'Tom', ['Dick', 'Harry']}. We can
therefore assert that the string 'Harry' is the first (and only) component
of the fourth component of the tuple (1); that 'Harry'is also a member of a
member of the four-element set (2); · and finally that 'Harry' is a member of
the second component of a member of the second component of the tuple (3).

Another· example of a perfectly legal though highly nested SETL
construction is

{{{{}}}}

this designates a set (let's
member of the only member of
occasionally (though rarely)

call its), and the
the only member of s.
in real SETL programs.

empty set is the only
Such constructs are used

Repetition of tuple components, as distinct from repetition of set
elements is logically possible and changes the tuple value. For example the
three tuples

["Tom'] , ['Tom','Tom'] , and ['Tom', 'Tom', 'Tom')

DATA AND EXPRESSIONS Page 2-9

are all distinct; the first has just one component and is of length l; the
second is of length 2; and the third is of length three, and has three·
components: its first, second, and third components are all defined, and
each of them is the string 'Tom'. In contrast, the constants

{'Tom'}, {'Tom','Tom'}, and {'Tom','Tom','Tom'}

designate the same set, which has just one element, namely the string 'Tom'.
Since tuples, as distinct from sets, are consider~d to have a definite
order, It does make sense to refer to the 'first', 'second', ••• , 'last'
component of a tuple. For example, the first component of

['Tom', 'Dick', 'Tom', 'Tom']

is the string 'Tom'; its last (also fourth) component is also
second component is 'Dick'.

'Tom';

There is a (unique) 'null' or 'empty' tuple, which is·written as ·

[J

This· plays much the same role for tuples that the important null set,
{}, plays for sets.

2.1.3.1 Tuples -2..! sequences of integers.

its

Tuples whose components constitute an arithmetic progression can be written
in a special SETL notation similar to that used for sets of integers. The
tuple construct:

[M •• NJ

where Mand N are integers, describes the tuple whose components are the
integers M, M+l, M+2 and so forth, up to N. If N is less than M, this
construct is equivalent to the empty tuple.

Similarly, an arithmetic progression of the form

M, M+k, M+2*k, •• N

where k ~s some integer (positive or negative), can be described by writing
its first, second and last component; specifically, the tuple whose
components constitute such a sequence can be written as:

(N, N 1 • • M]

where Ml, the second term in the sequence, has the value (M+k). For
example, the construct (3,6 •• 600) represents a tuple whose components are
the first 200 positive multiples of 3, in increasing order. This construct,
and the related set construct {N, Nl •• M}, are simple instances of a general
numeric iterator construct, which will be discussed in detail in Sec.J.x.y.

DATA AND EXPRESSIONS Page 2-10

In SETL a map is simply a set all of whose elements are pairs, i.e.
are tuples of length 2. Some properties of maps can be· deduced from their
structure, I.e. from the fact that all their components are pairs. But
maps are importah-t enough to have a number of operations that apply solely
to them. We will see that maps are one of the most expressive programming
features of SETL, and that the proper use of maps is a hallmark of good SETL
style. Maps allow us to associate elements of various collections of
objects: countries with their capitals, numbers with their cubes, people
with their dates of birth, courses with their sets of students, and so
forth. Suppose for example, that the children in a family, listed in
increasing order of age, are

Sue, Tom, Mary, Alphonse.

Suppose that we want to associate each child x in this family with
number of younger sisters that x has. For this purpose, we could use
following map:

(1) { ('Sue',OJ, ['Tom',1], ('Mary',1), ('Alphonse',2)} •

Similarly, the map

(2) {['Sue',OJ, ['Tom',OJ, ['Mary',1], ('Alphonse',1)}

the
the

associates each child x with the number of younger brothers that x has. The
map

(3) {['Sue', {'Mary'}], ['Tom', {'Sue' ,'Mary'}],
['Mary', {'Sue'}], ['Alphonse', {'Sue' ,'Mary'}]}

associates each child x with the set of sisters of x. Note therefore that
maps can be used~ associate values of~~ with other values of any
llll•

(4)

Another interesting map is

{ ['Sue', 'Mary'],
{['Mary','Sue'],

['Tom','Sue'], ('Tom','Mary']},
['Alphonse';'Sue'], ['Alphonse','Mary']}.

This contains a separate pair associating each child x with each of the
sisters of x (rather than one pair associating x with the set of all the
sisters of x ·cas in (3); (3) and (4) are different, but closely related and
record much the same information). Since several different pairs in (4)
(e.g. ['Tom','Sue'] and ['Tom','Mary']) have the same first component, (4)
is called a multivalued map. Maps for which this does not happen, i.e. in
which no two distinct pairs share the same first component, are called
single-valued maps.

Given a map M, we can form the set D of all first components of pairs
in M. This is called the domain of M, and is written

DOMAIN M

We can also form the set R of all second components of pairs in M, which is
called the range of Mand is written

DATA AND EXPRESSIONS Page 2-11

RANGE M

The following table shows the domain and range of the maps appearing in
examples just presented.

map
number

(1)
(2)
(3)

(4)

domain M

{'Sue','Tom','Mary','Alphonse'}
{'Sue','Tom','Mary','Alphonse'}
{'Sue','Tom','Mary','Alphonse'}

{'Sue'},
{'Sue','Tom','Mary','Alphonse'}

range M

{0,1,2}
{0,1}

{'Mary'}, {'Sue','Mary'}}
{'Sue', 'Mary'}

Maps and ihe map-related operations of SETL, which will be presented in
Section X below, are the most characteristic and important features of the
language.

Be sure you understand the rules and distinctions concerning sets and
tuples"; duplicates, ordering, nesting, and maps presented in the preceding
pages. Review this material if necessary, and work the exercises of Section
2.2. This material must be mastered before proceeding, since it will be
used constantly in all later chapters.

2.1.s The size of composite objects: the# operator.

One of the most important characteristics of a composite object is the
number of components which it has. SETL provides provides a single operator
to determine the size of sets, tuples, maps and strings : the'#' operator.
The'#' operator is called indifferently length, size, or cardinality.

When applied to a string it yields its length, i.e. the number· of
characters is contains; when applied to a tuple, it yields the length of
the tuple, i.e. the largest position in the tuple that is occupied by a
component whose value is not OM; and when applied to a set it yields its
cardinality, i.e. the number of its ~lements. For a map, it yields the
number of pairs in it • Thus

#'Tom'

#'Tom is hot'

#['Tom','Dick','Harry']

#['Tom','Tom','Tom']

I {'Tom','Dick','Harry'}

{'Tom','Tom','Tom'}

#{}

is 3, since 'Tom' has 3 characters

is 10, since 'Tom is hot' has ten characters
(including 2 blanks)

is 3, since this tuple has 3 components

is 3, since this tuple also has 3 components

is 3, since this set has 3 elements

is 1, since this set has 'Tom' as its only
member

is O, since the null set has no members

DATA AND EXPRESSIONS

[1 ,,,
{[4,2], [4,-2) [0,0)}

Page 2-12

is O, since the null tuple has no components

is O, since the null string contains no
characters

is 3, becuase this set (or map) contains three
elements (pairs).

DATA AND EXPRESSIONS

2.2 Exercises

1. Which of the following objects are the same,
and which are different?

(l .a)
(1. b)
(1. C)
(1. d)
(1. e)
(1. f)
(1. g)
(1 .h)
(1. i)

'The'
'The man'
['The', 'man']
{'The','man'}
{'The man'}
{ 'The','The','man'}
['The','The','man']
['The','man']
['The', 'man']

and
and
and
and
and
and
and
and
and

'The'
'Theman'
['man' , 'The']
{'Man','The'}
{ 'man The'}
{'The','man'}
['The', 'man']
{'The','man'}
{'The, man'}

2. Write the size #x of the following strings, sets,
and tuples. For each set and tuple, also write
the list of all its integer elements or components
and the size of each of its set, tuple, or string
elements or components.

(2.a) {1,2,2,'Tom' }
(2.b) (1,2,2,'tom']
(2.c) {1,{2,2} ,'Tom'}
(2.d) { 1, 1 , { } , {}}
(2.e) [{} ,[[)]]
(2.s.f) 'abracadabra'
(2.g) 'abracadabra'
(2.h) 'abra, cadabra'
(2.i) {l,'abra','cadabra'}
(2.j) {1,'abra''cadabra'}
(2.k) {1,'abra,cadabra'}
(2.1) {1,'abra','cadabra' }
(2.m) {1,'abra'',''cadabra'}
(2.n) {[],", {} ,'[]',' {[)} , , '{}'}

3~ Write the size of the first, second, and last component
of each of the following tuples:

(3.a)
(3.b)
(3.c)

['Tom','Dick','Harry'J
['Tom','Dick','Harry','Tom']
['Tom', ['Tom'],' [Tom]','(]',","'')

4. Indicate whether Tom is a member, component, member of
component, component of member, component of component, etc.
of each of the following sets or tuples:

(4.a)
(4.b)
(4.c)
(4.d)
(4.e)

[1,'Tom'J
{ ['Tom' ,31, ['Dick' ,4), ['Harry' ,5)}
{ {'Tom','Dick','Harry'}}
[[(['Tom'J,'Tom'J,'Dick', 'Tom', 'Harry')]
['Tom' , 'Dick' J , 'Tom' , 'Harry']

5. Write a map which indicates the age of each of your brothers
and sisters by associating their age with their first name.

Page 2-13

DATA AND EXPRESSIONS Page -2-14

Write the range and domain of this map.

6. Write a map which associates each component of the tuple
['Tom','Dick','Harry'] with the square of th~ component length.
Write the range and domain of this map.

7. How many maps are there whose domain is {'Tom','Dick'}
and whose range is {'Sue','Hary'}? How man~ of these
maps are single-valued?

8. A map M associates the age of each child in a family
with the name of the child. The domain of Mis {7,9,13}
and the range is {'Sue','Mary','Tom','Dick'} •
What is interesting about this family?

9. Consider the following map M:

{['Smith', {['Sue',11],['Jim',13]}],
['Jones', {['Albert', 1], ['Anna' ,3], ['Ron' ,9]}] ,
['Skallagrim', { ['Thorolf', 7], ['Egil' ,5], ['Asgerd' ,4]}] }

What information might this map represent? What is its domain?
What is its range?

10. Let S be the set {'Tom',{'Dick,['Harry','Arthur',{'Tom'}]}}
'Dick' is a member of s. Match each name in the following list
with the manner in which it appears in S:

(a)Tom
(b)Harry
(c)Arthur

(i)component of member
(ii)member of component of member
(iii)member

11. Consider the map Mas a set. What are all the members of this
set? Which of the components of the members of Mare sets, and what are the
members of these members? What are all the components of the members of all
the components of the members of M which are sets? What are all the lengths
of all the components of the members of M which are not sets?

12. Write a map which associates each of the Pacific coast states with the
name of its state ~pital.

13. For bow many integers between 1 and 100 is I=S*(I DIV 5) true? For
exactly which integers is this true? For how many integers between 1 and
100 is I•(S*I) DIV 5 true?

DATA AND EXPRESSIONS Page 2-15

2.3 Expressions and Statements

The use of expressions like those of algebra are one of the main
features of many programming languages, including SETL. Expressions denote
values, which can be printed, saved as the values of variables, etc. The
following are typical (though simple) expressions:

3+5*(7-11)

17.0/31.3131 + 19.9

X + y

xl+x2+x3+yl*y2*y3

As these examples show, an expression can involve
variables (also called identifiers). Values are
assignments, of which the following, which assigns
variable zzl, is typical:

zzl := 3;

both constants and
given to variables by

the value 3 to the

Note that an assignment is written using the := (colon-equal) sign,
sometimes called the assignment operator. The assignment is the first type
of statement that we will use. Statements are the basic building blocks out
of which programs are constructed. In this chapter we will only use two
types of statements : the assignment statement, and the print statement,
whose purpose is to display (on the screen, or on an output listing) the
result of a computation. The print statement has the format :

PRINT(expressionl,expression2 •••)

that is to say, it consists of the keyword PRINT, followed by a list ·of
expressions, enclosed between parentheses, and separated by commas. Any
number of expressions can appear in a print statement. A print statement
that does not include a list of expressions will simply produce a blank
line.

A variable appearing in an expression always stands
value. Thus, if we write the commands

zzl := 3;
zz2 := 17;
print(zzl) ;
print ;
print(zzl+zz2);

for its current

The current value of the variables zzl and zz2 at the moment that the
-print- instruction is executed will be 3 and 17 respectively, so that the
output of this program fragment will be :

3
20

DATA AND EXPRESSIONS

(Note the blank line separating the two printed values).

Suppose next that we write the commands

zzl := 3;
zz2 := 17;
print(zzl);
zzl := 4;
print(zzl + zz2);
print(zzl)

This will produce the output

3
21
4

Page 2-16

because the value of the variable zzl has been changed by the assignment
statement 'zzl := 4' after the first print statement but before the second
'print' statement, and because (we say it again) a variable apparing in an
expression always stands for its current value, i.e. the last previous
value given to the variable by any assignment (or assignment-like)
statement. Do not .&.£ .Q.!! before ~ understand this point. To test
yourself, see if you can tell what output the following sequence of command
will produce:

X : = 1 j
print(x);

s : • 2;
print(x);

y :- 3;
print(x + y);

X : • 0 i
print(x + y);

y : • O;
print(x + y);

X : • 1;

print (x + x);
y :• l;

print(x + x);
print(x + y);

Expressions can be compounded, that is, an expression el can be
substituted for any variable appearing in another expression e2, thereby
generating a more complicated but still legal expression. For example, by
substi~uting x+y for z in 2*z, one generates the expresion 2*(x+y). Then,
by substituting 3*a*b for yin the result, one generates the expression

DATA AND EXPRESSIONS Page 2-17

2*(x+3*a*b).

As in algebra, the order in which a compound expression containing many
operators is evaluated is determined by the 'precedences' of the operators
involved, as modified by the rule that subexpresions enclosed within
parentheses must always be evaluated before any operation is applied to
them. Multiplication and division are given higher precedence than addition
and subtractions, and are therefore performed before the latter. For
example, 1+2*3 has the value 7 rather than 9, because the multiplication 2*3
is performed before the addition; but (1+2)*3 has the value 9 since the
parentheses force the addition to be performed first.

Both binary operators like the'+' in x+y, and unary operators like the
' ' in x+(-y) can appear in expressions. As these examples indicate, some
operator signs like ,_, can designate both binary and unary operators:
unary if they are preceded by a left parenthesis or by another operator,
binary otherwise. On the other hand, some operator signs are only used to
designate binary operators, while others are only used to designate unary
operators. All the (binary and unary) SETL operators will be described in
this Chapter and in Chapter V, and are summarized for ready reference in
Section XXX. Section 2 .11 contains a t-able giving the precedences of all
operators.

DATA AND EXPRESSIONS Page 2-18

2.3.1. Variable identifiers

Almost all programming languages make it possible to perform
calculations and then save their results for re-use later. This is done by
assigning the results of calculations to a variable identifier (sometimes
abbreviated simply as variable, or as identifier). An example is

X := 1 + 2 + 3 + 4 + 5;

which saves the result of the expression 1 + 2 + 3 + 4 + 5 appearing to the
right of the assignment operator :=, making the result the value of the
variable identifier x appearing to the left of this assignment operator.
Since the value in question is 15, the command

PRINT(x};

would then print the current value of the variable x, namely 15.

Identifiers are composed of the letters, digits, and the underscore
character ' '• The first character of an identifier must be a letter. The
following are examples of valid identifiers:

X

x23
bigl
End_of_Input_flag
set_OF_garbage_symbols
zl23456789
eta_

On the other hand, the following are not valid identifiers:

big 1
x.23
23x

because the first two contain characters other than letters, digits, and
underscores (blank in the first case, period in the second}, while the third
begins with a digit rather than a letter.

Identifiers can be of any length, but cannot be split beween two lines.

Except within quoted string constants, capitalization is ignored by the
SETL compiler. Thus all the identifiers

Big_set
big_set
BIG_SET
big_SET
BiG_sEt

are considered to be identical.

DATA AND EXPRESSIONS Page 2-19

The following diagram describes the structure of valid identifiers :

The proper choice of identifiers can make an important contribution to
the clarity and professionalism of your programs. If you choose identifiers
thoughtfully, your program will be easier for others to read and understand,
and, equally important, will be easier for you to understand. Careless
errors are -also less likely to occur, since the inner 'rhythm' of a
well-chosen set of identifiers will make errors easier to detect when your
program is written, typed, and proofread. Here are some useful guidelines
for the choice of identifiers:

(a) Choose 'mnemonic' identifiers, i.e. identifiers which explain the
meaning of the quantities which they represent. E.g., an identifier which
represents some sort of upper limit value in a program should be called
upper_limit or uplim rather than simply u or L.

(b) Avoid ambiguity in the choice of identifiers, and use standard
spellings. It is certainly bad practice to have two different identifiers
called, e.g., STACK and STAK. It is also bad practice to use variant
spellings like STAK, since without noticing it you may slip back to the
standard spelling. Use the standard spelling STACK instead. (Note in
connection with (a) and (b) that some of the SETL dump facilities; which
when switched on (see section X) print out information useful for
pinpointing program errors, truncate identifier names to eight ·characters.
It is therefore a good idea to ensure that variable names used in contiguous
contexts can be identified using their first eight characters only, i.e.
use names like TABLE_l_IDENTIFIER and TABLE_2_IDENTIFIER rather than
TABLE IDENTIFIER 1 AND TABLE_IDENTIFIER_2, which could not be told apart in
an error dump.)

DATA AND EXPRESSIONS Page 2-20

2.3.2 Integer operators: +,-,*,**,DIV,MOD,=,/m, >, <>, >=, <>=, MAX, MIN,
ABS, EVEN, ODD, FLOAT, RANDOM.

We begin our systematic description of the operators SETL by discussing
those operators that take arguments of integer type. Some of these
operators yield a value of the same type: for example the familiar
arithmetic operators of addition, subtraction, multiplication and division.
Another group of integer operators yields a truth value: TRUE or FALSE.
This is the case for the comparison operators (Greater than, equal to, etc.)
These operators are often called predicates. Finally, a conversion
operator, namely FLOAT, allows us to convert an integer into a floating
point quantity. The binary integer operators provided by SETL are as
follows:

i+j computes the sum of i and j

i-j computes the difference of i and j

i*j computes the product of i and j

i**j computes i to the jth power. An error results if
j is negative or if i and j are both zero.

i DIV j computes the integer (whole number) part of the
quotient of i by j. The fractional part of the
quotient is simply discarded. An error results
if j = O. See the examples given below for the
way in which i DIV j works if one of i or j is negative.

i MOD j computes the remainder left over when i is divided by j.
An error results if j = 0 • The result is always positive.

i MAX j yields the larger of i and j

i MIN j yields the smaller of i and j.

Integer predicates

i - j yields TRUE if i and j are the same, FALSE otherwise

i /• j yields TRUE if i and j are different, FALSE otherwise

i > j yields TRUE if i is bigger than j, FALSE otherwise

i < j same as j > i

i >• j yields TRUE if i is no smaller than j, FALSE otherwise

i <• j same as j >• i

Examples of use-of these operators are

print (1+1);
print(l-1, 1-10);

yields
yields

2
0 -9

DATA AND EXPRESSIONS Page 2-21

print(1*2, l*(-2), (-1)*2, (-1)*(-2)); yields 2 -2 -2 2
print(2**3,(-2)**3,2**0,(-2)**0); yields 8 -8 1 1
print(! DIV 3' 2 DIV 3, 3 DIV 3'

4 DIV 3) ; yields 0 0 1 1

print(! MOD 3' 2 MOD 3, 3 MOD 3,
4 MOD 3) ; yields 1 2 0 1

print(7 DIV 3, (-7) DIV 3'
7 DIV(-3), (-7) DIV(-3)); yields 2 -2 -2 2

print(7 MOD 3, (-7) MOD 3) ; yields 1 2

print(! MAX 2 ' (-1) MAX (-2)); yields 2 -1
print(! MIN 2' (-1) MIN (-2)); yields 1 -2
print(l = 1 ' 1 = 2); yields TRUE FALSE
print(l I= 1 ' 1 I= 2) ; yields FALSE TRUE

print(! > 1 ' 1 > 2' 2 < 1) ; yields FALSE FALSE FALSE
print(l > 1 ' 1 < 2' 2 < 1) ; yields FALSE TRUE FALSE
print(! >= 1 ' 1 >= 2 ' 2 >= 1) ; yields TRUE FALSE TRUE
print(! >= 1' 1 <= 2' 2 <= 1) ; yields TRUE TRUE FALSE

Concerning i DIV j and i MOD j, it is useful to note that for i (and j)
positive we always have i = (i DIV j) *j+(i MOD j), but for i negative this
is false, e.g.

but
(-7) DIV 3

(-7) MOD 3

is -2,

is 2.

Unary integer operators compute a result value from a single
Two of these operators are predicates, namely ODD and EVEN.
integer operators provided are as follows:

+i has the same value as i

-i computes the negative of i

ABS i computes the absolute value of i

EVEN i yields TRUE if i is even, FALSE if i is odd

ODD i yields FALSE if i is even, TRUE if i is odd

FIX i converts the floating-point (i.e. real) number i to
the corresponding integer value. (See Section 5.1 for a
discussion of real numbers).

FLOAT i converts the integer i to the corresponding floating

input i.
The urtary

point (i.e. real) value. (See Section 5.1 for a discussion
of floating-point numbers).
If the conversion causes overflow, which is possible
if i has a very large value, then an error results.

DATA AND EXPRESSIONS Page 2-22

RANDOM i returns an integer selected at random from the range
from zero to i, including both end points. For example,
RANDOM 5 will give one of the six integers 0,1,2,3,4,5.
Successive uses of this operator will in general give
different randomly selected values.

Examples.of these unary operators are:

print(+l, +(-100));

print(-1, -(-100));

print(ABS 1, ABS(-2));

print(EVEN 1, EVEN 2, EVEN (-1));

print(ODD 1, ODD 2, ODD (-1));

print(FLOAT 1, FLOAT (-1), FLOAT 2);

print(RANDOM 5, RANDOM 5, RANDOM 5);

yields 1 -100

yields -1 100

yields 1 2

yields FALSE TRUE FALSE

yields TRUE FALSE TRUE

yields 1.0 -1.0 2.0

yields O 4 3, or
some other sequence of integers
chosen independently and at random
from the range O through 5
inclusive.

print(RANDOM(-5),RANDOM(-5),RANDOM(-5)); yields -2 0 -4 or
some other sequence of integers
chosen independently and at random
from the range O through -5
inclusive.

DATA AND EXPRESSIONS

2.3.2.1 Exercises

Ex. 1 What output will be produced by the following code?

Program one ;
x:•l;y:=2
print(x+y);
x:=3;
print(x+y);
y:=x+y;
print(x+y);

END ;

Ex.2 What is the output producd by the following program?

PROGRAM multiply_x_by_y;
x:=l;y:=2;
print(xy);
END;

Ex. 3 What output will the following code produce?

program thr3 ;
number:=1; Number:=2; NUMBER:=3;
print(number+Number+NUMBER);
number:=number*NUMBER;
print(number+Number+NUMBER);

END ;

Ex. 4 Which of the following are valid identifiers?

(4a) number_l (4b) number 1 (4c) number.1

Ex. 5 What output will the following code produce?

PROGRAM five;
numberl:=1; NUMBERl:=2; Number_l:=3;
print(numberl+Number_l+Numberl);
numberl:=Numberl*Number-1;
print(number_l+Numberl+NUMBERl);

END PROGRAM;

Ex. 6 What output will the following code produce?

PROGRAM xs;

x:=1; y:=2; z:=3; w:=4;
print(x+y), ~*(x+y), z*x+y, w+z*(x+y));
w:=2;
print(w+z*x+y,z*y/w, y**(x+y)*z);

END PROGRAM xs;

Page 2-23

DArA AND EXPRESSIONS

Ex. 7 Which of the following are valid expressions?

(7 .a) X (7.b) x+y (7 .c) (x+y)**w
(7 .d) (x+y)**w**w (7 • e) a - 1 DIV (x+y)**w**w

Ex. 8 Evaluate the following constant expressions:

(8.a) 2**2 (8.b) 2**2**3
(8.d) 2**(2**3) (3.e) 3 DIV 2
(8.g) (1+2) DIV 4 (8.h) (-11) MOD 5
(8.1) 2**2**3/•64 (8.m) 3-0 I 3
(8.o) (-35) MIN 1

Ex. 9

(9.a)
(9.b)
(9.c)
(9.d)
(9.e)

Simplify the following expresions:

+-+--x
----x
x MAX y MIN y
x MAX (y MIN y)
x MAX x

(8.c)
(8. f)
(8.i)
(8.n)

Ex. 10

(10 .a)
(10 .c)
(10 .e)
(10.g)

Evaluate the following constant expressions:

ABS -1 + ABS -2
ABS (1 MIN -1)
1 MIN 2 MIN 3
2 + 2 MAX 3 + 3

(10.b)
(10.d)
(10. f)
(10.h)

ABS(-1 + ABS -2)
ABS (1 MAX -1)
1 MAX 2 MAX 3
-2 -2 MAX -3 -3

Page 2-24

(2**2)**3
1 DIV 2
-11 MOD 5
3-0<3

Ex. 11 Re-express the following expressions in as simple a way as you car
using the MAX, MIN, and ABS operators:

(11 .a)
(11.c)
(11 .d)

x MAX -x (11.b) x MIN -x
(x MAX o) + (x MIN 0)
(x MAX 0) + (-x MAX 0)

DATA AND EXPRESSIONS Page 2-25

String operators: S(i), S(i •• j), S(i ••), +, *, •, /=,
>=, >•, #, ABS, CHAR, STR

>, <,

Binary string operators compute a result value from two inputs, at
least one of which is a string. Some of these operators take two strings as
their arguments, while others take a string and a positive integer as their
arguments. Some of these operators are predicates, and perform string
comparisons analogous to the integer comparisons discussed above.

In what follows, sand ss are always strings,
integers.

while i and j are

The string operators are the following:

s(i)

s(i •• j)

s(i ••)

s + ss

i * s

s = s

s /= ss

s > ss

s < ss

computes the i-th character of the strings; the result
is a one-character string. If i is negative, an error
results; if i is greater than the length of s, then the
value OM is returned.

this 'string slice' operator computes and returns the
substring of s which extends from its i-th through its
j-th characters, inclusive. If i = j-1, a null string
is returned. See Table 2.1 below for a description of the
treatment of other marginal and exceptional cases for this
operator. (Note that this operator actually has three,
rather than two, arguments.)

this computes and returns the substring of s which extends
from its i-th character through the end of s, inclusive.
See Table 2.1 below for a description of the treatment of
marginal cases of this operator.

concatenates the two strings sand ss.

concatenates i successive copies of the strings.
If i • O, then i *sis he null string. If i < 0
then an error results.

yields TRUE ifs and ss are identical, FALSE otherwise.

Yields TRUE is sand ss are distinct, FALSE otherwise.

yields TRUE ifs comes later than ss in standard
alphabetical order, FALSE otherwise. (Note that this
operation, as well as the other string comparisons
s < ss, s >• ss, s <• s' are implementation
dependent, as they depend on an assumed alphabetical
order of characters ('collating order'). Of course,
alphabetic characters will always have their standard
order, but the relative order of punctuation marks, and
also the way in which alphabetics compare to numerics,
may differ from implementation to implementation.)

yields TRUE ifs comes earlier than ss in standard

- -- ---------------------

DATA AND EXPRESSIONS Page 2-26

s >• ss

s <• ss

s IN ss

s NOTIN ss

alphabetic order, FALSE otherwise.

yields TRUE ifs is either identical with is or
comes later in standard alphabetic order, FALSE
otherwise.

yields TRUE ifs is either identical with ss or comes
earlier in standard alphabetic order, FALSE otherwise.

yields TRUE ifs occurs as a substring of ss, FALSE if not.

yields FALSE ifs occurs as a substring of ss, TRUE if not.

To give examples of these operators, we shall suppose that the value of sis
the string 'ABRA', and that the value of ss is the string 'CADABRA'. Then

print(ss(l),ss(4));

print(s(l •• 2),s(2 •• 4),s(2 •• 2));

print(s(l •• O));

print(s(l ••),s(2 ••),s(3 ••),s(4 ••));

print(s(6 ••));

print(s(6));

print(s+ss);

print(3*s);

print(s > ss,ss >s);

print('AA' > 'A', 'A' > '') ;

print('AA' < 'A', 'A' < '') ;

print(s IN as, ss IN s);

yields

yields

yields

yields

yields

yields

yields

yields

yields

yields

yields

yields

C A

AB BRA B

the null string

ABRA BRA RA A

the null string

OM

ABRACADABRA

ABRAABRAABRA

FALSE TRUE

TRUE TRUE

FALSE FALSE

TRUE FALSE

The unary string operators compute a value from a single string input
s. These operators are

#s

ABS s

CHAR i

yields the number of characters in the strings.

heres must be a one-character string or an error results.
Ifs is a single character, then ABS s returns the internal
integer code for this character. Note that ABS and CHAR are
are inverse operators.

here i must be an integer-which can be the internal code of
some character c. If this is so, then CHAR i yields the
single character c (i.e., a 1-character string). Otherwise,
an error results. (The range of integer values used as
character codes is implementation independent.)

DATA AND EXPRESSIONS Page 2-27

The following table shows the way that the string extraction operators
s(i), s(i ••), and s(i •• j) behave in various marginal cases.

Table 2.1. Behavior of String Operators in Marginal Cases

Operator Condition E f feet

s(i) i negative or zero causes error
s(i) i > #s yields OM
s(i ••) i negative or zero causes error
s(i ••) i - #s+l returns null string
s(i ••) i > #s+l causes error
s(i •• j) i negative or zero causes error
s(i •• j) i > j+l causes error
s(i •• j) j negative causes error
s(i •• j) j > Is causes error
s(i •• j) i - j+l returns null string

To each string extraction operator there corresponds
assignment operator which modifies the string section
corresponding assignment operator would retrieve. These string
are indicated by writing either s(i), s(i ••), or s(i •• j) to the
assignment operator':•'• For example, ifs is a string, we can
section of it extending from its second to its fourth character
by writing

(1) s(2 •• 4) :• x;

a string
which the

assignments
le ft of the
modify the
(inclusive)

where xis any string. Note that x need not be a string of
that the assignment operation (1) can lengthens (if x has
than 3) or shorten it (if x has length less than 3). Similar

length 3, so
length greater
remarks apply

- to the string assignment operation

s(i ••) :• x;

which is treated exactly as if it read

s(i •• #s) :=- x;

However, the r~ght-hand side of the simple string assignment

s(i) :• x;

must be a single character, or an error will result.

For examples of all this, suppose that sl,s2, ••• ,s7 are seven
variables, all having the string value 'ABRACADABRA' initially. Then the
following assignments produce the indicated results.

s1(3 •• 5) : = 'XXX'; $ now sl ... ABXXXADABRA
s2(3 •• 4) := 'XXXXXX'; $ now s2 - ABXXXXXXCADABRA
s3(3 •• 4) : = 'X'; $ now s3 .. ABXCADABRA
s4(3 •• 4) : = , , .

$ now s4 - AB CAD ABRA
' s5(7 ••) : = 'XXX'; $ now s5 - ABRACAXXX

------- -----~---

DATA AND EXPRESSIONS Page 2-28

s6(7 ••) :-- " ;
s7(1) := 'Y';

$ now s6 •
$ now s7 =

ABRACA
YBRACADABRA

To summarize, the three string assignment operators are:

s(i) := x;

s(i •• j) := x;

s(i ••) := x;

x must be a single character, and i must be an integer
and lie between land #s, otherwise an error results.
This modifies the i-th character of s.

i must be an integer at least equal to 1 and at most equal
to j+l or an error results. j must also be an integer, and
cannot exceed s. The section of s between i and j is made
equal to x, which may expand or contracts. Note that if
i=j+l, x will be inserted into s immediately after its i-th
position. The case i = #s+l, j •#sis legal, and adds x to
the end of s.

this is treated exactly as if it read s(i •• #s) := x. Thus
i must be an integer which is at least 1 and at most #s+l.

As an example of the case i = #s+l, which is allowed, note that
and s2 are both initially equal to 'ABC', then both the assignment

if sl

sl(4 •• 3) := 'XXX'

and the assignment

s2(4 ••)

yield 'ABCXXX'.

: • 'XXX';

DATA AND EXPRESSIONS Page 2-29

Boolean Operators: AND, OR, IMPL, NOT

Boolean operators compute a boolean result from one or two input
boolean quantities c, cc. That is, both the inputs of these operations and
the results they produce must be one of the two possible boolean values TRUE
and FALSE. These operations are generally used to combine results produced
by prior comparisons or other tests, i.e. they typically appear in contexts
such as

IF (i > j AND j > k) OR (k > j AND j > i) ...
The binary boolean operators supported by SETL are as follows:

c AND cc yields TRUE if both c and cc are TRUE, FALSE otherwise.

c OR cc yields TRUE if at least one of c and cc is TRUE, FALSE
otherwise.

c IMPL cc This is the 'logical implication' operator, and yields TRUE
except when c is TRUE and cc is FALSE. That is, if either c is
FALSE, or cc is TRUE, then c IMPL cc yields TRUE; but if c is
TRUE and cc FALSE, then c IMPL cc yields FALSE.

The only unary boolean operator provided is

NOT C yields the logical opposite of c, i.e., FALSE if c is TRUE,
TRUE if c is FALSE.

In using these operations one will often make use
rules of logic like those called 'De Morgan's rules'.

of various well-known
For example since

(NOT c) OR (NOT cc)

is TRUE if either c or cc is FALSE, but is FALSE if both c and cc are TRUE,
it is equivalent to

NOT (c AND cc) •

Various other equivalences between boolean expressions are listed in the
following table:

NOT (c OR cc)
NOT (c IMPL cc)
c IMPL cc
NOT (NOT c)

is equivalent to
is equivalent to
is equivalent to
is equivalent to

(NOT c) AND (NOT cc)
c AND (NOT cc)
(NOT c) OR cc
C

These and other related logical equivalences can often be used to
simplify Boolean expressions that occur in programs. For example, since

c OR ((NOT c) AND cc)

is TRUE if and only if at least one of c and cc is TRUE, it simplifies to

DATA AND EXPRESSIONS Page 2-30

c OR cc •

Thus, instead of writing

IF i > j OR ((NOT i > j) AND k > j) •••

in a program we can simplify this to

IF i > j OR k > j •••

Other useful relationships of this sort appear in Exercises 1 through 8 of
Section 2.3.4.1.

DATA AND EXPRESSIONS Page 2-31

2.3.4.1 Exercises

Boolean Equivalences

A tautology is a Boolean expression E which evaluates to TRUE no matter
what Boolean values are given to the variables appearing in E. An
equivalence is a statement of the form El=E2 which evaluates to TRUE no
matter what values are given to the variables appearing in it. Given any
Boolean statement, we can easily write a program which substitutes values in
all possible ways for the variables appearing in it, and this makes it easy
to detect Boolean tautologies and equivalences~ For example, since

{[x,y]: x IN {TRUE,FALSE},y IN {TRUE,FALSE}i(x AND y)/=(y AND x)}

evaluates to null, it follows that

(x AND y)=(y AND x)

is a universally valid Boolean equivalence. The following exercises list
various tautologies and Boolean equivalences, which you are asked to prove
either in this way or by appropriate mathematical reasoning.

Ex. 1 Prove the equivalence (A OR B)=(B OR A).

· Ex. 2 Prove the equivalence ((A ORB) OR C)=(A OR (B OR C)), and also ((A
AND B) AND C)=(A AND (BAND C)).

Ex. 3 Prove the equivalence (A AND A)=A, also (A OR A)=A.

Ex. 4 Prove the equivalence (A AND (B OR C))=((A AND B) OR (A AND C), also
(A OR (BAND C))=(A ORB) AND (A OR C).

Ex. 5 Prove the equivalence (A OR ((NOT A) AND B))=A ORB).

Ex.
also

6 (De Morgan's Rules) Prove that (NOT (A AND B))=((NOT A) OR (NOT
(NOT (A OR B))=((NOT A) AND (NOT B)).

B)) , .

Ex. 7 Prove that NOT(NOT A)=A. Using this fact and the results proved in
Ex.6, show that

(A AND B)=(NOT((NOT A) OR (NOT B))), also that
(A OR B)=(NOT((NOT A) AND (NOT B))).

Ex. 8 Prove the following equivalences: (A AND TRUE)=A,
FALSE)=FALSE, (A OR TRUE)=TRUE, (A OR FALSE)=A.

(A AND

----------------------------~ ---- - --------~-

DATA AND EXPRESSIONS Page 2-32

2.4 Set Operations and Setformers.

SETL provides several important kinds of set operators, of which the
easiest to understand are the built-in, elementary set operations and the
setformers discussed in Sec.2.4. We shall review these constructs in the
present section; the even more important map operations are presented in
Section x.

The binary set operations compute a result value from two inputs, one
or both of which must be a set. These operations are as follows (in what
follows, sand ss are always sets, while x ca-0 be an arbitrary value):

s + ss

s - ss

computes the 'union' of two sets, i.e. the set of all
objects which belong either to s or toss.

computes the 'difference' of two sets, i.e. the set of
all objects which belong to s but not toss.

s * ss computes the 'intersection', or common part of two sets,
i.e. the set of all objects which belong to both sand ss.

x IN s tests x for membership in the sets. The value TRUE is
produced if xis a member of s, FALSE otherwise.

x NOTIN s tests x for nonmembership in the sets. The value TRUE
is produced if xis not a member of s, FALSE otherwise.

s WITH x produces a set whose members are the members of s, with
x inserted (if xis not already a member of s)

s LESS x produces a set whose members are the members of s,
with x removed (if necessary, i.e., if xis a member of s)

s = ss tests sand ss for equality, yielding TRUE ifs and ss
have exactly the same members, FALSE otherwise.

s/=ss tests sand ss for inequality, yielding FALSE ifs and ss
have exactly the same members, TRUE otherwise.

s INCS ss .tests ss for inclusion withins, yielding TRUE if every
member of ss is also a member of s, FALSE if ss has any
member which is not also a member of s.

s SUBSET ss tests s for inclusion within ss, yielding TRUE if every
member of sis also a member of ss, FALSE ifs has any
member which is not also a member of ss.

n NPOW s here the first argument n must be a nonnegative integer.

s NPOW n

This operation yields the collection of all subsets of s
which contain exactly n elements. An error results if n
is negative.

here the first argument is a set and the second is an
integer. This is equivalent ton NPOW s.

DATA AND EXPRESSIONS

Examples of these binary set operators are

print({l,2} + {'Tom','Dick'});
print({} + {1,2 , {} + {});

print({l,2,3} - {1,4}, {1,2,3} - {});

print({l,2,3} - {3,1,2});

print({} -{1,2,3});

print({l,2,3} * {2,5,3});

print({l,2} * { 3,4 });

print({} * {3,4});

print({{l},2,3} - {1,2,3});

print({{l}, {2,3}} - {1,2,3});

print(l IN {1,2,3} , {1} IN {1,2,3});

print({} IN {}, {} IN { {} });

print(l NOTIN {l}, {}

print({l,2,3}

print({l,2,3}

WITH 5);

WITH 1);

NOTIN {});

print({l,2,3} LESS 1, {1,2,3} LESS 4);

print({l,2,3} = {3,2,1});

print({}= [] , {} = {{}}) ;

print({l,2} /= {2,1}, {1,2,2} /= {1,2});

print(2 NPOW {1,2,3});

p r int ({ 1 } I NC s· { } , { } INC S { 1 }) ;

print({l,2} INCS {1,2}) ;

print({2,2,2} SUBSET {1,2 }) ;

yields
yields

yields

yields

yields

yields

yields

yields

yields

yields

yields

yields

yields

yields

yields

yields

yields

yields

yields

yields

yields

yields

yields

Page 2-33

{ 1 2 'Tom' 'Dick'}
{ 1 2} {}

{2 3} { 1 2 3}

{}

{}

{2 3}

{}

{}

{{1}}

{{1}, {2 ,3}}

TRUE FALSE

FALSE TRUE

FALSE TRUE

{ 1 2 3 5 }

{ 1 2 3}

{2 3} { 1 2 3}

TRUE

FALSE FALSE

FALSE FALSE

{ {1 2} { 2 3} { 1 3}}

TRUE FALSE

TRUE

TRUE

Unary set operators compute a result value from a single set input s.
The unary set operators are as follows:

II s

POW s

yields the number of (distinct) elements of the sets

yields the set of all subsets of s (which is also called

DATA AND EXPRESSIONS Page 2-34

the 'power set' of s; hence the name POW)

RANDOM s yields a randomly selected element of s. Successive
uses of RANDOM swill yield independently selected elements
of s.

ARB s Yields an arbitrarily selected element of s.
(Depending on the particular SETL implementation used,
successive uses of ARB s may or may not yield the same
element of s).

Examples of these unary operators are:

print(# {2}, #{2,2,2,2}) ;

print(# {1,2,3,4,1,2,3,4,40});

print(POW {1,2}) ;
print(ARB {1 2,3}, ARB {1,2,3}) ;

print(ARB {1,2,3}, ARB {3,1,2});

print(RANDOM {1,2,3}, RANDOM{l,2,3}) ;

yields 1 1

yields 5

yields {{} {1} {2} {1 2}
yields 1 1
(or possibly 2 2 or 3 3)
can yield 1 2 (even
though
{1,2,3} • {3,2,1}
yields TRUE)

(possibly) yields something like 2 1 2 3

Of course, the basic construct

{xl,x2, ••• ,xk}

which forms a set by enumerating its elements explicitly is also a
(multi-argument) set operator. The xl,x2,x3, ••• ,xk appearing in this
construct can be arbitrary expressions. As several of the preceding
examples show, this construct can form a set of fewer thank elements. For
example, if x has the value {1,2} and y the value {1}, then {x,y,x+y} is the
two element set {1,2}.

As already noted, the set of all integers in the range from m to n
(inclusive) can be written as

and the set of all integers n, n+k, n+2k, etc. up tom can be written

{n,n+k •• m}

In this last form, the 'step' k can be negative, and n+k need not actually
be a sum, but can be any arbitrary expression. For example,

DATA AND EXPRESSIONS

print({3,6-l •• 10}) yields {3 5 7 9}

If them in n •• m is less than n, then the nullset results.
appy to {n,n+k •• m}, for example

print({3,5 •• l}) yields { }

print({3,2 •• -3}) y {3 2 1 0 -1 -2 -3}

print({3,2 •• 4}) yields { }

print({3,3 •• 5}) results in an error.

See section 3.3.4 for additional details.

Page 2-35

Similar rules

Many interesting mathematical relationships connect the set op•rators
presented in this section. For example, the values of (s*sl) SUBSET s, and
(sl+s2)*s3 = sl*s3+s2*s3 are always TRUE. Many other relationships of this
sort appear in the exercises of Section 2.14.

DATA AND EXPRESSIONS Page 2-36 -

2.4.1 Setformer Expressions

Sets are the basic data objects of SETL, and the language provides a
number of ways of constructing sets. We have seen already in Sec.2.1.1 that
constant sets are constructed by listing thier elements and enclosing the
list between set brackets. More generally, sets can be constructed by
enumerating their elements, be they constants,
For example, the set expression

variables or expressions.

{ X , y , x+y , [] }

describes a set whose components are the value of the variable x, the value
of variable y, the expression (x+y) and the null tuple. Such sets
constructed by enumeration can contain any number of expressions of any
type.

In mathematics, the most powerful and general way of forming a set is
simply to define it by stating a characteristic property of its elements.
The standard mathematical notation for this is

(1) {x I C}

read 'the set of all x having the property C', or equivalently 'the set of
all x such that C'. Any Boolean-valued expression can be used for C, for
example we are allowed to write

(2) { x I x <0}

whichh is read 'the set of all x such that x <O'. (As this example shows,
the Boolean expression C of (1) will almost always depend on the variable
Xo)

SETL supports, and generalizes, a notation very close to (1). There
is, however, one restriction which is always imposed. SETL is not only an
abstract mathematical notation; it is also a programming language, which
can be used to print out the actual value of any legal expression which it
allows one to write Hence it works only with finite, not with infinite sets.
This makes it necessary to impose a restriction on the way in which the
notation (1) can be used, in order to prevent formation of obviously
infinite sets like (2), which describes all of the negative numbers. This
is done simply by insisting that the range of variation of the variable x in
(1) be limited, in advance, by the condition that x should belong to some
other finite object, e.g. some other set. That is, we allow, not exactly
(1), but only the significantly more restricted construct

(3) {x IN s I C} •

Then, since the sets used in (3) always has to be
evaluated, it follows that s must be finite;
designate a finite set whose list of elements can be
In (3), we have the basic SETL setformer construct.

defined before (3) is
and then (3) must also

calculated explicitly.

DATA AND EXPRESSIONS Page 2-37

Several important generalizations of the construct (3) are used in
mathematics and also allowed in SETL. Suppose, for example, thats is a set
of numbers. Rather than simply forming the set (3), we may want to form a
set of numbers obtained from (3) by a~plying some common transformation to
all its elements, for example, by squaring them. To form this set, we are
allowed to write

{x*x: x IN s I C}

which can be read:
the set s such
setformer is

'the set of all values x squared, for all x ranging over
that C'. The general form of the more powerful kind of

(4) { e: x IN s I C}

In (4), e can be any expression, s any set valued expression, C any
Boolean-valued expression. We can read (4) as 'the set of all values e,
formed for those x -ins for which Chas the value TRUE'. Usually both· e and
C will depend on the value of x, i.e. on the various values of the members
0 f S •

This reading of the notation (4) suggests a further generalization,
which again is used in standard mathematics and is also legal in SETL.
Specifically, there is no reason why in forming a set like (4) we should
only allow one variable x to range over one sets. Instead, we can allow
any number of variables to range over any number of sets. The notations

(Sa)
(Sb)

et_c.
Note
over
over

{e: x IN sl, y IN s2 I C}
{e: x IN sl, y IN s2, z IN s3 I C}

express this more general constructions that this remark suggests.
that (Sb) can be read 'the set of all values e, formed for x ranging

sl, y (independently) ranging over s2, z ranging (again independently)
s3, but only in combinations x,y,z for which Chas the value TRUE.'

Subsequently we will see that even further generalizations _?f ~he
set former constructs (3), (4), (Sa), (Sb), etc. are allowed. But, even as
they stand, these constructs are extremely powerful, and we will now time to
exhibit their power by giving a few interesting examples of their use. For
this, we begin by considering the problem of printing out so-called prime
numbers, for example all prime numbers in a given range, let us say the
range {1 ••• 100}. We remind the reader that positive numbers like 6 • 2*3, 9
• 3*3, 4 = 2*2 which are the product of two smaller numbers, are called
composite, and that numbers, larger than 1 which are not composite are
called prime; examples of primes are 3,5,7,11,13,17 ••••

It is easy to express the set of all composite numbers up to 100 using
a set.former (of type (Sb)), namely as

(6) {i*j: i IN {2 ••• 10}, j in {2 ••• 100} I i * j < 101} •

Since the prime numbers we want are exactly the elements of {2 ••• 100} which
do not belong to the set (6), we can print them out simply by writing

PRINT({2 ••• 100} - {i*j: i IN {2 ••• 10}, j in {2 ••• 50} I i*j < 100});

DATA AND EXPRESSIONS Page 2-38

Sometimes the condition C appearing in (4), (Sa), (Sb), etc. is
unnecessary. For example, given a sets of numbers we may simply want to
form all the squares of numbers ins. In such cases one is simply allowed
to drop the condition C, i.e. to write {e: x IN s}, read 'the set of all
values e formed for x IN s'. Similarly, we can write

{e: x IN sl, y IN s2},

{e: x IN sl, y IN s2, z IN s3}, etc.

For example, we can write the set of all pairs x,y, where x ranges over sl
and y ranges over s2, as

{[x,y] : x in sl, yin s2}.

(In mathematics, this set is called the 'Cartesian product' of sl and s2,
afer Rene Descartes, the inventor of coordinate geometry.) Using these
'elided' setformers we can print the sets of primes considered above a bit
more simply, for example we can print the primes up to 100 by writing

PRINT({2 •• 100} - {i*j: i IN {2 •• 10}, j in {2 •• 50}})

Mathematicians who study prime numbers are often interested in primes
having particular forms, for example primes p which are one more than a
multiple of four, or three more, than a multiple of four. Since the set of
all numbers (greater than 1) up to 100 which are one more (resp. three
more) than a multiple of four can be expressed as

and
{4*n+l

{4*n+3

n in {0 •• 24}

n in {O •• 24}

4*n+l < 101}

4*n+3 < 101}

respectively, we can print the set of primes (up to 100) which are one more
than a multiple of four by writing

PRINT({4*n+l: n IN {1 •• 24} I 4*n+l < 101}
- {i*j: i IN {2 •• 10}, j IN {2 •• 50} I i*j < 101}) ;

and the corresponding set of primes which are three more than a multiple of
four by writing

PRINT({4*n+3: n IN {0 •• 24} I 4*n+3 < 101}
- {i*j: i IN {2 •• 10}, j in {2 •• 50} I i*j < 101}) ;

2.4.2 Existential and Universal Quantifiers.

Very often, the key to a mathematical problem is to determine whether
there exists any element x satisfying a given condition C, and the key to a
programming problem lies in finding such an x if it exists. Using
setformers, it is easy to express the condition that there should exist an x
ins satisfying C: we have only to write

DATA AND EXPRESSIONS Page 2-39

(7) {x IN s I C} /• {} •

Moreover, if the condition (7) is satisfied, we can easily find such an x,
simply by writing

... (8) ARB {x IN s I C} •

Since the test (7) is so important and common, a special abbreviation is
provided for it, namely

(9) EXISTS X IN s IC •

This is a boolean-valued expression, yielding exactly the same value as (7).
Moreover, if it yields the value TRUE, it will set x to the value of (8),
i.e. to some value satisfying C. If (7) is false, then the variable x in
(8) gets

value OM.

As in a setformer, the s in (9) can be an arbitrary set-valued
expression, while C can be an arbitrary boolean valued expression.

Generalizations of
(Sa), (Sb) are allowed.

(9) corresponding to the generalized
Specifically, one can write

(1Oa)
(1Ob)

EXISTS x IN sl, y IN s2 I C
EXISTS x IN sl, y IN s2, z in s3 I C

set formers

etc., where sl,s2, ••• are arbitrary set-valued expressions and C a Boolean
expression. The constructs (1Oa), (1Ob), ec. search the set of all x in
sl, yin s2, ••• for values satisfying the condition c. If such values are
found, then (1Oa) (or (lOb)) yields the value TRUE and the variables x,y, •••
are set to these values. Otherwise (1Oa) (or (lOb)) yields the value FALSE
and x,y, •• get indeterminate values.

The constructs
quantifiers.

(9) , (1 Oa) (1Ob) etc. are called existential

The existential quantifier allows us to express naturally the common
query : does there exist an object in a certain collection, which satisfies
a given criterion ? A related query, which is also very common in
programming contexts, is the following : do ALL the objects in a collection
satisfy some stated criterion? Such queries are expressed in SETL by means
of constructs such as the following:

(lla)
(11 b)
(llc)

FORALL X IN s I C
FORALL x IN sl, y IN s2 I C
FORALL x IN sl, y IN s2, z in s3 IC

which make use of the keyword 'FORALL' • These constructs which are called
universal quantifiers, are closely related to existential quantifiers. The
three cases just given are equivalent to:

(12a)
(12b)

NOT EXISTS x IN s I (NOT C)
NOT EXISTS x IN sl, y IN s2 I (NOT C)

DATA AND EXPRESSIONS Page 2-40

(12c) NOT EXISTS x IN sl, y IN s2, z IN s3 (NOT C)

respectively. For example, (llc) searches the set of all x in sl, yin s2,
z in s3 for values such that the condition C takes on the value FALSE. If
none exists then (llc) returns the value TRUE (and the variables x,y,z take
the value OM). HHowever, if values satisfying C exist, then (llc) returns
the value FALSE (and the variables x,y,z take on values (in sl, s2, and s3
respectively) fulfilling the condition C).

By using quantifiers we can write a simpler and more readable setformer
representing the set of all primes up to 100. Specifically, an integer n is
prime if there exists no smaller integer m (o~her than 1) which divides n
evenly, i.e. such that n MOD m • O. Hence

PRINT({n in {2 •• 100} NOT EXISTS min {2 •• n-1} In MOD m • 0});

will print the set of primes up to 100. Similarly,

PRINT({n in {2 •• 100} ((NOT EXISTS min {2 •• n-1} In MOD m = 0)
AND (n-1) MOD 4 • 0));

will print all the primes up to 100 which are one more than a multiple of
four, while

PRINT({n in {2 •• 100} I ((NOT EXISTS min {2 •• n-1} In MOD m = 0)
AND (n-3) MOD 4 = 0)});

will print the set of all primes up to 100 which are three more than a
multiple of four.

As we have said, the existential quantifier (9) returns exactly the
same value as the expression (7). However, the quantifier calculates this
value more efficiently than (7) would, since to evaluate (9) the SETL system
will search systematically through the elements of s but stop searching and
return the value TRUE as soon as an x satisfying Chas been found, whereas
to evaluate (7) it would always search through the whole of s building up
the set {x in S I C}, and only test it for nullity after it had been
evaluated fully. This distinction becomes particularly important if
evaluation of the boolean condition C causes side effects, since in this
case evaluation of the two expressions (8) and (9) will have different
cumulative side effects. Similar remarks apply to universal quantifiers
(11), (lla), ~nd (llb).

A remark on bound variables in compound setformers and quantifiers

The variables x, y, z occurring in (9), (lOa-b),(lla-c), and (12a-c)
are called bound variables, since the quantifiers in which they appear cause
them to be iterated over some set. Quantifiers (or setformers) such as
(lOa-b), (llb-c), or (12b-c) involving more than one bound variable cause
multiple iterations, e.g. in evaluating (10a) xis given successive values
from the set sl, and then for each of these values of x, y is given all
possible values from s2. For this reason, the expression s2 in (10a) is
allowed to depend on the bond variable x, but sl must be independent of Y•
Similarly, in 10b), s3 can depend on both x and y, s2 can depend on x but

DATA AND EXPRESSIONS Page 2-41

not y, and sl cannot depend on either x or y. Similar rules apply to
universal quantifiers and to setformers.

DATA AND EXPRESSIONS Page 2-42

2.4.3. Some illustrative one-statement programs.

Thus far we have introduced only a few of the facilities which the SETL
language makes available. Only one or two of the commands available to the
programmer have been described yet, so that we cannot yet show any
substantial programs. However, the mechanisms that have been described are
powerful enough to allow various interesting single-statement programs to be
written. In this section, we collect a few such progams.

a. More about prime numbers.

As noted in the preceding section, an integer is called prime if it is
not evenly divisible by any smaller (positive) integer other than 1.

To form the set of all prime numbers up to 100 we can use the one-line
program given in the preceding section, which simply prints a setformer:

PRINT({n in 2 •• 1001 NOT EXISTS min 2 •• n-11 (n MOD m) = 0});

The output of this single-statement program is

{2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97}

Note however that since sets are
printed in any arbitrary order.
significance) will depend on the
is using.

not ordered the elements of this set can be
The actual order used (which has no logical
particular SETL implementation which o ne

Mathematicians who study prime numbers are sometimes interested in find
not all the primes in a given range, but only those which have various
special properties. For example, a prime n is said to belong to a prime
pair if both n and n+2 are primes. (Note that, since all primes except 2
are odd, we cannot expect both n and n+l to be prime, because if n is a
prime then n+l will be even, hence not a prime.) To find all prime pairs up
to 100 we can simply write

PRINT({n IN {2 •• 100} I
(NOT EXISTS min {2 •• n-1}

and (NOT EXISTS min {2 •• n+l }

The output of this program is

{3 5 11 17 29 41 59 71}

(n MOD m) • 0)
((n+2) MOD m) • O)});

indicating that the only such twin-prime pairs are

(3,5], (5,7], (11,13], [17,191, (29,31], [41,431, (59,61), (71,73),

Sometimes one is interested in primes which satisfy particular
quadratic equations, for example primes n of the form n • k**2+1. Since if
n is not larger than 100, any integer k solving this equation would have to
be smaller than 10, we can find all the primes of this form just by writing

,_

DATA AND EXPRESSIONS Page 2-43

PRINT({n in {2 •• 100} I (NOT EXISTS m IN {2 •• n-1}
and (EXISTS k IN 0 •• 10 I

(n MOD m) = 0)
n = k*k+l)});

Similarly, to find al the primes up to 100 which have the form 2k**2+3 we
can write

PRINT({n in {2 •• 100} -I (NOT EXISTS m IN {2 •• n-1} I (n MOD m) = 0)
and (EXISTS k IN {0 •• 10} I n = 2*k*k+3)});

the output of the first of these programs is

{2 5 17 37}

and the output of the second program is

{3 5 11 53}

b. Integer right triangles.

The famous theorem of Pythagoras states that the length h of the
hypotenuse of a right triangle and the lengths a and b of its two sides are
related by the equation a** 2 + b ** 2 = h ** 2. Whole-number solutions of
this equation are useful to people who make up elementary mathematics exams
and want to invent problems that have whole number answers. Examples of
such 'integer right triangles' are 3,4,5 and 5,12,13. The following
single-statement program finds all integer right triangles a,b,h for which a
is less than b and both are less than 30. We let b range over the set
{1 •• 30}, and a range over the set {1 •• b-1}. To find if a*a + b*b is a
perfect square, we simply search for an integer h qhose square is equal to
that sum. The possible range of his from 1 to a+b. (Approximately. Can
you give a more precise range for it ?).

Note that we eliminate all triangles for which a and b
divisor, since these are simple multiples of smaller
triangles.

PRINT({ [a,b,h] : b IN {l. .30}, a IN {l. .b-1} I
(EXISTS h IN {2 •• a+b} (a*a+b*b = h*h)) and

have a
integer

NOT EXISTS c IN {2 •• b-1} ((b MOD c) = 0 and (a MOD c) = 0)});

The output of this program is

{[3 4 5] [5 12 13] [8 15 17] [20 21 29] [7 24 25]}.

common
right

It is not hard to prove mathematically that there exist infinitely many
different integer right triangles.

DATA AND EXPRESSIONS Page 2-44

2.5 Tuple Operations and Tuple Formers

We have mentioned repeatedly that sets are unordered and
duplicate or undefined members; tuples are ordered

can never have
and can have both

duplicate and undefined components. For example,

[1,0,l,O,OM,OM,l,O]

is a perfectly legal tuple; its first, third, and seventh components are
all 1, while its fifth and sixth components are undefined. In spite of this
very fundamental difference between sets and tuples, the binary and unary
operators on tuples which SETL provides ~re similar to corresponding set
operators. In addition, tuple formers that construct tuples in the same
manner that set formers build sets, exist with a similar sybtax. In fact,
all set forming expressions can be transformed into tuple forming
expressions, by replacing the set brackets with tuple brackets.

2.5.1 Binary Tuple Operators

Binary tuple operators compute a result value from two inputs, one or
both of which must be a tuple. The binary tuple operators are as follows
(in what follows, t and tt are always tuples, while x can be an arbitrary
value):

t + tt

n * t

t * n

x IN t

x NOTIN t

t WITH x

t - tt

t /= tt

concatenates tt to the end oft.

here, n must be an integer. This forms n
copies oft and concatenates them end to end,
to form a tuple n times as long as t.
If n == O, then the null tuple (i.e. []) is obtained,
if n < O, an error results.

if n is an integer, this is equivalent to n*t

yields TRUE if x equals one of the components
oft; FALSE otherwise.

yields FALSE if x equals one of the components
oft; TRUE otherwise.

yields a new tuple identical tot except
that xis appended to it as an additional
final component

yields TRUE if all components oft are identical
to the corresponding components of tt,
FALSE otherwise.

yields TRUE if some component oft differs from
the corresponding component of tt, FALSE otherwise.

It should be noted that a tuple is considered to extend from its first
component to its last defined component, i.e., its last component differen
from OM. That is, all tuples are regarded as ending with an indefinitelJ

DATA AND EXPRESSIONS Page 2-45

long sequence of OM components, but when a tuple is printed only its non-OM
components are shown. For example,

[OM,OM,OM,OM]

[l,OM,2,0M]

[l,OM] 'WITH OM

is equivalent to

is equivalent to

is equivalent to

[]

[1, OM, 2]

[1]

Some examples of the binary tuple operators are:

print([l,2] + (3,4])

print ([1 , 2] 'WI TH [3, 4]) ;

print(2*[1,2], [1,3]*2);

yields

yields

yields

[1,2,3,4]

[1 2 [3 4]]

[1 2 1 2]

print(l IN [1,2,3], [1,2] IN [1,2,3]);-
yields TRUE FALSE

print(OM IN [1,2,3], OM IN [1,0M,3]);
yields FALSE TRUE

print([l,2]=[2,1], [1,2,1,2] • [l,21,2]);
yields FALSE FALSE

[1 3 1 3)

print ([1 , 2 , 1 , 2] / = [1 , 2 , 1 , 2 , 1] , [1 , 1] / = [1 , 1 , 1] , [1] / == [1 , OM]) ;
yields TRUE TRUE FALSE

print ({} / = []) ; y i e 1 ds TRUE

2.5.2 Unary Tuple Operators

Unary tuple operators produce a value from a single tuple operand. The
unary tuple operators are:

#t yields the index of the last non-OM component oft

RANDOM t yields a component oft picked at random from
its first to its last non-OM component.
All components, including OM components in this
range, have an equal chance to be picked.
Note that successive uses of RANDOM twill
generally yield different, independently chosen
random components.

The following are examples of the unary tuple operators.

print(#[3], #[], #[l,OM]);

print (# [1 , OM] , # [OM, 1] , # [1 , 1 , 1]) ;

print(#[l,OM,OM,OM,OM,l]);

yields 1 0 1

yields 1 2 3

yields 6

DATA AND EXPRESSIONS Page 2-4b

print(#[l,OM,OM,OM,OM]); yields 1

print (II [1 , 2 , 3, 4 l , # [1 , 2 , [3 , 4 l l , II [[1 , 2 , 3 , 4 l l) ; y i e 1 ds 4 3 1

print(RANDOM [1,2,3), RANDOM [1,2,3), RANDOM [1,2,3), RANDOM [1,2,3));

(probably) yields something like 2 1 2 3

2.s.3 Other Tuple Operators

As for sets, so for tuples the construct

[xl,x2, ••• ,xk]

which forms a tuple by enumerating its elements explicitly, is also a

(multi-argument) tuple operator. As should be obvious, the various xj
appearing in this construct can be arbitrary expressions. If some of the x
appearing at the end of this construct evaluate to OM, then a tuple o
length less thank will be formed. For example, if t has the value
[l ,OM,OM, 2), then

[t(4), t(3), t(2), t(3)]

forms the tuple [2, OM, OM, OM], i.e.
course l.

the tuple [2], whose length is o

The tuple of integers ranging from m ton (inclusive) can be written a

[n ••• m]

and the tuple of integers n, n+k, n+2k, etc. up tom can be written

[n, n+k, ••• ,m].

In this last form, the 'step' k can be positive (producing an
ascending sequence) or negative (producing a descending sequence). The
quantity n+k need not actually be a sum, but can any integer-valued
expression. If them in [n ••• m] is less than n, then the null tuple
results. Similar rules apply to [n, n+k, ••• ,m]. For example,

print([3,5, ••• ,l]);
print([3,2, ••• ,-3];
print([3,2, ••• ,4]);
print([3,J, ••• ,5]);

yields
yields
yields
yields

[]
[3 2 1 0 -1 -2 -3]
[)
[]

Tuple indexing, 'slice' and assignment operators, which resemble tt
string slice and assignment operators described in Section 2.3.3, a1
provided. The indexing and slice operators are as follows (we assume as
before that t designates a tuple):

t(i) yields the i-th component of the tuple t.

DATA AND EXPRESSIONS

If i is zero or less, an error results;
if i exceeds the index of the last non-OM
component oft, then t(i)_ yields OM.

t(i •• j) yields the section or 'slice' oft extending
from its i-th through its j-th components,
inclusive. If i is zero or negative, or if
i exceeds j+l, an error results.
If i = j+l, then t(i ••• j} always yields the
null tuple. If i exceeds the last non-OM
component oft, then a null tuple is returned.

t(i ••) yields the section or 'slice' oft extending
from its i-th through its last non-OM component,
inclusive. This operator is equivalent to
t(i •• #t). Thus if i is zero or negative, or
if i exceeds #t+l, an error results.
If i = #t+l, then t(i ••) yields the null tuple.

Page 2-47

To give examples of these operators, we assume that t is the tuple
[10,0M,30,0M,50,0M,70]. Then:

print(t(l), t (2) , t(3)); yields 10 OM 30

print(t(7), t(8)); yields 70 OM

print(t(2 •• 5), t(2 •• 6)); yields [OM 30 OM 501 [OM 30 OM 50]

print(t(2 •• 8)); yields [OM 30 OM 50 OM 7 0]

print(t(3 •• 2)); yields []

print(t(8 •• 11)); yields [1

print(t(3 ••), t(8 •••)) yields [30 OM 50 OM 7 O 1 [1

print(t(9 ••)); results in an error

It should also be noted that if the 1th component of t
tuple or a strtng, then further indexing of t(i) is possible.
example, that t is the following tuple of tuples of strings:

is itself a
Suppose, for

[['Tom','Dick','Harry'], ['Peter','Paul','Mary'], ['Mutt','Jeff']]

Then:

t(2)
t(2)(3)
t(2)(3)(1)
t(2 •• 3)
t(2 •• 3)(2 ••)
t(2 •• 3)(2 ••)(1)
t(2 •• 3)(2 ••)(1)(2 ••)
t (2 •• 3) (2 ••) (1) (2 ••) (1) (2)

yields
yields
yields
yields
yields
yields
yields
yields

[Peter Paul Mary]
Mary
M
[[Peter Paul Mary] [Mutt Jeff]]
[[Mutt Jeff]]
[Mutt Jeff]
[Jeff]
e

------ -~-----

DATA AND EXPRESSIONS Page 2-48

Similar constructs involving map assignments are allowed; see Section 2.12.

The tuple assignment operators are as follows (we assume as before that
the values oft and tt are tuples):

t(i) := X ; modifies the i-th component of the tuple t,
setting it equal to the value of x. If i is
zero or negative, an error results. If i exceeds
the index of the last non-OM component oft, then
twill be extended with as many OM components
as necessary, and then its 1-th component will
be set equal to x. (Therefor~ the assignment
t(i) := x can increase the length oft by any
amount up to 1)

t(i •• j) := tt; modifies the section tif t extending from its 1-th
through its j-th component, setting it equal to
tt. If i is zero or negative, or if i exceeds
j+l, an error results. If i = j+l, then tt will
be inserted into t immediately following position
1. If i exceeds the index of the last non-OM
component oft, then twill be extended with as
many OM components as necessary, and then tt will
be appended.

t(i ••) := tt this assignment is equivalent to t(i •• #t) := tt.
Thus it modifies the section oft extending from
its i-th component to its last non-OM component,
setting it equal to tt. If i is zero or negative,
or if i exceeds llt+l, an error results. If
i = #t+l, then tt is appended to the end oft•

To give examples of these operators, suppose that t 1, t2, ... ,
have the value [1 , 2, 3, OM, OM, 6] • Then

tl(2) : = OM $ now tl = [1 OM 3 OM OM 6)

t2(4) : = 40 $ now t2 = [1 2 3 40 OM 6]

t3(8) : =· 70 ; $ now t3 = [1 2 3 OM OM 6 OM 8]

t4(9) : = OM $ now t4 = [1 2 3 OM OM 6)

t5(2 •• 4):= [OM 30 40) ; $ now t5 = [1 OM 30 40 OM 6)

t6(2 •• 2) : = [2 0] $ now t6 = { 1 20 3 OM OM 6)

t7(2) . - 20 $ now t7 = [l 20 3 OM OM 6]

t8(2) . - [2 0] $ now t8 = [l 20 3 OM OM 6]

t9(2 •• 2) : = 20 ; $ results in an error

t22 all

DATA AND EXPRESSIONS Page 2-49

t10(2 •• l):= [2 0 OM 30] $ now tlO = [1 2 20 OM 30 3 OM OM 6]

tl1(6 •• S):= [2 0 OM 30) $ now tll = [1 2 3 OM OM 6 20 OM 30 1

t12(1..0):= [2 0 OM 30] $ now tl2 = [1 20 OM 30 2 3 OM OM 6]

t13(8 •• 9):= [2 0 OM 30) $ now tl3 = [1 2 3 OM OM 6 OM 20 OM 30]

tl4(S •• S):= [2 0 OM 30) $ now tl4 = [1 2 3 OM 20 OM 30 6]

tlS(S •• S):= [2 0 OM OM] $ now tl5 = [1 2 3 OM 20 6)

t16(4 •• 5):= [1 ; $ now tl6 = [1 2 3 6)

t17(2 •• 3):= [2 0] $ now tl7 = [1 20 OM OM 6)

tl8(2 •• 4):= [2 0] $ now tl8 = [1 20 OM 6)

tl9(6 ••) : = [] $ now tl9 = [1 2 3]

t20(S ••):= [SO 60 70 80) $ now t20 = [1 2 3 OM 50 60 70 80)

t21(7 ••):= [SO 60 OM 80J $ now t21 = [1 2 3 OM OM 6 50 60 OM 80)

t22(8 ••):= [2 0 OM 30] $ results in an error

Repeatedly indexed tuple (and map) assignments such as

t(i)(j •• k)(l) : = t t ;

are possible in some cases; see Section 2. 12 for a general discussion of
these assignments.

2.6 Tuple Formers. Simple Tuple and String Iterators.

The construct

(1) [e: X IN s I C]

read 'the tuple of all values assumed by the expression e as X ranges over
the elements of s for which the condition C has value TRUE' is similar to
the set former

(2) {e: x IN s I C},

(see Section X) except that (2) eliminates duplicates and builds a set,
whereas 1) builds a tuple and does not eliminate duplicates. The order in
which the components of the tuple (1) are arranged is determined by the
order in which iteration proceeds over the elements x of the sets.

As in the case of setformers, the condition C appearing in (1) need not
appear, i.e. one can write

(1) [e: X IN s]

-- ---------------- ----------- --- ------

DATA AND EXPRESSIONS Page 2-50

read 'the tuple of all values assumed by the expression e as x. ranges over
all the elements of s'. Moreover, multiple iterations can be used in a
tuple formers, i.e. constructs like

(3a)
(3b)

[e: x IN sl, y IN s2]
[e: x IN sl, y IN s2, z in s3]

etc., are allowed. Again, the order in which the components of (3a) or (3b)
are arranged depends on the order in which iteration proceeds over the
elements of sl, s2, etc. However, in (3a) and (3b) a complete iteration
over s2 will always be made each time the variable x advances from one
element of sl to the next, and in (3b) a complete iteration over c3 will
always take place each time the variale y advances from one element of s2 to
the next.

If thee in (4) is simply x, then it can be elided, i.e. we can simply
write

[x IN s I C]

read 'the tuple of all x IN s for which the condition C evaluates to TRUE'.
It is even possible to elide both e and C, thereby writing

[x IN s]

this simply arranges the elements of the sets in (arbitrary) order as a
tuple. Notice that s itself could be a tuple, in which case [x ins] is
simply another copy of the tuple s. Similar elisions are allowed for
set formers.

As noted in Section 2.4.2, the 'iterator' x IN s appearing in such
constructs as the set former

(4) {e: x IN s I C}

and the existential quantifier

(5) ••• EXISTS x IN s C • •

iterates over the elements of s, assigning each one of them in turn as the
value of x, until the iteration terminates, either because (as in (4)) all
elements of shave been processed, or because (as in (5)) an element x of s
satisfying the condition Chas been found. Since iterative constructions
and searches of this kind are quite useful, corresponding iterators over
tuples and strings are also provided. If t is a tuple, then the iterator

-x IN t-, which can be used in such contexts as

(4a) {e: x IN t I C}

and

(4b) ••• EXISTS X IN t I c ••

iterates over the components oft, in order, from its first component to its

DATA AND EXPRESSIONS Page 2-51

last non-OM component, assigning each component in turn as the value of the
variable x, until the iteration terminates for one of the two possible
reasons stated above. The iteration advances over all components, including
OM components, in turn, but components not satisfying the Boolean condition
C appearing in (4a) and (4b) are bypassed. We emphasize that, even though
the corresponding set iterator, e.g •

• • • EXISTS X IN s I C

can iterate over the elements of the sets in some unpredictable, arbitrary
order, the tuple iterator (4b) always iterates over the components .£1. tin a
known order, namely from first component tp last. Therefore, if the
existential search (4b) finds any component x oft satisfying the condition
C, it will always find the leftmost such component, which will become the
value of x.

We can iterate over the successive characters of a string in similar
fashion. If in (4a) t is a string, then (4a) iterates over its characters,
in order, from its first character to its last, assigning each character in
turn as the value of the variable x, until the iteration terminates for one
of the two possible reasons stated above. Characters not satisfying the
condition C appearing in (4a) are bypassed. Similar remarks apply to the
setformer (4a) and to universal quantifiers which iterate over strings and
tuples.

Note, as an easy application of all this, that the set s of all
distinct components of a tuple t can be formed by writing

{x IN t}.

If tis a string, this same expression will form the set of all its distinct
characters.

For a more general account of the iterator forms usable in setformers,
tuple formers, compound operators, and FOR-loops, see Section 3.3.

By writing the iterator

x IN [M •• N]

as part of a set former or quantifier we can cause x to be iterated over all
the integers of the numerical range M through N inclusive in order.
Similarly, by writing the iterator

x IN [M,M+k •• N]

we cause x to be iterated over integers lying between Mand N, starting with
M and proceeding by steps of k. This iteration will proceed either in
increasing or in decreasing order, depending on whether k is positive or
negative. (If k = 0, the iteration will be terminated as soon as it is
attempted.) For example, to find all the vowels in a string which are
followed by other vowels and print the corresponding set of all double
vowels or 'dipthongs', we can simply write

print({s(i •• i+l): i IN 1 •• #s-l I s(i) IN vowels AND s(i+l) IN vowels});

DATA AND EXPRESSIONS Page 2-52

(where the variable -vowels- must first be assigned. the value
{'a','e','i','o','u','y'}. Similarly, to find the set of all places in a
tuple of integers at which the sign of its component changes from+ to-, we
can simply write

print ({ i IN [1 •• # t-1] I t (i) > 0 AND t (i + l) < 0}) •

DATA AND EXPRESSIONS Page 2-53

2.7 Map operations

Sets of a somewhat special kind, namely sets all of whose elements are
pairs (that is, all of whose elements are tuples of length 2) have a very
special importance in SETL because they can be used to record associations
between pairs of objects. Sets of this kind are called maps, and the most
significant operators of SETL, its so-called map operators, apply only to
such sets. In this section, we will describe these operators and review
their use.

2.7.1 The image-set operator f{x} and the image operator f(x).

Suppose that f is a map, i.e. a set of pairs

(1) {[xl,ylJ, [x2,y2], ••• , [xk,yk]}.

Then f{x}, called the image set .21. f il the point x, is defined to be the
set of all second components of pairs inf whose first component is x.
Using the standard set former, we can write this set as

(2) {y{2): yin f I y(l) = x}.

The significance of this operation lies in the fact that, if we regard f as
representing a certain abstract relationship R, then f{x} is precisely the
set of all elements which stand in the relationship R to the object x.

Suppose, for example, that f contains the pair [s,c] if and only if s
is a student in a particular school and c is a course in which sis
registered. Then f{s} designates the set of all courses in which student s
is registered. Suppose next that g is another map, which contains the pair
[c,s] if and only if f contains the pair [s,c]. (This map is called the
inverse of the map f.) Then for each course c, g{c} is the set of all
students registered in the course.

For a still more specific example, suppose that f is the map

(3) {['Jones','Tom'J, ['Khalid','Leila'], ('Smith','Mary'],
['Khalid','Fatima'J}

Then:

f{'Jones'} is {'Tom'}; f{'Smith'} is {'Mary'}; f{'Khalid'} is
{'Leila','Fatima'}

moreover

f{'Chang'} is the nullset ({})

Since no pair beginning with 'Chang' is present in the map (3).

Note that the DOMAIN off, namely the set of all first components of
pairs in f, is also the set of all x for which f{x} is different from{},
and that the RANGE off, namely the set of all second components of pairs in

DATA AND EXPRESSIONS Page 2-54

f, is also the set of ally which belong to at least one set of the form
f{x} •

2.1.2 The single-valued image operator f(x)

If the image set f{x} contains exactly one element y, that is, if f{x}
is {y}, then we can also write this element y simply as f(x) (rather than as
ARB f{x}) The quantity f(x) is called the image (or sometimes, for
additional emphasis, the single-valued image), of the element x under the
map £, and we say that the map f sends x into f(x). If x is not in the
domain of £, so that f{x} is empty, or if f{x} contains more than one
element, then f(x) yields the value -undefined- or OM.

This last rule can be understood as follows. If, as before, we regard
f as representing an abstract relationship R, then f(x) represents the
unique element y which stands in the relationship R to x. If x is not in
DOMAIN f, then f(x) is obviously undefined, since no element stands in the
relationship R to x. If f{x} contains more than one element, then f(x) is
still undefined, since we cannot tell which one of the several elements of
f{x} the expressions f(x} is supposed to represent. We can only speak of
the element standing in the relationship R to x if f{x} contains exactly one
element; thus the case in which f(x} gives a non-OM value.

For an example of all this, suppose once more that f is the map (3).
Then

f('Jones') is 'Tom'; £('Smith'} is 'Mary';
£('Chang') is OM, since 'Chang' is not in the domain off;
£('Khalid') is OM, since £{'Khalid'} is a set

containing more than one element.

A map f is said is called singl~-valued at x if f(x) is defined, but is
called multiple-valued il x if f{x} contains more than one element. The map
f is said to be a single-valued map (or simply to be single valued) if it is
single-valued at each element x of its domain.

Note that maps are also sets (namely sets all of whose elements are
tuples of length 2), so that all set operations also apply to maps ■ In
particular, we can form the union, intersection, and difference of maps, add
elements to and subtract elements from a map using the WITH and LESS
operators, evaluate f where f is a map, etc ■• Note that if f and g are both
maps, then f+g, f*g, and f-g are also maps since every element of any one of
these sets will be a pair; the same remark applies to f LESS z for any Z•
Moreover, if f is a map and z is known to be a pair, then f WITH z is still
a map sice all its elements are pairs. For example, if f is the map (3) and
we let £2 be 'f WITH ['Jones','Sue'], then f2 is still a map, moreover
f2{'Jones'} is {'Tom','Sue'}, and f2('Jones') is OM ■

SETL allows us, not only to evaluate expressions like
but also to use such expressions as assignment targets ■

is a map, the map assignment

(4) f(x) : .. y ;

f{x} and f(x),
If the value off

DATA AND EXPRESSIONS Page 2-55

is always legal. The effect of this assignment .!.!, !E_ modify £, and, as the
notation (4) is intended to suggest, to modify it in such a way as to cause
the value of f(x) to be y if f(x) is evaluated immediately after the
assignment (4) is executed. This is done by modifying fas follows:

(a) First, all pairs [x,z] whose first component is x are removed from
f. (Th is has the e f feet of removing x from DOMAIN £).

(b) Next (if y has a value other than OM), the single pair [x,y] is
inserted into f. Thus f will contain exactly one pair [x,y] whose first
component is x, guaranteeing that f(x) will evaluate toy.

(c) However, if y has the value OM, then only step (a), but not step
(b), is performed. In this case x will simply have been removed from DOMAIN.
£, guaranteeing that f(x) will evaluate to OM.

Rules (a), (b), and (c) tell us that if y /• OM, then (4) has exactly
the same effect as the assignment

(Sa) f := {z: z inf I z(l) /• x} WITH [x,y];

while if y = OM, then (4) has the same effect as the assignment

(Sb) f :• {z: z in f I z(l) /• x}.

The intuitive significance of the assignment (4) can be explained as
.follows: it directs us to drop any prior association to the element x that
is recorded in£, and then to associate x with y (for which we insert the
pair· [x,y] into f if y /• OM, but simply leave x without any association if
y = OM). This is exactly the effect of steps (a-c).

For examples of all this, suppose again that f is the map (3), and that
we first perform the assignment

£('Jones') := 'Thomas';

This changes f to

{['Jones','Thomas'], ['Khalid','Leila'], ['Smith','Mary'], ['Khalid',
'Fatima']}

Suppose that the assignment

£('Chang') :• 'Zhong-Tien' ;

is performed next. In this case, no pairs need to be removed from. £, but
one pair is added, changing f to

{['Jones', 'Thomas'], ('Khalid', 'Leila'], ['Smith', 'Mary'],
['Chang','Zhong-Tien'], ['Khalid','Fatima']}

DATA AND EXPRESSIONS Page 2-56

Next, suppose that the assignment

f ('Cohen') : • OM ;

is performed. This will simply remove all pairs with first component
'Cohen' from f; but since there are none such, it will actually leave f
unchanged. After this, suppose that the assignment

£('Khalid') :• 'Nuri' ;

is performed. This removes the pairs ['Khalid','Leila'] and
['Khalid','Fatima'] from f, and gives f the value

{['Jones','Thomas'], ['Smith','Mary'], ['Khalid','Nuri'],
['Chang','Zhong-Tien']}

Assignments of the form (3), which change the element y associated with
an element x, are generally used for one of three purposes:

(1)
(ii)

(iii)

to update an attribute f(x) of x;
to define an attribute of x which has previously
been undefined;
to drop an attribute f(x) that is no longer needed,
which we do by executing f(x) :• OM.

Suppose, for example, that f is being used to keep track of the number
of times that each word x has been seen in a body of text that is being
scanned. On encountering a word, we test to· see if it has been.seen before;
if so, we simply increment its count. Otherwise, we must initialize its
count attribute, which will be undefined, to the value 1. This is done by
the following code, which uses several map assignment operations.

IF f(x) • OM THEN $ word is new
f(x) :• 1; $ establish initial count for new word

ELSE
f(x) :• f(x)+l; $ increment count of word previously seen

END IF;

Note that a map assignment f(x) :• y begins (see (a) above) by
attempting to remove a certain set of pairs from f, which assumes that f is
already a map. Hence the operation f(x) :• y (like the operations y :• f(x)
and y :• f{x}) can only be applied!_! f .!!_already~ map. The question then
arises as to how to initialize a map f. This can be done in one of two
ways:

(i) If f is initially supposed to be the ('everywhere undefined') map
whose domain is null (so that initially f(x) • OM for all x and f{x} • {}
for all x), we simply put

f :• {} ;

This makes f the everywhere undefined map with null domain and null range.

DATA AND EXPRESSIONS Page 2-57

(ii) A map value can be built up directly using a setformer, providing
that all elements of the set which is formed are pairs. For example, we can
write

f := {[x,#x]: x in {'Tom','Dick','Harry'}};

this makes fa map with domain {'Tom','Dick','Harry'}, and f maps each
element x in its domain into the length of x.

The multivalued map assignment

(6) f{x} :=- y ;

is also legal in SETL.
modifies f in such
evaluated immediately
(6) makes no sense,
set.

As the notation
a way as to cause

after the assignment
and will generate an

(6) suggests, this assignment
the value f{x} to bey if f{x} is
(4) is executed. It follows that
error, if the value of y is not a

The multivalued map assignment (6) is performed as follows.

(a) We first check that f is a map (i.e. a set consisting of pairs
only), and that y is a set. If either of these conditions is violated, an
error is generated.

(b) All pairs x,y whose first component is x are removed from x.
has the effect of removing x from DOMAIN f.)

(This

(c) After this, the set of all pairs x,z, for ally, is added to f.
This guarantees that f{x} will evaluate toy.

These rules tell us that
assignment

(6) has exactly the same effect as the

(7) f :• {u: u inf I u(l) /= x} + {[x,z]: z in y}.

Note therefore that if y /• OM, (4) has exactly
the same effect as the map assignment

(Sa) f{x} := {y} ;

while if y = OM, then the effect of (4) is exactly that of

(Sb) f{x} := {} ;

The value (Sb) given to f by either f(x) :• OM or by f{x} :• {} can
also be written in another form, namely as the expression

(9) f LESSF x

which occasionally is more convenient. Note that (9), like the map
assignment operators, applies only to maps, and will generate an error if
applied to set f which contains any non-pair elements.

DATA AND EXPRESSIONS

(3,)

As an example of all this, suppose again that f is the map

{['Jones' ,'Tom'], ['Khalid' ,'Leila'], ['Smith' ,'Mary'],
['Khalid', 'Fatima']}

Then the assignment

f{'Khalid'} := f{'Khalid'} WITH 'Omar'

gives f the value

{ ['Jones', 'Tom'], ['Khalid', 'Leila'], ['Khalid', 'Omar'],
['Smith','Mary', ['Khalid','Fatima'] }

If we subsequently execute the assignment

f{'Jones'} := {}

then f will take on the value

{['Khalid','Leila'], ['Khalid','Omar'], ['Smith','Mary'],
['Khalid','Fatima'] }

Page 2-58

Along with the general set former construct, the map operations f(x),
f{x}, f(x):=y, and f{x}:=y are the most characteristic and important
operations of the SETL language. Their importance derives from the fact
that they allow arbitrary objects x to appear as 'indices', i-e~ any object
can appear as the x in a construct like f(x)· or f(x):•y. Of course, other
lower level programming languages, such as PL/1, PASCAL, and Ada, support
constructs with exactly this syntax and with a very similar intended use.
However, in these other languages, an fused in this way must be an 'array'
(an object much like a SETL 'tuple'), and the x appearing in f(x) or in an
assignment f(x):•y must be an integer. This complicates the manipulation of
attributes associated with arbitrary objects x (and attribute manipulation
is basic to programming). To manipulate attributes of a non-integer object
x (say string or a set) in these other languages, one must first find a way
of associating an integer with x, and then must use this integer, instead of
x itself, whenever the attributes of x need to be used or manipulated. This
introduces a layer of artifice into programs, making them less direct, less
readable, and more error- prone. This objection applies even to a language
as elegant and powerful as APL, which only allows integers (and arrays of
integers) to appear as indices. The only well-known languages which support
something like the map operations of SETL are SNOBOL (through its TABLE
feature) and some of the more advanced versions of LISP.

In deciding whether to use map operations like f{x} and f(x), or map
assignments like f{x} := y or f(x) := y, it is important to realize that
they are performed efficiently.

The internal representation of a map f (described in more detail in
Sections 10.2, 10.4) makes it easy to locate all the pairs [x,y] off which
share a common first component x. This is done by using an exceptionally
fast searching technique (known technically as 'hashing'). If the value of
xis something relatively simple (like an integer or string) this makes it

DATA AND EXPRESSIONS Page 2-59

possible to retrieve either of the values f(x) or f{x} in approximately a
hundred millionths of a second (assuming that your program is running on a
typical modern computer able to perform about a million addition operations
per second). Note that the map operation f{x} is performed in a time which
is essentially independent of the size off. Similar remarks apply to the
important Boolean set membership-operation x IN s. See Section X for
additional information on the way in which SETL objects are actually
represented within the memory of a computer, and on the way that primitive
SETL operatons, like the evaluation of f(x) or f{x}, are implemented.

2.7.3 Some remarks on Multi-Valued Maps

Set-valued maps can be handled (in SETL) in one of two nearly
equivalent styles. Either &tyle is acceptable, and neither has any
overwhelming advantage, but they are different, and to avoid error it is
important to distinguish cl•arly between them. These two possibilit~es are
as follows:

(i) A set-valued map f can be represented as a single-valued map
whose value f(x) is a set; but

(ii) The same map can be represented by a multivalued map g such
that g{x}=f(x).

If f is avail~ble, then g can be produced by writing

(10) g:={ [x,y]: s=f(x), y IN 1)

Conversely, if g is availabl~, then f can be produced by writing

(11) f:={[x,s]:s•g{x}}

(See Section 3.3.6 for an explanation of the 'map iterator' construct
s = g{x} appearing in OU• Note als,, that if (10) is followed
immediately by (11), thea elements x such that f(x)={ }
will drop out of the do~ain off.)

A new pair [x,y] can be added tog :;imply by writing

g WI TH:= [x • y]

(See Section 2.12.1 for an explanatic1n of the 'assigning operator'
WITH:= appearing here.)

The equivalent transformation off inust be written

f{x} WITH:• y;

which is a bit clumsier (see Sections: 2.12.1 and 2.12.2).

To initialise g to a set of pairs dHfined by a condition C, one
would normally write something like

g:={[x,y]: x IN sl, y IN s2IC}

DATA AND EXPRESSIONS

The corresponding initialisation off, namely

f:•{[x,{y IN s2IC}]:x in sl};

is a bit clumsier.

Page 2-60

These small technical differences sometimes lead one to prefer the 'g'
representation of set_val·ued maps to the 'f' representation.

2.7.4 Two useful map operations

The 'inverse' of a map g is the map h such that [x,y] IN h if and only
if [x,y] IN g. (If g is single-valued, this is equivalent to the condition
that y•h(x) if and only if x•g(y)). We can produce h from g simply by
writing

h:•{ [y,x]: [x,y] in g};

This important construction occurs frequently.

The 'product' or 'composite' of two maps gl, g2 is the map G such the
[x,y] IN G if and only if there exists a z such that [x,z] IN gland [z,y]
in g2. (If gland g2 are both single-valued , this is equivalent to
G(x)•g2(gl(x)).) To produce G from gland g2, we can simply wr~te

G:•{Cx,y]: z•gl{x}, y IN g2{z}};

or, in the single-valued case,

G:•{ [x,g2(z)]: z•gl(x) lg2(z)/•OM};

This 'map product' operation is also ~uite important. Note for example
that if Fa maps each person x onto the fa 1ther of x, and Mo maps each person
y onto the mother of x, then the composite of Mo and Fa maps each person x
onto x's paternal grandmother, while the composite of Fa by Mo maps each x
onto x's maternal grandfather.

2.7.5 Multi-parameter maps

f{x}
with
this

(la)
(lb)

As noted above, maps fare used to ausociate attributes f(x) or sets
of attributes with elements x. tit is occasionally necessary to deal

attributes f(xl, •• ,xk) that depend in two or more objects xl ••• xk. For
purpose, the generalised map operations

f{xl, ••• ,xk}
f(xl, ••• xk)

and the corresponding map asignments

(2a) f{xl, ••• ,xk}:•y
(2b) f(xl, ••• ,xk):=y

are provided. These simply abbreviate

DATA AND EXPRESSIONS

(la,)
(1 b,)

and

(2 a')
(2b')

f{[xl, ••• ,xk]}
f([xl, ••• ,xk])

f{ [xl, ••• ,xk] }:=y
f ([x 1, ••• xk]) : =y

Page 2-61

respectively. That is, a 'multiparameter' map f(xl, ••• ,xk) of k parameters
is regarded simply as a map whose domain consists of tuples of length k.
Note that such a map cannot be used as a function ofany smaller number of
parameters, since for j < k we will always have f{xl, ••• xj}•{ } (except for
j=l, where of course we have f{[xl, ••• ,xk]}•f(xl, ••• ,xk)).

All SETL's map constructs can be used with multi-parameter maps if they
are regarded as one parameter maps whose domain elements are tuples. For
example, if f is a k-parameter map, then the setformer

{y:z=f(y)}

will form the domain DF f by iterating over all the k-tuples y
in DF. (See Section J.J.6 for additional material concerning the 'map
iterator' construct appearing here.)

DATA AND EXPRESSIONS Page 2-62

2.8 Compound Operators

Binary operators like+ or* are often used to sum or multiply all the
components or members of a set or tuple, as in

t(l) + t(2) + ••• + t(n)

To make it more convenient to form combinations of this kind, SETL allows
any binary operator sign (including both built-in operators and user-defined
binary operators introduced by OP declarations, see Section 4.7.2 below) to
be followed immediately by a / (slash) m~rk. This introduces so called
compound operators, such as+/ or*/• Such operators can be used either in
prefix or in infix position, i.e. either as

(lA) bop/t

or as

(lB)

The t appearing in (lA) or (lB) must be either a set or tuple.
form (lA) of the compound operator represents the result

(2A) el bop e2 bop••• bop en

The prefix

obtained by combining all the elements or components of ej of t together
using the underlying binary operator bop repeatedly. The infix form (lB) is
similar, but also includes its first argument x in the result, i.e. forms

(2.b) x bop el bop e2 bop ••• bop en,

where again the ej are all the elements or components oft. If t is null,
the value of (lA) is OM and that of (lB) is x; if t has just one component
or element el the (1.1 represents x bop el, and (lA) simply represents el,
i.e. does not involve any application of -bop-.

The following are some typical uses of compound operators:

+/t $ sum of all the elements oft, OM is tis null
0+/t $ sum of all elements oft, 0 if tis null
MAX/s $ maximum element ins, OM ifs is null
0 +/[a(i)*b(i):t in [1 •• #a]) $ dot product of a and b
*/[x IN tlx/•0] $ product of all the nonzero components oft

As these last two examples illustrate, when a compound operator is used to
combine an explicitly given sequence of terms, a tuple former should
normally be used. If a set former is used then duplicate elements will only
appear once, as in

0+/{x in tlxO} $ duplicate elements not summed

I
I

DATA AND EXPRESSIONS Page 2-63

Moreover, the SETL compiler recognises expressions which apply compound
operators to tuple-formers and implements them efficiently, without actually
building an unnecessary tuple. For example, the sum t/[2*t(i): i IN
[1 •• #t]] is formed simply by iterating overt; no tuple is actually built.

The compound operator -bop/- can be formed with either built-in binary
operators of SETL or with user-defined binary operators. For example, if,
using the mechanisms described in Section 4.7.2, one introduces an infix
operator COMP which forms the composite -f COMP g- of two maps, as defined
by the for mu la

f COMP g = {[x,f(y)]:x IN DOMAIN_§, y IN g{x}lf(y)/=OM},

then COMP/twill form the composite fn COMP... COMP f2 COMP fl of a
sequence [fl,f2, •• ,fn] of maps, and therefore COMP/[f:k in [1 •• n]] will form
the 'nth power' of the map f, i.e the result of taking its composition with
itself n-1 times.

--------------- - ------

DATA AND EXPRESSIONS Page 2-64

2.9 Types and type-testing operators

The possible types of SETL values are Atom, Boolean, Integer, Real,
String, Set, and Tuple. The built-in monadic primitive operator TYPE
applies to any operator and produces its type, as a capitalised string.
I.e., for any x TYPE x is either 'ATOM', 'BOOLEAN', 'INTEGER', 'REAL',
'STRING', 'SET', or 'TUPLE'. The language also provides a set of built in
binary operators called IS_ATOM, IS_BOOLEAN, IS_INTEGER, IS_STRING, IS_SET,
IS_TUPLE, each of which yields TRUE if applied to an object of the
corresponding type, FALSE if applied to an object of any other type.

One additional monadic operator, IS_MAP, yields TRUE when applied to a
set all of whose elements are pairs, FALSE otherwise.

The undefined value Om cannot be expected to have a type, and indeed
the expression TYPE(OM) yields OM itself. In addition, any of the type
predicates, such as IS_SET(OM) or IS_ATOM(OM), yields FALSE.

2.10 The ? Operator

In certain situations undefined (i.e. OM) results can be expected to
appear and one will want to replace them by some other default values when
they do appear. A typical situation of this kind is that in which one is
counting the number of occurences of words in text: here it is natural to
use

count(wd):=count(wd)+l ;

to update a map -count- representing the number of times each word -wd­
has been seen. But then, if -wd- has never been seen before, count(wd) will
be OM, and we will want to replace OM by the more meaningful default O. To
do this we could write (using a syntax to be described more precisely in Ch.
3)

(1) count(wd):aIF count(wd)•OM THEN O ELSE count(wd) + 1 END ;

however, since constructs
abbreviation x?y, which makes
definition of x?y is simply

like
them

this occur so
easier to express,

IF (temp:•x)/•OM THEN temp ELSE y END,

frequently,
is provided.

an
The

where -temp- is a compiler-generated variable not otherwise accessible
to the SETL user. Using this convenient operator, we can write (1) very
conveniently as

count(wd):•count(wd)?O+l.

DATA AND EXPRESSIONS Page 2-65

2.11 Exercises

Ex. 1 Write a program which calculates the set of all integers from 2 to
100 which are the product of exactly two primes.

Ex. 2 The Goldbach conjecture states that every even number greater than 2
can be written as the sum of two prime numbers. Write a I-statement SETL
program which verifies that this conjecture is true for the first 100 even
numbers.

Ex. 3 Which of the following equations are valid for all tuples tl,t2,t3
and positive integers n,m?

(a) tl+t2= t2+tl
(b) tl+(t2+t3)= (tl+t2)+t3
(c) #(n*tl)= n*#tl
(d) n*(tl+t2)= n*tl+n*t2
(e) (n+m)*tl= n*tl + m*tl
(f) (n*m)*tl= n*(m*tl)

If an equation is not always true, give an example showing a case in which
it is false.

Ex. 4 Given a tuple t, write an expression which forms a tuple tl in which
every distinct component of t occurs exactly once. For example, if tis
[1,2,1,2,3,3], tl should be [1,2,3]. Also, write an expression which forms
the set of all components oft which occur at least twice int.

Ex. 5 Given a tuple t, write 3n expression which counts the number of
non-OM components oft ■ Also, write an expresion that produces a tuple with
the same components as t, but !n reverse order.

Ex. 6 What are the values of the following Boolean expressions?

(a) [1,2, [3,4]]=[1,2,3,4]
(b) 3 IN [1,2, [3,4]]
(c) #[l,2,0M,3,0M]=4
(d) [1 , 2 , [3 , 4] , OM] / = [1 , 2 , 3 , 4]
(e) [l. ■ 4]=[1,2,3,4]

Ex. 7 The tuple tis [l,OM,2,0M 1 3]. Evaluate the following sequences:

(a) t{l),t(2),t{3),t{4),t(5)
(b) t(l •• l),t{2 •• 2),t(3 •• 3),t(4 •• 4),t(S •• 5)
(c) t{l ••),t(2 ••),t(3 ••),t(4 ••),t(S ••)

Ex.8: write a tuple former that constructs the sequence of all prime
numbers from 2 to 100, in ascending order.

Ex. 9 The tu p 1 e t is ['Tom' , 'Dick' ,
tuple-former whose components are
least two vowels.

'Harry', 'Sue', 'Lois']. Write a
those components oft which contain at

Ex. 10 Write a tuple assignment of the form t(i •. j):mx which will convert

DATA AND EXPRESSIONS Page 2-66

the tuple t=[l,2,31 to each of the following:

(a) [4,5,6,71 (b) [] (c) [l,31 (d) [l,OM,OM,31 (e) [1,4,10,31

Ex. 11 Write a program that reads a tuple t of numbers and prints its three
largest components in decreasing order.

Ex. 12 Changing as few of the elements of the set { [1,2], [3,41, [51, [1}
as possible, produce a sets such that IS_MAP(s) evaluates to true.

Ex. 13 Given a tuple t of integers, write an expression which yields the
index of the largest component oft.

Ex. 14 Assuming that sl and s2 are non-null sets of integers, in what cases
do the equations

+/(sl+s2)=+/sl +/s2
and

/(sl+s2)=/sl */s2

hold? What happens if sl or s2 is null? How can we keep the null case from
being exceptional?

Ex. 15. Write a definition of the sets DOMAIN f and RANGE f using set
formers.

Ex. 16. The inverse INV f of a map f is the set of
which [x,yl belongs to f. Express INV(INV f)
set former.

all pairs [y,xl for
in terms.off using a

Ex. 17.
different
DOMAIN f?

Given a map f, express the sets of all x for which f(x) is
from OM in terms off. What is the relationship betweens and
In particular, when ares and DOMAIN f identical?

Ex. 18. Express the condition

[x,yl IN f

in terms of the image set f{x}.

Ex. 19. Let f denote the set

{[i,j]: i in [1 •• 101, j in [1 •• 1011 i>j}

What is the domain off? What is the range of f?
different from OM? What is f{5}? What is f(5)?
(cf. Ex.16) of the map f?

For what x is f(x)
What is the inverse map g

Ex. 20. Answer question 19, but for the set f defined by the set former

{[i,i*il: i in [-5 •• 51}

Ex. 21. Answer question 19, but for the set f defined by the set former

DATA AND EXPRESSIONS Page 2-67

{ [i,i*(i-1): i in [-5 •• 5)}

Ex. 22. The map f has the set of strings 'Tom', 'Dick', 'Harry', 'Louis'
as its domain; the map fl has 'Sue', 'Mary', 'Helen', 'Martha' as its
domain. Each of these maps sends every string elements of its domain into
the length s of s. The maps F and Fl are the inverses off and fl,
respectively (see Ex.16). Answer question 19, but for the sets F and Fl,
the union set F + Fl, and the intersection F*Fl.

Ex. 23. Let f be the map

{ [i,i*l]: i in (-2 •• 2)}

(a) Write a series of map assignments of the form f(x):=y which will make f
equal to the nullset { }. (b) Write a series of such assignments which make
f single-valued by reducing its domain progressively. (d) Write a series of
such assignments which make f single-valued without ever changing its range.

Ex.
map?

24. The range of a map is the null set {
What is the map?

What is the domain of the

Ex. 25. The range of a map consists of the two elements {TRUE,FALSE} and
its domain consists of the three elements {1,2,3}. (a) How many elements
can the map itself contain? (b) How many such maps are there? (c) How many
such single-valued maps are there? (c) How many such maps whose domain
includes all three elements {1,2,3} are there? (d) How many such maps whose
range includes both elements {TRUE,FALSE} are there? (e) Can you write SETL
expressions which would evaluate the answers to all these questions?

Ex. 26. (a) The range of a map consists of the two elements {TRUE, FALSE}.
How many elements can the map itself contain? (b) The domain of a map f
consists of the three elements {1,2,3}. How many elements can the map
itself contain? If we suppose that f is single-valued, how many elements
can the map itself contain, and how many elements can its domain contain?

Ex. 27 A sets is a subset of every other set.
subset of every other map. What is f?

What is s? A map f is a

Ex. 28 Suppose that the variables has a set value, the variable t
tuple value, and the variables sl and s2 have string values.
expressions which produce the following quantities:

has a
Write

(a) A tuple whose components are the elements of s, arraged in some order.

(b) A set whose elements are the components of t, with duplicates
eliminated.

(c) A tuple whose components are the successive characters of sl.

(d) Assuming that sl and s2 have the same length, a map from each character
of sl to the corresponding character of

Ex. 29 Given two sets sl and s2, express #(sl+s2) in terms of #sl, #s2, and
#(sl*s2). If s2 INCS sl is TRUE, express #(sl-s2) in terms of Isl and #s2.

DATA AND EXPRESSIONS Page 2-68

Ex. 30 Given two sets sl and s2, express the number of single-valued
maps f such that DOMAIN f•sl and RANGE f=s2 in terms of sl and s2.

Ex. 31 The map part of a sets is the collection of all elements of s which
are ordered pairs. Write an expression whose value for any givens is the
map part of s. (Make sure that your expression can be evaluated for any
value of s, whether or not this value is a set; ifs is not a set, your
expression should have the value OM.)

Ex. 32 The single-valued part of a maps is the set of all pairs ins whose
first component is unique. taking the same precaution noted in Exercise 30,
write an expression whose value for any given_s is the single-valued part of
s. s2.

DATA AND EXPRESSlONS

2.12 Q~ne_L_<!l:_ form of the SETL assignment. The opera:tors JFROl!tt FROME,
a,nd FROME.

In preceeding sections, we have o~served that ~ome of the coastructs
which can appear in an expression; and which retri,ve valu~s or parts of
values, car, also appear on the left hand side of an a,es,ignmdnt,. :al.lowing the
corresponding values to be assigned or modifi'eat. Pop e:leampl:e, when it
appears in an expression the expresston f{x} retrieves ·tb,e image .,set of x
under the map f, but when it appears to the left of a~.assignment, as in

f{x} := e;

then the image set of x becomes e. -Similarly, ~hen ~he e~pressl6u 1s(t •• j)
appears in an expression it yields a string or tiple slice~1 but when it
appears to the left of an assignment, as in

s(i. .j) := e;

is causes the val•e of this strina 6r tuple slibe to become e.

Constructs which can appear to the left of an assignment operator can
also appear in expressions, and the relationship betw•eft le~t~hdnd and
right-hand appearances (i.e., ordinary appearances within an expr~ssion) of
any such construct always exhibits an important ,logicai symmetry.
Specifically, if, -lhs- denotes any construct which, like the constructs
f { x } and s (i •• j) , can appear to the left of an ass i g tne n t, then · the; effect of
the assign,nent

lhs := e

is to assnrc• thet immediately subsequE>.nt evaluation of -ths- '(within an
expression, i.e., in a 'right-hand' contekt) will yield the,assi~ned value
e •

The elementary constructs which are allowed to appear to the le~t of an
assignment operator are the follo~ing:

(i) A ~ariable identifier x. The assignment

X : =- e

modifies the value of x.

(ii) A tuple-former [xl, •• ,xk].

(Notice that the elipsis: , ••• , stands for some unspecifie-d number of
other components of the tuple. This should not be confused with the SETL
substring operation s(x •• y)).

The assignment:

[xl, •• ,xk] :== e

modifies the value of each of xl, •• ,xk. In such an assignment, any of the

DATA AND EXPRESSIONS Page 2-70

xj can be replaced by the dummy symbol
assignment is performed for this particular xj.
to the general rule that any construct which
assignment can also appear to its right.) As an
the assignment

' ' (dash), in which case no
(This is the one exception

can appear to the left of an
example of this, note that

(la) [x,-,y] := [1,2,3];

gives x the value 1 and y the value 3. Moreover, the assignment

(lB) [x,-,y] := [1,2,3,4];

has the same effect, since the fact that y occurs as the third component of
the tuple on the left of (lB) means that the third component of the
right-hand side of (lB) will be assigned to Y• For the same reason, the
assignment

(le> [x,-,y,z,w] := [1,2,3,4];

gives x,y,z, and w the respective values 1,3,4, and OM.

(iii) A tuple, string, or map selection f(x). The assignment

f(i) := e;

modifies component i off if f is a tuple, character i of f if f is a
string, and the value f(i) if f is a map.

(iv) A multiparameter map selection f(xl, •• ,xk). This is equivalent to
f([xl, ••• xk]), and the assignment

f(xl, ••• ,xk) :• e;

is equivalent to f([xl, ••• ,xk)) :• e.

(v) A multivalued selection f{x}. The assigment

f{x} :• e ;

modifies the set f{x}.

(vi) A multivalued, multiparameter map selection f{xl, ••• ,xk}. This is
equivalent to f{[xl, ••• xk]}, and the corresponding assignment

f{xl, ••• ,xk} :• e ;

is equivalent to f{[xl, ••• ,xk]} :• e;

(viii) A string or tuple slice t(i •• j) or t(i ••). The effect of

t(i •• j) := e or t(i ••) := e

DATA AND EXPRESSIONS

is to modify the portion t(i ••• j) of the string
value of the string or tuple expression e may
that of the subsection oft which e replaces,
increase or decrease length oft. See Sections
2.1, for a discussion of marginal cases of these
i= t+l. etc.

Page 2-71

or tuple. Note that the
have a length different from

so these assignments can
2.3.3 and 2.5.3, also Table
assignments, e.g. j•i-1,

Simple expressions, of any of the types we have just listed, which can
appear on the left of an assignment, can also be compounded to build up more
complex 'assignment targets' that are also allowed to appear to the left of
an assignment operator. For example, if f and g are maps, t is a tuple, and
sis a string, then the assignment

(IA) [[x,y],f(u),g{v},t(i),s(j ••)] := e

is a legal assignment, whose effect is the same as that of the following
sequence of assignments

(lB) [templ,temp2,temp3,temp4] := e;
[x,y] := templ;
f(u) := temp2;
g{v} := temp3;
s(j ••) := temp4;

Map and tuple component extraction operators can also be compounded,
e.g. we are allowed to write h{u}(v)(i) if his a map such that Hl=h{u} is
also a map for which Hl(v) is a tuple whose i-th component can be extracted.
The value x that h{u}(v)(i) produces is exactly that produced by the
sequence

Hl := h{u};
H2 := Hl(v);
x := H2(i); $ Hl and H2 are otherwise unused, compiler-generated

$ variables

Compounds of this sort can also be used to the left of assignment operators,
for example we can write

(2A) h{u}(v)(i) := e;

This has exactly the same effect as the following sequence, into which the
SETL compiler expands (2A):

(2B) Hl := h{u};
H2 : = Hl(v);
H2(i) : = e;
Hl(v) : = H2;
h{u} : = Hl;

The general rules used to expand compound assignments can be stated as
follows:

(i) An assignment of the form

DATA AND EXPRESSIONS Page 2-72

(3A) [el, ••• ,ek] :• x

is legal if, for each j between 1 and k, either ej is the sign ,_,
or if an assignment of the form

(dash),

ej : ... y

would be legal. If it is legal, (3A) is expanded into the code sequence

(3B) el :• x(l);

• • •
ek :• x(k);

but in (3B) every assignment corresponding to an ej
omitted.

(11)

(4A)
(4B)
(4C)
(4D)
(4E)
(4F)

An assigment of one of the forms

e(i) := x;
e(il, •• ,ik) :• x;
e{y} :• x;
e{yl, •• ,yk} :• x;
e(i .. j) := x;
e(i ••) :=- x;

of the form
, , is

is legal if and only if e is an expression, other than a tuple- former
[zl, •• ,zk], which could appear to the left of an assignment operator, and if
in addition the corresponding code sequence

(SA) temp_var := e; temp_var(i) : = x; e : = temp_var;

(SB) temp_var := e.
'

temp_var(il, •• ,ik) := x; e : = temp_var;

(SC) temp_var :• e; temp_var{y} : = x; e : :: temp_var;

(SD) temp_var :• e; temp_var{yl, •• ,yk} := x; e := temp_var;

(SE) temp_var :• e; temp_var(i •• j) :• x; e :z temp_var;

(SF) temp_var :• e •
'

temp_var(i ••) := x•
' e := temp_var;

would be legal. (Here, -temp_var- is an otherwise unused,
compiler-generated auxiliary variable). When an operation (4A-F) is legal,
it is expanded into the corresponding assignment sequence (SA-F). Of
course, the final assignment of each of these sequences may itself require
expansion; if necessary, this is performed recursively, leading to
expansions like those shown in (lB) and (2B) above.

2.12.1 'Assigning forms'~ infix operators. Assignment expressions.

SETL allows abbreviation of any assignment of the form

DATA AND EXPRESSIONS Page 2-73

(6) lhs := lhs OP e;

where OP designates any built-in (or user-defined, see Section 4.7.2)
infix operator, and -lhs- designates any simple or compound expression which
can legally appear to the left of an assignment operator. For example, we
can abbreviate

i := i+l;

and

x:=x MAX y;

as

i +:= l;

and

x MAX:= y;

respectively. One is always allowed to abbreviate (6) as

(7) lhs OP:=e;

2.12.2 Assignment expressions

Simple assignments x := y (and even more complex assignments such as
f{u}(v) := y) can be used as expressions. The value of such an 'assignment
expression' is simply its right-hand side y, but of course 'evaluation' of
such an 'expression' always has a side effect, namely it modifies the value
of the variable Xo

Assignment expressions of this sort are frequently used to abbreviate
sequences of assignments which initialise a collection of variables by
giving the same value to all of them. For example, the assignment

X := y := z := w := O;

which is equivalent to

x := (y := (z := (w := 0)));

gives all four variables x,y,z,w the value zero. Another common use of
assignment expressions is to save the value of quantities that one needs to
use just past the point at which they are first evaluated. The code
fragment

(8) IF (x := f(u) + g(v)) IN s THEN f(u) := x; ELSE •••

illustrates this. Since the quantity f(u) + g(v) is needed immediately
after the test in which it is first evaluated, the programmer may find it
convenient to assign this quantity as the value of an auxiliary variable x,
saving re-evaluation, and, equally important, abbreviating the program

DATA AND EXPRESSIONS Page Z-74

source text. A related example, showing another common use of the
assignment expression construct, is

(9) IF (x := y+z) > 0 THEN
positives WITH:=x;

ELSE
negatives WITH:=x;

END IF;

Over-enthusiastic use of assignment expressions will lead to a crabbed
programming style in which important operations flit by without sufficient
syntactic emphasis. This will be bad if it deprives a program's reader of
too much of the redundancy on which his understanding of the program
depends. A good rule of thumb is to use an assignment expression only when
the subsequent target variable of the expression occurs within a very few
lines after the assigning expression being written.

2.12.2.1 Other positions in which assignment targets are allowed

A few of the other positions in which variables can occur resemble the
left-hand sides of assignment operators, in that new values are assigned to
variables appearing in these positions when the contexts containing them are
evaluated. These 'assigning positions' are as follows:

(i) The position of x in an iterator

(FOR X IN s I...) •••

is assigning, since the iterator will assign successive values to x. The
same remark applies to the position of x in an existential quantifier

EXISTS x IN sl•••

and in a universal quantifier

FORALL x IN sl•••

Of course,
positions
in

the same remark applies to variables appearing in corresponding
in multiple iterators, as in the case of the variables x,y, and z

(FOR x IN s, y IN t, z IN [1 •• n]I•••>

(ii) The position of x and i in a map, tuple, or string iterator

(FOR x= f (i) I ••)

or in a multi-valued map iterator

(FOR x=f{i}I ••)

is assigning. Of course, the corresponding positions in multiple iterators
and in quantifiers are also assigning positions. (See Section 3.3.6 for
aditional material concerning the 'map iterator' construct appearing here.)

DATA AND EXPRESSIONS Page 2-75

(iii) Argument positions in function and procedure invocations corresponding
to formal procedure or function parameters (see Chap. IV) that carry the
read/write qualifier RW are also assigning positions (see Section 4.5).

Precisely the same expressions that can appear to the left of an
assignment operator are allowed to appear in any other assigning position.
Thus, for example, the construction

(FOR x+y IN sl•••>

is illegal, since

x+y := e

would also be illegal; x+y is not a legal assignment target. On the other
hand,

(10A)

(lOB)

(lOC)

(FOR [x,y] IN sic) •••

(For f(x) IN slC) •••

(FOR [[u,v],y] IN slC)

are all legal, and have the same respective meanings as the code fragments

(1 lA)

(llB)

(1 lC)

(FOR temp_var IN s) [x,y] := temp_var; IF not C THEN QUIT; END;

(For temp_var IN s)f(x) := temp_var; IF NOT C THEN QUIT; END;

(For temp_var IN s) [[u,v] ,y] := temp_var; IF NOT C THEN QUIT; END;

into which the SETL compiler expands them. Much the same remark applies to
quantifiers containing iterators in assigning positions, for example in

(12) ••• EXISTS [x,y] IN slC(x,y) •••

The iteration implicit in the existential quantifier (12) will generate
successive elements z of sand perform an implicit assignment [x,y] :• z
before the Boolean expression C(x,y) is evaluated.

As already noted, the position of i in

(13A) (FOR x=f(i) I••>•••

and in

(13B) (FOR x=f{i}I••>•••

also the positions of il, ••• ,ik in

(13C) (FOR x=f(il, ••• ,ik)I•••>•••

and in

(13D) (For x=f{il, ••• ,ik}I•••>•••

DATA AND EXPRESSIONS Page 2-76

are assigning. (See Section 3.3.6 for additional explanation of the 'map
iterator appearing in (13A-D).).

Any expression which can appear to the left of an assignment operator can be
substituted for the i in (13A) or (13B), or for any of il thru ik in (13C)
or (13D). For example, we can write

(14) (FOR [x,y]•f([u,v])I C(x,y,u,v)) •••

In (14), the iterator will generate successive elements z of the domain off
and w of its range, and then perform implicit assignments [x,y] :•wand
[u,v] :• z before the Boolean expression C(x,y,u,v) is evaluated. Note also
that (13C) and (13D) are equivalent to

(15C) (FOR x•f([il, ••• ,ik]) I•••) •• •

and

(15D) (For x=f{[il, ••• ,ik]}I••>•••

respectively.

DATA AND EXPRESSIONS Page 2-77

2.12.3 The operators FROM, FROME, and FROMB

A useful, but somewhat nonstandard operator on sets s, and two similar
operators on tuples t, have assignment-like side effects. These are

(16)

and

(17 A)
(17B)

x FROM s;

x FROME t;
x FROMB t:

$ take x 'from the end' oft
$ take x 'from the beginning' oft

The effect of (16) is to select an arbitrary element of s, assign it to
the variable x, and remove the selected element from s. Thus (16), like
(17A) and (17B), has a somewhat unusual effect in that it modifies two
variables. Ifs is null then x becomes OM ands remains null.

The form (16) can also be used as an expression;
way, it yields the value assigned to x.

when used in this

Similarly, the effect of (17A) is to remove the last (non-OM) component
oft and assign it to the variable x. If tis null, then x becomes OM and t
remains null. The effect of (17B) is to remove the first component oft and
assign it to the variable x. If this first component is OM, then xis
becomes OM, butt is reduced in length by 1 (its leading OM component is
removed). If tis null, then x becomes OM and t remains null.

Like (16), the forms (17A) and (17B) can be used as expressions.
used in this way they both yield the value assigned to x.

When

Note that, if t has OM components immediately preceding its last non-OM
component, then (17A) can decrease the length oft by more than 1. For
example, the sequence

t : = [1 , 2 , OM, OM, 3] ;
x FROME t; y FROME t;
print(x,y,flt);

will produce the output

3 2 [1].

The position of x in (16), (17A), (17B) is assigning. Any expression which
could appear to the left of an assignment ope~~tor can also appear in this
position. For example, we can write

[x, y] FROM s ;

this is equivalent to the sequence

temp_var FROM s; [x,y] := temp_var;

DATA AND EXPRESSIONS Page 2-78

2.13 Operator precedence rules

The table in this section shows the precedence rules which determine
the order in which the operators in an expression are evaluated. If two
operators share a common operand, then the one with the higher precedence is
evaluated first. If both operators have the same precedence, then the left
hand one is evaluated first (i.e. operators of a given precedence level are
evaluated in a left associative manner.)

Parentheses can be used freely to emphasize or alter the order of
operations as determined by this table.

Precedence Operators

11

10

9

8

7

6

5

4

3

2

1

0

:= (on left side)
assigning operators (on left side)
FROM (both sides)

All unary operators except
NOT and the IS_xx operators.

**

* / MOD DIV

+

User defined binary operators

= /= < <=>>•IN NOTIN SUBSET INCS

NOT and the IS_type operators

AND

OR

IMPL

:• (on right side)
assigning operators (on right side)

The following examples of equivalent expressions with and without
parentheses illustrate the operation of these rules:

a+b+c*d

is the same as

(a+ b) + (c * d)

a+ b +:s c DIV d

DATA AND EXPRESSIONS

is the same as

is the same as

a+ (b +:= (c DIV d))

a+ CEIL b := c

a+ (CEIL (b := c))

Page 2-79

DATA AND EXPRESSIONS Page 2-80

2.14 Exercises

Ex. 1 Given that tis a tuple, explain the meaning of ?/t.

Ex. 2 Write a setformer which will produce the set of all proper subsets of
a sets, i.e. the set of all subsets sl of s which are different from s.

Ex. 3 Express #pow(s) in terms of #s. Is there any set such that scpow(s)?
For what sets is #pow(s)=l? Is there any set that #s=#pow(s)? Is there any
set such that #pow(s)•2?

Ex. 4 Given
{[x,y):s IN
cprod(s,t)={
#cprod(t,s).

two sets s and
s, y IN t}.

}, what are s

t, their Cartesian product cprod(s,t)
Express #cprod(s,t) in terms of #sand #t.

and t? Express #cprod(s,t) in terms

is
If
of

Ex. 5 It can be shown that two set expressions el and e2 involving any
number of variables xl, •• ,xn and formed using only the set union,
intersection, and difference operations are equal for all possible set
values of the variables xl, ••• ,xn if and only if they are equal whenever
each of these variables has one of the two values { } and {1}. Therefore,
we can check a set-theoretic iden~ity lke x*y=y*x simply by evaluating

ll{[x,y]:x IN {{ },{1}}, y IN {{ },{l}}lx*y/=y*x}

and observing that its value is zero. Moreover since x INCS y is
equivalent to x*y=y, this same technique can be used to check inclusions of
the form el INCS e2. Using this technique, verify that the following
set-theoretic identities and inclusions are true for all possibie set values
of x,y, and z:

(a) (x*y)=(y*x)
(b) (x+y)=(y+x)
(c) ((x*y)*z)=(x*(y*z)), also ((x+y)+z)=(x+(y+z))
(d) ((x+y)-z)•((x-z)+(y-z))
(e) (x*x)•x, also (x+x)•x
(f) (x-x) •{ }
(g) ((x+y)*z)•(x*z+y*z), also ((x*y)+z)•((x+z)*(y+z))
(h) (x+(y-x))•(x+y)
(1) (x-(y+z))•((x-y)*(x-z))
(j) (x*{ })•{ }, also(x+{ })•x

If f is a map ands is a set, then the image set of s under f,
sometimes written f{s), is by definition the set {y: [x,y) IN fix IN s}. The
inverse image of sunder f, sometimes written f_inv[s], is by definition the
set {x: [x,y] IN f I y IN s}. These notations will be used in the next group
of exercises.

Ex. 6 Express f[s] in terms of the sets f{x}, using a compound operator.
What is £[DOMAIN f]? What is f-inv[RANGE f]?

Ex. 7 In how many ways can two pairs of parentheses be inserted into the
expression

DATA AND EXPRESSIONS Page 2-81

1 + 2 - 3 * 4 DIV 5

to produce a legal expression? Take twenty of these expressions and
write their values. Do the same for

1 + 2 -- 3 * 4 DIVS.

Ex. 8 Determine the type of the value of x in each of the following
code fragments, assuming that the code shown executes without causing any
error.

(a) x := z+l;

(b) x := z+'l';

(c) x := z-{1};

(d) x := z--[1);

(e) read(x);
IF x>O THEN print(x); END;

(f) x := ARB s;
(FORALL y IN sly>O)print(y); END;

(g) IF EXISTS x IN s l#x(i ••• j)<j-i THEN print(x); END;

Ex. 9 Execute the programs

[A,A,A] :=[1,2,3); print(A);

and

[A,B,A,B] := [l,2,3,4); print(A,B);

What result do you expect? What is going on?

Ex. 10 Write expressions which will find the following positions in a
strings:

(a) The position of the first occurence of the letter 'a' (b) The
of the second occurence of the letter 'a' (c) The position of
occurence of the letter 'a' (d) The position of the last occurence
that is preceded by no more than five occurences of 'e'.

position
then-th
of 'a'

If the desired occurences do not exist, your expression should return the
value OM.

Ex. 11 Write an expression which, given a tuple t of integers, forms the
tuple t2 of all 'partial sums' of the components oft. That is, the j-th
component of t2 should be the sum of components 1 thru j oft.

Ex. 12 A tuple t of tuples, all of the same length n, can be regarded as an
m x n rectangular array of items. Write a program which rearranges this
array by turning it 90 degrees, so that it becomes an n x m rectangular

DATA AND EXPRESSIONS Page 2-82

array of items, represented by a tuple t2 of tuples all of length m. If
this operation is repeated twice, what happens?

DATA AND EXPRESSIONS Page 2-83

2.15 OMS and Errors

When an illegal operation or an operation having an undefined result is
evaluated during the running of a SETL program, one of two possible things
will happen. Errors classified (somewhat arbitrarily) as 'severe' will
cause execution to terminate. In this case, a brief error indication will
be placed at the end of the program's output file. Moreover, if the
terminal dump option has been switched on (section 8.5.1.4 below explains
how this can be done), a terminal dump will be written to the dump file
specified; valuable hints concerning the cause of error can then be gleaned
by examining this dump.

The following errors terminate execution:·

(i) Type errors, e.g. an attempt to evaluate

l+{0}, 1.0+2, [0]+{1}, '1'+2. s{y} wheres is a string or tuple etc.

(ii) Illegal use of OM, e.g. attempts to evaluate

{OM}, f(OM), OM IN s, s WITH OM, OM WITH x, etc.

(iii) String or tuple parameters which are grossly out of bounds,
e.g. attempts to evaluate

s(O) or s(-1),

wheres is a string or tuple.

(iv) Illegal file operations, e.g. attempts to manipulate files which have
not been opened.

(v) Floating point operations which overflow out of the range of a
particular SETL operation, and also conversions of very large integers to
floating point form.

'Mildly erroneous', deliberately intended, operations whose result is
undefined will return the undefined value OM. These include

(a) selection of an element from an empty set or tuple, as in

X FROM { }, X FROM [], X FROME [], or ARB { }

(b) evaluation of a map at a point at which it is undefined or multiple
valued, as in f(O) or f(l) where f is

{[1,1], [1,2)};

also evaluation of an undefined component of a
execution is not immedately terminated, it
result in this case, giving greater semantic
constructs exploiting this flexibility are:

tuple. Since in these cases
is possible to test for an OM
flexibility. Some typical

IF (x FROM s)/=OM THEN ••• $ test a set for nullity and extract

DATA AND EXPRESSIONS Page 2-84

$ an element if not null

IF f(x)/=OM THEN •• $ see if the map f is uniquely defined at x

On the other hand, since the legal uses of OM are severly restricted,
unexpected OM values are likely to force error termination soon after they
appear. Consequently, errors of this sort can generally be tracked down
rather quickly.

-HAPTER 3

CONTROL STRUCTURES

Chapter 3. Control structures

Execution of a SETL program proceeds sequentially , one
executed after the other. In the simplest case, the order
simply the order in which the statements are written in the
example, consider:

, a ; = 1;
print('Initially, a =
a := a + l;
print('Finally, a= , , a) ;

a) ;

statement being
of execution is

program. For

In this
message
mesaage

example, the variable a is assigned the value
is printed; a is then assigned the value 2;
is printed.

l; then the first
and finally the second

Only the simplest computations can be carried out by such straight-line
programs. In order to perform more complex calculations, we need to be able
to describe conditional computations, i.e. computations that are to be
executed only when certain conditions are met, and we also need to program
repeated computations, i.e. computations to be executed a number of times,
(100 times, or for all elements in a set, or until a certain calculation
converges, or as long as a certain value has not been reached, etc).

The order in which these more complex computations are to be executed
is specified in the program text by means of language constructs commonly
called control structures. In this chapter we will examine the most
important control structures of the SETL language, namely: the IF
statement, CASE statement, LOOP statement, and GOTO statement. The IF,
CASE, GOTO and some variant of the LOOP constructs are commonly found in
most modern programming languages, and are regarded as the basic tools of
'structured programming'. The LOOP construct in SETL is a bit richer than
the loop constructs provided by most other languages, and some of its
features are specially tailored for the objects that characterize SETL,
namely sets, tuples and maps.

Chapter Table of Cont~nts

CONTROL STRUCTURES

3.1 The IF statement
3.1.1 Omitting the ELSE branch of an IF statement
3.1.2 The null statement
3.1.3 Multiple alternatives in an IF statement
3.1.4 An important note on indentation and programming style
3.1.5 The IF expression

3.2 The CASE statement
3.3 Loops

3.3.1 Set iterators
3.3.2 Tuple iterators, first form
3.3.3 String iterators, first form
3.3.4 Numerical iterators
3.3.5 Additional loop control statements: 'CONTINUE and QUIT
3.3.6 Map iterators
3.3.7 Compound iterators
3.3.8 The general loop construct

3.3.8.l The WHILE loop
3.3.8.2 The UNTIL loop
3.3.8.3 The DOING and STEP clause
3.3.8.4 The INIT and TERM clauses

3.4 The GOTO and STOP statements
3.5 Programming example: an interpreter for a simple language
3.6 Exercises
3.7 Reading and writing data

3.7.l Reading data for a terminal
3.8 Exercises

3.1 The IF statement.

Page 3-2

The IF statement is used to route program execution along
alternate paths, chosen according to some stated condition.

one of several
An example is

IF balance> 0 THEN
print('Your line of credit is: ', balance);

ELSE
print('you are overdrawn by: ', -balance);

END IF;
print('Do you want additional information (y/n)?');

Here, the condition (i.e. whether the value of -balance- is positive or
negative) determines which of two messages is printed. If the condition
being tested is TRUE (i.e. the balance is positive) the statement following
the keyword THEN is executed; if the condition is FALSE, the statement
following the keyword ELSE is executed instead.

After execution of the statements in either branch of the IF statement,
program execution continues from the first statement following the end of
the IF. In the example above, after execution of one of the branches of the
IF, the query - Do you want additional information(y/n)?-will be printed.

Any number of statements can appear in either branch of an IF
statement. For example, we can write:

IF line>= 50 then
page :=page+ l;

CONTROL STRUCTURES

line : =
ELSE

line : =
END IF;

In this case, if the
to page and line are

1 ;

line + 1;

condition - line >=50
per formed; otherwise,

- is true,
-line- is

Page 3-3

then the assignments
incremented.

The syntax of the form of the IF statement shown above is:

IF condition THEN
group of statements

ELSE

group of statements
END optional tokens;

The construct condition denotes any boolean expression, (See Section 2.xxx)
i.e. any expression which yields either TRUE or FALSE. The group ..£1
statements in each branch of the IF designates any sequence of executable
statements, which can be assignments, control statements such as other IFs,
loops, etc.

The end of the IF construct is indicated by the keyword END, followed
optionally by the keyword IF, and by up to 5 of the tokens that follow the
opening IF. This convention is particularly useful for clarifying the range
of statements governed by IF statements nested within other IF's, and is
used for other nested control structures as well. The following example
illustrates the use of nested IF statements, and displays the convention we
have just described for indicating the end of an IF.

IF a/= 0 then

ELSE

IF b**2 > 4.0*a*c THEN

ELSE

discr := sqrt(b**2 - 4.0*a*c);
print('rl = ', (-b + discr) / 2.0*a);
print('r2 = ', (-b - discr) / 2.0*a);

print('Complex roots');
re_part := -b/2.0* a;
im_part := sqrt(4.0*a*c - b**2) / 2.0*a;
print('rl = ', re_part, '+i', im_part);
print('rl = ', re_part, '-i', im_part);

END IF b**2;

IF b /= 0 THEN
print('Single root: ', -c/b);
print('degenerate equation: a= b = 0');

END IF b /= O;
END IF a/= 0;

3.1.2 Omitting the ELSE branch£.! an ..U:. statement.

Sometimes we want to perform a series of actions when a certain condition is

CONTROL STRUCTURES Page 3-4

met, but to do nothing if it isn't.
ELSE branch of an IF statement, as
ex amp le:

In this case it is possible to omit the
illustrated in the following simple

IF token NOTIN keywords THEN
print('Unrecognized operator: ', token);

END IF;

If the condition is true, the statement(s) following the THEN are executed;
if the condition is false, the IF statement does nothing.

3.1.3 The null statement.

For reasons of readability, it is often advisable to indicate both branches
of an IF statement, even if one of them is to do nothing. A -do nothing­
statement is provided for this purpose. It is written thus:

pass;

and causes no computation at all.
example as follows:

IF token notin keywords THEN

This allows us

print{'Unrecognized operator: ', token);
ELSE pass;
END IF;
This can also be expressed as:
IF token in keywords THEN

pass;
ELSE

print{'Unrecognized operator:', token);
END IF;

3.1.4 Multiple alternatives 1.£ an IF statement.

to write the previous

We often encounter the following programming situation: when the condition
of an IF statement is false, we immediately perform another test to choose
among another pair of alternatives, and so on. This can be expressed by
means of nested IFs, but can be more clearly stated by 'continuing' the IF
statement by means of a special construct to designate subsequent
alternatives. In SETL, this is done using ELSEIFs, as shown in the
following example:

IF month= 'February' THEN
IF year mod 4 = 0 and year mod 200 /= 0 THEN

days := 29;
ELSE

days := 28;
END IF year;

ELSEIF month in {'september','April' ,'June' ,'November'} THEN
days := 30;

ELSE
days:= 31;

END IF;

CONTROL STRUCTURES Page 3-5

Here, three alternatives are being examined: whether month is February, or
is one of the 3O-day months, or is one of the remaining months. Any number
of alternatives can appear in this more general IF construct, whose syntax
is:

IF condition THEN
group .£.i statements

ELSEIF condition THEN
group .£.i statements

ELSEIF •••

ELSE
group .£.i statements

END optional tokens

·_statement

seif"

Fig 3.1: IF_Statement syntax diagrams

Note the important syntactic point:

ELSE

- ELSEIF is a single word, and it indicates an alternate
current IF statement.

test within the

- ELSE IF, on the other hand, indicates that within the ELSE branch of
the current IF statement, a nested IF statement is present, which will need
its own closing END. Be warned: if you use ELSE IF when ELSEIF should be
used, syntax errors, namely 'missing END' messages, will result.

3.1.S An important note on indentation and programming style.

The physical layout of a SETL program on a printed page (or the screen) is
of no concern to the SETL compiler. As long as the syntax of the language
is obeyed, the user is free to write successive SETL statements with
bizarrely varying indentation, to place several statements on the same line
of text, etc. For the human reader, on the other hand, a good choice of
program layout can make all the difference between clarity and hopeless
muddle. This is particularly true when a program needs to to be read and
understood by several programmers. Proper indentation should reflect
program structure in such as way as to serve as an additional implicit
documentation on the intent of a program. In th~s connection, the following
maxim should be kept in mind: PROGRAMMING IS A SOCIAL ACTIVITY. If the
programs you write are of any interest, there is a high likelihood that
somebody else will want to examine them, so as to extend, modify or simply
to understand their workings. (Often enough, this somebody else may be
yourself, going back to a program written months before, trying to recapture
the thought processes that led you to various programming decisions). In

---- -- -----------------

CONTROL STRUCTURES Page 3-6

other words, a program must be seen as a tool for communication, not only
from programmer to computer, but also among programmers. From this
perspective, it is easy to see that good indentation and program layout,
helpful choice of variable names, and ample and carefully considered
documentation, are the hallmarks which distinguish the professional
programmer's work from that of the amateur.

In the case of IF statements, it is natural to regard the group of
statements in each branch of the IF as subordinate to the the condition
which introduces them. This is clearly reflected in the text if we INDENT
the statements in each branch, with respect to the IF and ELSE keywords, as
was done in the examples above. An additionai rule to follow is to place
the ELSE in a line by itself, unless the corresponding branch reduces to a
single short statement (for example: pass;). The examples in this text
follow these rules, as well as other ones which we will mention in
connection with other control structures. As is usually the case for rules
of style, these should only be regarded as guidelines and suggestions, to be
tempered by individual taste. We cannot emphasize enough, however, the need
for SOME consistent choice for indentation and paragraphing in the
preparation of programs.

3.1.6 The IF expression.

An IF statement often is used to assign one of several values
given variable. For example, one may write:

IF a> b then maxab := a; ELSE maxab := b; END IF;

to a

When this is all that is wanted, the IF expression (also called
conditional expression) provides a clearer way of achieving the same intent.
An IF expression is an expression whose syntax is similar to that of the IF
statement, and which denotes a value which depends on the outcome of a test
(or tests). The general syntax of an IF expression is:

(1) IF testl THEN exprl ELSEIF test2 THEN expr2 •••• ELSE exprn END

Fig 3.2: Syntax of the IF expression.

This construct may be used in any position where an expression of any other
kind would be acceptable. For example the IF statement (1) can be written
as:

(2) maxab := IF a> b THEN a ELSE b END;

The following are also valid examples of IF expressions:

CONTROL STRUCTURES

PRINT (IF filler= ,, THEN '***' ELSE filler+'*' END);
PRINT ((IF filler=,, THEN'**' ELSE filler END)+'*');
distance :=distance+ (IF edge• OM THEN 0

ELSE length(edge) END);

Page 3-7

The following syntactic details of the IF-expression should be noted:

a)In an IF expression, an ELSE part must always be present
that the expression has a value in all cases).

(to. insure

b) the terminator of an IF expression must be a simple END, not END IF
or END IF with extra tokens. c) There is no semicolon preceding the
keywords ELSEIF and ELSE in an IF-expression. This is because these
keywords are preceded by expressions. In contrast, these same keywords are
preceded by semicolons in an IF-statement, because in that case a semicolon
terminates the statement previous to the keyword.

IF expressions can be nested, as the following rewriting of our· 'days
in the month' example shows:

days := IF month= 'February' THEN

(IF year mod 4 = 0 and year mod 200 /= 0 THEN 29

ELSE 28 END)

ELSEIF month in {'September','April','June','November'}

THEN 30

ELSE 31 END;

CONTROL STRUCTURES Page 3-8

3.2 The CASE statement.

The CASE statement is a generalization of the IF statement. Whereas
the IF statement controls the flow of execution of a program by choosing
among two alternatives, the CASE statement allows us to choose among any
number of alternative paths of exe~ution. The CASE statement is available
in two forms. Of these, the first and most general is:

Fig J.J:

CASE OF
(testl): blockl
(test2): block2
(test3): block3

••
(testn): blockn
ELSE blocke
END; $ Or END CASE;

CASE-OF statement syntax diagrams

Each of blockl, block2 •• and blocke must be a sequence of one or more
statements. Each of the expressions testl,test2.. must be a boolean
expression. Execution of this form of the CASE statement proceeds as
follows:

a) The expressions testl, test2 •• are evaluated. If one of them, say testi,
yields TRUE, then the corresponding block. i.e. blocki, is executed, and
then execution proceeds to the first statement that follows the CASE
statement. If several of the expressions testl,test2 •• evaluate to TRUE,
then any one of them is chosen and the corresponding block executed. The
CASE statement thus differs from a similar sequence of IF and ELSEIF
statements, where the tests are made in sequence. b) If none of the tests
evaluates to TRUE, then blocke, which follows the ELSE clause of the
statement, is executed. This ELSE clause is optional. If the ELSE clause
is absent, and none of the tests in the CASE statement evaluates to TRUE,
the CASE statement is simply bypassed, and execution continues with the
first statement that follows it.

It is possible to attach more than one test to a given branch of the
CASE by writing:

(testl,test2 ••• testJ): blockn

In this case, blockn is a candidate for being executed if any one of the
tests testl,test2 •• yields TRUE.

CONTROL STRUCTURES Page 3-9

As a first example of the use of a CASE statement, the following SETL
fragment calculates the volume of various geometric figures:

CASE OF
(figure= 'CUBE'):

volume:= side** 3;
(figure= 'SPHERE'):

volume:= (4/3) *PI* radius** 3;
(figure= 'CYLINDER'):

volume:= PI* radius** 2 * height;
ELSE

print('Sorry, I don''t recognize this figure');
volume:= O;

END CASE;

As this example shows, it is quite common for the tests in a CASE statement
simply to test a particular variable or expression for equality with a
series of constants ■ The following second form of the CASE statement
simplifies the writing of CASE statement of this kind:

CASE expr OF
(constantl): blockl
(constant2): block2

(constantn): blockn
ELSE blocke
END; $ OR more generally END CASE tokens;

c_ex_st~tement

CASE CASE •••

elsec --' (ELSE}i struts j l_
Fig 3.4: CASE-EXPN-OF statement syntax diagram

The expression in the header is evaluated (once) to give a test value. If
the evaluation yields one of the constants prefixed to a branch of the case,
say constanti, then the associated block blocki is executed. The ELSE block
is executed if the value of -expr- does not appear as the prefix of any
branch of the CASE statement. The ELSE block can be omitted if no action is
to be taken when this happens. As in the first CASE statement form,
multiple tests can be attached to one branch by writing:

(constantl,constant2 •• constantn): block

CONTROL STRUCTURES Page 3-10

If this is done, the block will be executed if the value of the expression
in the CASE header equals any of the values constantl •• constantn.

3.2.1 The CASE expression
One will sometimes want to use a CASE construct simply to assign one of
several alternative values to a variable. This can be done with a CASE
statement, for example:

CASE day of
(Sunday): discount:= 0.6;
(Saturday): discount:= 0.4;
(Monday,Tuesday,Wednesday,Thursday,Friday):

discount:= O.O;
END CASE;

In this example, the purpose of the CASE Statement is simply to assign an
appropriate value to the the variable -discount-. The CASE expression
allows this kind of thing to be written in a way that makes their purpose
clearer. A CASE expression can appear wherever an expression can appear.
Its svqtax can be that described by either of the following syntax diagrams:
case_or_exPr

CASE

Evaluation of a CASE expression closely resembles that of the CASE
statement. The execution of a CASE expression of the form (1) proceeds as
follows: a) The expression following the CASE keyword is evaluated,
yielding some value v. b) If V equals the value of one the constants that
mark each branch of the CASE expression, then the value of the expression
tagged by that constant is the value of the CASE expression. c) If none of
the constants equal V, then the value of the expression that follows the
keyword ELSE is the value of the CASE expression. Using this construct, the
preceding example can be rewritten as follows:

discount := CASE day of
(Sunday):
(Saturday):

ELSE O.O
END;

0.6,
0.4

Note that a comma is used to separate successive alternatives of the CASE
expression, and that no comma appears before the ELSE keyword.

The second form of the CASE statement has no ruling expression, and
each case is marked by a list of expressions,each of which must yield a
boolean value. The value of CASE expression is the value of the expression
tagged by a value of TRUE.

CONTROL STRUCTURES Page 3-11

3.3 Loops.

There are several ways of constructing programs out of elementary
statements. In Sec.3.1 we examined one of them: the IF statement, also
called the alternation or conditional statement. We now turn our attention
to iteration, or looping.

Almost every program involves some iteration. Whenever we need to deal
with aggregates of data (all the books in a catalog, all the students in a
class, all the prime numbers less than 1000, etc.) we are apt to specify
some computation that is to be performed repeatedly. For example, we may
want to do the following:

a) List all the members of a set (For example, all the students
registered in a given course).

b) Modify each component of a tuple. (For example, discount all
entries in a price list by 10 %).

c) Modify selected members of a tuple, for example raise the tax
charged to every Texas resident appearing in a tuple by 6%,
while leaving unchanged the taxes payed by residents of other
states.

We may even want to perform an action repeatedly when no data aggregates are
involved. For example:

d) Perform a series of actions a stated number of times. (E.g.,
print the string-*-*-*-*-*-*- 10 times).

e) Perform a series of actions as long a a certain condition is
true. (E.g. to estimate the logarithm (base 2) of a
number, we can divide it repeatedly by two as long as the result is
greater than one, and count the number of times the division is
per formed).

f) Perform a series of actions until some condition is met.
E.g. read input data until an End-of-file is detected.

The first three types of looping are expressed in SETL by
tuple iterators. Iterations of type d) are expressed
iterators. Types e) and f) correspond to WHILE and
respectively. As we will see subsequently, SETL allows us
these ways of expressing a repeated calculation into a very
construct.

using set and
using numeric

UNTIL loops
to combine all
general Loop

We now start our review of these various loop constructs, beginning
with the simplest and most 'natural' ones: the set and tuple iterators. We
have already encountered various iterator forms when we discussed tuple and
set formers. We will now examine them in greater detail.

3.3.1 Set iterators.

The set iterator is used to specify that a certain
performed for each of the elements in a given set.
reads as follows:

LOOP for x in S DO
list of statements --- --

(1)

calculation is to be
In its simplest form, it

CONTROL STRUCTURES Page 3-12

end optional token;

The keywords LOOP and DO can be replaced by left and right parentheses,
respectively, and we will often write our iteration loops using this shorter
form:

(FOR x INS) list of statements END tokens;

The meaning of (1) is as follows:

a) Obtain the elements of set Sin succession.
b) Perform the list£!. statements once for each element of s.
c) During successive iterations of the loop, assign the value of successive

elements of S to variable x.

For example, suppose that Sis the set:

{'Springfield', 'Albany', 'Sacramento', 'Boston'}
Then the loop:

(FOR city INS)
print(city, ' is a state capital.');

END;
will produce the following output:
Springfield is a state capital.
Albany is a state capital.
Sacramento is a state capital.
Boston is a state capital.

The variable x in the construct 'x in S' is called the bound variable
of the iterator, or simply the iteration variable, or loop variable. As you
can see from the example above, its name is arbitrary. We chose to call it
'city' in this case but we could have called it 'c', or 'capital_city', or
whatever, i.e. exactly the same output would have been obtained with the
loop:

(FOR c in S) print(c, 'is a state capital.'); END;

Each time the list of statements (also called the loop body) is
executed, the bound variable is assigned the value of another element of s.
The loop body is executed exactly as many times as there are elements in s.
When all elements of Shave been dealt with, the program moves on to execute
the statements that follow the end of the loop.

Consider the following example:

Fibl3:= {1,1,2,3,5,8,13,21,34,55,89,144,233};
count:= O;
(FOR NIN Fibl3)

IF N MOD 3 = 0 THEN
PRINT(N, ' is a multiple of 3');
count:= count+ 1;

END IF;
END;
PRINT('There are', count, 'multiples of 3 in Fibl3');

CONTROL STRUCTURES Page 3-13

The purpose of this short code fragment is to list the multiples of 3
that appear in the set Fibl3 (which happens to be the set of the first
thirteen so called 'Fibonacci' numbers). Each element of Fibl3 is tested
for divisibility by 3, and printed if the test succeeds. A count is kept of
the multiples of 3 that we encounter, and this count is printed at the end.
The output of this program is:

3. is a multiple of 3
144 is a multiple of 3
21 is a multiple of 3
There are 3 multiples of 3 in Fibl3

You may be surprised by the order in which the.numbers 3, 144 and 21 appear
in the output. Why are they not listed in the same order as in the set
Fibl3 ? The reason is of course that sets have no particular ordering, and
when we iterate over a set, we don't know in what the order its various
elements will be obtained. All we know is that we will obtain all of them,
in some order, and that is all that matters. (When order matters, we must
use tuples instead of sets. More about this below).

The bound variable that appears in a set iterator receives its. values
from successive elements of the set over which we iterate. When the
iteration is complete, that is to say when all elements of the set have been
assigned to the loop variable, the loop variable gets the value OM. The
following loop:

(FOR number IN {1,3,10} + {15,30})
print('number is: ', number);

END;

print,
print('Now number is: ', number);

produces the output:
number is: 3
number is: 1
number is: 15
number is: 10
number is: 30

Now number is*

Note two things in this example:

a) We can iterate over any expression whose value is a set. (I.e.
the expression does not have to be a simple variable).

b) OM, the undefined value, is printed as an asterisk ('*').

c) The command

print;

by itself, i.e. without any arguments, prints a blank line.

The reason for calling the loop variable a BOUND variable should be clear:

- ---- , ____ ------------ ----------------------------

CONTROL STRUCTURES Page 3-14

the values taken by the loop variable are controlled by the iteration
mechanism; the programmer cannot modify this sequence of values by means of
assignment statements within the body of the loop.

Assignments to the loop variable within the body of the loop are not
explicitly forbidden by SETL, but should be avoided on stylistic grounds.
Note that such assigments have no disastrous consequences; they simply do
not affect the course of the iteration. Consider the following fragment:

(FOR x IN {l,2,3})
print('x = ', x);
x:= x + l;
print('after increment, x = ', x);

END FOR;

The output of this fragment will be something like:

X = 3
after increment, X = 4
X = 2
after increment, X - 3
X - l
after increment, X = 2

Note that the valu~s received by the loop variable during this iteration are
3,2,1, regardless of the extra assignments toxin the loop body.

3.3.1.2 Conditional set iterators.

Consider the following problem: the holdings of a library are described by
means of a set CATALOG and a series of maps: AUTHOR, SUBJECT, and so on.
We want to list those books in the catalog whose subject is calculus. This
can be achieved by means of the program fragment:

(FOR book IN CATALOG)
IF SUBJECT(book) = 'calculus' THEN

print(book);
END IF;

END FOR;

The same effect is achieved by the following code:
(FOR book IN CATALOG I SUBJECT(book) = 'calculus')

print(book);
END FOR;

The vertical bar: 'I', already-introduced in sec. 2.xxx, is read
'such that', so that the last iterator can be expressed in English as
follows: 'iterate over the elements of CATALOG which are such that their
subject is "calculus"'• In other words, the 'such that' construct appearing
in a conditional iterator allows us to specify an iteration over a specified
SUBSET of a given set.

CONTROL STRUCTURES Page 3-15

The general form of the conditional iterator is the following:

(FOR~ IN set expression I boolean condition)
list tl statements

END optional tokens;

,i.-Ple_i terator

lhs

lhs

Fig 3.6: Simple iterator syntax diagrams

In this construct, boolean condition designates any predicate expression
i.e. any expression that yields either TRUE or FALSE as its value. The
meaning of this construct can be stated as follows:

a) Iterate over the elements of set expression,
successive values of these elements to name.

and assign the

b) After each of these assignments, evaluate the boolean condition. If
the condition yields TRUE, perform the list£.! statements. Otherwise, skip
directly to the next value of set expression.

Typically the iteration variable will appear in the boolean condition.
is shown in our previous example.

This

However it is possible, though inelegant, to write a conditional
iteration whose boolean condition does not depend on the iteration variable.
For example:

(FOR X IN s I TRUE)
is equivalent to:

(FOR x INS)

because the boolean condition is -true- for all elements of S.

The following iteration is less artificial than the preceeding example:

------- -----·-- -- -- ---------------

CONTROL STRUCTURES Page 3-16

(FOR x INS flag) (2)

where -flag- is some boolean variable. It selects the elements of S
according to the current setting of -flag-. This variable may be set
elsewhere in the program, perhaps in the body of the iteration loop.
However, the intent of (2) is expressed more clearly by the equivalent code:

(FOR x INS)
IF flag THEN ••••

which should be preferred to (2) on stylistic grounds.

3.3.2 Tuple iterators, first form.

Iterations over tuples can be
iteration over sets. That is,

described in exactly the
they can be given the form:

(FOR~ IN expression I boolean condition)
~ -2.f statements

END optional tokens;

same manner as

If expression is a set expression, the loop is a set iteration. If
expression yields a tuple, it is a tuple iteration. One significant
difference between set and tuple iterators is that for the latter we know
the order in which the components of the tuple will be examined by the
iteration. Namely, they are produced in order of increasing index. For
ex amp le

width := [1,3,5,7,9,2,2];
(FOR w IN width) print(w * '*') ; END;

always produces the ouput:

*

**
**

In this example, the iteration variable w takes on the values of the
components of the tuple -width-, exactly in the order in which they occur:
first 1,3,5,7,9, and finally 2,2. (Question: what would the picture look
like if we had defined width as {1,3,5,7,9,2,2} ?)

If a boolean condition is present, the tuple iterator obeys the same
rule as the set iterator: the body of the loop is executed only for those
tuple components for which the condition yields true.

3.3.3 String iterators, first form.

An iteration over a character string is specified in exactly the same manner
as an iteration over a tuple. The following example illustrates this.

CONTROL STRUCTURES

no vowels . - , , . . - .
(FOR c IN 'antidisestablishmentarianism' c NOTIN 'aeiou')

no vowels+:= c;
END FOR c;
print(no_vowels);

The output of this loop is the string: 'ntdsstblshmntrnsm'

Page 3-17

The action of a string iterator is very similar to that of a tuple iterator:
successive components (in this case characters) are assigned to the loop
variable, and the body of the loop is executed for those values of the loop
variable that satisfy the stated boolean condition. The characters are
iterated over in the order in which they appear in the string, from left to
right.

3.3.4 Numerical Iterators.

An iterative computation is often expressed as follows: 'Repeat the
following calculation N times ' Here the iterative process does not depend
on a data aggregate, such as a set or a tuple, but rather depends on an
integer, namely the value of N. Such iterations are in fact the type of
iterative construct most commonly supported by other programming languages.
In SETL, this type of iteration is expressed by a simple variant of the
tuple iterator: performing a computation C repeatedly N times is equivalent
to performing C once for each one of the integers in the range: 1,2,3 •• up
to N. This range of values is expressed in SETL by means of the expression:

[1. • N]

and thus the repeated computation of C is expressed as follows:

(FOR i IN [l. .N])
C;

END;

The construct [l •• N] looks like a tuple former, and indeed in contexts where
a tuple is permissible, it is a valid tuple expression, as we saw in our
discussion of tuple formers (2.7). But in an iteration this construct
designates the range of values taken on by the loop variable in the course
of the iteration. Note that an iteration variable appears here, just as it
did in set and tuple iterations. This variable takes on the values
specified by the range construct, in the order indicated, that is to say
from 1 up to Nin steps of 1.

Because of the importance of numeric iterators in
provides a still more general form to describe them.
explain this more general numerical iterator form.

3.3.4.2 The general form£! the numerical iterator.

programming, SETL
We now proceed to

Any numerical iterator defines the sequence of integer values to be taken on
by the iteration variable of a loop. The simple iterator form given above
specifies the beginning (or lower bound) of the iteration to be performed as

----- ------ --

CONTROL STRUCTURES Page 3-18

1, and the end (or upper bound) as N. The step between successive values of
the sequence iterated over is 1. In a more general numerical iterator,
these three quantities: lower bound, upper bound and step, can be specified
by means of expressions. To do so use the following construct:

[first, second •• last]

where first, second and last are integer-valued expressions. For example

[l,3 •• 9]
[2,5 •• 17]

specifies the sequence 1,3,5,7,9
specifies the sequence 2,5,8,11,14,17

As these examples indicate,
follows:

the sequence iterated over is calculated as

a) The lower bound is the first expression in the iterator.
b) The step between successive elements is the difference between the

second expression and the first. If the second expression is missing,
then, as in the examples of Section 3.3.4 then the step is understood
to be 1.

c) Successive elements of the sequence are produced by repeatedly
adding the value of the step, until we reach the value of the
last expression.

This description immediately raises three questions:

1) What happens- if the step is negative?
ii) What happens is the upper bound is not in the generated sequence?
iii) What happens if the step is zero?

The answer to 1) is what you would intuitively expect, namely: if the step
is negative, then the elements of the sequence are produced in decreasing
order. In that case, the third expression must be smaller that the first.
For example, the iterator:

[10,8 •• 0] specifies the sequence 10,8,6,4,2,0

because the step is 8 - 10 = -2.

This form of the iterator is often used when the elements of a tuple
must be processed in reverse order. For example, suppose that the elements -
of tuple Tare numbers sorted in increasing order, and we want to list them
in decreasing order, starting from the largest. The following loop will
accomplish this:

(for i in [#T, #T-1 •• 1])
print(T(i));

end;

In this example, the
expression UT; the
the index of the last
conclude that the
over is 1.

first element of the sequence is given by the
first value of the iteration variable -i- is therefore
element of T. The next value is #T-1, from which we

step for this sequence is -1. The last value iterated

CONTROL STRUCTURES Page 3-19

Next consider the second question raised above, namely: what if the
final value appearing in the construct [first,second •• last] is not in the
generated sequence ? For example, what is the sequence generated by the
following iterators:

and
[1,3 •• 10]

[15,10 •• 1]

The answer to this question is determined by the following rule: a sequence
iterated over is generated by successive additions of the step to the first
element ■ If the sequence is increasing (i.e. if the step is positive) we
generate all numbers in the sequence which are smaller than or equal to the
last element. If the sequence is decreasing, we generate all the numbers
that are larger than or equal to the last element. Thus, for example,

[1,3 •• 10]
[15,10 •• 1)

specifies the sequence 1,3,5,7,9
specifies the sequence 15,10,5

What about [1,3 •• 1]? According to the rule just stated, we start with
1. The step is 2. The next value in the sequence would be 3, but that is
already greater than the stated upper bound of 1. Thus this iterator
generates a singleton sequence, whose only element is 1. This leaves one
final question: what is the meaning of the iterator if the step of the
sequence is zero ? In that case, the convention used by SETL is that the
iteration is empty, i,e. iterates over no values at all. A loop whose
iterator has a step of zero is simply not executed. The following are
examples of empty loops:

(FOR I IN [1,1..1000))
PRINT('This message will never be seen');

END;

(FOR x IN{})
PRINT('Nor will this one, because{} has no elements');

END;

(FOR i IN [])
PRINT('Need we say more?');

END;

The previous rule also answers another lingering question: what is the
value of the loop variable on exit from a numerical loop ? We saw that in
the case of set and tuple iterators, the loop variable became undefined on
exit from the loop. In the case of numeric iterators, the value of the loop
variable on exit is the first value in the sequence:

first, first + step, first + 2*step ••

which lies outside of the specified range. If the step is positive, this
means the first value of that sequence which is larger than the stated
bound; if the step is negative, it is the first value which is smaller than
the bound.

CONTROL STRUCTURES Page 3-20

The preceding remarks apply (as you may have gessed) to the set- and
tuple former constructs which build sequences of integers. In fact the
iterators that we have been describing function in the same way in both
contexts: when controlling loops with statement blocks, and when they
control the construction of a composite object. This symmetry should be
even clearer from the following code fragments, both of which build a tuple
T by means of a numerical iterator:

(1) T := [first, second •• last];

(2) T := [];

(FOR x in [first,second •• last]) T with:= x; END;

The action of the numerical iterator' FOR i in [expl, exp2 •• exp3]' can
also be defined by the following 'low-level' code which uses labels and GOTO
statements. (The intent of the GOTO statement, which is described fully in
Sec.3.4, is to indicate the next statement in the program that should be
executed following the execution of the GOTO itself).

:= expl; start
step
bound

:= exp2 - expl;
: = exp 3;

IF step= 0 then GOTO quit_loop; END IF;
i := start;

test_loop
IF (step> 0 and i > bound) OR

(step< 0 and i < bound) THEN
GOTO quit_loop;

END IF;
i +:= step;
GOTO test_loop;

quit_loop :
.

$ Body of loop •

$ Statements following the loop.

3.3.S Additional 1£.£.E_ control statements: CONTINUE and QUIT.

The CONTINUE and QUIT statements increase the syntactive
SETL's loop constructs. Their syntax is simply:

flexibility of

CONTINUE optional 1£.£.E. tokens;

QUIT optional~ tokens;

In both cases, the optional ~ tokens define the loop to which
intended action (continue the iteration, or quit altogether) refers.
actions caused by CONTINUE and QUIT are as follows.

the
The

CONTROL STRUCTURES Page 3-21

a) When a CONTINUE statement is
execution of the rest of the body is
the next value of the loop variable.

executed in the body of a loop,
skipped, and the iteration proceeds to
Thus, the loop:

(FOR x INS I C(x))
some statements •••

END;

can be expressed as follows:

(FOR x INS)

END;

IF C(x) THEN
some statements ••

ELSE CONTINUE;
END IF;

b) Execution of a QUIT statement terminates the execution of a loop, and
causes execution to continue from the first statement following the end of
that loop. For example, consider the following fragment:

sum:= O;
(FOR x IN [1..100])

sum:= sum+ x;
IF sum> 10 THEN QUIT; END;

END;
print(sum);

This code fragment adds the integers in the range 1 •• 100 until the sum
is greater than 10. After 5 iterations through the loop, sum is 1+2+3+4+5 =
15, and at that point the QUIT statement is executed. The value printed is
15, and the 95 iterations that remain are simply not executed.

The CONTINUE statement might be typically used in a search loop, when
an object x satisfying a property C(x) is to be found in some data aggregate
S, and then processed in some way. When so used, the body of the loop is
code that tests each element of S for the property c. It may be the case
that we can determine that a given element y of S does not have the property
C, even before completing the execution of the loop body. In that case, the
CONTINUE statement allows us to avoid processing it, and proceed to the next
element of S. We will see an example of such use below.

Like the CONTINUE statement, QUIT also appears typically in search
loops. However, whereas CONTINUE usually bypasses unsuccessful cases, QUIT
is used to signal that there is no need to continue with the iteration,
either because the search has been successful, or because it has become
clear that the search will in fact be unsuccessful even _if the remaining
elements are examined. In what follows we will see examples of both uses of
QUIT.

c) When they are written without additional tokens, the CONTINUE and
QUIT statements always refer to the innermost loop within which they appear.
They also have an extended form, for example

CONTROL STRUCTURES Page 3-22

(4) CONTINUE FOR x INS;

which can be used to indicate which of the several nested loops within which
a CONTINUE (or QUIT) statement like (4) appears, is to be CONTINUED ■ In
this example, the loop meant is the innermost loop whose iterator starts
with the tokens:

(FOR x INS •••

The same applies to sequences of tokens following a QUIT statement ■

To illustrate the use of these statements let us return to the problem
of producing a table of prime numbers. This time, we will write our program
as a series of loops. Moreover, we will start with a simple solution to the
problem, and improve this initial solution in order to develop more and more
efficient versions of it. Our initial solution simply restates the
definition of prime number: it is a number that has no factors except 1 and
itself. In order to determine whether N is prime, we divide N by all
numbers smaller than itself. If any of these divisions turns out to have no
remainder, N is not prime, and we do not need to continue examining other
divisors. If no division is exact, N is prime. Our first version reads as
follows:

PROGRAM primesl;

$ The desired range. N := 1000;
primes:=[]; $ Sequence to be constructed ■

(FOR num IN [2 •• N]) $ Examine all numbers in the range

(FOR factor IN [2 •• num-1]) $ Range of its possible divisors
if num MOD factor= 0 then

$ num has an exact divisor. Skip it.
CONTINUE FOR num;

end if;
END FOR;

$ If we reach this point, num is a prime.
primes with:= num;

END FOR;
print('Primes in the range 1 to ',N, ' ');
print(primes);

end PROGRAM;

This simple program involves many redundant calculations,
proceed to discover and remove.

which we will

First, note that an even number (with the exception of 2) cannot be a
prime number. There is therefore no need to iterate over all numbers in the
range [2 •• N]. It is sufficient to consider only the odd numbers in that
range. By the same token, these numbers can only have odd divisors. The
outer loop should therefore have the range:

CONTROL STRUCTURES Page 3-23

(FOR num in [3,5 •• N])

and the inner one

(FOR factor in [3,S •• num-1])

This modification of the initial program makes it four times faster (only
half as many operations are performed during each of the two nested levels
of iteration.)

Next, note that to determine whether -num- is prime, we do not need to
examine all its possible divisors: it is sufficient to examine its possible
prime divisors, i.e. all prime numbers smaller than it. If we modify the
inner iterator accordingly, we obtain the following program:

$ The range.

PROGRAM primes2;

N := 1000;
primes := [2]; $ The first prime.

(FOR num IN [3,5 •• N])
(FOR factor IN primes)

IF num MOD factor= 0 then
CONTINUE FOR num;

END IF;
END FOR;
primes with:= num;

END FOR;

print('primes in the range 1 to', N, ': ');
print(primes);

END;

Out next improvement generalizes the observation that allowed us to
eliminate all even numbers from consideration: whenever we find a new prime
P, we can calculate all the multiples of Pin the range 1 •• N and mark them
'not primes' so that we do not have to examine them for primality later on.
The easiest way of acomplishing this is to keep a set of candidate numbers,
from which we remove the multiples of each prime we find. This leads us to
an improved program which reads as follows:

PROGRAM primes3;

N := 1000;
primes := [2];
candidates := {3,S •• N}; $ At first, all odd numbers.

(FOR num in [3,5 •• N] I num IN candidates)
(FOR factor IN primes)

IF num MOD factor= 0 then
CONTINUE FOR num;

END IF;

----------- --~--- --- ---------~

CONTROL STRUCTURES Page 3-24

END FOR;

primes with:= num;
$ Now delete all multiples of nu~ from the set of candidates
(FOR multiple in [num, 2*num •• n])

candidates less:• multiple;
END FOR;

END FOR num;
print('Primes in the range 1 to', N, ': ');
print(primes);

END PROGRAM;

This suggests yet another substantial improvement to our program. We
notice that whenever we examine -num- for primality, we will have already

-deleted from (-candidates-) all multiples of prime numbers smaller then
-num-. Therefore, -num- is not a multiple of any of them, and it definitely
ll the next prime. In other words, whenever we reach a number in the range
1 •• N which is still in the set of candidates, we know that that number is
definitely prime, and the loop to find a factor for it is unnecessary. Our
program now reduces to the following procedure known as the Sieve of
Erastosthenes:

PROGRAM primes4;

N := 1000;
primes:= [2];
candidates := {3,5 •• N}; $ At first, all odd numbers.

(FOR num in [3,5 •• NJ num IN candidates)

primes with:= num;
$ Now delete all multiples of num from the set of candidates

(FOR multiple in [num, 2*num •• n])
candidates less:• multiple;

END FOR;

END FOR num;

print('Primes in the range 1 to', N, ': ');
print(primes);

END PROGRAM;

Several small additional improvement to prime4 can still be made. Let
us mention the following simple one: the set -candidates- may become empty
before the outer iteration is completed, in which case all subsequent
evaluations of the predicate: -num IN candidates- will fail. We can bypass
these final useless iterations by adding the following statement immediately
after the loop that eliminates multiples of the latest prime found:

CONTROL STRUCTURES Page 3-25

IF candidates={} then QUIT; END IF;

When a loop is exited by means of a QUIT statement, rather than after
completion of its iteration, then the loop variable retains the value it had
just before execution of the QUIT statement. This makes it possible to tell
outside of the loop what was the last value of the domain of iteration that
was examined. For example, in order to tell whether our last modification
to primes4 was particularly useful, we could add the following statement on
exit from the outer loop:

print('Last number examined: ', num);

In this case it turns out that 997 is a prime, ·so that testing to determine
whether (candidates={}) saves us only one check in the iterator.

3.3.6 Map iterators.

We have emphasized repeatedly that maps are sets.
over all the elements p of a map f we can simply write

Hence to iterate

(FOR p IN f) •••

In this iteration, the bound variable pis assigned successive elements of
f, that is to say ordered pairs. If within the body of such a loop we
wanted to refer to successive elements in the domain off, we could 'unpack'
p by writing:

(FOR p IN f)

. . . .
X := p(l);
y := p(2);

$xis in the domain off
$ y is the corresponding point
$ in the range •

This same unpacking effect could also be obtained by placing a tuple
assignment of the form:

[x,y] := p;

(See Sec.2.8) at the start of the body of the iteration or by changing the
iteration header itself to read

(FOR [x,y] IN f)

Because of the importance of this type of iteration a still more elegant,
map-like alternative notation is provided for it, namely

(5) (FOR y = f(x))

This form of iterator is called a map iterator. Note that both the
variables x and y are bound by this iterator: x receives successive values
taken from the domain of f, while simultaneously y is set to the
corresponding range value f(x).

CONTROL STRUCTURES Page 3-26

For example, suppose that f is the following map:

{ ['New York', 'Albany'], ['California', 'Sacramento'],
['Massachusetts', 'Boston'], ['Illinois',. 'Springfield'],
['North Dakota', 'Fargo'], ['Idaho', 'Boise'] }

and that mid west is the set:

{'Kansas', 'llinois', 'South Dakota', 'North Dakota', 'Michigan',
'Iowa', Nebraska'}

then the following loop:

(FOR capital= f(state) state NOTIN mid_west)
print('the capital of', state, 'is', 'capital');

END FOR;

will have the output:

The capital of New York is Albany
The capital of Cai fornia is Sacramento
The capital of Idaho is Boise
The capital of Massachussetts is Boston

The syntax appearing in (5) can also be used for tuple iterators.
tuple, then the iterator

(FOR comp= T(i))

If T is a

assigns the integer values 1,2 •• #T to -i-, and simultaneously assigns the
values of the corresponding components of T to -comp-. The advantage of
this form over the simple tuple iterator is that it makes the index of each
component available at the same time as the component. (The use of a syntax
like that of map iterators for tuple iterators once again underlines the
logical similarity between tuples and maps: tuples are very similar to maps
whose domain is a set of integers.)

The iterator (5) can only be used for single valued maps, and the
system will generate a run-time error if we attempt to use it on a
multivalued map. To iterate over a multivalued map, the following form is
provided:

(FOR s = f{x}) (6)

Like (5), this construct, sometimes called a multivalued map iterator,
controls both the values of x ands. The variable x receives successive
values from the domain of f, ands becomes the corresponding image set of x,
that is to say f{x}. For example, let f be the map

{[i,j] : i in [1 •• 4], j in [1 •• 4] i > j}

Then the iteration

(FOR s = f{x} I ODD #s)
print(s, 'is the image of', x);

CONTROL STRUCTURES

END;

will produce the following output:

{1,2,3} is the image of 4
{1} is the image of 2

3.3.7 Compound iterators.

A compound iterator is a useful shorthand notation
iteration loops. For example, the code fragment:

(FOR x IN Sl)
(FOR y IN S2)

END;
END;

can be written as follows:

(FOR x IN Sl, y IN S2)

END;

Page 3-27

to describe nested

Any number of nested loops can be combined in this fashion. A single END
statement closes all of them. The iterators in a compound iterator are
understood to be nested from left to right. The rightmost iterator in the
compound is the innermost; its loop variable changes most rapidly.

All iterator forms can appear in a compound iterator:
iterators, numeric iterators, map iterators. For example:

set and tuple

(FOR x IN S, y IN [l. .x-1], z = f(t))
Compound iterators can also have a 'such that' clause.
understood to apply to the innermost iterator in the
say, this clause is evaluated for every assignment to
variable.

Such a clause is
compound, that is to
the innermost loop

CONTINUE and QUIT statements appearing within a compound iterator apply
uniformly to the outermost iterator therein: there is no way to continue or
quit any of the inner members of the compound. (If it is necessary to do
so, the iterators should be written in the usual nested form).

3.3.8 The general 1:..££.E. construct.

Each of the iterators discussed so far generate a sequence of values: the
successive elements of a set, the components of a tuple, the characters of a
string. We have seen how iteration loops are described by means of such
iterators: the body of a loop is executed once for each value that appears
in the generated sequence. Different kinds of loop constructs called WHILE
and UNTIL loops, are used to describe computations that repeat until a
desired state of affairs is reached, rather than according to some preset
sequence of values. For example, we may want to process input data which is
to be read from a file, but we may not know how many items are actually

CONTROL STRUCTURES Page 3-28

present on the file. In this case, we need to express the following intent:
"Process the input as long as there is data to process. " Numerical
analysis furnishes a second example. Many numerical problems have the
following general flavor: find a sequence of better and better
approximations to a desired value (for example, to the root of an equation)
and stop when the answer is 'close enough'. (Close enough usually means
that rather than looking for an exact answer, we are satisfied with an
answer which differs from the exact one by a very small number, say lE-7.)
In these cases, we generally cannot state in advance how many times the loop
body may have to be repeated. For use in these situations, SETL makes a
very general loop construct available. The simplest form of this general
construct is the 'indefinite loop', whose syntax is as follows:

LOOP DO
block

END; $ Or END LOOP;

As with the simpler iterator forms, the keywords LOOP and DO can be
represented by parentheses. Thus, the indefinite loop can also be written:

() block END;

An indefinite loop specifies that the loop body should be repeated
'forever'. This is clearly an overstatement: the computation will have to
finish somehow! In fact, an indefinite loop can be terminated either by
using a QUIT statement, by a CONTINUE statement which refers to an enclosing
loop, or by means of a GOTO to a label which is outside the loop body.

The indefinite loop is not used very often, because ordinarily the
condition under which it will terminate execution can more clearly be
expressed by means of extremely useful loop forms, namely the WHILE and
UNTIL LOOPs. Let us now examine these.

3.3.8.1 The WHILE loop.

A WHILE loop is written as follows:

LOOP WHILE condition DO
block

END;

or equivalently

(WHILE condition)
block

END;

Execution of such a loop proceeds as follows:

The condition is evaluated. If its value is TRUE, then the loop body
is executed. After each execution of the body, the condition is evaluated
anew, and as long as it yields TRUE, the body continues to be executed
again. As soon as the condition becomes FALSE, looping ends, and execution
proceeds with the first statement that follows the loop.

CONTROL STRUCTURES Page 3-29

If the first evaluation of the condition yields FALSE, then the loop
body is not executed at all. If follows that a WHILE loop can be executed
zero or more times.

Let us look at some examples. As we have already seen, the processing
of a stream of data received from input is a typical case: suppose that we
want to read a list of names and print those that start with 'A'. We do not
know the number of items in the data stream, and it may even be that there
are none. Fortunately, the SETL system uses a very simple convention to
indicate that data has been exhausted~ When we attempt to read data from a
file, but have reached the end of the file, the READ statement yields OM.
Thus, the following simple code fragment can be used to handle a stream of
input data and stop when the end of the data has been reached:

read(name);
count := O;
(WHILE name /= OM)

IF name(l) = 'A' THEN
print(name);
count+:= l;

END IF;

$ Get first name from input file.

$ As long as we read something

read(name); $ Acquire next data item from input.

END WHILE;

print(count, 'names starting with A were found');

Note that in this code we execute one READ statement before the loop, t
'prime' the loop, so to speak. Doing this ensures that -name- receives a
value before the first evaluation of the WHILE condition. If the input file
was not empty, then -name- is not OM, and the body of the loop is executed.
If the input file was empty, then -name- is OM, and the loop is bypassed
altogether. At the end of each execution of the loop body, we perform
another READ operation. As long as something is read, the loop will be
executed again. As soon as the strem of input data is exhausted, the READ
statement will yield OM, the WHILE condition evaluate to FALSE, and
execution of the WHILE loop will terminate. Program execution will then
proceed to the statement following the loop, which in the case above is the
one that prints the little statistical report on the data.

Our next, more complex example is motivated by the following practical
problem. Suppose that the catalog of a school specifies a set of
prerequisites for each course that is offered. That is to say, for each
course C, it specifies a set of courses which the student must have taken
before being allowed to take c. Needless to say, the prerequisites of C
often have further prerequisites of their own, and we will sometimes want to
know the full set of courses that have to be taken before C is tackled.
These include the prerequisites of C, the prerequisites of those
prerequisites, and so on. Let us assume that the map -prerequisites-

.contains the standard information that appears in the school catalog, that
is to say the list of immediate prerequisites of each course c. Then the
desired set can be obtained as follows:

CONTROL STRUCTURES Page 3-30

P := prerequisites(C);

all_P :• P;

(WHILE P /• {})

course FROM P;

all P WITH:= course;

$ get the 'immediate' pre-
$ requesite for the course C

$ init~alize the set we aim
$ to build

$ as long as there is some pre­
$ requisite that has not been
$ processed.

$ take one of them.

$ Add to full set of pre­
$ requisites.

P +:= prerequisites(course); $ add all the prerequisites
$ of P to the set

END WHILE;
print('Before taking ', C,' the following must have been taken');
print(all_P);

This example deserves careful study, because it embodies a very common type
of program schema, sometimes called the use of a 'workpile'. The set P
originally consists of the immediate prerequisites of c. Each of these is
placed in all_P, which is to be built up to the full set of prerequisites we
are gathering, and each of their prerequisites in turn must be placed in
all_P, and also into the set P, to see whether further prerequisites are
implied by them. The process terminates when we reach courses that have no
prerequisites at all (there must be some of those!). The 'workpile' set P
shrinks with each execution of the FROM statement, but can increase again
with the addition of the prerequisites of the course we have just extracted
from P. 'Workpile' algorithms of this kind typically involve WHILE loops.

3.3.8.2 The UNTIL loop.

The syntax of the UNTIL loop is similar to that of the WHILE
write:

LOOP UNTIL condition DO
block

END;

or equivalently

(UNTIL condition)
block

END;

An UNTIL loop is executed as follows:

loop. We

The body of an UNTIL loop is always executed at least once. After it is
executed the loop condition is evaluated. If it yields TRUE, then execution
proceeds to the first statement following the loop. If it yields FALSE, the
body of the loop is executed again. We can therefore say that thE test of a

CONTROL STRUCTURES Page 3-31

WHILE loop is performed~ the beginning of the loop body, while the test of
an UNTIL loop is performed at the end of the loop body. Note also that the
body of an UNTIL loop is always executed one or more times, in contrast to a
WHILE loop, which may not be executed at all.

As an example, let us consider the problem of finding the smallest
number of steps that can take us from one point in a graph to another. In
order to tackle this problem we must say a word about graphs, and about the
ways in which they can be described in SETL. A graph consists of a set of
vertices, and a set of edges which connect the vertices. Edges of a graph
can be represented in SETL by ordered pairs, whose first component is the
starting vertex for an edge, and whose second component is the arriving
vertex for that edge. For example, the simple graph:

is described by the following set of pairs (i.e. edges):

{ [A,B], [B,A], [A,C], [C,D], [B,D], [D,A]}

Since in SETL a set of pairs is at the same time a map, we can also regard
this representation as a 'successor map' (also called an 'adjacency list')
whose domain is the set of vertices of the. graph. Th~n, for each vertex V,
the value of the mapping succesor{V} is the set of vertices that are
reachable from V by means of some edge that starts at v. For example, in
the graph above, successor{B} is the set {A,D}, because of the existence of
edges from B to A and D.

Using this bit of notation, our problem can be stated as follows:
given a graph G, described by means of its set of edges, and given two
vertices s(ource) and t(arget) find the length of the shortest path between
s and t, i.e. the smallest number of edges that must be traversed in order
to go from s tot. If we do not know~ priori what path to take, we may
have to explore a substantial number of paths starting from s, until we find
one that reaches t. A possible way of organizing this exploration is to
find all the vertices that can be reached from sin one step, two steps,
etc., until we reach t. Our problem will therefore be solved by the
following:

seen := {s};

length := O;

$ The set of vertices already
$ reached.
$ The length of the path so far.

CONTROL STRUCTURES Page 3-32

(UNTIL t IN seen)
$ Add to -seen- all the vertices that can be reached by
$ following one more edge from vertices already reached.

(FOR v IN seen)
seen+:• successor{v};

END F_OR;

length+:• l;

END UNTIL;

print('There is a path of length', length, ' from', s,
'to', t);

Various shortcomings of this code are easily noted: for example, what if
our graph is such that there is no path from s tot? As written, our
algorithm will iterate indefinitely, and the condition -t IN seen- will
never be met. We will endlessly retrace the edges that lead out of the
vertices already reached. In order to prevent this behavior, we can modify
our algorithm, so that at each step -seen- contains only those vertices that
have not been reached on previous steps. This can be achieved as follows:

seen : = {s}; $ The set of vertices reached
$ at each step.

reached :-= {s}; $ The set of all vertices
$ reached so far.

(UNTIL t IN seen OR seen={})

$ We collect the new vertices reachable from the latest set,
$ which were not reached previously.

seen :•+/{successor{v}: v IN seen} - reached;

reached +:a seen;

length+:• l;

END UNTIL;

IF seen={} THEN
print(t, ' is not reach~able from', s);

ELSE
print('There is a path of length', length, ' from', s,

'to', t);
END IF;

See section 4.3.1 for a further example continuing this theme.

3.3.8.3 The general LOOP construct.

The indefinite loop, the WHILE, and the UNTIL loops are all simple cases of
a more general SETL loop construct, whose impressive full syntax is as

CONTROL STRUCTURES

follows:

LOOP
INIT blocki
DOING blockd

Page 3-33

$ Loop initialization statements.
$ Step statements at startof loop.

WHILE
STEP

testw
blocks

$ Termination test at start of loop.
$ Step statements at end of loop.

UNTIL blocku $ Termination test at end of loop.
TERM blockt $ Loop termination statements.

DO
blockb $ Body of loop

END; $ Or END LOOP tokens;

iteratiqn

i te rat.or·

ini 1Jntil i..Prn,i n

Fig 3.6: General iteration syntax diagram

You will notice that WHILE and UNTIL clauses are both included in this very
general loop form. Its full structure is complex. However, as you may have
surmised from the previous sections, every single clause in this loop
construct is optional If we leave all of them out, we obtain the
indefinite loop: LOOP DO ••• The WHILE and UNTIL loops are obtained by
keeping only one of the loop clauses. To explain the full construct, we
must now describe the purpose of the remaining four clauses in it: !NIT,
DOING, STEP, and TERM.

3.3.8.4 The DOING and STEP clauses.

The reader will have noticed that the body of
always includes at least one statement that affects
condition that controls the execution of the loop.
this was the statement: read(name); which can set
loop execution. In example 2, it is the statement

P +:= prerequisites(course);

WHILE and UNTIL loops
the value of the boolean
In example 1, above,

name to OM and terminate

that affects the boolean condition controlling the loop. The readability of
a loop is often improved by indicating 'housekeeping' actions directly in
the loop header, close to the condition that governs loop execution. This
can be done using the DOING and STEP clauses of the loop construct.

a) If a DOING clause appears in a loop construct, then the block of
statements labelled by the keyword DOING is executed each time through the
loop, before the loop body is executed, and also before the WHILE condition
(if present) is evaluated.

CONTROL STRUCTURES Page 3-34

b) If a STEP clause appears in a loop construct, then the block of
statements labelled by the keyword STEP is executed each time through the
loop, immediately after the loop body has been executed, and before the
UNTIL condition (if present) is evaluated. For example, using the DOING
clause, our first example can be rewritten as follows:

LOOP WHILE name /= OM STEP read(name) DO

END LOOP;

Similarly, example 4 can be rewritten as follows:

seen := reached := {s};

LOOP STEP reached+:= seen;
length+:= 1;
UNTIL tin seen DO

END LOOP;

All the the numeric iterators which we examined in Section.3.3.S can be
described using WHILE and UNTIL statements with STEP clauses. For example,
the following loops are all identical in their effect:

(FOR i in [1. .100]) •• END; (1)

i : = 1;
(WHILE i <= 100 STEP i +:=1;) •• END WHILE; (2)

i : = 1;
LOOP UNTIL i = 100 STEP i +:= l; DO •• END; (3)

i : = 0;
(WHILE i <= 99 DOING i +:= l;) (4)

END WHILE;

Choosing between these constructs is a matter of style. If the iterator is
numeric, and the associated actions are arithmetic increments, then (1),
which is simplest, is to be prefered. The reader will find it instructive
to transcribe the various forms of the numeric iterators into loop
constructs that use WHILE, UNTIL, STEP and DOING clauses. (See exercises
XXX-YYY).

3.3.8.S The INIT and TERM clauses.

Th INIT and TERM clauses of the loop construct allow us to specify
initialization actions and termination actions to be performed upon entry
and exit from the loop.

a) If the INIT clause is present, then the block of statements labelled
by the INIT is executed once before any execution of the loop body, and
before evaluation of the WHILE clause (if present).

CONTROL STRUCTURES Page 3-35

b) IF the TERM clause is present, Then the block of statements labelled
by the TERM keyword is executed once on exit from the block, after
evaluation of the UNTIL clause (if present).

To summarize, the precise effect of the complete loop construct:

LOOP INIT blocki
DOING blockd
WHILE testw
STEP blocks
UNTIL testu
TERM blockt

DO
block

END;

can be described by the following equivalent sequence of statements:

blocki $ The INIT block.
start:

blockd $ The DOING block.
if NOT testw then $ The WHILE condition.

step:

term:

GOTO term;
end if;
block
blocks
if testu THEN

GOTO term;
end if;
GOTO start;

blockt

$ The actual body of the loop.
$ The STEP block.
$ The UNTIL condition.

$ To continue looping.

$ The TERM block.

The labels appearing in this code segment also allow us to give a
simple definition of CONTINUE and QUIT statements in a loop construct. The
statement

CONTINUE;

is equivalent to the statement

GOTO step;

where -step- is the label that precedes any code taken from the STEP clause.
The statement:

QUIT;

is equivalent to

GOTO term;

where term is the label that precedes the code associated with the TERM

CONTROL STRUCTURES Page 3-36

clause.

3.4 The GOTO and STOP statements.

In the example given just above, and also in the previous chapters, we
have several times made use of the notion of a GOTO and the concept of a
label.

It is time to describe this very basic statement carefully. A GOTO
statement changes the flow of program execution in the most direct fashion.
When we execute the statement:

GOTO there;

then execution of the program passes immediately to the statement marked by
the label -there-. (A SETL label is simply an identifier followed by a
colon.) Any executable statement can be labeled, and any number of labels
can appear before a statement.

The GOTO statement has come to be regarded as a dangerous construct,
whose use should be avoided, and some programming languages exclude this
statement altogether. While avoiding this puritanical approach, we stress
that the GOTO statement is only rarely useful, and that one should strive to
describe control flow using the safer constructs described so far:
conditionals, case statements and loops, but not GOTO's.

Reservations concerning unrestricted use of the GOTO rest on sound and
pragmatic grounds. Programs that depend heavily upon the use of GOTO's are
hard to read and to understand, difficult to modify, error-prone and thus
dangerous. Heavy use of labels and GOTO's obscures the logical structure o
a program. In particular, when backward jumps appear in the middle of a
large program, their intent is obscure, and the purpose of the code is
therefore harder to comprehend.

There are however a few cases in which the GOTO statement is useful.
The most common of those cases has to do with abrupt exits from a sequence
of related code fragments. If these all test for some common kind of error,
it may be appropriate to place a label past the end of all these fragments,
and to GOTO this label if an error is detected. This is most commonly in
this guise that the GOTO will be seen in this book. Note that exit from
loops is clearly described by QUIT and CONTINUE statements, which should
always be preffered to GOTOs and labels.

SETL imposes certain restrictions on the position of labels
GOTOs that refer to them. These restrictions as the following:

and of

a) A GOTO lying outside of a loop construct
appear within the body of the loop.

cannot refer

b) A GOTO can only refer to a label that appears within the
or main program as the GOTO. (See Chapter IV for
'procedures' and the notion of a 'main program').

c) Label names are local to the procedure in which they

to labels that

same procedure
a discussion of

appear. (See

CONTROL STRUCTURES

Sec.4.2 for information on 'scoping rules').

The STOP statement

Page 3-37

The STOP statement is simply used to terminate execution when for some
reason your program has decided that it cannot go on. This statement can be
used either in your 'main' program or in any 'subroutine' or 'function' (see
Chapter 4.) A typical example of its use might be

IF x > 0 AND x*x < 0 THEN
print('*** SITUATION ALL FOULED UP. PROGRAM CANNOT CONTINUE***');
STOP;

ELSE
$ do whatever needs doing

Of course, your program will always ·stop by itself when it has executed
the last statement of your (main, see Chapter 4) program. So no STOP
statement is needed there (even though it does no harm to put one in.)

3.5 Programming example: an interpreter for~ simple language.

One of the most typical uses of the CASE statement is programming an
'interpreter'. An interpreter is simply a program that executes sequences
of commands written in some formalized language. An interpreter works by
reading one command at a time, executing it, and then reading the next
command, etc. Interpreters serve as an obvious means of creating
special-purpose languages, and we will say more about this at the end of
this section; but first we will present an example of an interpreter. This
will make use of most of the control structures that we have examined so far
in this chapter.

We will write an interpreter for the so-called 'Turtle language' used
in a popular system for grade-school computer education. The Turtle
language consists of a series of commands that control the motion of a
'Turtle' on a screen or on a sheet of paper. The motions of the turtle
generate a picture, and the purpose of the interpreter is to read a series
of commands in Turtle language and construct the corresponding picture. The
position of the Turtle at any given time is described by its coordinates,
and its direction of motion. The turtle can be commanded to move forward a
certain number of steps, turn left or right, and put its pen down (to draw)
or up (to move without drawing a line.) The full list of commands and their
syntax is the following:

FORWARD N
RIGHT
LEFT
PEN UP
PEN DOWN
DRAW
END
For example,
PEN DOWN
FORWARD 5

Move forward N steps.
Turn right from current direction of motion
Turn left from current direction of motion.
Move without leaving a trace.
Draw every motion.
Display picture of motions so far.
Terminate picture, draw it and stop.

the sequence of commands:

CONTROL STRUCTURES

RIGHT
FORWARD 10
RIGHT
FORWARD 5
RIGHT
FORWARD 5
RIGHT
FORWARD 10
DRAW

generates the following picture:

*
*
*
*
*

* * * * * * * * * * *
*
*
*
*
X

(Turtle starts here)

*
*
*
*

*
*
*
*

* * * * * *

Construction of~ Turtle language interpreter.

Page 3-38

The preceding description of the meaning and purpose of each Turtle
language command should make it clear that our interpreter will consist
largely of a simple CASE statement, each of whose options correspond to one
command in the Turtle language. That is to say, the basic structure of the
interpreter will look as follows:

etc.

CASE command of
(RIGHT'): •••••
('LEFT'): •••••
(FORWARD'):

Of course, we have to fill the dotted sections with an exact description of
the actions that represent the corresponding motion of the turtle. This
requires that we decide on how to represent the picture being drawn, and
also the position and direction of motion of the turtle at each step.

First let us examine the matter of picture representation. In order to
keep our task simple, we asurne that the track of the Turtle will be
displayed by means of PRINT commands. Each PRINT statement generates one
line of output, and it is reasonable to describe the picture as a sequenc~
of lines. To make matters definite, we must choose the height and width of
the picture: We let that be 50 by 50, so that it can fit easily on a simplE
page of printed output. This size will not change during execution of th<
program so we just initialize the picture to be an array consisting of 50
strings of length 50, consisti~g only of blanks:

picture:= 50 * [50 *' '];

CONTROL STRUCTURES Page 3-39

Notice the double use of the replication operation'*': the expression 50*'
'yields a string of fifty blanks; The brackets around this expression give
us a tuple whose only element is such a string; and the outer replication
operation yields a tuple with 50 elements, each of which is a blank string.

Note that this is not
picture.(Try to think of
shall see that this choice
picture.

the only possible way of representing the
some alternative representations). However we

simplifies the creation and display of the

The position of the turtle at each step is defined by giving a line and
a character position on the line. If we think of each line as drawn
horizontally accross the picture, then the choice of [row, column] to
designate the turtle position imposes itself. In our simple interpreter the
turtle can move in one of four directions, which we can label 'NORTH',
'EAST', 'SOUTH' and 'WEST', with the usual (Northern Hemisphere) convention
that north is up. We choose to start the turtle on its trek from the lower
left-hand corner of the picture, facing north.

Next let us sketch the actions performed upon each Turtle command. The
turning commands: RIGHT and LEFT, are the simplest: they only change the
direction of motion of the turtle, not its position, and they do not add
anything to the picture being drawn. We have chosen to implement those
commands simply by looking up the direction that lies to the right or left
of the present direction of motion. This lookup operation uses SETL maps.

The pen commands: PEN UP and PEN_DOWN, affect neither the position nor
the direction of motion of the turtle. We describe their effect using a
boolean variable called -tracing-, which is interrogated whenever the turtle
actually moves.

The only non-trivial command is -FORWARD N- where N is some positive
integer. This command alters the position of the turtle, and produces a
segment of the picture if the -tracing- indicator is TRUE. Clearly the
action of FORWARD depends on the current direction of motion. If the turtle
faces east, the motion will be to the right, along a line or row. The same
is true if the turtle faces west. On the other hand, if the turtle faces
north or south, then its motion is along a column, and its row position is
altered. The forward statement is therefore best described by a CASE
statement. Let -distance- designate the extent of the specified forward
motion, and let new_row, new_col be the coordinates at which the turtle
finds itself after the motion. Then the effect of FORWARD can be described
as follows:

CASE direction of

('NORTH'): new row - : = row - distance;
new col : = column;

('EAST'): new col - : = column + distance;
new row : = row; -.

etc.

CONTROL STRUCTURES Page 3-40

Finally, how is the picture itself to be created? We want to fill in the
trajectory described by the turtle using some printable character, say the
asterisk: '*'• After each FORWARD command, we want to place asterisks
along the line from [row, column] to [new_row, new_column]. This is simple
if the motion is horizontal, i.e. new_row = row, since in this case the
line to be drawn is a part of the current row. If we recall that the
picture is described by an array of horizontal lines or rows, then it is
clear that the line on which the turtle is currently moving is given by:
picture(row). The motion of the turtle fills a substring of this row, and
in the case of Eastward motion this can be expressed as follows:

picture(row)(col •• new_col) :=distance* , * , .
'

Westward motion is equally simple to
trifle harder to handle. In such
column but crosses several rows. The
each row traversed. We lay down the

describe. North-South motion is a
a motion, the turtle stays on the same
line it traces has one character on

(FOR i in [row •• new_row])
picture(i)(column) :=

end;

trace as follows:

, *, . ,

Finally, we want our interpreter to read any number of turtle commands, and
we do not know a priori how many there will be. We therefore enclose our
bas~c case statement in another loop, this one bracketed by the lines:

and
LOOP DO

END LOOP;

Finally, the statement:

STOP;

which our interpreter must associate with the END command, will terminate
interpretation.

PROGRAM TURTLE;
.s

right := {['NORTH',
['WEST',

'EAST'],
'NORTH']

['EAST', 'SOUTH'],
} ;

['SOUTH', 'WEST'],

$ The map giving the direction to the left of any direction is obviously
$ the inverse of the -right- map.

left := { [dl,d2] [d2,dl] in right};
• s

picture := 50 * [50 * ' '];
.s

$ Initially the turtle is at the lower left-hand of the picture,
$ facing north.

direction := 'NORTH';
row:= 50;
column := 1;

CONTROL STRUCTURES

tracing := FALSE;

LOOP DO $ Main loop of the interpreter ■

read(command);

CASE command of

('RIGHT'): direction := right(direction);

('LEFT'): direction := left(direction);

('PEN_UP'): tracing := FALSE;

('PEN_DOWN'): tracing := TRUE;

('DRAW','END'): (FOR line IN picture)
print(line);

END;

picture:= SO* [50 *' '];
IF command='end' THEN stop; END IF;

('FORWARD'): read(distance);

CASE direction of

('NORTH'): new row := (row - distance) MAX 1;
new col := column;

('EAST'):

('WEST'):

new col := (column+ distance) MIN 50;
new row:= row;

new col := (column - distance) MAX 1;
new row := row;

('SOUTH'): new row := (row+ distance) MIN 50;
new col := column;

END CASE;

IF tracing THEN

IF new row= row THEN

Page 3-41

$ Find first and last column needed for tracing.
min col := column MIN new_col;
max col := column MAX new_col;

picture(row)(min_col •• max_col) :=
distance * '*';

ELSE

$ Find first and last row.
min row:= row MIN new_row;

CONTROL STRUCTURES

max_row := row MAX new_row;

(FOR r IN [min_row •• max_row])
picture(r)(column) := '*';

END;

END IF;
END IF;

row:= new_row;
column := new_col;

ELSE print('INVALID COMMAND: ',command);·

END CASE;

END LOOP;

END PROGRAM turtle;

Several additional details of this program deserve notice:

Page 3-42

a) Two Turtle commands produce an actual drawing: the DRAW command, and the
END command. It is natural to place both commands in the same CASE tag, and
add an additional simple check, made after the picture has been produced, to
determine whether the program should stop.

b) We all make mistakes, and the interpreter should be prepared to receive
do, for less-than perfect instructions. What should the interpreter

example, with the commands:

FORWARD 10
RIGHT
PEN UP

and so on? In this program we have chosen to notify the user that a
command just read is not part of the known set of Turtle commands. This is
the purpose of the ELSE clause of the CASE statement. A more ambitious
program might try to recognize misspellings of the known commands, accept
abbreviations for them, accept upper- and lower-case names for commands, and
so on. Some of these extensions are pursued in the exercises below.

c) A different sort of error is exemplified by the command:

forward 200

Which attempts to move the turtle beyond the bounds of the picture. In the
program above, we have made sure that the values of new_row and new_col are
always in the range 1 to SO.

c) The printer is not the best device on which to display a
If you run the program as written, you will notice that the
between successive lines is greater than that between successive
on a line. As a result the picture looks cramped in the

picture.
separation
characters
horizontal

CONTROL STRUCTURES Page 3-43

direction. A more aesthetic result is obtained if we count each horizontal
step as two characters, or always add a blank between horizontal characters.
This modification is left to the reader.

3.5.1 Various elementary sorting techniques.

Sorting is the problem of taking a set or tuple of items which (like
integers, real numbers, or strings) can be compared to one another, and
putting them in order. Dozens of interesting ways of using a computer to
sort are known, and a few of the more interesting high--efficiency sorting
techniques will be presented in later chapters. In the present section, we
present only some very simple sorting methods, which serve to illustrate
various control structures discussed in this chapter. The first and
simplest of these, the so-called bubble-sort method, sorts a tuple. It
works simply by scanning the tuple for adjacent components which are out of
order, and interchanging them if they are found. In this way, large items
'bubble up' to their proper_position in the tuple. When no out-of-order
pairs remain, the tuple is sorted.

In SETL this is simply

(WHILE EXISTS i IN [l •• #t-1) I t(i) > t(i+l))
[t(i),t(i+l)] := [t(i+l),t((i)J; $ interchange the items.

END WHILE;

The bubble-sort procedure has a number of interesting variants. In one
of them, we simply sweep repeatedly through the tuple, interchanging all
pairs of adjacent items which are out or order.

If we perform this sweeping operation at least as many times as the
tuple has components, all items will be swept into their proper positions,
since even if the smallest item originally came last it will have time to
move down to the first position in the tuple.

We can express this 'sweeping' procedure as

(FOR number of times IN [1..#t])
(FOR i IN [l •• #t-1) I t(i) > t(i+l))

[t(i),t(i+l)] := [t(i+l),t(i)]; $ interchange
END FOR;

END FOR;

This can also be put more succinctly as

(FOR number_of_times IN [1..#t], i IN [l •• #t-1])
[t(i),t(i+l)J := [t(i+l),t(i)];

END FOR;

A very different sorting method is to search
element of a tuple, put it at the end of a new
up, and delete it from the original tuple. This
sort method. It can be written as

repeatedly for the minimum
tuple which is being built
is called the selection

newt up : = [] ; $ initialise tuple to be build up.

CONTROL STRUCTURES Page 3-44

(FOR i IN [l •• #t])

min_till_now := t(l); min_place=l;
$ save minimum element scanned, and its location

(FOR j IN [2 •• //t] t(j) > min till_now)

min till now - - := t(j); $ save value of newly found minimum
$ save position of new minimum min_place := j;

END FOR;

new_tup(#new_tup) := min_till_now;

END FOR i;

$ put minimum element at
$ end of new tuple

Beyond the methods shown above, you will find that it is instructive to
review all the ways you can think of to sort a deck of cards by hand, and to
express these hand-sorting techniques in SETL.

3.6 Exercises

Ex. 1 A set of Markov productions is an ordered collection of rules of the
form sl>s2, where sl and s2 are both character strings, neither of which
contains the character '>'. The string sl is called the left side of the
production sl>s2, and the string s2 is called its right side. To apply such
a set of productions to a strings, one searches through s, lo9king for a
substring which coincides with the left-hand side of some production; if
any such production is found, this substring is replaced by the right-hand
side of the production.

Write a 'Markov production interpreter' program which reads in a set of
Markov productions and a strings, and then applies n successive productions
to s, displaying the result every m steps.

Ex. 2 How would you express a FOR loop of the form

(FOR n IN [1 •• k] I C (n)) ••

in terms of a WHILE loop? What about FOR loops of the form

(FOR x IN tlC(x)) •••

and

(FOR x =t(i)IC(x)) •••

where tis a tuple?

Ex. 3 Write a program which will compare two poker hands (each consisting
of five cards) and decide which of the two is the winning hand according to
the values of Poker.

Ex. 4 Write a program which prints all the numbers from

CONTROL STRUCTURES Page 3-45

2 to 100 together with their prime factorizations. The
first three entries printed should be

2 [2]
3 [3]
4 [2,2]
etc.

CONTROL STRUCTURES Page 3-46

3.7. Reading and Writing Data

We have been usi_ng the two basic Input-Ouput commands, READ and PRINT,
which allow a SETL program to communicate with the rest of the world,
informally till now. Now let us discuss them more systematically.
(However, we pospone discussion of the more elaborate SETL input/output
features, such as READA, PRINTA, GET, PUT,etc. to Section 8.1.)

To produce printed output (or, in the case of an interactive run from a
terminal, to send output to the terminal), the PRINT statement is used.
This has the form

PRINT(expl,exp2, ••• ,expk),

where each
appear in
values and
tuples can

of expl, ••• ,expk is an expression. Any valid expression can
a PRINT statement, and any valid SETL value, including boolean

atoms (see Section 5.3) can be printed. In particular, sets and
be printed. Thus it is perfectly acceptable to write

PRINT (2+2, {1,2,3}, [{1},{{2}}, [{3}]], 'HELLO THERE');

The output produced by this PRINT statement will look like

4 {3 1 2} [{1} {{2}} [{3}]] HELLO THERE

This example illustrates several details concerning the PRINT primitive:

(a) Expressions are evaluated before being printed.

(b) The elements of sets are grouped within set brackets, and tuple
components are grouped within tuple brackets. For ease of reading, set
elements and tuple components are separated by blankg rather than by commas
(even though this can lead to ambiguities when structures containing strings
are printed).

(c) Strings are printed without quotation marks, e.g.
the constant 'HELLO THERE' only the characters

when we print

HELLO THERE

appear in the output file.

(d) Since sets have no particular order when sets are printed,
elements can appear in any order.

their

(e) Integers and floating point numbers are printed in standard decimal
formats. Their representations require a number of characters defined by
their size and nature. Floating point numbers are always printed in
exponential form with a fixed number of decimal places, e.g. 2.3 is printed
as

2. 300000E+OO_.

CONTROL STRUCTURES Page 3-47

(f) Other kinds of SETL values will be represented by strings formed
accordind to somewhat arbitrary rules. The undefined atom OM is printed as

*

The boolean values TRUE and FALSE are printed as #T and #F respectively.
Atoms (see Section 5.3) are represented by strings of the form #nnn, where
nnn denotes the integer 'serial number' of the atom. Note that these rules
inevitably lead to a degree of ambiguity, e.g. the output produced by

print([OM, '*']);
print([TRUE,'#T',FALSE,'#F');
[* *]
[/IT IIT IIF !IF] •

(g) Since sets are not printed in any particular sorted order, it can
be hard to locate elements in the printed representation of sets, especially
large sets.

(h) A single print statement (even a print statement with many
arguments) will always try to put all the output which
single logical 'line' of output. If the value or values to
too large and complex to fit on a single line, they will
many lines as necessary. When this happens, the points
physical line of print Ends and the next begins will fall
it can be something of a trial to read the resulting output.

(i) Each print statement starts a new logical line.
print statement can be used to generate a blank print line.

print('AA','BB','CC');

will produce the output

AA BB CC,

the command

print('AA'); print('BB'); print; print('CC');

will produce the output

AA
BB

cc

it produces on a
be printed are
be printed on as

at which one
haphazardly, and

A parameterless
Thus, whereas

(j) As illustrated by the preceding examples, successive output items
produced by a single print statement are separated by a few blanks but do
not start a new line.

CONTROL STRUCTURES Page 3-48

The SETL print facility is quite easy to use, but does not produce
output compaiing in elegance with the formattted output generated by
programs written in various other languages, especially languages such as
PL/I or COBOL, which have something of a commercial orientation. To produce
more elegant formulated output in SETL, it is necessary (albeit easy to make
use of string primitives which the language provides (see Sections 2.3.3 and
5.2.) These allow one to build up output strings of arbitrary format and
complexity. Note in particular that the STR operator produces the very same
string representation of a value that the -print- command would print, but
makes this string available as an internal object which can be manipulated
using the powerful string operations which SETL provides ■ These facilities
make it possible to program an arbitrarily complex 'pretty rint' function in
SETL. Such a procedure can indent nested sets and tuples nicely, can sort
their elements to make searching easier, etc. Utilities of this kind are
well worth developing when large objects need to be printed and inspected
repeatedly; in such cases, it is particularly important to sort the output ■

To read input from the standard input file (or, for interacti~e runs,
from the terminal) the READ statement is used. This has the form

(1) RE AD (Rh s 1 , Rh s 2 , •• ■ , Rh s k) ,

where each of Rhsl, ••• ,Rhsk is (either) a simple variable (or a more complex
expression of the kind which could legally appear on the left-hand side of
an assignment statement: see Section 2.11). The statement (1) reads in a
sequence of SETL values from the standard input file and makes them the
values of Rhsl,Rhs2, ••• ,Rhsk respectively. For example, if the next three
items in the input file are

{1 2 3}
'HELLO THERE'
[{1},2,A],

then the command

READ(x,y,z)

will give x,y, and z the respective values {l,2,3},
[{1},2,'A'J. This example illustrates several of
governing the READ primitive.

'HELLO THERE', and
the following rules

(i) Successive items in a bracketed SETL value to be read can be
separated either by commas or by blanks. For example, to read in the set
{1,2,3} we can write its external representation either as

{1,2,3}

or as

{l 2, 3}

or as

{ 1 2 3}

CONTROL STRUCTURES Page 3-49

etc.

(ii) Unbracketed items separated by blanks will be read in
successive READ statements even if they all appear on a single line.
of them will be bypassed, and reading will advance from one line to the
only when more input data is needed to complete the line being read.
example if the first three lines of the input file are

1

10},

2 3 4
8 9

5 {6

then the commands

READ(x,y,z);
READ(u,v);
READ (w);

7

by
None
next

For

will give the variables x through z the same values that they would be given
by the following assignments:

x := l; y := 2; z := 3; u := 4; v := 5; w := {6,7,8,9,10};

(iii) When read in, valid identifiers, i.e. unbroken strings of
letters and numbers starting with a letter, will be read as strings even if
they are not enclosed in quote marks. For example, if the input file
contains

[A BB Cl23],

then the command READ(x} will have the same effect as the assignment

x := ['A','BB','Cl23'];

(iv) Other items, namely the Boolean values TRUE and FALSE and the
undefined atom OM can be read in if they are written in the form in which
they would be printed by a PRINT command. In particular, TRUE and FALSE can
be read in if they are represented as #T and #Fin the input file, and OM
can be read in if it is represented as* in the intput file. For example,
if the input file contains [*, *, _ T, _ F, *, *] the command READ(x) will
give x the same value that the assignment

x : = [* , *, TRUE, FALSE] ;

would give it. These rules imply that the READ and PRINT operations are
almost inverses of each other, i.e. that a file of data written by PRINT
can almost be read back in using READ. Unfortunately, this is not quite the
case (however, this perfect inverse relationship does hold for SETL 'binary'
input/output primitives, namely GETB and PUTB; see Section 8.1 below). For
example, if the string 'Hello there' is written out using PRINT, and then
read back in using READ, it will appear as the pair 'Hello' 'there' of
successive string items. Moreover, if the string 'Hello!there' is written

CONTROL STRUCTURES Page 3-50

out using PRINT then any attempt to read the result will cause an error,
since the unquoted character '!' happens to be indigestible to the READ
primitive. (Also, the external form of an atom, see Section 5.3 below, is
indigestible to the READ primitive. Thus READ and PRINT are only inverses
to one another if the value being printed and then read back in contains no
quoted strings which are not valid identifiers (and also contains no atoms).

As READ operations are successively executed, an implicit 'read
position' pointer moves progressively forward in the standard input file,
past one SETL value at a time, until eventually the very end of the input
file is reached. Thus the input file behaves like a 'tape' on which
successive SETL values are written and from which they can be read. Even
when the end of the input file has been reached, the READ operation will
continue to execute without any error occurring, but in this case all
further values read from the input file will be OM. Therefore the input
file behaves exactly as if its actual contents were followed by infinitely
many OMs. To detect the actual end of input, one must use another SETL
primitive operation, represented by the keyword EOF (end of file). This can
be used in expressions just like any other variable, but its value is always
FALSE if the last READ operation executed did not encounter the end of the
input file which it is reading. Conversely, EOF is TRUE if the end of the
input file was reached by the last READ statement executed. The value of
the quantity EOF changes as soon as a first attempt is made to read past the
end of the input file. For example, if the input file contains just the
three items {1} {2} {3}, then the loop

(FOR j in [1..4)) READ(x); print(x,EOF); END;

will produce the output

{ l} IIF
{2} IIF
{3} #F
* /IT

It follows that to read all data items present in the input and print them
out one wants to use a loop which tests the EOF condition immediately after
an item is read, as in the following example:

LOOP DO $ loop to read and echo all items

READ (x) ;
IF EOF THEN QUIT; END;
PRINT(x);

END LOOP;

$ in the input file

If a bracketed item which is not properly closed and one attempts to
read it, then a run-time error will occur. For example, any attempt to read
an input file whose last two lines are

{l,2,3
'HELLO'

or whose last line is

CONTROL STRUCTURES Page 3-51

{1,2,3]

is fatal. 3.7.1 Reading data from~ terminal.

Interactive programs typically take their input from the user terminal. The
rules described above also apply to READ statements that take their data
from the terminal screen: a READ statement will read as many items as it
needs, spread over several lines if need be. If not enough items were
supplied ot it, the READ statement will simply wait until the full input is
supplied. To indicate that the input is complete, always enter a Carriage
Return following the end of the data.

A terminal is a potentially infinite source of data. How is the
program to determine that an end-of-file has been encountered in reading
from the terminal? The answer depends on the operating system on which you
are running. Special characters are used to indicate end-of-data, and you
should find out the conventions used by the operating system on which your
SETL system runs. On DEC systems, the character combination Control-Z marks
an end-of-file, so that entering CRT.L-Z will make the EOF test true.

J.7.2 Character sets.

The simple READ and PRINT primitives described in this section get
input from the standard input file and send output to the standard output
file. As explained in Section XXX, if input is to be read from the standard
input file the lines of data constituting this file should be supplied
following your SETL program (for a batch run) and should be typed in
interactively at a terminal (in an interactive run). Other more advanced
input-output primitives (described in Section 8.1 below) allow output to be
read from and written to other files. These files are made available to
your SETL program in a manner which necessarily depends (to a certain extent
at least) on the operating system being used. See Section Y for additional
details.

As noted in Section Z, not all the computer systems on which SETL runs
support the full character set assumed in this book. Where particular
characters are missing, they are represented either by single substitute
characters which are available, or by pairs of such characters. Obviously,
this will affect some details of the output produced and of the input
expected by the READ primitive. See Appendix XXX for additional details
concerning alternative character representations. Note that the character
set which SETL will use can sometimes be controlled by supplying appropriate
control card parameters. See Section W for details.

-------~---·---- ----·--------

CONTROL STRUCTURES Page 3-52 -

3.8 Exercises

Ex. l Write a program which reads a sets of integers and prints out a
list, in ascending order, of all the members of s which are prime.

Ex.
Write

2 A set of vectors of length n and a vector x of length n are given.
code which selects the elements of s which has the largest number of

components in common with x.

Ex. 3 Write a program to read a character string, reverse the order of its
characters, and print it out.

Ex. 4 Write a program that will scan a string of characters containing
parenthesis, square brackets, and set brackets, and determine whether it is
properly bracketed. (A string is properly bracketed if each left bracket or
parenthesis is matched by a following right bracket or parenthesis of the
same kind. For example, {[]} is properly bracketed, but{[}] is not.)

Ex. 5 Write a program that reads in successive pairs of strings s,t, of the
same length, and determines whether t can be obtained from s by substituting
for the characters of sin some single-valued way. For example, 'ipstf' is
obtained from 'horse' by the substitution {['h','v'], ['o','p'], ['r','s'],
['s','t'], ['e','f']}, but 'beer' cannot be obtained from 'anna' in this
way, since two different characters would have to be substituted for 'a'.

Ex. 6 Write a program which will translate an arbitrary message into Morse
code. The Morse codes for all characters of the alphabet and for the
commonest punctuation marks are shown in Fig. x. Write a p~ogram which
will translate Morse code back into English.

Figure Morse cdes for alphabetic and special characters.

Ex. 7 A publisher produces books both in hard cover and paperback. Any
given book can ,be either long, medium, or short, and can be either
elementary or advanced. A short, elementary, paperback book sells for $5.
Exactly $2 is added to the price of a book if it is hard cover;
medium-length books sell for exactly $1 more, and long books for exactly $3
more, than short books. The price of a book is doubled if it is advanced.
Write a small program which will print_ out all possible categories of books
together with their prices.

CONTROL STRUCTURES Page 3-53

Ex. 8 Write a program that will read an integer n and print its
digits separated by spaces, starting with its leftmost digit.

successive

Ex. 9 Write a program which can read an arbitrary integer and print it in
English. For example, -143 should print as 'minus one hundred
fourty-three'. Can you do the same for French? For German? For Chinese?

Ex. 10 Write a program to read in three points x,y,z, each represented by a
pair of real numbers. Determine whether these three points:

(a) all lie along a
equilateral triangle;

line; (b) form the corners of an isoceles
(c) form the corners of a right triangle.

Print out an appropriate message in each case.

or

Ex. 11 Write a program which will read in a sequence of lines, each
containing someone's name, first name first, and print out an alphabetised
list of these names, in alphabetic order of last names. Repeat this
exercise, but this time print the alphabetised list with last names first.

Ex. 12 Making use of a map from family names into their probable ethnic
origins, write a program which reads a list of names and attempts to guess
the ethnic origins of their bearers. Your program should also make use of
facts like the following to increase its coverage: names beginning with
'Me' are probably Irish, with 'Mac' probably Scottish; names ending in
'ski' are probably Polish, in 'ian' probably Armenian, in 'wetz' probably
East-European Jewish, in 'ini' probably Italian, etc. How well does your
program guess the family origins of your classmates?

Modify this program so that it uses first names to guess
here that names ending in 'a' are probably female, etc.

sex. Note

Ex. 13 A college collects statistics on the members of its entering
freshman class. The basic data for each student is a line in a data file,
consisting of the following items, in sequence, seperated by blanks:

student's last name, first name, age(in years), sex(M or F),

maritial status (O=single, !=married, 2=divorced or separated)

Write a program to print out the following information:

(i)
(ii)
(iii)
(iv)
(v)
(vi)

Percent under 21 years old
Percent over 21 years old
Percent over 30 years old

Percent male and female
Percent of males single, married, and divorced or separated.
Percent of females single, married, divorced, or separated.

Ex. 14 An automobile sales agency employs 25 salespersons. Sales records
are kept on cards, each card holding the following information, separated by
blanks:

(a) Salesman's last name
(b) Make of car sold

CONTROL STRUCTURES Page 3-54

(c) Amount of sale
(d) Net amount of sale (i.e., total amount minus discount allowed for
trade-in.) Write a program which will read a monthly file of such cards and
print out the commission due to each salesperson. The rules determining
commissions are as follows:

(i) Standard commission is 5% on the first $20,000 of net sales, 6% on
the next $10,000 of net sales, and 7% on all sales over $30,000.

(ii) Indvidual sales totaling more than $10,000 earn a 1% bonus.

(iii) Sales on which less than $500 trade-in is allowed earn a bonus of one
half of 1%.

Ex. 15 A factory's payroll is prepared from a set of daily time cards and a
mapping f giving the hourly wage rate for each employee. Each time card
contains an employee's social security number followed by the number of
hours worked on a particular day. The mapping f sends each employee social
security number into the employee's name, hourly wage rate and tax
withholding rate. Total pay is number of hours worked, times hourly base
rate, times (1-r), where r is the tax witholding rate; however, all hours
in excess of 40 are paid at a time -and-a-half rate. Write a program to
read a file representing a week's payroll records, and print out a payroll
showing employee name, social security number, total pay, tax withheld, and
net pay.

Ex. 16 Suppose that the daily time cards of Exercise 18 are grouped into
batches separated by cards which contain only the single digit O, with the
Monday batch coming first, Tuesday next, etc., and that work performed on
weekends is paid at a double-time rate. Modify the program of Exercise 18
to handle this rule also.

Ex 17 In bowling, a complete game consists of ten frames. Either one or two
balls is rolled in a frame. If all ten pins are knocked down by the first
ball rolled in a frame (this event is called a 'strike') the score for the
frame is 10, plus the number of pins knocked down by the next two pins
rolled. If all ten pins are knocked down by the two balls rolled in a frame
(called a 'spare), the score for the frame is 10, plus the number of pins
knocked down by the next ball rolled. Otherwise the score for the frame is
the number of pins knocked down by the two balls rolled in the frame. If a
spare is rolled in the tenth frame, then you are allowed an extra ball; if
a spare is rolled in the tenth frame, then you are allowed two extra balls,
so can earn up to 20 more points.

Write a program which will read a
knocked down by each ball rolled
corresponding score.

tuple representing the number of pins
during a game and print out the

Ex. 18 Explain how the conditional statement

CONTROL STRUCTURES

IF Cl THEN block of statements 1

ELSEIF C2 THEN block of statements 2

ELSE IF •••

ELSE block_of statements n

can be re-expressed using IF-statements of the simple form

IF C THEN GOTO label_j

but no other conditional statements.

$

•

Page 3-55

--------- -------

HAFTER 4

FUNCTIONS AND PROCEDURES

A -unction in SETL is a computational process which has been given a
name and which, using one or more data items passed to it, will compute and
deliver a value. Most of the built-in SETL operators, for example MAX,
which returns the maximum of two values x and y, and COS, which returns the
cosine of a floating point number x passed to it, are functions in this
sense. However, since no finite collection will ever exhaust the whole
catalog of functions that a programmer may want to use, it is important to
have a way of defining, and then using, as many additional operations as are
helpful.

Chapter Table .£1 Contents
4.1 Writing and Using Functions
4.1.1 Some simple sorting procedures
4.1.2 A character-conversion procedure

4.2 Name Scopes; the VAR declaration
4.3 Programming Examples
4.3.1 The 'buckets and well problem'- a simple artificial

intelligence example
4.4 Recursive Functions

4.4.1 Robert Floyd's Quicksort procedure
4.4.2 Another recursive procedure: mergesort
4.4.3 Binary searching: a fast recursive searching technique
4.4.4 The 'Towers of Hanoi' problem

4.5 Procedures Which Modify Their Parameters
4.6 Exercises
4.7 Other Procedure-related Facilities
4.7.1 Procedures and functions with a variable number of arguments
4.7.2 User-defined infix operators
4.7.3 Refinements

4.8 Rules of Style in the Use of Procedures
4.9 Exercises

4. 1 Writing and using functions

To make the above point more convincing, we can consider a simple
example. Suppose that some numerical quantity associated with a relatively
standard product, for example the weight of eggs coming from a chicken farm,
is measured daily, thus producing batches of measurements, each of which can

FUNCTIONS AND PROCEDURES Page 4-2

be thought of as a set of numbers, e.g.

(1) {2.1, 2.85, 1.90, ••• ,1.85}.

Suppose that in order to exert some sort of quality control, various
statistical properties are to be reported for each such batch, and that
these statistics are to include the weights of the three largest and the
three smallest eggs in the batch.

To make this calculation easily, it would be convenient to use a
pre-programmedfunction to which a sets like (1) can be passed, and which_
would then produce a tuple t

(2) [1.86, 1-90, ••• , 2.7, 2.85]

in which all this members of s are arranged in increasing order. Since the
function would simply sort the members of s, it might appropriately be
called -sort-. We would like to be able to produce the ordered tuple t from
the set (1) simply by writing

(3) t:=sort(s).

Note that if this can be done, then to print the three largest and three
smallest measurements we have only to write

print('three smallest measurements are:',t(l),t(2),t(3));
print('three largest measurements are:',t(_ t),t(_ t-1),t(_ t-2));

Of course, sorting the sets is not hard, and can be done by· the simple
method explained in Section 3.5.1, which is to say using the code

(4) t:•[];

(WHILE s/•{ }}
t WITH:•(x:•min/s);
s LESS:=x;

END WHILE;

However, what we want is to package the code (4), giving it the name -sort­
and invoking it by the name. By doing this we make it possible to get the
effect of the code (4), without having to concern ourselves with its inner
workings, simply by writing (3). To 'package' bits of code in this way
becomes absolutely essential when one is constructing large programs (say a
few hundred lines or more). Programs of such sizes can only be built
succesfully if they are organized hierarchically into a modular collection
of subprocedures; typically such a collection will include both high-level
functions which simply .make use of facilities provided by lower level
functions, and low level procedures, like the "sort" which we have been
discussing, which encapsulate general, useful primitive operations. SETL
does provide a facility for defining as many new functions as you need, and
we now proceed to explain how this is done.

To 'package' or 'encapsulate' the code (4), all we need to do is to
enclose it between procedure 'header' and 'trailer' lines, and add a RETURN
statement. This gives

FUNCTIONS AND PROCEDURES

(5) PROCEDURE sort(s);

t:=[];

(WHILE s/={ })
t WITH:=(x:=MIN/s);
s LESS:=x;

END WHILE;

RETURN t;

END PROCEDURE sort;

In (5) the function header line is

(Sa) PROCEDURE sort(s);

Page 4-3

This line, introduced by the special keyword PROCEDURE (which can also be
abbreviated as PROC), opens the procedure (5), gives it a name (in this
case, the name -sort-), and also names its formal parameters, (sometimes
simply called parameters) i.e. the values which will be passed to the
function whenever it is used (as in (3) above), and from which the function
will calculate the value which it returns. (In (5), the value returned is t
and there is only one formal parameter, namely -s-.) The concluding trailer
line

(Sb) END PROCEDURE sort;

marks the end of the function.
functions, would ordinarily
function.)

The command

(Sc) RETURN t;

(And, in a large program making use of many
be followed by the header line of another

which appears in (5) indicates the point at which the function has finished
calculating the value which it is to produce, and also defines the value
that the function will return.

To 'use' or 'invoke' the function -sort- defined by (5), we have only
to write sort(e), where e can be any expression. This automatically
calculates and makes available the value returned by the function (5). For
example, if we write

(Sd) print(sort({5, 1, 2, 7, O}))

the result will be

[0 1 2 5 7]

The expression e occuring in such a 'use' or 'invocation' sort(e) of the
PROCEDURE "sort" is called the actual argument, or supplied argument of the
invocation. Whenever evaluation of a function invocation like (5d) begins,

- ---- ------------- ---

FUNCTIONS AND PROCEDURES Page 4-4

the value of the actual
transmitted to the procedure
procedure's formal parameter

argument (or arguments) appearing in
invoked, and becomes the initial value
(or parameters).

it is
of the

To explain more of the details involved in the use of SETL
consider a simple invocation of such a function, namely

functions,
we will

(6) x := sort({5, 1, 2, 7, 0});

As with
of its
of the

all assignment statements, execution of (6) begins with evaluation
right-hand side. Since -sort- is the name of a function, evaluation

function invocation appearing on the right-hand side of the
assignment (6) involves the following steps:

(i) The current value of the actual argument {S, 1, 2,
function invocation is assigned as the initial value of the
variables appearing in the procedure ~code' or 'body' (5).

7, 0} of the
formal parameter

(ii) Execution of the procedure (5) begins: the statements appearing
in the body of this procedure are executed in the ordinary way. Wherever
the formal parameter appear, in the body of the procedure, the value of the
actual parameter passed to the function is used.

(iii) As soon as any RETURN statement is encountered, control is passed
back from the procedure (5) to the instruction immediately following the
invocation (6). Just before this happens, the expression following the
keyword RETURN is evaluated and becomes the value which the function (5)
yields. (E.g., becomes the value of the variable -x- in (6).)

The 'detour and return' action typical of function invocations is shown
schematically in the following diagram:

value of 'actual argument' of call
becomes value of 'formal parameter'
of

FUNCTION INVOCATION----~~
templ := sort(sl);

control is
transfered
to body,
body is
executed.

t : =
function body

I l, temp 2 : = sort (s 2); "-

- --~ ..---,-RETURN
-..------------vRETURN t;

expression

value of
RETURN
expression
defines
value which
function yields

RETURN ••••
statement
sends END PROC sort;
control
back to
statement following
invocation.

FUNCTIONS AND PROCEDURES Page 4-5

Figure 4.1 Detour and return in function invocations

The following analogy should help to clarify the important distinction
between the 'formal parameters' and the 'actual arguments' of a procedure.
The formal parameters of a procedure can be compared to the item names which
occur in a cook-book recipe. For example, a recipe may say 'break an egg
into half a cup of flour and stir for 24 hours or until the mixture becomes
firm'. The names 'egg' and 'flour' appearing in such a recipe are 'formal
names' which stand for all the actual eggs and actual half cups of flour
which will be needed when the recipe is actually used. As in the case of a
function, new actual items, i.e. a different egg and a different half cup
of flour, must be supplied each time the recipe is used, even though the
formal names 'egg' and 'flour' appearing in the recipe remain the same.
Continuing this analogy, the text of the recipe can be compared to the body
of a function, which will yield something (e.g. a cake) when 'actual'
ingredients matching the 'formal' ingredients to which it refers are passed
to it.

It is instructive to consider
namely

a

(6b) x:=sort(sl) + sort(s2)

somewhat more complicated example,

Suppose, for example, that sl and s2 happen to have the values {3,1,0} and
{-3,-1,0} respectively when (6b) is executed. Then evaluation of sort(sl)
will produce the value ·[o, 1,3] and evaluation of sort(s2) will produce the
value [-3,-1,0), so that after (6b) is executed the variable x will have the
value [0,1,3,-3,-1,0].

The way this happens is as follows. As with all assignment statements,
execution of (6b) begins with evaluation of its right-hand side, i.e.
sort(sl) + sort(s2). This is an expression, and is evaluated by first
evaluating its two subexpressions sort(sl) and sort(s2) and then combining
the two resulting values using the '+' operator. As always,the leftmost of
these two subexpressions, namely sort(sl), is evaluated first.

These details are more accurately and fully represented if we break up
the evaluation of (6b) into smaller steps, as follows. This is considerably
closer than the 'source text' (6b) to the so-called 'internal text'or
'directly executable code' which the SETL system actually uses:

(7) templ := sort(sl)
temp2 := sort(s2)
x := templ + temp2

(The additional variables templ and temp2 which appear in this code are
so-called 'compiler temporaries'. They are automatically generated by the
SETL compiler to store necessary intermediate values and are not in any way
directly accessible to the ordinary SETL user.) As you can see, (7) involves
two succesive invocations of -sort-, followed by a use of the '+' operator
to combine the two results produced.

The following important rules govern the use of functions.

FUNCTIONS AND PROCEDURES Page 4-6

a) The formal parameters that appear in the procedure heading must be
valid identifiers, that is to say they are variable names; furthermore no
two parameters can be the same. For example, both

(Ba)

and

(8b)

are illegal;
(8b) because
On the other
(arbitrarily
For example,

(9a)

PROCEDURE pl(s*t) ;

PROCEDURE p2(s,t,s)

(8a) because the parameter s*t is not a simple variable, and
the first and the third formal parameters of p2 are identical.

hand, any actual argument of a function invocation can be an
complicated) expression, and actual arguments can be repeated.

x := sort({x IN sslx>O})

is legal if ss is a set (and if ss were {-10,20,-20,15,10}, would give x
the value (10,15,20)). Similarly, if dot_prod(x,y) is a function which
calculates and returns the dot-product of the two tuples x and y, then

(9b) a := dot_prod(u,u)

is legal (and will put the sum of the squared components of the tuple u into
a).

(b) Each invocation of a function must have exactly as many actual
arguments as the function has formal parameters. (However, it is possible
to define functions and procedures for which this rule is relaxed, see
Section 4.7.1). When a function is invoked, the value of its first (resp.
second, third, etc.) argument becomes the value of its first (resp, second,
third, etc) formal parameter. For example, if the function whose header
line is

PROCEDURE intermingle(a,b,c)

is invoked by

x := intermingle({x IN s I x>O}, {y IN s2ly<O}, {x IN slx>O})

then a and c initially get the value {x IN s I x>O}, while the value {y IN
s2 I y<O} is transmitted to b.

(c) The body of a function can contain any number of
and often will contain more than one. The following
calculates and returns the maximum of two quantities,
remark:

PROCEDURE my_very_own_max_function(x,y);

IF x > y THEN
RETURN x;

RETURN statements,
code, which simply
exemplifies this

FUNCTIONS AND PROCEDURES

ELSE
RETURN y;

END IF ;

END PROCEDURE my_very_own_max_function;

Page 4-7

Generally speaking, a RETURN statement should be inserted at whatever point
or points in the body of a proced~re at which thL_value which the procedure
is supposed to yield has been calculated; an expression yielding this value­
must follow the keyword RETURN. Since the point at which a function has
calculated its intended result will often depend on the actual value of the
arguments passed to it, it is often appropriate to write RETURN statements
at several points in a function's body. In this case, whichever RETURN
statement that is executed first will end the execution of the function (and
return control to the routine which invoked the function). If no RETURN
statement is encountered, execution of the function will terminate when and
if its trailer line END PROC is reached, and in this case the undefined
value OM will be returned.

Note that the keyword RETURN can be followed by an arbitrary
expression. This expression is calculated immediately before control is
switched back from the function to the point at which it was invoked. If
such a 'return expression' is at all complex, the whole body of the function
may simply consist of a single RETURN statement and nothing else, as in

PROCEDURE positive_elements_in(s);
$ returns the set of positive elements of s

RETURN {x IN s Ix> O};

END PROCEDURE positive_elements_in

(d) Functions can invoke other functions (including themelves) without
restriction. When control is transferred to a function f which in turn
invokes a function g, execution will proceed within the body off until an
invocation of g is encountered, at which point execution off will be
suspended and execution of g will begin. Thereafter, g will execute until a
RETURN statement is encountered withing, at which point g will terminate,
sending control, and possibly a value, back to f. Subsequently, when a
RETURN statement is encountered in f, f will itself be terminated, sending
control (and a value) back to the procedure from which f was invoked. This
will lead to patterns of control transfer like that shown in the following
figure.

:invocation

. - t, X);

. . .

of f)

contro1.Jl PROCEDURE f(z);

~nters -7 . . . ________ ,,...., ___ J•
h = g(y);---' controlJ

control
returns
from f RETURN e;

END PROCEDURE f;

enters
g

control
returns
to f

. . .
g(w); PROCEDURE

1
RETURN el;

END PROCEDURE g;

FUNCTIONS AND PROCEDURES Page 4-8

Figure 4.2 Patterns of control transfer in multiple function calls.

(e) Function invocations are themselves expressions, and can be used freely
as parts of more complex expressions. For example, if -sort- is a function
which returns the elements of a sets in sorted order as a tuple, and
-sum_square- is a function which returns the sum of the squares of the three
first elements of a tuple, then we can write

print(sum_square(sort(s)));

to display the sum of the three smallest elements of s.

4.1.1 Some simple sorting procedures.

One of the simplest sorting procedures is the so-called 'bubble-sort'
method, which simply stated operates as follows : as long as there are two
adajacent elements that are out of order in the sequence, permute them.
This is not a very efficient sorting method (and in the form presented below
it is even more inefficient than the standard bubble sort) but it is one of
the simplest to state and program. The input to the procedure is a tuple
and the output is another tuple, whose elements are in increasing order.
Note that the code that follows applies equally well to a tuple of integers,
a tuple of floating point numbers, or a tuple of strings: in all three
cases the comparison operator'>' defines the desired ordering.

PROC sort(t); $ sorts a tuple by the bubble-sort method

(WHILE EXISTS i IN [l •• #t-1] I t(i) > t(i+l})
[t(i), t(i+l)] := [t(i+l), t(i)]

END WHILE;

RETURN t ;

END PROC sort

The attentive reader may wonder whether it is dangerous for this function to
modify its own parameter t. In fact, doing so causes no problems; but the
rule guaranteeing this will only be stated in Section 4.5. (This same
remark also applies to several of the functions presented later in this
section.)

As we mentioned, the function shown just above can be used to sort any
tuple of integers, of reals, or of strings. For example, if we write

print(sort({'Joe', 'Ralph', 'Albert', 'Cynthia', 'Robert', 'Alfredo'}))

the result would be

[Albert Alfredo Cynthia Joe Ralph Robert]

More complex
One reason for
'records' into an
In SETL, such

sorting routines than that shown above are often needed.
this is that sorting is often used to arrange more complex
order determined by some common 'subfield' of the records.

records are typically repr,~sented as tuples. Suppose, for

FUNCTIONS AND PROCEDURES Page 4-9

example, that a group of students have taken a course in which their grades
on a series of homework exercises and examinations have been collected,
producing a set of tuples having the following form:

records:={['Gonzalez,Aldo', 80,87,0M,73,90, •• J,
['Whyburn, Linda', 82, 89, 85, 91, 90, 65, •• J,
['Luciano, Luigi', 80, 81, 75, 79, OM, 70, •• J,
. . . }

Grades are assumed to be represented by integers, and missed exercises or
examinations by occurences of OM. One might then want to list these records
into various orders, e.g.

(a) Alphabetic order of student names
(b) Order of grade averages, with largest first
(c) Order of grades on mid-term examination, largest first
(d) Order of number of exercises not handed in, largest first, etc.

To make it easy to sort these records according to any of their fields,
we modify our original sorting procedure, so that it takes two arguments:

i) The tuple of records to be sorted.

ii) The record component by which the records must be sorted.

This leads to the following procedure:

PROCEDURE sortl(t, pos)

$Tis a tuple of records (tuples) to be sorted.
$ pos is the index of the component in each record, along which
$ the records are to be sorted in increasing order.

(WHILE EXISTS i in [l •• #t-1]
t(i) (pos) > t(i+l) (pos))

[t(i), t(i+l)] := [t(i+l), t(i)]
END WHILE ;

RETURN t ;

END ;

Using this function, we can print the class records
simply by writing

(FOR x in sortl(records, 1))
print(x)

END ;

in alphabetical order

Suppose now that we want to list these records in order of decreasing
midterm grades, with students that have missed the mid-term coming last. If
the mid-term is the 11-th entry in the record, we may be tempted to sort the
records along that component (in increasing order) and then list them in
reverse. The attentive reader will notice that sortl will not work very

FUNCTIONS AND PROCEDURES Page 4-10

well in the presence of missing grades: recall the convention that a missed
test is marked as OM in the record. The comparison (OM> x) where xis same
value, is not meaningful, and in fact the SETL system will stop any program
at the point at which such a comparison is attempted. As a final
modification to our sorting procedure, let us replace the comparison that
drives the WHILE loop, so that a value of OM is regarded as smaller than any
existing grade. Using the 'is undefined' operator, we simply replace
t(i)(pos) by t(i)(pos) ? (-1). Our improved sorting routine now reads:

PROCEDURE sort2(t, pos)

$Tis a tuple of records, some of whose components may be OM.
$ pos is the index of the record component along which the records
$ are to be sorted in increasing order.

(WHILE EXISTS i in [1 •• #t -1) I
t(i)(pos) ? (-1) > t(i+l)(pos) ? (-1))

[t{i), t(i+l)] := [t(i+l), t(i)]
END WHILE ;

RETURN t ;
END ;

With this modification, we can print the desired ordering by midterm
with the following code (recall that the name is the first component
record, the midterm grade is the 11-th component of the record, and
this grade may be undefined):

ordered:= sort2(records, 11)
(FOR i in [ordered, ordered -1 •• l])

print(ordered(i) (1), ordered(i) (11) ?
END FOR;

'**absent**')

grades
of the

that

Other plausible applications of this same kind appear in exercises XXX-YYY.

The 'main program block'.

A program which makes use of sub-PROCEDUREs must of course include
commands which invoke these subprocedures. As we have explained, the first
function invoked can invoke any or all of the other functions, but at least
one instruction not belonging to any PROCEDURE is needed to trigger this
first invocation. In a program including one or more PROCEDUREs, the
initial, 'directly executed' portion of the program, i.e. everything not
included in any sub-PROCEDURE, is called the main block£..! the program, or
the main program for short. This block of instructions has exactly the form
of a PROGRAM body, as described in Chapters II and III, and it must precede
all PROCEDURES. The main program and all the procedures which follow it
must be prefixed by a PROGRAM header line of the usual form, and a
corresponding trailer line starting with the keyword END must follow the
last procedure.

For example, a complete program consisting of the -sort- function shown
above and the two fragments of code which invoke it would have the following
overall structure:

FUNCTIONS AND PROCEDURES Page 4-11

PROGRAM print_grade_info; $ program to print student grade records

read(records); $ acquire the basic data
print('student records in alphabetical order') ;
print('-------------------------------------')

(FOR x IN sort(records, 1))
print(x)

END ;
print('students and mid-term grades, in decreasing grade order');
print('---')
ordered := sort(records, 11) ;
(FOR i in [#ordered, #ordered-1 •• 1])

print(ordered(i)(l), ordered(i)(ll) ? ' **absent**')
END FOR;

PROC sort(t, pos);
$ t is a tuple of records.
$ pos is the position of the record component according to which
$ the records are to be sorted in increasing order.

(WHILE EXISTS i IN [l •• #t-1] I
t(i)(pos) ? (-1) > t(i+l)(pos) ? (-1))

[t(i),t(i+l)] :=[t(i+l),t(i)];
END WHILE;

RETURN t

END PROC sort;

END PROGRAM print_grade_info;

Execution of such a program begins at the first statement of its main
program block and ends as soon as the last statement of its main program
block has been executed (or when a STOP statement is encountered; see
Section XXX).

4.1.2 A character-conversion procedure

We continue to present an illustrative series of functions. Our next
function takes a string and returns a similar string in which all lower-case
alphabetic characters have been changed into the corresponding upper-case
characters. Blanks and punctuation marks are not affected.

PROC capitalize(s); $ capitalizes the strings and returns
$ the result. Non-alphabetic characters are left
$ alone

small letters
big_letters

:= 'abcdefghijklmnopqrstuvwxyz';
:= 'ABCDEFGHIJKLMNOPQRSTUVWXYZ';

capital_of := {[1,big_letters(i)]: l=small_letters(i)};
maps each small letter into the corresponding capital.

RETURN +/[capital_of(let) ? let : let= s(i)]

$

FUNCTIONS AND PROCEDURES Page 4-12

$ Note that the map capital_of is defined over
$ alphabetic characters only. Non~alphabetic
$ characters, such as punctuation marks,
$ are not converted but left as they are ■

$ This is the purpose of the'? let' expression.
END PROC capitalize;

A function can have any number of parameters. Occasionally it is even
appropriate to write functions which have no parameters. For example, we
may want to use a function which reads an input string, uses the
-capitalize- procedure to capitalize this input, and returns the capitalized
result. This function can be written as follows:

PROC next_line;

read (x);

$ procedure to read and capitalize a line

$ read a quoted string

RETURN IF x=OM THEN OM ELSE capitalize(x) END;
$ return its capitalized form ■

END PROC next_line;

To invoke a parameterless procedure of this sort, one writes its name,
followed by an empty parameter list ■ For example, to invoke the -next line­
function and print the capitalized string which it returns, we would write

print(next_line());

Note that the empty parameter list, i ■ e ■ the'()' following the name of
parameterless function -next_line-, is obligatory.

(c) A package of procedures for manipulating polynomials

As a further illustration of the use of functions, we give a set of
procedures for adding, subtracting, multiplying, and dividing in polynomials_
a single variable polynomials with real coefficients • Such polynomials are
ordinarily printed in a standard algebraic form like

3.l*x**2 + 7 ■ 7*x+4.S,

but in the procedures which follow we will assume that a polynomial
represented internally by a SETL map which sends the exponent of each
of the polynomial into the coefficient of that term. For example,
polynomial shown above would be represented internally by the map

{[2, 3.1], [1, 7.7], [O, 4.5]}.

As in algebra, we simply omit terms whose coefficients are zero.

is
term-­
the

To add (resp. subtract) two polynomials, we simply add (resp.
subtract) the coefficients of corresponding terms ■ Hence functions which
calculate polynomial sums and differences can simply be written as follows:

FUNCTIONS AND PROCEDURES Page 4-13

PROC sum(pl,p2); $forms the sum of two polynomials.

RETURN { [e,c]: cl=pl(e)
+ { [e,c2]: c2=p2(e)

(c := cl+(p2(e) ? 0.0)) /= O.O}
p 1 (e) =OM};

END PROC sum;

PROC diff(pl,p2); $forms the difference of two polynomials

RETURN { [e,c]: cl=pl(e)
+ {[e,-c2]: c2=p2(e)

END PROC diff ;

(c := cl-(p2(e)?O.O}) /= O.O}
p 1 (e) =OM} ;

To multiply two polynomials, we can simply multiply all pairs of
individual terms, and then group together and sum all resulting terms
identical exponents. Finally, we eliminate terms which turn out to
zero coefficients. This is simply

PROC prod(pl,p2)

p:={ [el+e2, cl*c2]:

$ forms the product of two polynomials

cl=pl(el), c2=p2(e2)};

RETURN {[e,c]: all_coeffs=p{e}

END PROC prod ;

(c := +/all_coeffs) /= O}

their
having

have

Next, we show how to divide a polynomial pl by a polynomial p2. Let
cl*x**jl be the leading term of pl i.e. the term having largest exponent,
and let c2*x**j2 be the leading term of p2. Then we subtract
cl/c2*x**(jl-j2) times p2 from pl, to eliminate the leading term of pl, and
sod~ repeatedly until all terms of pl with exponents larger than j2 have
been eliminated. The collection of all terms by which p2 is multiplied
constitute the terms of the quotient.

PROC div(pl,p2); $ forms the quotient polynomial pl/p2

if p2={ } THEN RETURN OM; END; $ this is the case p2=0.

el : = MAX/ [e: c = p 1 (e)] ; $ largest exponent of
e2 : = MAX/[e:c=p2(e)]; $ largest exponent of

qcoeff:={ } ; $ start with an empty

(FOR j in [el-e2,el-e2-l •• O] I pl(e2+j)/=O.O)
qcoeff(j) := pl(e2+j)/p2(e2);
pl := diff(pl, { [e+j, qcoeff(j)*c] : c=p2(e)}) ;

END FOR;

pl
p2

quotient

RETURN q coe ff;

END PROC div;

$ return the map representing the quotient.

----· --------------- ------

FUNCTIONS AND PROCEDURES Page 4-14

We note that techniques for manipulating polynomials by computer have
been studied very intensively, and that much more efficient methods than
those used in these simple illustrative procedures are known. See Knuth,
The Art of Computer Programming, Vol.2, for an account of these
developments, which go beyond the scope of the present book.

4.2 Name scopes; local and global variable names. The VAR declaration.

In writing a long program, which can involve hundreds of procedures, it
is irritating, as well a highly error-inducing, to have to remember which
variables had been used for which purposes through the whole of a long text.
To see this, consider the plausible case of a function invocation imbedded
in a WHILE loop like

(1) i := 0 ; j := 0
(WHILE (i+j) < f(j)) •••

and suppose that f is an invocation of a function whose body is found
somewhere else in a long program text. It is entirely plausible that,
unknown to the author of the code (1), the body of the function f should
make use of the convenient variable name i, e.g. in a loop like

(2) (FORALL i IN [1..//t]) •••

But then, if the i appearing in (1) and the i appearing in (2) were regarded
as representing the same variable, the function invocation f(j) which occurs
in the WHILE loop could change the value of i in ways not at all hinted at
by the outward form of the code(l). Were this the case, a programer wishing
to write a loop like (1) would first have to examine the body of the
function f, note all the variables which it used, and carefully avoid all
unplanned use of similarly named variables. This would introduce many higly
undesirable interactions between widely separated parts of a lengthy
program, and make large programs harder to write.

To avoid these very undesirable effects, most programming languages
make use of rules which restrict the scope of names. The SETL rule is as
follows. In the absence of explicit declarations, variables retain their
meaning only within a single procedure (or main program). This implies that
ordinarily a variable i appearing in one procedure and a variable i
appearing in another procedure are treated as distinct. In effect, the SETL
compiler applies the following renaming procedure the program text which it
processes:

(a) The main program which begins the program text is numbered zero,
and the procedures which follow this main program are numbered 1,2, •• in
their order of occurence.

(b) Every variable name xxx used in then-th procedure, including the
names of its formal parameters, is implicitly changed to xxx n.

As an example, consider the program

PROGRAM example;

FUNCT[ONS AND PROCEDURES

X := {J,0,1,2};
print(squares(sort({i in x:i > O})));

PROC sort{i); $ sorts by the 'quicksort' method

RETURN IF (x:=ARB i)=OM THEN [
ELSE sort({e in i I e < x}) + [x]

+ sort({e IN i I e > x}) END ;

END PROC sort;

Page 4-15

PROC squares(x); $ forms and returns the tuple of squares of the
$ components of the ~uple x

RETURN [e*e : e=x(i)J;

END PROC squares;

END PROGRAM ;

Given the above program as input,
apply the renaming rules (a),(b),
following renamed variant:

PROGRAM example;

the SETL compiler will implicity
and therefore it will really see the

x_0:={3,0,1,2}; $ main program
print(squares(sort({i_O in x_O:i_O > 0})));

PROC sort(i_l); $ subfunction number 1

RETURN IF (x_l:=ARB i l)=OM THEN []
ELSE sort({e_l IN i 1 I e 1 < x_l}) + [x_l]

+ sort({e_l IN x 1 I e 1 > x_l}) END;

END PROC sort;

PROC squares(x_2); $ subfunction number 2

RETURN [e 2*e 2 e_2=x_2(i_2)];

END PROC squares;

END PROGRAM;

As stated above, rule (b) serves to isolate variables of the same name
from each other if they are used in different procedures. Variables used in
this way are said to be local to the procedures in which they appear. This
is generally what we want. However, in some cases, we do want a variable
used in several procedures to refer to the same object in all of them. For
example, one or more 'major' data objects may be used by all the functions
in a related group of functions and in this case it can be convenient to
allow all the functions to refer to these objects directly. To see this,
consider the case of a group of functions written as part of an inquiry
system to be used by the executives of a bank. This might involve many

FUNCTIONS AND PROCEDURES Page 4-16

functions, for example

PROC payments(customer_name);
. . .

$ returns a given customer's payment
$ record

PROC tel_no(customer_name); $ returns a given cu~tomer's
$ telephone number

PROC overdue(ndays); $ returns set of a customers whose payments
$ are more than ndays overdue

••• etc. ,etc.

It should be plain that all these routines will have to make use of one or
more 'master files•. (When represented in SETL, these 'files' are likely to
be sets of tuples representing records, maps sending customer names, or
perhaps customer identifiers such as social-security or account numbers,
into associated records, etc.) Instead of insisting that these 'master
files' be passed as arguments to all the functions which need to use them,
it is more reasonable to make them available directly to every function,
giving them easily recognizable variable names such as
-master_customer file-. To make this possible, SETL provides a special form
of statement, called the VAR declaration. By writing

VAR master_customer_file;

at the very start of the overall PROGRAM in which the functions listed above
appears, we make -master customer file- a global variable which designates
the same object in all the functions which reference this variable. The
required layout of a program using one or more global variables is shown in
the following example:

PROGRAM banking_system; $ header line for overall program

VAR master_customer_file; $declaration of global variable
(additional global variable declarations come here)

(body of 'main' program of banking_system comes here)

PROC payments (customer_name); $first subfunction
. . .

END PROC payments;

PROC tel_no;
. . .

END PROC tel_no;

PROC overdue; ...
END PROC overdue;

$ second subfunction

$third subfunction

(additional functions and subprocedures come here)

END PROGRAM banking_system;

FUNCTIONS AND PROCEDURES Page 4-17

The statement

VAR master_customer_file;

appearing first in this example is called a declaration rather than an
executable statement because it serves to modify the meaning of other
statements rather than to trigger any particular calculation.

The general form of a VAR declaration is

VAR xl,x2, ••• ,xn;

i.e. it consists of the keyword VAR followed by a comma-separated
distinct variable identifiers.

Such declarations can appear in one of two positions:

list of

(a) In a PROGRAM, before the program's first executable stat-ement.
Variable identifiers appearing in such a declaration are defined to be
global variables directly accessible to each following PROCEDURE in the
program. A VAR declaration appearing in this position is called a global
VAR declaration.

(b) In a PROCEDURE within a program, before the procedure's first
executable statement. A VAR declaration appearing in this postion is called
a local VAR declaration. Variable identifiers appearing in such a
declaration are defined to be local variables accessible only within the
procedure. Since variable names not appearing in any VAR declaration are in
any case local to the procedures in which they appear, VAR declarations
appearing in this position often serve only to document the way in which a
procedure uses its variables. However, if the procedure is recursive (see
Section 4.4), VAR declarations appearing in it have a more significant
effect, which will be described more fully in Section XXX below.

Any number of VAR declarations may appear either at the start of a
PROGRAM or within a PROCEDURE, but all such declarations must precede the
first executable statement of the PROGRAM or PROCEDURE in which they appear.
No variable should appear twice in VAR declarations (either global VAR
declarations or declarations within a single procedure), nor is it legal for
any procedure parameter name to appear in a global VAR declaration. See
section 9.1 for the rules which apply to VAR declarations appearing in
DIRECTORYs, MODULEs, and LIBRARYs within large, complex SETL programs; see
Section YYY for an account of the modified VAR declaration used to declare
backtracked variables.

A global variable retains its value between invocations of the
procedures which use it. (The same remark applies to a variable appearing
in a VAR declaration within a procedure).

To sum up, there are two ways
between seperate PROCEDUREs.

in which values can be communicated

(i) By being passed as parameters or RETURNed as function values.

FUNCTIONS AND PROCEDURES Page 4-18

(ii) By direct global communication, i.e. by being the values of
variables which have been declared to be global and hence are accessible to
more than one procedure.

Method (ii) is powerful,
functions to influence each
is therefore good programming
declared global variables.
global only if

but potentially undisciplined, since it allows
other in ways that their invocations hide. It
practice to avoid using more than a very few
Generally speaking, variables should be made

(A) They represent 'major' data objects accessed by most of a PROGRAM's
functions, and their usage is subject to c~early understood rules of style
which pervade the entire program.

(B) They represent 'flags' or other conditions
need to test (e.g., to determine whether particular
be produced), but which play no role in the normal
procedures and are rarely modified.

which many procedures
debugging traces should

functioning of these

(C) They need to be shared between procedures which do not call each
other and must be kept alive between successive invocations of these
procedures.

(D) They represent constants, too complex to be set up conveniently
using a CONST declaration (see Section YYY), which need to be used whenever
a procedure is invoked.

(E) They need to be accessible to all logical copies of a recursive
procedure (See Section 4.4).

The -capitalize- function appearing in Section l
illustrate point {d). As written, this forms the map

can be used to

capital_of := {['a','A'], ['b','B']. ['c','C'J, ••• ,['z','Z']}

each time it is invoked. To do this is of course wasteful of computer time.
Using the CONST declaration described in Section 6.2 we would instead
declare capital_of to be a constant having this value, but to do so we would
have to write out all the elements of const_of explicitly, a nuisance since
this would require us to type 104 apostrophes, 51 commas, 52 brackets, etc ■

It is more convenient to declare

VAR capital_of;

and then to add the instructions :

small_letters
big_letters
capital_of

:= 'abcdefghijklmnopqrstuvwxyz' ;
:= 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' ;
:= {[l,big_letters(i)]: l=small_letters(i)}

as part of a main program block before the first use of -capitalize-. The
-capitalize- function reduces to the following simple form:

PROC capitalize(s);

FUNCTIONS AND PROCEDURES

RETURN +/[capital_of(let) ? let

END PROC capitalize ;

4.3 Programming examples

let= s(i)]

Page 4-19

. ,

4.3.1 The 'Buckets and Well' problem: a simple
example.

'artificial intelligence'

The following kind of problem, often called the 'buckets and well'
puzzle, commonly appears on intelligence tests. Suppose that one is given
several buckets of various sizes, and that· a well full of water is
available. To focus on a simple specific case, suppose that just two
buckets, a 3 quart bucket and a 5 quart bucket, are given, and that we are
required to use them to to measure out exactly three quarts of water. Since
exactly this amount of water to be measured out, no non-precise operation is
allowed. This means that only three kinds of operations can be used in a
solution of this problem: s.nf

(a) any bucket can be filled brim-full from the well;

(b) any bucket can be emptied completely;

(c) any bucket can be poured into any other, until either the

first bucket becomes completely empty or the second bucket

becomes brim-full.

As an example, the following is a way_ of measuring out exactly 4 quarts
using only a 3 and a 5 quart bucket.

(i) Fill the 5 quart bucket.

(ii) Pour the 5 quart bucket into the 3 quart bucket (leaving
2 quarts in the 5 quart bucket.)

(iii) Empty the 3 quart bucket.

(iv) Pour the contents of the 5 quart bucket into the 3 quart
bucket. (Now 2 quarts are in the 3 quart bucket, and the 5
quart bucket is empty).

(v) Fill the 5 quart bucket.

(vi) Pour the 5 quart bucket into the 3 quart bucket, until the
3 quart bucket becomes full. (This leaves exactly 4 quarts in the
5 quart bucket.)

(vii) Empty the 3 quart bucket.

(Now exactly 4 quarts have been measured out).

FUNCTIONS AND PROCEDURES Page 4-20

The fact that it is easy to program a computer to solve problems of this
kind might be considered surprising, since such solutions are often
considered to require 'intelligence'. Nevertheless a systematic approach is
not hard to find. The key idea is that of 'state'. Specifically, as one
moves through the steps of any solution to this kind of problem, the objects
being manipulated (in this case, the buckets) will at any moment be in some
particular condition. In the case we consider, this 'condition' or 'state'
is determined by the amount of water in each of the buckets. We can
represent this state as a tuple, of as many components as there are buckets.
Initially, when both buckets are empty, the state is [O,O]. The 'target'
state for the example considered above.is that in which exactly four quarts
have been measured into the 5 quart bucket; this is represented by the
tuple [0,4]. The state in which both buckets are completely full is [3,5],
that in which the three quart bucket is full and the 5 quart bucket is empty
is [3,0), etc. In this representaton, the problem solution given by (i-vii)
above would be represented as the following sequence of states:

[0,0), [0,5), [3,2], [0,2], [2,0], [2,5], [3,4], [0,4]

This way of looking at the problem makes it plain that what we need to
consider is the set of all possible states, and the manner in which new
states can be reached from old. Suppose that the tuple -state- represents
the amount of water currently in the buckets, so that state(i) is the amount
of water in the i-th bucket, and that the tuple -size- represents the sizes
of all the given buckets, so that size(i) is the capacity of the i-th
bucket. In the buckets-and-well problem, only the three manipulations (a),
(b), and (c) are allowed. If bucket i is poured into bucket j until either
i becomes empty or j becomes full, then the amount poured will be

state(i) MIN (size(j)-state(j)).

Hence the following procedure returns the collection of all states than can
be reached in a single step from an initially given state:

PROC new_states_from(state);

RETURN {empty(state,j): j IN [1 •• //state]}
+ {fill(state,j): j IN [1 •• /lstate]}
+ {pour(state,i,j): i IN [l. .I/state], j IN [l •• I/state] I (i/=j)};

END PROC new_states_from(state);

PROC empty(state,j);

state(j):=O;
RETURN state;

END PROC empty;

$ empties bucket j

PROC fill(state,j); $ fills bucket j

state(j):=size(j); $ the 'size' tuple is assumed to be global
RETURN state;

FUNCTIONS AND PROCEDURES Page 4-21

END PROC fill;

PROC pour(state,i,j); $ pour bucket i into bucket j

amount := state(i) MIN (size(j)-state(j));
state(i) -:= amount; state(j) +:= amount;

RETURN state;

END PROC pour;

$ amount that can be poured

We can now solve our problem by a systematic process of state
exploration. We start in the initial 'all buckets empty' state ((0,0] in
the preceding example). Next we use the new_states_from routine to generate
all the states which can be reached in one step from this starting state.
Then we generate all states which can be reached in one step from these
second level states, etc. States which have been encountered previously are
ignored; the ones which remain are precisely those which can be reached
from the start in two steps but no fewer. From these, we generate all
states which can be generated in three steps but no fewer, and so forth. As
we go along, we check to see if the target state has yet been reached.
Eventually, we either reach the target state, thereby solving our problem,
or find that no new states can be generated, even though the target state
has not been reached. In this latter case, the problem clearly has no
solution.

The following figure illustrates the notion of state-search and shows
some of the states that come up during search for a solution of our
two-bucket example: 6------...­

y:~rt state)

[3%1 (0,5]

co~ 3J-t,,c3,51---.-c 3~21

[3~3] [0~2]

c1~51 c2fo1

c1~01 c2!51

[0~1] [3~4]

[3!11 [0+4] (target state)

Figure 4.3. States of a two-bucket problem; bucket sizes are [3,5]

Note that in this figure we only show transitions which lead to states
that have not been seen before. Other transitions are redundant, since the
shortest path from start state to the target state will never pass through
the same state twice.

~--·------- ---- - ------

FUNCTIONS AND PROCEDURES Page 4-22

To be sure that we can reconstruct the path from start to target once
the target has been reached, we proceed as ·follows. Whenever a new state ns
is seen for the first time it will have been generated from some immediately
preceding old state os. As states are generated, we keep a map came_from
which maps each new state ns into the old state os from which ns has been
reached. Once the target state has been reached, w~ can use this map to
chain back from the target to the start state ■ Then the desired soultion is
simply the reverse of the sequence thereby generated.

The following code implements this state-generation and backchaining
procedure ■ It is deliberately written in a manner which hides all
information concerning the structure of states, as well as all details
concerning the way in which new states arise from old. This makes it
possible to use the same routine to solve many different kinds of
state-exploration problems.

PROC find_path(start,target);

came from:= {[start,start]};

just_seen := {start};

(WHILE just_seen/={})
brand_new := { };

$ general state-exploration procedure.

$ the start state is considered
$ to have been reached from itself

$ initially, only the start
$ state has been seen

$ while there exist newly seen states
$ look for states that have not

$ been seen before
{FOR old_state IN just seen, new_state IN new_states from(old_state)

!came from(new_state)=OM)

brand_new WITH:=new_state; $ record a brand new state
$ and record its origin came from(new_state) := old state;

IF new_state=target THEN GOTO got_it; END;
$ since problem has been solved

END FOR;

just_seen := brand_new; $ now the brand-new states define those which
$ have just been seen

END WHILE;

RETURN OM; $ at this point all states have been explored, and the

got_it:

$ target has not been found, so we know that no solution
$ exists.

$ at this point the target has been found, so we chain
$ back from the target to reconstruct the path from start
$ to target

rev_path := [target]; $ initialize the path to be built

(WHILE (last_state := rev_path(#rev_path))/=start)
rev_path WITH:= came_from(last_state);

END WHILE;

RETURN [rev_path (j): j IN [{!rev_path, llrev __ pa th-1 •• 1 J) ;

FUNCTIONS AND PROCEDURES Page 4-23

END PROC find_path;

The following main program can be used to acquire a problem­
specification interactively and to invoke the find_path routine to solve it.
Again we hide all problem-specific information in appropriate subroutines.

VAR
size; $ global variable for storing problem specification

(WHILE (prob_specs:=get_prob_specs())/=OM)

[start, target, size] := prob_specs;

IF (path := find_path(start,target))=OM THEN
print('This problem is ·definitely unsolvable')

ELSE
print('The following sequence of states constitutes a'

solution:');
(FOR x IN path) print(x); END;

END IF;

END WHILE;

The
acquire
solved.
is being

parameterless get_prob_specs function interrogates the user to
the description of a particular buckets-and-well problem to be
(Note that we assume here that the program we have been considering
run interactively from a terminal.)

PROC get_prob_specs;

LOOP DO

$ acquires and returns specifications
$ of problem

print('Enter a tuple to define bucket sizes, or type ''STOP'' to halt:');

read(x);
IF x='STOP' THEN QUIT; END;

print('Enter a tuple of the same length to define initial bucket states:');

read(y);
IF y='STOP' THEN QUIT; END;

print('Enter a tuple of the same length to define target of problem:');

read{z);
IF z='STOP' THEN QUIT; END;
data := [y,z,x];
IF EXISTS t=data(i) I

OR EXISTS c=t(i)
(NOT IS TUPLE(t) OR #t /= #data(l)
I NOT IS INTEGER(c) OR c < 0) THEN

print('Illegal problem specification.' 'Please re-enter or type ''STOP''

to halt.');

---- -- --- ---,-- -------

FUNCTIONS AND PROCEDURES

CONTINUE;
ELSE

$loop, to try again

RETURN data;
END IF;

END LOOP;
RETURN OM; $ Since this point

$ has been typed.
END PROC get_prob_specs;

will only be reached if 'STOP'

Page 4-24

Since the notion of 'problem state' used in the foregoing is quite
general and since we have written the find_path procedure and the main
program block shown above in a manner which insulates them from the details
of the problems that they solve, we can use these procedures to handle any
path-finding problem of the same general class as the 'buckets and well
problem'. Another amusing problem of this kind is the 'goat, wolf, and
cabbage' puzzle. In this puzzle, a man, who brings with him a goat, a wolf,
and a cabbage, comes to a river which he must cross in a boat just large
enough for himself and one but not two of the objects goat, wolf, and
cabbage. He can never leave the goat and wolf, or the cabbage and goat,
alone together, since in the first case the wolf would eat the goat and in
the second the goat would eat the cabbage. How is he to cross the river?

To develop a program which solves this puzzle, we have only to rewrite
the -new states from- function and the parameterless­
get_prob_specs-procedure. First, we need to decide on a representation of
the states of the puzzle. We can designate the four objects appearing in
the puzzle by their initials as 'G', 'W', 'C', and 'M' (man) respectively,
and represent each state of the puzzle by a pair [1,r], where -i- designates
the set of all objects remaining to the left of the river, and -r­
designates the set of all objects that have been moved across the river.
For example,

[{'G', 'M'}, {'W'.'C'}]

represents the state in which the wolf and the cabbage have been
moved across, and the man has returned to the left side of the
river to get the goat. The start state is then

[{'G', 'W', 'C', 'M'}, { }]

and the target state is

[{ }, {'G', 'W', 'C', 'M'}]

The -new_states_from- procedure appropriate for
represented as follows:

this problem can be

PROC new_states_from(state);

[1,r] := state; $ 'unpack' state into its 'left' and 'right' portions

RETURN IF 'M' IN 1 THEN {[1-{'M',x}, r + {'M',x}]:
x IN 11 x/='M' AND is_legal(l-{'M',x})}

FUNCTIONS AND PROCEDURES Page 4-25

ELSE
{[1 + {'M',x}, r-{'M',x}]: x IN rl x/='M' AND is_legal(r-{'M',x})}

END;

END PROC new_states_from;

PROC is_legal(s); $ test to see ifs meets conditions of puzzle

RETURN NOT ({'G', 'C'} SUBSET s OR {'G', 'W'} SUBSET s);

END PROC is_legal;

4.4 Recursive Functions.

The value that a mathematical function f(x) of an
set variable takes on for a particular x can often be
the value of the same function for smaller argument
examples of this general principle are:

integer, tuple, or
expressed in terms of
values x'. Several

(i) The 'factorial' function n!,
satisfies the identity

equivalent to */[i:i in [1 •• n]],

n! = IF n = 1 THEN 1 ELSE n*((n-1)!) END

(ii) The sum sigma(t)=+/t of all the components of a tuple t satisfies the
identity

sigma(t) = IF t=O THEN OM ELSEIF t=l THEN t(l)
ELSE t(l) + sigma (t(2 ••)) END;

(iii) The tuple sort(s) representing the elements of sin sorted order
satisfies the identity

sort(s) = IF s=O THEN [] ELSE [MIN/s] + sort(s-{MIN/s}) END

This same function sort(s) also satisfies many other interesting identities.
Suppose, for example, that we pick an arbitrary element x from the sets,
and then divide the remaining elements of s into two parts, the first, L,
containing all elements less than x, the second, G, containing all elements
greater then x. Then if we sort the elements of Land G, and concentrate
the resulting sorted tuples, sandwiching x between them, we clearly get a
tuple t which contains al the elements of sin sorted order. This shows
that the function sort(s) also satisfies the identity

sort(s) = IF (x:= ARB s)= OM THEN [] ELSE
sort({y IN s:y<x}) +(x] + sort({y IN s:y>x}) ·END;

Identities of the kind appearing in the preceding examples
recursive definitions and the functions appearing in them
recursively defined functions. Such recursive definitions all
following features:

are called
are called

have the

FUNCTIONS AND PROCEDURES Page 4-26

{a) For certain particular simple or 'minimal' values {like n=l in {i)
or t=[] in (ii)) of the argument variable x of a recursively defined
function f(x), the value of f(x) is defined explicitly.

(b) For all other argment values x, the value of f(x) is expressed in
terms of the value that f takes on for one or more s~aller argument values
xl,x2, •• xn. That is, there exists a relationship of the general form

f(x) = some_combination{f{xl),f(x2), •• ,f(xn))

(c) Repeated use of the relationship {b) will eventually
value f{x) in terms of various values f{y) each of which has
which is minimal in the sense of {a), so that all values f(y)
which f(x) is ultimately expressed are known explicitly.

express any
a parameter y
in terms of

Any recursive relationship satisfying (a,b,c) gives a method for
calculating f(x) for each allowed argument x. Like many other programming
languages, SETL allows one to express such recursive calculations very
simply and directly, by writing recursive functions, i.e. functions which
invoke themselves. This can be done for each of the three examples given
above, which then take on the following forms:

PROC factorial{n); $ calculates the factorial n!

RETURN IF n=l THEN 1 ELSE n*factorial(n-1) END;

END PROC factorial;

PROC sigma{t); $ calculates +/t

RETURN IF t=O THEN OM ELSEIF t=l THEN t{l)
ELSE t(l) + SIGMA (t(2 ••)) END;

END PROC sigma;

PROC sort(s); $ recursive sorting procedure

RETURN IF s ={ } THEN []
ELSE [MIN/SJ+ sortl{s LESS MIN/S) END;

END PROC sort;

These examples illustrate the
recursive procedures:

following general remarks concernin&

(i) Syntactically, recursive functions (and procedures) have the samE
form as other functions and procedures. The only difference is that
recursive procedures invoke themselves, while other procedures happen not
to.

(ii) The same name-scoping rules apply to recursive as
procedures.

to other

FUNCTIONS AND PROCEDURES Page 4-27

Note that a recursive function f(s)
itself to arguments smaller than s;
eventually terminates.

uses itself, but always applies
this is why the calculation off

Recursive functions f need not invoke themselves directly:
invoke other functions g which invoke f, or g can invoke some h
invokes f, etc. A group of functions which invokes each other is
called a mutually recursive family of functions, and any function
to such a mutually recursive family is itself called recursive.

They can
which then

sometimes
belonging

For an example of such a mutually recursive family, consider the
problem of defining an overal order for SETL objects, which will allow any
two SETL objects to be compared to each other.· (Such an order could, for
example, serve as the basis for an output routine which always arranged the
elements of sets in increasing order, thereby making it easier to locate
elements in large sets when they were printed.) To define such an order, we
can agree on the following conventions:

(a) OM always comes first, integers before reals, reals before strings,
strings before atoms, atoms before tuples, and tuples before sets. (Atom is
a SETL data-type. For more on atoms see section 5.3).

(b) Among themselves, integers and reals are arranged in their standard
order, strings in their standard alphabetical order, and atoms in the order
of their external printed representations, i.e. if x and y are two atoms
then x comes before y if and only if (STR x) < (STR y). (Note that the STR
x operator produces a string identical with the external printed form of the
object x; see Section 2.1.)

(c) Tuples are arranged in lexicographic order, i.e. tl comes before
t2 if, in the first component in which tl and t2 differ, tl has a smaller
component than t2.

(d) To compare two sets, first arrange their elements in order •
allows them to be regarded as tuples; then apply rule (c).

. This

The following mutually recursive group of
ordering strategy we have just described.

functions implements the

PROC is_bigger(x,y); $ return TRUE if x>y in the
$ order just described

RETURN IF x=y OR y=OM THEN TRUE
ELSEIF x=OM THEN FALSE
ELSEIF TYPE x /= TYPE y THEN type_number(x) > type_number(y)
ELSEIF TYPE x = 'ATOM' THEN STR x > STR y
ELSEIF TYPE x= 'TUPLE' THEN lex_compare(x,y)
ELSE lex_compare(sort(x),sort(y)); $ x and y are sets

END PROC is_bigger;

PROC sort(s); $sorts the elements of the sets into the order defined
$ by is_bigger
$ A sorted tuple is returned. The 'bubble' method
$ is used for sorting

FUNCTIONS AND PROCEDURES

t:=[x IN s]; $ arrange the elements of s as
$ a tuple in arbitrary order

(WHILE EXISTS i IN [1 •• t-1] I is_bigger(t(i),t(i+l)))
[t(i),t(i+l)] :=[t(i+l),t(i)];

END WHILE;

RETURN t;

END PROC sort;

PROC lex_compare(tl,t2); $ compare two different tuples,
$ in their le~icographic order,

Page 4-28

$ components being compared by is_bigger

RETURN EXISTS cl=tl(i)

END PROC lexcompare;

PROC type_nu~ber(typ);

is_bigger(cl,t2(i));

$ converts typ, which is the name of
$ a valid SETL type, into an integer

tno:= { ['INTEGER' ,1], ['REAL' ,2], ['STRING' ,3], ['ATOM' ,4],
['TUPLE' ,S], ['SET' ,6] };

RETURN tno(typ);

END PROC type_number;

Until now we have regarded recursive SETL functions simply as SETL
representations of recursive mathematical relationships, and have ignored
the question of how they are implemented, i.e. how the calculations which
they define are actually performed. This is actually the best way to look
at the matter, since the calculation used to evaluate a recursive function
can be complex and tricky to follow even when the mathematical relationship
on which it is based is simple and easy to understand. Nevertheless one
occasionally needs to understand how recursive calculations are performed.
For example, when an incorrectly programmed recursive procedure
malfunctions, one needs to know what is happening in order to diagnose the
problem and correct it.

Implementation of recursive functions, like that of mutually recursive
groups of functions, is based upon the following rule. Whenever a function
f invokes itself, a new logical copy of the function is created, initial
parameter values are passed to this new logical copy, and execution of this
new logical copy begins with its first statement. While the new copy of f
is executing, the old copy of the function f, from which the new copy was
created, remains in existence, but execution of it is suspended. The new
copy can in turn invoke f, thereby creating a third copy off, which can
even go on in the same way to create yet a fourth copy, etc. However, if
the recursion has been written correctly, the arguments x passed to thee
successive copies off will be getting smaller and smaller. Eventually one
of them will get small enough for the corresponding value f(x) to be
evaluated directly. Once this happens, the currently active copy of the
function f will execute a statement

FUNCTIONS AND PROCEDURES Page 4-29

RETURN e

for some directly evaluable expression e. This will pass the value of e
back to the place from which the current copy off (call it CCF) was
invoked. CCF will then become superfluous and will disappear. The
immediately prior copy off will then become active, and when it finishes
its execution it will in turn pass a value back to the copy off from which
it has been invoked and disappears, etc. Eventually a value, and control,
will be returned to the very first copy of f, and the whole recursive
evaluation will be completed as soon as this first copy executes a RETURN
statement.

As an example of this process of recursive evaluation, suppose that the
recursive -sort- routine shown earlier in this section is invoked, and that
initially the argument value {30,0,60,40} is transmitted to it. This will
trigger the following steps of recursive evaluation.

(i) Copy 1 of -sort- begins to evaluate sort({30,0,60,40})

(ii) The minimum element O is removed from the sets, and -sort­
is invoked recursively to evaluate sort({30,60,40})

(iii) Copy 2 of -sort- begins to evaluate sort({30,60,40})

(iv) The minimum element 30 is removed from the sets, and -sort­
is invoked recursively to evaluate sort({60,40})

(v) Copy 3 of -sort- begins to evaluate sort({60,40})

(vi) The minimum element 40 is removed from th sets, and -sort­
is invoked recursively to evaluate sort({60})

(vii) Copy 7 of -sort- begins to evaluate sort({60})

(viii) The minimum (and only) eleraent 60 is remoed from the set
s, and -sort- is invoked recursively to evaluate sort({ }).

(ix) copy 5 of -sort- immediately returns [] as the value of sort({ })
to copy 4, and disappears.

(x) Copy 4 of sort appends the returned value [] to [60), returns the
result [60) to copy 3, and disappears.

(xi) Copy 3 appends the returned value [60) to [40), returns the
result [40,60) to copy 2, and disappears.

(xii) Copy 2 appends the returned value [40,60) to [30), returns
the result [30,40,60) to copy 1, and disappears

(xiii) Copy 1 appends the returned value [30,40, 60) to [0), and
returns [0,30,40,60), as the final result of the whole recursive
evaluation, to the place from which -sort- was first invked.

The complexity of this sequence of steps underscores the fact that
whenever possible a recursive SETL function like -sort- should be

----~--------------- --- ------

FUNCTIONS AND PROCEDURES Page 4-30

looked at as the transcription of a recursive mathematical
relationship in this case, the very obvious relationship

sort(s) = IF s={ } THEN ELSE [MIN/s] + sort(s LESS MIN/s) END;

rather than in terms of the sequence of steps required for its evaluation.
However, the way in whch recursive routines are evaluated becomes relevant
if they are miswritten and consequently malfunction. Certain common
pathologies are associated with malfunctioning recursive routines and one
needs to be able to recognize them when they appear. A common error is to
write a recursion which does not handle its easy, directly evaluable cases
correctly, or which for some reason never reaches a directly evaluable case.
If this happens, a recursive routine will create more and more copies of
itself without limit, until the entire memory of the computer on which it is
running is exhausted, and a final, 'MEMORY OVERFLOW' error message is
emitted.

In somewhat more complex cases, a malfunctioning recursive function
will loop indefinitely, first creating additional copies of itself, then
returning from and erasing these, then again creating new copies of itself,
again returning from and erasing these, etc., without any overall progress
to termination ■ Such a 'nonterminating recursive loop' is likely to produce
much the same symptoms as a nonterminating WHILE loop, namely the program
will run on, either with no output or with a flood of repetitive output,
until the operating system notices that it has outrun its time limit and
terminates it forcibly. This situation is most easily diagnosed at an
interactive terminal, simply by printing out the parameters transmitted to
the recursive function each time it is invoked; this pattern of parameters
will fail to show the logical pattern upon which your hopes for eventual
termination of the recursion rest.

Having said all this, we now go
recursive procedure, namely

on to describe another interesting

4.4.1 Robert Floyd's Quicksort Procedure ■

Quicksort: This sorting method, due to Robert Floyd of Stanford
University, works as folows: If the tuple t of elements to be sorted has no
elements or just one element, we have nothing to do, since an empty tuple or
a tuple with just one element is always sorted. Otherwise, we remove the
first element x from t, and divide what remains into two parts, the first
('small_pile') consisting of all those component smaller then x, the second
('large_pile') consisting of all those components at least as large as x.
We then sort these two piles separately. This can most readily be done just
by using quicksort itself recursively. Finally, we recombine to get all the
original components in their sorted order. This is done by putting the
sorted smallpile first, followed by the element x, and then followed by the
sorted largepile ■

See the attached figure for furthet explanation of the
quicksort works ■ Code for this procedure can be written as

way in
follows:

PROC quick_sort(t); $ Fluyd quicksort procedure, first form

IF #t<2 THEN RETURN t; END;

which

FUNCTIONS AND PROCEDURES

X := t(l)
small_pile := [y

large_pile := [y
y=t(i)
y=t(i)

$ take the first component
y < x]
y >=x and i > 1]

RETURN quick_sort(small_pile) + [x] + quick_sort(large_pile)

END PROC quick_sort ;

Page 4-31

----- --------- ---

FUNCTIONS AND PROCEDURES

f --------------------------] 3 1 55 7 11 -3 9 5

--~-----------------------,
first element x

X

f-3~ 11~~:[~s~~~1~~9~~~11~s~

a) tuple t to be sorted

b) form small-pile and
large-pi'le

c) sort small-pile and
large-pile using quicksort
recursively

d) concatenate, putting x in
the middle to form
final sorted result

Figure 4.4: Robert Floyd's Quicksort Procedure

Page 4-32

By using SETL expression features more strenuously, we can write this
whole procedure in just one statement, namely as

PROC quick_sort(t); $ Floyd quicksort procedure, second form

RETURN IF #t < 2 THEN t
ELSE

quick_sort ([y
+ quick_sort([y
END ;

END PROC quick_sort;

y=t(i)
y=t(i)

y < t(l)]) + [t(l)]
y >= t(l) and i>l])

4.4.2. Another Recursive Procedure: Mergesort

The 'quicksort' procedure that has just been presented sorts by
separating the array to be sorted into two piles which can be sorted
separately and then combined. This recursive approach, sometimes called
'divide and conquer', forms the basis for many efficient data-manipulation
algorithms. It is often most effective to divide the problem given
originally into exactly two halves of equal size. 'Quicksort' does not
always lead to this equal division, since random selection of a component x
of a tuple t may cause it to be divided into parts [y:y IN t I y < x] and
[y:y IN t I y > x] which are very different in size. For this reason, we
will now describe another recursive sorting technique, called mergesort,
which does begin by dividing the tuple t that is to be sorted into two parts
of equal size. This procedure works as follows:

FUNCTIONS AND PROCEDURES

(i) Divide t (at its middle) into two equal parts tl and t2,
them separately.

Page 4-33

and sort

(ii) Then merge the two sorted parts tl, t2 oft, by removing either
the first component of tl or the first component of t2, whichever is
smaller, and putting it first in the sorted version of the full tuple t,
after which we can continue recursively, merging the remaining components of
tl and t2.

Code for this procedure is as follows:

PROC sort{t); $ recursive mergesort procedure

RETURN IF #t < 2 THEN t
$ since a tuple of length O or 1 is ipso facto sorted
ELSE merge(sort(t(l •• #t/2)), sort(t{#t/2+1 ••))) END;

END PROC sort;

PROC merge(tl,t2); $ auxiliary recursive procedure for merging

RETURN IF tl=[] THEN t2
ELSEIF t2=[] THEN tl
ELSEIF tl(l) < t2{1) THEN [tl{l)] + merge(t1(2 ••),t2)
ELSE t2(1) + merge(tl,t2(2 ••)) END;

END PROC merge;

Instead of programming the -merge- procedure recursively, we can write
it iteratively. For this, we have only to work sequentially through the two
tuples tl and t2 to be merged, maintaining pointers il, i2 to the first
component of each which has not yet been moved to the final sorted tuple t
being built up. Then we repeatedly compare tl(il) to t2(i2), move the
smaller of the two tot, and increment the index of the component that has
just been moved tot. This revised merge procedure is as follows:

PROC merge(tl,t2);

t := [];
il := 12 := l;

$ iterative variant of -merge- procedure

$ merged tuple to be built up
$ indices of first components not yet moved

(WHILE il < #tl AND i 2 < #t2)
IF tl(il) < t2(i2) THEN$ 'move ' tl(il) tot

t WITH:= tl(il);
il +:= l;

ELSE $ 'move' t2(i2) tot
t WITH := t2(i2);
t2 +:= l;

END IF;

END WHILE;

RETURN t + tl(il ••) + t2(i2 ••);
$ note that at most one of tl(il ••) and t2((i2 ••) is non-null

FUNCTIONS AND PROCEDURES Page 4-34

END PROC merge;

Binary searching: ~ fast recursive searching technique.

If the components of a tuple tare arranged in random order, then to
find the component or components having a given value we must search
serially through every one of the components oft; clearly no component of
t can go unexamined, since this may be precisely the component we are
looking for. On the other hand, if the components of t are numbers or
character strings, and if they are arranged in sorted order, then, as every
one who has ever looked up a word in a dictionary or a name in a telephone
book should realise, a much faster searching procedure is available. The
most elegant expression of this searching pro~edure is recursive, and is 8$

follows:

(i) Compare the item x being sought to the middle item t(#t/2) of the
sorted tuple t. If xis greater than (resp. not greater than) this middle
item, proceed recursively to search for x in the upper (resp. lower) half
oft.

(ii) The search ends when the vector in which we are searching has
length equal to 1.

In coding this procedure, we maintain two quantities -lo-,-hi-, which
are respectively the low and the high limits of the zone oft in which we
must still search. When the search procedure is first called, lo should be
1 and hi should be #t. When -lo- and -hi- become equal, we return their
common value. If this locates a component oft equal to x, we have found
what we want; otherwise we can be sure that xis not preserit int, i.e.
that no component oft is precisely equal to x.

Recursive code for this searching procedure is as follows:

PROC search(x,t,lo,hi);
$ binary search for x int between -lo- and -hi-

RETURN IF lo=hi THEN lo
ELSEIF x <= t(mid := (lo+hi)/2) THEN search (x,t,lo,mid,hi)
ELSE search (x,t,mid+l,hi) END;

END PROC search;

It is easy to express this search iteratively rather than recursively,
namely we can write

PROC search((x,t);

lo := l; hi := #t;

(WHILE lo< hi)

$ iterative form of binary search procedure

$ initialise search limits

IF x <= t(mid := (lo+hi)/2) THEN
hi := mid;

ELSE
lo := mid+l;

FUNCTIONS AND PROCEDURES

END IF;

END WHILE;

RETURN lo;

END PROC search;

Page 4-35

Binary searching can be enormously more efficient than simple serial
searching. Suppose, for example, that the sorted tuple t to be searched is
of length one million. Then to search t serially several million elementary
operations will be required. On the other hand, since 1,000,000 is roughly
2**20, only twenty probes will be required to locate a component of t by
binary searching. Hence, for sorted t~ples of this length, binary searching
is roughly 50,000 times as fast as serial searching. This illustrates the
vast efficiency advantage that can be gained by proper choice of the
algorithm that you will use.

4.4.4 The 'Towers of Hanoi' Problem

Among the many different kinds of
toyshops, the 'Towers of Hanoi' puzzle is
board with three identical pegs and a set
diameter which will fit snugly around any
the puzzle looks like this:

Peg 1 Peg 2 Peg-3

Figure 4.5: The 'Towers of Hanoi' Problem

puzzles that can be bought in
a classic. This puzzle involves a
of rings of decreasing external
of the pegs. As initially set up,

To solve the puzzle one must move all the disks from the particular peg
(peg 1) on which they are originally placed to one of the other pegs (say,
to peg 3). However, only one disc can be moved at a time, and it is
forbidden to ever place a larger disc on top of a smaller disc.

Recursion gives us an amazingly effective way of writing a solution to
this problem. The key idea is this: since a large disk can never be placed
atop a smaller, all the disks except the bottom one must be moved to peg 2
before we can move the bottom disk from peg 1 to peg 3 ■ Hence, to move a
pile of n disks from peg 1 to peg 3, we must

(a) move a pile of (n-1) disks from peg 1 to peg 2;

---------- - -------- -----~~~~

-- ---- ---------------------- - --~------------

FUNCTIONS AND l'R<H:1•:DIJl{ES Page 4-36

(b) movP the n-th disk from peg 1 to peg 3
(c) move a pile of (n-1) disks from peg 2 to peg 3

The following elegant recursive function
moves required; eRch move is represented as

generates the sequence of
Ii pair [f,t) showing the pegs

from which and to which a peg is moved.

PROC moves(ndisks, fr, to, via); $ moves n disks from peg -fr- to
$peg-to-

RETURN (IF ndisks=l THEN [[fr,to]]
ELSE moves(ndisks-1, fr, via, to)+ [[fr,to]]

+ moves(ndisks-1, via, to, fr) END)
END PROC moves;

A function is always sent some collection of parameter values, and
calculates a single result value, which it RETURNs, from them.
Occasionally, however, one wants to use PROCEDURES in a somewhat different
way, namely, one wants to invoke a procedure expressly in order to modify
some object that already exists. In this case, such a procedure is invoked
for its effect, rather than for the value it delivers. This use of
procedures moves us away from the notions of 'value' and 'expression' and
focuses more on the somewhat different notion of program state, i.e., the
collection of all values local and global variables have at each moment
during a computation. What we will be describing now is the way in which
procedures are used to modify this program state. There are two ways in
which procedures can have this effect: one of them is to construct
procedures which modify one or more of.their calling parameters; the second
is to have a procedure modify one or more global variables. We shall
examine each of these possibilities separately.

4.5 Procedures which modify their parameters

A function is always sent some collection of parameter vales, and
always calclates some single value, which it returns, from them.
Occasionally, however, one wants to use PROCEDURES in a somewhat different
way. More specifically, one wants to transmit (zero or more) arguments to
them, but thhen to have the procedure modify some or all of tis parameters,
after which it must make these modified values available to the code which - --- --- --- ----- ---- ------ - -- ---
has invoked it. A related possibility is to invoke a procedre simply in
order to modify one or more globally available variables. (See Section
4.5).

as
in

This use
follows.

of procedures is perfectly legal in SETL, and is accomplished
A procedure's header line lists its parameters, as for example

PROCEDURE my_proc(x,y,z);
Parameters listed in this way can be modified within the body of the

procedure (i.e., within -my_proc-) but parameter values are ordinaiily
local to the
procedure, so that these modifications are not be cransmitted back
to the point from which the procedure was invoked. For example,

FUNCTIONS AND PROCEDURES

if we define the procedure

PROC change_parameter(x);

x:=O;

RETURN x;

END PROC change_parameter;

and invoke it by

(2) y := 1 ;
z := change_parameter(y);

print('z is:', z, 'y' is:,y);

then the -print- statement will produce the output

z is: 0 y is: 1

Page 4-37

This reflects the fact that the RETURN statement in the PROC returns
the final value of the variable x (which is local to the PROC), but that
modifications to the procedure parameter x are not transmitted back to the
point of invocation and therefore do not affect the value of the actual
argument y appearing in (2). Thus the argument y remains unchanged.

This is the rule which ordinarily applies to PROCs, and which is most
appropriate for PROCs used as functions. However, it is possible to bypass
this rule, and to create PROCs which do modify one or more of the actual
arguments with which they are invoked. To do this, one simply prefixes the
'parameter qualifer' RW (meaning 'read/write parameter') to each parameter
corresponding to one of these modifiable arguments. Suppose, for example,
that we modify the procedure (la), making it

(1 b) PROC change_parameter(RW x);

x:=O;

RETURN x·
'

END PROC change_parameter;

Then the output of the -print- statement in (2) will change to

z is: 0 y is: O,

reflecting the fact that now changes in the value of the parameter x of the
PROC (lb) will be transmitted back to the point from which the PROC was
invoked.

PROCs whose parameters are qualified in this way will generally not be
used as functions that return values (though technically it is legal to use
them as functions). Instead, they will ordinarily be invoked simply by
writing their names followed by their actual argument lists, as is

FUNCTIONS AND PROCEDURES

illustrated by

(3) y:=l;
change_parameter(y);
print('y is:',y);

which produces the output

y is: 0

Page 4-38

Any procedure my_proc(xl, •• ,xn) can be
simply by writing a statement of the form

invoked in this way,

(4) my _pro c (a 1 , ••• , an) ;

where al, ••• ,an
'actual arguments'
logically equivalent

is any list of expressions
of the invocation (4)).
to an invocation

(4b) junk variable := my_proc(al, ••• ,an);

(called, as
An invocation

usual, the
like (4) is

where -junk_variable- can be the name of any variable whose value is
never used for anything else.

Of course, if the procedure -my_proc- invoked by (4) does not modify
any of its arguments, an invocation like (4) will generally not be very
useful, since none of the arguments al,-• •• ,an will change and since the
value returned by -my_proc- is simply thrown away. On the other hand, if
the procedure -my_proc- does modify its arguments, then the invocation (4)
will trigger corresponding modifications of any arguments ag which
correspond to parameters carrying the qualification RW.

PROCs which modify some of their arguments and which are normally
invoked in this way are often called 'simple- procedures', as distinct from
'functions', i.e. from PROCs which do not modify their arguments and are
normally invoked in the manner illustrated by

x : = my_function(al, ••• ,an);

Since the value RETURNed by a simple-procedure will just be thrown
away, the expression e appearing in a statement

RETURN e;

within such a procedure is usually without significance and may as well be
OM. SETL allows

RETURN OM;

to be abbreviated simply as

RETURN;

FUNCTIONS AND PROCEDURES Page 4-39

and this is the form of the RETURN statement which is appropriate to use in
simple-procedures. Note also that a RETURN statement immediately preceding
the trailer line of a simple-procedure can be omitted.

Simple-procedures with no parameters can be invoked just by writing
their names followed by a semicolon, as in

my_simple_proc_without_parameters ; $ invokes procedure with
$ this name.

As an example, here is a simple-procedure which 'compresses' a tuple by
dropping out all of its OM compnents:

(Sa) PROC compress (RW t);

t : = [X IN t I X /=OM] ;

END PROC compress;

(Here we have made use of one of the rules stated above to save writing a
RETURN statement just before the trailer line of this PROC.)

Note that if x initially has the value
invocation

(6b) compress(x);

will give x the value [1,2,3].

[l,OM,OM,OM,2,OM,3], then the

As a matter of style, note also that instead of writing (Sa) we could
have written a closely related function, namely

(Sb) PROC compress (t);

RETURN [x int I x/=OM];

END PROC compress;

in which case would have had to write

(6b) x := compress(x);

to get the effect of (6a). The form (6a) is sometimes slightly more
convenient to write and it is this convenience that can induce us to write a
simple-procedure rather than a function for some purpose we have in mind.

In addition to the parameter qualifier RW, two ad.ditional qualifiers RD
and WR are provided. In general, parameter qualifiers have the following
significance:

RD read parameter: can be read and written within its PROCEDURE,
but modifications to it will not be transmitted back to the
corresponding actual argument.

FUNCTIONS AND PROCEDURES

RW read/write parameter: can be read and written within its
PROCEDURE, and modifications to it will be transmitted
back to the corresponding actual argument.

WR write-only parameter: can be written and will be

Page 4-40

transmitted back to the corresponding actual argument, but will not
be read.

If none of these qualifiers is attached to a particular procedure
parameter, the parameter will be treated as if it were qualified with 'RD'.
Thus RD is the 'default' qualifier for otherwise unqualified parameters of
procedures.

Next suppose that a procedure called -my_proc- has one (or more)
parameters x which are qualified with RW or WR. In this case an invocation

(7a) my_proc(e)

of -my_proc- is translated by introducing an otherwise unused 'compiler
temporary' variable (call it -var-), and treating (7a) exactly a if it were

(7b) var := e
my_proc(var);
e := var;

Thus the only forms of expressions which can appear as actual arguments in
place of parameters qualified by RW or WR are those which can legally appear
to the left of an assignment operator. (See Section 2.12 for a
comprehensive discussion of these '~ssignment targets'). This means that
the invocations

and
my_proc(3)

my_proc(x + y);

are both illegal, since the assignments

3 := var;
and

x + y := var

would both be illegal.

my_proc(t(i))
and

my_proc([x,y]);

On the other hand, the invocations

$ where t is a map or tuple

are both legal, and have exactly the same meanings as

and

var := t(i)
my_proc(var)
t(i) := var;

var := [x, y]
my_proc(var)

FUNCTIONS AND PROCEDURES

[x, y] := var

respectively.

Page 4-41

One final, rather esoteric, point deserves mention. Actual argument
- values are transmitted to a procedure and become the values of its formal

parameters immediately upon invocation of the procedure. These values are
transmitted by copying, i.e., each parameter receives a logically
independent copy of the appropriate actual argument value upon procedure
invocation. If the procedure modifies its parameters, it is these copied
values that are modified; the original argument values remain unchanged.
Moreover, even if the procedure transmits changes in its parameter values
back to the point of invocation, these changes are only transmitted when the
procedure executes a RETURN, at which time an assignment like that appearing
in (7b) takes place. These rules are natural enough, and normally require
little thought. However, examples which show their effects can be
contrived. For example, consider the following code, in which the variable
y is global

PROGRAM esoteric;

VAR x,y; $This declaration makes x and y global

x : = ' in i t i a 1 v a 1 o f x , ' ; y : = ' i n i t i a 1 _ v a 1 _ o f _y '

manipulate(x,x,y)
print('y is:',y);

PROC manipulate(~,v,RW w)

is' ,v) print('u is',u,'v
$ this will print: u is initial val of xv is initial val of x - - -

u: = 'changed,';

print('u is',u,'v is',v);
$ this will print: u is changed vis initial val of x

S Note that u and v remain different even though the
$ corresponding actual arguments are the same

w := 'mangled,';

print('w is',w,'y is',y); $ note that y is global
$ this will print: w is mangled, y is initial_value_of_y

$ note that y is still unchanged, even though the change in
$ w will be transmitted back toy when we return frora this PROC

END PROC manipulate;

END PROGRAM esoteric;

FUNCTIONS AND PROCEDURES Page 4-42

Note finally that the last line of output produced by this program,
which will be produced by the -print- statement (in line 5 of the program)
which immediately follows the invocation of -manipulate- will be

y is mangled

4.6 Exercises

Ex. 1 Write a procedure whose inputs are a tuple t of integers and a
tuple s of integers in increasing order, and which returns a tuple tl of
length s+l defined as follows: the first component of tl is the number of
components of t which are not greater than s(l); for j between 2 and #s,
the j-th component of tl is the number of components oft which are greater
than s(j-1) but not greater than s(j); ad the last component of tl is the
number of components oft which are greater than the last component of s.
Try to make your procedure efficient.

Ex. 2 'Bags', used in some programming languages, are like sets, but their
elements can occur multiply. In SETL, a bag b can be represented in two
obvious ways, namely

(a) by a tuple: i.e. the elements of b can be arranged in some arbitrary
order, and made the component of a tuple; or

(b) by a map, which sends each element of b into the number of times that it
occurs within G.

Write a pair of
representations of
extend the following

procedures which convert between these t~o differe~t
a bag G. Also, write a collection of procedures which
set operations to bags in the most useful way:

(i) bl+b2, bl*b2, and bl-b2 (where bl and b2 are bags)

(ii) x IN b (were bis a bag and xis arbitrary)

Ex. 3 The following table describes the tax due or D dollars of taxable
income. Write a procedure which, given·D, will return the amount of tax
due.

TO BE CONTINUED

Ex. 4 Write a program which will read in a sequence of lines, each
containing someone's name, first name first, and print out an alphabetized
list of these names, in alphabetic order of last names. Repeat this
exercise, but this time print the alphabetized list with last names first.

Exercises On Permutations

A permutation is a one-to-one mapping of a set s of n items into
itself. If the set s consists of the integers from 1 ton, then such a
permutation can be represented as a vector v of length n such that every
integer from 1 ton appears as a component of v. The following exercises
concern various properties of permutations.

FUNCTIONS AND PROCEDURES Page 4-43

Ex. 5 The product prod(vl,v2) of two permutations vl and v2 is the vector v
such that v(i)=vl(v2{i)) for each i in {1 •• #v}. The identity permutation e
of n integers is the permutation represented by the vector [1,2, •• ,n]. The
inverse inv(v) of a permutation is the permutation in such that
prod(v,inv(v))=e. Write two SETL functions -prod- and -inv- which realize
these operations. Write a procedure rand_perm(n) which generates a
different random permutation of the integers from 1 ton each time it is
called.

Ex. 6 Check the following facts concerning permutations by generating a few
random permutations and verifying that each fact asserted holds for these
permutations. (The routines described in Exercise 5 should be used for this
purpose.)

(a) The product of two permutations is a permutation, and the
product of permutations is associative.

(b) prod(inv(v),v)=e for each permutation v.

(c) prod(inv{u),inv(v))=inv(prod(v,u)) for any two permutations
u,v of n elements.

(d) Define power(u,k) to be the product of k copies of the
the permutation v. Check that power(v,j+k)=prod(power(v,j),
power(v,k)). Check that for each permutation v there exists
a positive integer k such that power (v,k)=e.

(e) Is prod(u,v)=prod(v,u) true for every pair u,v of
permutations of n items?

Ex. 7 A program to generate all permutations (rearrangements) of the
integers 1 thru n can be built up as follows. Start with the numbers in the
sequence s=[l •• n]. Then repeatedly find the last element s(j) in the
sequence s such that s(j+l)>s(j). Let s(i) be the last element following
s(j) such that s(i)>s(j). Interchange s(i) with s(j), and then reverse the
sequence of elements following the j-th position. This gives the next
permutations s.

Write this permutation-generation procedure in SETL, and use it to
write out the list of all permutations of the integers 1 thru 5. Use this
same procedure to create a program which reads in a string of length 5 and
prints it out in all possible permutations, but without any repetitions.

Ex. 8 If a second order polynomial P(x)=A*(x**2)+B*x+C with integer
coefficients A,B,C has a first-order polynomial M*x+N as a factor, then Mis
a factor of A and N is a factor of c. Write a procedure which uses this
fact to test polynomials like P(x) to see if they can be factored, and which
produces the two factors of P if P can be factored. How efficient can you
make this factorization procedure?

Can you devise a similar procedure
polynomials with integer coefficients?

for factoring third order

Ex. 9 As of the present date (early 1981), tokens on the New
subway system cost 60 cents. Tokens are sold at change booths.

York City
Purchasers

-------- --~----

FUNCTIONS AND PROCEDURES Page 4-44

normally pay for tokens without saying anything, simply by passing a sum of
money to the change booth attendant. Certain sums of money (e.g. $1, which
will purchase only one token) a~e unambiguous. Others, like a five dollar
bill, are ambiguous, since they will purchase anywhere from one to eight
tokens. On the other hand, $5.50 is unambiguous, since the likely reason
for adding the last fifty cents is to pay for nine rather than just eight
tokens. Write a program which will read a tuple designating a collection of
bills and coins, decide whether this is ambiguous or unambiguous, and print
out an appropriate response (which might be either 'How many tokens do you
want?' or 'Here are n tokens'.)

Ex. 10 Write a function whose argument is a tuple t with integer or real
coefficients and which returns the positions of all the local maxima int,
i.e all the components of t which are larger than either of their
neighboring components.

Ex. 11 Before Britain began to use decimal coinage, its money consisted of
pence, shillings worth 20 pence each, and pounds worth 12 shillings each.
Write a procedure to add sums of money represented in this way, reducing the
sum to pounds, shillings, and pence. (Summ of money can conveniently be
represented as triples.) Write a procedure that will subtract sums of money
represented as pounds, shillings, and pence, and which could have been used
to make change in pre-decimal British shops.

Exercises On Recursion

Ex. 12 The greatest common divisor GCD(x,y) of two positive integers is the
largest positive integer z such that (x MOD z)=O and (y MOD z)=O. (If x and
y are equal, then GCD(x,y)=x). Write procedures each of which calculates
GCD(x,y) efficiently by exploiting one of the following mathematical
relationships:

(a) GCD(x,y)=GCD(x-y,y) if x>y
(b) GCD(x,O)=x and GCD(x,y)=GCD(x MOD y,y) if x>y.
(c) GCD(x,y)=2*GCD(x DIV 2,y DIV 2) if x and y are both even.

GCD(x,y)=GCD(x DIV 2,y) if xis even and y is odd
GCD(x,y)=GCD(x-y,y) if x and y are both odd and x>y.

Ex. 13 Suppose that we make the GCD procedure of Exercise 8 into an infix
operator .GCD and then evaluate .GCD/s for a sets. What result does this
produce?. Assuming that sl and s2 are non-null sets is the identity, is

GCD/(sl+s2)=(.GCD/sl).GCD/s2

always true? What will happen if one of sl or s2 is null?

Ex. 14 A fraction m/n (with integer numerator and denominator) can be
represented in SETL as an ordered pair [m,n]. Using this representation,
write definitions for OPs called .RS, .RD, .RP, and .RQ, which respectively
form the sum, difference, product, and quotient of two fractions. These
operators should reduce fractions to lowest terms, for which purpose one of
the GCD procedures developed in Exercise 12 will be found useful.

FUNCTIONS AND PROCEDURES Page 4-45

Ex. 15 Supposing that fractions have the representation described in
Exercise 14, write a procedure which takes a set of fractions and sorts them
into increasing numerical order.

Ex. 16 The following mathematical relationships can be used as the basis
for recursive procedures for calculating various functions • Write out
appropriate recursive procedures for each of these functions.

(a) The value x occurs as a component of a tuple t if and only if it occurs
either as a component of the left half oft or as a component of the right
half of t.

(b) The sum of all the components of a tuple t of intgers is the sum of the
left half oft plus the sum of the right half oft.

(c) The reverse of a tuple t is the reverse of its right half,
the reverse of its left half.

followed by

Think of at least four other relationships of this kind, and write out
recursive procedures based on these relationships.

Ex. 17 The Fibonnacci numbers F(n) are defined by the
F(l)=F(2)=1, F(n+l)=F(n) + F(n-1) for n>l.

following facts:

(a) Write a recursive procedure for calculating F(n).

(b) Write a procedure which calculates F(n) without using recursion.

Ex. 18 Write a recursive procedure to calculate the number of
ways that an integer n can be written as the sum of two squares,
of two cubes, and as the sum of three cubes. Print out a table
values and see if they suggest any interesting general results.

different
as the sum

of these

Ex. 19 To compute the power x**n, one can multiply x**m by x**k for any
positive integers m and k satisfying m+k=n. Write a recursive procedure
which uses this fact to determine the minimum number M(n) of multiplications
needed to calculate x**n. Print out a table of M{n) for all n from 1 to
100. Use the technique explained in Exercise XXX to ensure that your
recursive procedure is not unnecessarily inefficient.

Ex. 20 Take Mergesort (Section 4.4.2) and one other recursive procedure,
and track their recursive operation by inserting code which computes the
level of recursion reached by every invocation of the procedure being
tracked. (A global variable should be introduced for this purpose).
Messages like the following should be printed:

invoking Mergesort from recursion level 3
entering Mergesort at recursion level 4, parameter is •••
returning from Mergesort to recursion level 3, result is •••

Ex. 21 The correlation corr(u,v) of two vectors u,v of n real numbers is
the quotient

FUNCTIONS AND PROCEDURES Page 4-46

(u(l)-Mu)*(v(l)-Mv)+ ••• +(u(n)-Mu)*(v(n)-Mv)/sqrt(VAu*Vav)

where Mu and Mv are the means of u an v respectively, while VAu and VAv are
the variances of u and v respectively (see Exercise 6). Write SETL
procedures which calculate and return this value. Use this procedure to
calculate and print the correlation of ten randomly selected pairs of
vectors. What is the largest value that corr(u,v) can possibly have? What
is the smallest?

Ex. 22 Write a procedure which will read a number written in any specified
number base from 2 to 36, and convert it to the integer it represents in
decimal notation. Numbers in bases below ten will involve only the digits
'O' thru '9'; numbers written in larger bases will use the capital letters
'A' thru 'Z', in increasing order, as additional digits. For example, base
16 numbers will be written using the characters

0 1 2 3 4 5 6 7 8 9 ABC DEF,

and base 18 numbers will be written using the characters

0 1 2 3 4 5 6 7 8 9 ABC DEF G HI.

Also, write a procedure
representation in any of
the fact that an illegal
converted to an integer.

which will convert an integer to
these bases. These programs should
character might occur in a string which

its
allow

is

string
for

to be

program which can be used to prepare an alphabetized
your friends' names, addresses, and telephone numbers. The

program is assumed to be a list of multi-line entries, each
a line having the format

Ex. 23 Write a
directory of
input to this
starting with

*key,

where -key- designates an alphabetic key which determines the alphabetic
position of the given entry. (These keys are not to be printed in the final
directory.) For example, two entries might be

*Smith
Mary Smith
222 Flowery Way
Ossining, N.Y. 10520
*Termites
Acme Exterminators
(Termite Specialists)
(Recommended by Mary)
(202) 789-1212

Ex. 24 Write a 'personalized letter' generator. The inputs to this program
should be a form letter L and a file F containing 'addresses' and
'variations'. The letter Lis given as a text containing substrings **j**,
and the file F given as a sequence of items **sl**s2**•·•**sn, each sj being
some 'personalising' string. The expanded form of the letter is produced by
inserting the address in an appropriate position, and replacing each

FUNCTIONS AND PROCEDURES Page 4-47

substring **j** in the form L by the string sj. For example, if L begins

Dear **l**:
Since only **2** weeks reman before you will graduate from
3,

and the first entry in Fis

Ms. Nancy Holman
353 Bleeker St
N.Y.C., 10012 NY
Nancysix**New York University

the 'personalized' letter generated will be

Ms. Nancy Holman
353 Bleeker St
N.Y.C., 10012 NY

Dear Nancy:
Since only six weeks remain before you will graduate from

New York University, •••

The personalized letters that your
right-justified and attractively formatted.
features which will improve the utility
generator.

program generates should be
Try to think of, and implement,
of the personalized letter

Ex. 25 Write a procedure which will print a string of
characters in 'banner' format on your output listing. In this
character is printed one and a half inches wide and two inches
whole banner should also be centered on the listing.

up to
format,
high;

six
each

the

Ex. 26 The set of distances between the centers of cities x,y directly
connected by a road not going through any other city is given by a map
dist(x,y). (Whenever dist(x,y) is defined, so is dist(y,x), and of course
dist(x,y)=dist(y,x).) Write a pr~gram that will use this information to
calculate the shortest driving distance between any two cities (whether or
not they are connected directly by a road). This information should be
printed out as an inter-city distance chart of the usual form. Also, print
out a chart which describes the shortest driving route between cities by
listing the city z that you should drive to first if you want to go from x
to z.

Ex.
list
t2.

27 Write a procedure which, given two tuples tl and t2, prints out a
of the number of times each component of tl occurs as a component of

Ex. 28 Write a procedure whose parameters are a string x and a set s of
strings, and which returns the element of s which has the largest number of
sucessive character pairs in common with x. How would you structure this
procedure if it is to be called repeatedly, always with the sames, but with

-- ----- ----- --------- --- --

FUNCTIONS AND PROCEDURES

many different values of x?

Ex. 29 Write a code fragment that determines whether a
letter, digit, blank, or special character. Try
efficient•

Page 4-48

character C
to make your

is a
code

Ex. 30 Manhattan island was purchased in 1626 for $24. If instead
this money had been deposited in a bank account drawing 6% annual interest,
how much would it be worth now?

4.7 Other PROCEDURE-related facilities

4.7.1 Procedures and functions with a variable number of arguments

Occasionally one wants to write a procedure or function which can
accept a variable number of arguments. One may, for example, want to write
a function which sums the value of all its integer arguments, or a procedure
which can take any number of arguments, capitalize, and print them. Another
example is furnished by SETL's built-in -read- and -print- functions; the
-print- function accepts any number of arguments and prints them one after
an6ther, the -read- function accepts any number of arguments and modifies
them all by assigning to them SETL values read from input.

SETL does in fact allow such procedures and functions to be written.
To define a function with a variable number of parameters, a he~der- line of
the form

PROC function_name(xl,x2, ••• ,xn(*))

must be used. Here as before, any -function_name- can be used to name the
function, and xl, ••• ,xn are as usual its parameters. However, a function
declared in this way can be invoked with any number of arguments greater
than n-1. All arguments from then-th onward are then gathered into a tuple
which is assigned as the value of the last parameter xn. Thus, for example,
in the body of the function, the references xn(l) and xn(S) would refer to
then-th and (n+4)-th argument respectively. Only the last parameter of
such a function can be followed by the sign (*) to indicate that it actually
represents a list of arguments whose length can vary.

The special reserved symbol NARGS can be used within the body of such a
function; its value will be the actual number of arguments with which the
function was invoked.

Here, for example, is a modified -print- procedure which accepts any
number of arguments and prints them one after another, but which starts a
new line whenever it begins printing a set or a tuple, or whenever more than
five items have been printed on a single line:

PROC nicer_print(x(*));

next := 1 ; $ next item to print

FUNCTIONS AND PROCEDURES

(WHILE next<=NARGS)

IF EXISTS j in [next •• NARGS MIN (next+ 5)]
ITYPE x(j) IN {'TUPLE', 'SET'} THEN

Page 4-49

print(x{j)); $ then print the tuple or set on its own line
next:=j+l ;

ELSE
print_on_line(x(next •• next+4))
next+:= 5 ;

END IF;
END WHILE;

END PROC nicer_print;

PROC print_on_line(t); $ prints the components oft on one line

CASE flt OF

(0) : RETURN; $ nothing to print

(1): print(t(l))

(2): print(t(l),t(2))

(3): print(t(l),t(2),t(3))

(4): print(t(l),t(2),t(3),t(4))

(5): print(t(l),t(2),t(3),t(4),t(5))

END CASE

END PROC print on line

The qualifiers RD,RW,WR can be attached to any of the parameters of a
procedure having a variable number of arguments. This is shown in the
following example, which gives code for a modified -read- operation which
'echos' all the information that it reads, i.e., copies this information to
the standard output file.

PROC echo_read(RW x(*))

(FOR j IN (1 •• NARGS])
read(y) print(y)
x(j) := y ;

END FOR;

END PROC echo read

To use this procedure, we could for example write

---- -------------

---- -------------------- - ·- ------------ - -------

FUNCTIONS AND PROCEDURES Page 4-50

echo_read(x,y,z);

this would read values into x,y, and z in the normal way,
print the information that it read.

but would also

4.7.2 User-defined prefix and infix operators

Function names must always be written before their lists of
and these agruments must always be enclosed in parentheses.
functions of two arguments, 'infix' notation is generally more
for example, it is more convenient to write

a+b

than to have to write

plus(a,b)

and certainly

a+b+c+d

is more convenient than

plus(plus(plus(a,b),c),d).

arguments,
However, for

convenient;

For this reason, SETL allows its user to define two-parameter infix
operators (and also one-parameter prefix operators, which however are
considerably less useful). The names of such operators must be ordinary
SETL identifiers to which the character '•' (period) is prefixed. To
introduce such operators, a perfectly ordinary function body followed by a
trailer line is used, but the header line introducing the operator is
changed to

OP .name(a)
or

OP .name(a,b)

$ to introduce a prefix operator

$ to introduce an infix operator

Suppose, for example, that we wish to introduce an operator called
-.dot- which forms the dot-product of two vectors of equal length, i.e. the
sum of the products of their corresponding components. This can be done as
follows;

OP .dot(u,v)

If #u /= #v THEN
print('tuples of mismatched length',u,v);
RETURN OM;

ELSE
RETURN +/[u(i)*v(i)

END IF;

END OP .dot;

i IN [1 •• #v]

FUNCTIONS AND PROCEDURES Page 4-51

Once this operator has been defined, we can invoke it simply by writing

u .dot v

Another example is the useful operator -.c-, which forms the composition of
two (possibly multivalued) maps: (See Section 2.7.4 for an explanation of
the meaning of map 'composition'.)

OP .c(f,g);

RETURN { [x,y]: z=g{x}, q in z, y IN f{q}} ;

END OP • c;

User-defined infix operators of this kind can be combined with the
token ':=' to form assigning operators (see Section 2.12.1). For example,
in the presence of the preceding definition we can write

f .c:= g;

to abbreviate the common construct

f := f .c g;

Moreover, both built-in and user-defined infix operators can be used to
form compound operators. For example, we can use the -.c- operator in the
following way to vrite an operator which forms then-th power of a map f.

OP f • to n;

RETURN IF n=O THEN { }
ELSE .c/[f:i IN [l..n)]

END OP .to;

$ the identity map
END;

User-defined prefix operators are less useful than user-defined infix
operators, since they cannot appear in either of these convenient contexts.
However, by defining a function of one parameter as an operator rather than
an ordinary PROCEDURE, we save what might otherwise be irritating
parentheses. For example, if we define a unary operator minus by writing

OP .minus(u);

RETURN [-x: x IN u]

END op.minus;

Then the negative of a vector u can be formed by writing

.minus u

If instead of this we made -minus- an ordinary function, we would
have to write

FUNCTIONS AND PROCEDURES Page 4-52

minus(u)

instead.

The arguments of a user-defined infix or prefix operation always carry
the implicit qualifier RD, so that attempting to give them either of the
qualifications WR or RW is illegal. Attempting to attach the qualifier
'(*)' (See Section 4.7.1) to a parameter of an infix or prefix operator is
also illegal.

The precedence of any user-defined binary operator is lower than that
of any built-in binary operator, with the exception of the following
comparators and Boolean operators:

= /= < <=>>=IN NOTIN SUBSET INCS AND OR IMPL

Assignments and assigning operators seen from the right also have lower
precedence than user defined infix operators. User-defined unary operators
have the same precedence as built-in unary operators (See Section 2.13 for
details concerning operator precedence). The following examples illustrate
these rules: If .op is a user-defined binary operator, then

a+b .op c means (a+b) .op c

b .op c = d means (b .op c) = d

b .op c AND d means (b .op c) AND d

b .op c + d means b .op (c+d)

a+:= b .op c means b .op (c+d)

a+:= b .op c means a+:= (b .op c)

4.7.3 Refinements

Procedures play various roles, and in particular serve to clarify the
logical structure of a complex program by dividing it into subsections whose
names hint at their purposes. However, the use of procedures is a bit
'heavy' syntactically, in part because procedures require header and trailer
lines to introduce them, in part because the variables of a procedure are
logically isolated from all other procedures. (Unless these variables are
made global; but then they become accessible to all procedures, which, as
pointed out in Section, 7.1 is often highly undesirable.) This slight
clumsiness discourages the use of small groups of short procedures which
need to share many variables amongst themselves. To fill the need for a
facility of this kind, whose use can aid considerably in documenting and
clarifying the logical structure of a program, SETL provides a less powerful
but easier-to-use alternative to PROCEDUREs, namely refinements.

FUNCTIONS AND PROCEDURES Page 4-53

A refinement is a block of statements which is labeled by an identifier
followed by a double colon, as in

solve_equation:: x := (-b+sqrt(b*b-4.O*a*c))/(2.O*a);

Within a procedure or a main program block, a refinement can be invoked by
using its label as a statement. This is shown in the following example

PROGRAM quadratic;

input_data; $ this and the next 2 lines invoke refinements

solve_equation;
output_results;

solve_equation:: $ a first 'refinement'

X : = (-b +sqrt(b*b-4.O*a*c))/2*a;

output_results:: $ a second 'refinement'

print('Root is',x);

input_data:: $ a third 'refinement'

read(a,b,c);
print(a,b,c);
check_eof; $ this invokes the fourth refinement shown just below

check eo f: : $ a fourth 'refinement'

IF EOF THEN print('improper data'); STOP; END IF;

END PROGRAM quadratic;

This example illustrates the following rules:

(a) All refinements (if any) must follow at the end of the procedure or
main program block within which they are used.

(b) Refinements are written one after another, but can appear in any
sequence.

(c) A refinement can be invoked anywhere
program, but can be invoked only once.
invoked more than once, it should be made
refinement.

in a procedure or a main
If a section of code is to be
a procedure rather than a

(d) Refinements have no parameters. They make use of the same
variables as the main program block or procedure P to which they belong.
Variables used in refinements have the same meaning that they would have in
(this block or procedure) P. Refinements are executed by inserting the
series of statements of the refinement in place of the reference to the
refinement.

FUNCTIONS AND PROCEDURES Page 4-54

Rules of Style in the Use of Procedures

Effective programming depends more on the proper use of procedures than
on any other single factor. Your use of procedures should aim to achieve
various important stylistic goals:

(a) Procedures are
into manageably short
logical function, which

used to 'paragraph' programs, i.e., to divide them
subsections, each performing some easily definable

can be read and understood in relative indepen-
dence from each other. Here the key term is independence: it is important
to write your procedures in a manner which isolates each of them as much as
possible from the internal details of other procedures. Only a small number
of well-defined data objects should be passed between procedures. Very few
data objects should be shared globally between procedures; sharing is
dangerously productive of errors, so that all data object sharing should be
carefully planned, should adhere to clearly understood stylistic rules, and
must be scrupulously documented. Be sparing in your use of global VAR
declarations!

(b) Procedures are also used to abbreviate, i.e., to give frequently
used compound constructions a name facilitating their repeated use. This
usage will often give rise to short procedures, the shortest of which may
reduce to a single RETURN statement. Code sequences used more than a very
few times should be replaced by short procedures, since such procedures will
only need to debugged once, while repeated code sequences can be repeated
incorrectly, and can interact in unanticipated ways with code surrounding
them (for example, by accidental overlap of names). These facts make
repetition of code sequences dangerous, and their replacement by procedures
advantageous.

{c) Procedures define one's conceptual approach to a programming task,
and are used to clarify and help document programs. If this is done well, a
program's topmost procedure will document the main phases of the program and
explain the principal data structures passed between its phases. Then each
intermediate level procedure will both realize and 'flow chart' an important
substep of processing. Each b~ttom-level procedure will realize some
well-defined utility operation and will be separately readable. The
narrative commentary which accompanies the program should be organized
around the layout of its procedures. Comments concerning overall approach
and main shared data objects will accompany top-level procedures, and
detailed remarks on particular algorithms will be attached to the low-level
subprocedures which implement these algorithms.

(d) Procedures are used to decompose programs into separate parts which
have different degrees of generality/specificity, or which have
significantly different 'flavors' in some other regard. The 'buckets and
well' example considered in Section 4.3.1 exemplifies this point. In this
program, procedures new_states_from, pour, fill, etc. concentrate all
details particular to the specific problem being solved, while procedure
find_path, which simply realize a general technique for searching overstates
and constructing paths are independent of these details. This separation
makes it possible to use find_path to solve other problems of the same kind,
simply by replacing new_states_from and pour, etc.

l

FUNCTIONS AND PROCEDURES Page 4-55

(e) When one is writing a program which addresses a mathematical or
application area which makes use of some well-established set of concepts,
it can be very advantageous to define SETL representations for all the kinds
of objects used in this area, and then to write a collection of utility
procedures which can be used to apply all the important operations of the
area to these objects. These procedures should be written in a way which
allows their user to ignore the internal details of the object repre­
sentations, making it possible for him to think more as a specialist in the
application area rather than as a programmer. This is the important
principle of 'information hiding': structure your programs in a way which
allows the representational details of objects manipulated by the highest
level programs to be concealed from the authors of these programs. (So
important is this principle that some modern programming languages include
syntactic mechanisms for enforcing it rigorously.) A family of procedures
which manipulate objects whose internal representational details are known
only to these procedures is sometimes called a package. The package of
polynomial manipulation procedures shown in Section 8.6.5 is an example;
other examples appear in the exercises listed in Section YYY.

It is worth saying a bit more concerning the paragraphing of code.
Elusive errors easily creep into codes whose logic is spread over very many
lines. For this reason, one should always strive to break codes into
independent 'paragraphs' no more than ten or so lines in length. (Longer
paragraphs can be used where this is unavoidable, but as these grow to a
page or more in size, the likelihood of troublesome multiple errors, as well
as the difficulty of understanding what is going on when the code is read
subsequently, will rise rapidly.) The three main constructs which can help
you to paragraph code adequately are

(i)
(ii)
(iii)

use of procedures and functions
use of refinements (see section 4.7.3)

use of the CASE statement

Each procedure, function, and refinement whose integrity is not compromised
by an undisciplined use of shared global variables constitutes an
independent paragraph of code. Moreover, since only one of its alternatives
will be performed each time a CASE statement is executed, the seperate
alternatives of a CASE statement can be regarded as independent paragraphs.
Hence, whenever the body of a procedure extends over more than a few dozen
lines, most of this body should consist of one or more CASE statements each
of whose alternatives is short. If this is not done, then the rules of good
style are being violated; and this violation should either have compelling
justification or be removed.

Nesting of loops and of IFs also raises interesting stylistic
questions. Since iterations will rarely be nested more than three deep,
nested iterations can generally be used without significant confusion
resulting. When deeper nests start to build up, or even the body of an
outermost iteration tends to grow long, an effort should be made to relegate
parts of its body to one or more separated subprocedures.

Deep nesting of IFs leads very rapidly to confusion. Where ·at all
possible nested IF's more than two deep should be replaced by uses of CASE
statements, or by segregation of the more deeply nested alternatives into
procedures. A third alternative is to 'flatten' a deeply nested IF

FUNCTIONS AND PROCEDURES Page 4-56 --

construct into an IF-construct which is less deeply nested, but in which the
alternatives of the original IF-nest have been combined using the Boolean
AND, OR, etc. (However, this will tend to generate longish sequences of
ELSEIF's.) For example, instead of writing

IF a>O THEN
IF b<O THEN

a+:= 1
ELSE

a-:= 1
END IF

ELSE
IF b<O THEN

b +:= 1
ELSE

b -:= 1
END IF

END IF ;

it is preferable to 'flatten' and write

IF a>O AND b<O THEN
a+:= 1

ELSEIF a>O AND b>=O THEN
a-:= 1

ELSEIF a<=O AND b<O THEN
b +:= 1 ;

ELSEIF a<=O AND b>=O THEN
b -:= 1

END IF

Still better, one can use the following CASE statement:

CASE OF
(a >0 AND b<O) : a +:= 1
(a>O AND b> 0) : a -:= 1
(a<O AND b <0) : b +:= 1
(a <0 AND b >0) : b -:= 1

END CASE .
'

Note than an extended the IF •• ELSEIF •• ELSEIF ••• construct
has some of the same paragraphing advantages as an extended sequence
of CASE alternatives. However, IF alternatives are less fully
independent than CASE alternatives; since implicit conditions
accumulate from each branch of an IF statement to the next.
Some of the
confusion which this will cause can be avoided by using auxiliary
comments to indicate the conditions under which each branch of an
extended IF will be executed, but is is even safer to use a CASE
statement instead.

4.9 Exercises

FUNCTIONS AND PROCEDURES Page 4-57

The 'dot-product' of a pair u,v of equally long vectors with integer or
real coefficients is the sum +/[u(i)*v(i):i IN (1 •• #v]].

Ex. 1 Write a SETL OP definition for an infix operator .DP such that x .DP
y is the dot-product of the vectors x and y. Write a prefix operator .RV n
which returns a randomly chosen integer-valued vector of length n each time
is is invoked. Use these two functions to test the validity of the
following statements concerning vector dot products:

(a) (x .DP y)=(y .DP x)
{b) (x .DP x) >= (MAX/x)*(MAX/x)
(c) (x .DP y)**2 <= (x .DP x)*(y .DP y)
(d) (x .DP y) <= (MAX/x)*(MAX/y)*l/x

Ex. 2 The sum of two integer or real vectors x, y of equal length is
[x(i)+y(i):i IN (1 •• 1/x]], and their difference is [x(i)-y{i):i IN [1 •• //x]].
Write definitions for two OPs called .s and .D which produce these two
vectors. Proceed as in Exercise 1 to test the following statements:

(a) ((x .s y) .s z) = (x .s (y .s z))
(b) (x .s (y .D x)) = y
(c) ((x .s y) .DP z) = (x .DP z) + (y .DP z)
(d) ((x .D y) .DP z) = (x .DP z) .D (y .DP z)

Ex. 3 Write a procedure which, given two tuples tl and t2, prints out a
list of the number of times each component of tl occurs as a component of
t2. Write another procedure which, given a tuple t, calculates a map which
sends each component x of t into the index of the first occurence of x
within t. Express f ~n terms oft, in the simplest way you can.

Ex. 4 The storage space needed to represent a map f can sometimes be
reduced very considerably by writing fin the form f(x) = fl(x)? (IF x IN s
THEN f2(x) ELSE OM END), where fl has a small domain, s has a simple
representation, and f2 is a programmed function. Write a procedure
-compress- which, given f, s, and f2, will calculate fl. The function f2
should be called by -compress-, and it is assumed that user of the
-compress- is required to supply code representing f2.

Ex. ,5 Write a room assignment program which reads information concerning
available rooms and classes needing rooms, and generates a room assigment.
The first of the two data items read by your program should be a map from
room numbers to seating capacities. The second input read by your program
should be a tuple of triples, each consisting of a class number (a string of
the form n.m where n is a course number and ma section number), number of
students, and hour (Possible hours are 8,9,10,11,.. up to 20). No two
classes meeting at the same hour should be scheduled into the same room.
Your program should print out a table, arranged by hour and room, of
assignments. Starting with the largest-class scheduled to meet in a given
hour, each class should be assigned the smallest room into which it will
fit. Classes which cannot be scheduled should be appropriately listed.
Empty rooms should be indicated in the output table you print.

The next three exercises relate to the earlier exercises on Boolean
identities, found in Section 2.3.4.1.

FUNCTIONS AND PROCEDURES Page 4-58
'
i

Ei. 6 Boolean 'implication', which we will write as an infix operator x -
.tMP y is TRUE if either x is FALSE or y is TRUE. Thus x .IMP y is
e4uivalent to (NOT x) or y. Write a SETL op definition for this operator,
which will be used in the next two exercises.

Ex. 7 Using the .IMP operator defined in Exercise 1 and the method for
checking Boolean statements described in Section 2.3.4.1, show that each of
the following statements is true no matter what the Boolean values of the
variables occuring in it.

(a) (x OR NOT y)=(y .IMP x)
(b) ((x AND y) .IMP z)=(x .IMP (y .IMP z))
(c) (x .IMP (y OR z))=((x .IMP y) OR (x .IMP z))
(d) ((x .IMP y) AND x) .IMP y
(e) (x .IMP NOT x) .IMP NOT x
(f) x .IMP (y .IMP x)
(g) (NOT x) • IMP (x • IMP y)

Ex. 8 None of the following Boolean formulae are valid for all Boolean
values of x and y; each represents a common logical fallacy. Proceeding as
in Exercise 2, write a SETL program which will find a case in which each of
these formulae evaluates to FALSE.

(a) ((x .IMP y) AND y) .IMP X

(b) ((x .IMP y) AND (x .IMP z}) .IMP (y .IMP z)
(c) ((x OR y) AND x) .IMP NOT y
(d) ((x .IMP y) AND NOT x) .IMP NOT y

Ex. 9 When a sequence of data items are read by a read
statement of the form

read(x,y, •• z),

it will often be appropriate to check the items read to make sure that they
have appropriate types and lie in appropriate ranges. For this purpose, the
following approach, based upon the notion of a 'descriptor string', is may

. be convenient:

(a) Capital letters are used in the following way to designate the princ~pal
SETL object classes:

letter

I
R
s

value

integer
real
string

letter

T
E
A

value

tuple
set
atom

(b) The ranges of integers and of real numbers can be constrained. For
example, 1-100 •• 100 designates an integer belonging to the set {-100 •• 100},
10 •• designates a non-negative integer, R-1.0 •• 1.0 designates a real number
lying between -1.0 and +1.0.

(c) The descriptors T and E can be qualified to show the types of their
components or members. For example T(IIR) describes a tuple of length 3
whose components are an integer, an intege~, and a real respectively; T.I

I
i-

FUNCTIONS AND PROCEDURES

describes an unknown-length tuple of integers;
pairs of integers.

Page 4-59

E.T(II) describes a set of

(d) To describe successive items in a list of variables being read,
descriptors are simply concatenated. For example, if three items x,y,z, the
first an integer, the second a set of pairs of integers, and the third a
tuple of strings, are being read, we would describe it by IE.T(II)T.s.

Write a multi-parameter procedure read_check whose first parameter is a
descriptor string defining the data expected and whose remaining parameters
are the variables whose values are to be read. E.g., in the example
appearing in (d), we would write

read_check('IE.T(II)T.S',x,y,z);

The read_check procedure should generate a report if data it encounters
any of data unexpected form. Of course, the read_check procedure must be
foolproof.

Ex. 10 Extend the read_check procedure of Exercise 9 so that any data item
to which there corresponds a descriptor followed by the letter 9 will be
checked for membership in a set of possible values that is given explicitly.
This set should come directly after the data-item being read, in the list of
arguments of the extended read-check procedure. For example, if we expect x
to be an indication ('M' or 'F') of sex, and y to be an age, we could write

read_check(SXI0 •• 150,x,{'M','F'},y);

Ex. 11 Modify the read_check procedure of Exercise 8.6.5 so that it echoes
and labels all data read. For this modified procedure, the sequence of
names of the variables being read should follow the data descriptor in the
procedure's first parameter. These names should be separated from the data
descriptor and from each other by blanks.

$

"HAPTER 5

DATA OBJECTS AND EXPRESSIONS, CONCLUDED

In this chapter we will complete our discussion of the various classes
of data objects supported by SETL, and of the forms of expression which the
language provides.

Chapter Table of Contents:

5.1 Real Operators
5.2 String Scanning Primitives

5.2.1 Examples of Use of the String Scanning Primitives
5.2.1.1 A Simple Lexical Scanner
5.2.1.2 A 'Concordance' Program
5.2.1.3 A 'Margin Justification' Procedure

5.3 Atoms
5.4 Additional Examples

5.4.1 Solution of Systems of Linear Equations
5.4.2 An Interactive Text-editing Routine
5.4.3 A Simplified Financial Record-keeping System

5.5 Exercises

5.1 Real Operators: +, -, *, /, **, =, >, <, >•, <=, MAX, MIN,
ATAN2, ABS, FIX, FLOOR, CEIL, ACOS, ASIN, ATAN, COS,
EXP, LOG, RANDOM, SIGN, SIN, SQRT, TAN, TANH

Binary real operators compute a result value from two real values, x
and Y• The binary real operators provided by SETL are as follows:

x+y
x-y
x*y

x/y

x**i

computes the sum of x and y.
computes the difference of x and y.
computes the product of x and y.

computes x divided by y. An error results if y is zero,
of if the division causes floating point overflow.
this variant of the exponentiation operator yields x raised
to the integer i. An error results if exponentiation causes
floating point overflow, or if x and i are both zero.

DATA OBJECTS AND EXPRESSIONS, CONCLUDED Page 5-2

x•y
x/=y
x>y
x<y
x>•y
x<•y
x MAX y

x MIN y
x ATAN2

yields TRUE if x and y are equal, FALSE otherwise.
yields TRUE if x and y are unequal, FALSE otherwise.
yields TRUE if xis greater than y, FALSE otherwise.
same as y>x.
yields TRUE if xis at least as large as y, FALSE otherwise.
same as y >• x.
yields the larger of x and y.

yields the smaller of x and y.
yields the arc tangent of the quotient x/y. The result
is given in radians.

Unary real operators compute a result value from a single floating
point input x. The unary real operators are as follows:

+ X

- x
ABS x

FIX x
FLOAT

FLOOR

CEIL x

EXP x
LOG x

COS X

SIN x
TAN x

ACOS x

ASIN x

i

X

ATAN x
TANH x
SQRT x
RANDOM x

SIGN x

yields x.
yields the negarive of x.
yields the absolute value of x, i.e. yields x if xis
positive, -x if xis negative.
yields the integer part of x, dropping its fractional part.
yields a real quantity numerically equal to 1, where
1 is an integer.
yields the largest integer which .is not larger than x. (See
the examples given below for the rules which applies if x
is -negative).
yields the smallest integer which is at least as large as x.
(See the examples given below for the rule which applies if
xis negative).
yields e**x, where e is the base of natural logarithms.
yields the natural ('base e') logarithm of x. An error results
if xis zero or negative.
yields the cosine of x, which is assumed to be given in radians.
yields the sine of x, which is assumed to be given in radians.
yields the tangent of x, which is assumed to be given in
radians.
yields the arc cosine of x; the result is given in radians.
An error results if x does not lie between -1.0 and +1.0.
yields the arc sine of x; the result is given in radians.
An error results if x does not lie between -1.0 and +1.0.
yields the arc tangent of x; the result is given in radians.
yields the hyperbolic tangent of x.
yields the square root of x. An error results if xis negative.
yields a real value which is randomly distributed over the
range from zero to x including zero but excluding x.
Note that successive calls to this function will return
distinct, independently choosen random quantities.
yields one of the integer results -1, O, or +l depending on
whether xis negative, zero, or positive.

Examples of some of these operators are as follows:
1.1 + -1.1 yields o.o
1.1 * 1.1 yields 1.21
1.1 ** 2 yields 1.21
1.1 ** 2.0 yields 1.21

DATA OBJECTS AND EXPRESSIONS, CONCLUDED Page 5-3

1.1 = 1. 11 yields FALSE
1 • 1 = 1. 10 yields TRUE
1.1 MAX 1.1001 yields 1. 1001
1.1 MIN 1. 101 yields 1 • 1
+1.1 yields 1 • 1
- - 1. 1 yields 1 • 1
ABS - 1. 1 yields 1. 1
print(FIX 1 • 1 , FIX -1.1)

print(FLOOR 1.1, FLOOR -1.1, FLOOR -1.0)
print(CEIL 1.1, CEIL -1.1, CEIL 1.0)

yields 1, -1

yields
yields

1, -2, -1
2, -1, 1

print(FLOAT 1, FLOAT -1, FLOAT 0) yields 1.0, -1.0, 0.0
print(FLOAT 123456789123456789123456789123456789123456789)

can result in an overflow error.

The forms in which real constants can be written are described in
Section 2.1.1.

Note that for real numbers x and y, the use of the comparators
x/=y can be a bit tricky since rounding effects might cause (0.5
1.0 to yield FALSE and 1.0 = l.0000000000000000001 to yield TRUE.
mind the fact that real values can always turn out to have values
different from the exact values that you may expect.

x=y and
+ 0.5) =
Keep in
slightly

DATA OBJECTS AND EXPRESSIONS, CONCLUDED Page 5-4

s.2 String Scanning Primitives

SETL supports
pioneered by the

some of the
designers

handy string-string primitives whose use was
of the SNOBOL programming language. These

generally have the form

(1) operation_name(scanned_string,pattern_string).

Each of these operations attempts to match a portion of its scanned_string
parameter in a manner defined by the pattern_string. If a portion of the
scanned_string is successively matched, it is removed from the
scanned_string and becomes the value of the function (1). If no portion of
the scanned_string is matched by (1), then scanned_string is not changed,
and the value of the function (1) is OM. Since these operations write their
first parameter, only expressions which can appear on the left hand side of
an assignment are acceptable in the scanned_string position of (1).

The first of these scanning operation: namely,

(2) SPAN(ss,ps)

scans over as large an initial part of ss as consiste Rf ~-•~•cters which
belong to ps. This part of ss is broken off, and t.-e.to-•• Utit value of the
function (2); the remainder becomes the new value of••• lf -ot even the
first character of ss belongs tops, then ss is unchaa,ed·••4 the function
(2) yields OM.

Here are a few illustrations of the action (,If 'th•···••• primitive:
Suppose that ss has the value 'If, gentlemen'. Thea

ANY(ss,'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefgbij')
has the value 'If' and gives ss the value', gentlemen'. Also,

SPAN(ss,'abcdefghijklmnopqrstuvwxyz')
has the value OM and does not change the value of ss.

The remaining string-scanning primitives pr-o.vi-H4. t,y , SETL are as
follows:

(2) ANY(ss,ps)

breaks off and yields the first character of ss if this belongs to ps. If
the first character of ss does not belong tops, then ss is unchanged and
the value returned by ANY is OM. For example, the code fragment

ss := 'ABC'
print(ss,ANY(ss,'AEIOU'),ss,ANY(ss,'AEIOU'),ss);

will yield

(3)

ABC A BC OM BC •

The scanning primitive

BREAK(ss,ps)

scans ss from the left up to but not including the first character which

DATA OBJECTS AND EXPRESSIONS, CONCLUDED Page 5-5

does not belong tops. This part of ss is broken off and becomes the value
of the function (3). If ss contains no characters not belonging tops, then
(3) has the value OM and ss is not changed. If the very first character of
ss belongs tops, then (3) has a nullstring value and ss is not changed.

The scanning primitive

(4) LEN(ss,n)

has an integer second parameter. If #ss >= n, then (4) yields the value
ss(l •• n) and the assignment ss := ss(n+l ••) is performed; otherwise (4)
yields OM and ss is not changed. The primitive

(5) MATCH(ss,ps)

yields ps if #ps <= #ss and if ps = ss(l •• #ps), then the assignment ss :=
ss(#ps+l ••) is performed. Otherwise (5) yields OM and ss is unchanged. The
primitive

(6) NOTANY(ss,ps)

breaks off and yields the first character of ss that does not belong to the
string ps. In the contrary case (6) yields OM and ss is unchanged.

Each of the above string primitives is also provided a 'right-to-left'
form which starts from the right, at the last character of the scanned
string, rather than from the left to right, starting at the first character
of the scanned_string as in the cases already considered.' The following
table shows the right-to-left variant of each of the primitives described
above.

Left-to-right variant
ANY(ss,ps)
BREAK(ss,ps)
LEN(ss,n)
MATCH(ss,ps)
NOTANY(ss,ps)
SPAN(ss,ps)

Right-to-left variant
RANY(ss,ps)
RBREAK(ss,ps)
RLEN(ss,n)
RMATCH(ss,ps)
RNOTANY(ss,ps)
RSPAN(ss,ps)

Two additional string utilities are provided to make productions of
decently formatted string output easier. These are

LPAD(ss,n) and RPAD(ss,n)

The LPAD primitive returns the string obtained by padding its first argument
ss out to length n (which must be an integer) by adding as many blanks to
the left of ss as necessary. If #ss=n, then LPAD(ss;n) is simply ss. The
RPAD primitive behaves similarly, but adds blanks on the right.

5.2.l Examples E..f Use E..f the String Scanning Primitives
5.2.1.1 A Simple 'Lexical Scanner'

DATA OBJECTS AND EXPRESSIONS, CONCLUDED Page 5-6

One of the first problems that arises when one begins to program a
compiler for a programming language (like SETL, BASIC, or any ofthe other
language with which you may be familiar) is to break the original or 'source
form' of the pogram into a stream of individual identifiers, constants and
operators (collectively, these items ae called 'tokens'). The program,
which the computer will read, must be decomposed into these elements before
we can determine its meaning. For example, on reading the fragment

'AO= Bl *Cl+ 3.78'
of text, one must break it up into the tuple

['AO', '=', 'Bl', '*', 'Cl', '+', '3.78'].

Note that the first of these items is an identifier, the second an operator
sign, the last a constant, etc. (Blanks separating tokens are ordinarily
eliminated as the source text is scanned).

A procedure which performs this kind of decomposition of strings
representing successive lines of program text is called a lexical scanner.

It is easy to write a lexical scanner for a simple language using the
string scanning operations that we have just described. We will now show
how to do this, but to avoid complications, we will suppose that the
following rules apply:

(a) The program text to be scanned contains only identifiers,
signs, integers, real constants and blanks.

operator

(b) An identifier is any string starting with an alphabetic and
containing only alphabetic and numeric characters.

, . , . ,
(c) Any 'special' character (i.e. characters like'+', ' ', ' ' and
which are not blank, alphabetic, or numeric) will be regarded as an

operator.

(d) An integer is a sequence of numerics not foliowed by a period. A
real number is a string of numerics including at most one period.

From the string being analyzed, the following procedure repeatedly
breaks off a section consisting of a run of blanks, a run of digits, an
identifier or a single 'special' character of some other kind. Blanks are
ignored. If a run of digits is found, we check to see if a decimal point
and a second run of digits follow. If so, they are concatenated to the run
of digits originally found. In each case, a nonblank section broken from ss
constitutes a token, and it is added to the tuple of tokens which is
eventually returned. The code assumes that -num- and -alphanum- are
constants which must be initialized as follows:

num := '0123456789'
alphanum := 'abcdefghijklmnopqrstuvwxyz'

+ 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' + '0123456789';
PROC lex_scan(stg); $ lexical scan routine where the

tup := [];
stg +:= '';
(WHILE stg /=")

$ parameter is a string.
$ Initialize the tuple to be returned.
$Adda terminating blank.

DATA OBJECTS AND EXPRESSIONS, CONCLUDED Page 5~7

token := SPAN{stg,' ')? SPAN{stg,num)? SPAN{stg,alphanum)?
LEN {st r, l) ;

$ Break off a run of blanks, a number,
$ a variable name or a single letter.

IF token{l) =' 'THEN CONTINUE; END; $ Ignore blanks.
IF token(l) IN num THEN $ Test for following'•' and

$ numerics.
IF MATCH(stg,'.') THEN$ Look for digits following

$ the decimal point.
token+:='.'+ (SPAN{stg,num)?'');

END IF MATCH;
END IF token;
tup +:= token; $ Add token to tuple being built up.
END WHILE;

RETURN tup;
END PROC lex_scan;

5.2ol.2 A 'Concordance' Program

The following code generates a 'cross reference listing' or
'concordance' of a source text. The source text is assumed to consist of a
sequence of strings containing words separated by punctuation marks or
blanks. The words present in the source text are printed in alphabetical
order, each word being followed by a formatted list of all the lines in
which the word occurs.

PROGRAM concordance; $ concordance generator

VAR capital_of; $ All upper and lower case alphabetics.
initialize(capital_of, alphabetics);

line_number := O;
lines_word_is_in :={};

$ Initialize line_number count.
$ Initialize this to the empty map.

(WHILE (tuple_of_words := break_next_line(line_number)) /= OM)
$ break next line is assumed to read a line of text
$ and t~ decompose it into the words it contains by capitalizing
$ them and eliminating punctuation marks.
(FOR word IN tuple_of_words)

lines_word_is_in(word) :=
lines_word_is_in(word)?[] WITH line_number;

END FOR;
END WHILE;

$ Now sort, putting all words encountered into alphabetical order.
$ This is done using the procedure described in Section 4.4.l.

(FOR [word,lines] IN
sort({ [wd, [wd,lns]]: [wd,lns]

print(word); arrange(lines);
END FOR;

--- -------·----

IN lines_word_is_in}))
$ Arrange the line numbers neatly.

DATA OBJECTS AND EXPRESSIONS, CONCLUDED Page 5-8

PROC break_next_line(RW line_number); $ Input and scanning routine.
$ This procedure reads a line of input and scans it
$ to break out the words which it contains. These words are
$ capitalized and placed in a tuple.

line number+:= 1; $ Advance the line number.
read(line);
IF EOF THEN RETURN OM; END;

words:=[]; $ Start a new tuple of words.

(while line/='') $ Until the line has been digested.
break(line,alphabetics); $ Drop any leading nonalphabetic characters.
words with := capitalize(SPAN(line,alphabetics));

$ Note that the SPAN is OM if the line is empty.
END WHILE;

RETURN words;

END PROC break_next_line;

PROC arrange{lines); $ Routine to print sequence of line numbers.
$ This routine prints up to ten line numbers per line of the concordance
$ and arranges them neatly in fields six characters wide.

(WHILE lines/= []) $ Until all line numbers are processed,
group := lines(l •• 1O); $ break off a first group of up to ten lines.
lines := lines(ll MIN (#lines+l) ••);
print{12*' '+/[LPAD(STR ln,6): ln in group]);

END WHILE;

END PROC arrange;

PROC capitalize(word); $Capitalizes its parameter.

RETURN IF word= OM THEN OM $ Returning capitalized version.
ELSE ''+/[capital_of(let)?let]: let IN word] END;

END PROC capitalize;

$The-sort- procedure which should appear here is the one
$ shown in Section 4.4.1; we do not repeat it.

PROC initialize(RW capital_map, RW alphabet_string);
$ Initialization routine.

small_lets := 'abcdefghijklmnopqrstuvwxyz';
big_lets :• 'ABCDEFGHIJKLMNOPQRSTUVWXYZ';
alphabet_string := small_lets + big_lets;
capital_map := {[small_let,big_lets(i)]: small_let•small_lets(i)};

END PROC initialize;

END PROGRAM concordance;

DATA OBJECTS AND EXPRESSIONS, CONCLUDED Page 5-9

5.2.1.3 A 'Margin Justification' Procedure

Our third example is a 'margin justification' procedure which takes a
sequence of words separated by blanks, and arranges them into lines which
fit between left_margin and right_margin with the first nonblank character
placed in position left_margin and the last nonblank character placed in
position right_margin. Extra blanks are inserted at random positions
between the words to force 'justification' of the right margin. Procedures
of this sort are often used in text preparation programs.

PROC justify(tuple_of_lines, left_margin,right_margin);

tuple_of_words := [] +/ [break_words(line): line IN
tuple_of_lines];

(UNTIL is last)

line words := break_next_line(tuple_of_words,
right_margin - left_margin+l);

$ break_next_line breaks off and returns the tuple of words
$ to be placed on the next line.

IF (is last : = (tuple_o f_words = [])) THEN
$ Output last line with no justification.

print((left_margin)*' '+/
[word+' ': word IN line_words]);

ELSE $ Print justified line.
spaces := $ Calculate vector of extra spaces.

put_spaces(#line_words,right_margin
-(left_margin-1+/[#word+l: word IN line_words]));

print((left_margin-1) *' '+ line_word(l)
+/ [line_word(i+l) + (nspace +l) *' ': nspace=spaces(i)]);

END IF;

END UNTIL;

END PROC justify;

PROC break_words(line);

tup := [];

(WHILE line /='')

$ Breaks line at blanks and returns a tuple
$ of words.

$ Initialize tuple.

IF (word := BREAK(line,' ')) /= OM THEN
tup WITH := word;

ELSEIF SPAN(line,' ')=OM THEN $ last word
tup WITH := line;
QUIT;

END IF;

END WHILE;

DATA OBJECTS AND EXPRESSIONS, CONCLUDED Page 5-10

RETURN tup;

END PROC break_words;

PROC break next line(RW tuple_of_words, nchars);
$. This procedure breaks off and returns the longest sequence of words
$ that will fit into -nchars- character positions;
$ this sequence is broken off from tuple_of_words.
sum:• O;

(FOR word • tuple_of_words(i ••))
IF (sum+:• #word+ 1) > nchars THEN $ Too far, back up one word.

save :• tuple_of_words(l •• i-1);
tuple_o £_words : • tuple_o £_words (i •.);
RETURN save;

END IF;

END FOR;

save :• tuple_of_words;
tuple_of_words :• []; $ Else this is last line; return all words.

RETURN save;

END PROC break_next_line;

PROC put_spaces(between_kwords, nblanks);
$ This procedure finds the positions where n blanks are to be placed
$ between k words. The blanks are placed at random for
$ appearance's sake.

space_count :• (size :• (between_kwords-1)) * (O];

(FOR j IN [1 •• nblanks])
space_count(RANDOM size)+:• l;

END FOR;

RETURN space_count;

END PROC put_spaces;

$ Place a blank.

Additional procedures related to the above are described in Exercises
14-16.

DATA OBJECTS AND EXPRESSIONS, CONCLUDED Page 5-11

5.3 Atoms

Mathematical constructions occasionally make use of abstract 'points'
which have no particular properties other than their identity. For example,
in dealing with graphs we generally regard them as abstract collections of
points (or 'nodes') connected by edges (See Figure 5.1).

P4

P6

Figure 5.1: A graph: six nodes connected by edges.

In this case, to make a new copy of a graph we need a supply of new
'points'. What these 'points' are is of no significance as long as they can
be generated in a way which guarantees that all newly generated 'points' are
definitely distinct from all such 'points' previously encountered.

To handle situations of this sort, SETL provides a special kind of
object called an 'atom', or for emphasis a 'blank atom'. These objects can
be members of sets or components of tuples, but very few other operations
act on these atoms. In particular, there is only one way of producing
objects of this kind: namely, by calling a special, built-in and
argument-free (i.e. 'nullary') function written as

NEWAT

Each time a program invokes this construct, it yields a new atom, distinct
from all previously generated atoms. The only operations involving a pair
of atoms a and aa, are

a -= aa
a /a: aa

yields TRUE if a and aa are the same, FALSE otherwise
yields TRUE if a and aa are different, FALSE otherwise.

In addition, atoms can be made members of sets or tuples (e.g. by the WITH
operator) and can be tested for set membership (by the IN and NOTIN
operators). Moreover, previously generated atoms which have been put into
sets or made into components of tuples can reappear when one iterates over a
set of tuple in which they have been placed.

To facilitate debugging of programs which use atoms, the -print- (but
not the -read- operation) can be applied to atoms. The internal
representation of an atom carries a system-generated integer (not accessible
to the SETL user) called i~s serial number; when an atom is printed, the
representation of it is placed on the output medium as

DATA OBJECTS AND EXPRESSIONS, CONCLUDED Page 5-12

#nnn

where nnn is the serial number of the atom. Thus, for example, if the very
first statement in a program is

print({NEWAT: j IN (10 •• 20)})

the output produced, namely
{#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11}

will represent a set of 11 distinct atoms.

Another important use of atoms is to represent objects whcih have a
continuing identity, independent of any varying data attributes, associated
with them. Consider, for example, the problem of maintaining a simple data
base, which keeps track of a few items of data, e.g. name, address, and
telephone number for each of a varying group of people.

A given person will of course retain his identity if he (or she)
changes his address, telephone number, or even name. Since these
informations may change, it is not always appropriate to identify a person
with a tuple [name,address,tel_no] even if this tuple gives all available
information about him. The most appropriate treatment of such situation may
be, in fact, to represent the person by an atom x, and to maintain three
maps, called name, address, and tel_no, which map x into the name, address,
and telephone number of the person represented by x. Then a name change for
person x can be implemented simply by writing

name(x) :• new_name;

To give a small example of the use of atoms, we shall suppose that .a
graph G is given a a set of order~d pairs, each pair [x,y]. representing a
directed edge of G going from node x of the graph to node y of the graph.
In graph theory, one often wishes to form new graphs from old by introducing
new points and edges that serve to simplify sbme mathematical argument.
Suppose, in particualr, that for some reason we wish to introduce two new
graph nodes nl and n2, and to connect nl to each node of G which is the
initial point of an edge in G, and also to introduce an edge [x,n2] for each
node x of G which is the second n~de or 'target' of an edge of G. This will
define a new graph G2 within which the original graph G, with all its edges
and nodes, is imbedded as a subgraph.

To represent this construction in SETL, it is reasonable to introduce
new atoms for the points nl ·and n2. This leads us. to the following short
and quite straightforward code fragment:

nl
n2

G2

: • NEWAT;
:• NEWAT;

:•G+{[nl,x]:

$ Generate first new point.
$ Generate second new point.
$ Now introduce ~ew edges to build G2.

x IN DOMAIN G} + {[y,n2]: y IN RANGE G};

DATA OBJECTS AND EXPRESSIONS, CONCLUDED Page 5-13

5.4 Additional Examples

In this section we collect a few additional examples which illustrate
the various use of the operations discussed in this chapter.

5.4.1 Solution of System of Linear Equations

Suppose that we are given a system of n linear equatipns inn unknowns
xl, x2, ••• ,xn. We can suppose that these equations have the form

(1) all* xl + al2 * x2 + ••• + aln * xn • bl
a21 * xl + a22 * x2 + ••• + a2n * xn • b2
anl * xl + an2 * x2 + ••• + ann * xn • bn.

Solution of equations of this kind is one of the most fundamental prob1ems
of numerical analysis and has been intensively studied. Without wishing to
enter very far into the enormous literature that has developed around this
problem, we shall now represent a simple SETL code for solving such systems
of equations. The technique we will use is a variant of the famous (though
essentially straightforward) technique introduced by Karl Friedrich Gauss
(1777-1855), 'The Prince of Mathematicians'. This technique is known as
Gaussian elimination.

The idea can be summarized as follows: Each equation in the system (1)
involves n coefficients ajl,aj2, ••• ,ajn. If in any equation all of these
coefficients are zero, then the whole left-hand side of the equation is
zero, and the whole equation reduces to

0 = bj.

If the quantity bj occurring on the right-hand side is not zero (this is
impossible), then the original systems of equations (1) simply has no
solutions. At any rate, a system of equations (1) which either contains an
equation all of whose coefficients ajl,aj2, ••• ,ajn are zero or whose
solution leads to such an equation, is said to be singular. Singular
systems of equations require somewhat special analysis. In what follows, we
will avoid the analysis and simply assume that the system (1) which we are
trying to solve is not singular.

If this is the case, we can take any one of the equations in (1), say
the first, and find at least one nonzero coefficient, say alj, on its
left-hand side. Then we can pass to an equivalent system of equations by
subtracting akj/alj times the first equation from all the k-th equations for
each k = 2, ••• ,n. This subtraction eliminates the coefficient akj from all
these other equations, i.e. (after subtraction) makes the coefficient akj
of the variable xj equal to zero fork • 2, ••• ,n. Hence we can regard
equations 2, ••• ,n as a system of (n-1) equations for the (n-1) unknowns,
x2, ••• ,xn. Then by proceeding recursively, we can solve these equations for
x2, ••• ,xn. Once this has been done, we can substitute the values of
x2, ••• ,xn into the first equation, thereby reducing it to a single linear
equation in a single unknown. This can then be solved for the remaining
variable, xl, by a single sub~raction followed, by a division.

DATA OBJECTS AND EXPRESSIONS, CONCLUDED Page 5-14

We can write a SETL code representing this procedure most clearly if we
write it recursively. To do this. we will need to use both an outer
procedure -Gauss- which sets up initial parameters and an inner 'workhorse'
procedure -Gauss_solve- which performs the actual arithmetic operations.
Since the value of the matrix M must be accessed and manipulated by all
recursively generated invocations of the -Gauss_solve- routine (see Section
5.4.1), we adopt the (typical) expedient method of making it a global
variable. Thus the only parameters that need to be passed to Gauss_solve
are a set, namely the set of variables for which a first nonzero coefficient
still has to be found and an integer, namely the number of the next equation
to be considered. The -Gauss_solve- routine returns OM if it encounters a
singularity; otherwise, it returns a vector giving the values of the
variables for which it has solved.

CONST
VAR

PROC

eps • l.OE-4
glob_M;

$ (Note:
Gauss(M);

$ De fine
$ Matrix

these declarations
$ Solves

a utility constant close to zero.
of equation coefficients.
must precede the first PROC).
equations by Gaussian elimination.

glob_M :• M; $ Make original matrix globally available.
glob_soln :• []; $ Initialize tuple of solution values.

RETURN Gauss_solve{{l •• #M.}, 1);

END PROC Gauss;

PROC Gauss_solve(var_numbers,next_eqn);
$ Inner recursion for Gaussian elimination.
$ var numbers is the set of all indices of variables
$ still to be processed; next_eqn is the index of·
$ the next equation to be examined.

IF var_numbers • { } THEN RETURN []; END; $ No variables, return the·

row:• glob_M(next_eqn);
IF NOT EXISTS vn IN var_numbers ST

RETURN OM;
END IF;
(FOR j IN (next_eqn+l •• #glob_M])

$ empty solution.
$ Get the matrix row.

row(vn) > eps THEN
$ Since system is singular.

row_j :• glob_M(j);
subtract :• row_j(vn)/row(vn); $ Multiple of row to be subtracted.
(FOR vnx IN var_numbers) row_j(vnx) -:•subtract* row(vnx); END;
M (j) : • row_j ;

END FOR j;
$ Now call Gauss solve recursively to solve for the remaining
$ variables.
IF(soln :• Gauss_solve(var_numbers LESS:• vn, next_eqn+l)) • OM THEN

RETURN OM; $ Since a sigularity has been detected.
END IF;
$ Substitute to determine the value of the vn-th variable.
soln(vn) :• (row(#row+l) -/(soln(vnx) * row(vnx): vnx IN var_numbers]))/

row(vn);
RETURN soln;
END PROC Gauss_solve;

DATA OBJECTS AND EXPRESSIONS. CONCLUDED Page 5-15

It is not difficult to rework this procedure to use iterations rather
than recursion • (lhe iterative form of the procedure is shown below). The
relationship between the recursive and iterative forms of code is typical
and is worth close study. Note that the iterative form of the procedure
must implicitly save information, as the order in which variables are
processed, which the recursive form of the procedure saves implicitly
(namely in the multiple procedure invocations which are created when the
recursive procedure is executed). This is the reason that the quantity
-var_order-» which has no counterpart in the recursive procedure, appears in
the iterative variant shown below. Aside from this., note that the
-Gauss_solve- routine only invokes itself when it is near the point at which
it will RETURN; hence the only items of information which need to be saved
for use after return from this invocation are -vn- (the number of te
variable currently being processed) and -row-. However, -row- is just
M(vn); thus only -vn- needs to be saved. This explains why we are able to
transform the recursive procedure shown above i.nto the following somewhat
more efficient iterative procedure. The initial sequence of recursive calls
that would otherwise be required is first represented by a 'forward
eliminition' pass over the rows of M, and in which the subsequent sequence
of recursive returns becomes an iterative 'back-substitution' pass.

PROC Gauss(M);
CONST eps = l.OE-4;

$ Solves linear equations by Gaussian elimination.
$ Define a constant close to zero.

solo := [];
var_numbers

var_order := [];

(FOR i IN [1 n])
row := M(i);

$ Initialize solutions to be built.
:= #M}; $ Initially, all variables need

$ to be processed.
$ This tuple will record the order
$ in which variables are processed.
$ Process rows one after another.

IF NOT EXISTS vn IN var numbers ST row(vn) >= eps THEN
RETURN OM; $ Since system is singular.

END IF;
(FOR j IN [i+l. ,n])

row _j ; = M (j) ;
subtract := row_j(vn)/row(vn); $ Amount to be subtracted.
(FOR vnx IN var_numbers) row_j(vnx) -:• subtract*row(vnx);
M (j) : = row _j ;

END FOR j;
$ Note variable just processed

END;

var_order WITH := vn;
var_numbers LESS.:= vn; $ and exclude it from further processing.

END FOR i;
$ Next we work through the variables in the reverse
$ order from which they were initially processed while calculating
$ their values. Note that at this point, the set var_numbers
$ has become empty.
(FOR i IN [n,n-1 •• 1])

row : = M (i);
vn := var_order(i);
soln(vn) : 3 (row(n+l) -/ [soln(vnx) * row(vnx): vnx IN var_numbers])

var_numbers
END FOR;
RETURN soln;

/ row (vn);
WITH := vn;

$ Re turn >'-:.h(, ormal solution.

DATA OBJECTS AND EXPRESSIONS, CONCLUDED Page 5-16

END PROC Gauss;

DATA OBJECTS AND EXPRESSIONS, CONCLUDED Page 5-17

5.4.2 An Interactive Text-editing Routine

Our next example will serve to illustrate some of the internal workings
of an interactive text editor (though actually the program to be given will
support only a few of the features which a full-scale editor would provide,
and even these are highly simplified). This editor has the following
capabilities:

(a) A vector of strings representing a text file to be edited can be
passed to it.

(b) The editor prompts its user for a command by printing
waits for him to respond.

, ,, , . , and

(c) The allowed responses are as follows:

(i) A response of the form '/ABCD •• E/abc •• e' makes ABCD •• E a
member of a collection of search strings that the editor maintains
and indicates that some of the occurrences of ABCD •• E in the text
file are to be replaced by abc •• e. Note that here ABCD •• E and
abc •• e are intended to represent arbitrary strings which need not
be of the same length; abc •• e can even be null. Moreover, the
'delimiting character', which we have written '/', can be any
character which does not appear in ABCD •• E.

(ii) A response of the form '/tBCD •• E' with just one occurrence of
the initial 'delimiting character' indicates that ABCD •• E is no
longer to be searched for.

(iii) A response of the form'//' indicates that searching is to
start again from the beginning of the text file. A response of
the form '//done' indicates that editing is complete and triggers
a return from the edit procedure.

(iv) A nullstring response searches forward in the text file for
the next following occurrence of any search string ABCD •• E. If
any such occurrence is found, it is displayed on the user's
terminal, with a line of 'underscore' characters placed
immediately above it to mark its position. After this, another
null response will trigger a search, but the response '/' will
replace the string ABCD •• E that has just been found by the
corresponding string abc •• e.

PROC edit(RW text); $ Text editor routine.
line_no := line_pos :=l; $ Start at the first character of

$ the first line of the text file.
replacement:=search_strings:={ }; $ Initially no search strings have

$ been defined.
last_pos := OM; $ last_pos will be the last character

$ position in a zone located by
searching;

$Seethe -search- procedure below.
$ Initially, this is undefined.

------ ---------- ----------

------- ----------------------------- -- ------- ---~------ --

DATA OBJECTS AND EXPRESSIONS 1 CONCLUDED Page 5-18

first_chars :• ''; $ first_chars is a string consisting of
$ the first characters of all search strings.

LOOP DO
IF (r :• response())/•'' THEN $ Search forward from current position

search(line_no, line_pos, last_pos, search_strings,
first_chars, text);

$Seethe -search- procedure given below for an account of its
$ parameters.

ELSEIF #r • 1 THEN $ Try to make replacement.

IF last_pos • OM THEN $ Successful search did not precede
$ replacement.

print('**NO SEARCH POSITION HAS BEEN ESTABLISHED**');
ELSE $ Perform replacement.

text(line)(line_pos •• last_pos) :•
replacement(text(line)(line_pos •• last_pos));

END IF;

ELSE
C :• r(l);

$ The user's response was at least two characters
$ long. Get first character of this response.

IF NOT EXISTS i IN [2 •• #r] I c • r(i) THEN $ Drop search string.

replacement(strg :• r(2 ••)) :• OM;
search_strings LESS :• strg;

$ Recalculate the 'first-chars' string.
first_chars :• +/{x(l): x IN search_strings};

ELSEIF #r • 2 THEN $'/!';hence restart search at top.

ELSE

line_no :• line_pos
last_pos :• OM;

: - 1;
$ Invalidate search position.

$Anew replacement is being defined.

replacements(strg :• r(2 •• i-l)) :• r(i+l ••);
search_strings WITH:• strg;

$ Recalculate the string.
first_chars :• +/{x(l): x IN search_strings};
last_pos :• OM; $ Invalidate any prior search.

END IF NOT;

END IF;

END LOOP;

END PROC edit;

PROC SEARCH (RW line_no, RW line_pos, RW last_pos, search_strings,
first_chars, text);

$ This procedure searches forward, starting at a given text line

DATA OBJECTS AND EXPRESSIONS, CONCLUDED Page 5-19

$ and given character position, for the first position Pat which
$ any member of the set -search_strings- of strings occurs. If such a
$ position is found, then -line_no- is set appropriately,
$ -line_pos- is set top and -last_pos- is set to the index
$ of the last character matched. If no such position is found,
$ then -last_pos- becomes OM while -first_pos- and -line_pos-
$ remain the same.

$ If -last_pos- is not OM, indicating that a successful search
$ has just taken place, then the search starts one character after
$ -line_pos-; this prevents repetitive searching.

search_string := text(line_no)(line_pos+l ••);

(WHILE line_no <= #text)

(WHILE search_string /= '')
$ While a portion of the current line remains to be examined.

IF break(search_string, first_chars) • OM THEN
$ No significant character in this line, so go to next line.

search_string :=
, , .

•

ELSE $ See if one of the strings we are
$ looking for is found here.
TO BE CONTINUED

DATA OBJECTS AND EXPRESSIONS, CONCLUDED Page 5-20

5.4.3 A Simplified Financial Record-keeping System

Next we will give SETL code representing some small part of the
operations of a bank, albeit in simplified form. The system to be
represented corresponds in a rough way to the 'Checking Plus' service
offered by Citibank in New York City. Note, however, that the simple code
shown below does not deal adequately with all the anomalies and error
conditions that a full scale banking system would have to handle, nor does
it support all the functions that are actually required. For example, the
code we give does not provide any way for customer accounts to be opened or
closed. A more ambitious commercial application showing how such matters
can be treated is given in Section 5.4.3, but since the issues that enter
into the design of a full-scale commercial system can grow to be quite
complex, we prefer for the moment to evade many of them.

The simplified system which we consider is aware of a collection of
customers, each of whom has an account. A customer's account consists of
two p~rts, a balance representing funds available to him, and an overdraft
debit representing the amount that he has drawn against the 'Checking Plus'
feature of his account. This debit is limited for each account not to
exceed a given -credit_limit-, established when the account is opened. The
bank pays 5% per annum daily interest on positive balances in checking
accounts, and charges 18% per annum daily interest on overdraft debits.

Like most commercial application programs, the code shown below
maintains a 'data base', i.e. a collection of maps which collectively
represent the situation with which the program must deal, and reads a
'transaction' file whose entries ibform it of changes in this situation.
Using these files it produces various output documents, for example, lists
of checks deposited for transmission to other banks, monthly statements
which are mailed to customers, etc.

The transactions supported by our simplified system are as follows:

TRANSACTION CODE

deposit (D)

withdrawal (W)

payment (PA)

presentation (P)

clear (C)

return (R)

EXPLANATION

Customer deposits either cash, a
check drawn on another bank, or a
check drawn on this bank.
A customer appears at a teller's
booth and attempts to withdraw cash.
Customer transfers a stated sum from
his available balance to reduce his
overdraft debit.
Check is presented by another bank for
payment.
Another bank informs this bank that a
check has cleared for payment.
A previously deposited check, sent to
another bank for payment,
is returned either as a
bad check or for lack of available

DATA OBJECTS AND EXPRESSIONS, CONCLUDED Page s-21

funds. (Checks written without
sufficient funds cause their author's
account to be debited $5.00).

end of day (DAY) End of banking day has arrived;
daily interest is to be credited/
debited to all accounts.

On the last day of each month, an -end_of_day- transaction triggers the
production of bank statements which are sent to each customer. On the last
day of December, this statement includes an indication of interest charged
and interest earned during the year.

Each transaction handled is represented by a single line (string) in
the transaction file. This line always starts with a code letter
identifying the transaction, and for the rest consists of various 'fields',
separated by blanks. The fields expected for the various transactions
supported are as follows:

D customer name -
w customer number -
PA customer number -p customer number -
C check number -
R check number -
DAY

amount

amount
amount
amount

reason

bank_number account_number
(missing if cash deposit)

teller_terminal_number

check_number bank_number

The continuing data structures used to support our simplified banking
system are as follows:

(1) cust info

The components of a
balance available
balance_deposited

overdraft_debit
overdraft_limit

This map sends each customer_number into the record
maintained for the corresponding customer.

customer record are:
\

balance currently available
balance showing checks deposited but not yet
cleared
amount currently drawn against 'Checking Plus'
maximum overdraft allowed

transactions_this_month list of all completed tansactions this month
total interest earned this year interest earned

interest_paid
name
social security
address
telephone number

(2) bank_info

total interest paid for overdrafts this year
customer name

number customer social security number
customer address
customer telephone number

This map send the numerical code of each bank
from which checks will be accepted into the bank's
address information.

(3) pending_checks When check deposited are sent along to another
bank for confirmation of payment, they are issued
unique numerical identifiers. This maps sends

- --~---------

DATA OBJECTS AND EXPRESSIONS, CONCLUDED Page 5-22

each such identifier into the transaction to
which it corresponds.

Having now outlined all the transactions which our simplified banking
system will support and listed the principal data structures which it uses,
we are in position to give the code itself.

PROGRAM bank_checking; $ simplified check-processing program
$ ****** DECLARATION OF GLOBAL VARIABLES, MACROS, AND CONSTANTS*******

VAR

Cust_info,
Bank_info,

Pending_checks,

This_banks_code,
Check_counter,

Message_list,

Bad_transactions,

Last_day;

$ global variables

$ maps account number into customer record
$ maps bank number into bank address, etc.

$ maps each suspended transaction numbers into
$ detailed transaction record

$ code identifying this bank
$ counter identifying checks sent to other banks for
$ verification

$ maps each bank identifier into a list of
$ messages to be sent to the bank.

$ accumulated list of bad transactions

$ last day for which 'DAY' operation
$ was run

MACRO customer_items; $ The vector of items constituting a customer's
$record.Note that all amounts are kept
$ as integer numbers of pennies.

[balance_available, balance_deposited, overdraft_debit,
overdraft limit, transactions this month, interest earned,

- interest_paid, name, sec_no, address, tel_no]

ENDM;

CONST
CASH_DEP,
CASH_WITHDRAWAL,
PAYMENT,
OVERDRAW,
NOFUNDS,
BAD_CHECK;

$ strings indicating transaction results
$ cash deposit
$ cash withdrawal
$ payment of check
$ charge for overdrawn check
$ funds not available to pay check
$ check drawn on nonexistent account

CONST Transaction_codes • {D,W,PA,P,C,R,DAY};
$ Constants designating transactions.

CONST Involves_customer={D,W,PA};
$ Transactions whose second parameter is a customer number.

DATA OBJECTS AND EXPRESSIONS, CONCLUDED Page 5-23

CONST Needs_updating = {D,W,PA,P,C,R};
$ Transactions which modify customer record.

CONST DIGITS= '0123456789'; $ the decimal digits

CONST Annual_rate=6,
Overdraft_rate=l8;

$ interest paid on checking balances
$ interest charged on overdrafts

$******MAIN PROGRAM OF BANKING SYSTEM******

initialize_system; $ call initialization procedure to read in
$ all required global data structures.

LOOP DO

get(transaction); $ read next transaction
IF EOF THEN quit; END; $ all transactions processed
process_transaction(transaction); $ otherwise process

$ transaction
END LOOP;

finalize_system; $ write state of system to output file

print; print; print('END OF TRANSACTION PROCESSING');

PROC process_transaction(t); $ The principal transaction-processing
$ procedure.

IF (dee := decode transaction(t)) = OM THEN RETURN; END;
$ Since transaction is bad.

[code, number, amount, p4, p5] := dee; $ Get fields of transaction.

IF code IN Involves_customer THEN$ Obtain fields of customer record.

customer_items := Cust_info(number);
$ Make balance_available, balance_deposited, overdraft_debit,
$ overdraft_limit, etc. available.

END IF;

CASE code OF

(D): $ deposit

IF p4 = OM THEN$ deposit is cash: accept it immediately

balance available+:= amount;
balance=depositecfl+:= amount;
transactions_this_month WITH:= post(CASH_DEP,amount);

ELSEIF p4 = This_banks_code THEN$ check is drawn on this bank

$ We handle a check drawn on this bank as a

DATA OBJECTS AND EXPRESSIONS, CONCLUDED Page 5-24

$ combination of a 'P' transaction with the transaction (either
$ 'C' or 'R') that responds to this 'P' transaction. For this,
$ it is convenient to allow this procedure to call itself
$ recursively.

balance_deposited +:• amount;
pending_checks('O') :• t;

process_transaction('P '+ p5 +' '+ dollar(amount) + 'O'
+This_banks_code);

result :• Message_list(This_banks_code)(l); $ Get result and
Message_list(This_banks_code) := []; $ clear message list

process_transaction(result); $ proccess the resulting 'C' or 'R'

ELSE$ The check is drawn on another bank. Note, but do not
$ credit, the deposit.

balance_deposited +:• amount;
identifier :• STR (Check_counter +:• 1);
Pending_checks(identifier) :• t; $ Save transaction for

$ later completion.

Message_list(p4) WITH:•$ send nofification to bank o~.which
$ the check is drawn

'P '+ p5 +' '+ dollar(amount) +' '+identifier+ , , +This_banks_code;

END IF;

(W): $ Withdrawal

IF ok_withdraw(amount,balance_available, overdraft_debit,
balance_deposited, overdraft_limit) THEN

send_teller(p4, 'PAYMENT APPROVED');
transactions_this_month WITH:• post(CASH_WITHDRAWAL,amount);

ELSE
send_teller(p4,NOFUNDS);

END IF;

(PA): $ payment of portion of overdraft debit

will_pay :- amount MIN balance_available MIN overdraft_debit;
balance_available -:• will_pay;
balance_deposited -:• will_pay;
overdraft debit-:• will pay;
transacti;ns_this_month WITH:• post(PAYMENT,will_pay);

(P): $ presentation (for approval) of check by other bank

IF(c_info := Cust_info(number))=OM THEN$ check is bad
Message_list(p5) WITH := 'R '+ p4 +' '+ BAD_GHECK;

RETURN; $ abort transaction
END IF;

DATA OBJECTS AND EXPRESSIONS, CONCLUDED Page 5-25

(C):

(R):

customer_items := c_info; $ make fields of customer info available

IF ok_withdraw(amount,balance_available,overdraft_debit,
balance_deposited,overdraft_limit) THEN

Message_list(p5) WITH:= 'C '+ p4; $ confirm clearance
transactions_this_month WITH:= post(PAYMENT,amount);

ELSE

Message_list(p5) WITH := 'R '+ p4 +' '+ NOFUNDS;

$ In this case the customer is charged a $5.00 fee,
$ or whatever smaller amount remains in his account

charge := 500 MIN (balance_available+overdraft_limit-
overdraft_debit) MAX O;

ASSERT ok_withdraw(charge,balance_available,overdraft_debit,
balance_deposited,overdraft_limit);

transactions_this_month WITH:= post(OVERDRAWN,charge);

END IF;

$ pending check clears

ASSERT(dec := decode_transaction(Pending_checks(number)))/=OM;

$ We can make this assertion because the system
$ represented here does not allow customer accounts to be
$ closed. However, this assertion would continue to hold true even
$ in a more realistic system, since in such a system we would not
$ close an account until all its outstanding deposit transactions
$ have been completed.

Pending_checks(number)
[-,-,amount] :• dee;

:= OM; $ drop from pe~ding list

customer_items := Cust_info(number);
balance_available +:= amount; $ credit to available balance
transactions_this_month WITH:= post(CHECK_DEP,amount);

$ pending check fails to clear

reason := p4; $ in this, case the p4 field contains the reason
$ for refusal of the check transmitted for approval

ASSERT (dee := decode_transaction(Pending_checks(number)))/=OM;
$ see comment following case(C)

Pending_checks(number) := OM; $ drop from pending list
[-,-,amount] := dee;
customer_items := Cust info(number);
balance_deposited -:= -amount; $ Debit the estimated total

$ of deposits.

DATA OBJECTS AND EXPRESSIONS, CONCLUDED Page 5-26

transactions_this_month WITH:• post(reason,amount);

(DAY): $ End of banking day: take end-of-day, and if necessary
$ end-of-month, actions.

end_of_day; $ take end of day actions

IF day(DATE) • 'l' THEN
end_of_month;

END IF;

ELSE$ have some system error. Take end_of day action,
$ save system, and note error.

print('SYSTEM ERROR*** ILLEGAL TRANSACTION:', t);

end_of_day;
finalize_system;

STOP;

END CASE;

IF code IN Needs_updating THEN $ customer information must be updated
Cust_info(number) :• customer_items;

END IF;

END PROC process_transaction;

PROC ok_withdraw(amount,RW bal_avail, RW over_debit, RW bal_deposit,
over_limit);

$ This auxiliary procedure checks to see if the stated -amount­
$ can be withdrawn from an account, by increasing
$ the overdraft debit if necessary. If so, the balance
$ available, amount provisionally on deposit, and the
$ overdraft debit are appropriately adjusted,
$ and TRUE is returned; otherwise FALSE is returned.

IF amount> (avail+ over_limit - over_debit) THEN$ no good

RETURN FALSE;

END IF;

bal_avail -:• (amt_frm_bal :• amount MIN bal_avail);
bal_deposit -:• amt_frm_bal; $ decrement amount provisionally on deposit
over_debit +:• amount - amt_from_bal;

RETURN TRUE;

END PROC ok_withdraw;

PROC post(trans_type,amount);

DATA OBJECTS AND EXPRESSIONS, CONCLUDED Page 5-27

$ This auxiliary routine converts transactions into strings consisting
$ of an amount, a coded indicator of the transaction type, and a
$ date; the result is suitable for printing in a customer's
$ end-of-month statement.

RETURN DATE+' '+ trans_type +' '+ dollar(amount);

END PROC post;

PROC decode_transaction(t); $ decodes string form of transaction

$ This procedure reads the string form of a transaction and
$ decodes it into the various blank-separated fields of which it
$ consists. It verifies that each field has the expected type.
$ If any field is found to be bad, or if any field is missing, then
$ the transaction is posted to a 'rejected transactions' list, and
$ this procedure returns OM. Otherwise, a tuple consisting of the
$ converted fields is returned.

CONST Check_strings •$Map from transaction type to
$ pattern of fields expected for transaction.
$ See procedure -field_check-, below,
$ for an explanation of the codes appearing here.

{[D,XCABX], [W,XCAX], [PA,XCA], [P,XXXXX],
[C,XX], [R,XXX], [DAY,X] };

decoded_trans := []; $ tuple for decoded form of transaction
nfield :• O; $ counter for field number

check_string :• 'T'; $ check character for first field is 'T'

(WHILE t/= '' AND (nfield +:= 1)<6)

IF SPAN(t,' ')/• OM THEN CONT; END; $ span off blanks

IF (field := field_check(BREAK(t,' '),
Check_strings(nfield))•OM THEN

Bad_transactions WITH:= t;
RETURN OM;

END IF;

$ If the first field has just been decoded, use it to determine
$ what further checks are necesary.

IF nfield =l THEN check_string :• Check_strings(field); END;

decoded_trans WITH:• field; $ otherwise store field

END WHILE;

$ Check that all required fields, and no others, are present.

DATA OBJECTS AND EXPRESSIONS, CONCLUDED

IF #decoded_trans•#check_string
OR decoded_trans(l) • D AND #decoded_trans•3 THEN

RETURN decoded_trans;
END;

Bad_transactions WITH:• t; $ Otherwise missing or superfluous
$ fields.

RETURN OM;

END PROC decode_transaction;

PROC field_check(field, test_char); $ auxiliary test/convert
$ procedure

Page 5-28

$ This procedure checks the -field- passed to it fo~ conformity
$ with the expected field type, which is descibed by its
$ -test_char- argument.

$ The allowed test_char characters, and their significance,
,$ are as follows:

$ 'T': must be transaction code
$ 'X': no test required
$ 'C': must be customer account number
$, A,: must be dollar amount
$ 'B': must be identifier of correspondent bank

$ If the test fails, then OM is returned; if the test succ~eds,
$ and the field type is 'A', then the field is converted from
$ standard D,DDD.CC 'dollars and cents' form to an integer
$ number of 1: ents,

CASE test_char OF

('T'): RETURN IF field IN Transaction_codes THEN field
ELSE OM END;

('X'): RETURN field;

('C'): RETURN IF Cust_info(field) • OM THEN OM ELSE field END;

('A'): dollars :• SPAN(field,Digits)?'';

IF MATCH(field,'.')•OM THEN RETURN OM; END;

cents :• SPAN(field,Digits)?'';
IF #cents/•2 OR field/•'' THEN RETURN OM; END;

RETURN VAL(dollars + cents);

('B'): RETURN IF Bank_info(field)•OM THEN OM ELSE field END;

ELSE
RETURN OM;

DATA OBJECTS AND EXPRESSIONS, CONCLUDED

END CASE;

END PROC field_check;

PROC initialize_system; $ system initialization code

$ First we acquire the name of the input file
$ for this run of the banking system, which is supplied as a
$ 'control-card' parameter; see Section 8.5.

input_file :• getspp('OLD•OLD.DAT/OLD.DAT');

Page 5-29

$ Next we read the code for this bank, the pending transaction
$ counter, the master customer file,
$ the bank address file, and the last previous processing date,
$ from the specified input information file.

OPEN(input_file,~CODED'); $ Open the input file for reading.
$ (See Section 8.1).

reada(input_file, This_banks_code,Check_counter, Cust_info,
Bank_info,Last_day);

CLOSE(input_file); $ now finished with input file; release it
$ (See Section 8.1).

$ Next various subsidiary initializations are performed.

Pending_checks := { };
Bad_transactions : • [),;
Message_list := {[bank,[

$ pending check mapping is empty
$ list of bad transactions is empty
]] : x = Bank_info(bank)};
$ start an empty message file for each.
$ correspondent bank

END PROC initialize_system;

PROC finalize_system; $ end-of-run 'dump' procedure

$ First we acquire the name of the output file for this run of
$ the banking system, which is supplied as a 'control card'
$ parameter; see Section 8.5.

output_file := getspp('NEW=NEW.DAT/NEW.DAT');

OPEN(output_file,'CODED-OUT'); $ open the output file for writing.
$ (See Section 8.1).

$ Next we write the code for this bank, the pending transaction
$ counter, the master customer file, and the bank file to the
$ specified output file

printa(output_file, This_banks_code, Check_counter, Cust_info,
Bank_info,DATE);

DATA OBJECTS AND EXPRESSIONS, CONCLUDED Page 5-30

CLOSE(output_file); $ now finished with output file; release it
$ (See Section 8.1).

END PROC finalize_system;

PROC send_teller(terminal_no,msg);

$ In an actual system, this procedure would send the message
$ -msg- to the teller terminal identified by -terminal_no-. Since
$ it is not easy to use SETL to send messages to more than
$ one terminal, we simplify this procedure drastically, and simply
$ print -msg-, with an indication of the number of the terminal
$ to which msg should actually be sent.

print(msg, 'has been sent to terminal', terminal_no);

END PROC send_teller;

PROC end_of_day; $ end of day procedure

$ This procedure is called at the end of each banking day
$ In practice, it would write out a collection of files,
$ including the following:

$ (a)
$

for each bank with which this bank does business,
a file of messages, each representing either a

$ (i) confirmation that a check transmitted for approval
$ was actually approved;

$ (ii) rejection of a check, with an indication of the reason
$ for rejection;

$ (iii) request for approval of a check,

$ (b) a list of bad transactions, for visual inspection and
$ possible re-entry.

$ We begin by crediting interest payments and making
$ interest charges for all customers.

$ First check to ensure that interest has not already been
$ credited today.

IF DATE/• Last_day THEN

(FOR c_info • Cust_info(number))

interest_earned +:•
(earned :• (balance_available*Annual_rate) DIV 36500);
balance_available +:• earned;

$ Next, make charges on the customer's overdraft debit
interest_paid +:•

(owed := (Overdraft_debit*Overdraft_rate) DIV 36500);

DATA OBJECTS AND EXPRESSIONS, CONCLUDED ~age 5-)1

$ Draw this interest out of the account if possible.
$ If not enough remains, interest will be charged as an
$ overdraft, even though this causes the actual overdraft to
$ exceed its stated limit.

IF NOT ok_withdraw(owed,balance_available,overdraft_debit,
balance_deposited,overdraft_limit) THEN

$ run an 'excess overdraft'
overdraft_debit +:= owed - balance_available;
balance_deposited -:= balance_available;
balance_available := O;

END IF;
Cust_info(number) :• c_info;

END FOR;

END IF DATE;

$ Write a file of messages for each bank with which this bank does
$ business.

(FOR bank_inf = Bank_info(code) I code/= This_banks_code)

write_message_file(bank_inf, Message_list(code));
Message_list(code) := []; $ clear the message list to avoid

$ resending.

END FOR;

$ Write out the file of bad transactions.
write_bad_transactions(Bad_transactions);
Bad_transactions := []; $ clear the list of bad transactions

END PROC end_of_day;

PROC write_message_file(bank_inf, mess_list);

$Ina realistic system, this procedure might write
$ a list of messages to a magnetic tape which was then
$ sent by air-express or special courier to one of the banks with
$ which this bank does business. However, in our simplified
$ system, we simply print out -bank_inf- as a header,
$ and follow it by the individual messages of mess_list.

print; print; print(bank_inf); print; print;

(FORALL m IN mess_list) print(m); END;

END PROC write_message_file;

PROC write_bad_transactions(list);

$Ina realistic system, this procedure might write its list of

DATA OBJECTS AND EXPRESSIONS, CONCLUDED

$ transactions to an on-line disk file, which would then be
$ scrutinized and manually edited, reference being made if

Page 5-32

$ necesary to the original handwritten or typed document which
$ first ordered the transaction. However, in our simplified
$ system, we simply print out the list of bad transactions.

print; print; print('BAD TRANSACTION LIST'); print; print;

(FORALL m IN list) print(m); END;

END PROC write_bad_transactions;

PROC end_of_month; $ end-of-month procedure

$ This procedure, called on the last day of each
$ month, prepares a monthly statement for each customer.
$ If the month is January, a statement of total
$ interest charged/earned appears on the statement,
$ and the accrued interest fields in the customer record are
$ cleared.

IF DATE a Last_day THEN RETURN; END; $ since statements have already
$ been prepared.

is_January :• (month(DATE) • 'l'); $ test for January

(FOR customer_items • Cust_info(cust_number))

print; print(name,sec_no); print(address); print(DATE); print;

(FOR trans IN transactions_this_month) print(trans);END;

transactions_this_month :• [];

IF is_January THEN
print;
print('SAVE THIS STATEMENT-IT CONTAINS VALUABLE TAX'

'INFORMATION');
print;
print('Interest earned:', interest earned);
print('Interest paid:', interest_p~id);

END IF;

END FOR;

END PROC end_of_month;

END PROGRAM bank_checking;

DATA OBJECTS AND EXPRESSIONS, CONCLUDED Page 5-33

5.5 Exercises

Ex. 1 Write a program that will read a real number x and print the number
of decimal positions of x which lie to the left of the decimal point.

Ex. 2 Write an expression which will take any SETL tuple t and generate a
map f which indicates how many components of t are of type 'ATOM',
'BOOLEAN', 'INTEGER', 'REAL', etc., and how many components oft are OM.

Ex. 3 Which of the following operations will cause an error:

(a) 2.2 (1.1 + 1.10-2.200)
(b) -2.2*-2.2**2.2
(c) (-2.2)**2.2
(d) FLOAT(-2)*2
(e) (-2.2 MAX 2.2)**-2.2
(f) (-2.2 MIN 2.2)**2.2
(g) SQRT(-2 MAX 2)

Ex. 4 Test the following boolean expressions to see if they yield TRUE or
FALSE:

(a) l.0=2.0-1.0
(b) 2.0=SQRT(4.0)
(c) SIN(ASIN(0.5))=0.5
(d) SIN(0.5)*SlN(0.5)+COS(0.5)*COS(0.5)•1.0

t

Determine the size of the difference between the left and the right
hand side of each equality which yields the value FALSE.

Ex. 5 Which of the following statements are true for all values of the
variable x?

(a) ABS(FLOAT(x))=FLOAT(ABS(x))
(b) FIX(FLOAT(x))•FLOAT(FIX(x})
(c) FLOOR(x) < FIX(x)
(d) CEIL(x) >= FIX(x)
(e) EXP(LOG(x)) • x
(f) LOG(EXP(x)) = x

Ex. 6 For what positive values of xis COS(x) closest to O.O? What is the
value of ASIN(l.O)? Check your answers by computer evaluation.

Ex. 7 How small is the sum SIN(x) + SIN(x + 3.1415928)? (Evaluate it at
the points x=-3.1415928, o.o, 3.1415928, etc.) Can you find a constant c
such that SIN(x) + SIN(x+c) is smaller than SIN(x) + SIN(x+3.1415928) for
several values of x?

Ex. 8 Square the quantity x:=2.0/SQRT(4.0) repeatedly to see how its higher
powers behave. How many squarings are required to calculate x**l024?

Ex. 9 Write the values for which x, y and z will have after each of the
following sequences is executed.

DATA OBJECTS AND EXPRESSIONS, CONCLUDED Page 5-34

(a) x:•'abc'; y :• SPAN(x, 'ABC');
(b) x:•'abc'; y :• ANY(x,'ABC');
(c) x:•'abc'; y :• SPAN(x,'ab'); z ,:- RANY (y, 'ab');
(d) x:•'abc'; y : -BREAK(x,'ABC');
(e) x:•'abc'; y :• BREAK(x, 'abc');
(f) x:•'abc'; y :• RBREAK(x,'ABCabc');
(g) x:='abc'; y :• LEN(x,4);
(h) x:•'abc'; y : ... NOTANY (x, 'ABC');
(i) x:•'abc'; y : -RNOTANY(x,'ABC');

Ex. 10 Write a program which will read a string s and will

(a) delete all sequences of blank spaces immediately preceding a
punctuation mark,

(b) insert a blank space immediately after each punctuation mark that
is not followed by either a blank or a numeric character.

Ex. 11 Write a program which prints a sets of words in an alphabetized,
neatly formatted arrangement; the words printed should be lined up in rows
and columns. As many columns as possible should be used, but at least two
blank spaces must separate any two words printed on the same line.

Ex. 12 Modify the lexical scanner procedure of Section 5.2.1.1 so that it
returns a pair [toks_and_types,val_map], where toks_and_types is a tuple of
pairs [tok,tok_typ], each -tok- being a token appearing in the source text
scanned, and -tok_typ- is the type (i.e. 'INTEGER', 'REAL', 'IDENTIFIER',
or 'SPECIAL') of -tok-. The quantity -val_map- should be a map ~ending the
string form of each integer and real number appearing t~ the sequence of
tokens to its value.

' Ex. 13 As written, the lexical scanner procedure of Section 5.2.1.1 always
treats the underbar character as a special character and does not allow r~al
numbers like '. 3' which begin with a period. Modify this procedure ,so that
it allows underbars within identifiers (but not as the first character of
identifiers) and allows real numbers to start with the'•' character.

Ex. 14 Modify the concordance program shown in Section 5.2.1.2 so that

(a) all words less than three cbaracters long are omittted from the
concordance;

(b) the program begins by reading a list of 'insignificant' words which
occur on a sequence of lines terminated by a line containing the string
'*****'• It then omits them from the concordance. (Multiple insignificant
words can also occur, separated by blanks on a single line).

Ex. 15 Modify the concordance program shown in Section 5.2.1.2 so that it
begins (cf. Exercise 14) by reading a blank-separated list of words, and
reports only on the occurrences of words belonging to this list.

Ex. 16 Modify the concordance program shown in Section 5.2.1.2 so that it
reports only on 'infrequent' words, i.e. words that occur no more than
twice. Words belonging to a specified sets of words should be ignored even
if they are infrequent. Programs of this kind can be used to locate

DATA OBJECTS AND EXPRESSIONS, CONCLUDED Page 5-35

'suspicious' identifiers in other programs, i.e. identifiers which may have
been misspelled or simply forgotten during program composition.

Ex. 17 The simplified text editor shown in Section 5.2.1.3 does not protect
its user against any of the errors that are likely to occur during a lengthy
edit session. Add code which will alleviate this deficiency by implementing
the following additional features:

(a) Demand that '//', rather than any arbitrary string of two identical
characters, be used to restart editing from the first line of the file F
being edited, and that'/', rather than any arbitrary one character string,
be used to trigger a replacement.

(b) Allow an additional command 'x', which should produce a formatted
display of all search strings, with their replacement strings.

(c) Allow an additional command 'f', which should undo the last
correction made. Your system should allow up to five successive changes to
be undone using the 'f' command.

(d) Allow the command'\' to trigger a search backward through the
file, i.e. a search from the current character position through earlier
positions and lines.

Ex. 18 Browse through the user's manual of some text editor of medium
complexity to become familiar with the various features it provides. Select
an interesting one of these features, and modify the text editor code shown
in Section 5.2.1.3 so that it implements the feature which you have
selected.

Ex. 19 The function SIN(x) is the sum of the infinite power series whose
n-th term is ((-l)**n)*(x**(2*n+l))/(2*n+l)! (n ranges upward from O).

(a) Let S5(x) and SlO(x) denote the first five and first ten terms of
this series respectively. Calculate and print the difference S5(x)-SIN(x)
and SlO(x)-SIN(x) for each value of x from O.O to 3.14159 by steps of 0.1.
What maximum deviation between S5(x) and SIN(x) do you find? Can you find a
constant b such that addition of b to S5(x) reduces this maximum deviation?

(b)'Repeat part (a) for COS(x). This is the sum ofthe infinite series
whose n-th term is ((-l)**n)*(x**(2*n))/(2*n)! (again, n ranges upward from
O).

Ex. 20 Modify the character-string search procedure shown in Section
5.2.1.3 so that it can locate strings which run over from one line to the
next. How should the editor program of Section 5.4.2 be modified to allow
easy editing of strings of this sort?

Ex. 21 Certain types of forests are subject to infestation by budworms.
The following rules can be used to model the results of such an ~nfestation.
We suppose for simplicity that the forest consists of an n by m rectangular
array of trees. In a given year, any tree will be either healthy, infested,
or leafless, having been infested the year before. A tree infested one year
will be leafless the next year; a tree leafless one year will be healthy
the next year. A tree healthy one year will be healthy the next year unless

DATA OBJECTS AND EXPRESSIONS, CONCLUDED Page 5-36

its neighbor to the North, South, East, or West is also infested, in which
case it will also become infested the next year.

Write a program which will simulate the progress of a budworm
infestation obeying these rules. Track the progress of an infestation.which
starts with just one infested tree, and the progress of an infestation that
starts with a row of three infested trees. Your program should print out a
diagram of the forest in each of a sequence of years, together with a count
of the number of infested, leafless, and healthy trees.

Ex. 22 Write a procedure which can be used to print a coarse 'graph' for
any real-valued function f of a real variable x. This should be written as
a procedure with real parameters lo, hi (the lower and upper limit of the
values of x for which f(x) will be graphed), lo_range, hi_range (the lower
and upper limits of the range of f that will be graphed), and an integer
parameter n (the number of lines on the printed output listing that the
graph should occupy). Your procedure should call a subprocedure,
'£_to-graph' to obtain the values of the function to be graphed. Vertical
and horizontal axes should be printed with the vertical axis at the extreme
left of the output listing. These axes should carry suitable markings to
indicate the scale. The x-axis should run horizontally.

How would you change this procedure if the x-axis is to run vertically
down the length of the output listing?

Ex. 23 Write a procedure which can be used to print a graph showing the
values of several functions f(x). The main input to this procedure should
be a sequence of tuple t of real numbers all having the same length. Each
of these tuples will reperesent a sequence of values of one function f(x).
Auxiliary inputs will be two real numbers, -lo- and -hi-, defining the
minimum and maximum values of the domain over which the dependent variable x
has been evaluated to produce the tuple t, a character string whose jth
character will be used to print points belonging to the graph of the jth
function, and an integer n indicating the number of lines of· the output
listing which the graph is to occupy. Your proce~ure should be written to
accept various numbers of tuples t. The scale of the graph should be
adjusted to reflect the largest and the smallest values appearing in any of
the tuples t. Axes should be printed with scales marked on both the x and y
axis. If the tuples tare too long to be displayed with the x axis running
horizontally, the graph should be turned 90 degrees so that the x axis runs
vertLcally down the listing.

Ex. 24 Write a procedure P which can be used to generate a variety of
commercial reports in graphical form. The inputs to P should be two tuples,
tl and t2, of sales or production figures; tl representing the 'current
year' and t2 the 'prior year'. The third parameter of P should be a two
character string defining the bar chart desired, encoded in the following
way:

'm' - monthly· figures desired
'c' - cumulative monthly figures desired
'd' - difference between current and previous year desired
'p' - percentage difference between current and previous year desired.

The 'd' chart should be organized as a series of adjacent pairs of bars

DATA OBJECTS AND EXPRESSIONS, CONCLUDED Page 5-37

showing figures of the current year and the previous year. Axes should be
printed with the vertical axis using an appropriate scale and the horizontal
axis carrying the names of the months. The 'p' chart requires only a single
bar for each month. What other useful features can you design and implement
for a program of this kind?

Ex. 25 Write a procedure which prints 'bar charts' or 'histograms'. The
inputs of this procedure should be a tuple t of real numbers and an integer
n indicating the number of lines on your listing that the chart is to
occupy. A set of bars representing the components oft in graphic form
should be printed. The scale of the bars should be adjusted to reflect the
largest component and the smallest component oft, and the thickness of the
bars should be adjusted to the length of t and the number of columns
available on the output listing. Axes should be printed with the vertical
axis being scaled. If tis too long for the required number of bars to fit
horizontally, the chart should be turned 90 degrees so that the bars of the
chart are horizontal.

Ex. 26 Generalizing the procedure of Exercise 25, write a procedure which
prints bar charts with bars which are divided into different 'zones'
representing different sets of quantities. The main input to this procedure
should be a sequence of tuples t of real numbers all having the same length.
(But think of a good way to handle the case in which not all tuples have the
same length!) The auxiliary inputs to the routine are a character string
whose jth character will be used to print the jth zone of each bar and an
integer n indicating the number of lines that the chart is to occupy on your
listing. The procedure should be written to allow various number of
parameters t. If the tuples tare too long for the required number of bars
to fit horizontally, the chart should be turned 90 degrees so that the bars
are horizontal.

Ex. 27 Write a procedure which can be used to print a graph of the 'level
curves' or 'contours' for a real-valued function of two

TO BE CONTINUED

Ex. 28 Write a translation program which translates French to English
word-by-word. (Warning: such a program will produce extremely mediocre
translations). The program should read a file of lines containing
successive blank-separated pairs of French words and their English
translations, and then read a French passage to be translated and print out
its English translation.

Ex. 29 Modify the word-by-word translation program described in Exercise 28
so that it becomes interactive, and so that it is prepared for the fact that
certain French words might have several possible translations into English.
When such words are encountered during translation, a numbered menu of all
of them should be displayed, and the user should then have the ability to
continue by selecting one of these possible translati~ns.

Ex. 30 PERT charts are used by project administrators to track progress and
monitor critical activities in large projects. To set up such a chart, one
first reads in a set s of pairs [activityl, activity2] defining the
collection of all activities that must finish before any given activity2 can
start. One also reads a map T sending each activity to its expected

---------~----- ----

DATA OBJECTS AND EXPRESSIONS, CONCLUDED Page 5-38

duration. Then one calculates the earliest time that each activity A can
finish, and for each such A, the set of all activities whose completion is
critical to completing A by this time. Then one can print a list of all
activities in order of their completion times. Then, working back from the
final activity which marks the completion of the whole project, one can
calculate the set of all critical activities, that is, all activities which
must be completed on time if completion of the whole project is not to be
delayed. One can also calculate and print the degree of 'slack' available
for each activity, i.e. the amount that its completion could be delayed
without slowing completion of the whole project.

Develop a program that calculates this information and prints it out in
a set of attractively formatted tables.

Ex. 31 (Continuation of Exercise 30) Once started, large projects often
begin to 'slip' because some of their critical activities are not completed
on time. Modify the PERT program of Exercise 30 to allow it to read a list
of activities which have already been started, together with their expected
comple~ion times, a new list of critical activities, and a revised table of
'slack for all (started and unstarted) activities. Can you design and
implement any additioanl features which would invoke this PERT program more
a useful planning tool, especially if it is to be used interactively?

Ex. 32 Write a program which will generate the integers from 4000 through
4100 and print them out with appropriate check characters (See Exercise XXX)
appended. Write another program which will read in items to which -check
characters have been appended and reject items in which errors are detected.
For the integers from 4000 through 4100 with check characters appended, see
how many will yield undetected errors if one digit is mistyped or if two
digits are transposed.

Ex. 33 Add code to the banking system shown in Section 5.4.3 so that it
insists that a customer pays at least five percent of his overdraft debit by
the end of each month and adds a warning notice to his monthly statement if
this is not done.

Ex. 34 Add code to the banking system shown in Section 5.4.3 so that it can
handle a 'report' transaction (R), which generates a report of the total

·number of transactions handled and the total dollar volume of transactions
handled, by category of transaction for each hour of the current day, up to
the current hour.

Ex. 35 A confidence man trying to pass forged checks drawn on an account
which is not his own may try to go from one teller to another (in one or
more branches of a bank) cashing checks repeatedly at teller windows. Add
code ~o the banking system shown in Section 5.4.3 which will make this more
difficult to accomplish. Your code should keep track of all withdrawals
made from a given account within two days before the current day. If these
withdrawals add up to more than 20% of the total amount that can be drawn
from the account, the teller entering a withdrawal should be alerted by
receiving a statement of the total number of checks withdrawn on each of
these days, and of the total amount withdrawn on each of these two days.
Withdrawals for which this warning is issued should be held until the teller
sends in a go (G) transaction and should be dropped if the teller sends in a
kill (K) transaction instead.

DATA OBJECTS AND EXPRESSIONS, CONCLUDED

Ex. 36 Write a print_monthly_statement procedure invoked near the
the -process_transaction- procedure shown in Section 5.4.3. Your
should print this statement in an appealing format, appending end
information and warning messages as required.

Page 5-39

end of
procedure

of year

Ex. 37 Write the print_interbank_balances procedure invoked near the end of
the -process_transaction- procedure shown in Section 5.4.3. This should
list balances due to and from other banks in two ways, the first sorted in
decreasing order of net amount due to/from other banks, the second sorted
alphabetically by the name of the bank. The total change in sums due
to/from other banks should also be reported.

Ex. 38 A meteorological station measures the temperature every hour,
producing records arranged as a sequence of tuples t, each t having length
24 and representing a day's temperature measurements (the first being taken
at midnight). Write a program which will read this data and print out a
record of the highs, lows, and mean temperature for the entire day, and also
the highs, lows and mean temperature for the 'daylight' hours (7 AM through
6PM).

Ex. 39 The bureau of crime statistics receives annual reports from all
cities and incorporated towns, showing the number of major felonies recorded
for the year. It then calculates the total number· of cities and towns
reporting felonies in the ranges 1-100, 101-500, 501-1000, 1001-2000, and
more than 2000. Assume that the file of data being read is a set of cards,
each of which contains the name of a town and the number of reported
felonies, separated by a blank, write a program for preparing and printing
this report.

Ex. 40 When commands need to be entered interactively at a terminal, it is
convenient to allow the shortest unambiguous prefix of any command to serve
as an abbreviation for the command. Write a procedure which makes this
possible. (Hint: alphabetize the set of allowed commands and locate
prefixes by a fast search in this alphabetized list).

Ex. 41 Large sets of alphabetic strings which need to be stored can be
represented in compressed form by arranging them in alphabetical order.
Then all the strings beginning with a particular character, say 'a', can be
preceded by the string 'la', and the initial letter 'a' dropped from all of
them. Similarly, if the group of strings beginning with the letter 'a'
contains more than two successive strings whose second character is 'b',
then the whole group of such strings can be prefixed by the string '2b', and
theinitial letters 'ab' dropped from all of them. This transformation can
be applied to as many initial characters as are appropriate.

Write a procedure which takes a sets of strings, alphabetizes it and
compresses it using this technique. Write another procedure which takes a
sets of strings represented in this form and prints s in its original
alphabetized form.

Ex. 42 Generate about a hundred random pairs of tuples, tl and t2, of the
same length, all of whose components are real numbers. Then count the
number of those t's which satisfy the following inequality:

(+/[x*x: x IN tl])*(+/[x*x: x IN t2])

DATA OBJECTS AND EXPRESSIONS, CONCLUDED Page 5-40

< ABS(+/(tl(i)*t2(i): x IN (1 •• #tl]J).

(Be careful not to be· fooled by small errors in the computation, i.e. a
pair of tuples that barely satisfies or fails to satisfy the preceding
equality should be considered indeterminate and ignored). What percentage
of the tuples tested satisfy this inequality? What do you deduce from this?

Ex. 43 Run the following programs and see what results they produce

(a) x:•2.0; (FOR n IN [1 •• 100]) x:•x*x; print(n,x); END;

(b) x:•0.5; (For n IN (l •• 100)) x:•x*x; print(n,x); END;

Ex. 44 Build and print out the following sets, letting x
vary over 10 real numbers chosen at random from the range
1.0 to 10.0:

(a) The set of x for which x**O or x**O.O is different from 1.0.

(b) The set of x for which x**O or x**O.O is different from 1.

(c) The set of all differences sqrt(x)-x**0.5.

(d) The set of all differences x**0.5 - x**(l.0/2.0).

(e) The set of all differences x*x-x**2.0, and the

set of all differences x**2-x**2.0.

(f) The set of all differences x-(x**3)**(1.0/3.0).

(g) The set of all differences x*x/x-x.

(h) The set of all x such that SIN(x)**2+cos(x)**2•1.0.

Ex. 44 Write a short program which would work perfectly if perfectly
accurate real arithmetic were performed but which fails catastrophically
because of small inaccuracies in the computer representation of reals.

$

r.uAPTER 6

ADDITIONAL CONTROL-LIKE FEATURES OF THE SETL LANGUAGE

In the present, relatively short, chapter we round out our account of
the control structures of SETL by describing certain useful facilities not
covered in earlier chapters.

Chapter Table of Contents

6.1 Refinements
6.2 The CONST Declaration
6.J The ASSERT Statement
6.4 Macros

6.4.1 Macro Definitions
6.4.2 Parameterless Macros
6.4.J Macros with Parameters
6.4.4 Macros with Generated Parameters
6.4.5 The Lexical Scope of Macros. Macro Nesting
6.4.6 Dropping and Redefining Macros

6.5 Programming Examples
6.5.1 Iteration Macros

6.6 Exercises

6.1 Refinements

By now you will be familiar with the general process of program
development. Starting from the description of a problem, one sketches out a
general approach, breaks the problem into simpler subproblems, and then
refines an initial program sketch until a full program, complete in all its
details, emerges. This process of stepwise refinement is central to
programming: breaking down the initial problem into more manageable pieces
is the only way we have of coping with really complex tasks. Without some
machinery to help us in this subdivision process, it would be impossible
(not just difficult) to write large programs. The main tool used to
decompose a problem into relatively independent components is that presented
in Chapter IV, namely the use of functions and procedures, which communicate
with each other by passing parameters and returning values. However, in
some cases there is no need to cling to this parameter-passing discipline:
the problem breaks down into a simple sequence of actions which can as well
be made global. For use in such cases, SETL provides a different syntactic

ADDITIONAL CONTROL-LIKE FEATURES OF THE SETL LANGUAGE Page 6-2

dechanism: the REFINEMENT, which allows the user to name groups of actions
in the procedure in which they are used and to invoke them by name •

A refinement is a sequence of SETL statements, preceeded by a name and
two colons, as in the following example:

converge::
X : • 0 ;
y : = 1 ;
z := fun(x,y,100) ;

A procedure which uses refinements names the refinements it uses in the
order in which they are used. A given refinement can only be invoked once.
If a given sequence of statements is to be used more than once, it must be
made into a procedure. The following example shows the use of refine~ents.

program roots ;
get_coefs ;
eval_discr ;
eval_roots ;
print_roots ;

$ Calculate and print roots of quadratic equation.
$ Step 1: get coefficients of the equation.
$ Step 2: evaluate the discriminant of the equation.
$ Step 3: evaluate the roots of the equation.
$ Step 4: print the roots.
$ Next follows the four refinements just invoked.

get_coefs:: read(a,b,c) ;

eval discr:: -

eval_ roots: :

IF a• 0 THEN print('Degenerate case')
END IF ;

d :• b ** 2 - 4-0 * a * C . ,
IF d < 0 THEN

print('Complex roots') stop . ,
ELSE

discr : "' sqrt(d)
END IF;

xl :• (-b + discr)/(2.0 * a)
x2 :• (-b - discr)/(2.0 * a)

print_roots:: print('First root:
,

xl) . , ,
print('Second root:

,
x2) ; ,

stop

STOP

Execution of a program with refinements proceeds as if the body of the
refinement (the statements that follow the double colon) had been inserted
at the point at which the refinement is named. Note that the refinements
have no parameters and need contain no RETURN statements. They are in the
same scope as the procedure, module or main program in which they appear;
thus they have access to all the identifiers that are visible in this
procedure, module· or main program. In the example above, the variables xl,
x2 and discr are used in several refinements and could also be used in the
main program which invokes these refinements.

ADDITIONAL CONTROL-LIKE FEATURES OF THE SETL LANGUAGE Page 6-)

Refinements allow us to write a procedure or program with a 'table of
contents' as it were. To someone who is only interested in the rough
structure of an algorithm, reading only the names of the refinements and the
comments attatched to these names may be sufficient to gain a quick
understanding of its workings. This requires that the names chosen for the
refinements be meaningful and reflect their purpose. Here, as elsewhere, a
judicious choice of names will add significantly to the understandability of
a program.

6.3 The CONST Declaration

It is often convenient to use a symbolic name for a constant appearing
repeatedly in a program. Among other things, naming a constant and using
its name rather than its explicit representation makes it much easier to
modify your program if modification subsequently becomes necessary. To
define constants, one or more constant declarations are used. Generally
speaking, such declarations will have the form

(1) CONST const_namel•const_expnl,const_name2•const_expn2, •• ,
const_namek•const_expnk;

An example is

CONST pi•3.14159,two_pi•6.28318,vowels•{'A','E','I','O','U'};

This example illustrates the following rules:

(i} Each const_namej in (1) must be a valid SETL identifier. By virtue of
its appearance in (1), this identifier becomes a constant identifier, i.e.
a synonym for the constant denotation, const_expnj, matched to it in (1).
It retains this meaning throughout the scope of the identifier.

(ii) Each const_expnj appearing to the right of an
declaration like (1) must be a valid constant expression.
are built out of the following:

equal sign in a
Such expressions

(a) Elementary constant denotations, each of which designates an
integer, a real number, or a quoted string.

(b) Constant identifiers, i.e.
introduced by earlier CONST declarations.
to write

identifiers of constants
For example, it is possible

CONST one•l,two=2,one_and_two•{one,two};

This is equivalent to

CONST onelml,two=2;
CONST one_and_two={l,2};

ADDITIONAL CONTROL-LIKE FEATURES OF THE SETL LANGUAGE Page 6-4

(c) Simple identifiers. An otherwise undeclared identifier
appearing within a CONST declaration is treated as an impl~citly
declared string constant whose value is its capitalized name. For
example, in the absence of other declarations, the declaration

CONST colors•{red,green,blue};

is equivalent to

CONST colors•{'RED','GREEN','BLUE'};

(d) Compound constant denotations can also appear in CONST
declarations. Such denotations are built from elementary constants of
the above forms (a-c) using set and tuple brackets but no other
operators. This means that the constructs

CONST complex_thing•[{'A',l},{'B',2},{{}}];

CONST let_l='alpha',let_2='beta',let_map•{['A',let_l], ['B',let_2]};

are all legal, but that the declarations

CONST two_pi•2.O*3.14159;

and

CONST sixty_blanks•6O*'';

are invalid, since they both involve operators other than set or tuple
brackets. Note also that a nested construct like

(2) CONST number_name•{ [l,one], [2,two], [3,three] };

can be used even in the absence of other declarations. Assuming that
no other declarations are present, (2) is exactly equivalent to the
declaration

CONST one='ONE' ,two='TWO',three='THREE';
number_name•{ [1, 'ONE'], [2, 'TWO'], [3, 'THREE']};

(See (c) above).

(e) A constant identifier introduced by a CONST declaration
retains its fixed constant meaning over the scope of the identifier
(see Sections 4.2 and 9.1). This scope will be either an entire
program, a program module, or a single subprocedure.

In addition to the CONST declaration form (1), the abbreviated
form

(3) CONST const_namel, ••• ,const_namek;

ADDITIONAL CONTROL-LIKE FEATURES OF THE SETL LANGUAGE Page 6-5

is allowed. That is, some or all of the parts '=const_expnj' appearing in
(1) can be omitted. An identifier appearing with this elision in a CONST
declaration is treated as an implicitly declared string constant, whose
value is its capitalized name. For example,

CONST one,two,three;

is equivalent to

CONST one='ONE',two='TWO',three='THREE';

See Section XXX for an explanation of the place within programs or
procedures at which CONST declaration can appear.

6.4 The ASSERT Statement

The form of an ASSERT statement is

(1) ASSERT expn;

where -expn~ designates any Boolean-valued expression_. To execute such a
statement, the -expn- it contains is evaluated. If the resulting value is
FALSE, a message of the form 'ASSERTION FAILED AT LINE XXX OF PROCEDURE YYY'
is produced, and execution terminates; if TRUE, then control passes
immediately to the statement following the ASSERT statement. (More
precisely, a FALSE assertion will terminate execution if the 'check
assertions' feature of the SETL execution-time system is switched on.
Moreover, if the 'confirm assertions' feature of the SETL execution-time
system is switched on, then each TRUE assertion will produce a message
'ASSERTION PASSED AT LINE XXX' OF PROCEDURE YYY'. (See the discussion in
Section 8.5.1.4 of the execution-time control card parameter ASSERT).

ASSERT statements are ordinarily used in a program for one of two
reasons:

(i) To document and to check logical conditions which the
to be critical for correct functioning of his program.
ASSERT statements constitute a powerful program debugging
7.2 and 7.7.1 for additional discussion of this point.

programmer knows
Used in this way,

aid. See Sections

(ii) To trigger any side effects caused by evaluation of the Boolean -expn­
that the statement (1) contains. Note that this -expn- can contain
assignments or other subexpressions (such as existential or univers•l
quantifiers) whose evaluation causes side effects. Evaluation of the ASSERT
statement (1) will always trigger these side effects even if assertion
checking is switched off). (See the discussion of control-card parameter
ASSERT in Section 8.5.1.4).

Perhaps the commonest case of this second use of the ASSERT statement
is in constructs of the form

ASSERT EXISTS x IN slC(x);

This construct can be used whenever one is certain that the set {x IN

ADDITIONAL CONTROL-LIKE FEATURES OF THE SETL LANGUAGE Page 6-6

slC(x)} is non-null, and in this case it will always give x a value such
that C(x) is TRUE. A similar, somewhat more elaborate use of the ASSERT
statement is shown in•

ASSERT (EXISTS x IN slC(x)) OR (EXISTS x IN sllCl(x));

Assuming that the assertion is TRUE, execution of this statement will always
set x either to an element of s for which C(x) is TRUE or set x to an
element of sl for which Cl(x) is TRUE.

6.5 Macros

Macros are abbreviations that obviate the need to write similar pieces
of code repeatedly ; they allow the SETL programmer to introduce and use
various convenient 'shorthand' notations for constructs that are used many
times in a program. Macros, like procedures, are defined once and can then
be used several times.

MACROs and PROCEDUREs resemble each other in that both give ways of
associating names with bodies of code text and of invoking this code when
the name is mentioned. However, when a macro is mentioned in a program
after having been defined, the program text which it represents is
substituted directly for the invoking occurrence of the macro name; this
substitution is called macro-expansion, and is to be contrasted with the
detour-and-return action (see Section 4.1) triggered by a procedure
invocation. That is to say, macros make use of a purely 'textual'
mechanism; they simply replace the name of the macro by its definition at
the point where the name appears. This means that unlike procedures (which
can be invoked before their definition has been seen), macros mus~ be
defined before they are used, i.e. the definition of a macro must appear
physically in a program before the macro is first used.

6.5.1 Macro Definitions

Macros in SETL are defined by using one of the following constructs:

(1) MACRO m_name;
macro-body

ENDM;

(2) MACRO m_name(p_namel,p_name2 ••• p_namek);
. macro-body

ENDM;

(3) MACRO m_name(p_namel •• ,p_namek; gpnamel, •• ,gpnamej);
macro-body;

ENDM;

The form displayed in (1) is that of a parameterless macro. The construct
(2) shows that macros can have parameters. The form (3) includes generated
parameters,-whose purpose and use will be described below.

ADDITIONAL CONTROL-LIKE FEATURES OF THE SETL LANGUAGE Page 6-7

After a macro has been introduced by one of the above constructs, it
can be invoked simply by using its name, followed by appropriate parameters.
We will now examine the use of these forms, starting from the simplest one,
the parameterless macro.

6.5.2 Parameterless Macros

Macros without parameters provide for the simplest kind of
abbreviation: the name of such a macro simply stands for its macro body,
which replaces the macro name whenever this name appears. For example, we
can write:

(4) MACRO countup;
t :• t+l;
if t>limit then

errmsg('out of bounds')
end if

ENDM;

Following the appearance of definition (4) in a program, module, or
procedure, any subsequent appearance of the name -countup-, for example in
the line

(5) countup;

triggers replacement of (5) by the body of 4, i.e. by the four lines of
SETL code shown above (which of course increment and test the variable t).

We note that this replacement is made by the compiler, but it is not
shown in the source program listing which the computer produces. Line (5)
appears in the listing as is. However, compilation proceeds as if the macro
body of (4) had occurred instead of (5).

Our next example shows that a macro body need not consist of a group of
statments, but can be any sequence of tokens, including sequences which are
not meaningful in themselves. A macro which exploits this fact is:

MACRO find; ASSERT EXISTS ENDM;

This macro can be used as follows:

find x in slc(x);

6.5.3 Macros with Parameters

Macros with parameters are introduced by macro definitions of the form

(1) MACRO mname(pnamel, ••• ,pnamek);
body

ENDM;

ADDITIONAL CONTROL-LIKE FEATURES OF THE SETL LANGUAGE Page 6-8

Here, -mname- can by any legal SETL identifier which becomes the name
of the macro introduced by (1); pnamel, ••• ,pnamek, called the formal
parameters of the macro, can be any list of distinct identifiers. The
-body-, known as the body of the macro, or equivalently as its macro text,
can be any legal SETL text fragment.

After being introduced by
be invoked simply by using
arguments, at any place within
this invoking occurrence is

a macro definition (1), the macro -mname- can
its name, followed by a list of k actual

a program. Suppose, to be specific, that

(2) mname(argl, ••• ,argk)

Then the SETL compiler replaces the macro invocation (2) with an
occurrence of the -body- of the corresponding macro-definition (1), but in
this body every occurrence of a formal parameter name -pnamej- will have
been replaced by an occurrence of the corresponding argument -argj-. We
emphasize again that this is done by replacement of text, and not, as in the
case of a PROCEDURE call, by evaluation of arguments and transmission of
their values. This means that the arguments -argj- of macro-invocation need
not even be complete, evaluable expressions; indeed, they can be arbitrary
sequences of keywords, operator-signs, constants, or identifiers. (However,
since commas are used to separate the successive arguments of a macro
invocation, no argument of such an invocation can contain an imbedded
comma). This gives macros a syntactic flexibility which procedures do not
have, and which is sometimes useful. Suppose, for example, that we wish to
print out a series of examples illustrating the use of the compound operator
in SETL. This could be done directly by using the following code:

v:=[1,2,3,4,5];

print('Combining the components of V using the operator + gives', +/v);
print('Combining the components of V using the operator * gives', */v);

print('Combining the components of V using the operator MAX gives',
MAX/v);

etc.

y using a suitable macro, we can abbreviate this repetitive code, as
follows:

(3) MACRO print_op(opsign,op);
print('Combining the components of v using the operator',opsign,

'gives',op/v)
ENDM;

v:=[1,2,3,4,5);

print_op('+',+);
print_op('*',*);
print_op('MAX',MAX);

ADDITIONAL CONTROL-LIKE FEATURES OF THE SETL LANGUAGE Page 6-9 -

This illustrates the possibility of transmitting an isolated operator
sign to a MACRO as an argument; notice that no corresponding possibility
exists for PROCEDUREs.

For a second example illustrating the syntactic flexibility which
sometimes justifies the use of a MACRO rather than a PROCEDURE, consider the
common situation in which we need to check repeatedly for erroneous data and
return some appropriate error indication if an error is detected. Suppose,
to be specific, that these checks need to be made as part of some procedure,
and that when an error is detected, we want the procedure to return
immediately and to transmit an appropriate numerical error indication. The
following MACRO is suitable for this purpose.

(4) MACRO check(condition,error_no);

IF NOT condition THEN RETURN error_no; END

ENDM;

After introducing this macro, we can check for errors very simply, e.g. by
writing

(5) check(a<b,l); $ error numberl

check(f(x)/•OM,2); $ error number 2
••• etc.

Note that a PROCEDURE invocation could not trigger an immediate RETURN
in the same convenient way that this MACRO does.

A syntactic point to be noted is that neither the body of the MACRO (2)
nor the body of (3) ends with a semicolon. This is simply because it is
most natural to put the semicolon which terminates an invoked macro body
after the macro invocation which triggers insertion of this body (cf. (3)
and (4)). Since a substituted body replaces each macro invocation, putting
a semicolon both after a macro body and after its invocation would lead
(after substitution) to the (harmless) occurrence of a double semicolon.
This is the stylistic reason why semicolons are omitted after the last line
of the body of the macros (2) and (3).

As a final example, let us mention the oft-used macro which names the
last component of a tuple:

MACRO top(stack);
stack(#stack);
ENDM;

This macro can be used in expressions as well as in assignments, for
example:

etc.

x :• top(v);
top(v) :• y+l;

ADDITIONAL CONTROL-LIKE FEATURES OF THE SETL LANGUAGE Page 6-10

6.5.4 Macros With Generated Parameters

In addition to
use of generated
variables play for
definitions having

its ordinary parameters and arguments, macros can make
parameters which play the role for macros that local

procedures. To make use of this feature we write macro
the form

(6) MACRO mname(pnamel, ••• ,pnamek;gpnamel, ••• ,gpnamen);
body

ENDM;

The additional parameters gpnamel, ••• ,gpnamen appearing after the first
semicolon in (6) but not in (1) are called generated parameters. The
programmer is not supposed to supply arguments corresponding to parameters
of this kind when a macro like (6) is invoked. Instead, one invokes a macro
like (6) in exactly the same way as the macro (1). However, when a macro
like (6) with generated parameters is invoked, the SETL compiler generates
new tokens (of an artificial form that cannot be used accidentally by the
programmer) and substitutes them for occurrences of the corresponding
generated parameter names in the -body- of (6).

A common use of this option is to generate a supply of fresh variable
names when these are required for local use within the substituted body of a
macro. Suppose, for example, that we want to write a macro which tests the
value of an expression e for membership in a given sets, and which returns
immediately from the procedure invoking the macro in case the test e IN s
fails. Suppose also that in case of failure we want to return both a
numerical error indication and the value of the expression e. If we write

MACRO double_check(e,error_no);
IF e NOTIN s THEN RETURN [error_no,e];

ENDM;
END;

we would not get exactly the desired effect because when this macro is
invoked, it will insert the actual argument fore in two places, which will
lead to repeated evaluation of e. For example:

double_check(f(y)+g(y), 15);

would expand as

IF f(y)+g(y) NOTIN s THEN
RETURN (15,f(y)+g(y)];

END;

In order to avoid this double evaluation we can use the following macro:

(7) MACRO in_check(e,error_no;temp) $ macro with generated parameter

IF (temp:•(e)) NOTIN s THEN RETURN [error_no,temp); END

ENDM;

ADDITIONAL CONTROL-LIKE FEATURES OF THE SETL LANGUAGE

To invoke this macro we could, for example, write

(8) in_check(t WITH:• x,1); ...
in_check(t WITH:= y,1);
••• etc.

$ error number 1

$ error number 2

Page 6-11

Note that if (as in (8)) an argument expression -e-, causing-some side
effect, is passed to the macro (7), it becomes essential that the value of
-e- should be assigned to a auxilary variable (the generated parameter
-temp-) and that e should not be evaluated twice. Note also that each use
of (7) will generate a new name for the parameter 'temp' so that no
accidental interference will occur between invocations of this macro.
Finally, note the use of a precautionary extra pair of parentheses around
the occurrence of the parameter -e- in the body of (7); these parentheses
ensure that the argument transmitted to the macro in place of -e- will be
handled as a unit, no matter what its actual syntactic form happens to be.

6.5.5 The Lexical Scope of Macros. Macro Nesting.

The scope within which a macro will be active is determined by the
context in which its definition appears. A macro name introduced by a macro
definition appearing in a PROCEDURE (resp. a MODULE, PROGRAM, or LIBRARY,
but outside any PROCEDURE) maintains its meaning as a macro throughout this
PROCEDURE (or PROGRAM, MODULE, or LIBRARY), but not past the PROCEDURE's
end. Note however that the macro can be redefined by a later macro
definition appearing in the same PROCEDURE (or MODULE, etc.), or can be
dropped. The way in which macros are redefined and dropped is explained in
more detail below).

Macro-bodies can contain invocations of other macros; and macro- names
can be transmitted to other macros as arguments. For example, suppose that
we define the following two macros:

MACRO triple(pa);
pa,pa,pa

ENDM;

MACRO q;
'hello there'

ENDM;

Then, after expansion, the macro invocation

triple(q)

becomes

'hello there','hello there','hello there'

This example illustrates the fact that macro-expansion is outside-in and
recursive. That is to say, the expansion of a given macro body may trigger
the expansion of an inner macro invocation.

ADDITIONAL CONTROL-LIKE FEATURES OF THE SETL LANGUAGE Page 6-12

Macro bodies can also contain imbedded macro definitions. For example,
the definition

(9) MACRO def_x(pa);
MACRO x;pa ENDM;

ENDM;

is legal.
the macro
expanded.

An imbedded macro defintion IMD becomes active when one invokes
M in which IMD is imbedded, thus causing the body of M to be

As an example, note that after expansion the sequence

(10)

becomes

(11)

de f_x ('aaa') ;
X X X
def_x('bbb');
X X X

'aaa' 'aaa' 'aaa'
'bbb' 'bbb' 'bbb'

This happens in following way. The first line in (9)
becomes the macro definition

MACRO x;'aaa' ENDM;

is expanded, and

Then the second line of (10) is subsequently expanded. It generates
the first line of (11). After this, the third line of (10) is expanded into

MACRO x; 'bbb' ENDM;

This changes the meaning of the macro x, causing the fouTth line of
(10) to expand into the second line of (11).

6.5.6 Dropping and Redefining Macros

If a macro is only needed over a limited portion of a program, it is
possible to 'undefine' it so that the name of the macro can be used for
another purpose. To erase a macro definition, one uses the following SETL
construct.

DROP macrolist;

where macrolist is a list of macro names, separated by commas. Once a macro
has been dropped, it is possible to give it a new definition, or to use its
name for any SETL· object, without confusion. For example,

(12) MACRO x; print('now you see it') ENDM;
x;
DROP x;
x;

$ this drops x from macro-status

ADDITIONAL CONTROL-LIKE FEATURES OF THE SETL LANGUAGE

MACRO x; print('now you don''t'); ENDM;
x;

expands into

(13) print('now you see it');
x;
print('now you don't');

Page 6-13 --

This follows since the first line of (12) makes x a macro equivalent to 'now
you see it', but then the third line of (12) drops x from macro status, so
that the fourth line of (12) carries over unchanged to become the second
line of (13). The new definition of xis then seen, invoked, and expanded.

Note that the compiler will see the line

x;

as an invocation of some unspecified procedure x. If no such x exists, the
program will of course not execute.

Considerably more elaborate macro features than those we have described
are supported by other programming languages, especially by machine level
'assembly languages'. However, high level languages like SETL have less
need for complex macro features than do lower-level languages, and thus the
macro facility that SETL provides will be found adequate for the use
normally made of it. Let us remark that macros, like procedures, perform
the useful function of hiding low-level details, and thus help make a
program more readable and more modular. The information-hiding capablity of
macros is most useful when we want to 'shield' a program from possible
changes in the structure of composite objects which it manipulates. · The
organization of a data-base is a good example. Suppose that a library
catalog is to be built. Each book has an entry in the catalog, whi~h
includes the title, author, date of publication, subject, and library of
Congress number. The catalog itself can be structured, let us say as a map
whose domain is the set of call numbers, and whose range is a set of tuples
of length 5, containing the above information. In this situation, we may
find it appropriate to write

MACRO title(call_number)
catalog(call_number)(l)

ENDM;

MACRO author(call_number)
catalog(call_numbeT)(2)

ENDM;

•
•
•

thereby hiding the tuple structure of the data from its user.
us to write:

if author(x) • 'Barth'•••

---------- ----

This allows -

ADDITIONAL CONTROL-LIKE FEATURES OF THE SETL LANGUAGE Page 6-14

rather than having to recall that the author is stored in the second
component of an element of the range of the catalog, etc.

6.6 Programming Examples

In this section we collect various programming examples which illustrate the
use of the SETL features descibed in this section.

Iteration Macros

Frequently one will be given a map (or programmed function) and an
initial element x, and will need to iterate over all the elements y• x,
f(x), f(f(x)), ••• , performing some operation repeatedly until an OM element
terminating the itertion is reached. Iterations of this kind can be written
as

(1) y:• X

(WHILE y/= OM)

END;

body of iteration
y:= f(y);

However, if a program uses many iterations of this kind, it may be worth
introducing a macro to abbreviate them. Using SETL's generalized loop
construct such a macro can be written as

MACRO ORBIT(y,x, f);
INIT y:= x; WHILE y/=OM STEP y:= f(y)

ENDM;

This macro enables us to write the loop Ml as

(lA) (ORBIT(y,x, f)) body of iteration END;

Note that the iterator introduced in this way can also be used in
setformers and tuple-formers, e.g. we can write

+/[e(y): ORBIT(y,x,f)]

to form the
e(f(x)), •••

sum e(x) + e(f(x)) + ••• , which includes all terms
up to the point at which f first becomes undefined.

e(x),

Another commonly occurring but somewhat more complex case is that in
which a map f is multi-valued, and we wish to generate all elements y
belonging to any sequence of elements zl ,z2, ••• ,zn starting with x•zl such
that [zi,z(i+l)] is a member off for all i in [1 •• n-1]. (In mathematics,
this set is called the transitive closure of {x} relative to f). To iterate
over the elements of this transitive closure (in a somewhat unpredictable
order), we can use the following loop, which makes use of two auxiliary
variables -to_process- and -seen_already-

I

I

ADDITIONAL CONTROL-LIKE FEATURES OF THE SETL LANGUAGE

(2) s:= {x}

to_process:= seen_already:= s;

(WHILE to_process/• { })
body of iteration
y FROM to_process;
to_process +:• f{y}-seen_already;
seen_already +:• f{y};

ENDM;

This loop can be abbreviated by introducing the following macro

MACRO TRANS_ORBIT(y,s,f; to_process,seen_already);

ENDM;

INIT to_process:• seen_already:= s;
STEP y FROM to_process;

to_process +:• f{y}-seen_already
WHILE to_process/• { }
seen_already +:• f{y};

Using this macro, the loop (2) can be written as

(2A) (TRANS_ORBIT(y,{x},f)) $ y iterates over all the elements
$ of the transitive closure off

body of iteration
END;

Page 6-15

This iterator can also be used in setformers, tuple-formers, etc. For
example, we can write

+/[e(y): TRANS_ORBIT(y,s,f)]

to sum the expression e over all the points belonging to the transitive
closure of s relative to f.

6.7 Exercises

Ex.l Write a constant map which sends each month of the year into the number
of days in the month. Assume that February always has 28 days.

Ex. 2 The code

sum:• O;
(FOR c•t(i)) sum+:• c; END

sums the components of the tuple t.
statement which relates the value
Execute this code and verify that the
How much slower do you expect the
loop run?

$

Into this loop insert an ASSERT
of the variable sum to the integer 1.

asserted assertion is always TRUE.
inserted ASSERT statement to make this

-HAFTER 7

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING

As noted in Section I.2, the normal stages of a program's life-cycle
are

(i) Initial conception, formulation of requirements.

(ii) Overall design of a progam that will meet these requirements.

(iii) Detailed design and coding.

(iv) Program review, with rework and extension as needed to clarify,
simplify, or improve efficiency.

(v) Development of a test plan; testing and debugging; removal
of errors, and retest.

(vi) Operational use of program.

(vii) Enchancement and repair during continuing operational use.

(viii) Retirement.

This chapter discusses various key aspects of this program life-cycle,
providing hints that aim to help the inexperienced programmer to cope
effectively with the pragmatic problems normally associated with program
design, debugging, and maintenance. Proper understanding of these issues
can improve the overall effectiveness and quality of your work.

Chapter Table .2!_ Contents:

7.1 Bugs: how to minimize them
7.2 Finding Bugs
7.3 A checklist of common bugs
7.4 Program testing

7.4.1 Quality Assurance Testing
7.4.2 Regression Testing

7.5 Analysis of Program Efficiency
7.5.1 Efficiency of Some of the Basic SETL operations;

Estimating the Execution Time of Loops

--------~--------------------------------

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING

7.5.2 Efficiency Analysis of Recursive Routines
7.5.3 More About the Efficiency of the Primitive SETL

operations~ A warning Concerning Value Copying.
7.5.4 Data Structures for High-efficiency Realization

of Important Operations.
Exercises
Formal Verification of Programs

7.7.1 Formal Verification Using Floyd Assertions:
General Approach

7.7.2 Formal Verification Using Floyd Assertions:
An Example

Formative influences on program development
Exercises
References to material on alternative data structures
References for Additional Material or Algorithms.

7.1 Bugs: how to minimize them.

Page 7-2

Any small error affecting the behavior of a program is called a bug.
Bugs are inevitable, but a few cardinal rules can help minimize the degree
to which they infest your programs.

(i) Know that they will occur. Since any small error, i.e. forgetting
a line, typing ,_, where '+' is meant, misspelling an identifier or keyword,
mis-parenthesising an expression, will cause a bug, you must train and
discipline yourself to higher levels of logical and typographical accuracy
in programming than are required in any other human activity. Be
suspicious. Program defensively. Check your programs scrupulously for
syntactic and logical correctness, several times if necessary, before you
try to run them. If in doubt as to the meaning of any operation or
programming language construct, look it up.

(ii) When bugs occur, your problem is to locate, recognise, and remove
them. Bugs cannot be located unless you know the programming 1anguage with
which you are working well enough to recognise problems when you are looking
at them. Bugs cannot be eliminated until you have understood them well
enough to know why and how they cause the faults that betray their presence.
Finding bugs, like finding needles in a haystack, calls for systematic
sifting, for careful detective work. A program is a delicate piece of
machinery, and it is simple folly to think that you can make it work by
kicking it hard in some random way to make its pieces fall into place.
Because they involve many submechanisms, all of which must interface
correctly if they are to work together properly, programs, like elaborate
combination locks, require careful analysis and attentive sensing of their
hidden internals when they need repair. The novice who tries to fix a
malfunctioning program without fully understanding the way in which it is
working is attempting a task that is far less hopeful than that faced by
someone who tries to open an unfamililiar safe without understanding its
workings or combination. 'The sequence 33-8-19-27 doesn't work? Then I'll
try 23-92-69-46. This doesn't work either? Then maybe 17-51-85-34 will be
luckier.' A student who allows himself to be drawn into of this sort of
thoughtless, random attempt to diagnose or repair a program will inevitably
find that his efforts drag on unsuccessfully, not only till the end of the
term or year, but until the end of the solar system, without revealing
anything. What is needed instead is a systematic, analytic approach.

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING Page 7-3

(iii) Though programs are almost never entirely bug-free, observance of
the rules of good programming style can reduce the density of bugs in your
initial program drafts and allow bugs to be found more quickly once testing
of your program begins. Finding the right approach to the programming task
that confronts you, the right style in which to start writing the code that
you need, is of prime importance. To find this 'right approach' requires
careful consideration of the logical structure of your programming task,
with the aim of defining a collection of intuitively transparent operations
which work well together and can be used to accomplish this task in as
straightforward a way as possible. Code should impress by its clarity,
naturalness, and inevitability, all of which make avoidance and exposure of
bugs easier, rather than by obscure trickery and impenetrable cleverness.
Programs that achieve brevity without sacrificing clarity are most
desirable, since lines of code that you never need to write will never
contain bugs. Effective brevity is attained by a correct choice of
intermediate operations and by systematic use of these operations to produce
the program you require. SETL is in itself a powerful programming language,
but especialy for larger, more complex applications it may be well to
program by first inventing a still more powerful language specially adapted
to your intended application. Then your initial program draft can be
written in this (possibly unimplemented) language, after which it can be
transcribed mechanically into SETL to make it executable. In this sort of
approach, the primitives of your invented language will become the
second-level procedures and macros of your SETL code. By using an auxiliary
language in this way and by handling its transcription into SETL in as
mechanical a style as possible, valuable protection against error is gained.
See Sections 4.2, 9.1 below for a discussion of related issues, and Section
xxx for an extended example of what is meant here.

(iv) Careful program documentation also serves to expose and eliminate
bugs. Good documentation will add an important degree of redundancy to your
program. Your code expresses your intent in one way and your comments
express the same intent in another. Discrepancies between the two indicate
the presence of bugs. Carefully thought-out comments should be added to a
program as soon as the code is written. Some comments will in fact be
written before the code to which they refer, in order to guide composition
of the code. Any additional comments needed to make documentation complete
should be added to the code while it is still 'fresh'; this creates an
opportunity to review the code, checking it for logical faults. After the
whole text, code plus comments, has been constructed and put into proper
format, it should be left to 'cool' for a few hours or days, after which it
should be reviewed attentively and suspiciously. Such a 'cooling off
period' will dispel some of the initial misapprehensions which may have
crept into a code, and thus will allow various systematic errors to be
corrected.

(v) As has been said, brevity in coding is desirable, but this should
be the kind of brevity that flows naturally from an effective overall
approach to the programming task at hand, not the undesirable brevity which
comes from stinting redundancy (e.g., by using short, un-mnemonic, variable
names.) Use the features of the SETL language vigorously and eliminate
clumsy circumlocations where direct modes of expresion exist; but avoid
obscure tricks even even where these gain brevity.

(vi) Certain constructions, for example those which perform elementary

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING Page 7-4

arithmetic computations to determine positions in strings and tuples (for
which 'off-by-one' errors can easily occur) are bug-prone and need to be
approached with cau~ion ■ For example, what is the length of a string
s(i •• j), is it j-i, j-i+l, or j-i-1? To ensure that s(i •• j) is exactly k
characters long, what value do we give j: i+k-1, or i+k+l? Learn to
recognise these trouble spots, double-check item when preparing your code,
and surround them with ASSERT checks when you do use them. For example, if
you write

ASSERT

immediately
pinpointed
way back to
introduce,
situations
the macros

before proceeding on this assumption, your error will be
immediately; if you omit this check, you may have to find your
this error from some obscure symptom. A related idea is to
and use, a collection of standard macros to handle these touchy

in ways that are more instructive. For example, by introducing

MACRO len_from(i,j); j-i+l ENDM;
MACRO make_len(i,k); i ■■ i+k-1 ENDM;

we can accurately extract a string of length k from (s)
character position i by writing

s(make_len(i,k))

starting at

and can evaluate the length of s(i •• j) by writing len from(i,j)
(vii) As Donald Knuth has ·remarked, premature opiimisation is the root

of all evil in programming. Compulsive (and ultimately ineffective)
attempts to gain minor efficiency advantages often complicate programs and
introduce bugs into them ■ As you compose a program, remember that
substantial efficiency advantages will be gained globally by choice of
effective algorithms, not locally by complicating seizure of minor
advantages.

(viii) Prescreening routines, for example routines which examine a
program for tokens (such as RETRN) which are likely to be mispellings of
other, more frequently used, variable names or keywords may be available to
you. Grow accustomed to using these bug-finding aids (like RETURN in this
case), as well as any other available compile-time debugging aids based on
more sophisticated global program analysis routines.

(ix) Your program test plan should begin to be developed as your program is
being written, and a substantial portion of the collection of test-and
debug-~riented PRINT and ASSERT statements that you will use to test your
program should be composed and entered as soon as the first draft of the
program begins to approach completion. Early attention to your test plan
will serve to pinpoint complex program sections that require careful
testing. These are also the sections whose logic needs to be inspected most
closely before testing begins. See Sections 7.4 and 7 ■ 7 for additional
discussion of this point.

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING Page 7-5

7.2 Finding'Bugs

Even, alas, if you are very systematic and professional, some bugs will
creep into your program, and the problem will then be to find and fix them.
The following remarks should help you learn how to do this effectively.
Debugging always starts with evidence that a program error has occurred
somewhere during a program run. The problem in debugging is to work one's
way back, from the visible symptom first noticed, to the underlying error.
The errors one is looking for can be called the error sources or primal
anomalies: These are the first (incorrectly written) operations or
statements which get correct data from what has gone before them, but pass
data that is no longer correct to what comes after them. They are the
instructions at which your program first 'runs off the rails'. The initial
evidence of error that you see may relate only indirectly to these primary
error sources. The difficulty of finding the erroneous statements is
complicated by the fact that the full history of an extensive computation
comprises a vast mass of data, impossible to survey comprehensively. In
debugging you must therefore aim to explore as narrow a path as possible,
while still finding your way back to one or more primal anomalies.

A good first step, but one that should not be allowed to hold you up
too long, is to look closely at whatever fragments of correct output have
been produced. If little or no output is correct, then your program may
have, failed before even the first PRINT statement was executed. This hint
may help you narrow the bug hunt. On the other hand, if some output is
correct, then the program was probably functioning correctly till some point
past the statement which produced the last correct output. Find the ,Point
in your program at which this output was produced, and see what comes before
and after it. Again, this may narrow the hunt. Examine the erroneous
output carefully and try to see if its logical pattern reminds you of any
particular section of your program. This also can sometimes yield useful
hints concerning the likely location of the bug, especially if different
parts of your output data are produced by recognisably different sections of
code. If certain items of output that you expect are missing, try to see
what evidence there is that all the code that you expected to execute did
actually execute: remember than unanticipated data may have caused your
program to follow an unexpected path through its code, so that it may have
bypassed, or may never have reached, the code sections which were supposed
to. have produced the output which you are surprised not to see. Evidence of
this general kind, analysed, will in favorable cases point the finger of
suspicion at certain narrow program sections. However, in less favorable
cases, the available evidence will be ambiguous. In this case, you will
need to generate more extensive traces and dumps. This can be done in one
of two ways:

(a) By inserting additional PRINT statements into your program, to make
it print out something of a 'motion picture' of what has happened.

(b) By inserting various other checks, especially ASSERT statements,
which check assumptions on which your program depends, but which you are
afraid might .be failing.

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING Page 7-6

Sections 8.5.1.4 below will have more to say about technique (b), which
is related to the general issue of formal program validation. The following
more pragmatic hints ~ill help you to apply this technique effectively. It
is particularly important to place ASSERT statements in sections of code
known to involve delicate constructions, especially if (as in the case of
the 'off by l' bugs considered in the last section) the necessary checks are
simple. Since the correct functioning of a program often hinges upon the
assumption that key variables will change in a consistent way as iterative
execution proceeds (for example, always increasing or always decreasing) it
can be useful to save the last previous value of each significant variable
-var- and to write checks which compare the last previous value of -var­
with its current value. This can be done by introducing an auxiliary
variable -last var- for each -var-, and writing an assignment

last_var:= var;

whenever it is desirable to save the last value of -var-.

ASSERT var=last_var;
ASSERT var/=last_var;

Then checks like

ASSERT last var=OM OR var*last_var={ } AND var/=last_var;

etc. will all prove useful.

It may be useful to check an assertion the first few times it is
encountered, but not subsequently. (If this is done, and you select the
option (see Section 7.2) which prints a confirmation message each time an
assertion is checked, you should be able to tell that your program is
following its expected path.) The following macro is convenient for this
purpose:

MACRO ASRT(n;temp);
temp ?:= (n+l); ASSERT (temp -:= 1)=0 OR

ENDM;

If we use this macro, and for example write

ASRT(3) C;

then the condition C will be checked the first 3 times that it encountered.
(Look at this macro definition carefully, and make sure you understand the
way in which the dangling OR at the end of it controls the execution of the
expression C which we want to ASSERT a few times.)

Ultimately, however, the problem with a purely assertion-based
debugging technique is that it is not easy to formulate the necessary checks
comprehensively enough to make it unlikely that a bug (which probably
relates to something that has been overlooked) can slip through.

Hence one must often fall back on on method (a), which generates
additional raw evidence for inspection. The problem in using this method is
to avoid burying yourself in too voluminous a trace of the thousands, or
even millions, of events that take place as a program executes. To avoid
this danger a carefully planned sequence of probes is necessary. A good
idea is to resurvey your program, mentally list its main subphases, and
determine all the data objects which each phase passes to the next phase.

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING Page 7-7

If your program has been well designed, there should not be too many of
these objects, and then it is reasonable to print them out for inspection.
Before inspecting this information, review the logic of your program, and
make sure you know just what features you expect to find in values of the
variables that you have printed. Try to be aware of every feature on which
any part of your program depends. Then check the actual data. If the data
printed at the end of a phase looks correct in every detail, then this phase
is probably correct. If something strange looking appears in the data
produced by a given phase, while the data supplied to this phase looks
correct, then there is probably something wrong with the code of this phase.

When this stage of debugging is reached, you will at least have
determined which of the several phases -0f your code contains the error for
which you are hunting. At this point, it is a good idea to think over all
the evidence that you have examined, and see if any compelling picture of
the problem seems to suggest itself. Sometimes the fact that the offending
phase has now been located removes enough confusion for the difficulty to be
guessed quickly. If not, you will have to carry your tracing to a more
detailed level. This is a matter of inserting PRINT and ASSERT statements
more densely into the offending phase, in order to locate the particular
subphase that contains the error. As before, this is the subphase to which
good data is being supplied, but which is seen to pass bad data along to its
successor subphase.

(c) Once the bug location has been pinned down to a program section
roughly a dozen lines long, review the logic of these lines. Read them very
closely, looking for some misunderstanding which could have produced the
anomalous data which you know that this section has generated. Try again to
correlate data features with the operations responsible for producing these
features. If this doesn't work, take the data supplied to the erroneous
subphase, and try to trace the way that the subphase will act on this data,
by hand, step by step, until you spot some error.

(d) In most cases, these steps will find the bug without too irritating
an expenditure of effort. However, in the stubbornest, fortunately rare,
cases the problem for which you are hunting may still elude clear
identification. In these particularly resistant cases one of three causes
may be at fault:

(i) If the algorithm which you are using is complex, you may have
misunderstood its logic. It may be that no single line of your code is
wrong: rather, its overall pattern may be subtly wrong, causing it to
produce the output you see, rather than the results you wrongly expected it
to generate. Global logic errors of this sort are often quite confusing.
If you come to suspect that a problem of this sort has occurred, you should
reason once more through the structure of your program, trying to convince
yourself by careful analysis that it is logically sound. Section 7.7 below
describes the formal rules that underlie reasoning of this sort.

PROG_!{~_!':! ~l~~VELOPMENT, TESTING, AND DE BUGG ING Page 7-8

(ii) There may be nothing wrong: you may simply have misunderstood
what output your program was supposed to produce. Or you may have been
looking at the wrong phase of a program which really does contain a bug,
because you thought that the output of this phase showed some error, while
in reality the bug was elsewhere. Or you may not have been running the
program you thought you were running, or the version of the program you
thought you were running, or your program may have been reading input data
different from that assumed. In such case, take a few minutes to cool off,
review the whole situation, including the logic of your program, once more,
and start over.

(iii) Your problem may be caused by a true 'system bug', that is, an
error, not in your program, but in one of the many layers of prepackaged
software, including the SETL compiler, execution-time library, or operating
system under which you are running. Concerning bugs of this kind we can say
the following:

(iii.a) Don't be too quick to suspect them. Though such problems do
crop up from time to time, they are much rarer than errors in your
newly-written programs. Remember that dozens of people are using the same
software systems that you are, and that if the problem afflicting you is a
system-level problem, it would affect all of these people. Before you
become willing to blame your problem on anything other than an elusive fault
in your own program, you should always have examined your program with great
care, located a section just a few lines long which you can be sure is
receiving correct input (because you have printed and inspected its input)
and producing bad output (again, you must have printed and inspected this
output.) Finally, meticulous examination of these few lines, with review of
the definition of all the operations these lines involve, of the
parenthesisation of those lines, and of any applicable rules of operator
precedence must give you 'courtroo~' evidence that the system is not
performing according to its specifications. At this point you are almost
(but still not quite) in postion to report a system problem to the expert in
charge of maintaining your copy of the SETL system (or of the operating
system within which the SETL system runs.) Before doing so, however, you
should try to simplify the evidence still further, isolating the
malfunctioning lines into a malfunctioning program just a few lines long,
and then paring this program down still further if possible, ideally to the
point at which it contains just three lines: an assignment initialising a
very few variables, a single line which obviously does not function as it
should, and a print statement which confirms the fact that this line has
failed to act in the manner demanded by the rules of SETL. If the system
problem which you think lies at the root of your troubles disappears
somewhere during this sequence of steps, the cause of your difficulties may
not be a system problem at all, but an error or misunderstanding on your
part, which your attempts to locate the suspected 'systems problem' may have
clarified. In this case, chastened, you should return to your original
program, fix the error in it, and continue your debugging. If, however, you
do succeed in creating a very short program which gives unmistakable
evidence of system malfunction, you should transmit a complete, clean copy
of this program to a system expert. This should be accompanied by a clear
explanation of the problem you have pinned down. He will then take steps to
fix the SETL system, or to have it fixed.

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING Page 7-9

Note that problems in the SETL system, like problems in your own
programs, are most likely to concern marginal, rarely exercised cases, e.g.
treatment of null-sets, null-tuples, null-strings, etc. Though the system
has been in use for a few years and has been tested fairly extensively,
exhaustive testing of so complex a system is simply not possible. (See
S.ection 7.4.1 for a discussion of some of the issues involved in attempts to
test programs comprehensively.)

There is a few cases in which it is reasonable to jump a little more
rapidly to the conclusion that a system bug is affecting you. One is the
case in which two runs of absolutely identical programs and data yield
different results. Another is the case in which insertion into your program
of a statement which is harmless by definition changes the behavior of the
program significantly. For example, if insertion of a -print statement­
changes your program's flow of control, something is obviously amiss at the
system level ■ This may be evidence that can be reported to an expert
immediately: but see the caution extended in (f) below.

(e) It should be clear from what has been said that one of the very
first things you will want to trace when you start to analyse a
malfunctioning program is the input data it is reading. Always 'echo' this
data by printing it out immediately after it is read. Your input data may
not be what you think it is, or you may be reading it incorrectly.

(f) Especially if a difficult bug is being pursued, debugging as an
activity tends to create an atmosphere of confusion, which grows like a
thundercloud as the mind struggles to free itself from the misapprehension
which first allowed the bug to slip in. Particularly difficult bugs
sometimes make one feel that one is going insane, since the laws of logic
seem to be breaking down. To combat this perilous confusion, you must
maintain a very deliberate, step-at-a-time, and above all skeptical, attiud~
while you are debugging. Verify the situation at every turn; look at what
really is in your source text rather than trying to remember what was there:
print out a record of what your program is really doing rather than guessing
what is going on. Inexperienced student programmers often come to advisors
with old versions of programs that they are trying to debug, claiming that
'I ran this program on Tuesday, and I made two or three changes that I am
sure are harmless, and now it does't work.' A more experienced programmer,
who knows that the only valid evidence to work from is a current, single,
untorn listing showing program and output unmistakably together, will only
laugh at this ■

To reduce the level of your own confusion, it is sometimes helpful to
work over your problem with a friend, trying to explain what is going on,
and reviewing salient parts of the logic of your program with him, till he
begins to understand it. A more expert consultant will often be able to
spot the trouble that you have missed, but even if your 'consultant' is less
expert than you yourself, you will often find that the very act of
explaining the problem lets you spot what is wrong.

when
(g) Even when a program has once begun to function (and often even

it has been used successfully and intensively over a considerable

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING Page 7-10

period), it may still contain bugs, which .can lurk within sections of code
which are rarely, perhaps almost never, exercised. For this reason, code
inserted for debugging should generally not be removed once the bug is
found. Don't throw away your crutches: it may become necessary to debug
the same program again! Instead of removing debug code, you can 'comment it
out' by inserting a dollar sign at the start of each line inserted for
debugging. (Only inserted lines that never generated any evidence useful
for debugging should be wholly removed.) Another technique, particularly
useful during extended development and debugging of large programs, is to
make the most valuable debug prints and checks 'conditional', by including
them in IF-statements containing conditions which are normally false but can
be turned on by supplying control card parameters. (See Section X for a
discussion of control card parameters.) If this is done, it becomes possible
to examine the inner working of a malfunctioning program quickly, without
having to recompile it all ■

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING Page 7-11

7.3 A checklist 2..i. common bugs.

Certain bugs occur quite frequently, and the experienced programmer
learns to recognize their characteristic symptoms. Here is a checklist of
commonly occuring bugs, with some indication of the symptoms they are likely
to produce. We only list bugs that would pass through compilation
undetected.

Variable not given any initial value
Incorrect termination of a loop

(e.g. count off by 1)

Incorrect limits in string and
tuple slices (e.g. count
off by 1)

Incorrectly structured WRILE-loop
conditions or bodies, or
incorrect initial conditions
in WHILE-loops

Incorrect treatment of initial cases
in recursions, or bad procedure calls

Omission of QUIT or CONTINUE
statement

Mispelled variables, e.g. AO for AO,
Bl for 'Bl, cl for ci

Reading unexpected data

Unanticipated characters encountered by
string-scan operations

Not resetting a counter or accumulator

Failure to set a program switch

Parameters out of order in
procedure call

Shared global variable unexpectedly
modified by invoked procedure

Likely SETL Symptom

'Illegal data-type' error
Mi~sing items in data

collections, sums too
small if loop terminates
too soon; 'Illegal data-type'
error if loop terminates too late

(Similar to incorrect loop
termination)

Failure of program to
terminate

Failure of program to
terminate. Possible memory
overflow. Other effects
can sometimes be very
subtle

Program 'runs on' into code
not intended for execution.
Effects can be quite
subtle.

(Like uninitialised variable)

'Illegal data-type' error,
possibly no output

Failure of program to
terminate

Effects can be subtle.
(see 'Incorrect loop

termination')
Effects can be subtle

'Illegal data-type' error
(generally easy to find)

Efforts can be very subtle, and
particularly hard to

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING

or function

Variable inadventently modified
by assignment to a variable
intended to be different but
having the same name.

Complex, incorrect combination of
Boolean conditions

Mis_parenthesisation of logical
or arithmetic errors,
misunderstanding of precedence
rules.

Variables out of order in READ
statement

Read operations of program
inconcistent with data
actually present in input file

Target of an assignment
statement misspelled

find if a function is
involved

Page 7-12

If no data-type error is
caused, effects can be
subtle

Effects can be very subtle

Effects can be very subtle

Illegal data-type error
(generally easy to find)

Illegal data-type error
(generally easy to find)

Effects can be very subtle

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING Page 7-13

7.4 Program Testing

Debugging is the process of searching for the exact location of a
program error when you know that some error is definetely there. Testing is
the systematic exercise of a program which you believe might be correct, in
an effort to see whether bugs are really absent. If testing shows a bug,
debugging starts again. If your tests are not systematically designed, then
bugs may go undetected evep if present in your program. All one knows about
a poorly tested program is that it works in the few cases for which it has
been tried; it may fail in many others.

Test design is as important a part of program development as the choice
of algorithms and data structures. Development of a test plan should begin
while a program is being written. A procedure which is hard to test is apt
to be bug-prone, and should be simplified if possible. By keeping
testability in mind, you will avoid unnecessarily complex constructions, and
produce cleaner, sounder code.

Testing falls into three distinguishable phases, •hich we will call
first stage testing, second stage or quality assurance testing, and
maintainance or regression testing. First stage testing begins as soon as a
program is complete enough for execution to be possible. Its hypothesis is
that bugs are present in sufficient numbers to prevent much of the program
from working at all. During first-stage testing, one aims to make the main
facilities of the program being debugged operable by finding and removing
bugs quickly. Quality assurance testing begins where first stage testing
ends. It assumes that a few obscure bugs remain. in the program to· be
tested, and aims to test systematically enough to smoke them out.
Maintainance testing aims to ensure that new bugs are not introduced into
old programs during their extension and repair.

First stage testing

First stage testing should work through a program 'bottom up', first
testing the bottom-level procedures (or code paragraphs) which implement the
basic operations used by the rest of the program. Once the code realising
these operations has been checked and found to be operable, the testing
process will focus on intermediate-level procedures, and once these have
been checked one will begin testing the program's main capabilities.
Attempts to short-circuit this systematic, level-by-level test procedure by
jumping directly to tests of higher program l~vels are more apt to waste
time than to speed things up, since the lower-level causes of high~r-level
failures will then be hard to understand. For systematic testing, test
input will need to be prepared for each procedure to be tested; this should
be designed to make the output produced easy to inspect. If any of the
procedures being tested make use of difficult or obscure data ~tructures, it
may be necessary to develop auxiliary output procedures which print these
data structures in formats which clarify and emphasize their: logical
meaning~ When such procedures become necessary, they should be written and
tested immediately.

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING Page 7-14

Perhaps because realism might conduce to suicide, programmers are
generally over-optimistic concerning the likelihood that a program that they
have just written will work right away. Careful preparation of a first
stage test plan serves to counteract this common illusion; the more
realistic attitude thereby engendered encourages more careful initial
program inspection, and this often reduces the number of bugs present when
first stage testing begins. This is why programs developed cautiously often
become operational quickly, whereas programs developed in too optimistic a
frame of mind often begin to work only after frustrating and totally
unexpected delays.

An effective way of organising tests is to group them into
procedure called -test_prog(s)-, whose one parameter s is
consisting of test names separated by asterisks. The -test_prog­
have the following structure:

PROC test_prog(s); $ skeleton of test procedure
(WH'.ILE s/='')

. . .

IF SPAN(s,'*')/=OM THEN CONTINUE; END;
IF (tn:=BREAK(s,'*'))=OM THEN tn:=s,s=''; END;
PRINT('Beginning Test',tn);
CASE tn OF

(put sequence of named tests here)

ELSE

END
END

i

print('Unnown test
CASE;
WHILE;

END proc test_prog;

name');

a single
a string
can then

To trigger a sequence of tests named test_4, test_2, etc. one has only
to write something like test_prog('test_l*test_2*•••'). Later, when first
stage testing is complete, thi~ call, and the -test_prog- procedure, can be
left in the progr~mrl P that has been tested, but the argument of the
test_prog call can b~ ~hanged so that it reads te~t_prog(getspp('TESTS=/'))
(see Section 8.5 for an account of the -getspp- library procedure.) If this
is done, no tests will be executed unless Pis invoked with a control card
parameter of the form TESTS=testl*test2 ••• *testn, in which case the named
tests will be performed. This approach makes it easy to retest a program in
which unexpected trouble has developed. Of course, the test facilites
available should be carefully documented at the start of the -test_prog­
procedure.

Especially when a long program P is being developed, it may be
desirable to begin testing before all parts of P have been coded (or even
designed in detail. Of course, such a approach will be reasonable only if P
has a sound, hihgly modular overall design, and only if the missing sections
of P have been designed in enough detail so that you can be sure that no
inconsistency will develop when they are designed and coded in detail.) This
mode of organization of development and testing is sometimes called
'top-down' testing. It has the advantage of allowing testing and
development to proceed in parallel. A related advantage is to provide
particularly early confirmation of overall design soundness, or, if a design

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING

proves to be unsound (say, in terms of 'human factors', i.e.
to give early warning of trouble.

Page 7-15

useability),

If a top-down approach to development and testing is taken it will be
found useful to provide a standard, multiparameter library routine having
the name MISSING_SECTION. Then parts of your program that have not yet been
coded can be replaced by invocations

ISSING_SECTION(name_of_missing_section);

where the string-valued parameter -name_of_missing_section- should assign
the missing section a name that can be printed. The MISSING-SECTION
proceduFe should also allow optional ~dditional parameters, so that it can
be invoked by

MISSING_SECTION('name_of_missing','pl p2 ••• pk',pl, ••• ,pk);

where 'pl', 'p2',•• name various parameters with which the missing section
would have to deal or which might explain why it was (perhaps unexpectedly)
invoked.

7.4.1 Quality assurance testing

Second stage (or 'quality assurance') testing should aim to exercise a
program comprehensively, in at least the following senses:

(i) It is obvious that parts of your program that have never been
executed during debugging may well contain unrecognised errors. The battery
of tests you develop should therefore force every line of your program to be
executed at least once.

(11) If your program branches on a Boolean condtion, then you will
want to supply at least one test case in which the condition evaluates to
TRUE, and another in which the condition evaluates to FALSE.

(iii) Improper treatment of extreme values is a common cause of program
failure. A program may work for nonnull sets, tuples, or'strings, but not
.for the corresponding null cases; for positive integers n but not if n•O;
for integers less than the length of some string, but not for integers equal
to this length, etc. It may work when a WHILE or a FORALL loop which it
contains is entered, but fail if the loop is bypassed entirely.

In preparing a comprehensive collection of teats, you will therefore
need to survey your program systematically, listing marginal situations of
this kind as exhaustively as you can; then at least one test that will
force each logically possible situation to occur should be prepared.

-- -- --

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING Page 7-16

(iv) Once a list of all procedures, loops, branches, code sections, and
marginal cases to be tested has been collected and a comprehensive set of
tests has been developed, it may be worth preparing a formal test coverage
matrix which shows which tests exercise each program feature. A chart of
this kind makes it easier to spot cases that have never been tested. It can
also help to select tests to be run during regression testing (see below),
and can help to pinpoint program sections to be examined when a test f~ils.
Such a chart will also make it easier to avoid running too many tests all of
which exercise the same limited group of program features but never use
others. Note that, if regarded as a kind of test, 'production' use of a
program is subject to this objection, i.e. daily use of a program often
exercises only a limited subset of its features. This is why programs that
have been in heavy use for extended periods sometimes fail when their usage
pattern changes significantly.

(v) Compilers sometimes include features which make it easier to
determine the coverage provided by a family of tests. For example, it may
be possible to generate a listing of all program statements executed during
a sequence of runs, of all branches taken, of all procedures invoked, etc.
The SETL measurement facility described in Appendix XXX is not untypical of
:profiling' facilities of this kind. You will want to familiarise yourself
with these facilities, since they can help assure that the test-sets you
develop for your programs are adequate.

(vi) Once developed, test sets become an important adjunct to the
programs that they test. Such test sets should therefore be organised in a
manner which facilities their long-term maintainance and re-use. The tests.
which are available, and the coverage they provide, should be adequateli
documented.

(vii) Programmers often find it hard to bring sufficient enthusiasm to
the task of systematically rooting obscure bugs out of code that they
themselves have written. In part, this is a matter of over-optimism; in
part, a result of the mental fatigue which tends to set in at the end of a
lengthy code development; in part, a consequence of the difficulty of
overcoming the very mind-set which introduced an error in the first place.
For all these reasons, it is good practice to make testing of large programs
the responsibility of a quality assurance group independent of the
development group that produced these programs. If this is done, then,·
knowing that an independent group of programmers will probe their work
systematic~lly to find shortcomings, the original development group will be
encouraged to simplify their product so as to improve its reliability.

Even where resources do not permit fully independent organization of
the activity of program testing, it is well to ensure that every line of a
complex code is read •nd understood by at least two programmers, each of
whom will be able to spot problems and suggest tests that the other might
have overlooked.

7.4.2 Regression Testing

PROGRAM DEVELOPMENT, TESTLNG, AND DEBUGGING Page 7-17

Regression testing is testing routinely appl~ed whenever a previously
working program is amended, to ensure that newly introduced code has not
caused new errors. Tests which will be used in this way should be written
so as to be self-checking, i.e. to produce little or no output if they have
run correctly, but to produce copious output pinpointing a problem as
closely as possible when an error· is detected. This can be done by
organising the tests so that they perform various calculations, always in at
least two different but logically equivalent ways. If these· paired
computations produce the same result, then either no output, or a simple
message 'TEST xxx PASSED', should be printed, but if a discrepancy is
detected output which shows the discrepancy and displays the values of all
variables related to the discrepancy should be printed.

If a chart has been prepared showing the program features exercised by
each test (see iv above) it can be used when a test fails to suggest what
part of the program should be examined first to find the cause of failure.
If some one of these program sections has just been changed, it will of
course ~ome under immediate suspicion.

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING

7.5. Analysis of program efficiency

7.5.1. Efficiency£..!~ of the basic SETL operations;
execution time of loops.

Page 7-18

estimating the

It is very easy to use SETL (or any other programming language) to
write programs which would take years, or even hundreds or thousands of
years, to finish executing. Consider, for example, the code fragment

(1) sum:=O;

(FOR i IN [1 •• 1000])
(FOR j IN [1 •• 2000])

(FOR k IN [1 •• 3000])
(FOR 1 IN [l. .4000])

sum +:=(2*i*i*i+j*j*j+k*k+l);

END FOR 1;
END for k;

END for j;
END for i;

In this code, for each successive value i, the variable j iterates over 2000
different values; for each value of i and j, the variable k iterates over
3000 values; and for each value of i,j, and k, the variable 1 iterates over
4000 values. Thus, all in all, the innermost statement of the code fragment
(1) will be executed 1000x2000x3000x4000 times, i.e. 240 billion times.
This statement involves 6 multiplications and 4 additions, so that at least
2.4 trillion elementary arithmetic operations are required to execute the
code (1). Even on a computer capable of executing a million arithmetic
operations per second (a fairly typical performance figure nowadays) and
even if the code (1) were written in a programming language capable of
exploiting this raw arithmetic capability to the utmost, 2.4 million seconds
would be needed to execute the code (4). Since an hour is about 4,000
seconds, this is about 600 hours, i.e. about 24 days. However, since SETL
(which pays a price in efficiency for its very high level) is roughly 30
times less efficient than this, execution of the SETL code (1) would require
roughly two continuous years of computer time. This makes it quite clear
that in writing SETL programs one needs some way of estimating the
computational resource which will be consumed to execute the code that one
sets down.

At least for the most straightforward programs, this is not hard to do.
Elementary operations on integers and real numbers can be considered to take
one nominal 'unit' of time. (Depending on the speed of your computer and
the quality of the SETL implementation that you are usng, this 'unit', in
terms of which we will state all our other timing estimates, could be
anything from a millionth to a ten thousandth of a second.) Any simple
assignment operation x:=y should take roughly one unit of time, as should a
tuple indexing operation t(i). If f is a map, than the map indexing
operation f(i) is somewhat slower, say roughly five times as slow. The set
membership test x IN s also takes roughly five time units. (See Section
10.2.)

¥ROGRAM DEVELOPMENT, TESTING, AND DEBUGGING Page 7-19

Basic opperations on composite objects, for example set union,
difference, and intersection, also tuple and string concateration, take a
time proportional to the size of the objects involved. For example, forming
the concatenation tl+t2 of two tuples (or strings) takes a time proportional
to the sum of the lengths of tl and t2, since all the components (or
characters) of both tl and t2 must be moved into the concatenated tuple that
is being formed; at the elementary 'machine' level which underlies the SETL
implementation, these components are moved one at a time. Generally similar
remarks apply to the operation of forming the union of two sets, but here
the situation is actually somewhat more complicated, and we postpone its
detailed discussion to Section XXX.

Iteration over a set, as for example in

(FOR x IN s) ••• END;

or over a map, tuple, or string, as in

(For·x=t(i)) ••• END;

produces set elements (or map values, tuple components, or string
characters) at a rate of one per cycle. Essentially the same remark applies
to numerical iterators, like those in (1) above. Hence to estimate the time
required to execute a loop, we have only to multiply the number of times the
loop will be executed by the (average) time that it will take to execute the
body of the loop. An obvious generalisation of this rule applies to
imbedded loops: if one FOR loop is imbedded within another, then the time
required to execute the outer loop is the product of the number of times it

- will be executed, times the (average) number of times the imbedded loop will
be executed, times the time required to execute the body of the imbedded
loop. For example, the double loop

(FOR i IN (1 •• 1000], j IN [l..i]) ••• END;

will execute in a time roughly equal to 1000x500 multiplied by the amount of
time required to execute the loop body, since the (implicitly) imbedded loop
over j will execute an average of 500 times for each successive value of i
(This number 500 is halfway between the number 1 of times that j changes
when i=l and the number 1000 of times that j changes when 1=1000)

Since quantifiers and set formers are
iterations, very similaT rules apply to them.
quantifier like

(2) ••• EXISTS x IN slC(x) •••

in effect pre-packaged
To evaluate~~ existential

will take a time to equal to the number of items x examined multiplied by
the average time required to evaluate the Boolean condition C(x). If the
quantifier (2) evaluates to FALSE, then all the members of swill need to be
examined, so the time required will be s multiplied by the average time to
evaluate C(x). If (2) evaluates to TRUE, then iteration over s will
terminate as soon as an x satisfying C(x) is found; since iteration over a
set is performed in a somewhat unpredictable order, the number of iterations
needed to find such an x should be roughiy #s/(#sat+l), were -sat- is the

-~-- --~ ---------------------

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING Page 7-20

set of all x satisfying the condition C(x).

Similar remarks apply to setformers and tupleformers, except that

(a) each insertion into a set
iterative step, because of the
duplicate elements, and

takes somewhat longer than a simple
necessity to check for and eliminate

(b) The implicit iteration appearing in a set or tuple former like

{x IN slC(x)}

must always proceed until all the elements of shave been examined.

As an application of these rules, note that execution of the harmless
looking code fragment

(3) f:•{ };

(FOR x IN s)
f(x):={y IN sl(EXISTS z in slC(x,y,z))};

END FOR;

involves three nested loops: first the FOR-loop which appears explicitly,
next the implicit iteration overs in the setformer {y IN s •• }, and then
finally the implicit iteration overs in the quantifier EXISTS z IN s •••
Therefore the number of cycles required to execute (3) can be as high as the .
cube of the number of elements of the sets.

The possibility that a program can loop forever in an ill-constructed
WHILE loop should serve to alert us to the fact that analysis of the time
required to execute a WHILE loop can be much subtler than FOR-loop analysis.
Of course, some WHILE loops are easily analysed. For example, if the
variable k is not modified in its body, the loop

k:•O;

(WHILE (k+:•l)<n AND t(k)/=OM)
• • •

END WHILE;

behaves .ji,-1!, 'very mu ch
terminatEJ•· after no
the loop

(4) t:•n*[O];

the same way as a FOR-loop, and therefore will
more than n-1 iterations. On the other hand, consider

(WHILE EXISTS x•t(i) lx•O)
print(t);
t (i) : = 1 ;.
t(l •• i-1):= (i-1)*[0];

END WHILE;

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING Page 7-21

This begins by generating a tuple t:•[O,O, •• OJ of n zeroes, and then
repeatedly sets the first nonzero coordinate of t to 1 and all the
coordinates preceding this coordinate to zero, thus carrying out a
(left-to-right) form of binary counting. The sequence of tuples printed is

[O,O,O, ••• OJ
c1,o,o, ••• 01
co,1,0, ••• 01
c1,1,o, ••• 01
co,0,1, ••• 01
[1,0,1, ••• oJ, etc.

and is plainly of length 2**n ■ Hence the
execute the WHILE-loop (4) is at least
loop will execute for roughly 320 years
performed per second.

number of cycles required to
2**n, which means that if n•50 the
even if 100,000 iterations are

For a more realistic example of the way in which WHILE loops are
typically used, consider the bubble sort

(.5) (WHILE EXISTS i IN [1 •• t-1) lt(i)>t(i+l))
[t(i),t(i+l)J :•[t(i+l),t(i)J;

END WHILE;

This searches a tuple t for out-of order components and interchanges a pair
of such components whenever one is found. Plainly the number of cycles
required to execute (5) is the average time required to search the tuple t
for an out-of-order pair of adjacent components, multiplied by the number of
interchanges required to put t in sorted order. Even though precise
analysis of these times requires a close and subtle analysis going far
beyond the scope of this book, it is not hard to estimate these time
requirements crudely. We can guess that, as long as an out of order pair
exists, one such pair will be found after searching through some fraction of
the length of tuple t being sorted; thus evaluation of the existential
quantifier appearing in the first line of (5) is estimated to require c* t
cycles, where tis some constant which we wiYl not attempt to evaluate here.
Moreover, since each execution of the body of the WHILE-loop (5) corrects
exactly one case in which a pair of elements appears in inverted order, the
expected number of times that (5). must iterate to put t into its final
sorted order should be roughly equal to the number of pairs of components of
t which occur in inverted order. In a random arrangement of the components
of t, roughly half the components to the left of a given t(i) should be
larger than t(i), and roughly half the components to the right of t(i)
should be smaller than t(i). Thus each component t(i) oft should appear in
roughly #t/2 inverted pairs, and it follows, since t has ft components (and
since this way of looking at things counts inverted pars twice, once for
each of the components in such a pair) that the expected number of inverted
pairs in a randomly chosen arrangement of the components oft should be
roughly (1/4)*((#t)**2). Multiplying this exp~ession by c*lt, representing
the estimated time required to evaluate the existential quantifier in the
first line of (5), we arrive at

(6) (1/4*c)*((#t)**3)

for the time required to execute the bubble-sort code (5).

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING Page 7-22

The approximations which we have made in arriving at the estimate (6)
are too crude for the constant (1/4*c) appearing in (6) to be a good
estimate. (Exercise 7.6.2 outlines an experimental procedure for estimating
this coefficient more accurately.) The significant feature of the estimate
(6) is that it tells us that the time required to sort a tuple by the
bubble-sorting method is proportional to the cube of the length oft~ i.e.
that sorting a tuple of length 10 by this method should take roughly 120
cycles, sorting a tuple of length 100 roughly 120,000 cycles, and sorting a
tuple of length 1000 roughly 120,000,000 cycles. These figures, which are
not very favorable, reflect the rapidity with which the cube of n grows as n
increases; in the jargon of algorithm analysis, one says that bubble-sort
is 'an n cubed algorithm'. Clearly, any sorting algorithm whose time
requirement grows less slowly than the cube of the length of·t will be very
much superior to bubble sort as a technique for sorting large tuples t.

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING Page 7-23

7.5.2 Efficiency analysis of recursive routines

That the behavior of recursive routines resembles that of WHILE loops
has already been pointed out in Section XXX. Like WHILE loops, recursive
procedures can fail to terminate properly, and this warns us that even if
they terminate they can execute for a very long time, so that careful
analysis is needed to estimate their efficiency. On the other hand,
recursive procedures can sometimes be surprisingly efficient. To show this,
we will analyse the performance of just one rather simple recursive
procedure, namely Floyd's quicksort, which has already been presented in
Section 4.4.1. This procedure, which can sort any homogeneous set s of
integers, real numbers, or strings, is simply

(7} PROC quick_sort(s);
IF S""'l THEN RETURN [] ;END;
x:•ARB s;
RETURN quick_sort ({y IN sly<x}}

+[x] + quick_sort ({y IN sly>x});
END PROC quick_sort;

Let T(n) be the number of cycles that this procedure will typically require
to sort a set of n elements. Counting the sets can require a number of
cycles proportional ton, and building up the two sets which appear in the
final RETURN statement of (7} will require a like number of steps. Thus the
time required to execute (7) is equal to some small constant multiple c*n of
the length n oft (c=3 is a fair guess), plus the time required to execute
the two recursive invocations of quicksort which appear in the second RETURN
statement of (7). Since typically the element x chosen from s by the ARB
function of (7) will lie roughly halfway between the largest and the
smallest elements of s, each of the two sets'{y IN sly<x} and {y IN sly>x}
should contain approximately half the elements of s. Thus, given that T(n)
is the time required to sort a collection of n elements by the quicksort
method, sorting each of these sets by use of quicksort should require
roughly T(n/2) cycles. It follows that _T(n) satisfies the recursive
relationship

(8) T(n)=2*T(n/2)+c*n•

The first of the terms on the right of (8} represents the time typically
required to execute the two recursive invocations of quicksort appearing in
(7), and the term c*n represents all the work needed to prepare for then two
invocations.

Having now derived the relationship (8), it is easy to solve it, and
thus to arrive at an explicit estimate for T(n). To solve (8), we
substitute the expression (8} for the occurence of Ton the right of (8),
getting

(8A) T(n)•c*n+2*c*(n/2)+4*T(n/4)
•2*c*n+4*T(n/4),

and then substituting (8) for T(n) on the right of (8A) we get

(SB) T(n)=2*c*n+4*c*(n/4)+8*T(n/8)
=3*c*n+8*T(n/8).

- --- ------ ---------------- --------- -- --

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING

Continuing inductively in this way we will clearly get

T(n)=4*c*n+16*T(n/16),
T(n)=S*c*n+32*T(n/32),

Page 7-24

and so forth, until eventually, when the power of 2 in the denominator on
the right becomes roughly equal ton (which will happen after log n steps,
where log n designates the logarithm of n to the base 2), we will find that
T(n) is roughly

c*n*logn+n*T(l),

i.e., that T(n) can be estimated as the product of a small constant c (still
roughly 3), times n, times the logarithm of n. One therefore says, in the
jargon of algorithm analysis, that quicksort is an 'n log n' algorithm.

For n at all large and c roughly equal to 3, c*n*log n will be vastly
smaller than the cube of n. For example, for n=lOOO, n**3 is 1,OOO,OOO,OOO,
whereas c*n*log n is only 30,000. Therefore quicksort can be used to sort
large tuples, which could not be sorted in any reasonable amount of time
using bubble sort. For example, if #t=lO,OOO and on a computer capable of
executing 100,000 of our nominal instruction cycles per second, sorting t
using the bubble sort method will require approximately 16 hours, whereas
quicksort will accomplish the same operation in roughly 4 seconds.

This simple example shows why it is so important to find algorithms
whose time requirements do not rise rapidly as the arguments passed to them
grow larger. Very considerable efforts have been devoted to the search for
such high efficiency algorithms during the past decade, and a great many
ingenious and important algorithms having this properly have been devised~
Unfortunately, most of these algorithms lie beyond the scope of the present
introductory work. For basic accounts of this important material, se- the
Bibliography which follows Chapter xr.

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING Page 7-25

7.5.3 More about the efficiency E..!. the primitive SETL operations.
A warning concerning value copying.

Some SETL operations, likes WITH x, wheres is a set and t WITH x
where t is a tupl~, also s LESS x, x FROM s, x FROMB t, and x FROME t,
modify a composite object (i.e. a sets or tuple t) which may be large.
The same remark applies to the tuple assignment t(i):•x, and to map
assignments like f(i):=x and f{i}:=x. The time required to execute these
operations will vary dramatically, depending on whether or not the large
composite argument of the operation needs to be copied.

To understand this important point, note first of all that copying is
sometimes necessary. Consider, for example, the code

(1) s:={1,2,3,4,5,6,7,8,9,10,15,20};
sl:=s;
s WITH:=25;
sl LESS:=2;
print('s=',s,'sl=',sl);

The output that this will produce is

s= {1 2 3 4 5 6 7 8 9 10 15 20 25} sl= {1 3 4 5 6 7 8 9 10 15 20}

Since two different values will have been created by the time we reach the
final step of (1), it is clear that somewhere along the way to this final
step the single set constant assigned to the variable s will have to be
copied. This (logically necessary) copying can be done when the value of s
is assigned to the second variable sl in the second line of (1) (copying on
assignment), or can be done in the third line of (1), when the value of s
(but not that of sl) is modified by addition of the extra element 25
(copying on modification). Where copying actually takes place will depend
on the particular version of the SETL compiler that you are using, and
especially on whether or not this compiler includes an 'optimisation' phase.
But in any case, some copying is necessary, and copying a set or tuple with
n components always requires n cycles. Hence execution of an apparently
harmless operation like t(i):=x can require a number of cycles proportional
to the length oft.

On the other hand, copying is frequently unnecessary, and both the
optimising version of the SETL compiler and the SETL execution-time support
system include mechanisms for avoiding copying when it is not logically
necessary. (Since these are implementation-level mechanisms, and fairly
complex ones at that, we shall say little about how this is done.) When no
copying is involved, the operations WITH xis only two or so times slower
than the membership test x IN s, and similar remarks apply to the other
operations in the group we have been considering. For example, the
assignment t(i):=x can be done in just one of our nominal 'cycles', and in
the same circumstances map assignment is roughly five times as slow.

Equality and inequality comparisons between composite objects are also
interesting operations to consider. To perform an equality (or inequality)
comparison between two tuples, we first compare their lengths. If these are
the same, the tuples may be equal, but even so their equality must be

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING Page 7-26

checked by iterating over them in parallel and checking corresponding
components for equality. A similar technique is used to determine equality
of two sets when both· of these have equally many members: we iterate over
one of the sets, verifying that each of its members is also a member of the
other set. Hence if they are different, comparison of two sets or tuples
for equality may require only a few cycles, but if they are equal a time
proportional to the size or the sets or tuples being compared may be needed
to compare them.

Declarations which instruct the SETL compiler to modify the data
structures which it uses to represent SETL objects will be described in
Chapter x. These declarations allow set operations like 'x IN s', 'y=f(x)',
'f(x):=y', etc., to be handled as efficiently as tuple operations like
'y:=t(x)' and 't(x):=y' Used properly, they can increase the efficiency of
set operations like sl+s2. sl*s2, and sl=s2 very substantially.

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING

7.5.4 Data structures for high-efficiency realization of important
operations

Page 7-27

We have seen in the preceding pages that execution of some of the most
important operations which SETL provides, for example set union and tuple
concatenation, requires a time proportional to the size of the arguments to
which these operations are applied. However, if the programs performing
these unions and concatenations use the relevant sets and tuples only in
restricted, particularly favorable ways, we can sometimes improve their
efficiency very greatly by alternate, more complex representations for the
objects appearing in these programs. Although doing this is something of a
violation of the 'SETL spirit', which emphasises ease of programming over
efficiency of program, SETL can be used to explain these efficiency-oriented
techniques. Of course, it is important to understand these techniques
because efficiency sometimes becomes an essential issue.

To· focus our discussion of this matter, let us consider the problem of
concatenating two tuples tl and t2. SETL permits this concatenation to be
f~rmed simply by writing tl + t2, but, as indicated earlier, execution of
this operation can involve copying all the components of tl and t2, and
require a time proportional to the sum of the lengths of tl and t2. It is
therefore of interest that an alternative 'list' representation of tuples
can sometimes be used to produce this concatenation much more rapidly.

In this representation, a tuple t:=[xl, ••• xn] is represented using a
pair of mappings, called -next- and -val_of-, and by a variable -compl­
which locates the first component xl of the tuple. The first component of
the tuple is val_of(compl), the next component is val_of(nex~(compl)), etc.
Thus the -next- mapping steps us along from one component ~index' to the
next 'index' (we will use atoms for these 'indices'), whereas the -val_of­
mapping gives us the actual component value associated with each 'inde~'.
The last 'index' en in the list is distinguished by having next(cn)=OM.

. . . .
val. of

Figure 1.1. A tuple represented by a 'chained list' of elements.

At first sight, representing a tuple in this way may not appear
to be a very good idea. Of course, it is not hard to iterate
over tuples having this representation: we simply start at -compl­
and apply -next- repeatedly to step along, always applying -val_of­
to get the component value corresponding to whatver index we have
reached. For example, instead of writing ·

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING

(lA) IF EXISTS x = t(i) IC(x) THEN ••• ELSE •••

as we would if t were· a standard SETL tuple, we would write

(lB) i:=compl; $ initialise search index
(WHILE i /= OM)

x : =v a 1 _ o f (i) ;
IF c(x) THEN QUIT WHILE; END;
i:=next(i); $ advance search index

END WHILE;
IF i/=OM THEN••• ELSE •••

Page 7-28

Although no less efficient than (lA), the code (lB) is certainly more
complex and harder to read than (lA). Moreover, finding a given component
t(k) oft is much less efficient in the list representation, since for
standard tuples the operation

x:=t(k)

is performed in one or two cycles, whereas if t has the list repre~entation
we will instead have to execute tbe code

i:=compl;

(FOR j IN [l..k-1)) i:=next(i); END;

x: =v a l_o f (i) ;

whose execution requires at least k cycles. On the other hand, other
important tuple operations can be performed much more rapidly in the list
representation than for standard SETL tuples. For example, for a st~ndard
tuple the operation which inser~~;x immediately after the i-th component of
t requires time proportional to the length of t, since to create the
expanded tuple all of the elements oft will have to be copied into new
positions. On the other hand, if t has the list representation, this
operation can be done in just a few cycles, since all we have to do is

(a)
value x;

c re a t e a new a t om i x t o s e r v e a s .. the ' i n de x ' for the new component

(b) link ix at the appropriate position into to list representing t.

Similar remarks apply to the operation t(i.~i):=[which deletes a
given component from a tuple in list representation. The following two
procedures represent these operations. In writing these procedures, we
suppose that a single pair of maps -next- and -val_of- will be used to
represent all tuples, and that the variables -next- and -val of- have been
declared global. We also suppose that only one logical ref~rence to any of
the tuples we consider is ever extant, so that no copying (see the preceding
section) ever needs to be performed.

PROC insert(x,i):
$ inserts x immediately after the tuple component whose index is i

next(ix:=NEWAT):=next(i); $create a new index ix, and make it

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING

next(i):=ix;
val_o f(ix): =x;

END PROC insert;

PROC delete(i);

$the predecessor of next(i)
$and the successor of i

Page 7-29

$delete the component immediately following that whose index is i

next(i):=next(next(i)?i); $ unless i is the last index in its tuple

END PROC delete;

$ make i's successor the successor of i's
$ original successor

Provided that neither tl nor t2 will be required after tl and t2 are
concatenated, and that the index i of the last component of tl is easily
available, the concatenation of tl -and t2 can also be formed in a number of
cycles independent of the length of tl and t2. The following procedure, in
which we assume that each tuple tin list form is represented by a pair
[first,last] consisting of the first and the last index oft, shows this:

PROC concat(tl,t2);

[tl_first,tl_last] :=tl;

[t2_first,t2_last] :=t2;

IF tl first=OM THEN

$ 'unpack' the first and last
$ indices of tl

$ and the first and last indices of t2

$ tl
RETURN t2;

ELSEIF t2 first=OM THEN $ t2
RETURN tl;

ELSE
next(tl_last):=t2_first; $
RETURN [tl_first,t2_last];

END IF;

END PROC concat;

is an empty tuple

is an empty tuple

link the two lists

Quite a few other trick representations of tuples, sets, maps, etc. are
known. If the family of operations applied to a SETL object is
appropriately limited, use of one of these special representations can be
very advantageous. Since further exploration of this very important issue
would take us beyond the scope of the present work, we refer the reader to -
the bibliography appearing after Chapter XI for additional material
concerning the issue of 'data structuring'.

PROGRAM DEVELOPMENT, TESTING, AND DEaUGGING Page 7-30

7.6 Exercises

Ex. 1 How could you use the techniques described in Section XXX to make
nonterminating recursions less likely to occur?

Ex. 2 Take the Bubble-sort procedure described in Section 4.1.1 and. the
Merge-sort procedure described in Section 4.4.2, and modify them by
inserting code which will count the number of comparisons which they make
when used to sort a given vector t. Use these modified routines to sort
tuples of length 50, 100, and 200, counting the number of comparisons
performed, and measuring their relative efficiencies. Try tuples with
random components, and also try tuples with only a few components out of
sorted order.

Ex.
laid

3 The following SETL code is syntactically correct, but very
out. Put it in a better format, and add appropriate comments.

PROGRAM sort;read(s);t:=[]; (WHILE s/={ })s LESS:•(x:•MIN/s);
t:=[x]+t;END;print(t);END;

poorly

Improve the following program, which is also correct but poorly laid out.

PROGRAM find_palindromes; $'Madam Im Adam'
LOOP DO read(x); IF x/=OM THEN y:=+/[c:c IN xlc/=' '];
IF y=[y(j):j IN [#y,#y-1 •• l]]THEN print(x);END;ELSE
QUIT;END;END;

Ex. 4 What cases should be run to test the following recursive sort
procedure comprehensively?

PROC sort(s); $ recursive sort of a set of integers

RETURN IF (x:=ARB s)=OM THEN []
ELSE sort({y IN sly<x}) + sort({y IN sly>=x}) END;

END PROC sort;

Run your tests, and try to estimate how thoroughly they test this code.

Ex. 5 Suppose that G is a graph represented as a set of ordered pairs. If
G contains a cycle C then C can be regarded as a subset of G such that for
each x in G there exists a yin C (namely the edge y folowing the edge x in
the cycle C) such that x(2)=y(l). Conversely, if this condition is
satisfied, then there exists a cycle, since starting with any x in C we can
find an x' such that x(2) = x'(l), then an x'' in in G such that
x'(2)~x''(l), and so on, until eventually we must return to an edge that
occurs earlier in the chain x,x',x'', ••• , at which point a cycle will have
been formed. This leads to the following program for testing a graph to see
if it has a cycle:

PROGRAM test_for_cycle, $ tests·any graph for the existence
$ of a eye le

read(G);
print(IF EXISTS C in POW(G}I

FORALL x IN clEXISTS y IN clx(2)=y(l)

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING

THEN 'There exists a cycle'
ELSE 'There exists no cycle' END);

END PROGRAM test_for_cycle;

Page 7-31

Work out a good battery of tests for this program, test it, and try to
estimate how comprehensive your tests really are.

Ex. 6 In the quick_sort program shown in Section X, change the expression

sort({y IN s: y<x}) + [x] + sort({y IN s:y>x})
to

sort({y IN x:y<x}) + sort ({y IN s: y>x}),

thereby introducing a bug. Then run the erroneous program. What hapens?
Could you guess the problem from the symptom? What would be a good way of
debugging this program?

Ex. 7 Suppose that the subexpression [x] in Exercise
is accidentally mistyped as [z]. What will happen?
if it is accidentally mistyped as [OJ? As {x}?

6 is not omitted, but
Why? What will happen

Ex. 8 For debugging purposes, it is useful to have a monadic operator .OUT
such that .OUT x always has the value x, but such that '~valuation' of .OUT
x prints the value of x. A binary operators .OUT2 x which return x but
prints both s and x can also be useful. Write definitions for these
operators. How might you use them to debug the faulty recur~ave procedure
described in Exercise 6?

Ex. 9 Each string in the following set consists of characters which are
easily mistyped for each other:

{'III/',· '7>', 'L>', 'DOOO', 'S5s', 'Z7', 'UVuv~, '6b',
'4+t*', ' __ ,, 'GC6' }. .,,

Write an expression that converts this set of strings into a set s
consisting of all pairs of letters that~are easily confused for one another.
Use this set to create a 'bugging program' B, which can read the text of any
SETL program P, introduce one randomly selected character substitution
chosen from Pinto it, and write the erroneous version of P thereby produced
into a file. Collect various short sample programs from your friends, 'bug'
them using B, and ask your friends to see if they can spot the error. Then
debug these programs, to see how long it takes you to track down the errors
which B has introduced. If B is modified so that it never changes
characters in SETL keyworda; but only in identifiers, how much more elusive
do the bugs that it introduces become?

Ex. 10 Suppose that the9statement

[t(i), t(i+l)] :=[t(i+l),t(i)];

in the bubble-sort procedure of Section 4.1.1 is replaced by

(*) t(i):=t(i+l); t(i+l):=t(i);

What would happen? If we checked the resulting version of bubble sort by

-----·--

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING Page 7-32

adding

ASSERT FORALL 1 in [1 •• t-1) I t(i) <= t(i+l);

would the problem introduced by the change (*) be found? What checking
assertion could we write to catch the sort of error that (*) introduces?

Ex. 11 Suppose that in the bubble-sort procedure of Section 4.1.1 we
inadvertently wrote [1 •• #t] instead of [l •• #t-1). What would happen? If we
wrote [//t •• 1] instead? If we wrote [l •• #t-2)? If we wrote [2 •• #t]?

Ex. 12 Take the bubble-sort procedure shown in Section 4.1.1 and find at
least three errors that might plausibly be made in writing or typing it, any
of which would cause the code to loop endlessly. None of these errors
should involve changing more than six characters. Take these erroneous
versions of bubblesort to friends, and see how long it takes them to spot
the errors. (This problems assumes that at least three of your friends know
how to program!)

Ex. 13 Take the merge sort program shown in Section 4.4.2. Then m6dify it,
to produce four different erroneous versions of merge sort, each of which
contains one of the following list of common bugs. (Try to make your
modifications as plausible, and as hard to spot, as possible.)

(1)
(11)
(iii)
(iv)

Boolean condition stated in reversed form.
one branch of an IF statement omitted.

Premature exit from a loop.
Input data not checked, data of the wrong type read.

For each of these erroneous versions of estimate the time that would be
required to find the error if you did not know where it was. Write a
battery of tests sufficient to show that there is something wrong with each
of these erroneous programs.

Ex. 14 Rep~at exercise 13, but for the buckets-and-well program shown in
Section 4.3.1. Produce five erroneous versions of this program, each wJth
one or two plausible errors in every procedure. Devise a debugging p~an
which could discover most of these errors quickly. In what order does,;it
seem best to test the procedures of this program? Where would it be most
useful to place ASSERT statements? Try to devise assertions that can be
checked quickly, but whose verification will be string evidence that the
program is working as it should.

Ex~ 15 The following version of quicksort contains just one error. What is
it?

PROC quicksort(t); $ t is assumed to be a tuple of integers

IF t•[] THEN RETURN; END;

x:=t(l);
tl:=[y:y=t(i) ly<x];
t 2 : = c y: y = t < i > I y =x l ;
t3:=Cy:y=t(i) ly>xl;
quicksort(tl); quicksort(t3);

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING

t:=tl + t2 + t3;

END PROC quicksort;

Page 7-33

Ex. 16 How many of the errors by the 'bugging program' described in
Exercise 9 could be found more easily using a program which reads SETL
programs and prints out a list of all identifiers appearing only once in
them?

Ex. 17 Write a maintainance test which could be used to check a sort
program by comparing its results with those of quicksort. Use this test to
verify that the merge-sort procedure shown in Section 4.4.2 is correct.

Ex. 18 Write a SETL system maintainance test which computes fifty set- or
tuple-related values in two radically different ways and compares the
results obtained. Your test should exploit various set-theoretic
identities. For example

{e(x): x IN DOMAIN£}= {e(x): [x,y] IN£}
= {e(x): y=f(x)}

should be true for every map f, and

sl*s2 = sl-(sl-s2)

should be true for every pair of sets.

Ex. 19 To see what parts of a program have been executed in a series of
tests, we can inroduce a global variable called POINTS, and a macro

MACRO POINT(k); POINTS LESS:=k ENDM;

Then if we
statements
at the end
section of

initialise POINTS by writing POINTS:={1 •• n}, insert a sequence of
POINT(j), j=l, ••• ,n into the code being tested, and print POINTS

of execution, each remaining member of POINTS will represent a
code that has never been executed.·

Apply this technique to develop a comprehensive set of tests for the
bank accounting program described in Section 5.4.3. Add tests to your set
until the condition POINTS={ } is achieved, to make sure that your
collection of tests does not leave any section of code unexecuted.

Ex. 20 A boundary test for a program Pis a systematic collection of tests
which exercises Pin all the legal but extreme cases which Pis suppose to
handle. Work up several such boundary tests for the bank accounting program
described in Section 5.4.3. Your tests should include items like checks for
$0.00, empty transaction files, etc.

Ex. 21 The bank accounting program described in Section 5.4.3 is totally
unprotected against bad input. Modify it so that all input is
systematically examined for acceptability; your input-examination
procedures should check for all remotely plausible input errors. Write an
English-language explanation of the input errors for which you check.

Ex. 22 Take one of your programs, approximately 10 lines long. Strip all

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING Page 7-34

comments from it, and then introduce one misprint, to cause a bug (not one
that syntax analysis would find.) Give the result to a friend (a good
friend!) with a 3-line explanation of what the program is supposed to do.
See if your friend can find and fix the error without expending more than an
hour's effort.

Ex. 23 Develop test data for the GCD program outlined in Exercise XXX.
Your tests should include cases in which the data is zero, negative, etc.
and should test all relevant combinations of 'extreme' data of this kind.'

Ex. 24 Write the 'MISSING SECTIONS' procedure described in Section XXX.

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING Page 7-35

7.7 Formal Verification of Programs

The growing importance of programs to banks, airlines, engineering
firms, insurance companies, universities, indeed to all the major
institutions of our society, lends an inescapable importance to the question
of program correctness. Once a program has been written, how can we be sure
that it is correct, i.e. that when given legal input it will always produce
the output that its author desires? This is a deep question, whose
systematic exploration would take us far beyond the boundaries of the
present introductory text. Nevertheless, in order to shed some light on the
issues involved. we will use the present section to say something about it.

To begin with, we emphasise that mere program testing, even systematic
testing like that described in Section 7.4, can never prove a program's
correctness in any rigorous sense. Testing, to repeat an important maxim of
the Dutch computer scientist Edsger Dijkstra, can show the presence, but not
the absence, of bugs. Though systematic testing is an essential tool of
program development, in asserting the rigorous correctness of a program we
are asserting that it will run correctly in each of a potentialy i~finite
family of cases. Clearly, no finite sequence of test cases can cover all of
them, and so any rigorous assertion that a program functions correctly in
all possible cases must rely on some sort of mathematical proof.

The basic raw material out of which such proofs can be built is not too
hard to find. When a programmer has written a program and checked it
carefully for the first time, why does he believe that it will run
correctly? If legitimate, this feeling of correctness must always rest on a
comprehensive logical analysis of the conditions that arise as control moves
from point to point during the execution of a program.

To show what such analysis involves, we will take a very simple
program, namely one which calculates the product of two integers n and m by
adding n to itself in m times. (The basic technique that we will use to
prove the correctness of this trivial program is entirely general; however,
the mass of technical detail needed to handle more complex examples grows
rapidly, and to avoid this it is best to stick to a rudimentary example.)
Since it is a bit easier to handle WHILE loops than FOR loops, we write our
multiplication code as follows:

(1) prod:• 0 ;
iterations :• O;

(WHILE iterations /s m)
prod:• prod+ n;
iterations :•iterations+ 1

END WHILE;

To.begin to prove this program correct, we must first supplement it by
adding a formal statement of what it is that the program is supposed to
achieve. This can be done by adding an ASSERT statement at the very end of
the program, giving us

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING

(2) Line 1:
Line2:

Line3:
Line4:
LineS:
Line6:

prod : • 0 ;
iterations:• 0;

(WHILE iterations/• m)
prod:• prod+ n;
iterations :•iterations+ 1 ;

END WHILE ;

Line7: ASSERT prod• m*n;

------ --- --- --

Page 7-36

In (2), all lines of the program have been labeled to facilitate later
reference. Note that addition of the final ASSERT statement is an
absolutely necessary preliminary to any attempt to prove anything at all
about the program until we have stated what a program is supposed to do, we
cannot even begin to prove that it does what it is supposed to! This is to
say that all rigorous proofs of program correctness are really proofs that
two di_fferent descriptions of a computation, one a deliberately very high
level, mathematical statement (like the final line in (2)) of what an
algorithm accomplishes, the other a more detailed procedure (like t·he rest
of the code (2)), really say the same thing.

This fundamental principle being understood, we go on to remark that in
proving a program correct what one basically needs to do is just to write
down the logical relationships between data items upon which the programer's
understanding of his program's behavior rests. However, these relationships
must be written down in a sufficiently complete manner, and must be
expressed formally, using additional ASSERT statements.

To see what is involved, let us first analyse program (2) informally .•
If the author of (2) wished to convince a skeptical colleague that it really
does compute the product m*n, what facts about (2) would he point out, what
more detailed analysis would he offer? The crucial fact upon which program
(2) depends is that each time the loop starting at Line 3 begins to repeat,
the variable -prod- will be equal to the product of the variable
-iterations- by the variable -m-. This is certainly true on the first
iteration, since then both -prod- and -iterations- are zero, so we certainly
have

(3) prod=iterations*n

(i.e. O•O*n) on first entry to the loop. But if (3) is true at the start
of k-th iteration, it must also be true at the end of the k-th i~eration,
since the body of the loop increments -prod- by n and -iterations- by 1.
Hence (3) remains true during every iteration. But since the loop only
terminates when the variables -iterations- and -m- are equal, (3) implies
that prod=m*n at the end of the loop, which is what we wanted to prove.

The argument we have just presented is a satisfactory informal proof of
the correctness of the program (2). Nevertheless, it is not quite what we
require. In proving that a program is correct, we aim to rigorously exclude
the possibility of any small, easily overlooked program 'bug'. For this,
merely informal, English-language proof is insufficient, since such proofs
are no less likely than programs to contain small errors. Moreover, some of
the likeliest errors in programs (for example, counting in a manner that is
off by 1) correspond closely to errors that occur frequently in mathematical

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING Page 7-37

proofs (for example, starting a mathematical induction at the wrong place or
missing one among multiple cases that a proof needs to examine.) Therefore,
when we set out to prove a program rigorously correct, we must aim at
something more formal and machine-checkable than an ordinary
English-language proof of the kind ordinarily found in textbooks.

7.7.l Formal Verification using Floyd assertions: general approach
This observation drives us to a more formal approach, like that devised

by Robert Floyd, for proving programs like (2) correct. Floyd's formalism
requires us to add ASSERT statements to a program P that we are trying to
prove correct. These auxiliary ASSERT statements, sometimes called the
'Floyd assertions' for P, must satisfy two principal conditions:

(a) Enough ASSERT statements must be added so that there can exist no
indefinetely long path through the program P which does not pass through at
least one ASSERT statement. Another way of putting this is to say that at
least one auxilary ASSERT statement must be inserted into every loop in the
program P.

(b) Consider any one of these auxiliary ASSERT statements.
form

(4) ASSERT C

It will have the

where C which can be any Boolean-valued expression, is called the condition
of the assert statement. The auxiliary assertion (4) will occur at some
specific place in the progrm P, say, to be specific, immediately after Linej
of P. Then we require C to assert every fact about the state of the
program's variables that is relevant at Linej, i.e. every fact upon which
the correct functioning of P from Linej onwards will depend. This important
rule ensures that all the essential facts needed for proving the corectness
of P are explicitly and formally written down in the auxiliary assertions
added to P, and this is what makes a rigorous proof of correctness possible
in principle.

Once the required assertions (4) have been added to P, we proceed as
follows. Starting either at the first statement of Porat some one of the
auxiliary ASSERT statements in it, we move forward line-by-line through the
program along every possible path (i.e. path of control flow, which is to
say path that the program could follow during its execution. All possible
paths through P which start at an ASSERT statement but do not pass through
any ASSERT statement must be considered one after another.) Because (by
condition (a) above) there are no infinite loops not passing through an
ASSERT statement, there will exist only finitely many such paths, and each
such path will be bounded in length.

Tracing out all such paths q, we will use each of them in the following
way to generate~ set V of verification clauses. (With one exception, noted
in (f) below, the verification clauses associat~d with a particular path q
collect logical relationships between variable values which are certain to
hold along q.)

(a) Suppose that th• path q starts at an ASSERT statement ASSERT C, where C
is a Boolean formula. Then we begin by putting C into Vas its first
clause. (This simply reflects the fact that C is assumed to be true at the

------ -·· ------------ ---

PROGRAM DEVELOPMENT, TESTING, AND QE!!U_~GING Page 7-38

start of q.)

(b) If the path q passes through an assignment statement of the form

(A) x :• expn;

(where expn can be any expression) we introduce a new variable identifier x'
(this identifier simply designates the value which x has after execution the
assignment (A)) and add the clause

(B) x'=expn

to v. Occurences of x encountered later along the path q (but prior to any
subsequent assignment to the same variable x) are then replaced by
occurences of x'. (But at and after any later assignment to x we replace x

. by yet another new identifier x''.) For example, the sequence of assignments

x := x+l; y:=y+l; z:=x+y; x:=x+z;

would generate the clauses

x'=x+l, y'=y+l, z'=x'+y', x''=x'+z'.

These rules just reflect the fact that
variable x takes on immediately after
equation (B), and that x retains this value
subsequent assignment.

the new value x' which the
the assignment (A) satisfies the
until it becomes the target of a

(c) If the path q passes through an assignment of the special form

(C) x:-=ARB s;

wheres is some set-valued expression, then just as in paragraph (b)
we introduce a new name for x, but in this case we add the clause

(D) x' IN s

above

to v. (This reflects the fact that the ARB operator can select an arbitrary
element of s, so that (D) asserts everything we can know about the new value
x' given to the variable x by the assignment (C).)

(d) Conditional and unconditional GOTOs:
a control statement of the form

(E) GOTO Label;

If the path q passes through

then the path q must continue with the statement following the Label that
appears in (E), but we add no clause to Vat this point, since a simple GOTO
does not test any condition or change the value of any variable.

On the other hand, if the path q passes through a control statement of
the form

(F) IF C THEN GOTO Label; END;

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING Page 7-39

then the path q can go on either to the statement immediately following (F)
or to the statem~nt following the Label that appears in (F). In the first
case, we add the clause NOT C to v. in the second case we add the clause C
to V• These rules simply reflect the fact that NOT C must hold if and when
q passes through a control statement (F) without the instruction GOTO Label
applying, but that C must hold if and when q reaches (F) and the instruction
GOTO Label is applied.

(e) The rules for more complex control structures, for ·example general
IF-constructs, WHILE loops, and UNTIL loops, can be deduced by rewriting
them in terms of the more primitive constructs (E) and (F) and then applying
the rules stated above. For example, if q encounters a multi-branch IF
statement of the form

(G) IF Cl THEN
blockl

ELSEIF C2 TJIEN
block2

END IF;

and ~hen enters block2, it is obvious that we must add the two clauses

NOT Cl, C2

to v. Later, if and when q passes from the last statement of block2 to the
first statement following the multi-branch IF, no clause needs to be added
to V, since this transition, like (E), counts as an unconditional transfer.

THe,rules applying to a WHILE loop
(H) (WHILE C)

body
END WHILE;

are similar~: If and·when q passes through the WHILE heider, either by
entering the loop from the statement immediat~ly prior to (H) or by 'looping
back' from the final statement of the body of (H~i we mu&t add the Boolean
clause C t~ v. On the other hand, if the path ~-encounters the WHILE
header, but then leaves ,fhe loop (H) immediately, we must add the negated
clause NOT C to v.

~· J.i;

When q encounters the END WHILE line in (H) 1~~~11 go immediatiely to
the loop header standing at the start of (~). Since this is an
unconditional transfer we add no clause to Vin the case.

When q enters an UNTIL loop we need not add any clause ~q V since entry
to such a loop is unconditional. However if and when q encO'Unters the END
UNTIL terminating such a loop the action that we must take is a bit more
complex. Suppose~ to be sp~cific, that th~ loo~ in question has the form

(I) (UNTIL C)
body

END UNTIL;

------------- - --------- - ------

-· PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING Page 7-40

If, after encountering the END UNTIL statement, q exits the loop, then
plainly we must add the clause C to v. On the other hand, if q encounters
the END UNTIL clause and then loops back and continues with the first
statement of the body of the loop, we must add the negated clause NOT C TO
v.

(f) Eventually, the path q that we are following will end at an AISERT
statement

ASSERT C'

Our aim is then to show that C' is necessarily .true at the end of q,
provided that the assertion Cat which q starts (see (a) above) is true at
the beginning of q, and provided also that program execution does indeed
follow the sequence of steps corresponding to q. It is most convenient for
this purpose to add the negated condition

NOT C'

to v. After doing this our aim must be to show that the set V of cliuses is
inconsistent, i.e., that not all the clauses of V can be true
simultaneously. This is equivalent to requiring that, taken all together,
the clauses of V, other than its final clause NOT C', imply the condition
C'.

(g) To complete the set of rules stated in ihe preceding paragraphs, we
would need rules that tell us how to handle PROCEDURE definitions and
invocations. However, since these rules are somewhat more complex than
those stated above, we omit them. This means that the rules stated suffice
for the formal verification of programs containing no procedure invocations,

~ but not for programs which make use of procedures. This deficiency i~ not
serious - it would not be terribly hard to remedy it - but to do so would
take us beyond the limits proper to the present introductory work.

Once we have taken a program P. containing ASSERT statements and
generated the set V of verification- clauses corresponding to each path q
starting and ending•a~ an ASSERT statement. (but not passing through any
other ASSERT statement), we are in position to prove the correctness of P
mathematically. To do this, we must prove mathematically that each of the·
clause sets V which we have generated (i.e. each of the clause sets
corresponding to a path q) is inconsistent. Suppose that we can succeed in
doing tWis. We can then·note that the dlause ·cI initially placed in Vis
true by assumption, and•that, ~1th th~ exrieption of the fin~l clause CF of V
(see (f) above) all•~he othernclauses ·inserted into V are true in virtue of
the very meaning of the statements which the path q traverses. Hence, by
showing that Vis inconsist~nt,aw~ will have shown that if CI is true at the
start of q, then CF is true at the end of q. Once this has been

- demonstrated for every path q through the program P (or, -~ere precisely,
every path which connects two ASSERT statements but does not through any
other ASSERT statement), it will follow by mathematical induction that every
ASSERT statement written into P must evaluate to TRUE whenever it is
reached, provided only that the ASSERT statement standing at the very head
of Pis true at the moment that execution of P begins. (This initial ASSERT
statement, often called the input assertion of P, will normally summarise
all the assumptions concerning input data on which the program P relies.)

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING Page 7-41

All in all, we will have shown that the truth of every assertion written
into P follows from the assumption that its input assertion is true.

It is important to realise that this final step of a formal program
verification, i.e. the step of proving that each set V of verification
clauses corresponding to a path q between ASSERT statements is inconsistent,
is a purely mathematical task. I.e., when we begin this task we will
already have decoupled the work which remains from any entanglement with the
control structures and other programming dictions present in the original
program P. It is precisely in order to achieve this, i.e. precisely in
order to transform our original program-related verification task into a
purely mathematical question, that we go to the trouble of reducing the
program P to the collection of clause sets V that it generates. Note again
that, once all the necessary Floyd assertions have been written into the
text of P, generation of the clause sets V using the rules stated above is a
simple mechanical matter, essentially a matter of systematic variable
renaming and extraction of suitable portions of the statements encountered
along each of the paths q.

7.7.2 Formal verification using Floyd ass~rtions. An Example.
To apply the formal verification technique just outlined to the example

(2) considered above, we must insert an auxiliary ASSERT statement into the
WHILE loop appearing in the example. We choose to insert this ASSERT
statement immediately after Line3 of (2). Call this place P• As explained,
this added assertion must put on record every condition C which always holds
at p and which would appear, implicitly or explicitly, in an informal proof
of the correctness of the program (2). Since we have already given an
informal proof that this simple program is correct, we already know what the
inserted statement should say (namely it should say that (3) is always true
at the beginning of an iteration.) Such an assertion is easily written and
inserted; doing so, we obtain

(5) Line 1: prod : - 0
Line2: iterations :• O• ,

Line3: (WHILE iterations I= m)
ASSERT prod•iterations*n;

Line4: prod :• prod + n;
Line5: iterations :• iterations + 1;
Line6: END WHILE;

Line7: ASSERT prod = m*n;

Writing (5) puts us in position to generate the clause sets needed to
verify the correctness of the program we are considering. There are just
four paths through this program that need to be taken into account. The
first of these i~ the path running from the start of (5) to the first ASSERT
statementin (5). By the rules stated above, this path generates the clause
set

(6) prod'•O, iterations'=O, iterations' /• m,
NOT (prod'•iterations'*n)

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING Page 7-42

The second path that we need to consider runs from the start of (5), to
the WHILE-loop header but not into the WHILE-loop, and then to the final
ASSERT statement. This path generates the clause set

(7) prod'•O, iterations'•O, NOT (iterations'/=m),
NOT (prod'=m*n), TRUE.

(Note that the final TRUE clause in both (6) and (7) can as well be dropped,
since such an assertion, being logically vacuous, can never contribute to a
logical contradiction.)

A third path between ASSERTS runs from the ASSERT statement following
Line3, through the body of the WHILE loop, and then back to this same ASSERT
statement. This generates the clause set

(8) prod= iterations*n, prod'=prod+n, iterations'=iterations+l,
iterations' /= m, NOT (prod'=iterations'*n).

The fourth and final path that we need to consider is
runs from the ASSERT statement following Line3 through the
L~op, but then exits the loop, passing through Line3
immediately to Line7. The rules stated above tell
generates the clause set

the one which
body of the WHILE

and then going
us that this path

(9) prod•iterations*n, prod'=prod+n, iterations'=iterations+l,
NOT(iterations' /= m), NOT (prod' = m*n)

These are all possible paths not running through any ASSERT statement,
and hence are all the clause sets that we need to consider. Once these
clause sets have been generated it is easy to prove that each of them is
inconsistent. In view of the simplicity of our original example, nothing
more than elementary algebra is needed for any of these proofs. In (6), the
first two clauses plainly contradict the fourth clause; in (7), the first
three clauses contradict the fourth. In (8), the first three clauses
contradict the fifth; in (9), the first four clauses contradict the fifth.
This completes our formal verification of the program (2).

It is important to note that this formal verification is very close in
spirit to the informal, English-language proof of the correctness of (2)
that we gave earlier; the f~rmal proof only regularises and systematises
the informal proof. However, this formalisation has the vital effect of
making it possible to proceed mechanically, thereby ruling out the
possibility of small errors. Strictly speaking, for error to be
impossible,, the clause sets would have to be generated mechnically by an
extension of the SETL compiler, and the informal proof of inconsistency
which we have supplied for to each clause set would have to be checked
mechanically. This can be done, but not easily. As already observed~ the
clause-set generation process that we have applied to the example program
(2) is quite general, and will apply with much the same ease to any othei
long or short program which has been decorated with a sufficiently full set
of assertions. However, for more complex programs the clause sets generated
will not be as simple as (6), (7), (8), and (9). Program (2) involves
algebraic operations only, and this is why the clause sets generated from it
consist entirely of elementary algebraic formulae. Less elementary programs

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING Page 7-43

generally involve both algebraic and set-theoretic operations, and this will
cause set-theoretic expressions to appear in the Floyd assertions and hence
in the clause sets associated with these programs. (Several programs
illustrating this remark appear in the verification-oriented exercises of
Section 7.9.) To show that such clause sets are inconsistent is considerably
less trivial than to deal with the clause sets arising in the highly
simplified example that we have considered. Nevertheless, with care and
sufficient effort the proofs required to show clause set inconsistency can
always be checked formally after they have been constructed, by using only
the tools which formal mathematics and symbolic logic make available. In
this sense, the formal ASSERT-statement based verification approach that we
have described reduces the problem of rigorous program verifiction to a
purely mathematical question, namely that of proving the inconsistency
certain clause-sets written in a formal mathematical notion. This is as far
as we will carry our discussion of focmal verification, since to discuss the
mathematical problems that must then be faced would take us outside the
scope prbper to an introductory text.

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING Page 7-44

7.8 Formative influences on program development

At this point in• our text we have presented programs ranging from the
simple to the complex, and have discussed both the pragmatic methods used to
test programs systematically and the considerably more formal techniques
that can be used to prove their correctness rigorously. The present section
will discuss a deeper but more amorphous issue, specificaly we will try to
give some account of the formative influences which shape programs and which
determine the features that programs typically exhibit. By gaining some
understanding of this fundamental question we can hope to put other
important issues such as program design and program testing into a helpful
broader perspective.

To understand what underlying forces shape the development of programs,
it is well to observe that ingredients of two fundamental sorts enter into
the composition of a program. Material of the first kind serves to define
user desires and expectations concerning an intended application, for
example the nature of expected input, and of outpput, including output text
formats, graphic output, prompts and warnings issued by interactive systems,
error diagnostics generated by compilers, etc. This material, which often
constitutes the overwhelming bulk of a particular application-oriented
program, is motivated by user-oriented considerations having an
intrinsically nonmathematical character. Material of a second, much more
highly algorithmic kind also apears in programs. This internal program
material creates the toolbox of operations which is then used to achieve
whatever external behavior is desired. Depending on the relative weight of
program material belonging to these two categories (external and internal),
a program can be called an 'externally motivated' or 'internally motivated'
program, an 'application' or an 'algorithm'; one might even say a
'superficial' or a 'subtle' program.

Looking back over some of the programs presented in earlier chapters,
it is easy to apply this distinction. For example, the shortest path code

. presented in Section XXX of Chapter III is an internally motivited algorithm
(though not a very deep one). In contrast, the cross reference program
presented in Section s.2.1.2 of Chapter V has very little algorithmic
content; most of its details relate to such external matters as the rules
which distinguish words from punctuation marks in English text, and one
whole subprocedure, namely PROC XXX of this program, is needed only because
we want to print lists of line numbers in a neat, easy-to-read tabular
arrangement. Other examples are the quicksort procedure of Section ZZZ and
the mergesort procedure of Section 4.4.2, which is algorithms whose recusive
structure gives them a certain depth in spite of their brevity; and the
polynomial manipulation procedures of Section YYY, which are also
algorithms, albeit rather easy· ones since they are little more than
transcriptions of the ordinary algebraic definitions of polynomial sum,
difference, product, etc. On the other hand, the 'turtle language'
interpreter presented in Section ZZZ is externally rather than internally
determined: this code uses no nontrivial algorithm, but merely reflects the
rules of the turtle language in an· almost one-to-one manner. The 'buckets
and well' program of Section 4.3.1 makes the distinction between internally
and externally motivated code· particularly clear, since one of its
procedures, namely the crucial PROC find_path, is an internally motivated
algorithm (very close in spirit to the path-finding PROC XXX of Section
ZZZ), while all its other procedures are externally motivated, some of these

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING Page 7-45

relating to such issues as the acquisition and checking of initial data,
while others merely serve to represent the rules of the 'buckets' problem
itself.

The basic concepts and notations of mathematics, which SETL makes
available as tools of programming, serve very adequately to define the
internally motivated, algorithmic parts of programs. We have already seen
that SETL's set-theoretic features allow mathematical functions to be
described either in a deliberately succinct, 'high' style which defines them
very directly, or more procedurally by algorithms which compute these same
functions, sometimes in surprising, clever, much more efficient ways. We
have also noted that useful mathematical operations which are not directly
provided by SETL can be built up by writing suitable families of procedures,
and have emphasised (see our discussion of the family of
polynomial-manipulating pr~cedures developed in Section XXX) that such
families should be w~itten to hide the internal representational details of
the mathematical objects they manipulate, allowing a user to think in terms
of these objects (e.g. polynomials) rather than in more primitive
set-theoretic terms. By using such approaches, by studying important
algorithms carefully, and by consulting the rapidly growing te~hnical
literature of algorithms, which by now describes many useful, highly
sophisticated algoritms, you will find that the purely algorithmic side of
programming can be brought under a reasonable degree of control.

The externally motivated aspects of programs reflect a considerably
more miscellaneous congeries of influences, for example the physical or
administrat\ve structure of real-world systems; the form and sequencing of
expected input and desired output; the reactions, including prompts and
warnings, expected from interactive systems; heuristic approaches used to
manipulate physical or symbolic objects effectively, etc. How can we come
to terms with such varied material?

There ha~ develope~ a large, though largely admin~strative literature
concerning the imp~rtant problem of how to come to terms with external
aspects of application design before the start of detailed programming.
This is the ~o- called problem of requirem~nts specification. Concerning
the literatur~ devoted to this problem, the astute observer C.J. Myers
comments: 'Although no methodology exists for external design, a valuable
principle to follow is the idea of conceptual integrity, [i.e.J... the
harmony (or l~.ck of harmony) among the external interfaces of the system •••
The easiest way not to achieve coneptual harmony is to attempt to produce an
external design with too many people. The magic.~number seems to be about
two. Depending on the size of the project, one or two people should have
the responsibility for the external design. ••• Who, then, should these
select responsible people be? ••• The process of external design has
little or nothing to do with programming; it is more directly concerned
with understanding the user's environment, problem, and needs, and the
psychology of man-machine communications... Becatrse of its increasing
importance in software development, external design requires some type of
specialist. The specialist must understand all the fields mentioned above,
and should also have a familiarity with all phases of software design and
testing to understand the effects of external design on these phases.
Candidates that come to mind are systems analysts, behavioral psychologists,
operations-research specialists, industrial engineers, and possibly computer
scientists (providing their education includes these areas, which is rarely

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING Page 7-46

the case).'

Though Myers' general remarks are helpful, it is still important to try
to say something more about the organisation of externally motivated,
applications-oriented programs.

One important possibility in this area is to develop special
applications-oriented programming languages whose objects and operations
define useful standard approaches to important application areas. Even if
such languages remain unimplemented and are not available to be run on any
compputer, their notations and general conceptual structure can serve as
important tools of thought. In particlar, in developing an application it
may be well to write out a first version of the application in a helpful,
even if unimplemented, auxiliary language. This first version can then be
translated into SETL by choosing iETL representations for all the kinds of
objects appearing in the auxiliary language and writing SETL routines which
implement its primitive operations. Used in this way, the auxiliary
language serves to tell us what families of operations can work harmoniously
together, and into what procedures a SETL application code can most ~sefully
be organised. For this reason, comparative study of numerous disparate
application-orieted languages, for example SNOBOL, APL, GPSS, APT, COBOL,
etc., is recommended as an intellectual exercise for the would-be
programmer.

Another useful suggestion, which plays a role in the design of
appication-oriented programming languages, is to strive deliberately to use
general mathematical operations rather than tailored special cases of them
in developing prototype applications. Contrasting with this recommended
practice, ordinary application-oriented code tends to mix internally and
externally motivated program material inextricably, i.e. output details are
allowed to control the choice of algorithms, and opportunities to generate
output which an algorithm seems to afford are allowed to determine much of
what the end-user sees. The result is often an inartistic package, which
meets user requirements only minimally, and which is full of redundant, hard
to maintain, and inefficient algorithmic fragments. By separating external
application design from choice and elaboration of internal algorithms much
more cleanly, it should be possible to treat these two problems separately,
and thus to arrive at more satisfactory solutions of both of them.

A related suggestion is to use well-designed, relatively
general-purpose application packages as building blocks for the construction
of more complex applications. Consider, for example, the problem of
designing an interactive system into which formatted commands will be
entered to elicit system responses. As part of the design of such a system,
command -input conventions and command decomposition routines always need to
be developed. It may be possible to handle this command input task by
adapting a standard text editor very slightly. If this is done, the
suitably modified editor will also serve to define and implement command
facilities which can be as flexible and successful as the editor itself.
This example illustrates the way in which well-designed, flexible
application modules can be used, alongside of internally-oriented
mathematical operations, as building blocks for more advanced applications.
What is desirable is to familiarise yourself with a library of
applicatio~-oriented modules which can be used somewhat as one uses a
library of algorithms, but with the significant difference that they address
moie application- and user-oriented issues.

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING Page 7-47

As we have said, much of the text of an applications-oriented program
is nothing more than a restatement, in programming language terms, o,f
external facts and rules pertaining to the intended application. Once on~
has found a way of representing these facts and rules in a form which is a
succinct and clear as a well-conceived English language description of these
same details would be, one has programmed these external aspects about as
effectively as can be expected ■ Beyond this, the algorithmic content of a
highly 'external' program will normally be small. However, the following
elements will often play some role:

(a) A few genuine but generally rather elementary algorithms may be used.
For example one may want to sort, perform a binary search, or put the data
to be processed into some arrangement which makes it easy to locate
significantly interelated groups of data items.

(b) To improve efficiency, one will often apply the process of 'formal
differentiation' described in Section XXX to an application-oriented code ■
As explained in Section XXX, this is the technique of speeding up the
calculation of a quantity E that will be required repeatedly by storing its
value in a variable value_of_E, which must then be updated whenev'er any
parameter on which E depends is changed. (Whenever this common technique is
applied, it tends to complicate the application code, since it replaces a
single, integral, often self-explanatory computation of E by multiple
scattered, harder-to-fathom updates of value_of_E,) A related technique is
to replace direct use of set-formers and tuple-formers by loops which build
these same values. Sometimes this is done in order to combine several such
loops, all of which iterate over the same set, into a single loop. For
example, in application-oriented code (and even in hand- optimised
algorithms) one is less apt to see

(la) nuc_rich_families := #{x IN families J
family_income(x) >= 100000};

num middle families := #{x IN families I
f-;mily_i~come(x), < 100000 AND family_income(x) > 5000};

num_poor_families := #{x IN families I ,
family_income(x) <• 5000};

than to see something like

(lB) nurn_rich_families := num_middle_families :a
num_poor_families := O;

(FOR x IN families)

IF (income:•family_income(x))>=lOOOOO THEN
num_rich_fami lies+:,= 1;

ELSEIF income>SOOO THEN
num_middle_families+:=l;

ELSE
num_poor_families+:=l;

END IF;

END FOR;

The code (lB) arises from (lA) by expansion into loops of the three

---------- --- ----

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING Page 7-48

set-formers appearing in (lA), followed by combination of the three
resulting loops, and then by the application of a few other rather obvious
optimising transformations. Note that (lB), although much more efficient
and not much lengthier than (lA), is not quite as obvious a piece of code;
certainly (lB) is less brutally direct than (lA).

Internally motivated code passages, which is to say significant
algorithms, use a much wider range of tricks than ordinarily appear in more
superficial, application-oriented, programs. (It is partly for this reason
that it is well to separate internally determined from externally determined
code sections: externally oriented code can often be ground out routinely
once a good approach has been defined, whereas deeper, internally-oriented
code needs to be approached much more cautiously, more 'by the book'.)
Formal differentiation, as described above, plays a great role in the design
of internally oriented algorithms.

Another important technique of algorithm design is exploitation of
recursive mathematical relationships which express some desired function f
of a cQmposite object x in terms of values f(xl), ••• ,f(xn) calculated for
one or more smaller subparts xj of x. As noted in Section 4.4,
relationships

· f (x) =g (f (x 1) , •• , f (xn))

of this recursive kind underly such high-efficiency algorithms as mergesort
and quicksort.

Beyond these two most common techniques,J the ongoing work of algorithm
designers has already uncovered many sophiiticated techniques which can be
used to accomplish a great range of important tasks with remarkable
efficiency. Some of these algorithms rest on quite subtle mathematical
relationships, whose discussion goes beyond the scope of this book.
However, your ability to devise truly ~ffective approaches to programming
problems will be strongly conditioned by your familiarity with the rich and
growing literature of algorithms, and you are strongly advised to proceed
with the study of this material as soon as y~u have mastered the more basic
material contained in this book. A short list of useful collections of more
advanced algorithms is found at the end of this chapter.

7.9 Exercises

Ex. 1 Into the bubble-sort code shown as (5) of Section 4.1.1, insert code
which will count the number of iterations performed.
Then:

(a) Measure this number I of iterations for a randomly chosen tuples of
varying lengths L, and calculate the ratio of I to L**3, to estimate the
constant C that should appear in the formula I=C*L**3 projected in Section
7.5.1. Do the same for the quicksort method of section 4.4.1.

(b) How much more efficient than the bubbl~ sort method (5) of
would you expect the quicksort method (YYY) to be, for sorting a
elements? For sorting a tuple of 100, or 1000 elements?

Section X
tuple of 10

Ex. 2 Take the Bubble-sort procedure described in Section 4.1.1 and the

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING Page 7-49

Merge-sort procedure described in Section YYY, and modify them by inserting
code which will count the number of comparisons which they make when used to
sort a given vector t. Use them to sort tuples of length 50, 100, and 200,
counting the number of comparisons performed, and measuring their relative
efficiencies. Try both tuples with random components, and tuples with only
a few components out of sorted order.

Ex. 3 Use the technique described in Section 7.5.2 to estimate the time
required to sort· a vector of length _t using the merge sort algorithm shown
in Section YYY, and also the time required to search for a specified
component in a sorted vector using the binary search algorithm given in
Section zzz.

Ex. 4 What set will be printed by the following code?

n:=10;
s: ={ } ;

(For i IN [1 •• n]) s WITH:=s; END;

If we changed the first statement ton:= 1000, for roughly how long would
you expect the resulting code to execute?

Ex. 5 Comp are the time required to ex,ecu t e the fo.l lowing codes:

n:=500;
s:={ };

(FOR i IN [1 •• n]) s \lITH:=2*1; END;

and

n: =500; n.
s: -{ } ;

(FOR k IN [1 •• n]) s WITH:•2*i, t:•s; END;

What accounts for the difference?

Ex. 6 Write a -program which will execute the ten elementary SETL operations
which you consider most important, 1000 times each, and from this will
estimate the time required to execute each such instruction. To eliminate
the time required just to execute looping operations, your tests should
compare loops like

(FOR i IN [l •• n]) x:•y+z; END;
(FOR i IN [l •• n)) x:•y+z; x:•y+z; END;

The time difference per iteration is then clearly the cost of executing
the additional operation.

Ex. 7
modify
one of
it is

Take the buckets-and-well program described in Section 4.3.1 and
it by inserting code which will count the number of times that every

its procedures is called and the number of times that every loop in
executed. This information should be written to a tuple, and a

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING Page 7-50

general purpose routine which prints this information in an attractive
format should be designed and implemented.

Ex. 8 One reason why the Eulerian path program shown in Section 11.1 is not
as efficient as a reprogrammed version of it could be is that to build up
the final Eulerian path it makes repeated insertions into the middle of the
path p being developed. As explained in Section XXX, each such insertion
forces us to copy p if pis represented in the standard way as a SETL tupie.
A better possibility is to represent p by a 'list' of the form described in
Section YYY, i.e. by a map f which sends each point of p into the next
point, so that if xO is the first point of p, then p is
[xO,f(xO),f(f(xO)), ••]. Rewrite the Eulerian path program to represent pin
this way. Try for an efficient variant, e.g. one which avoids unnecessary
sarching through lists.

Ex. 9 A tuple tall of whose components are different from OM can be
represented in the 'list' form described in Section XXX, i.e. by a pair
[xl,f] .such that xl is the first component oft and f is a map which sends
each component oft into the next component oft. Use an iteration ~aero to
write short codes which convert a tuple t from its standard form to this
list form and vice-versa.

Ex. 10 Rewrite program (2) of Section XXX by introducing labels and GOTOs
in place of the WHILE loop appearing in this program. More precisely, the
WHILE-loop header should be replaced by the following labeled statement:

Label!: If iterations /= m THEN GOTO Label2; END;

and the WHILE loop trailer END WHILE should be replaced by the sequence

GOTO Label!;
Label2: $ the final ASSERT statement of (2) should

$ follow this label

·If we transform (2) in this way we can insert the auxiliary assertion

ASSERT prod•iterations*n;

immediately after Labell. Make this assertion; then generate clause sets
as in Section 7.7.1 and prove -that the resulting variant of program (2) is
correct. How does this proof compare in difficulty to the proof of
correctness of program (2) given in Section 7.7.2?

Ex. 11 A set-theoretic iteration

(1) (FOR x IN s)

can be rewritten as a WHILE loop in the following way: We introduce a new
variable s' (representing the collection of elements of s that have not yet
been iterated over.) Then the loop header (1) can be rewritten as a WHILE
loop header in the following way:

(WHILE s' /•{ })

PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING Page 7-51

x := ARBs'; s' :• s'-{x};

(The END FOR corresponding to (1) must be replaced by END WHILE.) Applying
this technique, prove that ifs is a set of integers then the program

(2) countl := O; count2 := O;
(FOR x IN s)

IF x>O THEN countl := countl+l; END;
IF x<=O THEN count2 := count2+1; END;

END FOR;

gives the variables countl and count2 final values satisfying the equations
countl+count2=#s. You are required to work out a full set of Floyd
assertions for the program, and to write out the clause sets generated by
these Floyd assertions. A rigorous English-language proof that each of
these clause sets is inconsistent should then be given.

Ex. 12 Assume that sl and s2 are two sets.
prove that the program

count:=O;
(FOR x IN sl)

(FOR y IN s2)
count := count+l;

END FOR;
END FOR;

Proceeding as in Exercise 11,

gives the variable -count- a final value equal to #sl*#s2.

Ex. 13 Take the merge-sort program of Section 4.4.2 and introduce as many
hard to-find bugs into it as possible. Give the result to a friend, and see
if he can find all the bugs, and what is the average time needed to find one
bug?

7.10 References to material on alternative data structures. - - ---Re fer enc es for add i t ion a 1 ma t e r i a 1 on a 1 go r i t h·m s •

Reingold, Nievergelt, and Deo: Combinational Algorithms - Theory and
Practice (Prentice-Hall Publishers, 1977) is an intermediate-level work
which presents many useful techniques for generating combinatorial objects,
fast searching and sorting, and graph processing. It also discusses the
mathematical techniques used to estimate algorithm efficiency, and can serve
well as a guide to further reading in this important area.

The Design and Analysis of Computer Algorithms by A. Aho, J.
Hopcroft, and J. Ullman (Addison-Wesley Publishers, 1975), which is more
advanced, contains an excellent survey of many important algorithms,
data-structuring techniques, and methods for determining the efficiency of
algorithms. This useful book also describes various important techniques
for proving upper bounds on the speed with which various quantities can be
calculated. The first three volumes of Donald Knuth's famous Art of
Computer Programming (Addison-Wesley Publishers, 1973) cover several
important classes of algorithms (including basic combinatorial algorithms,
polynomial manipulation, multiprecision arithmetic, calculation of random
numbers, sorting, and searching) very comprehensively. Knuth gives many

- ------~------------ - - ------- --- -------------

PROGRAM DEVELOPMENT, TESTIN~, AND DEBUGGING Page 7-52

detailed analyses of algorithm efficiency and is the basic reference for
this topic. Borodin and Munro, Computational Complexity tl Algebraic and
Numeric Problems (American Elsevier Publishers, 1975) is a specialised work
which presents many algorithms for high-efficiency processing of polynomials
and for related algebraic and arithmetic processts•

Numerical algorithms, i.e.algorithms for carrying out numerical
computations, including solution of linear and nonlinear equations,
calculation of integrals, solution of differential equations, minimisation
of functions of several variables etc. have a very extensive history, which
reaches back to the nineteenth century and beyond. A first-class modern
inroduction to this classical area of computational technique is found in
Dahlquist, Bjorck, and Anderson Numerical Methods. (Prentice-Hall
Publishers, 1974)

Methods for treating systems of linear equations and inequalities form
the content of the area of algorithmics known as linear progrmming. For an
account of this interesting and important subject, see D. Luenberger,
Introduction to linear and nonlinear programming. (Addison-Wesley
Publishers, 1973).

Many areas of algorithm design have developed very actively during the
last few years. One of the most fascinating of these is computational
geometry, the body of techniques used for the rapid calculation of solutions
to geometric problems ■ For an introduction to recent work in this area, see
M. Shames, Computational Geometry Ph. d. Thesis, Yale University(l978).

$

-HAPTER 8

ADDITIONAL I/O AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING

Chapter 8: Additional I/O and Environmental Functions;
Backtracking

In this chapter, we cover various SETL capabilities that have been
ignored in the preceeding, more elementary chapters. These include
additional facilities for input/output, for sensing aspects of the
environment in which a SETL program is running, and for passing strings or
integers as parameters to SETL runs in a particularly convenient way. A
full account of all the memory options and listing control commands which
can be used to modify significant aspects of SETL compilation and execution
is given. Finally, we give an account of of an interesting, somewhat
unuaual type of control facility which SETL supports: backtracking, which
makes an intriguing kind of non-deterministic programming availale.

Chapter Table of Contents:

8.1 Input-output facilities
8.2 Backtracking

8.2.1 Implementation of backtracking
8.2.2 Total failure; generation of all solutions

to combinatorial problems
s.2.3 Tiling problems
8.2.4 Other uses of OK and FAIL
s.2.1 Nondeterministic programs, or it is OK after all
8.2.6 Auxiliary backtracking primitives

8.J Use of Auxialiary 'Inclusion Libraries"
8.4 Listing control commands
8.5 Environment operators and SETL command parameters

8.5.1 Standard SETL command options
s.s.1.1 Parse phase options
s.s.1.2 Semantic analysis phase options
s.s.1.J Code generation phase options J

8.s.1.4 Run-time support options
8.5.1.5 Other command parameters used for system

checkot and maintenance
8.6 Exercises

ADDITIONAL I/0 AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-2

8.1 Input-output facilities

While less developed than those of some other languages, the
input-output facilities of SETL are adequate for most ordinary applications.
Faciiities for reading and writing simple string input, structured input
representing SETL objects, and input/output using an internal 'binary'
format which can be handled more efficiently than SETL's structured input
are all supported. Note that relatively powerful string facilities
available in SETL can also be used to format text that is to be printed.

The SETL I/0 operations deal with files of two kinds:

(a) 'Text' (also called 'coded' files), which can be read, either as
sequences of lines (which are read in as simple character strings, using
'GET', described below), or as structured encodings of SETL objects
(possibly extending over multiple lines; these are read in using 'READ').

(b) 'Binary' files. These can only be written using PUTB and can only
be read using GETB (see below). These files store SETL objects in their
internal representation, And are read or written more efficiently than coded
files.

All files are treated in strictly 'sequential' fashion by the SETL I/0
primitives. That is, a file is regarded as a logical sequence (either of
strings or of SETL Objects) from ~hich input can only be read sequentially,
starting with the, first item in the file, and reading through the file to
its last item, until end-of-file is eventually reached. Read operations are
performed by READ, READA, GET, or GETB, see below. Output operations (i.e.
PRINT, PRINTA, PUT, or PUTB) always add items to the end of a file, thereby
making it longer. At each moment, a given file can only be used either for
input or for output, not both, and must be used one of the two mutually
exclusive modes (a) or (b), depending on whether the file contains binary or
coded information.

The input-output operations which SETL supports are as follows:

(1) OPEN(file,mode). This opens the file specified by its first
argument, thereby making the file available for other operations. Both
arguments of the OPEN operation are strings. The forms acceptable for the
first argument are machine dependent since they are identical with the forms
of file names as defined by the execution environment. For example, on the
DEC VAX running under the VMS/2.0 operating system, the following file
parameters would all be acceptable:

OPEN('data.','CODED');
OPEN('test.dat','BINARY-IN');
OPEN('[dewar.doc]book.txt','CODED');

$ simple file name
$ qualified file name
$ directory name followed
$ by file name

The second argument of the OPEN function must be one of the following
strings:

'BINARY'
'BINARY-IN'

(same as BINARY-IN)
opens file for input by GETB

ADDITIONAL I/O AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-3

'BINARY-OUT'
'CODED'
'CODED-IN'
'CODED-OUT'
'PRINT'

'TEXT'
'TEXT-IN'
'TEXT-OUT'

opens file for output by PUTB
(same as CODED-IN)
opens file for input by READ, READA, and GET
opens file for output by PRINT, PRINTA, and PUT
opens file intended for printing
the file is opened for output.
Files opened in this manner will include special
'carriage control' characters; see below for details.
(same as 'CODED-IN')
(same as 'CODED-IN')
(same as 'CODED-OUT')

The OPEN primitive returns the value TRUE if the operation of opening the
file succeeds, FALSE if this operation fails. Since the OPEN operation
always involves communication with an underlying operating system, the
~eaning of 'success' and 'failure' is environment-dependent to a certain•
degree. Generally speaking, however, opening a file for input will succeed
if a file having the name specified in the OPEN operation is available in
the operating environment and has not already been opened; opening a file
for output will succeed if the file has not already been opened. Opening an
already open file causes an error.

(ii) CLOSE(file). This terminates input/output to a file established
by a pr~or call to OPEN, and releases the file to the operating environment.

(iii) GET(file,lhsl, ••• ,lhsk): This gets successive lines from the
specified file, and assigns them (as strings) to lhsl, ••• ,lhsk in turn.
(Here and below, lhsl, ••• ,lhsk must be either simple variables or
expressions which can legally occur on the left-hand side of an assignment
statement.) Lines read by GET should not ordinarily be enclosed iri quote
characters; if quote characters occur in such lines, they will be treated
not as string delimiters but as parts of the string being read. · For
example, if the first two lines of a file 'xxx' are

THIS IS LINE 1
'THIS IS LINE 2'

then the effect of the GET statement

GET('xxx',lna,lnb);

is exactly the same as that of the pair of assignments

lna :a 'THIS IS LINE l';
lnb :='''THIS IS LINE 2''';

If GET encounters end of data on the file that it is reading, it
READ, see Section XXX) behaves as if it had read an OM.

(like

To GET input from the standard input file, the standard file name
'INPUT' should be used.

ADDITIONAL I/O AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-4

(iv) GETB(file,lhsl, ••• ,lhsk). This reads successive SETL objects from
the specified file, and assigns them to lhsl, ••• ,lhsk in turn. (As in the
case of GET, lhsl, ••• ;lhsk must be expressions which could legally appear on
the left-hand side of an assignment.) In this case, the file being read must
be a SETL binary file, and must have been opened by the command
OPEN(file,'BINARY-IN'). Note that a SETL binary file will almost always
have been created using PUTB.

If GETB encounters end of data on the file that it is reading, it
behaves as if it has read an OM.

(v) PRINT(expnl, ••• ,expnk). This writes the values of expnl, ••• ,expnk
to the standard output file. See Section XXX above for details.

(vi) PRINTA(file,expnl, ••• ,expnk)~ This is simil*r to PRINT, except
that its first argument is the name of a file (of 'CODED' type) to which the
output produced by this operation is written.

(vii) PUT(file,expnl, ••• ,expnk). This writes text lines to the file
specified by its first argument, which must be of 'CODED' type. The
expressions expnl, ••• ,expnk must evaluate to strings. Each such expression
causes a single line to be sent to the specified file.

(viii) PUTB(file,expnl, ••• ,expnk) ■ This writes the values of
expnl, ••• ,expnk to the specified file, which must be a SETL binary file, and
must hav~ been opened by the command OPEN(file,'BINARY-OUT'). Here
expnl, ••• expnk can be arbitrary SETL values.

Provided that they involve no atoms, values written by PUTB can always
~ '

be read back -in GETB. (The special rules which govern the handling of atoms
by PUTB and GETB are explained below.) Note that the very desirable
symmetrical relationship between PUTB and GETB that this rule reflects does
not hold for PRINTA and READA, simply because strings written by PRINTA will
not include the quote marks which READA requires. Hence, if you want to
write SETL Objects to external media for temporary storage and then read
them back you must do so using PUTB and GETB, rather than PRINTA and READA.

(ix) READ(lhsl, ••• ,lhsk) ■ This reads a sequ~nce of SETL values from
the standard input file. (As in the case of GET, lhsl, ••• ,lhsk must be
expressions which could legally appear on the left-hand side of an
assignment.)

If READ encounters end of data, it behaves as if it had read an OM.

(x) READA(file,lhsl, ••• ,lhsk). This is similar to READ, except that
its first argument is the name of a file (of 'CODED' type) from which the
input produced by the READA operation will be obtained.

(xi) EOF. This is a nulladic operation which yields TRUE if the most
recent input operation executed (which will be either a READ, READA, GET, or
GETB operation) reached the end of the file being read; otherwise EOF
yields FALSE.

ADDITIONAL I/0 AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-5

Since every input operation affects the value of EOF, it may become
necessary in some programs to save EOF values by assigning them explicitly
to auxiliary variables.

(xii) EJECT() or EJECT(file). This writes a page eject character to
the specified file, or, if no file is ~pecified, sends a page eject to the
standard output file. The file to which an eject command is directed must
either be the standard output file or must have been opened using the
command OPEN(file,PRINT). Only files opened in this way can accept
carriage-control characters like the 'eject' character.

(xii) TITLE() OR TITLE(str). These operations initiate and suspend
generation of titles for the standard output file. TITLE(str) must have a
stri.ng-valued argument. TITLE causes a page eject on the standard output
file, and establishes its argument as the title string, which then appears
at the head of all subsequent pages (until the title is changed later by
another TITLE command.) Titled pages are numbered sequentially. TITLE with
no argument disables generation of titles. (See Section XXX for a related
titling facility.)

Note that if the PUT primitive is used with a file which was opened by
an OPEN(file,'PRINT') command and which is intended for printing, the first
character of each line of the file printed will be treated as a carriage
control character ·rather than a as a normal print chfracter. Characters
treated in this way will not be printed, and their presence may cause
unexpected page ejects or other undesirable effects. For this reason, the
PUT primitive should not be used in p~ace of PRINT or PRINTA ~xcept by
programmers familiar with carriage-control conventions.

The PUTB primitive ~an be used to write atoms to a BINARY file. These
atoms can be read back by GETB. Note however that if a file containing
atoms is read in by a program that has just started to run, regeneration of
atoms will restart at atom number 1, and hence some of the newly generated
atoms may appear to be identical with old atoms obtained from a file via
GETB. To avoid difficulties in this case, it may be necessary to use some
annoying artifice, e.g. to begin by generating many 'throwaway' atoms,
until the last atom present in the data. structure read in by GETB has been

,'Y,.
bypassed.

The input-output facilities described above can be used to write output
interactively to a terminal (and acquire input from a terminal.) See Section
XXX for the conventions that apply in this case.

8.2 Backtracking

'Backtracking' or 'nondeterministic programming' is an ingenious
technique useful for solving a very common and important type of search
problem. Such problems can be regarded as logical or combinatorial
'mazes' which a program must explore in order to find a desired solution
point. In favorable cases, one will be able to do this by devising an
algorithm which proceeds in relatively direct fashion from an initial
position to a solution, along a path involving little or no 'trial and

-------·--· -----------------------------

ADDITIONAL I/O AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-6

error'. However, some problems are too complex for such algorithms to
be available, and it is for these problems that the method of
backtracking is mos·t useful. Characteristically, programs for solving
these problems encounter situations in which a decision must be made as
to which of several alternatives is to be explored next, but in which no
clear grounds can be found for making one rather than another decision.
A correct decision will lead on to a solution of the problem being
explored, but an incorrect decision will wind up in a dead end, and the
program will have to revert to the point at which it took its first
wrong turning and try an alternative originally overlooked. F~nding
paths through mazes and solving geometric and spatial puzzles like the
well-known 'instant insanity' puzzle are obvious examples of this kind
of problem.

The backtracking primitives to be described in this section make it
easy to program solutions to these problems. Just two primitives, whose
power at first seems almost magical, are required. These two
primitives, whose workings we will describe in this section, are called
OK and FAIL respectively.

OK is a (parameterless) Boolean-valued function,_ but one which we
can think of as having a very major additional effect. More
specificaly, wherever OK is called, we at once 'split' our program into
two copies of itself, identical except that OK yields the value TRUE in
one of these copies, and FALSE in the other. After splitting, both
these copies continue to execute independently and in parallel. If
either of these copies subsequently encounters another OK, it will split
yet again in the same way. If it subsequently encounters an occurence
of our second backtracking primitive FAIL (which is simply a
parameterless statement) it will immediately cease execution and
disappear. The problem that our program is solving becomes solved as
soon as one of the many copies into which the program has split reaches
a solution.

The way in which we really implement this kind ~f 'splitting' will
be described later in this chapter. For the moment, let us simply
assume that such splitting is possible, and note how powerful and
general its effects are. Suppose, for example, that a program needs to
make a simple binary choice, say to perform one of two complex
calculations, but that no algorithm for making this choice at that point
is known. Then we can simply write

IF OK THEN x := fl(x,y,z); ELSE x .- f2(u,w,v); END;

This creates two copies of our program, one of which executes the
invocation of fl, the other one of f2. If one of these copies
subsequently encounters the statement FAIL it will simply disappear.
Hence (ignoring implementation difficulties) we concentrate our
attention on that 'lucky' copy of the program which eventually finds the
problem solution that we are looking for. From the point of view of
this lucky copy, OK has acted as a magical 'oracle': when called it
returned one of the possible values TRUE or FALSE; the value chosen was
always such as to steer the program past any lurking occurence of FAIL.

ADDITIONAL I/O AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING

Note that OK can be used to make any kind
multiple choices, and to chose among multiple
example, consi<ler the following statement:

IF OK THEN RETURN e; END;

of choice, to
alternatives.

Page 8-7

make
For

This splits our program into two, one of which immediately returns with
the value e, while the other continues executing the function in which
the IF statement appears. This shows how 'extreme' a choice OK can
make.

To explore multiple choices, we can for example write

IF OK THEN
IF OK THEN x := north(y); ELSE x :• south(y); END;

ELSE
IF OK THEN x := east(y); ELSE x := west(y); END;

END IF;

This creates four copies of an initial program, within each of which one
of the four functions north, south, east, west, will be invoked.

To choose among still more highly multiple alternatives, we can
even write

IF EXISTS x IN s I OK THEN
RETURN x;

ELSE
FAIL;

END IF;

wheres is a set. In this case, the iterative search triggered by
the EXISTS construct will iterate over all of the elements x of sin
turn. For each such element, OK will be evaluated. This will cause a
split into two program copies, in one of which x will be considered 'ok'
and will be returned, while in the other copy x will have been rejected
and the iteration (i.e. the iterative search triggered by the EXISTS
construct) will continue on to the next element of s, again splitting,
etc. This will create as many logical copies of the original program as
s has elements, in each one of which one particular element x of s will
have been selected and returned. (It will also generate a copy in which
no xis accepted and the EXISTS primitive yields FALSE; but this copy
immediately executes a FAIL and disappears.) This useful backtracking
fragment can be embedded in a function:

PROC choose(s);

IF EXISTS x IN s I OK THEN
RETURN x;

ELSE
FAIL;

END IF;

END PROC;

$nondeterministic choice procedure

ADDITIONAL I/O AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING

The net effect of a call to choose(s) will be to split the
executing it into as many copies as there are elements in the
string, or triple) s;· each element (or character, or component)
the value returned by -choose- in one of these copies.

8.2.1 Implementation ..Q.f Backtracking

Page 8-8

program
set (or
of s is

To actually implement the logical 'splitting' implied by the OK
primitive, one can proceed as follows. Each time OK is evaluated, make
a complete copy of the state of the program in which it occurs. This
should record the value of all variables, including temporary variables,
the sequence of procedure calls outstanding, the instruction currently
being executed, etc. Call all this information an 'environment', and
save it somewhere on a stack. Then give OK the value TRUE, and continue
the current computation. If the current computation succeeds in finding
the solution it wants and terminates normally, nothing more is
necessary. If, on the other hand, it subsequently executes a FAIL and
disappears, then retrieve the last environment saved, and restart the
computation from the state recorded in this environment, but this "time
give the OK which it is just a process of evaluating the value FALSE.
(Note that each environment saved contains all the information needed to
restart a calculation from a prior point in its history, and that each
of these restart points represents a calculation in the very act of
evaluating the function OK). It is clear that this process of serial
exploration will eventually either find the solution being sought, or
will work through the history of all the split computations generated by
successive evaluations of OK, to discover that all of them FAIL. In
this latter case, an error exit is taken, and a diagnostic message is
issued:

***EXECUTED-FAIL- IN PRIMAL ENVIRONMENT

The preceding paragraphs describe something very close to · the way
in which SETL implements the backtracking primitives OK and FAIL. This
implementation allows the semantics of these operations to be modified
slightly, iu part to improve their efficiency, in part to allow other,
occasionally useful, slightly more complex effects to be obtained.
First of all, rather than saving the values of all variables whenever OK
is executed, the SETL system requires an indication from the user as to
which variables should be restored to their previous values after a
FAIL. When FAIL is executed, only the values of those variables
declared by the user to be backtrack variables are restored. (Of
course, the system itself will restore the stack, program counter,
internal variables, etc.). The variables which are to be restored to
their previous values a£ter a FAIL are declared in the following
example:

VAR x,y,z BACK;

In the presence of this (and only this) BACK declaration, the attribute
-BACK- would be attached to the variabl~s x, y and z, and no others, and
only those will be saved and restored on OK/FAIL.

ADDITIONAL I/O AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-9

We will illustrate the use of OK, FAIL, and the BACK declaration by
using them to solve a simple but very well-known combinatorial problem,
the so-called 8 queens problem, which can be stated as follows.

On an 8 by 8 chess board, place 8 queens (i.e. pieces that move
up, down and diagonally) in such a fashion that no two queens attack
each other.

Note that there is no obvious non-backtracking approach to the
problem. However, the backtracking primitives allow it to be solved
easily.

We simply place queens successively on the board, in apropriate
unattacked squares, until all have been placed. The OK primitive is
used (as an oracle!) to ensure that we never make the mistake of placing
a queen on a inappropriate square. If there were queens still to be
placed but no unattacked squares left, we would have to FAIL, but we can
take the complacent attitude that the values returned by OK will prevent
this from ever happening. If for the moment we omit the necessary BACK
declaration, and postpone the easy subfunction which tells us which
squares are unattacked, SETL code for solution of the 8-queens problem
can be written simply as:

used :={};

(WHILE #used< 8)

possible:= safe();

$ the set of board squares which
$ are occupied by a queen
$ While not all queens have been
$ placed

$ squares which are not under
$ attack

IF EXISTS square in possible I OK THEN

used WITH:= square;

ELSE
FAIL;

END IF;
END WHILE;

$ put queen on one more square

$ All squares are under attack.

print_board; $ Display the solution.

In order to complete this program, we must

a) Decide on the variables which must be backtracked.

b) Choose a representation for the board, and specify the
-safe- and the output procedure -print_board-.

function

The variables which need to be backtracked (i.e. restored to their
previous values after a FAIL) are those which will be used before being
redefined following some OK, and which also might be modified after an
OK. In the code shown above, both -used- and -possible- must be
backtracked. The iteration variable -square- need not be saved, because

ADDITIONAL I/0 AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-10

whenever we backtrack
previously chosen square.

it is precisely in order to discard
Thus , we only need the declaration:

VAR used, possible: BACK;
VAR board;

some

The representation of the board, and the nature of the procedures -safe­
and -printboard- are independent of our backtracking schema. For
completeness, here is a possible description of these items:

bl) The board is
represented by a pair
economical representations
invent some).

a set of positions, each position being
of coordinates in the range [1 •• 8]. (More
suggest themselves, and you may want to

board :a { [i,j] : i in [1 •• 8], j in [1 •• 8]};

b2) The function -safe- iterates over all board positions, and discards
the ones which are under attack by queens placed in used squares.

PROC safe();
RETURN {square IN board I

END PROC safe;

(NOT EXISTS queen IN used I
attacks(queen, square)) };

Finally, the predicate -attacks(pl,p2)- establishes whether
. positions pl and p2 are mutually threatening:

board

PROC attacks(pl, p2);
RETURN

(pl(.l) • p2(1)) OR
(p1(2) "" p2(2)) OR
((pl(l)-pl(2)) • (p2(1)-p2(2))) OR
((pl(l)+pl(2)) = (p2(l)+p2(2)));

END PROC attacks;

$ pl and p2 are on same row.
$ or on same column.
$ or same upwards diagonal.
$ or same downwards diagonal.

The procedure -print_board- is left as an exercise to the reader.

8.2.2 Total failure, and the generation
combinatorial problems.

of all solutions .!.Q.

In all our examples so far, we have assumed that the problem we are
tackling actually has a solution. This may not always be the case. For
example, how would the queens program behave if we specified a board
size which was smaller than the number of queens to place? In such a
case, the program would search through all possible positionings of the
queens on the existing board, and fail on each of them. Eventually, a
final failure would be executed, for which no backtracking alternatives
exist (all positions having been tried). At this point, the SETL
system, having run out of options, would terminate execution in the
manner indicated above, i.e.:

*** EXECUTED -FAIL- IN PRIMAL ENVIRONMENT.

ADDITIONAL 1/0 AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-11

If we do not know a priori whether our problem has a solution or not, we
may want to ensure that our backtracking program does not terminate
abruptly upon terminal failure, but gives us some information as to the
nature of the unsuccessful search (e.g. the number of tries) and
perhaps awaits further input; in a word, we want the program to retain
control. This can be achieved by inserting a top-level -OK- to which we
will fall back in case a search fails completely. This correponds to
the following general backtracking schema:

if OK THEN

ELSE

(while not complete(solution))

possible_moves := moves(solution);

IF EXISTS move IN possible_moves OK THEN
solution :• update(solution, move);

ELSE
FAIL;

END IF;

END WHILE;

display(solution);

print('Problem has no solution');
$ Actions upon find failure.

END IF;

As the example shows, information about the history of a backtracking
computation can be gathered in non-backtracked variables, i.e.
variables that do not appear in a -back- declaration. The values of
non-backtracked variables are unaffected by the execution of OK and
FAIL. An example of a variable that monitors the execution of a
backtracking program is the variable -failure- in the tiling program
shown below. The variable is used simpl•y to count the number of times
-FAIL- was executed.

8.2.3 Tiling problems.

The so-called 'tiling' problem can be stated as follows: given a
set of square tiles of various sizes, find whether they can be used to
cover a rectangular area of given height and length exactly.

To solve this problem by backtracking, we use the following
approach: we keep track of the perimeter of the area which remains to
be filled. Initially, this is just the perimeter of the rectangle to be
tiled. At each step, the bottom of this perimeter must include a
'valley', i.e. a sequence of four vertices whose two middle ones are at
a lower height than its first and last as shown in the following figure:

ADDITIONAL I/O AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-12

1
or or

At each step
corner of such
greater than that
of the area which

of our exploration, we insert into the lower left
a valley, one of the remaining tiles whose width is no
of the valley, update our description of the perimeter
remains to be tiled, and continue.

In the code that follows, the condition that determines the
acceptability of a given tile is expressed as a conjunction: we want to
find a tile among those remaining which fits(i.e. is no wider than) an
existing valley, and which is OK, ~i.e. which will subsequently allow
us to place all remaining tiles and complete the solution).

The only data structure of special interest in this program is the
perimeter of the area remaining to be filled. It is described as a
sequence of points, listed in counterclockwise order, starting from the
upper left-hand corner of the area to be tiled. Thus, the original
perimeter constitutes a valley, and the first tile to be placed goes in
its lower left-hand corner. Each point on the perimeter is described by
an ordered pair of coordinates ■ Further details of the algorithm can be
gleaned from the commented code that follows.

PROGRAM tiling_puzzle;

$ This is a backtracking program that finds an arrangement of
$ given set of square tiles to fill in a specified rectangle ■
$ The area still to be filled is specified the global variable
$ -perimeter-, which is the counterclockwise sequence of vertices
$ of the unfilled space that remains.
$ The algorithm proceeds by finding a valley in the bottom
$ of the empty area into which one the remaining tiles fits ■

$ Of area to be tiled.
$ Of tiles already used.

$ Of available square tiles.
$ Of tiles in each size.

VAR perimeter,
placement,
sizes_left,
count,
corner,
next size:

$ Defining valley for next tile ■
$Tobe tried.

BACK;

VAR length, height,
tiling;

$ Dimensions of rectangle to be filled.
$ For display of successive placements ■

$ The following macros establish some geometric vocabulary.

MACRO abcissa(i); perimeter(i)(l)
MACRO ordinate(i); perimeter(i)(2)

$ Macros describing properties of edges.

MACRO up(i);

MACRO down(i);

(abcissa(i) = abcissa(i+l) AND
ordinate(i) < ordinate(i+l))

(abcissa(i) = abcissa(i+l) AND

ENDM;
ENDM;

ENDM;

ADDITIONAL I/0 AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-13

ordinate(!) > ordinate(i+l)) ENDM;

start:
print('enter length, height of area to be tiled');
read(length, height);
print('enter tuple of tiles to be used');
read(tiles);

$ Verify that tiles can cover exactly the specified area.

IF +/[t ** 2 : t IN tiles] /•length* height THEN
print('no possible covering with this set');
GOTO start;

END IF;

perimeter:= [[O,height],
placement := [];

[0,0], [length,0], [length, height]];

sizes := {t : t IN tiles};
count := { [t, #[tl : tl IN
sizes_left := sizes;

tileslt = tl]] t IN sizes};

failures := O; $ this variable keeps a count of the number of times
we have backtracked

$ Define the topmost environment to which we will return in case of
$ complete failure.

IF OK THEN

(WHILE sizes_left /• {}) $ Continue placing tiles.

$ Find valley in current perimeter: there must be one.

ASSERT EXISTS corner IN [l •• #perimeter-2]
down(corner) AND up(corner+2);

IF EXISTS next_size IN sizes left I fits(corner,next_size) AND OK
THEN

count(next_size) -:• l;

IF count(next_size) • 0 THEN
sizes_left LESS:• next_size;

END IF;

rebuild(corner, nextsize);
printboard;

ELSE failures+:= l; FAIL;

END IF EXISTS;

END WHILE;

$ Fill in perimeter.
$ Display solution so far.

print; print('Solution:'); print; printboard;

ADDITIONAL 1/0 AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING

ELSE
print('no solution for this set');
print('backtracked ' failures,' times');

END IF;

PROC fits(c,tile);

$ Determine whether -tile- fits in the valley defined by the points
$ c,c+l, c+2, c+3 in current perimeter. Note also that we assuming
that all tiles are square.

RETURN
(abcissa(c+2)-abcissa(c+l)) >= tile AND

(height - ordinate(c+l)) >= tile;

END PROC fits;

PROC rebuild(i,tile);

$ A valley exists, delimited by points i to i+3, into which -tile-

Page 8-14

$ fits. Note the placement of the tile at the lower left corner (point
$ i+l on the perimeter) and update the area which remains to be tiled.

placement WITH:= [perimeter(i+l), tile];

$ Calculate the position of the remaining vertices of the tile we
$ have just placed.

pl
p2
p3

: =
: =
: =

[abcissa(i+l), ordinate(i+l) + tile];
[abcissa(i+l) + tile, ordinate(i+l) + tile];
[abcissa(i+l) + tile, ordinate(i+l)];

$ new points on the perimeter of the (partially) filled valley.

new_points := [perimeter(i),pl,p2,p3,perimeter(i+2)];

$ discard edges of length zero.

IF pl= perimeter(i) THEN new_points := new_points(3 ••); END IF;

$ eliminate hairpin turns.
IF p3(1) = abcissa(i+2) THEN

redundant FROME new_points;
redundant FROME new_points;

END IF;

$ Check for exact fit.
IF p2 = perimeter(i+3) THEN

redundant FROME new_points;
perimeter := perimeter(l •• i-1) + new_points + perimeter(i+4 ••);

ELSE

ADDITIONAL ili AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING

perimeter :• perimeter(l •• i-1) + new_points + perimeter(i+3 ••);
END IF;

RETURN;

END PROC;

PROC printboard;

$ Display succesive tiling arrangements.

Page 8-15

$ As ordinarilily printed, the space occupied by a character is about
$ twice as tall as it is broad. To give our ouput the correct appearance
$ we double the number of character positions in the horizontal direc-
$ tion. Thus a square of sizes whose lower-left corner is positioned
$ at (x,y) is actually drawn with its vertices at character positions
$
$ [2*x+l, y+l], [2*x+s+l, y+l], [2*x+s+l, y+s+l], [2*x+l, y+s+l].
$
$ The area to be tiled is represented by a tuple of strings, one for
$ each horizontal line.

titing :• (height+!) * [(2*length+l) *' '];

(FORAL~ [[x,y], tile] IN placement)

bottom
top
left

:•
:•
:•

y + l;
y +tile+ l;
2 * X + 1;

right :• 2 * (x +tile)+ 1;

$ draw top and bottom of each square.
tiling(bottom)(left+l •• right-1) :•

tiling(top)(left+l •• right-1) :• (2 * tile -1) * '_';

$ Complete upper corners of square, if they are not covered by
$ another tile.
IF tiling(top)(left) •' 'THEN

tiling(top)(left) :• '.';
END IF;

IF tiling(top)(right) •
tiling(top)(right):•

END IF;

$ Draw sides of tile.

' 'THEN
, , . . ,

(FORALL z IN [bottom •• top-1))
tiling(z)(left) := 'I';
tiling(z)(right) :• 'I';

END FORALL;

END FORALL;

ADDITIONAL I/0 AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-16

$ Display tiling.

(FORALL i IN [#tiling,#tiling-1 •• 1]) print(tiling(i)); END;

END PROC;

END PROGRAM tiling_puzzle;

8.2.4 Other uses of OK and FAIL

The -OK- and -FAIL- primitives are useful in other contexts than
those of backtracking programs. We will now describe two such less
obvious uses.

8.2.4.1 Combinatorial generators.

The generation of a set of combinatorial objects (all the subsets o~ a
set, or all the permutations of a sequence, etc.) can often be given a
simple description using OK and FAIL. We proceed the generation of each
object from the desired set by an OK, and each time the construction of
an object is completed, we execute a FAIL to force the generation of
another object in the set. As an example of this, consider the problem
of generating all the permutations of a set S. This can be done as
follows: build a sequence by picking elements from Sin any order;
regard each choice of an element among the remaining ones as a
backtracking point in order to force all possible choices to be made for
a given position in the sequence. We also provide a top~level
backtracking point, to which we return when all permutations have been
generated. The following code shows the use of this technique:

PROC permutation_generator(S);

VAR S,x,perm: BACK;

perms := {};
perm := [];

IF OK THEN

(WHILE EXISTS x INS I OK)
S LESS := x;
perm WITH:== x;

END WHILE;

IFS={} THEN
perms WITH:= perm;

END IF;

$ Now force a different choice.
FAIL;

$ Topmost backtracking point.

$ This element has been used.
$ And added to the current perm.

$ add to set of permutations.

ADDITIONAL I/0 AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-17

ELSE

RETURN perms;

END IF;

END PROC permutation_generator;

8.2.4.2 Failures and exceptions.

$ All permutations have been
$ generated.

The FAIL primitive can also be used to exit from a complex calculation
in circumstances in which the calculation cannot proceed any further.
This mechanism allows a form of error-handling which exists in some
programming languages under various names (exceptions, ON-conditions,
etc.) The need for such mechanisms is particularly clear when we
consider recursive programs which may uncover an abnormal situation (for
example invalid data) after a number of recursive calls. In such cases,
it may become necessary to notify all pending recursive calls that an
abnormal situation has arisen, and that the computation should not
continue any further. This is a trifle awkward to program in the
absence of some exception-handling mechanism. The OK/FAIL pair provides
a simple mechanism of this type. We can establish a 'recovery point' at
the top level of a program by writing:

IF OK THEN
The code attached to the ELSE branch of this conditional statement is
executed when a FAIL is performed during program execution (assuming
that this is the only OK in the program). This code functions as an
'exception handler' and the FAIL is said to 'raise the exception'. It
is possible to program the handling of several exceptions, i.e. to
execute FAIL under diverse abnormal circumstances, and note in some
global variable (accessible to the exception handler) what the nature of
the abnormal condition is.

8.2.5 Nondeterministic programs, or It Is OK After All.

There is another way of looking at the backtracking primitives just
described, which adds nothing to the technical details of their
workings, but sheds a different light on the meaning of backtracking.
If we examine the sequence of choices made by a backtracking program
which succeeds, then it is clear that those choices were correct: they
led to the solution, after all! If we ignore the computer time which
has been used, it is immaterial that the program may have come back
several times to a certain OK, undoing its previous choice and trying
something else; eventually, the proper choice was made. From the point
of view of the end-result, each OK was infallible! We can therefore
think of the OK primitive as an Oracle, which will somehow make the
right choice when faced with various alternatives. (This explains the
name: -OK- rather than a more tentative -TRY- for example). It is
instructive to think of backtracking programs in this fashion, ignoring
the trials and errors which will be executed by the running program, and
instead seeing each OK as a point at which we have said (to the run-time

----- ---- --

ADDITIONAL I/O AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING

system): "You choose the right way. I don't know nor care how."

8.2.6 Auxiliary backtracking primitives.

SETL provides two additional primitives, SUCCEED and LEV,
allow additional control over the backtracking mechanism.

Housecleaning: the SUCCEED primitive.

Page 8-18

which

Our description of the implementation of the OK primitive should
make it clear that a price is paid for each execution of OK, namely
storage must be used to preserve the value of backtracked variables and
other run-time information. This information defines the environment in
which an OK is executed. The storage utilized by each execution of an
OK remains in use until execution of a subsequent FAIL brings us back to
the environment in which that OK was executd. In the case of a program
that reaches a solution (or partial solution) after executing a OK
statement, the storage thus occupied is useless, because we will not
fail again into that environment. If space starts to run short, we will
want to release this reserved space. This can be accomplished by
invoking the SUCCEED primitive. When invoked, all the information
stored by the most recent execution of an OK, is erased from the system.
Execution of a subsequent FAIL will no return us to the environment of
that OK, but to some earlier one, if such exists. In other words,
SUCCEED is a selective way of burning ones bridges behind one. Needless
to say, this should only be done if the search has in fact succeeded.

8.2.6.2 Controlling the depth of the search: the LEV primitive,-

The computational steps taken by a backtracking program can be seen
to form a tree. Each node of this tree corresponds to some "(partial)
trial version of the soiution being built. The descendants of a given
node N correspond to the possible sequences of choices the OK primitive
might make in moving forward from the situation corresponding to N.
point in the computation. The root of the tree represents the starting
state of the calculation. For example, in the 8 queens problem, the
root of the tree corresponds to the empty board, the nodes immediately
below this node correspond to possible placements of the first queen,
etc. In the case of the 8-queens program, we can easily see that the
full tree to be explored by the program has a height of 8 (counting the
root to be at heigth zero) because there are only eight queens to be
placed. For some backtracking problems, the height of the solution may
not have an obvious upper bound, which means that the search may have to
perform many tentative guesses (OKs) and may have to backtrack
correspondingly many times. It is often necessary to know the current
depth of the computation, i.e. the number of OKs which have been
performed, and to which it may be necessary to backtrack on failure.
The value of the system variable LEV is precisely that number. It is
useful, when we happen to know that the solution for which we are
searching cannot lie 'too deep' in this tree to cut off fruitless
searches over unpromising parts of the tree. In such cases, we can, for
example, write:

·ADDITIONAL I/O AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-19

if LEV> maxlevel THEN FAIL; END;

8.3 Use of auxiliary 'Inclusion Libraries~

Carefully crafted procedures which perfor~ common utility functions
such as sorting, output formatting, parsing, etc. can be used over and
over again in SETL programs. SETL supports several features intended to
facilitate the use of such standard program libraries. One of these is
the LIBRARY feature described in Section XXX, which makes it possible to
bind pre-compiled collections of library programs into a composite
program. (See Section YYY for additional material concerning binding of
separately compiled programs.) In the present section, we will describe
a simpler but related facility, which makes it possible to insert
sections of source text gathered from an auxiliary 'inclusion library'
into a SETL program that is about to be compiled.

An 'inclusion library' used in this way
sequence of standard SETL source lines,
interspersed lines of the form

(1) ■ =MEMBER membername

must be
divided

structured as a
into 'MEMBERS' by

Each such line introduces, and names, a 'member~ of the inclusion
library, which consists of all lines following the line (1), up to the
next occurence of a line beginning with' .=MEMBER'. (Note that the
characters .=MEMBER in a header line like (1) must occupy character
positions 2 thru 9 in the line; the first character in the header line
must be blank.) The last member of the inclusion library extends from
the header line which introduces it to the very end of the library.

All MEMBERs of an inclusion library must have distinct member
names. To import a member -membername- of an inclusion library into a
SETL program text P that is to be compiled, a line of the form

(2) .COPY membername

is required. This line must occur in Pat the point at which the body
of the inclusion library MEMBER introduced by line (1) is to be
inserted. Like (1), the line (2) must begin in character position 2,
following an initial blank ■ The -membername- in (2) must be identical
with the -membername- in the line (1) introducing the text which is to
rep lace (1).

During (th~ first, parse phase of) compilation, each ■ COPY line of
the form (2) is replaced by the body of the MEMBER introduced by the
correspondina Line (1). For example, in the presence of an inclusion
library containing the lines

. . .
• •MEMBER constants

small lets:•'abcdefghijklmnopqrstuvwxyz'
big_l;ts:='ABCDEFGHIJKLMNOPQRSTUVWXYZ';

ADDITIONAL I/O AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING

.=MEMBER quicksort
PROC quicksort(s);
RETURN IF (x:=ARB·s)•OM THEN [

ELSE quicksort({y IN sly<x} + [x]
+ quicksort({y IN sly>x}) END;

END PROC quicksort;

.•MEMBER prettyprint
. . .

The source text

PROGRAM something;
.COPY constants

PROC another; . . .
END PROC another;

.COPY quicksort

will be compiled exactly as if it read

PROGRAM something;
smalllets:='abcdefghijklmnopqrstuvwxyz';
biglets:='ABCDEFGHIJKLMNOPQRSTUVWXYZ'; . . .
PROC another;
. . .
END PROC another;
PROC quicksort(s);
RETURN IF (x:=ARB s)•OM THEN []

ELSE quicksort({y IN sly<x}) + [x]
+quicksort({y IN sly>x})END;

END PROC quicksort;
. . .

Page 8-20

The file used as inclusion library during a SETL compilation which makes
use of the .COPY feature is specified by the control card parameter
ILIB; see Section XXX and YYY(a) for additional details.

8.4 Listing-control commands

It is possible to alter the form of the listing which the SETL
compiler produces by including listing control command lines of the form
described below in your source program text. These commands, each -of
which must always occur on a separate line beginning with the two
characters ' .', have no effect on compilation or execution other than
to modify the form of the compilation listing. The allowed listing
control commands are as follows;

NOLIST
suspends listing of source text lines

LIST
resumes listing of source text lines

EJECT

ADDITIONAL I/0 AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING

advances compilation listing to new page
TITLE pagetitle

This command specifies a pagetitle which will appear at the
top of subsequent pages.

Page 8-21

Note that the page title appearing in the preceding command cannot
contain the apostrophe character, also that the AT control card
parameter described in Section XXX can be used to request 'automatic
titling'. If automatic titling is enabled, then each new PROCEDURE
encountered will begin on a new page, which will be given a title
derived from the PROCEDURE header line. (See Section XXX for the
run-time equivalent of this compile-time command).

8.5 Environment operators and SETL command parameters.

SETL includes several facilities for sensing aspects of a program's
external environment and for controlling optional details of compilation
and execution. These facilities will be described in the pres~nt
section.

(i) Parameterless keyword quantities.

The parameterless keyword

TIME

yields an integer representing the execution time, in milliseconds, used
by your program from the start of execution up to the moment at which
the TIME quantity is evaluated. This special quantity can be used to
monitor the amount of processor time which your program is consuming.

The parameterless keyword quantity

DATE

yields a standard string consisting of the current day, date, and clock
time, expressed as hours, minutes, and seconds. For example, the result
of the command

print(DATE);

might be

SUN 01 MAR 81 14:49:13

(ii) Initial Program Parameters.

Integer or string parameters to be transmitted to a SETL program
can be included in the operating system command-language line which
initiates execution of the program. The precise external form in which
these parameters should be given will depend to some extent on the
operating system being used. For example, to transmit parameters Pl and

------------ - -··--·- ---

ADDITIONAL I/0 AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-22

P2 with values 'YES' and 35 to a SETL program running under the DEC VAX
VM 2.0 system, we would write

(lA) /Pl=YES/P2=35

If running under the CDC CYBER NOS system we would have to write

(lB) (PlaYES,P2=35)

instead, and running under the IBM/370 CMS system we would
write

(lC) (Pl=YES P2=35)

(See Appendix XXX for an account of all the systems under which versions
of SETL are available.)

Built-in functions called GETSPP and GETIPP are used to read these
pro gram command parameters. For example, to read the values of. the
string-valued parameter Pl appearing in the preceding examples and save
the value in a variable x, we would write

x:=GETSPP('Pl=defval/altval');

where -defval- and -altval- stand for arbitrary string constants. The
GETSPP primitive searches the command line which initiated the SETL run
for the occurence of a parameter definition of the form Pl=abcde, where
-abcde- can be an arbitrary string, or if the first occurence of Pl in
the command line is not followed by an equal sign, simply for an
occurence of the parameter name Pl. Then

(i) If Pl=abcde occurs on the command line, without a value being
assigned to it, xis given the value abcde.

(ii) Otherwise, if Pl occurs on the command line, x is given the
value -altval-.

(iii) Otherwise Pl is given the 'default' value -defval-.

The function GETIPP works in exactly the same way, except that it reads
integer instead of string parameters, and supplies integer rather than
string default values.

Suppose, for an example of all this, that the code

xl:=GETSPP('Pl=LITTLE/BIG'); x2:=GETIPP('P2=1/0')

appears in a program being run under the DEC VAX VM/2.0 system. Then
the appearance of the following parameter strings on the command line
initiating a run of the program would give xl and x2 the values
indicated in the following table:

ADDITIONAL I/0 AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-23

Command-Line Parameter String xl value x2 value

/Pl=MEDIUM/P2=2 'MEDIUM' 2
/Pl=MEDIUM/P2 'MEDIUM' 0
/Pl=MEDIUM 'MEDIUM' 1
/Pl/P2=2 'BIG' 2
/P2=2 'LITTLE' 2
/P2 'LITTLE' 0
(no parameters) 'LITTLE' 1

A typical use of the GETIPP primitive is to switch on debugging or
tracing facilities selectively. To do this, one can, for example,
introduce a collection of variables called tracel, trace2,... etc.
Debugging prints in your SETL program can then be made conditional on
the values of these variables, e.g. by writing statements like

IF tracel3=1 THEN
print(•••); $ print appropriate debugging information

END IF;

If the variables tracel, trace2, ••• are initialised by statements

tracel:=GETIPP('TRACEl•0/1');
trace2:=GETIPP('TRACE2=0/l');

etc., then by passing TRACEj (i.e.,TRACEj•l) to a run (as a parameter of
the command used to bring your SETL program into execution; see Section
XXX) one can cause the corresponding trace output to be produced. Note
that this will switch debug output on without you having to recompile
the program being debugged.

Facilities very much like GETSPP and GETIPP are used in the SETL
implementation, where they support the battery of compiler and run-time
options described in the following sections.

8.5.1 Standard SETL command options

The SETL compiler and run-time systems themselves read a variety of
control card parameters, using the GETIPP and GETSPP facilities of the
SETL language. These parameters switch various compilation and
debugging features on and off. In describing these parameters, we will
use a notation typified by the example 'A=0/1', that is, the name of a
parameter to be described will be given first, followed by an equal
sign, followed by the 'default value' that the parameter will be given
if its name does not appear in a parameter string followed by a slash,
followed by the 'alternate value' that the parameter will be given if it
is simply mentioned as a SETL command parameter name, but no value is
explicitly assigned to it.

A parameter passed to the SETL system can be significant either to
the parse, semantic analysis, or code generation phases of the SETL
compiler, or to the SETL run-time support library, or to a SETL program
containing an invocation of either GETSPP or GETIPP. The list of
standard parameters which now follows lists parameters according to the

ADDITIONAL I/O AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING

phase of the SETL system to which th~y are significant.

(a) Parse phase opti~ns.

AT•O/1 (automatic titling)

Page 8-24

This option controls automatic titling of the parse phase output
listing. AT•l causes each SETL procedure to start a new page on the
li~ting; AT=O suppresses this automatic page advance.

CSET=EXT/POR (character set)

This option specifies the character set used in your SETL source.
POR specifies that only the 'portable' subset of the collection of all
possible characters is allowed; EXT specifies that both the 'portable'
set and a wider class of 'extended' character sets are allowed. These
character options allow or disallow the following character
repres·en tat ions:

left set bracket
right set bracket
left tuple bracket
right tuple bracket
'such that'

'Portable'
--epres ent at ion

<<
>>
(/
/)
ST

'Extended'
representation

{
}
[

1
or

(The printed characters shown
corresponding ASCII standard
printed or typed for these codes
from one printer to another.)

above are intended to represent the
internal codes. The actual characters

may vary from terminal to terminal, or

ETOKS•S/5 (error tokens)

The value of ETOKS controls the number of tokens listed in parse
error diagnostic messages.

!=filename (input file)

The value of I specifies the name of the source file containing the.
SETL text to be compiled.

ILIB•filename (inclusion library)

As noted in Section XXX, text from an auxiliary 'inclusion library'
can be imported into a SETL program being compiled. The value of ILIB
defines the name of this inclusion library.

L=filename (listing file)

The value of L specifies the name of the standard 'listing' file to

ADDITIONAL I/0 AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-25

which all compilation-phase output will be written.

(list compilation output)

The option LIST•l causes a compilation-phase listing to be
produced; L•O suppresses this listing.

MLEN•l000/1000 (macro length)

The value of MLEN defines the maximum number of tokens allowed in a
single macro body.

PEL•l000/1000 (parse error limit)

The value of PEL specifies the parse-phase error limit. If more
than the specified number of errors are detected by the parse phase,
compilation is terminated.

PFCC•l/0 (write printer carriage-control information)

PFCC•l causes the output listing to contain carriage control
information; PFCC•O suppresses carriage control information.

PFLL•0/0 (line limit)

This command parameter is used in conjunction with PFPL;
description of PFPL for additional information.

PFLP•60/0 (lines per page)

see the

The value of PFLP determines the number of lines that will be
printed on each output page.

PFPL•l00/0 (page limit)

This parameter, together with PFLL, determines the amount of output
that a program will be allowed to produce before being forcibly
terminated. The limits imposed are as follows:

PFPL•O, PFLL•O
no output limit enforced.

PFPL•n, PFLL•O (n>O)
a limit of n pages or n*PFLP output lines is imposed.

PFPL•O, PFLL=n (n>O)
a limit of n output lines is imposed.

PFPL=n, PFLL•m (n>O,m>O)
a limit of n pages or m output lines is imposed.

POL=filename ('Polish' file name)

----------~~--------------------- -------

ADDITIONAL I/0 AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-26

This specifies the name of the 'parsed source' file passed by the
SETL compiler's parse phase to its semantic analysis phase. See Section
XXX for an explanation of the role played by this file.

TERM=filename (interactive terminal identification)

The SETL system will normally expect to write certain short
messages, generally error and warning messages, to an interactive
terminal. If no such terminal is available, or if for any other reason
it is desired to write these messages to some other file, then
TERM=filename can be used to designate this file. The option TERM•O
suppresses this 'terminal' output. ·

(b) Semantic analysis phase options

BIND=O/filename (binder file)

This parameter, and the associated parameter !BIND (see below) are
used to pass seperately compiled files in QI-format to the semarttic
analysis phase; see Section XXX for additional explanation. If either
BIND or !BIND has a value different from zero, the semantic analysis
phase will read various QI-format files, and combine them with newly
parsed SETL source input (named by the POL and XPOL parameters described
below), producing a QI-format file (named by the Ql parameter described
below). This output file represents the logical concatenation of all
its input files in a parsed, semantically analysed form.

DITER=O/I (modificatons during iteration are possible)

This option indicates whether the compiler can assume that objects
being iterated over in a loop are not modified within the loop. DITER•O
disallows this assumption and causes the object being iterated over to
be copied before an iteration begins; DITER=l suppresses thes~ copying
operations.

IBIND=filename (auxiliary list of input QI files)

. This parameter, and the associated parameter BIND (see above) are
used to pass seperately compiled files in Ql-format to the semantic
analysis phase. The file named by the IBIND parameter should itself be
a list of file names, one name per record, these file names having
whatever format is appropriate in view of tKe operating system under
which the SETL compiler is running. All the files named in this list of
files will be read and 'bound' together into the QI-format output file
which the semantic analysis phase produces. See parameter BIND (above),
and also Section XXX for additional information.

L=filename (listing file)

Specifies the name of the standard 'listing' file to which all
printable compilation-phase output will be written.

ADDITIONAL I/0 AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-27

OPT=0/1 (optimisation)

Selecting the option OPT=l causes a global optimisation phase to be
executed between the normal semantic analysis and code generation
phases. Note that this option has an effect only for implementatons
which make the SETL optimiser available.

PFCC
PFLL
PFLP
PFPL

(carriage control}
(line limit}
(lines per page}
(page limit}

See subsection (a} above for details concerning these parameters.

POL=filename ('PoJish' file name}

Specifies the name of the 'parsed source' or 'Polish' file passed
from the SETL. com~iler's parse phase to the semantic analysis phase.
See rem~rks concerning POL made in subsection ·ca} above.

Ql=filename (~Ql' file}

Specifies the name
SETL compiler's parse
phase. Sec Section XXX
file.

of the 'preliminary' code file passed from the
phase to its optimisation or code generation

for an explanation of the role played by this

SEL•l000/1000 (semantic error limit}

The value of SEL specifies the semantic analysis phase error limit.
If more than the specified number of errors are detected during the
semantic analysis phase, compilation is terminated.

SIF•0/1 (save inter,piediate files)

The option S1F=l causes the 'preliminary code' or 'Ql' file
produced by the semantic analysis phase to be saved. (See preceeding
remarks concerning the parameter Ql. Normally this file will be deleted
by the compiler's code generation phase.) Note that a file of this sort
must be saved if SETL's separate compilation and 'binder' facilities are
to be used; see Section XXX for additional details.

UV•0/1 (check for undeclared variables)

Selecting the option UV=l will cause a warning message to be issued
for each variable name used in your program which does not appear in any
VAR statement. (This gives a handy way of ensuring that all variables
appearing in the program have been documented, and for checking against
accidental variable-name misspellings.}

(c} Code generation phase options

ASM=0/1 (produce assembler code}

-- -------·---------

ADDITIONAL I/0 AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-28

The ASM=l option will cause the SETL compiler to produce machine
code for the computer on which you are running. ASM•O will cause
production of a less ~fficient but generally more compact int•rpretable
code form. See Appendix XXX for more details concerning these options,
which may not be implemented in all SETL systems.

BACK=0/1 (backtracking enabled)

The BACK•l option allows generation of code supporting
backtracking, and must be selected if the backtracking facilities of
SETL (cf. Section XXX) are being used.

CA=0/0 (constants area size)

This code phase parameter is used to control the size of the
'constants area', which stores the values of constants appearing in your
program. The option CA=O sets the constants area size equal to half the
initial memory size allocated for your program (see parameter H, below).
If a positive value less than 1024 is specified for CA, then this value,
multiplied by 1024, becomes the constants area size; thus CA~2 is
equivalent to CA=2048. See Section XXX for additional information about
the way in which the SETL system uses memory.

CEL=l000/1000 (code generation error limit)

This specifies the code-generation phase error limit. If more than
the specified number of errors are detected by the code-generation
phase, compilation is terminated.

H=0/0 (heap size)

The value of H specifies the initial virtual memory size that will
be used when program execution begins. If H•O is selected, an
implementation-dependent default initial memory size is used~ If a
positive value less than 1024 is specified for H, this value, multiplied
by 1024, becomes the initial memory size; thus H•2 is equivalent to
H=2048. See Section XXX for additional information about the way in
which the SETL run-time system uses memory.

L=filename (listing file)

Specifies the name of the standard 'listing' file to which all
printable compilation-phase output will be written.

PFCC
PFLL
PFLP
PFLL

(carriage control)
(line limit)
(lines per page)
(page limit)

See subsection (a), above, for details concerning these parameters.

Ql=filename ('Ql' file)

ADDITIONAL I/O AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-29

Specifies the name of the
SETL compiler's parse phase
phase. See remarks concerning

'preliminary' code file passed from the
to its optimisation or code generation

this parameter in subsection (b), above.

Q2=filename ('Q2' file)

Specifies the name of the 'interpretable' code file passed from the
SETL compiler's code generation phase to the run-time support phase when
the SETL system is being run interpretively. See Section XXX for an
explanation of the role played by this file.

(d) Run-time support library options

ASSERT=l/2 (assertion switch)

This parameter can have O, 1, or 2 as its value. These values have
the following significance:

ASSERT=O Evaluates all Boolean conditions occuring in ASSERT
statements, but does not test their values. (Note that·
evaluation of these conditions may trigger side-effects
essential to the proper functioning of the program being
run.)

ASSERT=l Evaluates and tests all assertions. Assertions which
fail yield a run-time error.

ASSERT•2 Evaluates and tests all assertions. A message is printed
for each assertion which evaluates to TRUE. Assertions
which fail yield an error.

(Heap size)

This command parameter, which specifies the initial (virtual)
memory length used during a SETL run, is significant to both the code
generation phase of the compiler and to the run-time support library.
See the account of this parameter in the preceding subsection for
additional details.

LCP•O/1 (list execution time parameters)

The option LCP•l causes the values chosen for standard control card
options to be listed on the output file at the start of SETL program
execution.

LCS•l/O (list execution statistics)

The option LCS•l
during execution of
program execution.

causes various
your program to

Q2•filename ('Q2' file)

standard statistics collected
be printed at the end of SETL

ADDITIONAL I/0 AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-30

Specifies the name of the 'interpretable' code file passed from the
SETL compiler's code generation phase to the run-time support phase when
the SETL system is being run interpretively. See the remarks concerning
this parameter in subsection (c) above.

REL=0/0 (run-time error limit)

The value of REL specifies the run-time error limit. If more than
the specified number of errors are detected during SETL execution, then
execution terminates.

SB={ }/<<>> (set brackets)

The value of SB specifies the characters to be used
set brackets.

SNAP=0/1 (snap dump switch)

for printing

The SNAP=l option causes an abbreviated dump of recent variable
values to be produced when a run-time error is detected. Specify SNAP•O
to suppress this dump.

STRACE=0/1 (Statement trace)

Selecting the option STRACE=l causes production of a dynamic trace
giving the statement number of each statement executed. This option
should be used cautiously, since it tends to produce very voluminous
output. The statement numbers used are those which appear on the parse
phase output listing.

TB=[]/() (tuple brackets)

The value of TB specifies the characters used
brackets.

for printing tuple

(e) Other command parameters used for system checkout and maintainance.

In addition to the command parameters listed above, the SETL
compiler recognises various other parameters, which are provided for
purposes of system checkout and maintainance and are not needed in
normal use. Note, however, that you must avoid using the names of these
parameters to designate other quantities which your SETL program will
read from the control card using GETIPP and GETSPP.

We list these special parameters with brief indications of their
function, but give no details concerning them. For more information
about these parameters, consult the SETL Maintainance Manual. The
maintainance facilities listed above are activated by the SETL command
parameters listed. A second family of maintainance facilities are
activated by inserting special statements of the form

DEBUG doptl, ••• ,doptk;

ADDITIONAL I/O AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-31

into the text of a SETL program being compiled. Here, doptl, •• ,doptk
should be a list of keywords designating debug options. Some of these
debug options refer to the parse phase of the SETL system, others to the
semantic analysis, code generation, or execution phases. Since the
ordinary user will have little reason to concern himself with these
options, we list them here in abbreviated fashion only; see the SETL
Maintainance Manual for more informtion.

(i) Parse phase debug options:

(ii)

PTRMO
PTRMl

PTRPO
PTRPl

PTRTO
PTRTl

PRSOD
PRSPD
PRSSD

disable macro-processor trace
enable macro processor trace

disable parse trace
enable parse trace

disable token trace
enable token trace

list tokens corresponding to loops and IFs still pending
list polish and xpolish tables
list symbol table

Semantic analysis phase options:

STREO
STREl

STRSO
STRSl

SQlCD
SQlSD
SCSTD

disable entry trace
enable entry trace

disable trace of operator argument stack
enable trace of operator argument stack

list Ql code
list semantic analysis phase symbol table
list stack used for processing control structures and
other nested constructs

(iii) Code generation phase options:

CQlCD
CQlSD
CQ2SD

list Ql code
list code generation phase symbol table
list generated Q2 code

(iv) Execution phase options:

RTREO
REREl

RTRSO
RTRSl

RTRCO
RTRCl

disable trace of entry to run-time library procedures
enable trace of entry to run-time library procedures

disable statement number trace
enable statement number trace

disable code trace
enable code trace
(The code trace prints each internal 'Q2' instruction
as it is interpreted.)

- -------------------------------- -----

ADDITIONAL I/O AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-32

RTRGO
RTRGl

RGCDO
RGCDl

RDUMP

disable garbage collector trace
enable garbage collector trace

disable dynamic storage dumps during garbage collection
enable dynamic storage dumps during garbage collection

dump dynamic storage to file
(The file to which an image of dynamic storage is
written is specified by a control card parameter:
DUMP=filename. The auxiliary maintainance program
DMP reformats this file in a readable form.)

8.6 Exercises

Ex. 1 Write a program which will read a sequence of lines constituting
an English language text, and print it out after eliminating all
multiple blanks and assuring that every punctuation mark (other than
hyphen) is followed by exactly one blank ■

Ex. 2 The position on a chessboard is defined by a mapping f which
sends every square [i,j] occupied by a piece into the name of the piece
occupying it ■ Pieces are designated by their names, e.g. 'pawn',
'king', 'queen', etc ■ White pieces are designated by lower-case names,
e.g. 'pawn'. Black pieces are designated by upper-case names, e.g.
'PAWN'. Write a procedure which prints an attractive visual display of
the board position.

Ex. 3 Given the representation of chessboard position described in
Exercise 2, write procedures which will

(a) return the set of all moves possible for white or black;
(b) return the set of all white or black pieces threatened

with capture;
(C) return the set of all squares attacked by white or black

pieces.

Ex. 4 When crucial items of information like invoice or customer
numbers need to be keyed into a computer system, the possibility of
keypunch error is often quite alarming. To prevent such errors, one
often adds 'check characters' to the item being keyed in. Such check
characters allow miskeyed items to be detected in most cases. If any
alphanumeric check character from o •• z can be used, the following is a
convenient way of assigning check characters:

(a) Number all alphanumeric characters, assigning them values lying
in the range o •• 35.

(b) Go through the characters of the item to be keyed in, from
right to left. Multiply the number associated with the j-th item by j,
and sum all the resulting integers. Reduce the sum modulo 37, to obtain
an integer n.

ADDITIONAL I/0 AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-33

(c) The check character is the character corresponding ton, or is
Zif n is 36.

Ex. 5 Write a key-entry verification program. This program should
begin by reading a file F of lines that are to be verified. Those same
lines should then be re-entered at the terminal. If a line L re-entered
has exactly the same form as the corresponding line in the file F, then
L should simply be displayed. If not, then the terminal should (if
possible) emit a warning audio signal, and the line LO present in the
original file F should be displayed along with the Ll just entered.
Characters which need to be replaced in LO to make L match Ll should be
marked by displaying appropriate replacement characters under Ll;
characters which need to be deleted should be indicated by displaying a
double quote character under Ll. If one or more characters need to be
inserted, they should be displayed in a vertical column under the
character of Ll after which they need to be inserted. In the event of a
difference, the user ought to have the following three options:

0: accept LO as correct
1: accept LO as correct
2: re-enter line, and repeat the check.

Ex. 6 Write a procedure which can be used to display 'menus' on the
screen of an interactive terminal. The parameter passed to this
procedure should be a tuple [sl,s2, •••] of strings. As many of these
strings as will fit on the screen should be displayed, each accompanied
by a number. The user should then type one of these numbers to select
the desired item, and the procedure should return the number of the item
selected. Lf something illegal (e.g an out-of-range integer) is typed,
the procedure should return OM. The display you use should be neatly
formatted, in multiple columns if possible, to display as many items as
possible .on the screen without giving the screen a cluttered appearance.
If not all items will fit on the screen, the message

PRESS RETURN KEY TO SEE ADDITIONAL CHOICES

should be displayed at the bottom of the screen. (Of course, the
feature described by this message should be implemented in a fool-proof
manner.)

Ex. 7 Write a program that will read SETL source text and count the
number of comments in it. A record should be kept of the number of
'short' comments (which occupy just one line and are followed by a line
containing code text), and the number of 'long' comments (which occupy
several successive lines on which only comments appear.) Two counts of
long comments should be kept, namely the number of long comments 2-4
lines in length, and the number of long comments five or more lines in
length; You should also count the total number of lines in the program.
Note that every comment starts with a dollar sign ($) character, but
that such a character only starts a comment if it is not part of a
quoted character string. For example, the first character of the first
comment in

x:='I often think of $''s,$''s,$''s'; $ Not really!

ADDITIONAL I/0 AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-34

is 'N'. Be sure to handle this rule properly.

Ex. 8 When punched ~ards are used to transmit information to a computer
system, it is sometimes convenient to pack information densely onto
them, without blank spaces between successive information fields. In
this case, the size of each information field in a line of characters
must be known in advance. Write a procedure P whose two inputs are a
string s of exactly 80 characters representing a punched card being
read, and a tuple t representing the 'format' of this string, i.e. the
size and nature of the successive information fields in it. Each
component oft should have the form [n,k], where n is a positive integer
designating the number of characters in a particular subfield of s, and
k is one of 'I' (integer), 'S' (string). The procedure P should return
a tuple of converted values, with each value of improper type
represented by OM.

Ex. 9 To develop a KWIC (or 'key word in context') index for a body T
of text, one proceeds as follows:

(a) A collection of keywords is given.

(b) The text T consists of a collection of paragraphs, each headed
by a 'paragraph designator' at most one-third of a line long.

(c) The paragraphs constituting the text T are scanned for
occurences of any of one the keywords. Whenever a keyword is found, a
portion L of the line in which it occurs, two thirds of a line in total
length, is kept, with the keyword as close to the middle of this line
section as possible. (Words from preceding or following lines are
included if necessary.)

(d) A
concatenated
of strings.

designator of the paragraph containing the line is
to L, and the resulting string is added to a collections

(e) When the whole of T has been scanned, the sets of all lines
collected is alphabetised according to the keyword each L contains, and
is printed in alphabetical order, with keyword capitalised.

Write a program which generates KWIC indices of this kind.

Ex. 10 Write a program P which can be used to scan a mass of English­
language text T, counting the frequency of all letter pairs encountered.
Use P to scan a few paragraphs of text. Count the total number of pairs
encountered and the total number of different pairs. Draw a graph
relating number of different pairs encountered to the total number of
characters scanned, and use this to estimate the number of different
character pairs that you would encounter if you scanned the whole
Encyclopedia Brittanies.

ADDITIONAL I/0 AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-35

Ex. 11 A telegram is
words separated by
word 'zzzz'. Write a
the actual telegram.
count as two words.

transmitted as a single string of characters, with
blanks but the end of each line marked by a dummy
program which will count the number of words in

Words with more than eight letters in them are to

Ex. 12 Write a program that will read three strings sl,s2,s3 and then
determine whether s2 occurs as a substring of sl after all characters
belonging to s3 have been eliminated from sl.

Ex. 13 A spelling error program is one which reads an input text T and
produces a list of all the words in T which appear to be misspelled.
One way of making this check is to test each of the words in T to see if
it belongs to a standard dictionary D of properly spelled words. Write
such a spelling error program. Your program should read two files: one
the file T to be checked, which is given as a sequence of text lines;
the other a dictionary D, also assumed to be a sequence of lines, each
line containing several dictionary words, separated by blanks. The file
T can contain capitalised words. The output produced should be a
formatted display of all presumably misspelled words.

Ex. 14 Assuming that the spelling error program described in Exercise
13 is to be run interactively from a terminal, improve it by adding the
following features. The program should begin by querying the user for
the names of the files T and D. Then it should read and analyse these
files as in Exercise 13. The misspelled words in T must then be
numbered and displayed on a terminal. After this the program should
accept a sequence of commands of the form

nlcorrectspellingl/n2correctspelling2/

where each nj is the number of a misspelled word and correctspellingj is
its correct spelling. This sequence of commands is terminated by a
command of the form

STOP,

after which the program should query the user for the name of an output
file F into which a corrected version of the input Tis to be written.
All occurences of misspelled words in T for which correct spellings have
been supplied should be corrected, and the corrected text which results
written out to F.

Ex. 15 'Piglatin' transposes words by moving all initial strings of
consonants to the end of the word and adding 'ay'. If a word begins
with a vowel, one simply adds 'ay' to it. The word 'a' is changed to
'an'. For example, the Piglatin translation of 'John bought a car from
Irene' is 'Onjay oughtbay an arcay omfray Ireneay.' Write a program
which will read an input text and translate it into Piglatin. Your
program should handle capitalisation and punctuation correctly.

Ex. 16 Write an interactive program which could be used by a teacher to
maintain class grade records. The specifications for this program are
as follows. It maintains a list of all the students enrolled in a
class. Each student name is mapped into a directory record giving the

ADDITIONAL I/O AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-36

student's address, telephone number, and any desired additional textual
information concerning the student. Each student name is also mapped
into a tuple giving the student's grade on a sequence of homework
exercises and examinations. Finally, each assignment or examination
number is mapped onto a line of text describing the assignment or
examination ■

The system should accept at least the following commands:
E/student-name enroll student with given name
D display numbered table of all students
IE set up for entering new textual information concerning

students
IA set up for entering textual information concerning

assignments
G/n set up for entering new grade information for assignment n
D/n display all information concerning student n
n/line-of-text enter line of text to information record of

student n, or enter comment about assignment n,
or enter grade for student n
display information concerning assignments DA

DA/n display information concerning n-th assignment,
including average grade, highest and lowest grade,
number of students in each grade quintile, and
names of students who have not yet completed
assignment.

What other commands would be useful? Design at least three such
commmands, docment them, and include them in your implementation.

Ex. 17 The 'game of life', invented by James H. Conway, models certain
elementary biological phenomena. The simulation it embodies takes place
on an n by m board. For definiteness, we will suppose that n=m=2O. At
every step of the simulation, every square on the board is either
occupied (by an 'organism'), or empty. Given such a configurat~on, the
next 'generation' of organisms (i.e. the board configuration at te next
step) is determined by the following rules:

(a) If a square is empty but has three or more full neighbors,
b~come full (since an organism will be 'born' in it.)

it will

(b) If a full square has four or more full neighbors,
empty (since the organism in it will 'smother'.)

it will become

(c) If a full square has no neighbor or just one neighbor,
become empty (since the organism in it will 'starve'.)

it will

Write a interactive program which reads an initial board configuration,
and then simulates its evolution for a given number of steps.

Ex. 18 Write an interactive program for use by bank tellers. This
program is to maintan a map which sends each client of the bank into his
current balance, and a~other similar map which sends each client into
his name, address, and phone number. (Clients are identified by unique
'account numbers' issued by the bank). Finally, each client is mapped
into a maximum allowed 'line of credit' and to the sum currently drawn

ADDITIONAL I/0 AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-37

against this line of credit.

TO BE CONTINUED

Ex. 19 Write an interactive program that plays the game HANGMAN. Your
program should read the date and time, and use this to select a word at
random from an internally stored collection of 100 words. The player
should then be asked to guess the word, one letter at a time. Each
guessed letter present in the word should elicit a display showing all
letters guessed so far. If the number of incorrect guesses rises to
half the number of letters in the word being guessed, the player loses,
and the word should be revealed. Try to write an entertaining program.
Your program should keep score of the number of games won and lost.

Ex. 20(a) Many large software systems include interactive 'HELP'
subsystems which, when entered, allow a tree of helpful information to
be traversed. The aim is to make it eas~er for the system user to
locate information which he may require in order to use a system
successfully. Use an appropri~te variant of the 'menu' procedure in
Exercise 5 to implement such a HELP system. When invoked, the HELP
system should begin by reading a file describing part of a graph of
nodes, each node representing a state which the system user can reach
during his browsing. In each state, the system should display a short
paragraph of helpful information and a menu of available subitems. The
information which the HELP system needs should be divided into a set of
files, each few hundred lines in length, which can be read seperately as
requested by the user. Each such file will contain two maps, which we
shall call nodes_map and files_map. Nodes_map has the following format:

{[help_graph_node, [display_paragraph,subnode_menu]}

The display_paragraph is a tuple consisting of a sequence of lines
(strings) to be displayed when help_graph_node is reached. Subnode_menu
is a tuple of help_graph nodes, to be displayed as a menu. By selecting
an appropriate item of this menu, the user chooses the HELP system node
to which he wishes to advance next. By typing'-', the user retreats to
the last HELP system mode previously examined.

The other map, files_map, which is available in a pre-established
file which can be read by the HELP system, simply maps each subnode x
referenced by a given file to the name of file which con~ains the
display_paragraph and subnode_menu information for x.

(b) In order to use the HELP program we have just described, you will
find it convenient to design and implement a 'HELP setup' progr-am which
can read a file of text containing all the paragraphs and defining all
the menus which will appear in the data structures described in (a)
above. This file should also define the manner in which all this
information is to be divided into the smaller files which the HELP
system will use. Design and implement this 'HELP setup' package. Your
'HELP setup' program should verify that the information passed to it is
internally consistent.

Ex. 21 Write a record-keeping
library. The sy~tem should

system suitable for daily use in a
read files of instructions, and generate

- ---- ----~------------

ADDITIONAL I/O AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-38

various outputs. Each transaction handled by the system starts with a
command line whose first two characters are'**'• The transactions
handled are as follow~:

**E card_number
name
address
telephone_number

This transaction enrolls a new subscriber, assigning him the indicated
·library card number. The card number must be unique, or the transaction
will be rejected. The subscriber's date of enrollment is internal.

**C card_number address
new address

This transaction changes the address recorded for a given subscriber.
Similar transactions which change the name and telephone number provided
for a given subscriber should also be provided.

**L card_number

This transaction lists, in appropriately sorted order, the information
available for a given subscriber, including all books currently charged
to the subscriber, with dates of withdrawal, and number of books
borrowed in current calendar year.

**A

This transaction produces an alphabetised list of all subscribers, with
addresses and telephone numbers.

**B book_number card_number

This transaction charges a book to a customer.

**R book_number

T~is transaction notes that a book has been returned.

**Q book_number
Title, Author
Publisher, Publication date

This transaction notes the aquisition of a new book, and assigns it a
book number. The book number must be unique or the transaction will be
rejected. The date of acquisition is noted, internally.

Books can be borrowed for two weeks. Books not returned within a
two week limit are considered to be overdue. When run, the library
record system should produce a warning letter to all subscribers holding
overdue books. However, no subscriber should get such a letter more
often then once a week. In this dunning letter, books should be listed
by title and author. Books for which a previo~s ~otice has bee~ sent
should carry the additional legend 'SECOND NOTICE, THIRD NOTICE, or

ADDITIONAL I/0 AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-39

'GROSSLY OVERDUE'.

The transaction triggered by
**D

should produce an alphabetised list of all subscribers holding
unreturned books for which more than two notices have been sent, with an
indication of the number of 'THIRD NOTICE' and 'GROSSLY OVERDUE' books
they are holding.

Can you design, and implement, any other useful feature for such a
system?

Ex. 22 Write an interactive 'daily reminders' program. This program
reads a file of one-line messages, each tagged with a given date, and
displays them. Messages displayed are also numbered. The system is to
handle the following commands.

+n

+

?n

(display all reminders remaining from past days)

(display all messages relating ton days from today)

(display all future reminders) 1

(delete reminder n).

Define and implement commands for dealing with the situation in which
unmodified execution of a command would display too many messages to fit
all at once on your terminal.

Ex. 23 Write an election forecasting program. The base data for the
program should be a map sending each voting precinct into its total of
Democratic and Republican votes in the last election, into its state,
and into its type: urban, inner city, suburban, and rural.

The program will be run every thirty minutes on election· night. As
returns come in from various precincts, these will be compared with the
returns from same precincts in the last comparable election. If the
Democratic and Republican percentages reported for a given type of
precinct in a given state are D and R, while the prior Democratic and
Republican percentages for the same precinct were d and r respectively,
then the Democratic (resp. Republican) gain can be estimated as the
quotient D/d (resp. R/r.) Use these gain gactors to extrapolate the
vote for all precinct~ of the same general character that have not yet
reported.

Ex. 24 It is sometimes hard to use an operating system's interactive
facilities without a manual at your elbow, for two reasons: (a) the
system provides many facilities and it is hard to remember them all (b)
most operating system commands have numerous parameters and options,
whose names and effects are hard to remember.

ADDITIONAL I/0 AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-40

Write an operating system command assistance program which will
make it easier to compose operating system commands. When invoked, this
program should display a numbered menu of all available commands, with
one-line comments concerning the purpose of each. When one of these
commands is selected (by number) a numbered menu of obligatory and
optional command parameters and options should be displayed, with a set
of one-line comments on the form and effect of each parameter. The user
should then be able to enter parameter values and select options, by
number, either on a single line (separated by blanks), or on several
successive lines. When he is finished, the command line that he has
composd should be displayed. Use an appropriate variant of the 'menu'
procedure described in Exercise 5 to build up this program.

Ex. 25 Extend the program described in Ex. 24 so that its user can
actually issue the command that he has composed. (Use the HOST feature
described in Appendix XXX for this purpose.) The user should also be
able to re-start entry of parameters and options so that he can modify
any parameters and delete any options with which he is not satisfied.

Ex. 26 Extend the program described in Exercises 24 and 25 so that it
allows command language programs to be composed and saved for subsequent
use.

Ex. 27 Write an interactive 'perpetual calendar' program. This should
handle the following commands:

month/year (displays calendar for the requested month)

day/month/year (displays calendar for the week containing the
specified day.)

Ex. 28 If person A makes a taxable payment to person B, he informs
the Internal Revenue Service of this fact, giving the amount of· the
payment and the social security number of person B. Person B
is then expected to file a report stating his total income. Write
a program which will read a file of lines, each having either
the form

PAYMENT (social security number of recipient) (amount)
or ~

INCOMEREPORT (social security numbe;,r of person reporting) (amount)

and will then detect all persons who seem to be concealing more than
$200 in income. A list of persons, with the persons concealing the
largest amounts of income coming first should be printed.

Ex. 29 A company bills its customers on the fifteenth of each month.
Bills fully paid within 14 calendar days of their receipt are granted a
1% discount, bills fully paid within 30 days of their receipt are
charged their face amount. Other bills pay a 2% per month interest
charge. Write a program which will read two files of records, the first
having the form

BILL bill number customer number amount date

ADDITIONAL I/0 AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-41

PAYMENT bill_number customer_number amount date

The program should print a list of all bills for which full payment has
not been received, with a statement of the amount still owing on the
bill. The 'date' entry on each line of the file will be a string: for
example, Jan. 9, 1980 would be represented as 1/9/80.

Ex. 30 After studying the 'eight queens' program presented in Section
8.2.1 write a modified, more efficient backtrack program for solving the
eight queens problem which places queens one after another in
appropriate rows of successive and exploits the fact that at most one
queen can be placed in each row. Modify this program further so that it
produces all possible solutions of the eight queens poblem, but
suppresses configurations that can be obtained from a known solution by
reflecting the chessboard through one of its axes of symmetry.

Ex. 31 Write an 'n-bishops' program which will place as many bishops as
possible on an 8 x 8 chessboard in such a way that no two bishops attack
each other. (Hint: For a somewhat more efficient program than would
otherwise result, work thru the diagonals of the board in succession,
exploiting the fact that no two bishops can be placed· on the same
diagonal.)

Ex. 32 Modify the tiling program given in Section XXX so that it works
with rectangular rather than square tiles, where each rectangular tile
can be placed either horizontally or vertically, i.e. can be placed in
one of two orientations differing from one another by 90 degrees.

Ex. 33 Write a procedure which uses backtracking to calculate and
return the power set POW(s) of a given sets.

Ex. 34 Let G be a graph, given as a set of ordered pairs, each
representing an edge of the graph. A topologically sorted order for G
(c.f. Exercise XXX) is an ordering of its nodes such that each edge of
G goes from a lower-numbered to a higher-numbered node. Write a program
that reads in a graph G and then uses backtracking to generate all
topologically sorted orders for it.

Ex. 35 It is often straightforward to eliminate backtracking from
simple backtrack programs by using recursion instead of backtracking.
When this is done the information required for backtracking is saved in
successive 'incarnations' of a recursive procedure, -OK- is replaced by
a recursive call which creates a new 'incarnation' rather than a new
backtrack 'environment' (cf. Section XXX), and -FAIL- is replaced by a
recursive return.

Apply thi,, idea to develop recursive routines which solve the
eight-queens and tiling problems described in Section XXX.

Ex. 36 Build up an inclusion library containing the following
procedures: mergesort (Section XXX), polynomial package (Section YYY).
Using this inclusion library, write a program which reads in a
collection of pairs of polynomials represented as vectors, multiplies
them, sorts the resulting product polynomials Pinto decreasing order of
th~ values P{l), and then prints them out. Polynomials should be

----- --- -----

ADDITIONAL I/0 AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-42

printed in something
polynomial read in as

like their standard representation, e.g. the
[1,2,0,3] should be printed as 3**x**3 + 2*x+l.

Ex. 37 A machine tool company manufactures various kinds of tools, each
of which consists of several kinds -0f parts manufactured by various of
its departments. Information concerning parts requirements is stored as
a map

{ [tool_name,parts_map], •• •}

where each tool name is the name of a particular tool that the company
manufactures, and each parts_map is a mapping from the name of each part
used in the manufacture of the tool to the quantity of this part
required and the name of the department responsible for manufacturing
the part. (Thus parts_map has the form

{ [part_name, [number,department]], •• })

Write a program which will read a list of orders, each having the form

order_name,tool_name,quantity_ordered

and make up a list of parts orders arranged by department.
order generated should be headed by the current date and
name, and should then consist of succesive groups of lines,
alphabetical order by part name. Each such group should
line having the form

part_name,total quantity needed
and continue with a sequence of lines having the form

order_number, quantity in order
These latter lines should be arranged by order number.

Each parts
a department
arranged in
start with a

The parts order to be sent to a given department can extend over
many pages. Every page of this order must be headed by the current date
and the appropriate department name, and also by an appropriately
positioned caption reading 'Page j of n', where n is the total number of
pages going to a given department and j runs from 1 to n. The parts
order to be sent to a given department should always start at the top of
a new page.

Ex. 38 'Encoded arithmetic' puzzles are a common form of mathematical
recreation. In puzzles of this kind, digits are represented by letters
of the alphabet, and then an arithmetic relationship is written: for
example SEND + MORE= MONEY. To solve the puzzle, one must determine
the digit value of each character. Such problems can of course be
solved by a backtracking search through all possible assignments of
digits to letters, but the following remarks suggest a more efficient
approach:

(a) In each digit position, a carry is either present or absent.
Depending on the assumptions which we make about carries, each digit
position in an enciphered sum leads to one of several equations. E.g.,
if in the example SEND+ MORE= MONEY we assume that carries are present

ADDITIONAL _I/0 AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING

in the second and third digit positions from the right,
have N + R + 1 = E + 10 i.e. N+R=E+9.

Page 8-43

then we must

(b) These equations can be used to eliminate as many variables as
possible. For example, since the preceding example involves 8 letters
and generates 5 equations, we can solve for the digit values of all 5
letters in terms of only three of them.

(c) A solution can then be obtained by backtracking through all possible
values for the uneliminated letters, and all possible carry patterns.
(In the example considered, this will mean that 32,000 possibilities are
examined.)

Write a backtracking program along these lines. Your program
should be able to solve any encoded addition problem. It should
generate all possible solutions. Use your program to solve SEND+ MORE
= MONEY, and DONALD + GERALD = ROBERT. What modifications to your
program are necessary if it is to solve encoded arithmetic puzzles for
addition modulo 8?

Ex. 39 This exercise will describe a relatively elaborate page-oriented
output facility, which you are asked to program. Your program should be
written as a single MODULE.

The output facility to be programmed will allow a page, ~hich is to
be filled with elega~tly formatted ~string text, to be divided into
nonoverlapping, named areas, which can then be written separately. To
define such a page layout, a multi-parameter procedure LAYOUT, with
parameters like those shown in

LAYOUT(field_name_string,field_descriptor_l •• ,field_descriptor_n);

is used. The field_name_str~ng parameter is a string, consisting of
blank-separated names, each of which names one of the fields whose
position and size is defined by a subsequent field_descriptor. The j-th
name and the j-th field descriptor correspond to each other.) The nature
of any field can be further qualified by appending a qualifier to its
name. Attaching a qual~fier .R to a field name specifies that
incomplete lines written to this field (see below) are to be
right-justified; similarly, the qualifier

.L specifies left-justification, and the qualifier
centering.

Each field_descriptor has the form
[starting_1ine, starting_position, width, height]

.c specifies

Here, starting_line indicates the line number at which a given field is
to start (lines are numbered sequentially down the page, beginning at
line 1), and starting_position indicates the horizontal position
(numbered from position 1 at the extreme left) at which the field is to
start. The two final quantities -width- and -height- define the
horizontal and vertical dimensions of the field.

ADDITIONAL I/O AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-44

The LAYOUT procedure returns TRUE if it detects no inconsistency
(e.g. overlapping fields) in the requested layout; but FALSE
otherwise.

After defining the layout of fields on a
procedure, one can write to any or all of these

WRITE(field_name_string, sl, s2, •• , sk);

page usng the LAYOUT
fields, using a call

Here, field_name_string consists of a blank-separated sequence of field
names, to which the remaining strings sl, s2, •• sk will be written in
sequence. Any field_name in this field_name_string can be qualified by
appending one or more characters '*' to it; a single asterisk
terminates the current line of the field (moving down one line in this
field) and additional asterisks skip one line each.

The quantity of information already written to a given field, or to
the whole page, can be sensed by invoking the function

AMOUNT(fieldname,s).

Here the parameters indicates what is wanted, specifically s='LINES'
calls for the number of the last-written line of the indicated field,
s='CHAR' calls for the number of characters already written to this
line,, and s='DESCRIPT' retrieves the descriptor of the field. The
simplified invocation

AMOUNT ()

returns the number of the last line written to any field.

Finally, the call
OUTPUT ()

prints the page that prior calls to LAYOUT and WRITE have built.
Moreover, it is legal to invoke LAYOUT several times before OUTPUT is
called. This allows material to be written to a single page using
several successive layouts.

As you program this package of procedures, you will become aware of
various incompletenesses in the preceding specificatons. Resolve all
these ambiguous points in tasteful w~ys, and then document your
decisions carefully, so as to create a detailed user's manual for the
'page layout facility' that you will create.

Ex. 40 Design, and implement, various useful extensions to the page
layout facility described in Exercise 39. For example, you may want to
allow area names to be qualified with .J in a LAYOUT call, thereby
indicating that material written to an area is to be printed in
right-and-left justified form.

Ex. 41 Use the page layout facility described in Exercises 39 and 40 to
print out the title of a book, and to print the first page of chapter
one of the book, wth appropriate chapter headings, and with the body of
the first page in a two-column format. This first page should include

ADDITIONAL I/O AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-45

at least one imbedded table.

$

---------------------------------------~

"HAPTER 9

PROGRAMS, MODULES, LIBRARIES, AND DIRECTORIES

Chapter IX. Programs, Modules, Libraries, and Directories:
Extended Structuring Constructs for Large SETL Programs.
Remarks on the SETL run-time system.

We noted in Sections 7.1 and 7.9 that for clarity and to avoid error it
is important to divide any program consisting of more than a few dozen lines
Jnto logically independent paragraphs, each of which performs a well defined
function in a manner free of close involvement with the details of other
code paragraphs. We also noted that the procedure, function, CASE, and
refinement constructs of SETL are the main tools which it makes available to
aid this kind of 'paragraphing'. Togethet these tools serve as reasonably
adequate extended structuring constructs, which make it easy to divide a
long program into parts called modules and libraries. If such a division is
made, two supporting code sections, one called the (main) program of the
overall text being constructed, the other constituting an overall directory
of the text are also required. In normal· usage, each module and library
will consist of several dozen procedures and functions, and will contain
declarations of all ('module-global') variables directly accessible to more
than one procedure of the module or library; the directory, which consists
of declarations only, will indicate which of the procedures in each module
are available for use in other modules, and will declare a set of
'program-global' variables available to all procedures in all modules.

In this section, we will describe SETL's extended structuring concepts
systematically, and will illustrate their use.

Chapter Table Q! Contents

9.1 Textual structurs of complex programs.
9.2 Separate compilation and 'binding' of program subsections.
9.3 More on interpreters: the SETL machine

9.3.1 An interpreter for SETL
9.3.2 Memory management and data-structures

9.4 Appendix. A machine interpreter in SETL.
9.5 Exercises (TO BE ADDED)

PROGRAMS, MODULES, LIBRARIES, AND DIRECTORIES Page 9-2

9.1 Textual Structure£!. Complex Programs

A program text can either be a simple program like those .described in
the preceding chapters of this book, or can be a complex program. A simple
program consists of an optional sequence of declarations, a main program
part, and a collection of procedures and functions: the role which all of
these structures play has already been described in previous chapters. (See
especially Chapter IV.) A complex program, which has a richer structure,
consists of the following items in sequence:

(1) a single directory, followed by

(2) a single program unit, followed by

(3) a collection of one or more modules and libraries.

We begin our detailed account of this family of constructs by
describing the structure and purpose of module and library units. Each
module consists of the following items in sequence.

(i) A header line.

(ii) Optionally, a collection of one or more library items.

(iii) Optionally, an access specification. If present, this
will describe tbe relationship of the module M to the other
modules present in the same complex program.

-(iv) Optionally, a sequence of declarations. If present,
these will define variables and constants globally
acces&ible to all the procedures in the module M, will call
for certain initializations, and will sepcify the manner
in which particular variables are to be represented.

(v) A sequence of one or more procedures (and functions).

(vi) A trailer line, which closes the module.

The following example shows all these features except (iii):

MODULE logic_inalyzer - syntacti~_decomposition;
LIBRARIES lexical_analysis, error_reports;
LIBRARIES error_tracing, error_reporting;

VAR
Formula_grammar, Expression_grammar;

Analysis_stack;

$ header line
$ library item
$ additional

library item
$ declaration of

$ 'module-global'
$ variables

VAR $ additional declaration
Parse_status; $ of 'module_global' variable

CONST $ constant declaration
Expr = 1, Term= 2, Factor= 3;

PROGRAMS, MODULES, LIBRARIES, AND DIRECTORIES Page 9-3

INIT $ initialization declaration
Analysis_stack := [], Parse_status=2*3;

REPR
Formula_grammar, Expression_grammar:

SMAP(INTEGER) TUPLE(INTEGER);
Analysis_stack: TUPLE(INTEGER);

END REPR;

PR.OC parser (x) ;
••• $ body of procedure

END PROC parser;

PROC special_actions(y),
••• $ body of procedure

END PROC special_actions;

$ representation declaration
$ (see Chapter 10 for an

$ explanation of
$ representation declarations)

$ first procedure of module

$ second procedure of module

••• $ additional procedures of
••• $ module would follow here
END MODULE logic_analyzer - syntactic decomposition; $ trailer line.

This example illustrates the following general rules:

(i) The header line of a module consists of the keyword MODULE,
follow~d by a pair of identifiers separated by the sequence
space-dash-space. The first of these identifiers is a directory-name; it
names the directory which comes first in the (complex) program containing
the modules and must be the same for all modules in a program. For example,
the module shown above would have to follow a directory whose header line
was

DIRECTORY logic_analyzer;

and the other modules in this same (complex) program would have
header-lines like

MODULE logic_analyzer - propositional_calculus;
• • •

MODULE logic_analyzer - predicate_calculus;
. . .

etc.

(ii) Each member of
follow in the module
comma-separated sequence
the libraries in the
needs to use.

the optional sequence of library items which then
M consists of the keyword LIBRARIES, followed by a
of library identifiers, each of which names one of
complex program (see below) which the module M item

(iii) The (optional) access specification which can then follow is
described later in this section. See 'Directories', below.

(iv) The optional declarations which follow after this have the same
structure as the global declarations included in a simple program. VAR,
constant, !NIT, and REPR declarations are all allowed, and can be given in

PROGRAMS, MODULES, LIBRARIES, AND DIRECTORIES Page 9-4

any order. VAR declarations appearing in this position within the module M
specify variables having module-global namescope, i.e. variables accessible
to all the procedures· in M (but to no other procedures).

Libraries have essentially the same structure as modules, except that
the header line of a library module begins with the keyword LIBRARY, which
is followed by a simple identifier (the library name) rather than a
hyphen-separated pair of identifiers, as a standard MODULE would be.
Moreover, none of the procedures in a library can either access variables or
invoke procedures declared outside the library. We can therefore say that,
whereas modules constitute the chapters of a complex program outside of
which they are not likely to be used, libraries contain self-standing
collections of utility routines and are likely to be used in many different
programs.

The single program unit allowed in a complex program has much the
structure as a module, except that before the collection of routines
it contains there must occur one or more statements constituting its
program. Execution will then begin with the first statement of this
program.

More specifically, a program unit consists of

same
which

main
main

(i) A header line, consisting of the keyword PROGRAM, which must be
followed by the appropriate directory name (see (i) above) and then by the
name of the program unit itself, these two items being separated by the
sequence blank-hyphen-blank, as in

PROGRAM logic_analyzer - main;

(ii) Optionally, a collection of one more library items.

(iii) Optionally, an access specification (just as in a module).

(iv) Optionally, a sequence of declarations (VAR, CONST, INIT, and REPR
declarations, as in a module or a simple program).

(v) The 'main program', i.e.
statements.

a sequence of one or more executable

(vi) An (optional) collection of one or more procedures.

(vii) A trailer line, terminating the program unit.

Note again that if optional items (ii) and (iii) are omitted, we will have
exactly a simple program of the stand-alone sort that could be used without
a directory.

Next we describe the structure of a directory; this will also explain
the structure and purpose of the directory item (cf. (iii) above) that can
be included in any module, library, or program unit. A directory consists
of

PROGRAMS, MODULES, LIBRARIES, AND DIRECTORIES Page 9 5

(i) A header line;

(ii) Optionally, a set 0£ declarations (VAR, CONST, INIJ, and REPR
declarations, exactly as in a module or library);·

(iii) A single PROGRAM descriptor;

(iv) A' sequence of MODULE descriptors, one for each module which
follows the directory;

(v) A trailer line, which terminates the directory •

. These objects are subject to the following general rules:

(i) The header line of a directory consists of the keyword DIRECTORY,
followed by an identifier which names the directory, as in

DIRECTORY logic_analyzer;

A~ already stated, this identifier must be repeated in in all the modules,
and also in;the main PROGRAM unit which follows the directory

(ii) The optional VAR and CONST declarations occurring in the directory
define- the names of program-global variables and constants accessible tq
(the main program and) all procedures (other than library procedures) in the_
complex program in which the directory appears. The optional INIT
declarations appearing in the directory serve to initialize these
program-global variables, and any REPR declarations appearing in the
directory serve to defie representations for these variables.

(iii,iv) The program descriptor and module descriptors which come nexi
serve to define the manner in which the program unit and modules which
follow the directory are allowed to access the global variables declared· in
the directory, and also determine which procedures in which modules can be
invoked by proc~dures in· other modules. The syntactic form ot these
descriptors is

(for a program descriptor)
PROGRAM directory.!!..!!!!. - program name: access specification;

(for a module descriptor)
MODULE directory name> - program name>: access specification;

That is, the first part of each such program or module descriptor is
identical with the header line of the program or module it describes; but
this first part must then be followed by an access specification. Such an
access specification has the following components:

(a) an (optional) item of each of four possible types:
READS, WRITES, IMPORTS, and EXPORTS items

(b) an (optional) REPR declaration.

PROGRAMS, MODULES, LIBRARIES, AND DIRECTORIES Page 9-6

A READS (resp. WRITES), item consists of the keyword READS (resp.
WRITES), followed either by a list of names of program-global variables and
constant s, or by the·keyword ALL. This is shown in

READS ALL;
WRITES Phase, Subphase;

These items serve to define the program-global variables and constants which
are read (resp. written) by one or more of the procedures in some MODULE
(or in the main program of a PROGRAM unit) of a complex program.

An IMPORTS item lists and describes all the procedures defined
elsewhere which are used within a unit. It consists of the keyword IMPORTS,
followed by a sequence of procedure descriptors, each of which is identical
to the header line of the procedure being described (but omitting the
keyword PROC or PROCEDURE). Procedure parameters which are read-only,
write-only, or read-write must be declared in the procedure descriptor of an
IMPORTS statement in precisely the sam~ way as they are declared in the
header line of the corresponding procedure, i.e. must use RD, WR, 6r RW,
precisely where these occur In the header line. This is shown in the
following examples:

DIRECTORY logic_analyzer;

MODULE logic_analyzer - propositional_calculus;

IMPORTS bl(x),

. . .
b2(RW x, RD y)
b3(x, y, z(*));

$ a one-parameter function

$ procedure with variable number
$ of parameters

MODULE logic_analyzer - predicate_calculus;

. . .
IMPORTS al(x,y,RW z),

a2;

END DIRECTORY;

$ parameterless procedure

$ directory trailer line

MODULE logic_analyzer - propositional calculus; ...
PROC al(x,y,RW z);

END PROC al;

PROC a2;

END PROC a2;

$ note correspodence with
$ preceding declaration

$ parameterless procedure

END MODULE logic_analzer - propositional calculus;

MODULE logic_analyzer - predicate_calculus;

$ trailer line

. . .

PROGRAMS, MODULES, LIBRARIES, AND DIRECTORIES Page 9-7

PROC bl(x);

END PROC b 1;

PROC b2(RW x, RD y);

END PROC b2;

PROC b3(x,y,z*);

END PROC b3;

$ a one-parameter function

$ note correspondence
$ with preceding declaration

$ procedure with variable number
$ of parameters

END MODULE logic_analyzer - predicate_calculus;

An EXPORTS item lists and describes all the procedures which a given
module makes available for use within other program units or modules. Aside
from the fact that the keyword IMPORTS is replaced by EXPORTS, it has
exactly the same form as an IMPORTS item, and is subject to the same
restrictions.

Note that no procedure can be EXPORTED from more than one module. On
the other hand, a procedure defined within a module Ml but neither exported
nor imported by it will be local to the module and can very well have the
same name as a different procedure defined in another module M2, even if M2
exports (but Ml does not import) this procedure.

An access specification occurring in a module, program, or library has
the same form, and is subject to the same restrictions, as an access
specification in a library. Such an access specification is used to
document the global variable accesses made and the procedures exported and
imported by the module program, or library in which it occurs, and is used
£E....!..y_ for documentation, so that if it occurs at all it should be identical
with the access specification supplied for the same module or program in the
DIRECTORY which precedes it. Since libraries can neither access
program-global variables nor IMPORT procedures from a module or program, an
access specification in a library must consist of a single EXPORTS item
only. As with modules, a procedure P defined in a library but not exported
by it is local to the library and; can have the same name as a different
procedure defined in some other library, program, or module.

Note that the libraries imported by a module or program, or by another
library, are not listed in the directory which precedes them. Instead, they
are listed in a library item within the importing module, program, or
library. A MODULE, PROGRAM or LIBRARY Ll which lists another library L2
automatically imports all the procedures and functions which L2 exports.

A concluding note concerning use of these facilities. In subdividing
large programs into modules and libraries, one's main aim will be to
subdivide the full collection of procedures which constitute it (possibly
amounting to many hundreds of procedures altogether) into sensible chapters,
each containing procedures which are relatively tightly coupled to each
other but which are only loosely coupled to procedures placed in other

PROGRAMS, MODULES, LIBRARIES, AND DIRECTORIES Page 9-8

modules or libraries. Close couplings will develop if procedures share
variables globally, or when one procedure makes detailed assumptions about
many of the data structures used by another. Procedures should be
structured, and partitioned among modules and libraries, in ways calculated
to avoid these couplings, and to minimize them effectively when they are
unavoidable. It is particularly important to avoid accumulation of large
numbers of shared global variables at either the MODULE or the DIRECTORY
(i.e. program-global) level.

Ideally, a MODULE should consist of no more than a few dozen
procedures, and should be considered a candidate for further subdivision
when this informal limit is exceeded.

An extended example showing the use of SETL's larger program
structuring facilities is found in Section XXX of Chapter XI.

PROGRAMS, MODULES, LIBRARIES, AND DIRECTORIES Page 9-9

9-2 Separate compilation and 'binding' of program sµbsections.

When long SETL programs (i.e. programs more than a few thousand lines
long) are being developed, the time required for compilation becomes
significant. To have to spend much time recompiling long programs after
just a few of their lines have been changed is annoying, and to obviate this
annoyance the SETL system allows the modules and libraries of a large
program to be compiled separately. Precompiled forms of such modules and
libraries (called 'Ql' or 'intermediate code' files) can then be saved, and
combined or 'bound' with other subsequently compiled program sections, to
produce a final, executable, SETL program. Moreover, the SETL compiler can
be used to combine several seperately produced intermediate code files into
one single file of the same format, thereby saving part of the expense of
repeated intermediate code file binding.

The form of intermediate code saved for subsequent 'binding' is exactly
the form of code produced as output by the second (semantic analysis) phase
of the SETL compiler (as we have noted, this output is caled 'Ql' text.) To
save this output for subsequent binding, you must either

(a) Halt
analysis phase

or

the compilation process immediately after the semantic
(see Appendix 8.s.1.2 for an explanation of how to do this.)

(b) Prevent the third compiler phase (code generation phase) from
erasing the intermediate (Ql) file passed to it (as it would normally do at
the end of code generation.) To prevent this erasure, the control-statement
option SIF (save intermediate file; see Section 8.s.1.2 for additional
explanation) must be set.

When several seperately compiled modules and libraries, all available
in the 'Ql' format, are being bound together, they are first read in order,
and digested by the SETL compiler's second (s_emantic analysis) phase. After
this, the semantic analysis phase reads any additional files representing
source code newly parsed by the first compiler phase (the parse phase.) All
these files are then combined, and a single composite Ql format file
representing all this input analysis is output by the semantic phase. This
output can itself be saved, and combined (at a later time) with still other
QI-format files and with fresh parse output, to produce a still longer Ql
file. Alternatively, a QI-format file representing a complete (complex or
simple, see Section 9.1) SETL program can be passed to the compiler's code
generation phase, to be turned into (interpretable or true machine) code and
then executed. The following figure shows the main inputs to and outputs
from the compiler's semantic analysis phase when it is used in the manner
)ust outlined to 'bind' seperately compiled modules together.

PROGRAMS, MODULES, LIBRARIES, AND DIRECTORIES

Input from
Parser

multiple output{
files in
Ql format

. . .

-.,.

-
r

-..

Semantic output

Analysis --
Phase in Ql

Page 9-10

file,

format

Figure 9.1: Inputs and Outputs of the SETL Compiler when the BIND
option is used.

A file in Ql format always represents a (parsed and semantically
analyzed) sequence of SETL source modules and libraries (possibly including
a main program module, cf. Section 4.1 following 4.1.1), in some specific
order, and could be produced simply by arranging this source code in
appropriate order, and compiling it. The rule determining the logical order
of modules in a Ql-format file produced by binding is explained below.

The inputs to the compiler's semantic analysis phase are as follows:

(i) Two files, called POL and XPOL, which are passed from the first (parse)
phase of the compiler to the semantic analysis phase. Together, these two
files represent a SETL source text in parsed form, ready for semantic
analysis.

(ii) An additional file, called BIND. This is a Ql-format file representing
precompiled modules that are to be combined with the newly parsed material
represented by the POL and XPOL files.

(iii) If necessary, a third file, called IBIND. If supplied, the IBIND file
is simply a list of file names (which should have whatever fil~ name format
is required by the operating system under which you are running.) If an
IBIND file is supplied, the files named in it (each of which must be a
Ql-format file) are read one after another by the semantic analysis phase,
and combined with the POL/XPOL material (i) and the BIND file (ii), to
produce one composite Ql-format file as output.

The Ql-format file
can be regarded as the
source text. This text
the following subtexts,

produced as output by the semantic
parsed, semantically analyzed form
is exactly what would be obtained
in order:

(a) First, the source text corresponding to the BIND file;

analysis phase
of a certain SETL
by concatenating

(b) Next, the various source texts corresponding to the successive Ql-format
files mentioned in the IBIND file;

(c) Finally, the source text represented by the POL and XPOL files.

Suppose, for example, that we
'logic_analyzer' whose structure
consists of the following principal

are working with the complex-program
is shown in the preceding section. This
subdivisions:

PROGRAMS, MODULES, LIBRARIES 1 AND DIRECTORIES Page 9-11

(1) DIRECTORY logic_analyzer; ...
END DIRECTORY,

PROGRAM logic_analyzer -logic_main;
. . .
END PROGRAM;

MODULE logic_analyzer - propositional_calculus;
•••
END MODULE;

MODULE logic_analyzer - predicate_calculus; ...
END MODULE;

We could proceed in the following way, via a seq~ence of seperate
compilation steps, to produce a version of this program ready for execution:

(i) First, the DIRECTORY can be compiled, and saved in Ql format, let us say
in a file called DIRECT.Ql (here, and in the next few paragraphs, we use
file-naming conventions; appropriate to the DEC VAX VM operating system.)

(ii) Next, the PROGRAM and the propositional_calculus MODULE could be
compiled (seperately) and the results of these two compilationB stored as
two Ql-format files named MAIN.Ql and PROPOS.Ql.

(iii) Finally, the predicate_calculus MODULE can be compiled, and combined
with the precompiled material (1) and (iii). To do this, the final·
compilation could have the source text of the predicate_calculus MODULE as
its SETL source input, and in addition have the file DIRECT.Ql as its BIND
parameter (see Section 8.5.1.2). The !BIND parameter should then be a file
(possible called XTRAQl.LIS) of file names, which should contain just the
following two lines:

MAIN.Ql
PROPOS.Ql

As soon as the semantic analysis phase has finished processing its input,
Ql-format output representing the parsed, semantically analyzed form of the
source text (1) will result.

In using the 'binding' mechanisms that have just been explained, the
following facts should be noted:

(a) Either of the BIND and the IBIND parameters can be omitted, in which
case no attempt will be made to read, or to bin~ in, the corresponding Ql
files.

(b) If only binding of previously compiled Ql-format files is
and XPOL files produced by parsing an empty SETL input file
along with appropriate BIND and !BIND parameter files, to
analysis phase of the compiler for binding.

desired, POL
can be passed,
the semantic

PROGRAMS, MODULES, LIBRARIES, AND DIRECTORIES Page 9-12

9.3 More~ interpreters: the SETL machine. -----
The notion of interpreter appears repeatedly in these pages (see

Sections 3.S,S.4.2,and S.4.3). Interpreters are an impdrtant, indeed
fundamental class of program. This is because we can regard any interpreter
as a program that 'understands' a kind of simple 'language', i.e.
recognizes and executes a specific set of instructions. For example, the
Turtle Interpreter of Chapter 3 recognizes the instructions: FORWARD n, -
LEFT, RIGHT, and so on, and executes an appropriate action for each such
instruction. Imperative instruction formats of this kind can be used to
manage many programming tasks.

Structuring a program as an interpreter has a number of advantages

a) An interpreter has a simple modular structure. Even th~ugh the
instructions it handles should always reflect some unifying intent, each
such instruction can be programmed independently of the others.

b) As a consequence of a), an interpreter is easily
generally easy to add new instructions and to
corresponding to them without affecting existing
interpreter.

extensible:
program the

portions

~t is
actions

of the

c) Since any interpreter defines a kind of 'language', we can extend the
family of programming languages at our disposal by writing interpreters.
Once we have implemented a language by writing an interpreter for it, we can
solve further programming tasks by writing programs in the new language.
Often this is the most effective way of attacking a problem: invent a
language L in which the problem is eaily solved, program a solution to the
problem in L, and then write an interpreter for L.

In what sense can we speak of interpreters as defining new programming
languages? Any programming language has two separable aspects, namely its
'syntax' and its 'semantics'. These important terms can be defined
approximately as follows:

1) Syntax: The syntax of the language is the externally visible
grammatical structure in which valid statements of the language must be­
couched. (The syntax of any language can be described by means of a formal
syntactic notation like the syntax graphs that we have used to describe
SETL.)

ii) Semantics: The more elusive notion of semantics includes all those
aspects of the language that determine the operational meaning of its
primitve constructs , i.e. the result of the actions that execution of each
construct requires.

Note in this connection that different languages may give different
syntactic forms to statements that have very similar meanings. For example,
the action of incrementing a counter variable by one is written as follows
in five well-known programming languages:

I = I + 1
I= I+ l;
I :=I+ l;

(in FORTRAN)
(in PL/I)
(in PASCAL)

PROGRAMS, MODULES, LIBRARIES, AND DIRECTORIES

I++;
I+:• l;

It is clear that in spite of their different
statements have the same operational meaning,
the other hand; the command

FORWARD 10

Page 9-13

(in C)
(in SETL)

syntactic forms, all these
i.e. the same semantics. On

of the Turtle language (let's call it TURLAN) has no semantic equivalent in
most programming languages. Its meaning can be explained in English, as we
did when first describing TURLAN, or it can explained to an informed reader
by showing him the SETL code which is executed when the FORWARD command is
encountered by the TURLAN interpreter. Clearly, the important aspects of
this command do not lie in its syntax: something like

ADVANCE BY 10;

would do just as well as a syntactic alternative for the FORWARD statement.
Regardless of how we choose to write it, the imp-0rtant charact~ristic of
this construct is that its execution models the motion of an objec~ in
two-dimensional space, and that this motion may produce a visible track on a
drawing. This is what constitutes the semantics of the statement,
irrespective of whether it is given the name 'FORWARD' or the name
'ADVANCE'~

An interpreter defines a language in the sense that it provides a semantic
specification of the meaning of each command in the language. It is
sometimes said that the semantics of a language Lis best defined by giving
the rules of action some 'abstract machine' M which understands Land
executes the actions specified by elementary 'commands' of L. From this
point of ~iew, an interpreter I for Lis just an implementation of the
abstract machine M, i.e. it is a program (written in some other language
OL) that behaves the way M should. Of course many interpreters can be
written for the same L, and these intepreters can differ in programming
deta~ls, in the language in which they are written, etc. However, the
visible behaviour of all these interpreters (which is to say their output
for a given input sequence) is identic•l•. All these interpreters are
logically equivalent implementations of the same abstract machine M.

Given two general-purpose programming languages L and OL of comparable
power, it is always possible to write an interpreter for either of them
using the other ■ It is even possible to write an interpreter for L i~- L
itself (for example, an interpreter for SETL in SETL). This is often often
done to provide a self-consistent definition for a new language.

In the following pages, we will proceed to sketch such an interpreter
for SETL. In doing this, we have two goals in mind:

a) This exercise will give us more insight into the general nature of
interpreters and introduce the important notion of intermediate language and
of 'interpretable code'.

b) The interpreter to be sketched will illustrate parts of the structure of

PROGRAMS, MODULES, LIBRARIES, AND DIRECTORIES Page 9-14

the actual implementation of SETL. This will advance ~ur understanding of
efficiency and data structure considerations that we have neglected thus
far, and will prepare us for a subsequent discussion of the
data-representation sublanguage of SETL ■

9.3.1 An interpreter for SETL.

If we compare our simple Turtle language with SETL, it is clear that a full
compiler for SETL must be a considerably harder program to design. The
reason is not just that SETL is a much bigger language, but also that the
grammatical structure of the two languages is very different. The grammar
of TURLAN is very simple: every sentence is a command with one or zero
arguments. The grammar of SETL is much richer, and a SETL statement is by
no means a rudimentary 'command'. For example, if we examine a simple
statement such as

(1) squares:• { (1, 1 ** 2]:1 IN [1,3 •• 21] };

we notice that it specifies a whole series of actions:iteration, ·tuple
forming, set forming, assignment, etc. The following expanded SETL fragment
gives a more detailed account of these actions:

(2) squares :• {};

(FOR 1 IN [1,3 •• 21])
pair:=- [i, i ** 2];
squares with:• pair;

end FOR;

The fragment (2) has the same net effect as (1):after its execution, the
variable -squares- is a map whose range is the set of squares of the first
11 odd numbers. However, the statements of (2) are much simpler than the
single statement (1). Each step of (2) describes a relatively simple action
(assign the empty set to a variable, add an element to a set. etc.)
Nevertheless, the fragment (2) is not yet simple enough to be handled by a
program as straightforward as our TURLAN interpreter. To simplify further,
we need to expand version (2) into something like the following:

(3)

LOOP:

out :

squares :• {};
1 : • 1;

IF i > 21 GO TO out;

12 :• i ** 2;
pair :• [];
pair with:.,. i;
pair with:• 12;
squares with:• pair;
1 :• i + 2;
GO TO loop;

The fully expanded code (3), with its labels, jumps, individual tuple
insertions and so on, is much less readable than our original one-liner ■

But it constitutes a list of rudimentary actions, each one of which is

PROGRAMS, MODULES, LIBRARIES, AND DIRECTORIES Page 9-1.5

simple enough to be handled by an interpreter. To simplify one final step
further, it is useful to write the commads appearing in (3) using a more
stereotyped syntax than that of SETL. This leads us to introduce an
'intermediate language' whose statements have the same semantic meaning as
the SETL statements of (3), but whose syntactic structure is more uniform
and hence easier to process.

Specifically we will represent command in
components :

operation first operand second operand

(3) as sequence of four

result (optional)

Such an sequence is ·customarily called a quadruple, for obvious
reasons. Instructions written in this way are also known as 3-address code,
because each instruction names (up to) three quantities: two operand(s),
and a result.

Written in this way the five lines that
version (3) would take the £allowing form:

(4) expon i 2 12
assign nulltup pair
with pair i pair
with pair 12 pair

follow the label

with squares pair squares

'loo.p' in

Note that code of this kind restricts us to use no more than two
arguments in each quadruple, which forces us to break up complex expressions
into sequences of simpler steps. For example, in reducing (2) to (3) we
introduced a whole assignment instruction just to calculate 1**2• In (2),
the expression 1**2 had no 'name':it just appeared as a component of a
tuple. In version (3) we isolate the calculation of 1**2 into its own
instruction, and give the resulting value a name in order to use it at a
subsequent instruction. Such a name, which does not app~ar in the original
program (1) but is generated when (1) is ·translated into a syntactically
simplified form, is known as a 'temporary.variable'. One of the ongoing
activities of a 'compiler', wbich translates syntactically complex programs
like (1) into intermediate quadruple forms like (3), is to generate such
names whenever they are needed to simplify complex expressions.

It should come as no surprise that in the real SETL system SETL source
programs like (1) are actually converted into an intermediate quadruple form
like (4). This is done by the SETL compiler, whose output is precisely a
sequence of quadruples. The details of this translation need not concern us
here. What is relevant to our discussion is the fact that the run-time
system of SETL, which is what actually executes all your programs once they
have been compiled, is an interpreter for this intermediate language of
quadruples. This SETL run-time interpreter has a repertoire of about 250
operations. Most interpreters for complex languages work in this way: the
language is first translated into a simpler form, consisting of a small set
of command-like statements, and then this intermediate representation is
processed by th~ interpreter.

PROGRAMS, MODULES, LIBRARIES, AND DIRECTORIES Page 9-16

The full intermediate code representation of our initial example (1) is
as follows:

assign nullset
assign 1
i fgt i
expon i
assign nulltup
with pair
with pair
with squares
plus i
go

2 1
2

i
12
pair
2

squares
i
10
12
pair
pair
pair
squares
i
3

Note that in this intermediate representation, the labels introduced in
version (3) have been replaced with numbers ■ For example, the intermediate
code instruction

go 3

instructs the interpreter to proceed to the 3rd instruction in the sequence ■
Similarly, the conditional instruction , which is instruction number 3 in
the above sequence, namely

i fgt i 21 10

directs the interpreter to proceed to the 10th instruction in the sequence
if the condition (i > 21) is met. If this condition is not met, then the
interpreter simply continues on from instruction 3 to instruction 4.

To summarise: the intermediate code version of a SETL program is a sequence
of quadruples representing the original program ■ Some quadruples trigger
computations while others affect the order of execution, i ■ e ■ affect the
flow of control through the sequence of quadruples.

The foregoing explanation puts us i-0 position to sketch the overall
structure of the SETL interpreter ■ As usual, the main component of the
interpreter is a CASE statement, each of whose tags corresponds to an
instruction in the intermediate language. This CASE statement is executed
within a loop, (the 'main interpretive loop'), and each step through the
loop performs the following actions:

(a) Fetch the next quadruple to be executed.

(b) Unpack the quadruple into instruction, arguments, and name of

result ■

(c) Execute the code corresponding to the current instruction ■ This
generally involves fetching the values of the arguments, performing some
calculation, and assigning the output of this calculation to the result
parameter of the quadruple. In the code that follows, the relationship
between a variable and its current value is represented by means of a map
called VALUE, whose domain is the set of identifiers present in the program

PROGRAMS, MODULES, LIBRARIES, AND DIRECTORIES Page 9-17

being interpreted.

(d) Finally, if the instruction is not a STOP, we $0 back to (a).

Although h~ghly abbreviated, the following SETL code indicates the main
features of this structure:

PROGRAM interpreter;

read(cpde);

next :•_l;

LOOP DO

$ The tuple of instructions to be
$ interpreted.

$ Index for next quadruple to execute.

$ Main interpreter loop.

.[op~, argl, arg2, res] :• code(next); $ 'unpack' the quadruple
n.ext .+:•l; $ advance (provisionally) to the next -in.struction

CASE opr OF

('assign'):

.('plus'):

• • • •
('go'):

.
END CASE;

END LOOP;

END PROGRAM;

value(res) :• value(argl);

value(res) :• value(argl) + value(arg2);

next :• res;

$ code for other instructions •
$ would come here

$ This operation modifies the
$ 'program counter' -next-

The variable -next- is usually called 'the program counter' or the
'instruction counter'.

After each instruction, the interpreter determines the next instruction to
execute. After a computational instruction, addition or assignment, the
next instruction is simply the next instruction in the sequence, as is
reflected in the statement :

next+:- l;

Any instruction, such as a 'go' instruction; that affects the flow of
control will reset the -next- indicator to some other value, as is shown in
the case of the 'go' instruction above.

--·~------

PROGRAMS, MODULES, LIBRARIES, AND DIRECTORIES Page 9-18

9.3.2 Memory management and data-structures.

The previous section evades several important questions that we must
now try to answer. Writing an interpreter for SETL in SETL may be a
reasonable way of describing the nature of interpreters, but it can't
possibly b~ the way SETL is implemented, because something would have to to
execute the interpreter program itself ! In fact, the real SETL interpreter
is not written in SETL, but in a simpler, lower-level language, which in
turn is translated into (you have guessed it) some intermediate
representation which ••• But there is no infinite regress here: the final
instructions produced by this sequence of translations can be executed by
the · computer 'hardware' itself, which is to say that the ability to execute
these most elementary instructions is 'wired' into the physical structure of
the machine on which your program runs.

Now the instructions that can be 'wired in' to actual hardware, that is
to say the instructions that a computing machine can e~ecute directly, are
always of a much simpler nature than the instructions of our hypo~h~tical
SETL machine.

One of the things that simplifies programming in SETL is the fact that
the language makes available such complex structured objects as maps, tuples
and sets. This frees the SETL user of all concern with with the physical -
location of these objects in the machine, and with the ways in which they
are retrieved, modified, created, deleted, etc •• But the actual computer
hardware does not have the built-in capabilities to deal with these
structures, i.e. the bare computer knows nothing about sets, maps, tuples,
membership tests and the like. In creating the SETL interpreter it is
therefore necessary to program the manipulation of these objects explicitly.
To understand the efficiency consequences of this fact, we must now examine
the way ~n which SETL objects like tuples, sets and maps, are actually
represented in memory. In order to do this, we must first say something
about the capabilities typically available in a bare machine, which is to
say the repertoire of instructions supported.by the 'hardware' itself.

Machine level operations.

Physically, a computer consists of two linked subparts

a) A memory, within which data can be stored.

b) A processing unit which reads items from the memory, combines and
modifies them in various ways, and stores the results back in memory.

The memory consists of a number of storage units, called words.
think of the memory as a tuple of some fixed size. Each word
'address', which is simply a positive integer, which when used as an
allows us to refer to that specific word.

We can
has an

index

In turn, each word in memory consists of a fixed number of information units
called bits. A bit is a binary digit, i.e. it is representable by a O or a
1, so that we can think of a machine word as a tuple of zeroes and ones.
Word size and memory size vary from computer to computer. Typical values

PROGRAMS, MODULES, LIBRARIES, AND DIRECTORIES

are as follows:

memory sizes range from 4000 words to several million words.

memory words are typically 16, 32, 36, 48, 60, or 64 bits long.

Page 9-19

In this section we will use -W- to refer to some typical word size. The
fact that is central to the following discussion is that the operations that
a given machine can execute directly (usually called its 'instruction set')
are almost without exception instructions that involve one or two machine
words of input, and yield one machine word of output. Anything more complex
must be programmed as a sequence of instructions. Let us now briefly
examine briefly the capabilities of a typical instruction set. To describe
this, we will make use of the following notation:M designates the ~achine
memory, which we regard as a tuple of words, and M(i) designates the
contents of the 1th word of memory. The contents of a machine word can be
regarded as a sequence of bits, as we described above. However, it is also
poasible for the hardware to regard the contents of a machine word as the
binary representation of an integer, or some encoding of a floating point
quantity, or as one of more alphabetic characters. In other words the
.machine has no concept of data object 'type'. Each instruction implicitly
determines which interpretation the machine will give to the contents of the
memory locations that it references.

Bearing this in mind, we can classify machine instructions into the
following classes:

(1) Transfer instructions.

These instructions transfer the contents of one location to
another, i.e. perform operations like

M(j) :• M(i)

In some cases, it is possible for one machine instruction to cause the
transfer of several memory words, or the transfer of a portion of a word,
i.e. of a few bits, from one location to.another.

(ii) Arithmetic instructions.

All sizeable machines supply the four basic arithmetic operations on integer
quantities: add,subtract, multiply, divide. When these operations are
executed, the contents of words in memory are interpreted as binary
representations of integers. Usually one bit of a word representing an
integer is reserved to represent the sign of the integers. If the word has
size W, there are therefore W-1 bits available to specify the size of an
integer, which allows the representation of numbers whose magnitude is in
the range O thru 2**(W - 1)-1 •

(iii) Bit-manipulation instructions.

The instruction set of most machines includes operations that regard the
content of memory words as a sequence of boolean quantities, i.e. regard
each one-bit as an encoding of TRUE and each zero as FALSE. Instructions in
this class perform boolean operations (AND, OR, NOT) on these

PROGRAMS, MODULES, LIBRARIES, AND DIRECTORIES Page 9-20

representations. These instructions are
the bits of a given machine word.
include the following· :

performed in a single step on all
Typical instructions in this group

1. Negation:replace each bit in a mach~ne word by its negation,
1.e. replace each zero by a one, and viceversa.

2. AND:form the bitwise AND of the contents of two machine words,
and place it in a third. In other words, the 1th bit of the

result is obtained by ANDind the 1th bits of the two operands.

3. Bit OR:
two

Similarly, perform a bitwise OR operation on the contents of

words, and place the result in a third.

(iv) Indexing instructions.

Given that the address of a machine word M(i) is simply •an integei, -
this ~ddress can itself be stored in some other machine word, say M(j), an4
subsequently. used to retrieve the contents of M(i). In this case, a·s in the
iase of arithmetic operations, the machine interprets the contents of M(j) -
as an integer, and performs an instruction like

M(k) : • M(M(j))

That is, a typical indexing instruction takes the contents of tbe word whose
address is contained in M(j), and transfers these contents to M(k) •

(v) Test and branch instructions.

Every instruction set provides various test operations whose o~tcome
determines the instruction which the processing unit will execute next.
Instructions of this type are the machine-level equivalent of IF statements
in SETL. Among others, the following conditions can usally be teated for:

a) Test for zero:this condition is TRUE if all the bits of a given
machine word are zero.

b) Test for equality:this condition is TRUE if the contents of two
machine words are bitwise equal.

c) ATithmetic comparisons:interpret the contents of two machine words
as integer quantities, and compare these quantiti•s for I

(equality, greater
than, less than, unequality, are commonly conditions that can be tested).

Modern instruction sets coniain hundred of individual instructions, and the
list above is a small but representative sample of what is commonly -
available. Regardless of the specific details of a machine's instruction
set, what is important is that all these insructions manipulate one or tw9
words of output and produce a single word of input. Moreover, these
insructioris can be executed at very high speed. Typical modern computers
perform between 1 million and 20 million cycles per second. A transfer
operation, an addition, or a bitwise AND take one machine cycle, a
multiplication may take 3-5 machine cycles.

PROGRAMS, MODULES, LIBRARIES, AND DIRECTORIES Page 9-21

In chapter 10, we will discuss the implementation of SETL primitives,
that is to say the way SETL structures and operations are represented at the
machine level. Once we understand the ways in which tuples, sets and maps
are represented and manipulated, we will be in a positiort to discuss
questions of efficiency, and to describe ways in which the execution speed
of SETL programs can be improved by choosing data representations
appropriately.

9.4 Appendix. A machine interpreter in SETL.

In the previous section, we have outlined the organization of the SETL
interpreter, and this led us to descend from the rich set of primitives of
the SETL language, to consideration of the restricted capabilities of
typical hardware. In this discusiion, we treated machine operations as
primitive actions and did not attempt to analyze them or decompose them into
simpler elements. It should nevertheless be clear from what we have said
that each machine instruction, involving as it does a few machine words,
manipulates and modifies a few dozen bits of information. Thus, a
description of these actions in terms of bit-level operations will give ~s a
yet closer view of what the hardware actually does. It is interesting to
note that in many modern machines, the 'machine' instructions discussed
above are not indivisible actions but are actually performed as a sequence
of still simpler steps, and that these simpler steps are themselves
instructions for an interpreter (once again!) • This interpreter (called··
the microcode interpreter for the machine) is the one which is actually
realized 'in the wires' i.e. this interpreter is actually built as a series
of gates and transistors on a chip. Thus the notion of interpreter
permeates the subject of language and machine implementation from top to
bottom, A working system consists a series of languages and interpreters,
each language being interpreted by an interpreter written in the language
below. For example when you execute a TURLAN program, the following is
actually taking place :

TURLAN program (LEFT, RIGHT, FORWARD, etc.)
runs on

TURLAN interpreter , written in SETL,
runs on

SETL interpreter , written in LITTLE.(A low-level language)
which was translated into a machine program,

runs on
computer (VAX/780 for example) whose instruction set is

executed by
microcode interpreter(a physical device)

How shall we describe the nature of the microcode itself? We do not have
any simpler 'system' in terms of which to describe it, but in fact there is
no conceptual problem in describing it in SETL ! This may appear at first
sight a bizarre endeavour, but there is no contradiction: recall that given
two sufficiently rich languages, it is always possible to write an
interpreter for either, using the other. Use of SETL to describe the
bit-level structure of machine operations gives us a detailed semantic
specification of machine language, which has the advantage of being written
in a language with which we are now thoroughly familiar.

PROGRAMS, MODULES, LIBRARIES, AND DIRECTORIES Page 9-22

To begin: we can describe each machine word in SETL as a tuple of
zeros and ones This allows us to refer to individual bits. we will regard
these bits as arithmetic quantities on which addition, etc. can be
performed. Wl,W2,W3 will refer to the memory words involved in an
operation. Code fragments representing the various machine operations are
as follows:

a) transfer operation.

W2(1 •• w) := Wl(l •• w)

b) Bit operations.

bl negation: $ W2 := not Wl

W2 := [(bit+ 1) mod 2:bit in Wl];

b2. AND:$ W3 := Wl AND W2

W3 :• [Wl(i) MIN W2(i):i in [1 •• W]];

b3. OR:$ W3 := Wl OR W2

W3 := [Wl(i) MAX W2(i):i in [1 •• W]];

c) Arithmetic operations.
--------TO BE CONTINUED---------

9.5 Exercises (TO BE ADDED)

$

ftHAPTER 10

THE DATA REPRESENTATION SUBLANGUAGE

The 'level' of ·a programming language is determined by the pow~r of the
semantic primitives which it provides. The operations provided.by the
ordinary low-level languages, e.g. languages of the FORTRAN type, all lie
close to those elementary operations with a few dozen bits of input and
output which computer hardware implements directly. Languages of somewhat
higher level, e.g. PL/I, PASCAL, or ADA, supplement these primitives with
more advanced pointer-oriented memory management mechanisms and also support·
recursion; nevertheless, even these languges stay close to operations which
can be translated into efficient machine code in relatively obvious ways~
SETL aims more radically than any of these languages at simplification of
the programmer's task, for which reason it supports use of abstract objects
(sets and maps) whose best machine-level representation is not obvious. Of
course, many possible representations for objects of this kind are known,
but which representation is best will vary from program to program in subtle
ways that depend on the specific operations which a program applies to the
objects which it manipulates. If the most effective representation of a
program's data objects is not chosen, efficiency will suffer, and it is this
efficiency barrier that has prevented rapid and widespread adoption of very
high level languages like SETL ■

lf efficiency is an important enough .consideration to justify the
~ffort involved, a SETL program can be translated manually into a more
~fficient version written in a lower-level language such as PL/1, PASCAL, or
Ada •. A pr9grammer u~ing this approach will soon notice that many (but not
all)~of the efficiency-enhancing changes made during translation of an
original· SETL program are stereotyped in character and serve only to make
use of advanta1epus data structures. The SETL facility to be explained in
this chapter, namely its data representation sublanguage, aims to make it
possible to attain efficiency without laborious translation becoming
necessary, simply by declaring what data structures (chosen from a library
of such structures) are to be used to represent each of the logical objects
appearing in a program. Then elaboration of more efficient code sequences
can,be left to the SETL compiler. Programming in this style, which begins
with a program in which algorithmic actions are represented but data
structures are ignored, but then subsequently goes on to choose
efficiency-enhancing data structures, exemplifies the important general idea
of programming h successive refinement of an original program text.

------ ------- ------- -- ---- -- ----- -- -- ---·------------

THE DATA REPRESENTATION SUBLANGUAGE Page 10-2

SETL's representation sublanguage adds a system of declarations to the
core language described in the preceding sections (which for emphasis we
will sometimes call 'pure' SETL). These declarations control the data
structures that will be used to implement an algorithm that h~s already been
written in pure SETL. Ideally no rewriting of the algorithm should be
necessary. A pure SETL program to which data structure declarations have
been added is called a supplemented program. In the absence of error a
supplemented program SP must always yield the same result as the pure -
program PP that it incorporates. (However, if errors or inconsistencies ar~
present, then SP and PP are allowed to abort differently; and certain
inconsistencies, detected in SP but not in PP, can cause SP to abort even if
PP does not).

Chapter Table ..Q..f Contents

10.1 Implementation of the SETL primitives
10.2 The standard representation of sets
10.3 Type declarations
10.4 Basing declarations

10.4.1 Base sets
10.4.2 Based maps
10.4.3 Based representations for sets
10.4.4 Basing declarations for multi-valued maps

10.5 Base sets consisting of atoms only
10.6 Constant bases
10.7 The representation-quantifier PACKED
10.8 Guidelines for the effective use of the

Data Representation Sublanguage
10.9
10.10
10 .11
10.a

Exercises
Additional remarks on the effect of REPR declarations
Automatic choice of data representations (TO BE SUPPLIED)

Automatic Choice of Data Representations

10.1 Implementation of the SETL Primitives

To implement SETL, all its data objects must somehow be represented by
sequences of machine-level memory words, and all its primitive operations
must be represented using sequences of the high-speed but very elementary
machine-level operations described in Section 9.3.2. We shall now outline
the way in which this is done. To do so, it will be convenient to repre$ent
data layouts in machine memory diagrammatically. As noted in Section 9.3.2,
the memory of a c~mputer can be thought of as an array M of words, each able
to store a fixed number W of binary bits (zeroes and ones). Such patterns
of bits can be interpreted as encodings of integers, and hence can be used,
when desired, as the indices of other elements of M.

We will
rectangular
cell holds a
memory cell
to M(j), and
representing

picture subareas of the memory array M as sequences of
boxes or 'memory cells', each holding a word. If one memory_
value M(i) which, regarded as an integer j, is the index of the
M(j), then we will sometimes regard M(i) as holding a 'pointer'
draw an arrow from the box representing M(i) to the box
M(j), as in the following figure :

THE DATA REPRESENTATION SUBLANGUAGE Page 10-3

Fig. 10.l Sections of memory, showing cells which store
the indices of other cells

Where convenient, we will label the picture of a memory cell with an
indication of its contents. Note that inter-cell 'pointers' like those in
Fig. l can be followed at very high speed by using the machine-level
operation (b) described in Section 9.3.2.

If the data representation language to be described later in
chapter is not employed, a narrow range of highly standardised
structures will be used to represent SETL data objects. The
significant representations are those of sets, maps, and tuples.
tuples are simplest, we shall describe their representation first.

The standard representation for tuples.

this
data
most

Since

As for all other SETL data objects, the representation of
begins with a single memory word, RW, called the root word
However, since the group of W zeroes and ones which a single
can hold are by no means sufficient to represent the

a SETL tuple
of the tuple.
machine word

RW Pointer.._ __
(Root -----­
word)

s2

.. type­
-----· Indicator

(tuple)

length of
tuple

Successive
components
(body) of
tuple

rig 10.2 Machine-level representation of a tuple.

(possibly very long) sequence of components of the tuple, this root word
simply points to another location in memory, at which the actual
representation of the tuple is located (see Fig. 2). This representation
begins with a tuple 'header word' which tags the information which follows
as a tuple. Next comes a word containing the length of the tuple, after

------- - ---------~--------

THE DATA REPRESENTATION SUBLANGUAGE

which there follows a succession of root words representing the successive
components of the tuple. Note that this representation ■ates it easy and
fast to retrieve the i-th component of a given tuple t• Aside fro•
complications caused by error cases, which arise if 1 exceed■ the length of
t (or is negative, or is not an integer, etc.) all ve have to do is take the
integer value contained in the root word RW, add (1+2) to it as an otfset,
and retrieve the word to which this sum points. Row expensive is a t~ple
retrieval o-peration? The mechanism we have just outlined takes a fe.v (lea ■
than 10) machine instructions. However we also incur another cost vhen ve
evaluate the primitive SETL operation A(i), namely since we must check the
types of both A and 1. More specifically, the following tests must be
performed before the 1th element of xis retrieved:

1) Determine the type of A. A could be a tuple, a string, a map , ~r could
have some other type (for which the operation A(i) might be invalid).

11) Determine the type of 1. If A is a tuple, then i must be an integer, or
the operation A(i) is invalid.

iii) Compare the value of i with the length of A. If i >IA then A(i) is
OM.

These various tests also require a few dozen machine instructions, and
therefore add a substantial overhead to the cost of the indexing operation •.

10.2 The standard representation of llll

The machine representation of tuples is straightforward an4 relatively
problem-free: a tuple, being an ordered (described above) aequence of
components, can be stored as an ordered sequence of words in aeaory. When
we access a tuple to obtain or modify one of its components, ve simply use
the index of the desired component to address the component.

Sets are manipulated in a different manner. To see jhy this is
advantageous, consider the basic membership operation auch as (x IN ■) 1
which asks whether the current value of xis ~o be found among the elements
of s. Determining this logically involves a search of the elements of s.
Searching is also required to implement other basic set operations. For
example, when we compute the expression (s WITH x) ve first search a to
ascertain that the value of xis not already contained ins, and only if it
is not do we perform the insertion operation. In contrast to operations on
tuples, which always access components using their position, operations on
sets need to locate elements whose value, rather than position, is known.
For this reason, sets and maps are often called 'content addressable
structures'.

Before going on to describe how SETL sets are actually stored, it pays
to consider one obvious, though in fact not ideally effective,
representation for them: Why not store sets as tuples? The only objection
to this choice is ·one of efficiency. Consider again a membership test : (x.
IN s) • If the elements of s were stored sequentially in some arbitrary
order in memory, we would have to compare each one of these elements with x
to determine the truth value of the membership predicate. If the
cardinality of S is N, then in the worst case it would take cas~ N
comparisons to compute this predicate, making this an expensive operation if

THE DATA REPRESENTATION SUBLANGUAGE Page 10-5

N is large. Since the membership operation is basic to all other set
primitives (insertion, deletion, union~ intersection, map retrieval and
assignment) an efficient membership operation .is indispensable to an
efficient implementation of sets, and therefore this obvious approach is
unacceptably inefficient (for large if not for small sets).

The key to a better representation for sets is the following
observation: sets have no a priori order, so that their elements can be
stored in any convenient fashion. This suggests that we choose an
organization which makes it easy to retrieve an element, given its value.
To begin to see how this might be done, suppose first that S is a set of
alphabetic strings. Then a fairly obvious idea is to store these strings in
alphabetic order, in a contiguous sequence of memory locations, and regard
this sequence as the representation of the sets. This would speed up
membership tests because we could then perform a binary search (see Section
4.4.3) to determine where in the set a given string was. Further
improvement in performance can be obtained if we keep track of the location
at which strings with a given first character begin. (Very much like the
thumbin~ marks in a dictionary). This would further restrict the range ·over
which we had to search. The actual SETL representation of sets push~s this
idea still further, using a data structure called a 'hash table' which

. allows the VALUE of a given object x, to be mapped to a small range of L
locations in which x might be found. In order to apply th~s technique t~
sets of elements of arbitrary kinds, we must be able to construct such.
mappings for objects x of any type. The result of applying such a mapping
to x must be a single location, or a very small range of locations, at which
the element x will be found if it is present at all. In addition, the data
structure we use must allow insertions and deletions to be made easily:
note that this is not the case for the alphabetic ordering just suggested.
The kind of mappings from values to locations that we will use is called a
called hashing function, which is why the structure that is organized by
means of a hashing function ia called a hash table.

To explain how this data structure works, it is convenient to consider
an example, and for specificity's sake we will explain the internal
representation of a set of integers q. The trick involved in 'hashing' is
to use q itself to determine the table address at which the set element q
will be held. Any function H which converts q into a numerical index to a
table of reasonable size can be used: all that is desired is that H sh~uld
'scatter' the values H(q) in reasonably even fashion over the available
table addresses, thus ensuring that we do not attempt to store too many
items q in (or near) the same table address. The tables which the SETL
implementation uses to represent sets always have a number of entries equal
to a power of two, i.e. either 4, 8, 16, 32, etc. table entries are used,
depending on the size of the set being stored. The size of the table is
adjusted to th~ size of the set, so that if a sets grows by the addition of
new elements, it will eventually be moved to a larger table, and if its
shrinks substantially because elements are being removed from it, it will be
moved to a smaller table. In this way the SETL implementation ensures that
at least half the available entries in the table used to represent a set are
occupied, and that table 'overloading' (explained in more detail below)
never rises to more than two elements per table entry. '

THE DATA REPRESENTATION SUBLANGUAGE Page 10-6

In accordance with the preceding remarks, we will suppose that a table
of size four is being used to repre~ent the five element set (*) shown
above. As stated ea~lier, the standard function H(q) used to. map elements
to their table positions can be arbitrary, but we want it to 'scatter'
fairly evenly. This is to say that, given integers il,12 ■■ that are to be
placed in a set s, we want the values H(il), H(i2) ••• to be distributed
evenly over the range table indices, i ■ e ■ 1 to 4. Any kind of arithmetic
function that yields a number in this range is acceptable as a hashing­
function. Typically His some otherwise meaningless sequence of operations,
chosen for its simplicity, and for the eveness with which values H(x) will
scatter. For example, something like the following might be used:

H(q)=((q+llr)** 2 DIV 99 MOD 4) + 1.

{Here we are being suggestive rather than precise;
functions' like His a matter that has been studied
do not wish to say that· precisely this function
implementation, but only to show something of
works).

optimal choice of 'hash
very extensively, and we
is used in the SETL
how a hashing technique

Note that by reducing the quantity (q+ll2)**2 DIV 99 modulo 4~ we
ensure that H(q) always returns a value between 1 and 4, i ■ e ■ a number that
can be used as an index to an entry in a table of size 4.· The exact values
that H takes on for the five elements of our set are as follows:

Element q
Value H(q)

3
2

17
1

201
2

48
3

722
2

These H-values imply that we will store 17 in the first entry of the iable
representing {*), 48 in the table's third entry, and that we would want tc
store 3, 201, and 722 in the table's second entry. However, since each 7

table entry can hold no more than one set member, we are forced to place two
of these three elements elsewhere. What is done is to place them it
separate locations, but chain them into a list {called a 'clash' list) b:
means of pointers. The starting location for the clash list containing an
element q is simply the hash-table location indexed by H(q). ·

table block 2

table block 3

table block 4

4 .-header: shows size of table

17

(empty)

1 ::::~:::::: . __ .,

{ 48

(empty)

{ (empty)

{empty)

table block 1

201 722
-------- --------

(empty)
-------- --------

THE DATA REPRESENTATION SUBLANGUAGE Page 10-7

Fig. 10.3 Machine-level representation of the set {3,17,201,48,722}.

The following examples will clarify the way in which we would use the
hash-table representation shown in Fig. 3. If asked to make the test (201
IN s), wheres is the set shown in Figure 3, we would calculate H(201),
obtaining the result 2, which tells us to examine the second two-word block
of the table appearing in Figure 3. Upon examining this block, we would
note that a chained list L starts in it, and would then.walk down the list
L, looking for the element 201. This will be found when we reach th~ second
element of L. Similarly, if asked to make the test (33 IN s), we would
calculate H(q)=l, and accordingly would examine the first block of the
table. It would then be seen that the quantity 33 is not present in.this
block, and also that the subsidiary 'cla•h' list that could start in this
block is empty. This relatively efficient computation would therefore ·tell
us that the value of (33 IN s) is FALSE.

To summarize when we insert a new element into a set, we calculate
its 'hash code' in order to determine where in the ha~h table for Sit
should be stored. When we perform a membership test on S, we calculate the.
hash code of the element to know where in the table we must look, and WE
USE THE SAME HASH FUNCTION EACH TIME.

Maps fare stored in much the same way as sets. (After all, maps are
just sets of pairs). However, the hash code of a pair [x,y] is taken to be
the hash code of x, that is, of the domain element of the pair. This makes
it easy to find y given x, i.e. to calculate f(x) from x. Fig. 10.4
depicts the internal representation of a SETL map; note in particular that
the table entries in the representation of a map are somewhat larger than
those used to store elements of sets which are not maps (compare Fig. 3).
We enlarge the table entries in the representation of maps in order to store
range elements in immediate proximity to the domain elements to which they
correspond.

THE DATA REPRESENTATION SUBLANGUAGE

variable

map f

map g

17

5

19

----------1-2-
---------- ---

8

2000

10

1984

gives size of table

8

22

10

8

4

-1

-2020

table

0

Page 10-8

9

0

Fig. 10.4 Standard SETL representation of an (integer) domain element x,
and of several maps.

In working through the last few pages, the attentive reader may have
realized that more details have been concealed than revealed. How do we
calculate hash indices H(q) for quantities q that are not integers? What
representation is used for maps that are not single-valued? How do we
iterate over sets, how do we test sets for equality? What representation is
employed for a set of pairs that is not being used as a map? The SETL
implementation, i.e. the SETL run-time support library, must face all these
questions and provide effective solutions for them. However, to explain the
goals of the data representation language to which this chapter is devoted,
we need not, and shall not, describe any of these finer details. All that
is important to us can be summarised as follows: To make the basic test (x
IN s), or to evaluate f(x) when f is a map, we must perform the following
actions :

THE DATA REPRESENTATION SUBLANGUAGE

i)
ii)
iii)
iv)

Calculate the hash code of x.
Find the starting location of the hash table for s (or f).
Index this table with the calculated hash code.
If xis not found at the position first examined, and

Page 10-9

there is a clash list starting at this position, examine the
elements of this list until either xis found or until the end
of the list is encountered.

It is clear that this sequence of operations is considerably more
expensive than a simple tuple access. Typically, 50 to 100 machine
instructions will be executed to complete a standard set membership test or
map retrieval. This is not an unreasonable price to pay for the convenience
of using sets and maps, but if possible we would like to be considerably
more efficient. Gaining additional efficiency is the point of the data
structure representation sublanguage of SETL to be presented later in this
chapter.

The preceding discussion emphasises two aspects of the execution of
important SETL operations such as membership tests and map retrievals which
can be regarded as ~costly'

a) Each instruction must check the type of its variables.

b) Hashing must be used to access content-addressable objects
(sets and maps). These operations are considerably more expensive
than simple memory references and tuple retrievals.

The data-representation sublanguage (DRSL) of SETL, which we will now
proceed to describe, allows us to reduce the costs associated with these
execution-time activities. This sublanguage gives us a mechanism for adding
declarations to a SETL program, declarations which aid the SETL compiler to
simplify and in some cases even eliminate expensive computations. The basic
ideas used to achieve this are as follows:

a) In order to reduce expense a), that is to say the cost of the
type-checking steps that must be performed before a primitive SETL operation
is executed, the declarations of DRSL can. be used to specify the types that
the variables will have at execution time. The types involved here can be
'integer', 'boolean', 'array of strings', 'map from integers to strings',
etc.) We shall call these declarations 'Type declarations' for obvious
reasons.

b) In order to reduce the expense associated with hashing operations, we try
to avoid repeated rehashing where possible. The DRSL gives us a means to
replace repeated rehashing by direct indexing in many cases. The basic idea
here is to 'remember' the location of an object after it has been placed in
a set or map. The run-time structure that retains this information is
called a base set, and the declarations that refer to base sets are called
basing declarations. The detailed syntax and semantics of these basing
declarations will be described in Section 10.4.

10.3 ~ Declarations

THE DATA REPRESENTATION SUBLANGUAGE Page 10-10

We can divide the declarations of the DSRL into two categories : ~
declarations and basing declarations. Both of these have the same format,
but they are motivated by somewhat different considerations,. and basing
declarations introduce some rather subtle concepts into the language,
discussion of which we will postpone until the next section. In contrast,
type declarations are quite straightforward: they describe the types which
variables in a SETL program will have at run-time.

However, before specializing our discussion in this way, let us first
examine the general syntax and usage of DSRL declarations, also called
representation declarations, or REPRs for short. REPRs are optional
declarations that can be added to a SETL program in order to improve its
efficiency. REPRs added to a SETL program must be grouped into sequences of
declarations bracketed by the.keywords REPR and END. Such declarat~ons must -
appear before any executable statements, and after any declarations for
constants and global variables appearing in the same program, m9dule or
procedure. A main program can include a set of REPR declarations for the
global. variables declared in a VAR statement, and each procedure can have
REPR declarations for its local variables. We emphasize again that· REPR
declarations are optional, and that not all variables in a program or
procedure need to be declared. Sec.10.4 contains guidelines for the
inclusion of REPRs in a program.

A REPR clause has the form:

<name list> : <mode>

where <name list> designates a list of one or more variable names
(identifiers) separated by commas, and <mode> is a type name or a basing
descriptor that applies to each of the variables in the list. An example is_

REPR

END;

count, size, left : INTEGER;
here, there, elsewhere : STRING

Here the identifiers INTEGER and STRING are type names; the first REPR
clause above declares that the variables -count-, -size- and -left- will
have integer values wherever they appear in the portion of the program which
these declarations govern. Similarly, the variables -here-, -there- and
-elsewhere- must be string values wherever they are used. Note that such
declarations refer to ALL occurrences of the variables that they name in the
'context' or 'scope' that they govern. We have seen that, in pure SETL,
variables can receive values of different types at various points in the
program. In the presence of REPRs this. is no long~r the case: values
assigned to a variable for which a REPR is given must ALWAYS have the type
that has been declared for the variable. The discipline this imposes on the
writer is salutary: one can easily find different names for objects of
different types, and it easier to understand the purpose of a program if the
same name is used •in the same way wherever it appears.

The systematic list which follows presents most of the modes that can
be used in type declarations. Two examples of these 'modes', namely INTEGER
and STRING, have appeared already. In general, modes can be either simple
or compound •. Simple modes describe primitive types, while compound modes

THE DATA REPRESENTATION SUBLANGUAGE Page 10-11

describe sets, tuples and maps. The simple modes allowed in the DRSL are
the following:

INTEGER

INTEGER el •• e2

REAL

STRING

ATOM

mode of integers

mode of integers constrained to be in the
range el to e2. Here el and e2 must be
elementary integer-valued expressions
involving constants only. Examples and
additional details are given below.

mode of real numbers

mode of SETL string quantities

mode of SETL atoms (See Section 5.3).

The compound modes allowed by the data representation language are as
follows~

GENERAL This is the default SETL mode.
Quantities declared to have this mode can be
arbitrary SETL values.

* The mode symbol'*' is simply an allowed
abbreviation for 'GENERAL'.

SET(mode') mode of sets all of whose elements are
constrained to have mode mode'. Examples
showing the use of this construct are given
below.

SET allowed abbreviation for SET(GENERAL).

SMAP(mode')mode'' mode of single-valued _map with domain
elements of mode' and range elements of
mode''•

SMAP(mode')

SMAP

This is simply an allowed abbreviation for
SMAP(mode') GENERAL

This is simply an allowed abbreviation for
SMAP(GENERAL)GENERAL

SMAP(model, •• ,modek)mode''

SMAP(model, •• ,modek)

MMAP{mode'}mode''

Mode of single-valued k-parameter map (see
Section 2.7.5) with domain elements having mode
TUPLE(model, •• ,modek)(see below) and range
elements of mode''•

Abbreviation for SMAP(model, ••• ,modek)GENERAL

mode of (possibly) multi-valued map with
domain elements of mode' and range elements

THE DATA REPRESENTATION SUBLANGUAGE Page 10-12

MMAP{mode'}

MMAP

MMAP{model, ••
modek}mode''

of mode''•

Abbreviation for MMAP{mode'}GENERAL

Abbreviation for MMAP{GENERAL}GENERAL

mode of possibly multi-valued k-parameter
map (See Section 2.7.5) with domain elements
having mode TUPLE(model, ••• ,modek) (see below)
and range elements of mode''•

MMAP{model, ••• ,modek}
Abbreviation for MMAP{model, ••• ,modek}GENERAL

TUPLE(model, ••• ,modek)

TUPLE(mode')

TUPLE

TUPLE(mode')(e)

mode of tuple of known length k, whose j-th
component is known to have mode modej.

mode of tuple of unknown length, all of whose
components are constrained to have mode mode'~

This is simply an allowed abbreviation for
TUPLE(GENERAL).

Mode of tuple of unknown length, but of
estimated length e, all of whose components
are constrained to have mode mode'. Here e
must be an elementary integer-valued expression
involving constants only.
Examples and additional details are given below.

PROC(model, ••• ,modek)mode

PROC(model, •• ,modek)

PROC

OP(model,mode2)

OP(model,mode2)

mode of k-parameter programmed function
(i.e. PROCEDURE) whose parameters have
respective modes model, ••• ,modek, and which
returns a mode'' value.

This is an allowed abbreviation for
PROC(model, ••• ,modek)GENERAL. It can also be
used to describe non value-returning
procedures whose parameters have respective
modes model, ••• ,modek. (Typical uses for this
and the immediately preceding PROC mode
descriptor will be explained below).

mode of a procedure unconstrained as to mode
of arguments and of result value, if any.

mode of infix operator whose two parameters
have respective modes model and mode2, and
which returns a mode'' value.

Abbreviation for OP(model,mode2)GENERAL

-THE DATA REPRESENTATION SUBLANGUAGE

OP(mode')mode''

OP(mode')

mode of prefix operator, with one mode'
argument, which returns a mode'' value.

Abbreviation for OP(mode)mod~''•

Page 10-13

There is one more type declaration, having a rather special character.
Unlike the other type declarations, it has an efficiency implication, namely
it states that a variable all of whose values are integers will only take on
values that are within he range of integers that can be handled directly by
the hardware of the machine on which you are running. Integers of tis kind
can be manipulated particularly rapidly. This special type declaration is

UNTYPED INTEGER An 'untyped' integer is an integer
represented in the standard machine­
level integer format of the machine
on which your SETL implementation runs.
Operations involving untyped integers are
particularly efficient. However, urttyped
integers are constrained to lie in the
range of values for which the elementary
arithmetic operations of the computer that
you are using represent integer arithmetic
correctly. See Appendix A for details
concerning the integer arithmetic operations
of the various machines on which SETL is
implemented.

10.3.1 An example tl the~ tl ~ declarations

Next we give a simple example of the use of REPRs, which we will apply to
one of the prime-finding methods described in Sec.3.3.8.1.

PROGRAM primes;

REPR

END;

prime, next, limit, c
primes, candidates
multiples

read(limit);

INTEGER;
: TUPLE(INTEGER);

SET(INTEGER);

candidates :• [3,5 •• limit];
primes :• [2);
prime:• 2;

(WHILE prime** 2 <• limit)

prime FROMB candidates;
primes WITH:• prime;
multiples :•{prime** 2};

~-------- - --- -- - ----

THE DATA REPRESENTATION SUBLANGUAGE

(FORALL c IN candidates)

NEXT :• prime·* c;
IF next> limit THEN quit;

ELSE multiples WITH:• next;
END IF;

END FORALL;

_Page 10-14

candidates :• [c IN candidates I c NOTIN multiples] ;

END WHILE;

primes+:• candidates;

print(primes);

END program;

In this example, we have supplied type declarations for all variables in the
piogram, including the loop variable c. We have not supplied size
information for the tuples primes and candidates, because we do not know a
priori the number of components that they will have. Note that the variable
-limit-, which defines the range in which we want to find primes, gets it~
value from a -read- statement, and therefore its value is not known to the
compiler, and cannot be used to declare any variable in the program. That
is to say, if we had written the declarations

candidates
prime

~UPLE(INTEGER)(limit);
INTEGER 2 ■■ limit;

the compiler would reject them on the grounds
constant ■

that -limit- is not a

Our next example concerns graphs. It is the well-known algorithm for
determining the shortest distance from one vertex of a graph to all the
other vertices.

As before (See Section 5.3) we regard a graph as consisting of a set of
nodes (or vertices) and a set of edges. Each edge is represented by an
ordered pair [from,to] of nodes. It is convenient to regard the set of
edges as a map: given a node n, its image under this map is the set of
nodes that are linked ton by one edge of the graph ■ In the program that
follows, this map is called -successors-. It is a multi-valued map. because
several nodes may be reachable from the same n by an edge. Each edge has -
the same (postive) assigned length. The length of each edge is represented
by a map from edges to integers. The minimum distance from the start vertex
to all the other edges, which is the desired output of the program, is a
map from nodes to integers. The nodes themselves do not have a particular
type: we can use integers to describe them, or strings, or atoms, depending
on the application. In the REPRs that follow, we introduce the mode -node­
and state that -node- can be any type (i.e. general). This allows us to­
represent program variables in terms of nodes, without having to be any more
specific about what a node actually is ■

THE DATA REPRESENTATION SUBLANGUAGE Page 10-15

The algorithm works as follows: we construct a set -reached- , whose
elements are nodes whose shortest distance to -start- has been determined.
Initially -reached- only contains -start- • Each step in the algorithm adds
one node to the set -reached-. The node to be added next is chosen as the
one whose estimated shortest distance to -start- is the smallest. We
estimate the shortest distance from -start- to any node n as follows:

a) If there is an edge from start ton, the estimated shortest distance is
the length of that edge.

b) When a node -new- is reached, there may be a path from-start-to-n that
goes through the -new-. In that case, calculate the distance from
start-to-n- along that path: it is the minimum distance to -new- plus the
length of the edege from -new- to -n-. If this distance is smaller than the
previous estimate of the distance to -n-, use this value as the new
estimate.

PROGRAM shortest_paths;

REPR

END;

MODE node : general;

successors:
length

MMAP(node)set(node); $ see comment above
SMAP(node, node)INTEGER; $ maps each graph edges

$ into their lengths

estimate: min_distance: map(node)INTEGER;
$ Maps each node into its estimated distance from -start-

min_estimate: INTEGER;

reached : SET(node);

$ shortest estimated distance from
$-start-to any node not yet processed
$ set of all nodes reached so far
$ along a path from -start-

start, next, outer, n : node;

read(length, successors, start); $ initially, only -start- has been
$ reached

all_nodes :• DOMAIN successors+ RANGE successors;

reached :• {start};

$ Estimate the distance to the nodes that are adjacent to -start-.

(FOR next IN successors{start})
estimate(next) :a length(start,next};

END FOR;

min_distance :• {};

(WHILE reached/• all_nodes)

$ Among the nodes that have not been reached yet, find the one

THE DATA REPRESENTATION SUBLANGUAGE Page 10-16

$ whose estimated distance to -start- is the smallest.

min_estimate := MIN/[estimate(n) : n IN all nodes I n NOTIN reached];
ASSERT EXISTS next IN all_nodes I estimate(~ext) • min_estimate;

$ The minimum estimate is the shortest distance to next, which is
$ now considered reached.
reached WITH:= next;
min_distance(next) := min_estimate;

$ Update the estimate for all the nodes adjacent to -next-. A
$ path through -next- may yield a shorter distance than that
$ estimated previously.

(FOR outer in succersors{next})

IF estimate(outer) = OM THEN

END;

estimate(outer) := min estimate+ length(next, outer);
ELSE

estimate(outer) MIN:= min estimate+ length(next, outer);
END IF;

END FOR;

END WHILE;

(FOR n IN all_nodes)
print('The shortest distance from start to ', n, ' is ',

min_distance(n));
END FOR;;

END PROGRAM;

10.4 Basing Declarations

In section 10.1 we remarked that the execution of SETL programs is
slowed by two kinds of inefficiencies

a) Inefficiencies associated with type-checking: every SETL operation is
preceded by a test to determine the type of its arguments.

b) Inefficiencies associated with the use of sets and maps: every
membership test, every set insertion, every map retrieval or modification
requires the calculation of a hash code, followed by a retrieval from a hash
table ■ In what follows we will refer to this sequence of actions as a
hashed search.

Inefficiencies of type a) can be corrected by suplementing a SETL
program with type declarations, as described in Sec.10.3. We therefore
turn our attention to the means available to corect inefficiencies of type

THE DATA REPRESENTATION SUBLANGUAGE Page 10-17

b) •

We begin with the following obvious remark: many programs that
sets and maps search repeatedly for objects that they need to access.
example, consider the following typical fragment:

(1) s :=- { •••• };
M :a {};
(FOR x In S)
M(x) :• g{x);

END;

$ Some set former expression.
$ An empty map.

$ Compute map M, whose domain is S;
$ g is some defined function.

use
As an

Note that this code performs two hash searches for every element x of the
set S: one when Sis built, and the second when Mis built (i.e. when an
element x of S becomes an element of the domain of M). This situation is
fairly typical, and it illustrates the kind of redundancy that we want to
minimize.

The following somewhat more subtle example shows another aspect bf the
problem of redundant hashed searching. Consider a set intersection
operation:

S3 :=- Sl * S2;

The way in which the SETL run-time system evaluates this is best
described by the following code fragment:

(2) S3 := {};
(FOR x IN S 1 I x IN S 2)

S3 WITH:= x;
END;

This means that an element which is in the intersection of Sl and S2
will be searched for twice: first when it is tested for membership in S2,
then again when it is inserted into S3. Moreover, a hashed search will also
have been performed when Sl was built. Thus, as a single value is inserted
into and retrieved from various composite objects, it becomes the object of
repeated, redundant searches.

It should be clear at this point that these repeated searches can be
eliminated if we somehow 'save' the location of objects so that they can be
accessed repeatedly without the need to search for them every time. It is
also characteristic of the examples presented above that some of the objects
which play a role in them appear in several hash tables and must be searched
for in all of them. This last remark suggests that such objects should be
kept in one location, and that every use of the object should make use of a
pointer to this location, so ·that no redundant searching will be required.

In other words, if we remember where we leave things,
time looking for them every time we need them !

we won't waste

To achieve this effect, the data representation sublanguage of SETL
uses a special kind of set, called a base set, or base for short, in which
such shared values can be stored.

THE DATA REPRESENTATION SUBLANGUAGE Page 10-18

10.4.1 Base Sets

Base sets are special data structures which contain values that are
likely to be referenced repeatedly and to be parts of several composite
objects (sets, maps, and tuples). Base sets are sets, but sets of a very
special nature, which cannot be used in the same way as other sets in SETL.
Since they are sets we will speak of the 'elements' of a base, but since
they are special we will not apply any of the standard set operations to
bases: bases are only introduced to minimize the number of hash searches
that must be carried out during program execution and improve the
representation of other composite (set, map, and tuple) values.

Bases are introduced into a SETL program by means of declarations. of the
form:

(1) BASE B;

or

(2) BASE B <mode>;

Examples of the more specific declaration form (lB) are

BASE all_strings:STRING;

BASE all nodes,all records:ATQM; - - \
The form (1) declares that Bis a base whose elements have unspecified type~
Form (2) specifies that Bis a base whose elements are of type <mode>. We
can also introduce several bases at once by writing

(3) BASE <name list> <mode>;

The <mode>s that can appear in (2) and (3) include those described in Sec.
10.3. Additional modes, to be discussed below, arise from the existence of
bases themselves. In particular if xis a variable whose value is expected
to appear as part of several composite objects, then we can declare x as
follows:

(4) x: ELMT B;

This declaration states that every value assumed by the variable x in the
course of program execution will be represented by a pointer to an element
of the base B.

Bases declared in SETL programs are used only to define the modes of
based objects ■ They are never explicitly manipulated by the program, and
cannot appear in ~xpressions or executable statements. We emphasise again
that they serve only to state the existence of significant relationships
among actual program objects. These relationships are defined by means of
based declarations, and thus, directly or indirectly, in terms of modes of
the form (ELMT B) ■

THE DATA REPRESENTATION SUBLANGUAGE Page 10-19

The effect of a declaration of the form (4) is the following: whenever the
variable xis assigned a new value, this value is automatically inserted as
a new element of the base B. The new value is placed in a special
structure, called an element block of the base B, which contains several
pieces of information that pertain to the current value of x. Subsequent
references to this value can then use pointers to the element block thereby
created.

The information contained in a element block is the following

a) The value of the element.

b) A system-assigned numerical index, which is uniquely associated with
this element. In effect, these indices 'number' the base elements. We will
see later that the existence of this numbering allows us to use particularly
efficient representations for certain other based objects.

c) Several supplementary storage locations, can also be allocated in
each base block. These can be used to hold information about other sets and
maps in which the value represented by the element block appears.

To explain the efficiency
repesentations, we will first
available for sets and maps. We
because the efficiency gains
describe.

10.4.2 Based Maps

gains attainable by the use of based
explain the basing declarations that are
discuss based maps before based sets,

obtained for maps are particularly easy to

If the domains of several of the maps appearing in a program are expected to
overlap (i.e. if these maps are likely to be defined on some of the same
values) then it may be appropriate to declare a common domain base for these
maps. Similarly, if a set is expected to overlap with the domain of a map,
it is often advantageous to specify a common base for the set and the map.
This is done for maps as follows. Let B be a base.introduced by one of the
declarations (1)-(3) listed above. Then the declarations:

f SMAP(ELMT B) <model>;
g SMAP(ELMT B) <mode2>;
h SMAP(ELMT B) <mode3>;

state that f,g and hare single-valued maps, whose domain elements are
elements of the base B, and whose range elements have other secified modes.

The element block structure described in the previous paragraph allows
the maps f, g and h to be represented efficiently, in several ways:

a) In the element block of B corresponding to a given value v, we can
allocate storage to hold the values of f(v), g(v) and h(v). If this is
done, the structure of each element block of B will be as follows:

THE DATA REPRESENTATION SUBLANGUAGE

domain elt x

f(x)

g(x)

h(x)

chain ptr. points to next
element block

Fig. 10.5 A simple 'element block' in the Based Representation
of Three Maps.

Page 10-20

Suppose that f is represented in this way, and that x has been declared to
have ELMT B representation, so that it will be represented by a pointer to
an element block. If, during program execution, we need to evaluate f(x)
for a value x which is already an element of B, then we can simply retrieve
the value of f(x) from the element block for x. This evaluation of f(x)
amounts to just one machine-level pointer reference operation, and is thus
considerably faster than a hashed search. Hence representation in the
manner shown above is the most efficient one to use for maps which are
manipulated exclusively by simple storage and retrieval operations.

Because in this representation map values are stored in
proximity to the domain value to which they correspond,
representation is called LOCAL representation. To ensure that
represented as a local map, it must be declared as follows:

(5) f: LOCAL SMAP(ELMT B) <mode>;

immediate
this map

a map is

The following figure show additional details of data structure intr6duced by
the BASE declaration (1) and by additioal declarations of the form (5).

THE DATA REPRESENTATION SUBLANGUAGE Page 10-21

4

f(4) 17 8

g(4) 1917 f(8) 22

g(8) 2000

5
----- ----- -----

f(S) 19 10 -1 9
----- -----

g(5) OM f (10) 8 f(-1) OM f(9) 21
----- ----- -----

g (10) 1984 g (-1) -2020 g(9) OM
----- ----- -----

0
----- ----- -----

Fig. 10.6 'Base' table which stores the representation of
two maps f and g. The variable xis represented here by
a pointer tote ~ppropriate block in this 'base'.

LOCAL map representations handle storage and retrieval operations
efficiently, but are inefficient for some other purposes. For example, the
fact that the range values of a local map are spread over the element blocks
of the base maps makes it time-consuming to incorporate a local map as a
part of some other composite object (say a tuple of maps). Building the
range of F is also time-consuming if Fis _represented locally. Moreover,
iterations of the form

(FOR y • F(x)) •••

will also be inefficient if Fis defined for only a few of the elements of
its declared base B • This is because such an iteration must examine each
element of B to see whether Fis defined for it. Thus LOCAL basing is
generally not the ideal way of dealing with maps which need to be made parts
of larger composites, iterated over, etc. To handle such situations
effectively, other based representations are available.

b) We therefore pass to discussion of a second form of based representation,
whose use is advantageous in some of the situations discussed above, in
which LOCAL based representation leads to inefficiencies. This second form
of based representation is called the REMOTE based representation. It
exploits the fact that each element block in a base contains a numerical
index that identifies the value that the block represents. The availability
of this numerical index makes it possible to store the range values of a
REMOTEly based map fin a tuple t. Suppose, to be specific, that ix is the
index stored in the block that holds the value x. Then the value of f(x) is

THE DATA REPRESENTATION SUBLANGUAGE

held in the ix-th element of the tuple t.
retrieved as follows:

Page 10-22

In this case, f(x) is is

i) Using the pointer in x, retrieve ix from the element ~lock for x.

ii) Add ix to the starting address of the tuple t that holds the range
off, retrieve the ix-th component of this tuple, and return its value.

This sequence of operations is considerably faster than a hashed search,
even though it is slower than access to a LOCAL map. (We call this type of
map representation REMOTE because it stores range elements at some distance
from the corresponding domain elements). To specify that a based map is to
have remote representation, we simply declare it as follows :

(6) g: REMOTE smap(ELMT B)· <mode>;

c) SETL provides a third based representation of maps, called to SPARSE
representation, which is motivated by other considerations of storage and
iteration efficiency. the two representations described so far, LOCAL artd
REMOTE, are both characterized by the fact that to hold_ the values -of f(x),
~ storage location must be allocated for each element of the base,
regardless of whether f(x) is defined or is OM. In the local case, this
location is allocated directly in the element block of x; in the REMOTE
case, this location is the array component location corresponding to t~e
identifying index of x. In both cases, if f is sparsely defined over its
base, then a substantial number of storage locations will be wasted. (By ,-f
is sparsely defined' we mean that f(x) /= OM only for a small percentage of
all the values x in the base off). For such sparse maps, the third,
so-called SPARSE, based representation may qe advantaeous. To give a map f
this representation, we declare it as

(7) f: SPARSE MAP(ELMT B) <mode>

The SPARSE map representation uses a hash table, very much like that
used to standard unbased maps. However, the SPARSE map representation does
not hold the value of each of its domain elements, but rather represents
each domain element x of F by a pointer to the element block in B that
represents x. The distinction should be clarified by the following figure,
which compares the organization of unbased •nd sparse maps :

THE DATA REPRESENTATION SUBLANGUAGE

BASE
table

BASED
map f

A ---------------ptr to A

empty

empty

empty

empty

empty

empty

empty

empty

empty

B

D

-------~j --------

standard
map g

A .,_ ___ ,J

gA

D

gD

C

fA

empty

ptr to B

fB

empty

empty

empty

ptr to D

fD

empty

ptr to C

fC

Fig. 10.7 Internal representation of unbased and of Sparse maps.

Page 10-23

Evaluation of f(x) for a sparse map is distinctly less efficient than
for a remote map, but somewhat faster than for an unbased map. As already
noted , an important reason for using sparse maps is storage efficiency.
Map iteration is an operation that also benefits from the use of the sparse
representations. For a local or remote map, the iteration

THE DATA REPRESENTATION SUBLANGUAGE Page 10-24

(FOR y"" F(x))

requires a full iteration over the base F, which then bypasses .the elements
of the base for which Fis undefined. In other words, the iteration is
performed as if it was written:

(FOR X in B I (y := F(x)) /m OM)

If F(x) • OM for most elements of Bit is plain that this iteration will
examine a large number of useless elements. If Fis represented as a sparse
map, its domain is directly available, and no useless elements need to be
examined.

The qualifiers LOCAL, REMOTE, and SPARSE can be omitted from a basing
declaration. The 'default' if all are omitted is SPARSE, that is

f: SMAP(ELMT B) <mode>

and

f: SPARSE SMAP(ELMT B) <mode>
are equivalent.
10.4.3 Based Representations for Sets

Three types of based representations are available for sets; these
representations parallel the ones for maps which we have just described. -­
Based sets can therefore be described as having LOCAL, REMOTE, or SPARSE
representations.

a) Suppose that the following basing declaration is given:

Sl, S2, S3 : LOCAL set(ELMT B);

Then Sl, S2 and S3 are stored internally as follows: in the
of each element x of B, we reserve one bit to indicate the
in Sl, another bit to indicate membership in S2, and so on.
allocated in fixed locations within every element block of B.

element block
membership of x
These bits are

When this representation is used, then the test (x INS) and the set.­
operations (x WITHS) and (S LESS x) are handled in a particularly efficient
way when xis an element of the base B : in this case, xis represented by
a pointer to its element block, and all that is needed is examination or
mo~ification of a single bit at a fixed position in that block, which can be
accomplished in very few machine operations. The set representation just
described is also storage-efficient, because it uses only 1 bit per element
of a based set, in contrast to the several words per element which are
required in an (unbased) hash table.

For sets that are constructed and accessed by the above operation£
exclusively, the LOCAL representation just described is to be prefered over
others. However, the drawbacks of this representation are similar to thosE
mentioned above for local maps. It is well to discuss the point in morE
detail. Certain crucial facts affecting the efficiency of based
representations_ derive from particular semantic rules of SETL. As already

THE DATA REPRESENTATION SUBLANGUAGE Page 10-25

emphasised, the use of based representations is not allowed to change the
meaning of a SETL program: basing declarations can only affect its
efficiency. The elaborate machinery of pointers, indices and bit positions
that we have been describing can in no way affects the semantics of the

- original (undeclared) program to which such declarations may be added. This
means in particular that the use of basings must cause no non-standard side
effects. Recall that the semantic definition of SETL requires that the
fragment :

Sl :a {1};
S2 :• Sl;
Sl WITH:• 2;

gives S2 the value {1} , and that the insertion of 2 into Sl which .follows
subsequently does not affect the value of S2. The original value is S2 is
preserved because, logically speaking, it is given a 'personal' copy of the
value {l}, rather than 'sharing' this value with Sl. (In fact this copy is
created right before Sl is modified, but this is an implementation detail).
Now if Sl is a LOCAL based set and S2 is not, then producing a copy of Sl is
a potentially expensive process which requires full iteration over the base
B to extract the elements of B which are in Sl. Furthermore, if Sl 'is
itseif inserted into some composite object, as in

SC WITH:= Sl;

it must copied first, in order to prevent accidental sharing of values (and
potential modification) between Sl and the (now anonymous) element of SC
which holds the value of Sl. Because of this requirement, LOCAL sets can
become sources of run-time inefficiencies whenever they must themselves be
shared. Hence, LOCAL sets should only be used for sets that only appear in
elementary insertion, deletion and membership tests, and that do not become
themselves elements or components of larger composite objects.

b) The declaration:
Rl, R2, R3: REMOTE set(ELMT ~);

gives Rl, R2, and R2 a representation which is particularly efficient for
global set operations, i.e. union, intersection, set difference and set
assignment • This representation, which is analogous to the REMOTE
representation for maps, (and which is called the REMOTE set representation)
makes use of the indentifying index present in each element block. More

- specifically, each of the sets Rl, R2, R3 appearing in the preceding
declaration is represented by what is conceptually an array of zeroes and
ones, but which at the implementation level is actually a sequence of
machine bits, occupying one or more words of memory. These bits are in
one-to-one correspondence with the elements of the base B : the element
block whose index is i corresponds to the i-th bit in this bit-vector. If
the value in element block i is an element o~ the set Rl, then the
corresponding bit in the bit-vector representation of Rl is on, but
otherwise off. The 1th bit position in the representation of R2 and R3 is
used in the same way to indicate membership of an element of B in each of
these based sets. If Rl, R2 etc. are given REMOTE representation, then the
elementary set operations (x IN Rl, Rl WITH x, Rl LESS x) can ·be performed
in the following manner, assuming as before xis an element of the base B :

THE DATA REPRESENTATION SUBLANGUAGE Page 10-26

a) Retrieve the index i of x from the element block of x in B.
b) Use this index to access the i-th bit in the bit-vector which

represents Rl.
c) Return the value of this bit (or modify this bit if a WITH or LESS

operation is being performed).

This process is somewhat more time-consuming than the same operation on -
local sets, but it is considerably faster than the same operation on an
unbased set.

The efficiency gains obtained for certain global set operations (union,
intersection, etc.) are particularly substantial when the REMOTE set
representation is used. Suppose, for example, that Rl, R2, R3 have the
representation shown above and that we want to evaluate the union

R3 : = R 1 + R2;

Then the REMOTE representation of R3 can be calculated as follows: the i-th
bit in the representation of R3 (corresponding to some element~ of the
base) should be on if xis either in Rl or R2, i.e. if the i-th bit of Rl
or the i-th bit of R2 is on. The machine-level boolean operatioi OR
performs exactly this bit-by-bit operation on a full machine word of bits in
a single step. Thus, on a 32-bit machine, the OR-ing of two bit-vectors of
size 1000 will take less than 50 machine operations. By contrast, the union
of two unbased sets of size 1000 will require 1000 membership tests and up
to 1000 hash table insertions. Similarly the intersection operation on
remote sets reduces to the machine-level AND operation, with the same gains -
in speed. Thus, for large sets on which union and intersection operations
are frequently performed, REMOTE representations are extremely efficient;
and the efficiency gains attained by this representation are larger, the
larger the sets that enter into these operations.

c) Finally, for representing sets that are relatively sparse (i.e. have a
cardinality which is much smaller than that of their base set) and over
which iterations are frequently performed, a .SPARSE set representation is
provided. The declaration

SPl, SP2, SP3 : SPARSE SET(ELMT B);

specifies that SP1,SP2 and SP3 are to be represented
tables, in which, rather than storing the values of the
pointers to these values, i.e. pointers to the element
that holds the actual element values.

by means of hash
set elements we keep
blocks in the base B

As in the map case, the qualifiers LOCAL, REMOTE, and SPARSE can be
omitted, and SPARSE is the default: If no qualifier appears in a basing
declaration for a set, it is equivalent to specifying a SPARSE
representation for it.

10.4.4 Basing Declarations for Multivalued Maps

e saw in Sec.
single valued map
domain elements of

10.4.2 that declaring a based representation for a
relates the domain of the map to som·e base in which the

the map are automatically inserted. A similar

THE DATA REPRESENTATION SUBLANGUAGE Page 10-27

representation is available for multivalued maps, i.e. multivalued maps
(which is to say MMAPs) can be given LOCAL, REMOTE or SPARSE
representations. Moreover, it is possible to declare a based representation
for the range of a multi-valued map F. The value of F{x} is by definition a
set, and therefore the based representation for a multivalued map will
generally specify an additional basing which determines the representation
of the range sets of F. For example, we can declare

successors : LOCAL MMAP(ELMT B) REMOTE SET(ELMT B);

~ this declaration specifies that for each x IN B the image set successors{x}
is stored in the element block of x, and that this image set is always to be
rpresented as a bit-vector. Similarly, the declaration

successors : LOCAL MMAP(ELMT B) SPARSE SET(ELMT B);

specifies that the image set of successors{x} is to be stored as a sparse
set, i.e. as a hash table containing pointers to elements of B. Note that
the attribute LOCAL cannot be used for image sets of multivalued maps. This
follows from our remarks in Sec.10.4.3 on the impossibility of making local
objects into subparts of composite structures.

10.5 Base Sets Consisting of Atoms Only

The based data structure shown in Figs.
fundamental operations:

5 serves to support two

(a) The ability to locate an item x in a base by searching a short list of
items, from a staring list position which can be calculated easily if the
value of xis known;

(b) The ability to iterate over all the elements in the base.

Operation (a) is only required when an object xis converted to £LMT B
representation and we need to determine if x ·has already been inserted into
the base B. Hence, if the only elements ever inserted into Bare atoms, and
if all of these ire created by easily l6cated calls to the NEWAT operator,
then the seaching operation (a) is not required, since each call to NEWAT
produces a unique object. Hence the blocks constituting such a base can be
stored as a simple list. The elemets of this list only need to be linked
together if iteration over some set having SET(ELMT B), SMAP(ELMT B), or
MMAP(ELMT B) is necessary. If this is not the case,_ then no links are
necessary; the element blocks of Bare then independent.

To allow declaration
representation sublanguage
as in

(1) B: PLEX BASE;

of these important special cases, the data
~llows the keyword PLEX to be prefixed to bas~,

If Bis a PLEX BASE, then only atoms en be given ELMT B repre~entation.

10.6 Constant Bases

-----------~-------------------------------

THE DATA REPRESENTATION SUBLANGUAGE Page 10-28

A c~nstant set, introduced by a constant declaration (see Section 6.2),
as in

CONST colors•{red,blue,green};

can be used as a base if it is declared as such by writing

BASE colors;

Elements of such a base B, i.e. values x having the representation ELMT B,
can be represented in fixed small number n of bits. Specifically, n must be
at least as large as the logarithm -0f the number #B of elements in B.
Internally, a constant base B is represented by a contiguous series of
blocks, and an element x having the representation ELMT B is r·epres.ented by
a short integer index that locates the block corresponding to x. Remote
subsets s of B can then be represented by bit-vectors, often no more than
one machine memory word in length. In this case, the membership test x IN s
will be particularly fast if x ands have the representations ELHT B and
SET(ELMT B) respectively, since then the representation of xis simply the
index of the bit in the vector representing s which determines the· 'boolean
result of the test x IN s. A similar remark applies to maps f having the
representation SMAP(ELMT B) or MMAP(ELMT B). Moreover, since the internal
representation of any value of mode ELMT B can be quite short, it is
possible to pack several ELMT B values into a single machine word. To
achieve this , one uses the representation qualifier PACKED, in the manner
explained below.

10.7 The Representation Qualifier PACKED

The keyword PACKED can be prefixed to SMAP or TUPLE modes. That is, we
can write

(4) f:PACKED LOCAL SMAP(ELMT B)mode';
g:PACKED REMOTE SMAP(ELMT B)mode';
h:PACKED TUPLE(mode');

etc. However, for these constructs to be legal, the mode indicator -m6de'­
shown in (4) must designate some packable mode, i.e., some mode of values
which can be represented in less than a full machine memory word. (Note
that the machine words of typical present-day computers generally contain
between 32 and 64 bits of information. Thus, for example, if a quantity· can
be represented in just four bits, i.e., if it can take on at most sixteen
different values, then between eight and sixteen quantities of this kind can
generally be represented by parts of a single machine word).

Modes of the two following kinds are packable in this sense:

(i) The mode ELMT·B, where Bis a constant base (see Section 10.6).

(ii) The mode INTEGER nl •• n2 (see Section X), provided that the interval
[nl •• n2] over which integers of this mode range is sufficiently small.

THE DATA REPRESENTATION SUBLANGUAGE Page 10-29

If the mode' appearing in a declaration (4) is packable, then the SETL
compiler will know how many bits are required to represent values having
this mode. It will then be able to store several packable local map values
like f(x) (cf. (4)) in a single machine word of the base block of B
representing an ELMT B value x. Moreover, in the vector (cf. Fig.) used
to store range values of a PACKED REMOTE map (like the g of (4)), it will be
possible to store several map values per machine word. Similarly, several
tuple components of a PACKED TUPLE (like the h of (4)) can be stored per
machine word.

This use of packed storage saves memory space, thereby reducing the
space needed to run your SETL program. On the other hand, the number of
machine cycles needed to run the program will rise slightly, owing to the
necessity to convert quantities between their packed and unpacke~ forms.
However, since the cost of such conversion is small (provided that effective
representations are choseµ for all the variables appearing in a program;
see Section 10.8), the storage economy obtainable by packing data where
possible can far outweigh the modest execution-time costs which packing
incurs.·
10.8 Guidelines for the Effective Use of the Data Representation SubYanguage

By adding appropriate data representation declarations to your program,
it will often be possible to increase its efficiency substantially •.
Moreover, a SETL program for which a well thought-out set of representations
has been specified will often constitute a detailed blueprint from which an
efficient program in some lower-level language such as PASCAL, PL/I, or Ada
can be generated, manually but in a mechanical spirit• In this section we
will explain the principles governing effective choice of data
representation declarations, note some of the restrictions governing the use
of the representation sublanguage, and also point out some of the efficiency
pitfalls of which you should beware.

As already noted, the main aim of the data representation sublanguage
is to speed up functional evaluations f(x) and f{x}, also membership tests x
IN s, by ensuring that for as many such evaluations as possible x has ELMT B
representation and f has SMAP(ELMT B) representation (or MMAP(ELMT B))
representation (ors has SET(B) representation), where x and f (or x and f)
are based on the same base B. On the other hand, to attain a net gain using
this approach, we must be sure that the cost of converting elements x, maps
f, and sets s to their based representations does not outweigh the advantage
gained by use of such representations. We must also be sure that our choice
of representations does not cause excessive object copying to take place.
(The circumstances under which object representations are copied during
program execution will be described in more detail below) •.

Objects are converted between different internal representations in the
following circumstances:

(i) When a SETL value is read from an external file by a READ statement and
assigned as the value of an identifier x for which some based representation
has been declared, the new value of x will be converted, from. the standard
representation in which it is first read, to the representation declared for
x. A reverse convers¼):n takes place whenever a. PRINT statement is used to
move a value x having some specially declared represe11tation to an external

THE DATA REPRESENTATION SUBLANGUAGE Page 10-30 -----

file. There is little you can do about conversions of this kind, whose cost
is in any case bounded by the amount of input and output which your program
performs.

(ii) Whenever a value x having one representation is passed by an assignment
y:•x to another variable y for which a representation has been declar•d, x
is converted to the form declared for Y• A similar conversion takes place
whenever x is made part of a composite object y (i.e. a set, tuple, or
map), by an assignment y:=y WITH x, y(z):=x, y(x):=z, etc. In these cases,
xis converted to the form expected for the part of y which it becomes. For
example, in the case of y:=y WITH x, if y has been declared to have the
representation SET(mode'), then x will be converted to the representation
mode'. In the case of y(z):=x (resp. y(x):=z), if y has been declared to
have the representation MMAP(mode)mode' or SMAP(mode)mode~ (resp.
MMAP(mode')mode or SMAP(mode')mode), then x will be converted to the mode'
form. (A fuller list of conversion rules of this kind is given at the end
of this Section).

(iii) Values extracted from composite objects y will initially have
representations deduced from the representation declared for Y• For
example, ifs is declared to have the mode SET(ELMT B), then the iterator
FORALL x IN s ••• will produce elements of s, each such element initially
having ELMT B format, and assign them successively to x, converting them to
the form declared for x if necessary. Similarly, if f is declared to hav.e
SMAP(ELMT Bl)ELMT B2 representation, then evaluation of f(x) will require
that x be converted to ELMT B format, and f(x) will yield a value of mode
ELMT B2. If x had some other format immediately prior to the valuation of _
f(x), or if we use an assignment z:=f(x) involving a variable z that has
been declared to have some representation other than ELMT B, then
appropriate conversions will be forced.

(iv) The conversions performed when we execute assignments (i) · are also
pe~formed in connection with expressions, such as existential and universal
quantifiers, having assignment-like side effects, and also ih connection
with iterators. For example, if s is declared to have SET(ELMT B)
representation, but xis declared to have some representation other than
ELMT B, then evaluation of an existential quantifier like

••• EXISTS x IN s I C(x) •••
fi (

will repeatedly extract elements from s (in ELMT B format) and convert them
to the representation declared for x.

(v) Whenever procedures and functions ara invoked, their actual arguments
are converted to the representations declared for the corresponding formal
parameters. Moreover, if a function returns a value having one
representation but this value is assigned to a variable for which some other
representation has been declared, a conversion will take place.

To minimise these conversions, you need to choose representations for
the various data items appearing in your program which make conversion
unnecessary. To accomplish this you will need to survey the undeclared form
of your program carefully, noting the manner in which each variable is used.
The appearance of an assignment x:=y will suggest that x · and y should be
given the same. representation; tests x IN swill suggest thats should have

THE DATA REPRESENTATION SUBLANGUAGE Page 10-31

the representation SET(mode), where x has the representation -mode-; map
evaluation y:=f(x) will suggest that f should have the representations
SMAP(mode)mode' where x has -mode- and y has -mode'- representation; etc.
Chains of deductions of this sort, together with a bit of reflection about
the abstract nature of the various objects which your program is
manipulating, will generally lead without undue difficulty to a 'harmonious'
set of representations avoiding unnecessary conversions. Note that both
conversions •ithin single PROCEDUREs, and conversions of arguments forced
when one PROCEDURE invokes another, are to be avoided. If there remain some
conversions which cannot be avoided, care should be taken that these
conversions take place at infrequently executed points in your code.

10.9 Exercises

Ex. 1 Develop an effective set of representation declarations for the
buckets-and-well program shown in Section 4.3.1.

Ex. 2 Develop an effective set of representation declarations for the
Eulerian path procedure shown in Section 11.1.

EX. 3 Develop an effective set of representation declarations for th~
topological sorting procedure shown in Section 7.2.

10.10 Additional Remarks on the Effect of REPR Declarations

If a sets is declared to have local representation, then each block of
the base B shown in Fig. 10.6 is enlarged by an extra machine word, and a
specific bit in all these words is reserved to indicate whether or not the
element x represented by the block belongs to s. If (s IN s) is TRUE, then
in the block representing x this reserved 's-bit' will have the value l; if
FALSE, then this bit will have the value O. It is then; clear that the
test x IN scan be made very rapidly if x ands have the repesentations (4)
and (5) respectively. Moreover, the operations s WITH := x ands LESS :• x
will be quite fast, since both of these set-theoretic operations can be
executed by using a machine level operation to change just one bit in the
block located by x.

Note that sets s declared to have the representation (5) are
represented internally in 'distributed' rather than 'concentrated' fashion.
That is, sis represented by a scattered set of 'flag bits', one bit per
block of the base B, rather than by a hash table of the more concentrated
form shown in Fig. 3. The figurs following just below shows a base B and
the representation of two sets sl, s2 declared to have LOCAL SET
representation:

(7) sl, s2: LOCAL SET(ELMT B)

The figure assumes that sl={J,17,201} and that s2•{201,48,722}, and
that the rightmost bit in the second word of each entry in the base table is
being used to indicate membership in sl, while the bit next to it is used to
indicate membership in s2.

THE DATA REPRESENTATION SUBLANGUAGE

17

01

(empty)

01

48

10

(empty)

(empty)

(empty)

(empty)

722

10

(empty)

Fig. 10.8 Internal representation of two sets sl, s2, both
declared to have LOCAL SET(ELMT B) representation.

Note that~ although use of LOCAL SET(ELMT B)
representation for a sets will speed up the test (x IN s) if
x has ELMT B representation, it may slow down iterations of the
form

(6) F0R-x IN s •••

Page 10-32

substantially. This is because the representation of s shown in Fig. 3
makes it possible to iterate rapidly over the elements of sand no other;
in contrast, ifs has the representation shown in Fig. 3, we must handle
iteration over s by iterating over all the blocks of B, but then skipping
past those which do not represent elements of s. If only a small percentage
of the blocks of B represent elements belonging to s (whih can easily
happen, for example, we may declare s,s2:SET(ELMT B), and s2 may have many
more elemets than s) then the iteration (6) can be slowed considerably.

In some cases, it is better to represent a sets by flag bit~ that are
grouped together than by distributed bits. To do this, a declaration of the
form

(8) s: REMOTE SEt(ELMT B)

is used. In the presence of the declaration (8), each entry E of the table
representing the base B will contain an integer index i~ issued by the SETL
run-time system ~hen the element x represented by Eis first inserted into

THE DATA REPRESENTATION SUBLANGUAGE Page 10-33

B. The set sis then represented by a sequence of bits, grouped together
into one or more machine words. If the element x of B has been issued index
i by the SETL run-time system, then the i-th among these bits .will be 1 if
(x .IN s) is TRUE, 0 of (x IN s) is FALSE. Fig. 7 shows this form of set
representation.

17

1

48

(empty)

(empty)

(empty)

1

0

(header)

••• 11100

Fig. 10.9 Internal representation of the sets sl • {11,3,201}
and s2 = {201,48,72}, with declared representations
sl: LOCAL SET(ELMT B) and s2: REMOTE SET(ELMT B).

Note that the left half of the third word of each block of Bis asumed
to contain the index which the SETL run-time system assigns to the block.

Even though the test x IN sis slowed down slightly if we gives REMOTE
SET rather than LOCAL SET representation, the REMOTE SET representation
illustrated in Fig. 7 will sometimes have substantial advantage over the
corresponding LOCAL set representation. First of all, if sl and s2 both
have REMOTE SET(ELMT B) representation, then Boolean combinations of sl and
s2, e.g. sl + s2, sl * s2, and sl - s2 can be formed very rapidly using the
machine level Boolean operations described in Section 9.3.2; these oper
machineations handle a word-full of Boolean bits per operation cycle. An
even more crucial advantage is that indefinitely many (exact or approximate)
copies of a sets having REMOTE SET representation can be formed simply by
allocating additional copies of a vector of bits like that shown in (the
lower right-hand corner of) Fig. 7. Such easy copying is not possible for
sets having LOCAL SET representation, since the flag-bit positions within

-- -----

THE DATA REPRESENTATION SUBLANGUAGE Page 10-34

base blocks used to indicate membership in such sets must be allocated in
advance. It follows in particular that the components of a set of tuples,
or the members of a· set of sets, can be given REMOTE SET but not LOCAL SET
representation. Note that to speed up a membership test like x IN t(i) or
to ensure that an iteraion like

(FOR s IN set_of_sets) IF x IN s THEN •••

runs at high speed, we may be need to give the components of -t- or the
members of -set_of_sets-, based form. as stated we must then use the REMOTE
SET representation.

The REMOTE form of representation is available for maps f as well as
sets s. To give a map f this representation, one writes

(9a) f: REMOTE MMAP(ELMT B)
(if the map f might be multi-valued), or
(9b) f: REMOTE SMAP(ELMT B)

(if f is known to be single-valued). The range values of a map represented
in this way are gathered together into a continguous array of memory cells,
the i-th memory cell holding the value (or, in the MMAP case, set of values)
associated with the domain element whose index is i. This map
representation is shown in Fig. 8, which should be compared with Fig. S.
The map represented in Fig. 8 is f={[17,71], [3,331, [201,102]}, and is
assumed to have REMOTE SMAP(ELMT B) representation.

mHE DATA REPRESENTATION SUBLANGUAGE

17

l

3

--[-~-
__ : --

48

3

201

f

722

5

(header

71

33

OM

102

OM

Page 10-35

Fig. 10.10 Internal representation of the map f={[l7,71],[3,33],[201,102]}
in REMOTE SMAP(ELMT B) form.

The left half of the third word of each block of B is assumed to
contain the index which the SETL system assigns to the block. Note that 48
and 722 are assumed to be base elements but not elements of DOMAIN f.

The advantages as disadvantages of REMOTE and distinct from LOCAL map
representation are similar to those of the corresponding set
representations. In particular, multiple copies of a map f having REMOTE
MMAP or REMOTE SMAP representation can be formed sd..mply by allocating a
vector of range values like twat shown in Fig. 8. This is not possible for
sets having LOCAL map representation.

In order to make use of the based representations in Figs. 5-8, the
SETL run-time system code must ensure that every element x belonging to a
set s with SET(ELMT B) or to the domain of a map f with MMAP(ELMT B) or
SMAP(ELMT B) representation is assigned an entry in the base table B. This
is accomplished by keeping B under systen rather than programmer control.
Then, whenever an operation like s WITH := x, s +:= sl, f(x) := y, f{x} :=
-1, etc. adds one or more elements to s or to DOMAIN f, it is automatically
added to B. For this reason, SETL does not allow bases B to be used in the
same way as ordinary variables. In particular, base names can appear in
declarations like (1-9), but not in ordinary SETL statements

THE DATA REPRESENTATION SUBLANGUAGE

Since both the LOCAL SET(ELMT
rep~esentation will slow iterations
substantially if few of the blocks in B
the data representation sublanguage
representation for sets, namely

(10) SPARSE SET(ELMT B)

B) and
of the
represent
provides

Page 10-36

the REMOTE SET(ELMT B)
form (FOR x INS) ••• very
elements of .the set s.',
a third kind of declarable

If a sets is declared to have this representation, it will be represented
by a hash table having much the same form as the standard representation
shown in Fig 3; however, the entries in this table will contain pointers to
blocks of the base B rather than standard-form SETL values. This is
illustrated by the following figure, which shows how the set s•{17,3,201}
would be represented if it were declared to have representation (10}.

17

48

empt

empt

empt

722

eade

Fig. 10.11 Internal form of the set s={17,3,201}, assuming that
the representations: LOCAL SET(ELMT B) is being used.

Iteration over sets having LOCAL SET(ELMT B) representation will
always be efficient, since no elements not belonging to s are examined
during such an iteration. Moreover, this iteration will produce items x
having ELMT B representation. This makes the SPARSE representation
particularly effective for iterating over a set of elements that are to be
used as map indices. For example, an iteration of the form

(11) (FOR1 x IN s) y := f(x); •••

will be particu~arly efficient if the following representtidns are declared

THE DATA REPRESENTATION SUBLANGUAGE

for x,s, and f:

(12) x: ELMT b;
s: SPARSE SET(ELMT B);
f: LOCAL SMAP(ELMT B);

Page 10-37

he reader should confirm his understanding of the preceding pages by
reviewing the data structures that will be used for x,s, and fin the
presence of these declarations and by working out the sequence of
machine-level operations that will be needed to handle the code fragment
(11) in the presence of the declarations (12).

Map representations akin to the SPARSE SET representation (10) are also
available. These are declared by writing

(13a)
or
(13b)

f: SPARSE MMAP(ELMT B)

f: SPARSE SMAP(ELMT B).

Maps declared in this way are given internal representations much like those
shown in Fig. 4, but the domain elements of such maps are represented by
pointers to blocks in the base B rather than by SETL values in their
standard form. As in the case of SPARSE SETs, iterations over maps having·
this representations are handled efficiently. Moreover, if f has either of
the representations (13a) or (13b), then an iteration like

(14) (FOR y = f(x)) •••

will produce items x having ELMT B representation.

This completes our introductory account of the main facilities of
SETL's data representation sublanguage and of the principal advantages and
disadvantages of the major set and map representations describable in this
sublanguage. Various other features of the data representatLon sublanguage
will be presented in Sections X and Y. The re"presentation language can be
used to improve the efficiency of SETL codes, but to achieve this you must
devise a consistent pattern of declarations, assigning an appropriate
representation to each of the data items used in the code. What one wants
are declarations which give ELMT B representation to variables x appearing
in contexts like (x IN s), s WITH :=x, s LESS := x, f(x), f{x}, f(x) :• y,
or f{x} := y, whiles and fare given SET(ELMT B) and SMAP(ELMT B) or
MMAP(ELMT B) representation. However, the various pitfalls pointed out in
the foregoing paragraphs, for example the possibility of showing down an
iteration (FOR x IN s) ••• if sis given LOCAL SET(ELMT B) or REMOTE SET(ELMT
B), must be borne in mind. It is also important to note that the efficiency
gains obtainable by skillful use of SETL'S data representation sublanguage
will be lost if inconsistent or incomplete declarations cause values to be
converted between different representations in frequently executed code
sections. For example, if sl and s2 are declared to have different
representations, e.g.

(15) sl: LOCAL SET(ELMT B);
s2: REMOTE SET (ELMT B);

------ - ----

THE DATA REPRESENTATION SUBLANGUAGE

then any .assignment

s1 := s2;

or for that matter any operation

s 1 : = s 2 WI TH x;

or

s := sl + s2;

will cause a copy of s2 to be converted into the form declared
Similarly, if x and fare declared to have the forms

(16) x: ELMT B 1;
f: LOCAL SMAP(ELMT B2);

Page 10-38

for sl,

when the bases Bl and B2 are different, then either the operation y := f(x)
or f(x) := y will cause a copy of x to be converted into ELMT B for~. This
conversion can easily get out of hand, and then can cause a program
containing representation declarations to be less rather than more efficient
than its 6~iginal declaration-free version.

:~

The SETL measurement facility described in Section Y can be used to
determine the actual effect of a given set of representation declarations,
and in particular to pinpoint statements at which unexpected object copying
or conversion between representations is taking place.

Additional hints concerning effective use of SETL's data representation
sublanguage are found in Section 10.8 above.

To conclude this section, we note that a SETL program, supplemented by
a carefully forked out set of representation declarations, ca~ be regarded
as a detailed -blueprint for a lower-level implementation of the same
p~ogram. Used in this way, SETL serves well as a tool allowing program a
skilled designer or design team can convey all the details of his (or their)
program design to a larger, perhaps less experienced reprogramming team.
This reprogramming team can use some other more efficient language to
produce a high-efficiency code from a design written in SETL. The fact that
the original SETL code actually executes means that the consistency and
completeness of the initial design can be verified by testing rather than by
visual inspection or 'design walkthrough' only.

$

"HAPTER 11

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES

In this, our last chapter, we illustrate the use of SETL by giving a
variety of programs which exhibit its features and can serve as useful
models of style. Some of the smaller programs present significant
algorithms; the larger examples show how more substantial programming
problems and applications can be addressed.

Chapter Table tl Contents:

11. 1
11.2
11.3
11.4
11.5
11.6
11. 7
11.8
11.9
11. 10
11. 11

11. 1

Eulerian paths in a graph
Topological sorting
The 'stable assignment' problem
A text preparation program
A commercial record-keeping system
A Turing-machine simulator
'Huffman coding' of text files
A 'game playing' program
A Macroprocessor implementation
Discrete event simulation (TO BE SUPPLIED)
Exercises

Eulerian paths in a graph

A graph is simply a collection of nodes, pairs of which are connected
by edges. (See Section 5.3). Graphs come in two varieti~s, directed
graphs, each of whose edges has a specified starting node and target node,
and undirected graphs, whose edges can be traversed in either direction.
The most natural SETL representation of a directed graph G is simply a set
of ordered pairs [x,y], each such pair representing in edge with starting
node x and target node y. It is convenient to represent an undirected graph
G in the same way, but in this case the reversed edge [y,x] belongs to G
whenever [x,y] belongs to G.

Given an undirected graph G, the Eulerian path problem, named after the
famous mathematician Leonhard Euler(1707-1783, 'who calculated as other men
breathe') is to traverse all the edges of G exactly once by a single
unbroken path p which starts at some node x of the graph, and ends at some

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-2

other nod.e y (which might be the same as x). We can think of such a path,
called an Eulerian path, as 'using up' edges as it traverses them. Euler
used the following arguments to determine which graphs contain- paths p of
this kind. If a node z along pis different from the starting and ending
nodes x and y of p, then immediately after p has reached z along one edge p
will leave it along some other edge, and thus p will always 'use up' an even
number of the edges which touch any node z of p not equal to x or y. The
same remaik applies to the starting node x if x = y, but if x and y are
different then p must 'use up' an odd number of the edges touching x and an
odd number of the edges touching y. It follows that an Eulerian path p
which traverses all the edges of G just once can only exist if G is
connected and either has no nodes x touched by an odd number of edges, or
has exactly two such nodes x,y; and in this latter case every Eulerian path
p must start at one of x,y and end at the other.

Suppose, conversely, that G has either no nodes or exactly two nodes
which are touched by an odd number of edges. Then we can construct an
Euleri~n path pas follows. If every node of G is touched by an even number
of edges of G, let x be any node of G, otherwise let x be one of the two
nodes x, y of G touched by an odd number of edges. Start the path p. at x,
and extend p as long as possible by stepping from its endpoint along ·any
edge of G that has not been traversed before. Since we consider an edge to
be 'used up' as soon as it is traversed, the construction of puses up more
and more edges of G, and therefore must eventually stop •. Hence p must be
finite. Suppose that pends at a node y. Clearly all the edges touching y
must have been traversed by p, since otherwise p could be extended by some
edge. Thus, if the starting node x of pis touched by an odd number of
edges, p must end at some other node y which is also touched by an odd
number of edges; whereas if xis touched by an even number of edges, then p
must return.to x and end there. In either case, removing all edges
traversed by p from G will leave behind a graph G' each of whose nodes is
touched by an even number of edges._ If p does not already traverse all the
edges of G, then some node z along p will be touched by some untraversed
edge. In this case, one can construct a path q by starting fro~ z with this
edge and extending q along untraversed edges.as long as possible. Since the
remarks concerning p apply to q as well, and since q can be regarded as a
path in the graph G', and since all of the nodes preceding Gare touched by
an even number of edges, the path q must both begin and end at z, i.e. q
must be a 'circuit'. Hence we ca~ 'insert' q into p, thereby constructing a
path which first follows p to z, then follows q until q finally returns to
z, and then follows the remainder of p to its end. Call this extended path
by the same name P• Repeating the construction and insertion of circuits
like q ~s often as possible, we must eventually built up a path p which
traverses all the edges of the original graph G.

The two following procedures realise the Eulerian path construction
described in the preceding paragraphs. Procedure build_path starts a new
path and extends it as far as possible, deleting (from G) the edges
traversed by this path; procedure Euler_path installs the path sections
returned by build~path into the overall Eulerian path that it constructs and
returns.

PROC Euler~path(G); $ constructs Eulerian path for graph G

IF #(odds := {x IN (nodes :=·DOMAIN G) I ODD(#G{x}) }) > 2 THEN

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-3

RETURN OM; $ since more than two nodes are touched by
END IF; $ an odd number of edges

$ Note that -nodes- is the set of all nodes of G,
$while-odds- is the set of all nodes of G that are touched by
$ an odd number of edges

x := (ARB odds) ? ARB nodes; $ pick a node of -odds- if possible;
~ otherwise pick any node of G

path := [x] + build_path(x,G);

(WR ILE EX I ST S z • path (i) I G { z } / • { })
path(i •• i-1) := build_path(z,G); $ insert new section

$ into path
END WHILE;

RETURN path;

END PROC Euler_path;

PROC build_path(x,RW G);

p := [];

$ builds maximal path section starting
$ at x, and deletes all edges traversed

(WHILE (y := ARB G{x}) /=OM) $ while there exists an edge leaving
$ the last point reached

p WITH := y;
G -:• { [x,y], [y,x] };

$ extend path to traverse the
$ edge delete the edge just

traversed

11.2

X : .,. y;

END WHILE;

RETURN p;

END PROC build_path;

'Topological' sorting

$ step toy

Certain problems, of which scheduling problems are typical, require one
to arrange the nodes n of a graph Gin a list such that every edge of G goes
from a node nl to a node n2 coming later in the list. This is called the
problem of topological sorting. Suppose, for example, that a student must
choose the order in which he will take the courses required to qualify as a
computer science major, some of which have other courses as prerequisites.
Suppose also that we represent the 'prerequisite' relationship as a set G of
pairs, agreeing that whenever course nl is a prerequisite of course n2, we
will put the pair [nl,n2] into G. Then, mathematically speaking, G is a
graph; in heuristic terms, G{nl} is the set of all courses for which nl is
a pre-requisite. (Note the connection of the 'topological sorting' problem
with the transitive computation of prerequsites described in Section

------------~ ---- --------·-- ---

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-4

To sort a collection of courses topologically is simply to arrange then
in any order in which they could actually be taken, given that all the
prerequisites of each course n must be taken before n is taken. To do this
is not hard. We simply find some course n which has no (unfulfilled)
prerequistes, put n first in the l~st L, drop all edges [n,nl] from G (sinct
n is no longer an unfulfilled prerequisite) and then continue recursively as
long as courses without unfulfilled prerequisites remain. Written as l

recursive SETL routine, this is simply

(1) PROC top_sort(G,nodes); $ topological sorting procedure,
$ recursive form

RETURN IF EXISTS n IN nodes - (RANGE G) THEN
[n] + top_sort(G LESSF n, nodes LESS n) ELSE f END;

END PROC top_sort;

Invocation of top_sort(G) will return a tuple t consisting of some 01

all of the nodes of G. If it is possible to sort nodes of G topologically,
then every node of G will appear int. This will be the case if and only i~
G admits no cycle of nodes such that

(2) nl is prerequisite to n2 is prerequisite to n3 is
prerequisite to ••• is prerequisite tonk is prerequisite to nl.

To see this, note that it is clear that when such a cycle of mutually
prerequisite nodes exists, no node in the cycle can ever be put into th,
tuple t returned by (1). Conversely, if a node nO belongs to no such cycle
then eventually the code (1) will have processed all the predecessors (i.e.
prerequisites) of nO, and after this (1) must eventually put nO int6 the
tuple t it returns. This shows that the set of all nodes belonging to an:
cycle like (2) is simply

nodes - {x IN top_sort(G,nodes)},

so that (1) can also be used to test a graph G for the presence of cycles.

Like many other 'tail' recursions, i.e. recursive procedures whic1
only call themselves immediately before returning, (1) can be rewritten as
an iteration (See Section XXX). Written in this way, (1) becomes

(3) PROC top_sort(G) $ first iterative form of topological sort

nodes := (DOMAIN G) + (RANGE G); $ Here we·calculate the set of
$ nodes; this makes it unnecessary to pass the set of nodes
$ as an additional parameter.

t : =] ; $ initialize the tuple to be returned

(WHILE EXISTS n IN nodes - (RANGE G))

t WITH := n;
G LESSF := n;

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES

nodes LESS := n;

END WHILE;

RETURN t;

END PROC top_sort;

Page 11-5

It is possible to improve the efficiency of (3) very substantially by
keeping the current value of the set (nodes - RANGE G) available at all
times. To do this, we proceed as follows:

(a) For each node n, we maintain a count of the number of the pred~cessors
of n which have not yet been put into t.

(b) When n is put into t, we reduce this count by 1 for all nodes nl in
G{n}.

(c) If count(x) falls to zero, then x becomes a member of {nodes - RANGE G).

These observations, which could be derived step-by-step from the more
general 'formal differencing' principles discussed in Section XXX, underlie
t o th e f o 11 ow.in g rev i s e d form o f (3) :

(4) PROC top_sort(G); $ second iterative form of
$ of the toplogical sorting procedure

nodes := (DOMAIN G) + (RANGE G);

count :• { };

ready :• nodes;

(FOR [x,y] IN G)

$ initialize the -count- function
$ described above

$ The following loop will remove elements
$ that have any predecessors from -ready-

count(y) :• (count(y)?O) + l;
ready LESS :• y; $ since y has a predecessor

END FOR;

t :• [];

(WHILE ready/•{ })

n FROM ready;
t WITH:• n;

(FOR nl IN G{ n})

$ At this point -ready- is the set of
$ all nodes without predecessors

$ t is the tuple being built up

IF (count(nl) -:= 1) • 0 THEN ready WITH := nl; END;
END FOR;

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-6

END WHILE;

RETURN t;

END PROC top_sort;

It is not hard to see that the preceding code examines each edge of the
graph G just twice. Thus the time needed to execute this code is linearly
proportional to #G.

11.3 The 'stable assignment' problem

Suppose that the members of a population of n students are appiying to
a collection of m colleges. We suppose also that each student finds a

·~ertain collection of colleges acceptable, and that he/she ranks these
colleges in order of decreasing preference. Finally we suppose that each
college c can admit only a given quota Q(c) of the students who apply to it,
and that it is abla to rank all the students in order of decreasing
ireference. We do not suppose that any of these preferences are necessarily
related to any other; that is, different students can rank colleges in
radically different orders, and different colleges may find quite different
types of students preferable.

The problem we consider is that of assigning students
such a way as to satisfy the following three conditions:

to colleges in

(a) No college accepts more than Q(c) students;

{b) A college c never admits a student sl if it has filled its quota Q(c)
and there exists an unassigned student s2 to whom college c is acceptable
and whom college c prefers to student sl.

(c) There is no situation in which student sl is assigned to collegi
student s2 is assigned to college c2, but both the students involved
colleges involved prefer to switch; that is, sl prefers c2 to
prefers cl to c2, cl prefers s2 to sl, c2 prefers sl to s2.

cl and
and the
cl, s2

This problem was studied by David Gale and Lloyd Shapley (American
Mathematical Monthly, 1962, PP• 9-15), who gave a simple algorithm for_
finding an assignment satsifying conditions (a), (b), and (c). The
algorithm is just this: Each student applies to his first-choice college.
Then each college c puts the topmost- ranked Q(c) students who have applied
to it on an active list, and notifies the others that they have been
rejected. All rejected students now apply to their second-choice colleges.
Then all colleges re-rank their applicants, keep the first Q(c) of these
applicants, and again notify the others that they have been rejected. This
cycle of re-application and re-ranking continues until no rejected students
have any more colleges on their list of acceptable colleges.

It is clear that the assignment produced by this
condition (a). Condition (b) is also satisfied, since
acceptable, he/she will eventually apply to college c,
student sl whom c finds less acceptable, but will

procedure satisfies
if s2 finds college c
and can then bump any
nevec subsequently be-

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-7

bumped except by a student whom c finds more acceptable. Finally, condition
(c) is satisfied, since if sl prefers c2 to cl he/she must have applied to
c2 before cl, but been bumped from c2's active list by a stude'nt that c2
prefers to sl. But when this happened c2's active list could not have
contained any student that c2 does not prefer to sl. Therefore, since the
students on college c2's active list never grow any less attractive from
c2's point of view, c2 will never regard any student on its final active
list as less desirable than s2.

Programmed in SETL, the Gale-Shapley algorithm is as follows.

PROC assign(stud_pref,coll_pref,quota); $ Gale_Shapley stable
$ assigment algorithm

$ we assume that -stud_pref- maps each student into the
$ vector of colleges he/she finds acceptable, ranked in
$ decreasing order of preference, and that coll_pref(c)(sl,s2)
$·is TRUE if college c finds student sl preferable to
$ student s2, FALSE otherwise. The map -quota- is assumed
$ to send each college into the number of students it will accept.

active:= {[c,[]]: c IN DOMAIN quota};

$setup an empty 'active list' for each college

applicants := DOMAIN stud_pref; $ initialize the pool of applicants
(FOR j in [1 •• #quota]) $ we may need as many 'rounds'

$ of applications as there are colleges

(FOR s IN applicants) active(stud_prefs(j)) WITH:= s; END;

(FOR c IN DOMAIN active I #active(c) > quota(c))

(FOR k IN [quota(c) + 1 •• #active])
$ drop all 'over quota' applications

applicants WITH := active(c)(k); $ return student to
$ applicants pool

END FOR k;

active(c) :• pref_sort(active(c),coll_pref(c));$ re-rank all
$ who have applied

active{c) := active{c)(l •• #active(c) MIN Quota{c));

END FOR c;

IF (applicants :=
RETURN active;

END IF;

END FOR j;

$cutback active list

{s IN applicants I #stud_pref(c) > j}) =
$ pattern of assignments is complete

{ } THEN

------ --- ------------------ ---------------

------------- -------------------- ·-"---- - -- -------

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-8

END PROC assign;

This procedure invokes an auxiliary procedure -pref_sort(t,p.ref)-, which
sorts a tuple tin decreasing order of the pattern of preferences defined by
the Boolean-valued map -pref-. We leave it to the reader to develop this
procedure. See Exercise 11.11.19 for an additional hint.

11.4 A Text Preparation Program

Text preparation programs aid in the preparation of printed material by
arranging text in attractively indented, justified, centered, and titled
paragraphs and pages. You may well have used some utility program of this
type: they are commonly; available under such names as SCRIPT,' RUNOFF,
ROFF, etc. In this section, we will describe the internal structure of a
somewhat simplified version of such a program.

Our program, which we will call PREPARE, accepts source text containing
imbedded command lines as input, _and reformats the text in the manner
specified by the command lines. Command lines are distinguished from text
lines by the fact that the former start with a period as their first
character, and by the fact that this initial character is followed by a few
other characters signifying one of the allowed PREPARE commands, as listed
below. In its ordinary mode of operation, PREPARE collects words from th~
text it is formatting, and fills up successive lines until no additional
words will fit on the line being filled. Then the line is right justified
and printed. However, commands can also be used to center a line, and lines -
can be terminated without being filled (we call this action a 'break').
Text can also be arranged in several special 'table' formats, as described
below.

The PREPARE program treats any unbroken sequence of non-blank
characters as a word. An 'autoparagraphing' feature, which causes every
text line starting with a blank to start a new paragraph, is also available.
Margins and spacing are controllable by commands. A '.LIT' command, which
causes following text to be printed exactly as it stands, is available to
over-ride the normal reformatting action of PREPARE. Facilities for
automatic numbering of sections and subsections are also available. If the
activity of PREPARE discloses inconsistencies or errors in the commands
presented to it, a file of diagnostic warnings is printed.

The formatting commands supported by PREPARE are listed below.
However, it will be easier to read these commands if you keep in mind ihe
fact that they sense and manipulate the following variables, which are
crucial to PREPARE's activity:

variable name

Page_horizontal
Page_vertical
Spacing

Left_margin
Right_margin
Old_margins

meaning

horizontal width of paper
number of lines on page
current spacing of lines; 1 = single spacing

current indentation for left margin
current right indentation for right margin
saved prior values of margins

THE LANGUAGE IN ACTION: A GALLERY OF ~ROGRAMMING EXAMPLES Page 11-9

Current_line
Fill
Justify

Line_count

line of output text currently being built up
controls collection of words into current_line
switch controlling right-justification of output
lines
counts number of Lines output so far on
current page

Page_number_stack
Nuinber_pages

stack of page and subpage numbers
switch for page numbering

Header number_stack
Title

stack of section and subsection numbers
current page title

Subtitle
Chapter_number

!Current page subtitle
I current chapter number

The following commands $uppported by the PREPARE system are as follows:

.BR (break)

causes a bteak, i.e. the current line
no justifi~ation, and the next word of
be placed .t the beginning of the next

will be output with·
the source text will
line.

!

.s n (skip)

.B n

.FG n

.In

causes a B'EAK after which n is multiplied by the number of
spaces between lines. The result is the number of lines
skipped. ~utput is advanced to the top of the next page if
there is *o room on the current page. The parameter n can
also have, negative value. Thus, a final footnote can be
set by ai command such as .SKIP -5.

(blank lires)

causes thelcurrent line to be o~tput with no justification,
skips n 1tne spaces, and then starts output of the current
source text. n can be negative to move the line n lines
from the tnd of the page. BLANK is like SKIP, except that
the space ~o be left is independent of line spacing.

I

(figure) I

y

leaves n l~nes blank to make room for a figure or diagram.
If fewer tthan n lines remain on the current page, text
continues o fill this page. Then the page is advanced and
n blank 11 es are left at the top of the next page.

(indent)

causes a BREAK and sets the next line to begin n spaces to
the right of the left margin. The parameter n can be
negative to allow beginning a line to the left of the
left margin. However, a line cannot begin to the left of
column O.

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES ,, Page 1 1 -1 0

.P n, v, t (paragraph)

causes a BREAK and formats the output paragraphs. The para­
meter n is optional and, if present, sets the number of
spaces the paragraph is to be indented. The default value
for n is 5 (n can also have a negative value). v is
th~ vertical spacing between paragraphs. v can range from
0 to 5. (1 denotes single spacing, 2 double spacing,
etc.) t causes an automatic TEST PAGE (see the TEST PAGE
command).

.c n;text (center)

causes a BREAK and centers the following text in the source
file. The centering is over column n/2 independent of the
setting of the left and right margins. If n is not given,
it is assumed to be the page width.

.NT text (start indented note)

starts an indented note. This command BLANKS 2, reduces
both margins by 15, centers the text (if no text is given,
it centers the word "NOTE"), and then BLANKS 1. At this
point there follows the text of the note •

• EN (end indented note)

terminates a NOTE command, BLANKs 2, and reverts the
margins and spacing modes to their settings before the last
NOTE command •

• PG (new page)

causes a BREAK and an advance - to a new page. If the
current page is empty, this command does not advance the
page. Just like an automatic page advance, this command
adds the title (if given) and page numbers on every page •

• TP n (text page)

causes a BREAK followed by a conditional page advance. It
skips to the next page if fewer than n lines are left on
the page. Tbis feature serves to ensure that the following
n lines are all output on ~he s~me page. This command has
the form t as an optional argument to the PARAGRAPH
command •

• NM n (restart page numbering)

starts page numbering. P~ges are normally numbered so there
is no reason to issue this command unless page numbering
is disengaged. If resumption of page numbering is desired at
a certain page, specify n.

L

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-11

.NNM (suspend pagenumbering)

disengages page numbering. However, pages continue to be
counted, so that the normal page number can appear if page
numbering is re-entered with the NUMBER command.

.CH text (start chapter)

starts a new chapter using the text as the title of the
chapter. This command acts as if the following command
string were entered:

.BREAK;.PAGE;.BLANK 12;.CENTER CHAPTER n

hen is incremented by 1 automatically. After the CHAPTER
n is typed on the page,

.BLANK 2;.CENTER;text;.BLANK 3

occurs. This command then resets the case, margins,
spacing, and justify/fill modes. It also clears any
subtitles and sets the chapter name as the title •

• NC n (set chapter number)

supplies a number (n) to be used in a subsequent CHAPTER
command. NUMBER CHAPTER would be used when a chapter of a
document occupies a source file of its own. In such a
case, NUMBER CHAPTER would be the first command of the
source file •

• T text (define title)
takes the remaining text as the title and outputs it on
every page at line o. The default is no title. If a title
is desired, this command must be entered in the source
file.

.FT text (define first title)

Same as TITLE, but used to specify the ~itle to be printed
on the first page of the document. This command must
precede all text in the source file. Use of the FIRST
TITLE command is the only way to print a title line on the
first page of the document.

.ST text (define subtitle)

takes the remaining text as the subtitle and outputs it on
every page. A subtitle appears directly under the page
title. The subtitle is not indented, but indentation can
be achieved by typing leading spaces •

• SP (start subpage numbering)

executes a PAGE with page numbering suspended. The page

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-12

.ESP

number is unchanged, but letters are appended to the page
number. This permits insertion of additional pages within
an existing document without changing the ex~sting page
numering.

(end subpage numbering)

disengages the SUBPAGE command by executing a PAGE co~mand
with page numbering resumed •

• HD (switch page titling on)

causes the page header (title, subtitle, and page number)
to be printed •

• NHD (switch page titling off)

causes the page header (title, subtitle, and page number)
to be omitted. The header lines are completely omitte4, so
that text begins at the top of the page with no top margin •

• J (switch on line justification)

Causes a break and sets subsequent output lines to be
justified (initial setting). The command increases the
spaces between words until the last word exactly meets the
right margin •

• NJ (switch off line justification)

Causes a break and prevents justification of subsequent
output lines, allowing a ragged right margin •

• F (switch on line filling)

Causes a break and specifies that subsequent output lines
be filled. Sets the justification mode to
that specified by the last appearance of JUSTIFY or
NOJUSTIFY. FILL adds successive words from the source text
until addition of one more word would exceed the right
margin, but stops before putting this last word in •

• NF (switch off line filling)

disengages the FILL and JUSTIFY modes. This command is
used to permit typing of t~bles or other manually formatted
text •

• LIT (print following text literally)

disengages FILL/JUSTIFY to permit printing of text exactly
as entered in source file •

• ELI (end literal text)

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-13

used after LITERAL command to re-engage FILL/JUSTIFY •

• LM n (set left margin)

sets the left margin ton. Then must be less than the
right margin but not less than O. The default setting is
o •

• RM n (set right margin)

sets the right margin n. Then must be greater than the
left margin. The default setting is 60 •

• PS n.m (set page size)

sets the size of the page n lines by m columns.
The default setting is 58 by 60.

· • SP n (set interline spacing)

sets the number of spaces between lines. Then can range
from l to 5. The default setting isl. SPACING l is like
single spacing on a typewriter and SPACING 2 is like double
spacing. SPACING 2 puts one blank line between lines of
text •

• AP (switch autoparagraphing on)

causes any blank line or any line starting with a space or
tab to be considered as the start of a new paragraph. This
command allows normally typed text to be justified without
special commands. It does not cause a paragraph if blank
lines are followed by a command •

• NAP (switch autoparagraphing off)

disengages the AUTOPARAGRAPH mode.

We now proceed to give SETL code for our text preparation system.

Program prepare;

Var

Page_horizontal,
Page_vertical,
Spacing,
Paragraph_spacing,

Left_margin,
Right_margin,
Old_margins,

Auto_paragraph,

$ text preparation program

$ global variables

$ horizontal width of paper
$ vertical length of paper
$ current spacing of lines
$ current spacing between paragraphs

$ current indentation for left margin
$ current right indentation for right margin
$ old margin settings

$ switch which controls 'autoparagraphing'

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-14

Current_line,

Justify,

Fi 11,

$ line of output currently being built up

$ controls right-justification of

Line_count,

Page_number_stack,
Header_number_stack,
Number_pages,

Title,
Subtitle,

Print_header,
Chapter_number;

$ output lines
$ controls automatic filling of output
$ lines

$ counts number of lines written so far
$ to current page

$ stack of page and subpage numbers
$ stack of section and subsection numbers
$ switch for page numbering

$ current page title
$ current page subtitle

$ switch controlling printing of header
$ current chapter number

CONST Legal_ops = $ Legal commands of PREPARE system
{BR,S,B,FG,I,P,C,NT,EN,PG,TP,NM,NNM,CH,NC,T,FT,ST,

SP,ESP,HD,NHD,J,NJ,F,NF,LIT,ELI,LM,RM,PS,SP,AP,NAP};

CONST Cause_new_line= $ commands which advance immediately to a new line
{BR,S,B,I,P,C,NT,EN,PG,TP,CH,J,NJ,F,NF,LIT,ELI,LM,RM};

$******MAIN PROGRAM OF THE TEXT PREPARATION SYSTEM********

initialize; $ initialize all global variables, determine input and
$ output files

$ After initialization, we simply enter a loop which adds new words to the
$ current_line as long as input text is available. All other respect to
$ commands, as well as options such as printing of unfilled
$ lines, printing of text
$ in its literal form, etc. is handled inside the procedure
$ that supplies words to this loop.

(WHILE (word:= next_word())/=OM)

spaces := Spaces_remaining-1;

IF (Spaces_remaining -:= (#word+ 1)) < 2 THEN$ line will be printed

$ We resort to hyphenation only if there are
$ less than two words on the current line. In this case, the current
$ word is hyphenated to fill the current line, and we print as
$ many lines as necessary to digest the 'word' we now
$ have, which may be very long.

IF #Current_Line < 2 THEN$ fill line with piece of word
Current Line WITH:= (len(word,spaces) + '-');

END IF;

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-15

output{justified(Current_line));

$ Now we handle possible 'extremely long' words

(WHILE #word> (Right_margin - Left_margin - 3))

IF (part:= Len(word,Right_margin - Left_margin))/•OM THEN

output(part(l •• #part - 1) + '-');
word := part(#part) + word; $ restore first character

ELSE$ otherwise output the whole remainder of the word

output(word);
word:='';

END IF;

END WHILE #word;

$ now we restart the current_line with what remains
$ of the unpleasantly long word

Current_line:= IF word•,, THEN [] ELSE [word] END;
Spaces_remaining :• Right_margin - Left_margin

- IF word=,, THEN O ELSE #word+ 1 END;

END IF; $ i.e., END IF (spaces - remaining etc ••••

$ otherwise we just pack one more word into the Current_line.

Current line WITH:• word;
Spaces_remaining -:• (#word+ l);

END WHILE;

$ We reach this point only when the whole input text has been
$ processed. The final line is output, and error messages are
$ dumped.

break;

finalize;

$******END OF MAIN PROGRAM*****

PROC handle_command(command_tuple); $ command interpreter

$ This command interpreter handles all PREPARE
$commands.Like most interpreters, most of its body consists of
$ a single large CASE statement. Commands will have been pre-validated
$ when this procedure is called

[op,pl,p2] :• command_tuple; $ unpack the command and its parameters

----------·----- --------- -

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-16

IF op IN Cause_new_line THEN
output(unjustified(current_line));

END IF;
$ output line without justification

CASE op OF

$ First we handle all commands which simply reset
$ one or more internal global variables of the PREPARE system.

(BR): $ break command

RETURN; $ nothing more to do for this command

(I): $ indent command

IF Old_margins = OM THEN
Old_margins := [Left_margin,Right_margin]; $ save old margins

ELSE
[Left_margin,Right_margin] := Old_margins; $ restore old margins

END IF;

Left_margin:= (Left_margin + pl) MAX l MIN (Right_margin - 10);

(NM): $ resume page numbering

Number_pages := TRUE;

(NNM): $ suspend page numbering

Number_pages := FALSE;

(NC): $ Supply chapter number

Chapter_number := p2;

(T): $ title

Title := p2; $setup title

(ST): $ Subtitle

subtitle := p2; $setup subtitle

(SP): $ start subpage

$ This command starts a new (stacked) level of subpage numbering,
$ allowing subpages to follow pages, etc. without disturbing the
$ overall prior page numbering

page; $ output current page
page_number_stack WITH:= l; $ start sequence of subnumbers

(ESP): $ end subpage

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES

page; $ output current page

IF #Page_number_stack > 1 THEN$ drop one page level
junk FROME Page_number_stack;

END IF;

(HD): $ print page headers

Print_header := TRUE;

(NHD): $ don't print headers

Print_header :• FALSE;

(J): $ start justification

Justify := TRUE;

(NJ): $ end justification

Justify := FALSE;

(F): $ start filling lines

Fill :=- TRUE;

(NF): $ stop filling lines

Fill :• FALSE;

(LIT): $ suspend fill and justify

Page 11-17

Fill_j_save :• [Fill,Justify]; $ save settings of fill and justify
$ flags

Fill:• Justify:• FALSE;

(ELI): $ resume fill and justify

[Fill,Justify] :• Fill_j_save; $ restore previously saved settings

(LM): $ set left margin

Left_margin :• p2 MAX 1 MIN (Right_margin - 10);

(RM): $ set right margin

Right_margin :• p2 MIN Page_horizontal MAX (Left_margin + 10);

(SP): $ set spacing

Spacing:• p2 MAX 1 MIN 5;

(AP): $ start autoparagraphing

Auto_paragraph :• TRUE;

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES

(NAP): $ End autoparagraphing

Auto_paragraph :• FALSE;

$ Next we handle the few remaining commands which involve
$ some sort of special action

(S): $ skip n lines, with spacing

blankout((p2 MAX 0) * Spacing);

(B): $ skip n lines, without spacing

blankout(p2 MAX O);

(FG): $ leave lines blank for figure, on this page or next
TO BE SUPPLIED

(P): $ set paragraph spacing
TO BE SUPPLIED

(C): $ Center text
TO BE SUPPLIED

(PG): $ Start new page if current page is not empty

IF Line_count > 1 THEN page; END;

Page 11-18

(TP): $ start new page if less than p2 lines remain on current page

IF Line_count + p2 >= Page_vertical THEN page; END;
TO BE COMPLETED

END PROC handle_command;

PROC page; $ page advance procedure

$ This procedure puts out a line containing a page advance character,
$ then the page number the title
$ and the subtitle if these are switched on. After this, the current
$ line number 18 re-~n~tia1~zed appropriatedly (automatically, by
$ the action of -output-);

puta(Output_file,Page_advance);

Line count :• l• - ,

IF Number_pages THEN$ build up first line with page number

pageno_line :• 'PAGE '+/[STR pno + '.': pno.
pageno_line :• page li (1 no_ ne •• pageno line-I);
pageno_line :• PAD(?????? CMPLETE THIS)

Page_number_stack(i)];
$ drop last character

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES

output(pageno_line); output('');

END IF;

IF Print_header THEN
output(Title); output(Subtitle); $ output title and subtitle
output $ print blank line

END IF;

END PROC page;

PROC output(line); $ output utility

$ This is the main output procedure of the PREPARE program
$ It sends a line, prefixed by blank, to the output medium,
$ and then counts up the number of lines sent to the page. If
$ the page is full a new page is started. The line is padded out,

Page 11-19

$ to give the correct left margin, and over-long output is trimmed.

(FOR j IN [l •• spacing])
puta(Output_file,line);
line :=' '; $ print blank line

Temp_left_margin := Left_margin; $ reset margin in case
$ of autoparagraphin~

IF (Line_count +:= 1) >• Page_vertical THEN page; END;
END FOR;

END PROC output;

PROC break; $ auxiliary end-of-line procedure

IF Current_line • [] THEN RETURN; END; $ No output if line empty

output(unjustified(Current_line)); $ output without justification

Current_line :• [];

END PROC break;

PROC unjustified(line);

$ empty current line

$ converts tuple to string

RETURN' '+ [wd +' ': wd IN line];

END proc dont_justify;

PROC initialize; $ parameter and file name
$ initialistion routine

$ This procedure init~alizes all global variables and determines
$ the names of the input and output files.

Page_horizontal :• 60; $ default characters per line is 60

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-20

Page_vertical := 58; $ default lines per page is 58

Spacing:= 1; $ single spacing is default
Paragraph_spacing : = 1; $ Single ex_tra spaces between paragraphs
Left_margin := 5; Right_margin := Page_horizontal - 5; $ default margins

Old_margins := OM; $ initially, old margins are undefined
Auto_paragraph := Fill := Justify := TRUE;

Current_line := '';
Page_number_stack :=
Line - count := l;

$ all these options are initially switched on

$ initially, current line is empty
[11; $ initially, on first page

$ start page at first line

Number_pages := TRUE; $ page numbering switched on is default
Header number stack := [] ; $ initially, no sections or subsections
Title:= Subtitle := ''; $ initially no title or subtitle

Print_header := FALSE;
Chapter_number := O;

$ headers not printed unless switched on
$ will advance with each chapter

Input_file := getspp('PI = PREP.IN/PREP.IN'); $ find input file
Output_file := getspp('PO = PREP.OUT/PREP.OUT'); $ find output file

END PROC initialize;

PROC get_next_line; $ line reader

$ This procedure reads in the next line of the input file, detects
$ commands, and handles the 'nofill', 'lit', and autoparagraphing
$ features.

get_data: geta(Input_file,line); $ get a line

$ First we handle The 'nofill' feature. If -Fill- is false,
$ we output and clear -Current_line-, either justified or not

IF NOT Fill THEN
output(IF Justify THEN justified(Current_line)

ELSE unjustified(Current_line) END);
Current line : = [] ; $ clear current line

END IF;

IF EOF THEN RETURN OM; END; $ End of input

IF match(line_copy,'.') /= OM AND
(cmd := break(line_copy,' ') ? line_copy) IN legal_ops THEN

?????? FILL IN

ELSEIF(command_tuple := command_check(cmd,line_copy))/=OM THEN
handle_command(command_tuple);

END IF;

IF end= 'LIT' AND command_check(cmd,line_copy) /= OM THEN

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES

$ We enter literal mode, and output lines
$ until an .ELI terminator is encountered

break; $ terminate prior line

LOOP DO

geta(Input_file,line);

IF EOF THEN RETURN OM; END;

IF match(line, '.ELI')/=OM THEN QUIT; END;

output(line);

GOTO get_data; $ try again for a data line

END IF;.

IF Auto_paragraph AND line{l) =' 'THEN paragraph; END;
$ handle Auto-paragraph feature

spaces := spaces_remaining-1;

RETURN line;

END PROC get_next_line;

PROC next_word; $ supplies next word of text

{UNTIL Input_line • OM)

IF span(Input_line, ' ') /• OM THEN CONT; END;

Page 11-21

IF (wd :• break(Input_line,' ')) /• OM THEN RETURN wd; END;

IF {line :• Input_line) /• ' 'THEN
Input_line •' ';
RETURN line;

END IF;

Input_line :• get_next_line(); $ read in next line

END UNTIL;

END PROC next_word;

PROC command_check(cmd,line_copy); $ breaks command out of line

$ This procedure also checks commands having parameters for
$ parameter validity, and converts parameters to internal form
$ where necessary.
$ In the following map, the symbol I designates an integer, Jan
$ optional integer followed by a semicolon, s a string.

----------, ---

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES

CONST parm_descript =$map defining parameters expected with
$ command

{ [S , I] , [B , I] , [FG, I] , [I , I] , [P, I I] , [C , JS] , [NT, S] ,
[TP,I], [NM,I], [CH,S], [NC,I], [HL,IS], [ST,S], [LM,I],

[RM, I] , [PS , I I] , [SP, I] } ;

cmd_tup := [cmd]; $ initialize command tuple

IF (parm_stg := parm_descript(cmd)/• OM THEN

(FOR· p IN parm_stg)

Page 11-22

IF (parm := parm_check(p,line_copy)= OM THEN RETURN OM; END;
cmd_tup WITH:= parm;

END FOR;

END IF;

SPAN(line_copy,' '); $ span off possible blanks at end of line.

IF line_copy /= ' 'THEN
error('EXCESS PARAMETERS ON COMMAND_LINE',line_copy);
RETURN OM;

END IF;

RETURN cmd_tup;

END PROC command_check;

PROC parm_check(pdes,RW line); $ parameter breakout and check

$ This procedure breaks a single parameter of a designated kind
$ out of its -line- parameter, and converts this parameter to
$ internal form. If a required parameter is not found, then
$ OM is returned. If an optional parameter is not found, then a
$ default is supplied.

SPAN(line, ' '); $ span off initial blanks

CASE pdes OF$ see the description of check codes in -command_check­

(I): $ required integer

RETURN integer(line);

(J): $ optional integer, followed by semicolon

IF (int := integer(line)) = OM THEN RETURN OM; END;

SP AN (1 in e , ' ') ;

RETURN IF NOT MATCH(line,';') THEN OM ELSE int END;

(S): $ string. just span off trailing blanks

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES

RSPAN(line,' ');

RETURN line;

END CASE;

END PROC_ parm_check;

.PROC integer(RW line); $ span off signed integer and converts

IF (parm :• SPAN(line,'-O123456789')) • OM

Page 11-23

OR line • ,_, OR EXISTS c • line(i) I c • ,_, AND i > 1 THEN
RETURN OM;

END;

RETURN IF MATCH(line,'-')/= OM THEN -VAL line ELSE VAL line END;

END .PROC integer;

PROC paragraph; $ paragraphing procedure

$ This procedure performs a break and then outputs a number of
$ empty lines equal to the current inter_paragraph line spacing.

break;

blank_output(Paragraph_spacing);

END PROC paragraph;

PROC blank_output(nlines); $ outputs blank lines or advances page

$ This procedure outputs -nlines- empty lines if they will
$ fit on the current page. If not, then the rest of the page
$ is left blank and the page is advanced •.

(TO BE CONTINUED)

11.5 An Inventory-Control System

In this section we will use SETL to represent a fairly typical
commercial application program, namely an inventory control program which
could be used to manage inventory and handle a stream of incoming orders for
a small-to-medium sized firm. The system will also be responsible for
keeping track of customers, shipments, and bills outstanding, for
preparation of invoices and dunning letters, and for generation of repo~ts
requested by management. To organize commercial applications of this sort
is by no means trivial, and our first task is to fix upon a family of
concepts which will ease our design task. We begin with two basic notions,
namely data base and transaction. Initially, we will think of a data base
simply as a comprehensive collection of maps and other data items used to
record the current condition of all objects and records significant to the
firm. (Later in this section, however, we will come to a somewhat different
and deeper understanding of this concept).

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-24

A transaction is a patterned change in the data base which reflects
some event or request of which the system must keep track. Transactions can
be triggered either exogenously or endogenously. An exogenously triggered
transaction begins when input data which describes some external event and
gives all relevant parameters of the event is read from a file or from a
terminal. In reaction to each such input item, the system must modify the
data-base in appropriate fashion, and may also need to generate certain­
output documents for printing or display.

An endogenously triggered transaction begins either when some specified
time limit expires (as in the case of a dunning; letter sent if a bill has
remained unpaid for a week), or can be generated internally as a byproduct
of some other transaction processed by the system.

The specific example we will consider involves a collection of
customers, who order various items supplied by the firm. A certain
inventory of each item supplied is held in stock, and as items are shipped -
these . inventories are drawn down. An automatic reorder level is kept on
file for each item, and when the inventory of the item falls to this level
an order for an additional quantity of the item is immediately issued to .the
firm which supplies the item.

Customers send in orders, cancellations (of items ordered earlier but
not shipped), payments, and notifications of lost shipments. Each customer-­
is extended a certain dollar amount of credit, and as long as the value of
items shipped to the customer but not paid for does not exceed this stated
amount, additional items are shipped as soon as an order is received. -
However, if a customer exceeds his credit limit, additional orders will not
be shipped. Instead, a letter informing the customer of his delinquency
will be generated. Massive over-ordering of this kind will be reported when
requested by the firm's financial management.

When a valid order is received and processed, a shipment order is
generated for all the items which the original order lists. This shipment
order goes to the firm's warehouse, which attempts to crate and ship the
items requested. Once this has been is done, the warehouse sends a shipment
confirmation notice for the items which it has been possible to ship, the
material shipped becomes billable to the customer, and an invoice is issued.
If payment is made within 60 days, no additional charge is due. Otherwise a
surcharge of 1% per month on unpaid balances is levied. A monthly b~ll
representing unpaid charges is sent. Orders transmitted to the warehouse
but not promptly confirmed generate follow-up messages and, eventually,
apologies to the customer.

Customers can report non-delivery of invoiced items, can return items
shipped and be credited for the value of these items, and can cancel orders
for items that have not been shipped.

When items ordered from suppliers are received by the warehouse, the
warehouse issues a delivery notification slip noting the arrival of these
items; this may allow various suspended orders to move forward. The
warehouse can also issue spoilage reports for given items. Finally, after
taking physical inventory, the warehouse can indicate the quantity of each
item that is actually on hand.

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-25

Every transaction entered into the system is issued a transaction
number which the key entry operator who enters the transaction can copy onto
the sheet of paper with which the transaction originates. Transactions
submitted to but rejected by the system are logged in a rejected
transactions log, which can be printed or examined later to determine the
reason for the rejection, e.g. mis-keyed data, illegal parameters, etc.

Clear and error-free implementation of this whole list of transactions
may at first glance appear to be a forbidding task. To reduce the
difficulty of an initial attack on the design problem we face in creating
the required system, we will make use of a powerful programming tool, namely
the parallel-process extensions to SETL described in Section XXX. Why is
this appropriate? We can answer this question as follows. Our inventory
control application, like other commercial application of the same general
sort, can be regarded as an 'event tracker'. That is, it aims to follow an
evolving sequence of real-world events (each transaction processed by the
system notifies it of one such event), and to maintain a model of the
real-world situation generated by those events. As significant events come
to its attention, the system is also expected to respond appropriately (e.g.
by issuing bills and dunning letters, noting payments, etc.) Our inventory
control system, like all other such systems, must also aim to detect and
report various kinds of anomalous situations, which either reflect
'exceptional' real-world occurrences, for example non-delivery of an item
ordered from a supplier, or which reflect the fact that the inventory
control program's logic, no matter how carefully worked out, cannot be a
complete representaion of all possible real-world event sequences.

If we begin by trying to work out a centralized, single-thread program
capable of dealing with all the events and situations which can occur in an
application of this sort, confusion can easily result. The fact that some
of the consequences of a transaction only take place hours or days after
processing of the transactions begins is troublesome. Equally troublesome
is the fact that certain transactions, e.g. transmission of a shipping
order to the warehouse, saddle us with the responsibility of checking
periodically for a follow-up transaction _that we must expect, namely
confirmation of shipment or notification of a out-of-stock condition.

The programming structure necessary to manage all this is more easily
comprehended if we decentralize our approach to it. This means that we will
want to think, not in terms of one central record keeper which must keep
track of everything, but in terms of multiple processes acting in parallel,
each of which is responsible for overseeing a single, narrow activity,
essentially a single transaction and its delayed consequences, from start to
finish. Using this idea, we use it vigorously: for example, we introduce a
seperate process for each customer, and also for each supplier, each order,
and each item supplied. We therefore program as if the firm whose
operations we are modeling assigned responsibility for all communication
with a particular customer or supplier to a single (mechanized) account
representative, who has this responsibility and no other. In the same
sense, we program as if the firm hired a new junior clerk to process every
single order received, giving him responsibility only for this one order,
and discharging him as soon as the order is either shipped or abandoned as
unfillable.

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-26

Although it is true that these processes will have to interact, enough
of what neieds to be done is interaction-free for the introduction of these
many parallel processes to simplify our approach considerably.· Were this
not the case, large businesses could never have developed, since in reality
they do and must make use of numerous employees with simple narrow
responsibilities and authority, who can in fact transact large volumes of
the kind of_ business necessary without being overwhelmed by any growing
requirement to interact.

In the first programming approach shown below, we give each process a
responsibility narrow enough for the nature of its activities to remain
clear. Where interactions complex enough to become troublesome threaten to
appear, we avoid them by having processes request appropriate services from
other, logically somewhat more central, processes. Generation of· overall
summaries of system condition is accomplished by having centrally placed
processes communicate requests for information to the less centrally placed
processes which they are responsible for managing.

From this decentralized point of view, a commercial data base. simply
records the condition of the numerous parallel processes which exist (mos~ly
in a state of 'suspended animation') within the world of processes
collectively constituting the application, plus a few sets and maps which
hold necessary global information, and which also serve to correlate
proces~es with the particular activities for which they are responsible. I~ -
the system that we wish to program, the following transactions will be
supported (capital letters in brackets show transaction codes).

Open account
(OA)

List accounts
(LA)

Modify address
(MA)

Modify credit
(MCL)

Close account
(CA)

Record payment
(P)

Record return
(R)

limit

Record cancellation
(C)

Note loss of
shipment

start a new customer account. A unique
customer identifier, an address string,
and credit_limit must be supplied.

print sorted list of all accounts, with customer
address, credit_limit, credit_remaining, and
last_payment_date

revise customer address/telephone number string

revise customer credit limit

delete account

note receipt of payment from customer

note customer return of portion of previous
shipment

note customer cancellation of unshipped portion of
order

note that shipment has disappeared in transit,
and make necessary adjustments

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-27

(NL)

Order from
customer
(O)

Note receipt of
stock
(RS)

Note item
spoilage
(NSP)

Note current
inventory
(NI)

Begin stocking
item
(BI)

End stocking
item
(EI)

Change item
information
(CSI)

Enter transaction
authorization
(E au)

End transaction
authorization
(KAU)

Print rejected
transact ion file
(PRJ)

Print customer
summary
(PCS)

Print volume
summary
(PVS)

Print supplier
(PS)

note arrival of a new order, check on existence
of corresponding customer and on credit
availability

note arrival of specified item, in quantity k,
from its supplier. This transaction will
generate a receipt to be transmitted to the
supplier, update warehouse inventories, etc.

adjust recorded inventory of given item to
reflect spoilage reported by warehouse.

note inventory as recorded by warehouse

enter a new item into the catalog of items
managed by the system. A unique item identifier,
supplier, price, reorder_level, reorder_amount,
and initial item stock must be specified.

delete item from catalog of items supplied

change item supplier, price, reorder-level, and
reorder amount

the name of a transaction and an employee number
are supplied. This employee becomes capable of
authorizing transactions of a specified kind.

the name of a transaction and an employee number
are supplied. The employee's right to authorize
transactions of a given kind is cancelled.

output function: print the file of all
transactions rejected as illegal since the last
time that this output operation was performed.

print status of specified customer, including
pending orders, and dates and totals of last
few shipments.

print total value of shipments, alphabetized by
customer, for specified period of days prior to
present.

print status of specified supplier.

------- -------------------------------- --------~~--

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-28

Print comprehensive print alphabetized catalog of all suppliers.
summary of suppliers
(PAS)

(MORE SUPPLIER-RELATED TRANSACTIONS ARE NEEDED)

Having now described the commercial application that we mean to
program, we go on to describe the processes which we will use to realize it.
These are as follows:

(a) For each valid customer, a customer process is created. This keeps
track of such basic customer-related information as address, telephone
number, etc., tracks the customer's current credit balance, cred~t-limit,
etc. and manages all lower-level processes acting on behalf of the
customer.

(b) For each valid order, an order process is created. This keeps track of
the shipment of the order (part of which may be delayed), and notifies the
relevant customer process of the date and amount of shipmments. Ord~r
cancellations are handled by these order processes. Order processes hel~ up
unduly long will send out letters of apology.

(c) For each item supplied, an item process. This keeps track
inventory of the item, reorder level, dates and amounts of reorder,
date of arrival of new supplies. Item spoilage is also noted
process.

of the
expected
by this

(d) A master process reads an input file of transactions and routes each
transaction to the appropriate lower level process. Transactions that
cannot be handled are posted to a rejected transactions file.

(e) For each employee, an employee process. This sends each employee a
periodic report concerning all significant transactions which the employee
has been reported as authorizing.

(f) For each supplier, a supplier process, which makes up orders for
transmittal to the supplier and prints these orders daily. The code for the
inventory-control system described in the preceeding pages begins here.

PROC master; $ the master process

LOOP DO

AWAIT (transaction/= OM); $ we assume for simplicity that the
$ transaction is given as a tuple

IF (p := proc_handling(transaction)) = OM THEN CONTINUE; END;
$ bypass transactions failing initial check

CASE tc := transaction(!) OF$ tc is the transaction code

(OA) : $ open a new account

result := new_account(transaction); $ 'result' may report an

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-29

$ error checked for below.

(LA): $ list all accounts

report_vector := -{--{[rpt := report(p),id] ,rpt(l)J:
p • customer_process(id)];

print_report(sort(report_vector));

(MA): $ modify address

p.address := transaction(4); $ set address value of customer
$ process

(MCL): $ modify credit limit

p.cred_lim := transaction(4); $ set credit limit value of customer
$ process

(CA): $ close account

$ This rather delicate instruction is transmitted to a
$ appropriate user process, which proceeds to commit
$ suicide in an orderly fashidn.

p.work WITH:• DIE; $ instruction to close up shop
proc_of(transaction(XACCOUNT)) :• OM;

$ eliminate account number

(P,R,C,NL,O): $ payment, return, cancellation, loss of shipment,
$ order: handled by customer processes

p.work WITH:• transaction;

(RS): $ note receipt of stock: handled by supplier process

IF (p :• supplier(transaction(2))) • OM THEN$ item not
$ stocked

print_return_order(transaction);

ELSE
p.work WITH:• transaction;

END IF;

$ signal warehouse to
$ return shipment

(El): $ delete it~m from catalog of items supplied

item_of(transaction(XITEM) :• OM; $ remove from catalog
p.work WITH :• DIE; $ send termination command

(CS!): $ change supplier for item

(TO BE SUPPLIED)

(NSP,NI): $ take note of spoilage reported by warehouse,
$ note actual inventory

$ These are passed along to the item processor

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES

(BI):

p.work WITH := transaction;

$ begin stocking item

$ This begins by checking the validity of the indicated
$ supplier. If invalid, the transaction is rejected;
$ Otherwise an item proscess is created; the supplier,
$ price, reorder_level,reorder_amount, and initial item
$ stock are passed to this process

(TO BE SUPPLIED)

(EAU): $ enter transaction authorization

Page 11-30

authorizations WITH := [transaction(Xauth + 1 •• Xauth + 2),
transaction(Xauth)];

(KAU): $ end transaction authorization

authorizations LESSF := transaction(Xauth + 1 •• Xauth + 2);

(PRJ): $ print rejected transaction file

print_rejected(bad_transacts);
bad_transacts := []; $ restart file

(PC): $ print status of specified customer: handled by;
$ customer process

p.work WITH:= PC;

(PVS): $ print total value of shipments, alphabetized by
$ customer for specified period of days prior to present

(TO BE SUPPLIED)

END CASE;

END LOOP;

END PROC master;

PROC customer; $ the customer process

LOOP DO

AWAIT work/= [] ; $ wait for work to turn up
transaction FROMB work;

CASE tc := transaction(l) OF

(P): $ note receipt of payment

balance+:= transaction(4); $ increment the recorded balance

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-31

(R): $ note customer return of part of previous shipment
$ all items returned must be credited and added to inventory

(FOR [item,no] IN transacton(4 ••))

IF(ip := item_proc(item))/=OM THEN
balance+:= ip.cost * no; $ increment recorded balance
ip.work WITH := [R,no]; $ post to ip for inventory revision
ELSE$ return of item no longer stocked

post_bad([transaction,item,'NOT STOCKED');

END IF;

END FOR;

(NL): $ note customer claim of non-delivery

$ here we check total amount of non-delivery claimed this
$ year, comparing it to dollar volume shipped. If this
$ exceeds 1%, extra authorization is required to accept
$ the transaction

[total,not stocked] := total_of(transaction);

IF (new_nondel := non - delivered_value + total) * 100
> volume_shipped

AND NOT strong_authorization(transaction(2)) THEN$ reject
post_bad([transaction, 0], 'EXCESSIVE NON-DELIVERY');

ELSE
non_delivered_value := new[nondel;
balance+:= total; $ credit customer for return
post_bad([transaction,not_stocked],'NOT STOCKED');

END IF;
(0): $ process an order

$
$
$
$

We verify that the orders pending plus the balance
outstanding do not exceed the customer's credit limit.
If this condition is met, we create an order processor to
handle the order; if violated, the order is simply handed

$ on for retry.
[total,not_stocked] := total_of(transaction);
IF (orders_pending + balance+total) <= credit_limit THEN

order_pending +:= total;
orders_going WITH :a NEW order(transaction, total,

not-stocked,SELF);
ELSE

retryer.work WITH := transaction;
END IF;

(S): $ process shipment

$ Shipment notification consists of the order_number items
$ shipped quantitites, and prices. This transaction is

---- --- ----------------------

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES

$ executed once each day.

print_invoice(address,shipment_list);

(TO BE CONTINUED)

PROC order(transaction,estimated_total,not_stocked,cust_proc);

$ The order process

$ This process oversees a single order until it has
$ either been fully shipped, or cancelled,
$ or until it has been posted as bad because of
$ lack of response from the warehouse

(TO BE CONTINUED)

PROC total_of(transaction); $ auxiliary process to check a
$ list of items ordered for validity

total := O; $ total cost of items ordered
not_stocked := [] $ items not stocked

(FOR [item,no] IN transaction(first_data))

IF(ip := item_proc(item)) /= OM THEN
total:= ip.cost * no; $ increment total

ELSE
not stocked WITH := item;

END IF;

END FOR;

RETURN [total,not_stocked];

END PROC total_of;

Page 11-32

Since we have used multi-process primitives to represent the inventor
control application shown in the preceding pages, our approach to thi
application makes use of programming-language facilities that are· not
ordnarily available. To remove the sting from this objection, we will nou
reprogram the application in a manner which avoids the use of paralle
process facilities and can be used in an ordinary 'batch' environment. In
this alternative representation, a data-base in the ordinary sense, that is,
a family DB of sets and maps, is used to represent what would otherwise b
the collection of states of all processes active in the system at any givE_
moment. When possible, we call a procedure to accomplish an action
immediately rather than some subsidiary process to perform the actior
Where this is not possible, we post the necessary request to a workpile c:
pending requests, which is digested when no more pressing work remains •
Requests to inititate an activity at a later time are simply written out to
a final master file which the system creates at the end of each batch ru1.
This file consists of two parts, a first being the collection of accumulat~J
requests to initate activities during later runs, and the second being a

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-33

full copy of the data-base DB. Use of this file gives our second version of
the inventory control system the processing pattern the manner typical for
commercial batch processing, namely run of the system applies a file, of
transactions thereby a master file thereby producing an updated master file.

11.6 A Turing-Machine Simulator

Turing machines, named after the famous English mathematician and
computer scientist Alan Turing, are the most elementry kind of computer; so
elementary that they are not used in any practical way, but merely serve as
idealized models of computation at its simplest. Used in this way, they
play an important role in theoretical investigations of the ultimate. limits
of computability. A significant fact about these very simple computing
mechanisms is that they can be programmed to imitate the action of any other
computer, for example, a Turing machine can be programmed to take the text
of any SETL program and print out its result.

Turing machines consist of two basic parts: a tape and an read-write
head. The tape is simply a linear array of squares, infinite in both
directions. In a tape square, the automation can print any character chosen
from a finite collection called the tape alphabet of the Turing machine.
All but a finite number of squares on the tape are always blank. At the.
start of each cycle of operation of the Turing machine, its read-write head
is positioned at one of the tape squares, and is in one of a finite
collection of possible internal states s. The read-write head then reads
the character c held in the square at which it is positioned and performs
three actions, all determined by the character c which has just been read
and the internal states of the read-write head:

(i) some new character c' is written into the tape square at which the
read-write head is positioned, replacing the character c that was there;

(ii) the read-write head passes into a new internal states';

(iii) The read-write head moves either one step right, one step left,
or remain where it is.

Plainly, these actions of the Turing machine can be defined by a map
action(c,s), whose two parameters are a tape character c and an internal
states, and whose value is a tuple [c',s',n'J, consisting of the tape
character c' that will over-write c, the new internal states' of the
read-write head, and an indicator n of the direction of head motion, which
must be either +l (move right), -1 (move left), or O (don't move).

The following procedures read in the description of a Turing machine,
check this description for validity, read in the initial contents of the
Turing machines's tape, and then proceed to imitate its actions. The tape
is represented by a tuple -tape- whose j-th component is the character
written in the j-th square. Blank squares contain the blank character. The
Turing machine stops when it reaches an internal state s such that
action(c,s) is undefined. We assume that the Turing machine description
read in initially is a set of quintuples [c,s,c',s',n'], each representing
an action- map entry [[c,s],c',s',n]. This description is checked to verify

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-34

that the action map it describes is really single-valued. The auxiliary
procedure -print_tape- prints the contents of the Turing machine tape after
each cycle of operation.

PROGRAM Turing_simulate; $ Turing machine simulator

IF (atps := read_check()) = OM THEN RETURN; END;
$ illegal specification

[action, tape, position, state] := atps;
$ unpack action table, initial tape, initial position, and
$ initial state

(WHILE (act := action(tape(position),state)) /= OM) $ until stop

[tape(position),state,n] := act; $ write new character to tape,
$ and change internal state

IF (position+:= n) < 1 THEN
tape := (' '] + tape;
position := l;

ELSEIF position > #tape THEN
tape WITH:= ' ';

END IF

print_tape(tape,position);

END WHILE;

$ moved left to brand-new square
$ add blank square at left
$ and adjust position pointer
$ moved right to brand-new square;
$ add blank at right

print('Simulation ended. Character and state are:',
tape(position),state);

END PROC Turing_simulate;

PROC read_check; $ reads and checks action table, tape,
$ initial position, and initial state

MACRO check(condition,message,quantity); $ utility macro for
$ input-condition checks

IF NOT condition THEN
print(message,quantity); $ print diagnostic message and offending·

$ quantity
RETURN OM; $ as indication of error

END IF;
ENDM;

read(actuples,tape,position,state);
action := { [[c,s] ,c2,s2,n]: [c,s,c2,s2,n] IN actuples};

(FOR im = action{cs} I #im > 1) $ action is not single valued

print;
print('action is indeterminate in condition',cs);
print('actions could be:');

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES

(FOR [c2,s2,n] IN im)
print(c2,s2,n);

END FOR;

print;
END FOR;

RETURN OM; $ as indication of error in action table

check((bad_cs :• {cs: (c2,s2,n] • action(cs)
I n NOTIN {-1,1,0}}) • { },

Page 11-35

'Illegal tape-motion indicators occur for conditions:',bad_cs);

check(is_integer(position),'Illegal initial position:',position);
check(is_tuple(tape),'Illegal inital tape:',tape);
check(FORALL t•tape(i) I IS_STRING(t) AND #t•l,

'Illegal initial tape', tape);

$ now add extra blanks to the initial tape if necessary

IF position> #tape THEN $ extend tape with additional blank squares
tape+:• (#tape - position)* [' '];

ELSEIF position< 1 THEN$ add extra blank squares to left
tape:• (1 - position)*[' ']; ·
position:• l; $ adjust index of position on extended tape

END IF;

RETURN [action,tape,position,state];

END PROC read-check;

PROC print_tape(tape,position); $ Turing machine tape print utility.

$ This procedure is used to display the state of the Turing machine
$ tape at the end of each cycle of simulation

CONST sq•l8, hsq•9; $ one fourth and one eigth screen size
CONST screen_aize • 72; $ number of characters on terminal

topline :• screen_aize * ''; topline (4*hsq+l ••• 4*hsq+4):•'****';
hotline :• screen_size * '-';
tape_string :• hsq *' '+/tape+ hsq *' ';

$ Convert tape to string and pad with blanks.
tape_string :• tape_string(position - hsq •• position+ hsq-1);
picture :• +/('1 '+ t +' ' : t IN tape_string];
picture(!) :•' '; $ Remove first vetical bar.
print; print(topline); print(picture); print(botline);

END PROC print_tape;

END PROG Turing_simulate;

11.7 'Huffman Coding' .21. Text Files

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-36

The standard 'ASCII' alphabet of computer characters contains 256
characters, each of which is represented at the internal machine level (see
Section 9.3.2) by a sequence of 8 binary 'bits' (i.e., zeroes and ones). If
large volumes of English-language text need to be stored, this internal
coding, which uses just as much computer memory space to represent a rare
character like 'Z' as to represent a common character like 'e', is by no
means optimal. It is better to represent frequently occuring characters by
shorter sequences of bits, even though this forces one to lengthen the
internal encoding of less frequent characters, since overall this will
diminish the total storage reqired to store typical texts. An effective
method for using 'variable length' encodLngs of this kind was described by
x. Huffman and has become known as Huffman coding. Huffman's technique is
to arrange all the characters to be encoded as the terminal nodes of a
binary tree, in the manner shown in Fig. 1. This tree should be set up so
that commonly occuring characters appear near its 'root' node and rare
characters appear at a greater distance from its root.

Fig. 1

root node

Binary 'Huffman tree' with characters attached to its
terminal nodes.

There will always exi~t a unique path from the roQt node of such a tree to
each terminal node or 'twig' of the tree, snd any such path can always· bt
described by a unique sequence of zeroes and ones, where 'o~ means 'take th~
left branch' and '1' mean take the right branch down the tre-e. As the code
for a character c we can therefore use the binary sequence describing th,
path from the root node of the tree to the terminal node at which c i:
attached. For example, the tree shown in Fig. 1 would assign the code
' 0 0 0 ' to ' E ' , the code ' 0 0 1 0 ' t o ' T ' , th e co de ' 0 1 0 l ' t o I. t . et c • To enc o d P

a sequence of characters, we simply concatenate the sequences of zeroes an,
ones representing its individual characters. To _decode a sequences o~
zeroes and ones, we start from the root of the Huffman tree· which defines
our encoding, and use the leftmost bits of s to guide us down a path in th,
tree. As soon as we reach a twig of the tree we add the character attache•
to this twig to the sequence of decoded characters we are building up. The

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-37

sequence of bits that led us to this character is then detached from s, and
we return to the root of the Huffman tree and continue the decoding process
using what remains of s.

The three routines which follow embody this encoding and decoding
technique. The -Huff- procedure takes a character string and encodes it
using Huffman's method. -Puff-, which is the inverse of -Huff-, takes the
encoded form of a strings and recovers the original form of s. The third
procedure, called -setup- , takes maps -lef-t and -right- representing a
Huffman tree and uses them to initialize various global data objects
required by the -Huff- and -Puff- routines.

MODULE Huffman - Huff_Puff; $ Huffman encode, decode, and setup
VAR

H_code, $ maps each character into its Huffman code
H _root, $ root node of Huffman tree
H_left, $ maps each node of the Huffman tree to its le ft

$ descendant
H_righ t, $ maps each node of the Huffman tree to its right

$ descendent
H_char; $ maps terminal nodes of the Huffman tree to the

$ characters they represent

PROC setup(root,left,right, char); $ auxiliary initialization routine
0

$ We begin by using the procedure arguments to initialize
$ all but the first of the global variables listed above.

H left := left; H_right := right;
H root := root; H_char := char;

$ Next we calculate H_code(c) for each character c

parent :c { [y,x]: [x,y] IN (H_left + H_right)};
$ This maps each tree node to its parent

H code : • { } ; $ begin calculating Huffman codes from tree structure

(FOR ca H_char(node))

$ chain up to the root, noting how we got there

bits :•' '; $ initially, path is null

(WHILE node/• H root)
bits := IF H-left(par :a parent(node)) • node THEN

- '0' ELSE '1' END+ bits;
node := par;

END WHILE;
$ step up to parent

H_code(c) := bits; $ record Huffman code for current character

END FOR;

END PROC setup;

-----------~-- -----

------------- ------------------- --- -----

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-38

PROC Huff(stg); $ calculates Huffman code for string -stg-

RETURN''+ /[H_code(c): c = stg(i)];
$ concatenate codes of individual characters

END PROC Huff;

PROC Puff(Huff_stg); $ decodes a Huffman-coded string

stg := ''; $ initialize decoded string
node := H_root; $ start at Huffman-tree root

(FOR b = Huff_stg(j)) $ examine binary bits of Huff_stg in orde.r

node : = IF b = 'O' THEN H_left(node) ELSE H_right(node) END;

IF(c := H_char(node))/= OM THEN$ have reached twig

stg +:= c;
node := H_root;

END IF;

END FOR;

RETURN stg;

END PROC Puff;

END MODULE;

$ append to decoded portion
$ restart at Huffman-tree root

The encoding and decoding procedures shown above sidestep the question
of how to find the tree that will give us a maximum degree of text
compression. Of course, the rule for finding this tree, given the frequency
with which each character occurs in the text we are to encode, is Huffman's
essential discovery. His rule is as follows: we begin by finding the two
characters cl, c2 of lowest frequency. These are then logically
'conglomerated' into a single joint character c, of which cl and c2 become
the left and right descendants respectively. We remove cl and c2 from the
collection of characters which remain to be processed, and replace them· by
c. Continuing this until only one character remains, we will have built the
Huffman tree.

Represented in SETL, this procedure is as follows:

PROC Huff_tree(freq); $ Huffman tree-build routine

$-freq-is assumed to map all the characters of our alphabet
$ into their expected frequencies of occurrence.

$ This procedure returns a quadruple [root,left,right,char]
$ consisting of the Huffman tree root, its left and right
$ descendancy maps, and a map -char- which sends each terminal
$ node of the tree into the character attached to this node.

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-39

$ Since the code which follows will represent tree nodes by
$ character strings, the -char- map is just the identity map on
$ single-character strings, and is conveniently set up right here.

char:= {[c,c] c IN DOMAIN freq};

left:= right.- { };

(WHILE #freq> 1)

$ initialize the descendancy mappings

[cl, freq_cl] := get_min(freq); [c2,freq_c2] :• get_min(freq);
freq (c :=(cl+ c2)) := freq cl+ freq c2;

$ form a logically 'conc~tenated' ~haracter
left(c) := cl; right(c) := c2; $ make cl and c2

$ descendats of c

END WHILE;

RETURN [ARB DOMAIN freq, $ which is necessarily the tree root
left, right, char];

END PROC Huff_tree;

PROC get_min(RW freq);
$ This auxiliary procedure finds the character c of minimum
$ frequency, returns c and its frequency, and deletes c from
$ the domain of -freq-. Note that it uses a 'dangerous' program
$ construction, legal in SETL, but certainly not recommended
$ for use in any context which is at all complex, namely it is
$ a function which modifies the argument with which it is called.

min_freq := MIN/[f: f""' freq(c)];

ASSERT EXISTS f • freq(c) f ... min_freq;

freq(c) :z OM; $ modify the input argument (which is 'RW').
$ DANGEROUS!

RETURN [c,f];

END PROC get_min;

Various improvements and extensions of the procedures described in this
section appear in Exercises 13-18.

11.8 A 'Game Playing' Program

In this section, we will explore the basic structure of programs which
play board games, like chess or checkers which involve two players, whom we
shall call 'A' and 'B'. The momentary state s = [p,x] of any such game can
be defined by giving the position p of the various pieces or counters used
in the game, and by stating which of the players, x = 'A' or x = 'B', is to

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-40

move next. Given any such states, the rules of the game will determine the
moves which are legal, and hence will determine the set of all possible new
states sl, ••• ,sk, exactly one of which must be chosen by the 'active'
player, i.e. the player whose turn it is to move. We shall suppose in what
follows that the map has turn(s) determines this player (i.e. has_turn(s)
is just x, if as aboves has the form [p,~]). We also suppose that the map
next states(s) gives us the set {sl, •• sk} of states to which the active
player can move.

Any such game will end as soon as certain states, called t~rminal
states, are reached. (In chess, for example, these are the states in which
one of the players has been 'checkmated'). For purposes of analysis it is
convenient to suppose that when a terminal states is reached, D dollars are
transfered from player B to player A. We can either suppose that the sum D
is fixed, or that it depends on s. It is actually more convenient to make
the latter asumption, and we shall do so, supposing accordingly that we are
given a function A_wins(s) defined on all terminal states s, and that when a
terminal states is reached the sum= A_wins(s) is transfered from B to A.
; Plainly A is the winner if D > O, Bis the winner if D < O, and the game
counts as a tie if D = O. It is convenient to suppose that A_wins(s·) = OM
if the state sis not a terminal state; then the condition A_wins(s)/=OM
can be used to test for terminal states.

The three functions, has_turn(s) (whose value must _be either 'A' or
'B'), next_states(s), and A_wins(s) serve to encapsulate the basic rules of
any two-player game we wish to study.

Next, to begin to understand the strategic considerations which
determine the laws of effective play, it is useful to extend the function
A_wins(s), which is only defined for terminal states, so that it becomes a
function A_can_win(s), defined for all states. We do this in the following
recursive way:

(1) A_can_win(s) = A_wins(s)?
IF has turn(s) = 'A' THEN MAX/[A_can_win(sy):sy IN next_states(s)]

ELSE MIN/[A_can_win(sy):sy IN next_states(s)] END;

The meaning of this formula can be explained as follows:

(a) If the states is terminal, the game is over and the amount that A can
win is exactly the smount that A has in fact won.

(b) Otherwise, if it is A's turn to move , he wiil chose the move that is
most favorable to him, shifting the game into that state sy in
next_states(s) for which A_can_win(sy) is as large as possible. Conversely,
if it is B's turn to move, he will defend himself as well as possible
against A's attempts to win a maximum amount. B does this by shifting the
game into the state sy for which A's attainable winnings are as small as-~
possible. Since A wins what B loses, and vice-versa, this is at the same
time the state in which B's winnings are as large as possible.

It is not hard to see that if the function A_can_win defined by (1) is
known, and if both players expect their opponents to play with perfect
accuracy, player A should always use his turn to move to a state sy such
that A_can_win_(sy) is as large as possible, and player B should always use

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-41

his turn to move to a state sy such that A_can_win(sy) is as small as
possible ■ To show this, suppose that the sequence of states traversed in
the history of a game, from the moment at which it reaches state· s, up to
the moment at which the game terminates, is s • sl,s2, ••• ,sn. Using (1) it
is easy to see that if A uses this strategy, A_can_win(sj) will never
decrease, so that by using our recommended strategy A guarantees that when
the game terminates he will win at least the amount A_can_win(s).
Conversely, if Buses the strategy we recommend, then formula (1) shows that
A_can_win(sj) will never increase. Hence, if player A ever makes a move
which decreases the value of A_can_win from v to some value u which is less
than v, then after this B can prevent him from recovering, i ■ e ■ from ever
winning more than U. If follows that, if A gi~es his opponent credit for
playing optimally, A must never 'give ground' in regard to the function
A_can_win(s), i ■ e ■ that when it is his turn to move he should always move
to a new state sy such that such that A_can_win(sy) is as large as possible ■
(Of course, if he does this, then A_can_win(sy) ~ A_can_win(s); see (1)).

Reasoning by symmetry, we also see that B should always move to a new
state sy such that A_can_win(sy) is as small as possible.

These considerations indicate that any game-playing program will need
to calculate the function (1). However, if the game being analysed is at
all complex, it will not be feasible just to use the recursive definition
(1) as it stands, since the tree of possible moves and .countermoves which
(1) would examine will tend to grow very rapidly. For examvle, if at · every
level A has just 4 possible moves and B has 4 possible countermoves, then
256 different positions can evolve from an initial states after A· and B
make two moves each, 64,000 different postions after A and B have made 4
moves each, and hence the recursion (1) would have roughly 16,000,000
positions to examine if we used it to look ahead through all possible
combinations of six moves of A and six countermoves of B ■

This makes it plain that it is important to accelerate calculation of
the function A_can_win(s) as much as we can. Several techniques for doing
this have been developed, but we shall only describe one particularly
important method of this kind, the so-called 'alpha-beta pruning' method.
To derive this improvement, suppose that f is a function mapping numbers to
numbers, and that f is monotone, i.e. has the property that x <• y implies
f(x) <~ f(y). Then since x MAX y is the larger of x and y, it follows that
f(x MAX y) • f(x) MAX f(y). Hence

(2) f1MAX/[e(x)tx IN s]) • HAX/[f(e(x)):x IN s]

for every sets and expression e. It is also clear that (2) continues to
hold if we replace MAX by MIN. This remark, and (1), make it obvious that
the f~llowing recursive function calculates the function B(s,lo,hi) •
A_can_win(s) MIN hi MAX lo:

(3) PROC B(s,lo,hi);

IF(v := A_wins(s)) /= OM THEN RETURN v MIN .hi MAX lo; END;

IF has_turn • 'A' THEN

max_t il.l_now : = lo;

----- --- - - ----------

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES

(FOR sy IN next_states(s))
max_till_now MAX:• B(s,lo,hi);

END FOR;

RETURN max_till_now MIN hi;

ELSE

min_till_now := hi;

(FOR sy IN next_states(s))
min_till_now MIN := B(s,lo,hi);

END FOR;

RETURN min_till_now MAX lo;

END IF;

END PROC B;

Page 11-42

Since the quantity returned at the end of the first loop in (3) is
max_till_now MIN hi, we can terminate the loop as soon as max till now rises
to -hi~; and a similar remark clearly applies to the second loop in (3). -
This crucial observation allows us to rewrite (3) as

(4) PROC B(s,lo,hi);

IF(v :• A_wins(s)) /• OM THEN RETURN v MIN hi MAX lo; END;

IF has_turn • 'A' THEN

max_till_now := lo;

(FOR sy IN next_states(s))
IF(max_till_now MAX:• B(sy,lo,hi)) >= hi THEN RETURN hi; END;

END FOR;

RETURN max_till_now;

ELSE

min_till_now := hi;

(FOR sy IN next_states(s))
IF(min_till_now MIN := B(sy,lo,hi)) <= lo THEN RETURN lo; END;

END FOR;

RETURN min till - now;

END IF;

END PROC B;

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-43

In the first loop of (4) the quantity max_till_now is never larger than
hi or less than lo; hence we have

B(s,lo,hi) MAX max till now a A can_win(s) MIN hi MAX lo MAX max till now
• A_can_win(s} MIN hi MAX max_till_now
= B(s,max_till_now,hi}.

Similarly, in the second loop of
min_t.ill_now a B(s,lo,min_till_now).
appearing in (4) occur in contexts in
MIN hi MAX lo). Hence (v MIN lo MAX
line of (4). These remarks show that
satisfies B2(s,lo,hi} MIN lo MAX hi•

(5) PROC B2(s,lo,hi);

(4) we always have B(s,lo,hi} MIN
Moreover, all the recursive calls to B
which B can as well by replaced by (B
hi) can be replaced by v in the second
the following recursive procedure B2
B(s,lo,hi):

IF (v := A_wins(s}) /= OM THEN RETURN v; END;

lF has_turn • 'A' THEN

till_now := lo;

(FOR sy IN next_states(s))

IF (till_now MAX :• B3(sy,till_now,hi)} > hi THEN RETURN hi; END;

END FOR;

ELSE

till_now := hi;

(FOR sy IN next_states(s))
IF(till_now MIN :• B2(sy,lo,till_now)) <• lo THEN RETURN lo; END;

END FOR;

END IF;

-ETURN till_now;

END PROC B2;

The fact that the loops in (5) are terminated 'early', i.e terminated as
soon as till_now rises to hi or sinks to lo, sometimes improves the
efficiency of (3) very substantialy; this is what we want. Of course, we
can exploit the symmetry of B2 to write it more compactly:

(6) PROC B3(s,lo,hi}; $ A polished 'alpha_beta' algorithm

IF (v :• A_wins(s)) /• OM THEN RETURN v; END;

IF has_turn"" 'B' THEN [hi,lo] := [-lo,-hi]; END;

till now:= lo;

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-44

(FOR sy IN next_states(s))
IF (till_now MAX := B3(sy,till_now,hi)) >= hi THEN RETURN hi; END;

END FOR;

RETURN IF has turn= 'B' THEN -till now ELSE till now END;

END. PROC B3(s,lo,hi);

IF LARGE designates any
B3(s,-LARGE,LARGE) will be equal
represent such an 'infinitely large'
replace (6) by a recursive procedure

sufficiently large
to A_can_win(s).
quantity by OM, and
yielding the value

quantity, then;
It is convenient to
also convenient to

IF has_turn = 'A' THEN B2(s,lo,hi) ELSE -B(s,-lo,-hi) END

Doing this gives us our next form of the alpha-beta procedure, namely

(7) MACRO reverse(x); IF x = OM THEN OM ELSE -x END ENDM;

PROC A_can(s,lo,hi); $ second form of alpha_beta algorithm

till_now := lo;

(FOR sy IN next states(s)) $ note that next states(s) = { }
$ifs is a terminal state

till_now := IF till_now = OM THEN a_can(sy,reverse(hi),reverse(lo))
ELSE till_now MAX A_can(sy,reverse(hi),reverse(lo)) END;

IF hi/=OM AND till now>= hi THEN RETURN till_now; END;
END FOR;

RETURN IF(v := A_wins(s)) = OM THEN -till now
ELSEIF has_turn(s) = 'A' THEN v ELSE -v END;

END PROC A_can; $ A_can_win(s) = A_can(s,OM,OM)

A close analysis sof algorithm (7) will show that it can be expected to
derive the value of the A_can_win function for a tree of moves 2d levels
deep in roughly the time that algorithm (3) would require to analyse a tree
d levels deep. (Unfortunately, the necessary analysis is too complicated to
be included in the present text). However, in spite of this very~
substantial improvement, complex games will still lead to trees of moves
which are so deep and branch so rapidly that full exploration using
algorithm (7) is quite impossible. One technique used to cope with this.
fundamental difficulty is to limit the number of recursive levels explored
using (7). When this limit is reached, we use some ad-hoc estimate, called
an evaluation heuristic, to approximate the value of A can win(s). In
effect, this approach pretends to replaces the full game tiat ;e would like­
to analyse by a truncated game that is played for some limited number L of
moves and then terminated with a payoff determined by the evaluation
heuristic. To play the full game, we then reanalyse this truncated game-­
each time it. is a given player's turn to move and choose the best move in

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-45

the truncated game as his recommended move in the real game. Assuming that
A_estimate(s) is the; estimated value of states to player A, it is easy to
modify (7) to incorporate such a limit on the number of levels of move and
counter move that will be examined. Doing so, we get:

(8) MACRO reverse(x); IF x = OM THEN OM ELSE -x END ENDM;

PROC Est_A_can_win(s,lo,hi,lim); $ alpha-beta algorithm with
$ limited search

IF (lim -:= 1) = 0 THEN
RETURN IF has turn(s) = 'A' THEN A estimate(s)

ELSE -A_estimate(s) END;
END IF;

till now:= lo;

(FOR sy IN next_states(s))

till_now := IF till now= OM THEN
Est_A_can_win(sy,reverse(hi),reverse(lo),lim)
ELSE till_now MAX Est_A_can_win(sy,reverse(hi),reverse(lo),

lim) END;
IF hi/=OM AND till now>= hi THEN RETURN till_now;. END;
END FOR;

RETURN IF (v := A_wins(s)) = OM THEN -till now
ELSEIF has turn(s) = 'A' THEN v ELSE -v END;

END PROC Est_A_can_win;

(Application of the above to a simple game, e.g.
here).

11.9 Implementation of a Macroprocessor

KALAR, should be inserted

In this section we will show how to implement the SETL macro feature
described in Section 6.4. The context within which this macroprocessor is
to be implemented is assumed to be as follows:

(i) The macroprocessor reads a succession of tokens, obtained by decomposing
some input file into successive tokens.

(ii) When the special token MACRO is encountered, a macro definition is
opened. This token must be followed by a macro-name, which can in turn be
followed by a list of formal parameters and generated formal parameters, in
the manner explained in Section 6.4.4, 6.4.S. The macro-body following such
a 'macro opener' is collected, and saved in a map -def_of-, which associates
each macro name with its list of parameters, its list of generated
parameters, and its macro body.

(iii) When a macro invocation starting with a token belonging to the domain
of the map -def_of- is encountered, its actual arguments are collected, and
the invocation is replaced by a substituted version of the macro body. This

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-46

substituted text is logically inserted immediately in front of the remainder
of the input file, and reprocessed by the macro-expansion mechanism, thereby
ensuring that macro invocations and definitions embedded within macro bodies
will be treated in the manner described in Section 6.4.6.

(iv) The macroprocesor makes various syntactic checks. For example, it
checks that the parameters appearing in a macro definition are all distinct,
and that each macro invocation has as many arguments as the corresponding
macro-definition has parameters. If an error is detected, a diagnostic
message is printed, and any macro-action in progress is simply bypassed.

(v) The macroprocessor is structured as a MODULE, which exports just one
procedure, namely a parameterless procedure called -next_tok-, which can be
called repeatedly to obtain the sequence of tokens representing the input
file after macro- expansion. When the input file is exhausted, -next_tok­
will return OM. The macroprocessor MODULE imports just one procedure,
namely a parameterless procedure called -input_tok-. Successive calls to
input_tok generate the sequence of input tokens which constitute the
macroprocessor's initial input.

MODULE language_processor - macroprocessor;

EXPORTS next_tok;
IMPORTS input_tok;

VAR
def_of,
expanded_toks;

macro-expansion
INIT

gmac_ctr := 0
def of : -= 0
expanded_toks :=

$ maps macro-names into their definitions
$ vector of tokens obtained by prior

$ generated macro argument counter
$ initially no definitions

(]; $ initially no prior tokens

CONST Illformed_list = 'ILLFORMED MACRO PARAMETER LIST';;
$ error message

PROC next_tok; $ called to obtain successive tokens in the

LOOP DO

$ sequence of tokens generated by macro expansion

$ we return to this point whenever
$ macro-errors are detected

IF (tok :• another tok()) a OM THEN RETURN OM; END;
$ ~nd of input file encountered

IF (tok /= 'MACRO') AND (mdef := def_of(tok)) = OM THEN
RETURN tok; $ token is ordinary;

END IF;

IF tok = 'MACRO' THEN $ start new macro definition

IF (parm_list := get_parm_list()) = OM
OR (mac_body := get_macro_body()) = OM THEN

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-47

END;

ELSE

GOTO try_again;

END IF;

$ since macro is bad

[mac_name,mac_pars,mac_gpars] :• parm_list;
$ get macro name and parameters

def_of(mac_name) := (IF mac_body • [] THEN OM $ macro drop
ELSE [mac_pars,#mac_gpars,template(mac_body,mac_pars,mac_gpars)]

$ macro invocation

[mac_pars,n_gpars,mac_template] := mdef;
$lookup macro-definition

IF (arg_list := get_arg_list(#mac_pars)) • OM THEN
CONTINUE $ abort expansion

$ since number of arguments and number of parameters differ
END IF;

(FOR n IN [l •• n_gpars]) mac_pars WITH:= [generated_parm()]; END;
$ generate additional parameters as required

$ next replace the macro at the start of the expanded_token·s
$ vector by its expansion

expanded_tok :=
+/[IF is_string (mac_tok) THEN [mac_tok] ELSE mac_pars(mac_tok) END:

mac tok = mac_template(j)] + exp~nded_tokens;

END IF tok;

END LOOP; $ now that macro has been expanded, try again to
$ supply the requested token

END PROC next_tok;

PROC another_tok; $ 'token feeder' for macro-processor

$ This returns the token standing at the head of
$ -expanded_toks- unless expanded_toks is empty,
$ in which case it calls the 'primary'
$ token source -input_tok- to get the token to be returned.

RETURN IF (tok FROMB another_tok)/= OM THEN tok
ELSE input_tok() END;

END PROC another_tok;

PROC get_parm_list; $ gets sequence of parameters for macro

$ The sequence of parameters collected by this procedure must
$ be a comma_separated list opened by a left parenthesis and
$ closed by a right parenthesis. If this syntax is violated,

---- -----

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES

$ or if two parameters are identical,
$ an error message is printed, and OM is returned.

have_parms :• FALSE; $ flag: No generated parameters yet

mac_parms :~ mac_gparms :•]; $ initializes parameters and
$ generalized parameters

IF (tok := another_tok()) =';'THEN RETURN parms; END;
$ no parameters

MACRO check(condition,msg);
IF NOT (condition) THEN RETURN err_msg(msg); END;

ENDM;

check(tok = '(', Illformed_list);

(UNTIL tok = ')') $ until terminating parenthesis

check((tok := another_tok()) /= OM, illformed_list);

Page 11-48

mac_parms WITH:= tok;
check((tok := another_tok()) =

, ,
OR tok = ')', illformed_list);

END UNTIL;

RETURN [name,mac_parms,mac_gparms];

END PROC get_parm_list;

PROC err_msg(message); $ error message routine

print(message); $ print error message

RETURN OM; $ signal error

END PROC get_parm_list;

PROC get_macro_body; $ collects sequence of tokens to ENDM

body:= [];

(WHILE (tok := another_tok()) /= 'ENDM');
check(tok /= OM, 'MACRO BODY NOT PROPERLY ENDED');
body WITH := tok;

END WHILE;

RETURN body;

END PROC get_macro_body;

PROC template(mac_body,mac_pars,mac_gpars);

$ This procedure builds the 'macro template' stored as the
$ definition of a macro. The template consists of the
$ string constituting the macro body, but with every

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES

$ parameter and generated parameter replaced by an integer.

counter := O; $ start count at zero

Page 11-49

replacement := {[t,(counter +:= 1)): t IN mac_pars + mac_gpars};
$ This maps every macro parameter into its replacement

RETURN [replacement(t)?t: t IN template];

END PROC template;

PROC generated_parm; $ auxiliary procedure-produces generated
$ macro parameters.

$ The macro parameters generated by this procedure have
$ the form 'ZZZn', where n is the string representation;
$ of an integer.

RETURN 'ZZZ' + STR(gmac_ctr +:= 1);

END PROC generated_parm;

END MODULE;

1 1 • 1 1 Exercises

Ex. 1 A 'nondeterministic' Turing machine is a Turing machine TM whose
action mapping is not constrained to be single-valued. In addition, one
particular internal state of each such machine must be designated as its
'failed' state. Such machines can be regarded as describing indefinitely
large families of computations which proceed in parallel. More
specifically, we start with a given tape, tape position, and internal
machine state, as in the case of an ordinary Turing machine. Then, whenever
the internal -state- and the -character- under the machine's read head are
such that action(character, state) is multivalued (consisting, say, of n
values), we create as many logical copies of the machine as needed, and
assign one of them to take each of these n actions and continue the
computation. This can generate a rapidly expanding set of computations, all
proceeding in parallel. If a particular logical copy TMj of TM reaches the
special 'failed' internal state, the particular path of computation which it
is following ceases, and TMj is simply deleted. As soon as any computation
TMk reaches an ordinary 'stop' condition all other computations are deleted,
and the result calculated by this 'successful' logical copy TMk of TM
becomes the final result of the nondeterministic computation. On the other
hand, if all computations TMk reach the 'failed' internal state, the
nondeterministic Turing machine computation is considered to have failed.

Modify the Turing machine simulation program shown in Section 11.6 so
that it can simulat~ both ordinary and nondeterministic Turing machines.

Ex. 2 A 'multi-tape' Turing machine is one which has several separate
tapes, a read-write head on each, and whose action on each cycle determined
by its internal state and by the characters found under all of its

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-50

read-write heads. Modify the Turing machine simulation program shown in~
Section 11.6 so that it can simmulate multitape Turing machines with any
specified number of heads.

Ex. 3 Carr you think of
computational process whose
program? Review Exercises

any well-defined
activity could

computing automaton or
not be simulated by a SETL

1 and 2 before you answer.

Ex. 4 The macroprocessor shown in Section 11.9 is programmed to imitate the
present SETL macroprocessor, which regards every comma in a macro argument
list as a separator. For example, if -my_mac- is a macro name, then the
invocation

my_mac(f(x,y),z)

is considered to have three components, namely

y) z

This is not the best convention: it would be better to regard co~mas
contained within parentheses or brackets as being invisible to the
macroprocessor, so that the macro-call shown above would be regarded ~s
having just two arguments f(x,y) and z. Modify the m~croprocessor so that
it behaves in this way.

Ex.
in

5 (Continuation of Ex. 4).
Exercise 4 is made, use

Especially if the modification suggested
of a macroprocessor becomes subject to two

dangers:

(a) If the parenthesis terminating an argument list is missing, much of the
body of text following a macro invocation may be swallowed up in what
appears to be a very long final argument.

(b) If the keyword 'ENDM' ending a macro is ·missing or mispelled, the
following a macro definition may appear to be swallowed up by
macro-definition.

text
the

Modify the macro-processor of Exercise 4 so as to limit each macro
argument to 50 tokens and each macro-definition to 200 tokens.

Exercises related to the 'check processing' system of Section 5.4.3

Ex. 6 Modify the check processing system so that it tracks

(a) the total dollar volume of transactions handled each day.

(b) The total dollar credit/debit that the bank using the system has built -­
up against each of its correspondent banks.

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-51

These quatities should be printed out as additional information by the
DAY transaction.

Ex. 7 Modify the check processing system, adding a new transactiort DEL
which prints out a list of all accounts for which more than a month has gone
by without at least 10% of a customer's outstanding overdraft_debit having
been paid.

Ex. 8 Modify the check processing system,
transactions:

adding the following two

(a) A transaction AB ('abuse') which sh9ws all accounts for which an excess
overdraft has accumulated or against which more than 10 'insufficient funds'
charges have been made during the current month.

(b) A transaction I ('idle') which shows all accounts against which no
checks have been drawn during the past six months.

Ex. 9 Modify the check processing system, adding transactions
which allow new customer accounts to be opened and closed.
accounts should be handled carefully: such accounts should be
having been closed, but should not actually be deleted while
outstanding transactions, still to be returned by other banks,
affect the account which is being closed.

0 and CL
Closing of
marked as

there exist
that might

When an account is finally closed, the balance remaining in it should
be used to pay off any outstanding overdraft debit, and a check for the
amount remaining in the account after this final iayment should be prepared
for mailing. How will you handle an account closing when the balance
remaining is insufficient to pay off the overdraft-debit?

Ex. 10 Modify the check processing system so that it can add a short
advertisement to the monthly statements being prepared for mailing to
customers. The text of this advertisment should be supplied by a
transaction of the form.

ADVERT n

where n is an integer, and where this line will be followed by n more lines
giving the text of the advertisment. This transaction must be run just
before the DAY transaction which triggers preparation of monthly statements.

Ex. 11 If you have a checking account, save the next monthly statement you
get from your bank, and scrutinize it carefully. How may of the features of
this statement suggest that your bank is using a program similar to the
check processing program shown in Section 5.4.3? What features reveal the
use of processing steps that our simplified check processing system does not
perform? If you can find any such feature, choose one of them and mofify
the check processing system to include it.

Ex. 12 Modify the check processing system so as to make it a model for the
activity of several banks. Each of these banks will run the modified check
processing system once per day, generating files of messages which are then
sent to the other banks in the system and added to the transaction files
that these banks will process during their next day's run. Execute your

------- ~------------ ---- --

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-52

modified program with appropriate inputs so as to simulate several day's
activity for the whole 'financial system'.

Ex. 13 The degree of compression attained by the Huffman coding procedure
shown in Section 11.7 can be increased by using the fact that the
probability of encountering a character depends on the character that has
just been encountered. That is, we can calculate not one, but a whole
family of Huffman trees, one for each high-probability character c in our
alphabet; this tree should position other characters d according to
probability that d follows c.

Develop a modified
probabilities, and also
Huffman trees required.

Huffman package which uses these more refined
a modified -Huff_tree- code which calculates all the

Ex. 14 If the 'Huff' and 'Puff' procedures shown in Section 11.7 are really
to be used for compressing large texts, we will want them to produce densely
packed character strings rather than SETL-level sequences of zeroes and
ones. ·To achieve this without having to abandon SETL in favor of a language
in which sequences of bits can be manipulated directly, we can break the
sequence of zeroes and ones that 'Huff' would most naturally produce into
eight-bit sections, each of which is then represented by a single SETL
character. Conversely, when decoding, we can first convert each character
in the string being decoded into a string of zeroes and ones.

Modify the Huffman routines shown in Section 11.7 so that they work in
this way. Your modified -setup- procedur~ should construct the extra data
structures needed to convert characters into 8-bit sequences of zeroes and
ones, and vice-versa.

Ex. 15 (Continuation of Exercise 14) The decoding procedure shown in
Section 11.7 and further described in Exercise 14 can be accelerated keeping
a map -Decode- which sends the start (say the first eight bits) of the
sequence s being decoded either into a pair [c,n], where c is the first
character obtained by decodings and n is the number of bits of s that
represent this character, or into the -node- of the Huffman tree that is
reached reach after walking down the tree in the manner determined by the
first 8 bits of s, if these 8 bits do not lead us to a terminal node.
Rewrite these routines by incorporating the suggested improvements.

Ex. 16 The Huffman -setup- procedure shown in Section 11.7 can be made more
efficient by saving the sequence of zeroes and ones describing the path from
each Huffman tree -node- traversed. This information can be stored at the
node. This makes it unnecessary for the -setup- procedure to traverse any
edge of the Huffman tree more than once. Rewrite -setup-, incorporating
this improvement.

Ex. 17 The Hu ff_tree procedure shown in Section 11. 7 can be made more
efficient by using the tree-like structures described in Section 11.7 to
accelerate the auxiliary -get_min- procedure. Rewrite -Huff_tree- and
-get_min-, incorporating this improvement.

Ex. 18 (Continuation of Exercise 13). Storing a Huffman tree requires
memory space proportional to the size of the alphabet whose characters are
attached to the terminal nodes of the tree. If the improved technique-

THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-53

described in Exercise 13 is used, such a tree will have to be stored for
each character in the alphabet, and the amount of space required for this
can grow unpleasantly large (especially if the data compression-procedure is
to be reprogrammed for a small machine). In this case, the following
expedient can be used to reduce the amount of storage required:

(a) For each character c, establish a limit L(c) which will bound the number
of nodes tised in the modified Huffman tree btiilt from the frequency count
developed for letters following c. This limit should be larger for commonly
occuring characters c, smaller for infrequent characters.

(b) For each c, find the L(c) characters which most frequently follows c,
and 'lump' all the other characters into a new character c'. The sum of the
frequencies of all these 'lumped' characters then becomes the frequency of ,
C •

(c) Build a Huffman tree for the alphabet of L(c) + l characters left after
step (b). Then let the code of each character not 'lumped' into c' be
determined as in Exercise 13, but let the code of each character x 'lumped'
into c' be the concatenation of the normal Huffman code of c' with the
standard internal SETL code of c.

Modify the Huffman encode/decode procedures developed in Exercises 13,
14, and 15 to incorporate this space-saving refinement.

Ex. 19 Develop the auxiliary procedure pref_sort(t,pref) invoked by the
-assign- procedure of Section 11.3. This should sort a tuple t into the
order defined by a Boolean-valued function pref(sl,s2) which returns the
value TRUE if sl should come before s2 , FALSE otherwise. Your sorting
routine should be modeled after either 'mergesort' or 'quicksort'.

Ex. 20 In playing a game, one may wish not only to win as much as possible,
but also to win in the smallest possible number of moves. A recursion much
like formula (1) of Section 11.8 can be used to determine the minimum_ number
of steps which the winning player will need to bring the game to a
successful conclusion. Find this recursion, and use it to develop a variant
of the 'alpha-beta' game-playing procedure which tells the winning player
how to win as rapidly as possible, and tells the losing player how to
postpone his inevitable defeat as long as possible.

Ex. 21 The 'alpha-beta' game playing program (see Est_A_can_win, Section
11.8) operates most efficiently if moves likely to return a large
Est A can win value are explored first. To guess in advance which moves
the;e-are-likely to be, once can save the values calculated by Est_A_can_win
during each cycle of play, and use these values as estimates of move quality
the next time it is the same player's turn to move. Write a variant of the
Est_A_can_win procedure which incorporates this improvement.

$

(size) operator
-applied to string

I=
<
<•

...
>

-applied to set, tuple
-for strings
-for sets
-for tuples

operator
operator
operator

operator
operator
operator

? operator
-uses of

('such that') sign
abort
ABS operator

ACOS operator

HAPTER 12

INDEX

ALL qualifier (in READS and WRITES
declaration)

alpha-beta algorithm
alphabetizing
AND operator

ANY function
apostrophe
Applications packages

Applications-oriented programming
languages

ARB operator

2.18, 2.26, 2-34, 2.45
2.18
2.18
2.26
2.34
2.45

2.20, 2.25, 2.32, 2.44
2.20, 2.25
2.20,2.26

2.20, 2.25, 2-32, 2.44
2.20, 2.2s
2.20, 2.26

2.64
2.64

2.36
1.14
2.21, 2.26, s.2

5.2

9.5

ll.43ff
4-46
2.29

5.5
1.25
7-46

7.46

2.34

INDEX

arguments (of functions and
procedures)

Artificial intelligence
- use of 'states' in

ASIN operator
ASM option

ASSERT statement
-messages produced by
-and control-card parameter ASSERT
-use of
-side effects of
-use in debugging

ASSERT option
assigning forms of infix operators

assigning positions in iterators,
quantifiers, and procedure calls

Assignment operator
-general forms of
-multiple assignment
-nesting of
-general rules for
-in quantifiers and iterators
-to procedure parameters

assignment expressions
assignment problem
Assistance program

association, between pairs
AT option
ATAN operator

ATAN2 operator
ATOM declaration
Atoms

AWAIT statement
BACK option (backtracking)

Backtracking

bags

- how to enable
implementation of
auxiliary backtracking
operations
partial
elimination of

4-3ff, 4.5

4-18
4.20

5. 3
8-26

6.5, 7.4, 7.6ff, 7.37
6.5
6.5
6.5
6. 5
7-6

8.27
2.12

2. 74ff

2.15, 2.69
2. 69ff
2.69ff
2. 71
2.7lff
2. 7 3
2.74

2. 7 3
11. 6 ff
8.38

2.52
8.22
5. 3

s.2
10. 11
5. 13

11.28
8.26

8.Sff
8.25
8. 7

8. 6
8.8
8.39

4.42

Page 12-2

INDEX

Banking program
banking system

BASE set (or BASE table)
- constant BASE
- consisting of atoms only

basing declarations
batch execution
bets

Binary operators
binary searching
BINARY files

BIND (intermediate text input file
parameter)

BIND files

Binding (of seperately compiled
programs)

Bit-manipulation instructions
Bits
Blank atoms

blanks in SETL programs
Boolean constants
Boolean operators

Boolean condition
-in set iterators
-in tuple iterators
-in IF statement

Boolean equivalences
Bound variables
BREAK function

'Buckets and well' problem
- use of 'states' in

Bugs
- commonly occurring bugs
- location of

5.23
11.SOff

Page 12-3

10.10, 10.17ff, 10.21ff
10.28
10.27

10.10, 10.16, 10-17ff
1.28
11.35

2. 1 7
4.34
8.1

8.24

9.9ff

9-8

9. 18
9.17
s.13

1.20
2.3, 2.s
2.29

3.14, 3.15
3.16

.3.2

2.29, 2-31, 4.58
3.13
5.6

4.18ff
4.20

1.14, 1.2
7 • 1 1
7.2

- use of prescreening to eliminate
- use of ASSERT statements 7.6

to eliminate
- checks in
- system bugs

CA option

Capitalization

7.6, 7-8

8.26

2.18

INDEX

-of identifiers

CASE statement
-CASE OF form
-multiple tests in
-CASE expn OF form
-syntax of

CASE expression
-syntax of
-first and second forms of

CEIL operator
CEL option
CHAR operator

Character sets

character conversion (upper to low~r
case)

Characters
-underscore ()
-in identifiers
-special

checking a program

checking (of type fields of SETL
values)

CLOSE statement
code generation

coding
-Huffman

Command parameters
comments (in program text)

commercial application systems
-as 'event trackers'
-use of parallel processes

in programming of
commercial systems

Comparators
-integers

compilation .errors
compilation history
compilation listing

Compilation
- separate

2.18

3.8
3.8
3.8
3.9
3.8, 3.9

3.10
3.10
3.10

s.2
8.26
2.26

3.48

4. 11

2. 18
2.18
5.7

1.23

10.9

8.2
1.13, 1.28

ll.3Sff,

8.19ff
1.25

11.25

11.2s

2.20

1. 1 2
1.23
1.25

1. 11
9.8

11.37

Page 12-4

INDEX

compiler temporary variables
compiler
components (of tuples)

compound operators
compound iterators
compounmd types

compression (of English-
language text)

computer memory
Computer, physical

concatenation
-of strings
-of tuples

Concordance program

Conditional clauses
-in set iterations

conditional instructions

CONST declaration
-syntax of
-compound constant denotations
-scope rules concerning constants
-abbreviated form

constant base

constants
-constant denotations
-in expressions

CONTINUE statement
-optional loop tokens in
-use of

control cards
control structures

conversions
- internal conversions of

SETL objects

COPY directive

Copying
- automatic copying of SETL

values

Page 12-5

4.5
1. 11
2.8

2.6lff
3.26
10.10

11.35

10.2
9.16

2.2s, 2.44
2.25
2.44

S.8ff

3.14

1.4

6.3
6.3
6-4
6.4
6.4

10.28

2.3
2.3
2.1s

3.20
3.20
3.21

1.10
3.1

8.18

~~- -- - -- - --- ------ - --- ---- --- --- - -- - - ----- ---

INDEX

correllation coefficient
Cross-reference listing
CSET option

Daily reminders
Data structures
data.

-detecting end of

Data represetation sublanguage
- effective use of

database system

DATE function
De Morgan's rules
DEBUG command

Debugging
'decentralized' programming

declarations
- BASE

basing
- type
- see INTEGER,STRING,REAL,ATOM

4.46
S.8ff
8.22

8.37
7-27ff, 9.16, 10.2
1.10, 1.11
3.45

10.1
10.29ff

11.23

s.20
2.29, 2.31
8.29

1.14, 7.2, 7.Sff
11.25

10.10
10.10

- see SET,SMAP,MMAP,TUPLE,PROC,OP
- see UNTYPED INTEGER
- see SPARSE,LOCAL,REMOTE,PACKED,

PLEX
- see ELMT
- effective use of basing

declarations

Declarations
- in complex programs

decoding
-Huffman

decomposition of logical function
denotations
diagnostic message

difference operator (for sets)
DIRECTORY
DITER option

DIV operator
dollar sign~ use in program comments
DOMAIN operator

dot-product

Efficiency

10.29ff, 10.31ff

9. 2 ff
9. 2 ff

11.35ff, 11.37

1. 16
2-3
1.23, 1.24

2.32
9.2ff, 9.4, 9.10
8.25

2.20
1.25
2.52

4.51, 4.57

Page 12-6

INDEX

- analysis
- of SETL operations
- of bubble sort
- of recursive routines
- value copying as a problem in
- enhancement by data structure
- choice
- of basic instructions

of primitive ~ETL operations
- improvement by elimination

of hashing
- effect on efficiency of

internal conversions
- improvement by use of

REPR declarations

Eight-queens problem
EJECT statement
Election forecasting

element block (of base)
ELMT declaration

ELSE clause in IF statement
-omission of
-termination of

ELSE clause in IF-expression
-termination of

ELSEIF clause in IF statement
empty set
Encoded arithmetic puzzles

END of data, testing for
enumerated sets
enumerated tuples

Environment operators
EOF

error message
errors
errors, grammatical

-run time

ETOKS option
Euler, Leonhard

Eulerian paths
EVEN operator
execution

existential quantifier
-assignment side-effects of

7. 18 ff.
7.18ff, 7.25
1.21
7.23
7.25

7.27ff
9.17ff
10.9ff

10.16ff

10.30ff

10.29ff, 10.3lff

8.8ff, 8.39
8.4
8.37

10.19
10.18

3.4, 3.5
2.s
8.40

8.4
2.34
2.46

8.19ff
3.45, 8.4

1.14
1.12, 1.14, 2.81
1.24
1.14

s.23
11. 1

11.lff
2.21
1.11

1. 8, 2. 39

Page 12-7

INDEX

-assignment operator~ in

EXP operator
EXPORTS declaration

Expressions
-constants and variables in
-compounding of
-precedences in evaluation of
-binary and unary operators in
-functions as

FAIL statement (in backtracking)
used to generate all
solutions to a combinatorial
problem

- used for exception in
handling

Financial record keeping
FIX operator
FLOAT operator

floating point constants
FLOOR operator

Formal program verification
- by Floyd assertions

Formal differentiation
FROM operator
FROMB operator

FROME operator

function invocations
- rules governing use of
- arguments in
- compounding of
- as expressions
- parameterless

functions
- recursive
- infix and prefix

Gale, David

Gale-Shapley assignment
algoritm

Game of Life
game playing programs

game playi.ng

5.2
9.5, 9.6

2.15
2.15
2.17
2.17
2.7
4.7

8. 5 ff

8.9, 8.14
8.14
8.14

5.23
2.21, 5.2
2.21

2.4
5.2

7.35ff
7.37ff

7.47
2.76
2.76

2.76

4-4 ff

4.6
4.7
4.7
4.12

4.lff
4.26
4.50

11.6

8.34
ll.39ff, ll.53ff

ll.39ff, .11.53ff

Page 12-8

INDEX

-state of a game
-terminal states of a game
-recursive evaluation of

a game
-strategies
-alpha-beta algorithm for

Gaussian elimination
Gauss
GET statement

GETB statement
GETIPP (system procedure)

GETSPP (system procedure)
Global variables
Goldbach conjecture

GOTO statement
-reservations concerning

grammatical analysis

graphs
- shortest path in
- testing for cycles in
- undirected

H parameter (for SETL compilaton)
Hardware
hash table

hash function
hashed search

hashing
- of map elements

HELP facility
Huffman coding
Huffman tree

I (input file parameter)

IBIND (intermediate text input file
list parameter)

Identifiers
-declared as constants
-in input
-input of
-syntax of
-capitalization in
-proper choice of

ll.39ff
11.39

ll.39ff
11.39
11.43ff

5.16ff
5.16
8.2

3-45, 8.3
8.21

8.20
4.14ff
2.65

3.35
3.35

1.13, 1.27

3.30, 5.13
3.31, 3.32
7.30
11. 1

8.27, 8.28
9.16
10.5

10.5
10.16ff

10.5ff, 10.16ff
10.7

8.35
11.35ff, 11.51ff
11.36

s.23

8.25

2.15, 2.18, 5.7
6.4
3.45
3.45
2.18
2.18
2. 19

Page 12-9

INDEX

IF statement
-syntax of
-multiple alternatives in

IF expression
!LIB (library source parameter)

image operator
-single valued

image set
-of a set

IMPL operator
Implementation of SETL

implementation
- of SETL primitives
- standard data representation

in SETL implementations

IMPORTS declaration
IN operator
Inclusion libraries

INCS operator
indentation rules
Indexing instructions

infix operators
- user-defined

Initial program parameters

Input/output
- see TEXT, BINARY, CODED

and PRINT files
- see OPEN, CLOSE, GET, GETB,

PRINTA, PUT, PUTB statements

integer constants
Integer right triangles

Integer operators
- co mp a rat o rs

INTEGER declaration
interactive execution
Intermediate language

internal representation
- of·tuples
- of sets
- of maps

Interpreters

3.6
s.23

2.52
2.79
2.29
9.13

10.2

10.3ff

9.5, 9.6
2.26, 2.32, 2.44
8.17

2.32
3.5
9.18

4.50

s.20

1.1, 8.1

2.3
2.43

2.20ff
2.20

10. 11
1.28
9.14ff

10.3ff
10.3
10.4ff, 10.7

3.36, 9.11

Page 12-10

INDEX

- for SETL
- advantages of
- and languages
- machine

intersection operator (for sets)
inventory control
ISMAP; ISSET, ISINTEGER, etc. operators

Iteration
(See also set, tuple, string,
map and numerical iterators.
See also compound iterators.
See also loop construct, gen­
eral. See also WHILE loop
and UNTIL loop).

iterators
-set
-tuple
-numeric
-string
-assignment operators in
-assigning positions in
-multivalued map

job control cards
key-entry
KWIC index

L (listing file parameter)

Language
- intermediate

LCP option
LCS option
LEN function

LESS operator
LESSF operator

LEV (parameterless function for
backtracking)

Lexical scanner program
LIBRARIES
Library record keeping

line numbers, primary and secondary
Linear equations
List option

Listing-control commands

9.13££·
9.11
9.11££
9.17, 9.20

2.32
11.23££

2.63

Page 12-11

2.31, 2.so, 2.s1, 2.14
2.37
2.50
2.s1
2.51
2.74
2.74
2.75

1.10
8.31
8.32

8.23, 8.25, 8.27

9.14ff

8.28
8.28
s.6

8.17

5.7££
9.2 ff
8.36

1.23
5.16
8.23

8.19

INDEX

Lists
- list representation of

tuples

Local variables
LOCAL declaration qualifier
LOG operator

LOOP constuct, general
-INIT clause in
-DOING clause in
-WHILE clause in
-STEP clause in
-UNTIL clause in
-TERM clause in
-syntax of

Loops
lower case characters
lower-level language

LPAD function
Machine operations (of computer)

macroprocessor
-implementation of

MACROs
-invocations of
-definitions of
-parameterless
-textual character of
-parameters of
-generated parameters of
-compared to procedures
-lexical scope of ·
-nesting of
-dropping and redefining
-iteration macros

main program block

map
-definition of
-inverse
-single valued
-multiple valued
-set-valued
-DOMAIN and RANGE of
-multivalued

map 'product' or 'composite' operation
map composition
map assignment operator

7.27ff

7.27

4.14ff
10.20ff, 10.24ff
s.2

3.26
3.32, 3.34
3.32, 3.33
3.32
3.32, 3.33
3.32
3.32, 3.34
3.32

3.11
1.19
10.1

5.6
9.16, 9.18ff

ll.45ff, 11.49,
ll.45ff

6.6
6.7, 6.8
6.6ff
6.6
6.6
6.7
6.6, 6.9
6 • 7 , 6.8, 6.9
6.11
6.11
6.12
6.13

4.10

2.10, 2 -52
2.s2
2.s2
2.53
2.53
2.10
2. 11
2. 11

2.59
4.51
2. 5 3, 2. 56

Page 12-12

11.50

INDEX

map iterators
-syntax of

map operations

map
- internal representation of

Margin justification
Markov productions
MATCH function

MAX operator
MEMBER directive
membership operator (for sets)

- implementation of

Memory (of computer)

- cells
- words

Menus
mergesort
MIN operator

MLEN option
MMAP declaration
MOD operator

MODULE

multi-process primitives

multiple valued or multivalued map
-relation to single-valued maps

multi-parameter map assignments
multiple-assignment operator
multivalued map assignment

Name scopes
nesting of assignment operators
Nondeterministic programming

nonmembership operator (for sets)
NOTANY function
NOTIN operator

NPOW operator_
null statement
null string

null set
'number' Qperator (#)

3-24, 3.25
3.25

2.52

10.7ff

5.10££
3.40
5.6

2.20,
8. 18
2.32
10.5

9.16,

10.2
10.2

5.2

10.2

8.31
4.32ff
2.20, 5.2

8.23

Page 12-13

10.11, 10.12, 10.26ff
2.20

9. 2 ff

11.32

2.11, 2.53, 2.59
2.ss

2.60
2.69££
2.56

4.14ff
2.11
8.16

2.32
5.6
2.2s, 2.32, 2.44

INDEX

numerical iterators
-general form of
-lower and uper bounds in
-iteration step in
-empty cases of
-ascending and descending

OK primitive
OM (SETL undefined quantity)
OP declaration

OPEN statement
operating system
Operator precedences

operators
- user de fined

OPT option

Options of SETL compiler
- checkout and maintainance

options

OR operator
output listing
output

Output formatting
PACKED declaration qualifier
Page-oriented output

'paragraphing' of code
parameter qualifiers
parameterless procedure

parameters (of functions and
procedures)

parsing
path-finding

pathfinding procedure
-supplemented form of

PEL option

Permutations
- generation of

personalized letters
PFCC option

PFLL option

Page 12-14

2.51, 3.17
3.17
3.17
3.17
3.18
3.17

8.Sff
2.s1
10.12, 10.13

8.2
1.10
2.11, 2.77

4.50

8.25

1. 11, 8.2lff

8.29

2.29
1.1s, 1.23
1. 1

8.4lff
10. 2 8
8.4lff

4.5Sff
.4.38ff, 4.40
4.12

4.3ff, 4.5

1. 13
4.22

10.14ff
10.14ff

8.23

4.43
8.14

4-47
8.23

8.24

INDEX

PFLP option
PFPL option

PLEX declation qualifier
PLEX bases

pointers
- in memory

POL ('polish' file parameter)
POL file (output of SETL compiler)
polynomial manipulation

POW operator

precedence
-of operators
- of user-defined operators

Predicates
-integer

prefix operators
- user-defined

prime numbers
- calculations of

8.24
8.24

10.27ff
10.27ff

10.3

a.25
9.9
4.12ff

2.34

2.17, 2.77
2.17
4.52

2.20
2.20

4.50

2.37ff, 2.42
3.22ff

PRINT statement 1.8, 2.15, 3.42, 8.2
-rules for 3.42, 3.43
-quotation marks in 3.42
-printing of sets 3.42
-representations of real numbers 3.42
-representation of OM, Boolean values etc. 3.42
-lines of output formed by 3.43

PRINTA statement
problem solving

PROC declaration

procedure invocation
- 'detour and return' in
- implementation of
- rules governing use of
- arguments
- parameterless

procedure description

procedures
- header, trailer lines of
- parameters
- arguments

RETURN statements in

8.3
1.16

10.12

4. 4 ff
4.4
4.4
2.19, 7.22ff
4.6
4.12

9.5

4.lff
4.3
4.3

Page 12-15

INDEX

- recursive
- modification
- simple
- with variable

4.26
of parameters in 4.36

4.38
number of

- arguments
infix

- rules of style in use of
use of

- parameterless

Processing unit (of computer)

PROGRAM statement
programming

Programming languages
- applications oriented
- simple
- compound

man
unit

Programming style, rules of
programming by refinement
programming, 'decentralized'

Programs
- formal verification of
- proving programs correct
- influ~nces on development of
- 'internally' and 'externally'

determined
- formal differentiation of
- execution
- preparation
- documentation
- termination
- testing

punctuation of input
punctuation of SBTL programs
PUT statement

PUTB statement
Pythagoras Theorem

_ Ql ('parsed source' file parameter)
Ql-files

Q2 ('intermediate text' file
parameter)

Quadruples
Quality assurance groups

4.48
4.50
4.54ff
4.54ff
4.12

9.16

9.2ff, 9.10
1.1, 1.9

7.46
9.2
9.2
9.2
9.2

2.19, 7.2ff
10.1
11.25

7.35ff
7-35ff
7.44

1. 11
1.23
7.3
1.14
7.13

3.44
1. 19
8.3

3.45, 8.3
2.43

8.25,8.27
9.8ff

a.21, s.28

9-14££
1.16

------~--

Page 12-16

INDEX

quantifiers
-bound variables in
-assigning positions in

quicksort

QUIT statment
-optional loop tokens in
-use of

quotation marks

RANDOM operator
-for integers
-for sets
-for tuples

RANGE operator
RANY function
RBREAK function

RD and RW parameter qualifiers

READ statement
-rules for
-quotation marks in
-punctuation of input
-arrangement of inputs on lines
-input of bracketed composites
-input of unquoted identifiers
-input of OM, Boolean values, etc.

READ position pointer
READA statement

READS declaration

real numbers
-printed representations of
-exponent form of

REAL declaration

Recursive functions
- syntax and namescoping

of
- mutually recursive

families of
- implementation of

Recursive routines
- efficiency analysis of

Refinements
-syntax of

2.38ff
2.40
2.74

4.31

3.20
3.20
3.21

1.25, 3.42

2.21, 2.34, 5.3
2. 2 1
2.34
2.46

2.52
5.6
5.6

4.38ff,4.40

3.42, 8.3
3.42
3.42
3.44
3.44
3.44
3.45
3.45

3.45
8.3

9.5

5. 1
3.42
2.4

1 0. 11

4.26ff, 4.45ff

4.27

4-27
4.29ff

4.53ff, 6.1
6. 1

Page 12-17

INDEX

-textual character of
-restrictions concerning

Regression testing
REL option
REMOTE declaration qualifier

repetition operator (*)
-for strings
-for tuples

repetition
REPR clause

representation declarations
- use of

reserved words

RETURN statement
- semantic rules for
- in simple-procedures

RLEN function
RMATCH function
RNOTANY function

RPAD function
RSPAN function
Rules of logic

rules of style
- for procedures

run-time system
run-time errors
RW and RD parameter qualifiers

SB option
scientific notation for real constants

Scope rules
-concerning constants

SEL option
semantic analysis
Semantics

semicolon usage

Separate compilation of SETL
programs

Set formers

7. l 7
8.28
10.22ff, 10.25ff

2.25, 2.44
2.25
2.44

1.4
10.lOff

10.lOff
10.13ff

1.25

4.6ff, 4.39
4.8ff, 4.4lff
4.39

S.6
S.6
5.6

5.6
5.6
2.29, 2.31

2.19, 7.2ff
4.54ff

1. 11
1.14, 2.81
4.38ff, 4.40

8.28
2.4

4.14ff
6.4

8.26
1.13, 1.28
9. 11

1.20

9.8

2.36ff

Page 12-18

:;; i. T S i 11 2 • 3 7

~·el.i.ded fotHD n.t

-syntax 0f
.. h n n d •· ,1 r J :i b l e c.•

-conditional clauses

- internal representation of
-· constants
- operations
- identifiers
- brackets

need not bl~ :,orn0<=re:c.eous
- do not contain duolicates
- elements not ordered
- of successive integers
- formed by enumeration

SET declaration
SETL implementation
SETL character set

SETL run-time system

SETL command parameters
- standard options

Shapley, Lloyd
shortest paths
SIF option

SIGN operator
simple repetition
simple procedures

,;imple types
single valued map
single-valued image operator

Size operator
size (of composite objects)
SMAP declaration

SNAP option
sorting

- recursive
- topological

source code
SPAN function
SPARSE declaration qualifier

2.50

3. 11
3. 12
:L l 1
3. 14

10.3ff, 10.7
2.s
2.32
2. 79
1.19, 1.7
2.5
2.5
2.5
2.7
2.34

10.11
9. 13
1. 19

1 • 2 8

8.19ff
8.2lff

l 1.6
10.14
8,26

5. '.!
i.4
4.J8

10.10
,._ C _,.,
.!,,, • .J .:J

Z.53

2.26, 2.34, 2.45
2. l 8
10.11, 10.22ff

8.28
1.6, 4.3, 4.8ff
4.28,4.3lff
1 i , 3

1.1
5. 5
10.22ff, 10.26ff

INDEX

Special characters
Spelling errors
SQRT operator

stable assignment problem

States (of path-finding problem)
- state-search

STOP statement

STRACE option
string slice assignment operator

5.7
8.33
5.3

11. 6 ff

4.20, 4.24
4.21
3.37

8.28
2.21, 2.28

String scanning primitives 5.5
- see SPAN, ANY, BREAK, LEN,

MATCH, NOTANY, RSPAN, RANY,
RBREAK, RLEN, RMATCH, RNOTANY

string slice
string concatenation

string operators
-marginal cases of

string repetition
string constants
string assignment operator

string iterators
-first form

STRING declaration
subroutines

SUBSET operator
SUCCEED statement

supplemented SETL program

Syntax
-errors
-diagrams

System bugs
TAN operator

TANH operator
TB option
temporary variables

TERM option

Terminal
-reading data from

2.25
2.25

2.25, s.s
2.21

2.2s
2.4
2.21, 2.28

2.51, 3.16
3.16

10. 11
4.lff, 4.38

2.32
8.16

10.2

9. 11
1. 12
2.3
7.8
5.3

5.3
8.29
4.5

8.24

3.47

Page 12-20

INDEX

terminal dump option

Test and branch instructions (at
machine level)

Testing (of programs)
- quality assurance
- design of programs for

testability
- during development
- top-down
- regression testing
- extreme cases as a problem in

TEXT files
Text editing

text preparation
-formatting system,

commands of

Tiling problem
TIME function
TITLE directive

Tokens
-in diagnostic messages

Top-down testing

topological sorting
'Towers of Hanoi' problem

transactions
-in commercial system
-exogenous and endgeneous

Transitive closure

tree
-twig of

tuple formers
-compound iterators in
-elided forms of

tuple assignment

Tuple operators
-tuple concatenation operator
-slice operator
-assignment operators
-slice assignment
-component extraction operator

tuple iterators

2.81

9.19

1.13
7.lSff

1.14
7.14
7.15
7.17
7.15

8.1
s.20

ll.8ff

ll.8ff

8.10,
8.20
8.4

5.7
1.24
7.15

11.3ff
4.35

5.23,
11.23

- 11.24

6.14

11.35
11.35

2.49ff
2.49
2.so

3.24

2.44
2.44
2.46,
2.47
2.48
2.46

2.so,

Page 12-21

8.39

11.26, 11.so

2.47

3.16

INDEX

-first form
-second form

tuples
-need not be homogeneous
-components of
-of sequences of integers
-internal representation of

tuple brackets

TUPLE declaration

Turing machine simulator

Turing machine
-tape and read/write

head of
-actions of
-nondeterministic
-multi-tape

Turing, Alan

'Turtle' language
-interpreter for

twig

type checking
- inefficiences associated

with

TYPE operator

type declarations
- use of

type-testing operators

types
- of SETL objects
- simple
- compounded

Unary·operators
'undefined' quantity

Underscore character ()
union operator (for sets)

universal quantifier
-assignment operators in

UNTIL loop
-syntax of

2.s
2.s
2.8
2.46
10.3
1.19

10.12

ll.33ff

11.33ff

11.33
11.33
11.49
11.49

11.33

3.36ff
3.36ff

11.35

10.9

10.16

2.63

10.l0ff
10.13

2.63

2.63
10.10
10.10

2.11
2.a1

2.18
2.32

2.39
2.74

Page 12-22

INDEX

-semantics of

UNTYPED INTEGER declaration
upper case characters
user identification

user-defined operators
UV option

VAR declaration
- syntactic rules for
- global and local

Variables
- meaning of in expressions
- syntax of
- global and local
- communication of variable~

between procedures
- use of global and local

variables

Verification of programs
- by Floyd assertion
- clauses (rules for forming)

WHILE loop
-syntax of
-evaluation of

WITH operator
wolf, cabbage, and goat puzzle

Words (of memory)
- size

workpile algorithm
WR parameter qualifier

WRITES declaration
XPOL files (output of SETL iompiler)

$

3.29

10.13
1. 19
1 • 11

4.SOff
8.26

4.16ff
4. 1 7
4.17

2.1s
2.15
2.18
4.14ff

4.17

4.17ff

7.35ff
7-37ff
7-37ff

3.27
3.27
3.27

2.32, 2.44
4.24

9.16, 10.2
.9.16

3.29
4.39ff, 4.40

Page 12-23

APPENDIX A

SETL RESERVED WORDS

The following words have a predefined meaning within a SETL
program, and should only be used for their defined purpose.

ABS
ACOS
ALL
AND
ANY
ARB
ASIN
ASSERT
ATAN
ATAN2
ATOM
BACK
BASE
BOOLEAN
BREAK
CALLS
CASE
CEIL
CHAR
CLOSE
CONST
CONTINUE
cos
DATE
DEBUG
DIRECTORY
DIV
DO
DOING
DOMAIN
DROP
EJECT
ELMT
ELSE
ELSEIF
END
ENDM

FIX
FLOAT
FLOOR
FOR
FORALL
FROM
FROMB
FROME
GENERAL
GET
GETB
GETEM
GETF
GETIPP
GETK
GETSPP
GOTO
HOST
IF
IMPL
IMPORTS
IN
INCS
INIT
INTEGER
IS_ATOM
IS_BOOLEAN
IS_INTEGER
IS MAP
IS REAL
IS-SET
IS_STRING
IS_TUPLE
LEN
LESS
LESSF
LEV

MIN
MMAP
MOD
MODE
MODULE
NARGS
NEWAT
NOT
NOTANY
NOTEXISTS
NOTIN
NOTRACE
NPOW
ODD
OF
OK
OM
OP
OPEN
OPERATOR
OR
PACKED
PASS
PLEX
POW
PRINT
PRINTA
PROC
PROCEDURE
PROG
PROGRAM
PUT
PUTB
PUTF
PUTK
QUIT
RANDOM

REPR
RETURN
REWIND
RMATCH
RNOTANY
RPAD
RSPAN
RW
SET
SETEM
SIGN
SIN
SMAP
SPAN
SPARSE
SPEC
SQRT
ST
STATEMENTS
STEP
STOP
STR
STRING
SUBSET
SUCCEED
TAN
TANH
TERM
THEN
TIME
TITLE
TRACE
TRUE
TUPLE
TYPE
UNSPEC
UNTIL

SETL RESERVED WORDS Page A-2

EOF LIB RANGE UNTYPED
ERROR LIBRARIES RANY VAL
EVEN LIBRARY RBREAK VAR
EXISTS LOCAL RD WHERE
EXIT LOOP READ WHILE
EXPORTS LPAD READA WITH
EXPR MACRO READS WR
FAIL MATCH REAL WRITES
FALSE MAX REMOTE YIELD

$

Page B-1

Thr,:)1.J~ho 1_;t this te-:-~t, sen-it<::::-: rJicJ!Jr ... ~1r1!., ._in~ 1.J!.,E:d tr, dE:'!.,cr:i.b<-~ the~
q ,•aiun,at i cal st ruct•Jre of SETL cons t t'tJ<.'1.!.,. For coriven :i.(::'nc<~ s ._il J.
sYnt-ai:{ diagi'ams ar·r·ea1·ini1 in the t2:~t are c:ol l PC"f.(~d in th:i !.• aP-Per,d:i.}<•

F ;;;ch di c.;S ram de-sc: r· j be-:; the s l r1.rcl1.1n-~ of ._t l ard•J.:-<HP cc.1n!., t r1.1ct. F.ach
'.c...:~t.h t,hT'o•.1~:-i a si·,,1en rJ:ia~tram -Lr2-ce-!:, on<=- valid ins-t. .. 1r1l'f:~ o-r th~ c:ort·e!:>f·or,d:ir,~
r.on;-;tr!JCt. Th~ followir,~l c:or,·..-·enlior,s 2-rP U!.•Pd in drc•Wirt£ u t,~u-,ta~-:
dia~r-:;m :

-.;;) s~r,tac':.i•.:- ,:1:.--=:.s.~~ c, w,-jtle-n ir, lowf'J· ca!;<-~ and ~'nt·los~,rJ ir, rpc.•ta~,sul<Jr
bo:-:es.

b) Termir,al =-~r,1col~ of the 1 .. ir,su~sE, (delirt,:i·tc~r-~_; ,Jnd lu•":.~wt11'ds) a1·e
c.i:=-itali:::ed, c;nd e1·•cla<=.r,d in 1·ounded bcn:c~!.;.

c-) w;""len the ;:,re·:;.,::,nce: of a eDr,~:tt·•Jc.-t in <.l !.l:ivc-~n d:i .. i.!..~1--1rn! :i!; m.,t:i.c.1r,al (s.:.;•=1
the r:lecla1·ations ir,:: :---rc,~c;r-6m) thE-r, ;_~ >·•a-t.it th,.d:-.. b'n:-·as•,es -\..he c,i.,t.;;_unal
constr•Jct ar-·Pear·:;; ir, ti·•E:> sr-i.tPh .above that c.-or,str1.1c.•t .• For· P:-:mrtJ,lc~, a
;:-roced•Jre bod':! incl1.11:k~ ti,€"! fol lowins :

. ------------··
•----·

-------------:decl!------------
• I
I---- I

d) ReFetitian i!:--. indicatf';•d b•a-i ,J b,~ck.w .. 1r·d!., F-ath th.:;;t P,~!.,!;P!, 1..1 1·1,:k~r "t-ht:"'
rr~peat,?d constr·uct.. For c,_•:-:.:;;mi=,le, a list of con!itant!, :is ._i !.,,~<ituerice of
o,,e c,r mor~ con·;;.t.~-nts, seParc:tEc-d b·c~ COlhlhi.l!.,. Th£! r.:c.n·1··f."'!.•POr1dir,i=1 ~ .. un-l"-u:-,
,:;,r3ph for the construt·-t. 'constant ljst' i~ Uw followin!J:

. - --·-- ---·--.
--------------- :-------- l c:or,~;tant l -------:--------

•- I ·----------· I I

i----------------0---- ---·- -- --·- - ;

e) The end of can1PC•:..ile st..;tem?.ntt, (1001:.t,r IF- c:nd Cf.:SE-s-l:.atf.c'm<~r,l..t-.) i!,
:i.r,d:ic.·cted b':> the token Fi-H)r oPtion,;;] l~.4 -foUowPd b!I uriP or K101·<~ of the
~-oken::; that. start te st,d .. en•~r.-t ..• Tile £=-l.l:i.Pt,:;_c, (•••) :is 1_1~.ed in th~ s~1n-t.u:<
d·i.rj3rams tn indicate ttu.• Pl'Ps~r,ec of !.".lt'h o:c·tionc;] toke:•n•.;•

A.1 Lexical structure. Page B-2

Tlie.- fol lot..ing gra:=>-hs ,:ie<.~c,·:i hP the ~,t.,·uctu,·e c,f Uw vaJ.:i.c: -;.o~:-~n~, of
t.h~ l.~ns•.1a:=1e.

lt.·tL~T

letter·

d:i !:1j t

r,1Jmber

real_tok di s:i t

sisn

dot_tok

A.2 Prosram $tructure.

A SETL p·r09r·an1 is zn :in~-L.c:,r1ce of' the· con!;tr11et -pro~h-,.w,-r tosether·
"-'lth an·::l r·ei'erenced librz;TH.:.•s, whic:h ,.~n~ instar,cf)S of -lih-un:i_-i:,-.

rl sir:1Ple Prosram -
~ -_,,

...... modules 1--

si111Ple Pro=1ram

libs

bod""

mod•.Jles

director'!:I_IJnit

DIRECTORY r,dn,e

dir_item

name

LIBRt"lRifS

libs

PROGRAM

MODULE

READS

WRITER

Page B-3

libs routine C•ROGRAM •••

n3mPlist

f-•ra~L.•Jni t

in,Ports-list

exPorts_list

PrOC'-SPeC'

l i b_1Jni t.

I. tBF:ARY
-A~Dec la:· at 1 ve

decls

re?r_decl

Page B-4

IMPORTS

EXPORTS

name)

nc;me

REF'R

Page B-5

constant

TRlJF.

F(lLSF.

cons.t._list. --• constar,t ~--

re?r declaration

Page B-6

mode

?:TOM.-----------------------
P.OOL.Et-,N

TUPLE

Sf.T

lltC:Pt~Pe 111<.)dP

ir,odP

mod(;' ..,_ _______ -r

name

Page B-7

baset.~Pe
LOCAL

RF.MOTF.

MAF'

MMAF'

ro•.Jt.irie

OPdef

ar~list

formal

OF-def

Pap,e B-8

ref i nemer,t r,ame

A.4 Statement forms.

stmt _q nao,e ~,.,,.~_bods}--

st111ts t I stm1, I I

CONT HW F. t t' k E:11 s ••• t-------------+
f >:IT

FAIL

f-•?:SS .J----------------------~
QIJJT

· RFTURh'

STOF'

YIELD

;.i ss i snn,Pr ,t .

. .
c c;1se_ s t.-:d.Pn1crit ---------------~

call

case_statement

c_of_statement

e:-:i=-rlist

CASE

elsec --' (ELSE)-4 st,,ts 1 l..___
if'_statement

E>lsei-f

looP-_statement

i t.eratior,

.i t.1,1•at.:i.on

in i

Page B-9

Cf.lSF. • ••

CASF.: •••

ELSE

Page B-10

init -{ IUIT),---1. strrrt.s~

doing DOING

while;,

steP

until

termir, ---1 stmts t----

iterator

simPle_iterator

lhs

lhs

lhs

G

Page B-11

selector

assignment_statement

lhs H bin<>P ~ e:wr

A.S ExPressions.

The fol lowins S'::lntc;:-: !tl'ilPhs do nc,t df:>~-c:ri he f1.1) 1~ Uw rPlativl~ PN,'t.•edence
of oF·e rat.ors. A comF-1 £.-t<a· lc1b 1 e of' <:>Pt' r,d.o-r P rPc·eder,ce~,: is t.c, bf.• l"'o,_ind in
SP.c-.3.:-:>:K. The constr•Jc:t. -b:inc,F·- inc:l1Jr.ie.-s the rJre:'d~-fine:~d binar'=I c,p~•rat.or!:.
.ind the •J~er-defined o?eratc,r~. S:~1fl:i.larlHr -•Jnc,F·- reft·'l·!.• bolh tu .-•r~··­
defi r,ed and user-defin~tJ- c.1••~rator:-.

term

EXISTS

suc·h

F•)RALL ---•

term

Page B-12

:i n t _ tllk .,_ ____________________ __,

for1r1f'T·

1::: :-c: P r 1 i s 1,

-f1·,rn1Pr

f r·on,_ P :<Pr ~---------------------,

case _c- :-'.Pr .,_ _____________________ _,

FROME

lhs FROM

FROM

sYsvals

Page B-13

F.OF

fMRGS

LF.:V

fornter

such

CASE

case_E:x_e:-;i:-r

CASE

i f __ exPr

	Title
	Table of Contents
	Preface
	1. Programming Concepts
	2. Data and Expressions
	3. Control Structures
	4. Functions and Procedures
	5. Data Objects and Expressions, Concluded
	6. Additional Control-Like Features of the SETL Language
	7. Program Development, Testing, and Debugging
	8. Additional I/O and Environmental Functions; Backtracking
	9. Programs, Modules, Libraries, and Directories
	10. The Data Representation Sublanguage
	11. The Language in Action: A Gallery of Programming Examples
	Index
	Appendices
	A: SETL Reserved Words
	B: Syntax Diagrams

