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Pre face 

The computer programming language SETL is a relatively new member of 
the so called 'very-high-level' class of languages, whose other well-known 
members are LISP, APL, and SNOBOL. These languages all aim to reduce the 
cost of programming, recognized today as a main obstacle to future progress 
in the computer field, by allowing direct manipulation of large composite 
objects, considerably more complex than the simple integers, strings, etc. 
available in such well-known 'middle level' languages as PASCAL PL/I, ALGOL, 
and Ada. For this purpose, LISP introduces structured lists as data 
objects, APL introduces vectors and matrices, and SETL introduces the 
objects characteristic for it, namely general finite sets and maps. 

The direct availability of these abstract, composite objects, and of 
very powerful mathematical operations upon them, improves programmer speed 
and productivity significantly, and also enhances program clarity and 
readability The classroom consequence is that students, freed of some of the 
burden of petty programming detail, can advance their knowledge of 
significant algorithms and of broader strategic issues in program 
development more rapidly than with more conventional programming languages. 

The price that very high level languages pay for their expressive power 
is a certain loss of efficiency. SETL should therefore be regarded, not as 
a tool for production-efficiency programming, but as a vehicle for rapid 
experimentation with algorithms and program design and as an ideal vehicle 
for writing 'one-shot' or infrequently used programs whose efficiency is of 
little consequence. It is also an effective tool for prototyping large 
systems purposes of design validation and early-customer exposure, systems 
which if important enough can then be hand-translated into more efficient 
versions written in programming languages of medium or even low level. 
Experience with SETL will show that it is efficient enough for a surprising 
variety of purposes; nevertheless, it is still expensive to run, and will 
remain so until a new generation of high-performance microcomputers appear. 
In spite of this, SETL is a good vehicle for discussing program-efficiency 
issues, since it allows a graded approach to these issues, algorithm design 
being chosen first and data structures which realize them being chosen 
second, It will also be seen that the data structure representation 
sublanguage of SETL, described in Chapter X, is a powerful conceptual tool 
aiding such 'programming by stepwise refinement'. 

Fairly polished versions of SETL are currently available on the DEC VAX 
and CDC Cyber, and less polished experimental versions on the IBM/370, DEC 
10, and DEC 20. The systems running on all these machines are close to 
identical, all being produced from common system source by transporting an 
underlying systems-writing language from machine to machine. The relatively 
small differences between versions running on different machines (and under 
different operating systems on a given machine) are documented in Appendix 
x. 

This book is intended for people who want to write programs in SETL. 
It does not assume knowledge of any other programming language, and is 
therefore suitable for use in an introductory course. We attempt to explain 
most of the mathematical concepts which play a role in SETL programs, almost 
all of which are in fact quite elementary. However, we do assume that the 
reader has a working knowledge of such basic concepts as set, sequence, etc. 
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The knowledge assumed is roughly equivalent to that which would be acquired 
in a good high school 'new mathematics' course, or ~n the first month of a 
freshman-level course in discrete mathematics. 

We present considerably more material than can be covered in a 
one-semester introductory course. Chapter 1 provides an introduction to 
computer programming and an introductory overview of the SETL language. 
Chapter 2 introduces the major data objects of SETL, of which sets, maps, 
and tuples are most characteristic, and describes many of the language's 
operations. By The end of Chapter 2, the student is in position to write 
various interesting 'one-liners'. Chapter 3 then presents various basic 
control structure notions, qualifying the student to write interesting short 
progiams. Chapter 4 introduces the most important control structures, 
namely PROCEDURES and their invocations. 

Chapters 5 and 6 describe the remainder of the operations, expressions, and 
control forms of the language, except for backtracking, which is covered 
considerably later, in Chapter 8. Chapter 7 gives advice on program 
development, testing, and debugging, completing what can be considered the 
elementary part of the book. 

The first seven chapters can be covered in a one semester introductory 
course, and can be skimmed rapidly by any reader reas9nably familiar with at 
least one modern programming language, such as PASCAL, PL/1, ALGOL 60, ALGOL 
68, or ADA. 

The remaining chapters present more advanced material, which could be 
covered in a second programming course. Chapter 8 describes the I/0 
features of SETL systematically. Chapter 9 introduces the directory, 
program, module, and library mechanisms used to structure large programs. 
Chapter 10 presents SETL's data representation sublanguage and reviews 
various strategic considerations which play a role in data representation 
choice. Chapter 11 shows the language in action by presenting several more 
substantial applications of it, including a simple interactive editor and 
various computational geometry and graph algorithms. 

SETL was developed at the Computer Science Department of New York 
University, by a group of which· the present authors were members. The 
language has now been used by students in courses ranging from the 
introductory undergraduate to graduate courses in algorithm design. The 
style and order of presentation adopted in this book reflects some of the 
pedagogical experience gained in this way, especially at the undergraduate 
level. 

Thanks are due to the many persons who helped to define and develop the 
SETL system. David Shields has been a mainstay throughout, inventing and 
implementing many system improvements, and developing documentation from 
which several of the sections of the book are drawn. Much of the first 
version of the system was written by Arthur Grand, and brought to solidity 
by Stefan Freudenberger. Thanks are also extended to Edith Deak, Micha 
Sharir, Robert Paige, Kurt Maly, Phillip Owens, Aaron Stein, Earle Draughon, 
Bernard Lang, Leonard Vanek, Steve Tibor, and Hank Warren, all of whom 
contributed to th~ development of the SETL system. Valuable design 
suggestions were contributed by our colleague Prof. Malcolm Harrison and 
gleaned from his elegant BALM language. Essential thanks are due to the 
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very helpful and hard-working group of summer interns who helped put this 
maunscript together and remove many of its errors during the summer of 1981:· 
Leonid Fridman, Nathaniel Glasser, Barbara Okun, and Yi Tso. We also wish 
to extend thanks to Prof. Andrei Ershov and his group at Novosibirsk, who 
have aided the development and definition of the language from the very 
first days, Prof. Anthony Mccann of Leeds University, and Drs. Su Bogong 
and Zhou Zhiying of Tsinghua University, whose more recent involvement has 
been most valuable. 

Finally, thanks are due to the research administrators who fostered the 
development of SETL through its early, relatively isolated years. Among 
these we should particularly like to thank Milton Rose, who launched our 
development effort during his years at NSF, also Kent Curtis and Tom Keenan 
of NSF, who fostered it during the period in which the NYlJ group was 
struggling toward a reliable and acceptably efficient implementation. We 
hope the success of the system will justify their confidence. 
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1.1 Programs 

To program is to instruct a computer to perform certain desired 
actions. For example, using the programming language to be described in 
this book, you can write the instructions 

print(54 + 45); 
print('The difference of twelve and nine is:', 12-9); 
print(55*55); 

and submit them to a computer. Then, if the instructions have been properly 
typed and submitted, the computer, after first digesting them, will 
obediently produce the following results; 

99 
The difference of twelve and nine is: 3 
3025 

The instructions you submit to the computer are known as source code or 
input; the results which it prints are known as output. Programming is 
therefore the art of devising inputs which describe the output that you want 
to produce. 

This first example suggests that programs can only deal with simple 
numerical quantities and can only describe simple arithmetic calculations. 
This is by no means the case. Computers are not just numerical calculating 
machines, they are general information-processing engines and can manipulate 
information of arbitrary structure and complexity. This basic fact will be 
strongly emphasized by the programming language, SETL, described in this 
book. For example, you will see that it is easy to manipulate arbitrarily 
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complex tables, for example, tables of names, addresses, telephone numbers, 
birth dates, and salaries having the form 

[['Aldo Gonzalez','45 Ellwood Ave','278-3591','12-12-45',21315], 
['Jimmy Archibald','1315 Bole St','479-1919','5-31-78',OJ, 
['Willa Cross','111 Mocking Pl.','275-1212','7-19-OO',67OO], 

Such tables can be built up, sorted, searched for particular elements or 
combinations of elements, extracts and statistical summaries of them can be 
prepared and printed, etc. All this will be easy to do once you have 
learned the programming language described in this book, which can handle a 
table like that shown above just about as comfortably as it can handle a 
simple number like 23. 

However, although the programming language to be presented is powerful, 
and although computers are extremely fast and perfectly ~ccurate, they are 
also unintelligently pedantic and narrowly literal in their reactions to the 
instructions which they receive. This has two fundamental consequences, 
which you as programmer (i.e. as a would-be author of programs), must 
always keep in mind. 

(i) The computer will always do exactly what it is instructed to do, 
neither more nor less, and will do this if its instructions are legal, 
irrespective of whether these instructions are reasonable or unreasonable 
from some larger point of view. This can be quite disconcerting at first, 
since it can easily lead to unexpected consequences. When you ask a person 
wearing a watch 'Can you tell me what time it is?', you expect an answer 
like 'It's 3:15'. A person acting like a computer would instead answer, 
'Yes, I can'; but would never actually tell you the time until you actually 
uttered a direct and unambiguous command like 'Tell me the time'. Therefore 
hints, even hints that a person might regard as utterly clear, are quite 
useless to a computer. It does not know, or care, what you have in mind for 
it to do: it only knows what it has been directly and unambiguously 
commanded to do. 

This it will do with perfect fidelity, even in circumstances in which 
even a boundlessly faithful and determined person would realize that 
something is quite wrong with the instructions given him and would ask for 
more reasonable instructions. For example (though they would have to be 
expressed a bit differently), the following instructions can be given to a 
computer, and would then be followed literally: 

instruction 1: 
instruction 2: 

print ('Hello There'); 
go back to instruction 1. 

Given these ins~ructions, the computer will, like a phonograph stuck on a 
groove in a cracked record produce the output 

Hello there 
Hello there 
Hello there 
Hello there 
Hello there 
Hello there 



PROGRAMMING CONCEPTS. Page 1-3 

line after line, thousands, millions, or even billions of times, as long as 
paper remains in its printer, power continues flowing to its circuits, the 
building which houses it has not burned down or collapsed in an earthquake, 
and as long as neither the human operator (nor the automatic operating 
system) which regulates it have grown suspicious enough to switch the 
computer to another activity. In such circumstances, the exhilarating magic 
of the computer sours after the fashion of the well-known tale of the 
sorcercer's apprentice. 

(ii) In order to follow instructions given to it, the computer must 
first be able to digest and understand them. The linguistic abilities of 
computers are limited, and their abilities to recover from errors are also 
limited. Hence the approach it takes is extremely pedantic. In particular, 
you will find that it insists that commands submitted to it must adhere 
precisely to the grammatical rules, and even to the /petty rules of 
punctuation, of the programming language which it is set up to handle. The 
omission of so much as a dot, the misspelling of a single name or a single 
command keyword, the substitution of a single colon where a semicolon is 
wanted, the insertion of a single blank space where it is not wanted: all 
these petty errors are fatal, and will cause the computer to reject a set of 
instructions before it even attempts to follow them. 

So, for example, the three commands appearing at the very beginning of 
this section would not be executed if they were submitted as they stand, but 
only if they were preceded by a required line serving to introduce and name 
them, and followed by a required 'trailer' line, thusly: 

PROGRAM sample_program_number_l; 
print(54 + 45); 
print('The difference of twelve and nine is:', 12 - 9); 
print(55*55); 
END; 

Packaged in this way, our three original commands come to constitute a 
complete and valid program in the SETL language, acceptable as it stands. 

The difficulty that computers have in coping adequately with error 
causes them to react to tiny program details in a pedantic manner, to which 
the beginning programmer must grow accustomed. If, for example, the program 
shown above is submitted as 

PROGRAM sample_program_number_l; 
print(54 + 45), 
primt('The difference of twelve and nine is:' 12 - 9); 
print(55 * 55); 
END; 

it will be rejected without producing any output. In fact, three errors, 
each fatal in spite of the fact that it can easily be corrected (and, 
indeed, might never even be noticed) by the human reader of these 
instructions, occur in the text shown above. These sins, damning in the 
computer's view though trivial to the human viewer, are: 
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(a) Substitution of a comma for a semicolon in the second line. 

(b) Omission of a comma after the terminating quote in line 3. 

(c) Misspelling of print as primt, also in line 3. 
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Clearly, then, to interact in a satisfactory way with a computer you 
will have to come some distance toward compromise with what will at times 
seem like a maddeningly literal, detail oriented, robot mind. But these 
initial irritations can be overcome, and, once you have overcome then, you 
will find the amazing powers of an infinitely flexible machine at your 
command. 

As a programmer, you will find it instructive to realise that programs 
existed long before computers were invented, even though computers have 
given them forms different from what they had before and hav vastly extended 
their scope. Mankind first encountered programs early in-the new stone age 
(or perhaps even in the old stone age), when basket-weaving and palm-leaf 
weaving were invented. Basket patterns, palm-leaf weaves, rug patterns, 
knitting patterns and musical scores are all programs, that is, are 
sequences of instructions involving choice and repetition, whose execution 
produces outputs which are larger and more interesting than the sets of 
instructions from which they were produced. All of these activities exhibit 
the elements of repetition and choice (i.e., repetition with planned 
variations) which is so characteristic of programming, and which we will 
constantly meet with in this book. Note in particular that 

(a) In programming, as in knitting, it may be necessary to. execute an 
instruction, or a group of instructions, more than once. Most programs will 
therefore involve repetitions, or even repetitions within repetitions, as in 
'knit three stitches and then purl two, repeating twenty times for each row, 
for ten successive rows; then knit five rows of 100 stitches each.' The 
number of repetitions desired can be specified either by an explicit count, 
as in the preceding example, or by stating a condition which depends on the 
state produced by prior repetitions (as in cooking: 'beat steadily until 
the mixture thickens'). Both forms of repetition will be encountered again 
and again in the chapters which follow. Since computers execute more than a 
million elementary instructions per second, computer programs are even more 
dependent on repetition than knitting and weaving patterns are: a 
repetition-free program would run for no more than a tiny fraction of a 
second. 

(b) Simple repetition, like the endless repetition of a single stitch 
in knitting, can only produce an unending featureless cloth. To produce 
something more interesting depends, in programming as in knitting, on 
repetition with variation, and on proper combination of repetition with 
choice, like the choice which appears in the example 'If a size 25 sweater 
is desired, repeat for 30 rows, but if a size 27 sweater is desired, repeat 
for 36 rows'. The fact that conditional instructions of this kind can be 
used in a program makes it possible to produce a wide variety of outputs and 
write programs that can be used in an immense variety of circumstances. In 
fact, complex sequences of choices are much more characteristic of programs 
than of any other ~ind of plan, pattern, instruction, or recipe, since the 
extreme accuracy of the computer makes it possible to plan and follow long 
sequences of choices and variations that would soon leave a person trying to 
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carry them out exhausted and hopelessly confused. 

(c) Programs, like knitting instructions, are relatively unchanging 
objects; but their execution, like knitting, is a dynamic activity. A 
program is no more the same thing as its output than a set of knitting 
instructions are the same thing as the sweater they describe; nor should we 
confuse a program with the computer on which it runs, any more than we would 
confuse a set of knitting instructions with the needles used to execute 
these instructions. 
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1.2 An informal overview of SETL. 

The programing language SETL has many powerful features, and it will 
take well over a hundred pages to explain them all. Therefore this short 
section can only give you a glimpse of some of these features. 
Nevertheless, before we march forth to explore the terrain systematically, 
it is worth previewing SETL's most characteristic features informally. For 
this purpose, we consider a simple example. As its name implies, SETL makes 
it easy to work directly with sets. Suppose therefore that the following 

set of numbers is given: 

{13, 11, 45, O, -16, 21, 85, 46, 80} 

and call its. The problem we wish to consider is that of 
median of the numbers in s, namely the number which would 
beween the first and the last element of s if the ele~ents 
arranged in ascending sequence from lowest to highest, namely as 

(2) [-16, o, 11, 13, 21, 45, 46, 80, 85] 

finding the 
come halfway 
of s were 

(In our example, this median is clearly 21). If (as in our example) s has 
an odd number of elements, then the median (which is often used in 
statistics to represent a 'typical' member of a sets) can be defined as 
follows: it is the unique element x of s such that there are as many 
elements of s which are smaller than x as there are elements of s which are 
larger than x. Ifs has an even number of elements there are (as it would 
if we dropped the number 85 from our example) nothing lies exactly in the 
middle, and we could argue about which of the two numbers (e.g. 13 or 21) 
lying equally close to the middle of an ordered sequence like (2) should be 
considered the median. To avoid this complication let us agree for the 
moment that we will only consider sets having an odd number of members. For 
such sets, the median is simply the number x defined by the following 
condition: 

(*) The number of members of s which are less than xis equal to the 
number of members of s which are greater than x. 

In SETL, a set like (1) can be read in (for example, from the keyboard 
of a computer terminal, or from a punched card), simply by writing the 
command 

READ(s) 

Once having reads in, we may want to find, and print, its median. As with 
all programming tasks, this can be done in several different ways. If we 
knew how to arrange the elements of sin order, we could simply find this 
arrangement, take the element which comes in the middle, and print it out. 
Arranging elements in order is called sorting; we will study many 
techniques for sorting later in this book, and any one of them would put us 
into position to use this approach to findng the median. However, it still 
is too early to show you how to do anything quite this complex, and hence we 
shall follow anoth~r path, namely we will use the definition (*) directly. 
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In order to do this, we must first be able to form 
members y of s which are less than x'. Since SETL makes 
form sets, and allows us to get the number of elements in 
by writing #t, this is easy: we simply form the set of 
which are less than x, and then take its number. The set 
formed simply by writing 

(3) {y IN s I y < X} 

and its number of elements is therefore 

(4) #{y IN s I y < x} 
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'the number of 
it easy for us to 

any set t simply 
all members y of s 

we want can be 

Similarly, the number of elements ins which are greater than x can be 
written as 

(5) #{y IN s I y > x} 

Concerning the construct (3), which is known in SETL as a set former, we can 
make the following remarks: 

(a) It is written in a fairly standard mathematical 
will be familiar to anyone who has studied much 
grade-school or high-school level 'New Math'). 

(b) The notation (3) should be read as follows: 

notation, 
mathematics 

which 
(even 

(b.i) The curly brackets surrounding the rest of formula (3), which are 
sometimes called 'set brackets', are simply read as 'the set of'. 

(b.ii) The next part, i.e. y IN s, is read more or less as it stands, 
i.e. as 'yins', or perhaps as 'ally ins', thus giving 'the set of ally 
ins'. 

(b.iii) The 'I' symbol is shorthand for 'such that'. 

(b.iv) The condition following is standard mathematical notation 
which is read as it stands, giving altogether 

'the set of ally ins such that y is less than x' 

as the English reading of (3), and similarly 

and 

'the number of elements in the set of ally ins such 
that y is less than x' 

'the number of elements in the set of ally ins such 
that y is greater than x 

as the readings of (4) and (5) respectively. 

We can therefore express the condition {*) which defines the median 
simply by writing 

(6) #{y IN s y < x }= #{y IN s I y > x} 
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There will exist such an x if and only if the number of elements in s is 
odd. SETL allows one to test for existence of an x satisfying the condition 
(6), and to find it if it exists, simply by writing 

(7) EXISTS x IN s I #{y IN s I y < x}= H{y ins I y > x} 

which in English reads roughly 

'there exists an element x ins such that the 
number of elements ins which are less than x equals the number 

of elements ins which are greater than x' 

(Note that the first I in (7), like the others, can be read as 'such that'.) 
If the median exists, i.e. if the number of elements ins is odd, we want 
to print it out; otherwise, only a message announcing thats has an even 
number of elements will be printed. This sort of conditional action, 
determined by a condition which cannot be evaluated until actual data has 
been read and examined, is expressed in SETL (as in most other modern 
programming languages) by an 'IF statement'. A full account of this 
important command will be given in Chapter III; however, even without this 
full account, the meaning of the following IF-statement, which does what 
needs doing in the present case, should be clear: 

(8) IF EXISTS x IN 
PRINT('The 

ELSE 

s #{yins 
median is:', 

y < X }=#{yin S 

x); 
y > x} THEN 

PRINT('No 
END; 

median, the sets has an even number of elements.'); 

Note the following details concerning the command (8): 

(i) To produce output printed on paper or displayed on a terminal, the 
PRINT command is used. This can either print a simple message (like the 
second of the two PRINT commands shown above, or (like the first PRINT 
command) can be used to print both a message and a quantity that has been 
calculated elsewhere in the same program (like the -x- in example (8)). 

(ii) The IF-statement appearing 
occurrence of the word END, which 
IF-statement unambiguously. 

in 
is 

(8) must be terminated by an 
needed to mark the end of the 

(iii) The rules of SETL punctuation require both the PRINT commands 
appearing in the above example, and also the whole IF-statement, to be 
terminated with a semicolon. 

As was already noted in Section 1.1, both an introductory 'header line' 
and a terminating 'trailer line' must be added to (8) before it can be run. 
Adding these lines, we arrive at the following fully set-up program, which 
can be used to read any sets of integers, and print out the median of s if 
s has an odd number of members: 

PROGRAM find_the_median; 
READ (s); 
IF EXISTS X IN s l H{y IN s 

PRINT('The median is:', 
y < x} = H{y 
x); 

ins I y > x} THEN 
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ELSE 
PRINT('No median, the sets has an even number of elements'); 

END; 
END PROGRAM find_the_median; 

Page 1-9 

Though simple, this program illustrates several of the most significant 
features of the SETL language: SETL allows us to define, construct, compare 
and in general manipulate sets of values ; such sets can be searched to 
find whether elements exist that satisfy a given property; such sets can 
also be read and written, and (as we shall see in Ch.2) modified in a number 
of ways. We shall see, as our study of the language progresses, that sets 
and set operations are particularly versatile concepts for problem-solving 
and programming, and that SETL allows its skilled user to solve complex 
problems with greater ease than that afforded by most other programming 
languages. 

- --------------------------------------------
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1.3 The steps£.!. programming; how to run your program and 
read its results. 
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Knitting instructions, basket weaving patterns, recipes, even weaving 
instructions for handlooms; all are intended to be executed manually by a 
person, who can at least be trusted to stop if he starts to get into trouble 
because something is wrong with the instructions. However, programs, like 
weaving set-ups for large automatic looms, will be executed at high speed by 
a machine. If this is not to lead immediately to failure, or still worse to 
a high-speed outpouring of trash, programs must be planned, set up, and 
tested carefully before they are released for full scale high-speed 
execution. This involves a whole series of steps: 

(I) One starts with an initial conception: what would be interesting, 
useful, scientifically or commercially valuable, to have? The answers to 
such questions come from outside the technical field of programming. 

(II) Once a goal has been formulated, what patterns of repetition and 
choice, what ingenious shortcuts, allow the desired output to be produced 
most simply and efficiently? These questions touch upon an area of program 
and algorithm design that lies outside the scope of this introductory book; 
however, the many programs presented in the chapters which follow will 
illustrate some of the numerous techniques for clear and effective design 
that are available to the knowledgeable programmer. 

(III) Once both a goal and a general plan for realizing it have been 
specified, there begins the detailed work of restating the plan in terms of 
the specific toolkit of instructions made available by the programming 
language that one is using. This is the labor of programming~~- As 
will be seen, the SETL language presented in this book supplies its user 
with very powerful tools of expression, and therefore allows programs to be 
expressed more easily, simply, and directly than they would be in other, 
less abstract programming languages. But these tools must be learned 
carefully and then used accurately: computers enforce a compulsive 
attention to detail that takes some getting used to. If used accurately, 
they will allow you to write both short programs, like the examples shown in 
the preceding section, and sophisticated programs many hundreds or thousands 
of lines long which realize very complex functions. 

(IV) After being typed at a terminal or punched on cards, a program can 
be passed to the computer on which it is to run. This will trigger a whole 
sequence of behind-the-scenes activities, with which you will only be 
peripherally involved, but of which it is important to have some 
understanding in order to cope with the various things that can go wrong 
between the time that your program is first entered into the computer and 
the time, several seconds to several hours later, when output finally 
emerges. Though differing somewhat from machine to machine, these steps 
will generally be more or less as follows: 

(i) Your program is passed, as a passive file of data, to another group 
of programs, pre-stored in the computer. These programs, which collectively 
comprise the computer's operating system, share the computer's power among 
the many users entering jobs at card-readers and terminals, all of whom 
require, and will eventually get, a quantum of service from the computer 
system. 
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The first thing that the operating system programs do is validate your 
identity as an enrolled user of the computer. If this check fails, you will 
be refused service. This will happen immediately if you are using a 
terminal and fail to identify yourself to the operating system's 
satisfaction. On the other hand, a 'batch' or 'card oriented' system 
normally looks for user identification on the first card of each deck 
submitted to it; this identification usually consists of a user name, 
password, and perhaps a few other information items such as the account to 
which the cost for a program run are to be charged. If any of this 
information is invalid, the computer system rejects your job and only very 
enigmatic information, for example a single sheet bearing your name and a 
cryptic refusal to service your progam, is produced. However, if you pass 
the operating system's user validation check, the program you have submitted 
will be entered onto a pending work queue, where it will wait, along with 
work entered by other legitimate system user to be scheduled for future 
attention by the operating system. In an interactive system run from a 
terminal this should normally take no more than a few seconds; in a 
card-oriented batch system it can wait anywhere from moments to hours. 

(ii) When your turn to be served further comes up, the first line or 
few lines of information supplied with your program are examined by the 
operating system programs running on, the computer. These first lines, known 
As command lines (or perhaps as control cards, job control cards, or JCL) 
serve to tell the operating system, which provides many services to many 
users and deals with many programming languages, which one of its services 
you want. 

To run a program in SETL, your command line or lines will have to 
convey the following information to the operating system: 

(1) The Language to be used (i.e., SETL). 

(2) The location of the SETL program to be processed. In a batch 
system this will generally be a deck of punched cards following immediately 
after the command lines, but in an interactive system it will more often be 
a file of lines which you have previously entered into the computer using an 
auxiliary 'editor' program. In the latter case, the name of this pre-stored 
program file must be indicated. 

(3) The location of any input data which your SETL program needs to 
read. In batch systems, the data may simply follow the text of your 
program, in the same deck of punched cards. In terminal systems, this data 
can either be obtained from a pre-stored file or read directly from your 
terminal, in which case you will have to type it in, in response to queries 
which your program sends to the terminal as it runs. 

(4) The destination to which output produced by your program is to be 
sent. In batch runs, this will be a 'tempor~ry file' which is printed after 
your program has halted (or, in the event of trouble, after your program has 
been halted forcibly by the operating system). In interactive runs, your 
output either will be written to a file which you can examine after it has 
been produced, or will be sent to the screen of your terminal, in which case 
output will appear as your program runs. 
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(5) You can supply additional information 
influence details of your run. Descriptive 
options is found in section 8.2. 

to select 
material 

'options' which 
concerning these 

If any of the information contained in the command line which initiates 
execution of your program is defective, the result will be almost as 
catastrophic as if your user validation had failed. Your program will not 
run, and your only output (in a batch sytem) will be a page or two of 
information recording the fact that your command lines contained an error. 
To get past this barrier you must repair your command lines, entering them 
in completely error-free form. Kake sure you understand all details of the 
required form for these few (but operating system dependent) lines; consult 
an expert immediately if trouble persists. 

(iii) Assuming now that both your identification and your command lines 
have proper form, the operating system programs will prepare for the 
processing and execution of the program which you have supplied. Though 
this involves many detailed steps, some of which are described below, the 
two basic things that the operating system needs to do are just the 
following: 

(1) The program which you have supplied will be examined, checked 
for exact conformity to the rules of the SETL language, and, if it 
passes this check, translated into an internal program form with which 
the computer can work directly. This first step, checking and 
translation, is called compilation, and the program which carries it 
out is called the SETL compiler. (Note that compilation is necessary 
because the form of SETL which you write and submit to the. computer is 
designed for human, not for machine, convenience; it must be 
translated into a more machine-cQnvenient form before your program can 
actually be run.) 

(2) After translation 
instructions give in your 
producing output. This step 
carries it out is called the 

into appropriate internal form, the 
program are actually performed, (possibly) 
is called execution, and the program which 
SETL run-time system. 

(iv) Errors can, and often will, be detected during either of the two 
preceding steps. Grammatical and other relatively 'gross' errors in the use 
of the SETL language will be detected during compilation. Unless you have 
switched off the 'listing' option of the compiler, it will print out and 
number all the lines of your program exactly as it sees them, and if it 
detects any grammatical errors it will flag them in the resulting 'listing' 
of your program, which forms the first part of the output which you receive. 

If compilation errors (also called syntax errors) occur in your 
program, then, as indicated by a message 'ABNORMAL TERMINATION' which will 
appear in the above processing of your program will end as soon as the 
compiler finishes its work; your program will not actually be run. To get 
further, you must correct all grammatical errors. Once this is done, all 
diagnostic messages will disappear, the first part of your compilation 
listing will appear as follows, and your program will move on, passing, as 
one says, into execution. 
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Substantially later in your listing there will appear the output which 
your program has produced. The three lines of output produced by the sample 
program we have been considering would look like this: 

99 
The difference of twelve and nine is: 3 
3025 

In looking for this output in your listing it is important to realize 
that the oµ~put is actually preceded by several dozen more lines of standard 
'boiler Plate' which you will grow accustomed to seeing in your output 
listings and can normally scan over quite rapidly. This additional material 
appears because the SETL compiler is a large and complex program which 
actually operates in three phases: 

(1) A 'parse' or 'grammatical analysis' phase, which analyzes your 
program, checking it for syntactic validity and breaking it down into the 
elementary clauses of which it is composed. This produces the section of 
the listing, headed CIMS.SETL.PRS, which is shown X pages above. 

(2) A 'semantic analysis' phase SEM 
elementary clauses produced by the PRS 
checks to then, and continues the process 
an internal form which can be interpreted 

(3) A 'code generation' phase COD, 
process begun by SEM. 

which takes the collection of 
phase, applies additional validity 
of transforming your program into 
directly by the computer. 

which completes the translation 

See Appendix 1.7 for a description of the standard boilerplate which 
the SEM and COD compiler phases put into your compilation listing. 
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Other common kinds of error. 

Once the PRS, SEM, and COD phases of the SETL compiler have 
successfully translated your program into its internal form, it is passed, 
in this form, to the so called SETL 'run-time' or 'execution' system, which 
then attempts to follow these translated instructions literally. (The 
translated form of your program is logically equivalent to the program which 
you have supplied, but is recast into a form that the run-time system can 
work with more easily. 

However, several further sources of error can still give your output an 
appearance totally different from what you expect. 

(a) You may have misunderstood what your program is really saying. For 
example, you may not have realized that suitably placed 'print' commands are 
necessary if any output is to be produced, and may have imagined that 
results are printed merely by virtue of being calculated by your program. 
In this case, no output at all may appear. 

An endle~s variety of other small logical 
possible, and only experience will teach you 
errors of this sort is called debugging; 
techniques are found in Section 7.2, 7.3. 

errors of this 
how to avoid them. 
hints concerning 

(b) Attempts to execute illegal operations are another 
consequence of misunderstanding what a program is really saying. 
for example, that your program contains the command 

print(x + y) ; 

sort are 
Removing 

debugging 

common 
Suppose, 

but that prior instructions have given x the integer value 1 but not defined 
The value of the variable y. Addition of an integer and an undefined value 
is illegal, and the SETL run-time system will detect this violation when it 
attempts to evaluate x + y. The run-time system will then generate a so 
called run-time or execution error, and program execution will be terminated 
immediately (aborted). In such case, your output will end with a run-time 
error message, describing the problem encountered. When this happens, you 
may want to rerun the program, using some of the additional debugging 
options described in Section 8.5.1, to gather additional information about 
the location and cause of the error. 

(c) If the logic of your program is in some way faulty, your program 
may not reach its termination, but may instead loop endlessly, in which case 
it can either produce output forever, or produce no output at all. (The 
hypothetical program 

instruction 1: 
instruction 2: 

print ('Hello there') 
go back to instruction 1 

illustrates the first of these possibilities.) If your program starts to 
loop, then the operating systems programs (which always, so to speak, lurk 
in the background, checking on what other programs are doing) will 
eventually detect the fact that your program is producing an illegally large 
volume of output or that it has outrun the time quota which the operating 
system established for it. When this h~ppens, your program will be forcibly 
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terminated by the operating systems programs, which will write a message 
explaining what has happened. 

You will need to grow familiar with the appearance that your output 
listing takes on when these various common problems are encountered. Here, 
for example, is the output that results from mistyping the number '45' in 
the second line of our sample program as 'x5', in which case it will be 
interpreted as the name of a variable, which the run-time system will find 
does not have any assigned value. 

*** ERROR AT STATEMENT 2 IN ROUTINE S$MAIN 
INCOMPATIBLE TYPES FOR -A- AND -B- IN -A+ B-. 

Note that this message identifies the offending statement, by number, as 
'statement 2' of your 'main' program (in this simple case, all that exists 
is a 'main' program; in the more complex cases which we will begin to 
introduce in Chapter IV, both A 'main program' and numerous 'subprocedures' 
can exist). Beyond this rather terse statement, no other information is 
given (however, more information can be produced using the debugging options 
described in Section 8.5.1.) 
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1.4 Advice to the would-be programmer 

As will be seen, the SETL language presented in this book furnishes you 
with many very powerful tools, and also makes it possible to create new 
·tools by combining more elementary ones into procedures which you yourself 
can define. Nevertheless, it provides only certain specific facilities, and 
not, in some magical way, everything that you might want, think it would be 
convenient to have, or even imagine to be available. You will therefore 
have to distinguish carefully between the facilities which the language 
makes available and those which il does not, learning the nature, form, and 
especially the purpose ..Q..f every feature and facility ..Q..f the language, but 
also learning what.!!_ does not make available directly (especially if this 
is something you would like to have and wish it did make available 
directly). It is as senseless to plan programs that make use of nonexistent 
programming language features as it is to work out seven-color, 
three-hundred thread patterns for an automatic knitting machine that only 
allows four colors and 180 separate threads. 

Of course, since the computer is infinitely more flexible than any 
other kind of machine, it is likely that you can find a way of building up 
any well-defined facility which you can conceive clearly and describe 
precisely. However, this can only be done by accurate use of the facilities 
of the language (SETL) that you will be using, not by imagining that you can 
suddenly leap out of its confines. Thus, even to go successfully beyond 
what is originally present in the language you will have to learn to 
distinguish accurately between the tools it provides and those which it 
omits. 

Here, an important psychological point needs to be made. To accomplish 
an operation which some feature of a programming language provides for 
directly is easy, provided that one recalls the feature and can look up 
whichever of its details are relevant. But this kind of memorization merely 
skims the surface of programming. An infinite variety of more complex and 
interesting operations can also be programmed, but to do so one needs to 
decompose them into more elementary operations which can be carried out more 
directly, and so on through progressive stages of decomposition, until one 
reaches operations which can be expressed directly by single comands of the 
programming language with which one is working. Though helpful hints about 
how to do this can and will be given, this process of decomposition cannot 
be accomplished by application of any simple recipe, it requires problem 
solving and invention. Now, unless at some time in the past you have been 
either a devoted and successful puzzle enthusiast, chess, bridge or checker 
player, or a mathematics student, you will probably find that programing 
makes unexpectedly strenuous demands on your problem-solving muscles, 
demands for which your past education has probably given you very little 
preparation. Indeed, with few exceptions, school courses teach 
memorization, or at best application of memorized procedures, but not true, 
no-holds barred problem solving of the kind you will encounter in learning 
to program. In History you have learned facts and interpretations, in 
Chemistry more facts, in undergraduate Physics you have learned formulas and 
how to apply them; in mathematics, up to and well into calculus, you have 
also memorized v~rious procedures and how to apply them. Therefore it may 
very well be that in becoming a programmer you will have to master the 
intellectual art of problem solving for the first time. The following 
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paternal remarks are intended to help you cope with this challenge. 

(a) Don't panic. Although some people are better at problem solving 
than others, the ability to solve problems, like the ability to cook a good 
spaghetti sauce or dance the waltz acceptably, can be learned by anyone. 
Don't let your instructor's problem-solving speed intimidate you. He 
probably has both talent and years of experience; Of course you will need 
time to catch up with him. 

(b) On first facing a problem that you have never solved before, you 
will feel confused. Again, don't panic. Remember that you are not trying 
to remember a fact which you have forgotten, rather, you are trying to 
search out, to devise, to discover something which, for you, is new. The 
initial confusion (which everybody, even the strongest problem solver, is 
bound to feel at first) is not the end of your efforts to solve the problem: 
it is merely the start of the beginning. Don't say to yourself: 'I don't 
see the answer; I am confused; I give up'. Instead, say 'I am in process 
of wrestling with, and dispelling, the initial confusion which every new 
problem generates,' and fight on. Significant problems, like nuts, have 
hard shells, and can only be cracked if they are examined closely enough for 
their lines of cleavage to be found. Pick the problem up, attach yourself 
to it, and begin to turn it over, searching from all angles for the hints 
which will unlock it. 

(c) Explore the leads which occur to you, co~bining caution and 
boldness. Can you see a fragment of the solution? Can you guess one 
command which will be helpful? Can you solve any part of the problem? Can 
you see any way of breaking the problem into two or more parts which look 
easier to solve than the whole problem does? If you have solved some part 
of the problem, what problem remains? Can you see any way of extending your 
partial solution to cover more of the problem? If you can't solve the or 
iginal problem, can you solve some easier problem that has significant 
similarities to it? If so, can this solution be improved enough to solve 
the original problem, or at least a problem substantially closer to it? If 
not, what is the easiest similar problem which you cannot solve? Why not? 
What feature of it prevents solution? What, if anything, can be done about 
this feature? 

(d) Don't give up too easily. Remember that a programming problem, 
like a jigsaw puzzle, may have to be solved one piece and one clue at a 
time. 

(e) If no progress seems to be possible along a given line of attack, 
try to find another approach. Sleep on the problem and start afresh with a 
new approach the next morning. 

(f) If a problem seems intractable, go to an appropriate book and look 
up a solution, or to a helpful, more knowledgeable person and have the 
solution explained. But take this help actively, not passively. Ask 
yourself: What is the key trick that I failed to discover? In what other 
situations can this new trick be useful? What part of the problem could I 
have solved with what I knew before; what aspect really requires the new 
method that has just been explained? Practice using the new method on a few 
simple examples you make up for yourself, and ponder it carefully, to make 
sure you digest it. 
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(g) Accustom yourself to dealing with concepts and methods, not with 
memorized program fragments. Although memorized fragments, like memorized 
sequences of chess moves, are useful, and even though the experienced 
programmer may have memorized dozens or hundreds of them, no two situations 
are exactly the same in programing, any more than they are in chess. Your 
basic need in learning to program is not to remember programs presented in a 
book and adapt them slightly to new situations: it is to learn how to 
invent general logical plans, and to master the principles which will allow 
you to do this, along with the language in which you will have to explain 
your plans to a computer. General methods, principles, and approaches will 
retain their usefulness over a wide range of circumstances, while 
ill-conceived attempts to adapt a textbook example to do something it Was 
not designed to do will often be less profitable than wiping the slate clean 
and starting afresh. 

(h) Train yourself to accuracy, but don't be overly afraid of errors. 
Computers have only a limited capacity to deal sensibly with errors. On the 
other hand they are infinitely patient, and will give you all the chances 
you need to remove the errors initially present in your program. Because of 
the high degree of accuracy with which programs need to be prepared, errors 
are as omnipresent in programming as in clutter in kitchens and sawdust in 
woodshops. Remember that no one is looking impatiently over your shoulder 
as you develop a program; you can have all the tries you want, and only 
your final success counts. The computer is infinitely patient; one must 
scribble to write; everything along the way to final success is just 
scrap-paper to be thrown out. 

Your aim in dealing with errors should not be to avoid them fearfully, 
but to learn to recognize them clearly, understand the violations of rule 
and principle which let them creep in, and remove them swiftly. As long as 
your programs are moving rapidly toward correctness, errors are tolerable. 
Only errors which you cannot recognize and do not know how to remove need to 
be considered major problems. 

{i) On the other hand, accumulation of numerous unnecessary errors 
through gross carelessness or misunderstanding will wind up wasting large 
amounts of your time as you struggle to remove mistakes that a little more 
care could simply have avoided. Hence it is really important to train 
yourself in accuracy, and to learn to use the programming language to be 
presented in this book cleanly and grammatically. You will want to study_!!. 
closely, learning its facilities, restrictions, style, and inner rhythms. 
As your programs evolve toward completion, you will want to review them 
carefully and suspiciously, trying to search out all errors in programming 
language use or in underlying logic; all hidden defects which might force 
you to waste time later. As we have said, the programming language to be 
presented in this book is a kit of priw~rful tools for your use: you will 
want to inspect all the tools in this kit, and to understand and reflect 
upon their capabilities, restrictions, and intended use. This will help you 
to develop into a skilled practitioner able to do everything in the 
clearest, most direct, most effortless way. 
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1.5 How to~~ program; Character sets 

If the terminal or keypunch machine with which you are working has all 
the characters which appear in SETL programs in this book, then you can type 
your programs exactly as this book will show them. The special punctuation 
characters required are 

< less than 
> greater than 
= equals sign 
( left parenthesis 
) right parenthesis , 

quote mark (apostrophe) . period 
, comma 

colon . semicolon , 
I slash 
+ plus sign 

minus sign 
$ dollar sign 
? question mark 
II number sign 

underline 
{ le ft set bracket 
{ right set bracket 
[ le ft square bracket 
] right square bracket 
I such that symbol 

When not all these characters are available, standard substitutions 
used for some of them. These include the following 

can be 

{ can be written as << 
{ can be written as >> 
[ can be written as (/ 
] can be written as /) 

I can be writen as ST 

The remaining characters are replaced if necessary by single characters 
which type differently. For lists of these character substitutions, you 
will have to consult implementation specific information available from the 
computer center in which your programs are being run. 

Some, but not all, implementations 
and lower case (small) versions of all 
When this is so, programs can be typed 
letters, or any helpful and pleasing 
the command 

print(3+5); 
can also be typed as 

PRINT(3+5); 
or as 

Print (3+5); 

will make both upper case (capital) 
the alphabetic characters available. 
either in capital letters, small 

combination of the two. For example, 
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or even as 
PrlnT (3+5); 

The SETL system always transposes all 'keywords' like PRINT appearing in a 
program into upper case, and works internally with these upper case 
versions. Only characters appearing within quotation marks (i.e. in 
'quoted strings', see Section 2.1) are retained in their original lower case 
forms. This means, for example, that the statement 

PRINT('hello there') ; 
will produce the output 

hello there 
whereas the statement 

will produce the output 
print('Hello There') 

Hello There 

. , 

Extra blanks are generally ignored, and can therefore be used to space 
out your program text to make it more readable. For example, 

print(3+5) 
print(3 + 
print (3 

5) 
+5 ) 

will all produce the same output, namely 

8 

The only places in which blanks are forbidden to appear (or have meaning if 
they do appear) are within constants, standard keywords, and variable names. 
For example, 

print 
1000000 
counter_l 

cannot be written as 
II 

II 

p rint 
1 000 000 
count er 1 • 

SETL instructions are terminated by semicolons, and can be continued 
over as many lines as necessary. This means that the instruction 

print (3+5); 

could also be typed as 
print 

( 

3 
+ 

5) ; 

if there were any sensible reason for doing so. See Section XXX for rules 
concerning the continuation of a quoted string from one line to the next. 

The dollar sign '$' is used to indicate the points at which there begin 
explanatory 'comments' that are intended to be helpful to a programs' human 
reader but which are ignored by the SETL compiler. See Section XXX for a 
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discussion of the use of comments in programs, a very important subject. 
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1.6 Exercises 

1. Find out how to run the program shown in Section 1 on your 
computer, and run it. 

2. How could you define the median of a set having an even number of 
integer members? Can you modify the program shown in Section 3, so as to 
make it work irrespectively of whether the set of integers supplied to it 
has an even or odd number of members? 

3. Take the median-finding program of Sec.1.3, and introduce various 
typing errors in it. Submit these mangled programs to the SETL compiler, 
and study the resulting error messages. Try to predict what the response of 
the compiler will be to each error you insert. 

4. Jot down a personal inventory of your own history as a problem 
solver, listing all your experience in such relevant activities as 
mathematics and science classes {especially solution of 'original' 
programs), chess, bridge, crossword puzzles, jigsaw puzzles, recreational 
puzzles, etc. Do you feel that you have quite considerable experience as a 
problem solver, Or only a little? 
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1.7 Appendix: More on how!_£ read your output listing. 

Here, for example, is how the compilation 
shown in the preceding section would 
grammatical errors, namely omission of the 
the program (see P• XXX) and replacement 
should end its fourth line: 

PROGRAM sample_program_number_l; 
1 1 PROGRAM sample_program_number_l; 
2 2 print(54 + 45); 

listing of the sample program 
look if it contained two small 
comma shown in the third line of 
by a colon of the semicolon which 

3 3 print('The difference of twelve and nine is:' 12 - 9); 
******** ERROR 3: EXPECT RIGHT PARENTHESIS 

PARSING: 45 ) ; PRINT ( 'The difference of twelve and nine is:' 12 

4 3 print(55*55): 
******** ERROR 9: EXPECT ASSIGNMENT OPERATOR 

PARSING: 'The difference of twelve and nine is:' 12 - 9) ; PRINT 

5 3 
******** 

END; 
ERROR 91: EXPECT VALID STATEMENT 
PARSING: 55 ) : END 

= 
*** COMPILATION TERMINATED BY UNEXPECTED END-OF-FILE*** 

PARSING: ) : END; ; 

NUMBER OF ERRORS DETECTED= 3 
ABNORMAL TERMINATION. 

= 

Note the following concerning this 'compilation listing' 

=------

(1) The compiler numbers the lines of your progiam. Lines are numbered 
sequentially down the left of the listing. (The compiler inserts these 
numbers to make lines easier to refer to. Do not type in these numbers 
yourself.) 

(2) Just to the right of these 'primary line numbers', there appear 
other, similar but slightly different, 'secondary line numbers'. These 
secondary line numbers are needed primarily for longer programs consisting 
of multiple procedures (see Chapter IV), to allow line numbering to be 
restarted at the beginning of each procedure. (Again, do not type in these 
numbers yourself, the compiler will insert them.) 

(3) Following these numbers, the appropriate line of your program 
appears. These lines constitute the definitive version of your program, as 
it has actually been seen by the compiler. Check them carefully. If they 
differ in any way from what you think you have typed, then a typing error 
has occurred; this must be fixed before you can go any further. 
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(4) Immediately following each line in which the compiler has detected 
(or thinks it has detected) an error, there appears a so-called diagnostic 
message, flagged with 8 stars and the word ERROR, as in 

******** ERROR 3: EXPECT RIGHT PARENTHESIS 

After each such line, there appears a second diagnostic line, starting with 
the capitalized word PARSING, as in 

PARS ING : 4 5 ) PRINT ( 'The difference of twelve and nine is:' 12 

Parts of this latter line will be underlined, in part with dashes 
part with equal signs'='• 

, , in 

The diagnostic or ERROR message that the compiler supplies when it 
detects or thinks that it has detected an error consists of an error number 
(-3- in the example given above) and a short statement (in our example, 
'EXPECT RIGHT PARENTHESIS') representing the compiler's guess as to what the 
error was. Concerning this, you must be aware that, while very accurate in 
its treatment of error-free programs, the compiler has a very limited 
ability to deal accurately with errors, and that these statements, which 
represent rather nearsighted guesses only, are frequently wide of the mark. 
In the above example, the compiler guessed (wrongly) that you meant to end 
the print statement immediately after the first message, i.e. that what you 
meant to type was 

print('The difference of twelve and nine is:'); 

Making this guess and not finding the-)- which it guesses should be there, 
the compiler issues the message 'EXPECT RIGHT PARENTHESIS'. Of course, a 
person looking at this line would see that putting in a right parenthesis is 
not a good way to correct the line, since it would still leave the rest of 
the line, namely '12-9' unexplained. With this clue a person would easily 
make the more illuminating guess that a comma was missing, and could then 
issue a more intelligent message like -MISSING COMMA-. However the compiler 
is much more myopic, easily confused, and the guesses which it makes when it 
encounters an error must therefore be taken very skeptically. About all 
that can be deduced from the appearance of an error message is that the line 
which it follows probably contains an error. This line should then be 
examined very carefully to see if you can spot the error. If in doubt as to 
what rules of SETL grammar apply, look up the relevant rules in the 
appropriate part of this book. 

The diagnostic line following the line containing eight asterisks 
(namely the line starting with the word PARSING) which follows the line 
containing the word ERROR is actually of greater help than the first 
diagnostic line when you are trying to locate a minor grammatical error. In 
this line, the word PARSING is followed by the seven last 'tokens' (i.e., 
words, numbers, punctuation marks, or quoted strings) which precede the 
point at which the compiler was sure that an error had occurred. In our 
example, program line 3 is followed by the word PARSING, and then by the 
seven following 'tokens', which you will note occur in the program, just 
before the point of error: 

45 (an integer) 
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) 

PRINT 
( 
'The difference beween line and 
12 

(punctuation mark) 
(punctuation mark) 
(a 'keyword') 
(punctuation mark) 

twelve is' (quoted string) 
(an integer)· 
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The compiler detected an error just between the last of these two tokens, 
where, as we know, a comma is missing. 

It is normally not too hard to spot a grammatical error by looking 
carefully over the line to which an error message has been attached, and 
comparing it to the sequence of tokens following the word PARSING appearing 
in the second line of the error message, especially to the last few tokens 
of this sequence, which are likely to lie close to the actual point of 
error. However, this must be done with some caution, since after an error 
has occurred it may take a few lines of error-free program text for the 
resulting confusion (which affects the compiler) to dispel enough for 
additional error Messages to become accurate again. This phenomenon, a 
spurious error message issued in the wake of an initial error, is seen 
following lines 4 and 5 of our example program. In line 5, the perfectly 
correct END; has been flagged as an error since, coming as soon after the 
erroneous line 3 and 4 as it does, it is mistakenly taken as an illegal 
continuation of line 4 and not as an independent statement. 

The manner in which the seven tokens following the word PARSING in the 
second line of an error message are underlined can also be helpful. Some of 
these tokens are underlined with hyphens, others with double bars, others 
not at all. The underlined symbols are those which are under active 
consideration at the moment when a grammatical error is detected. 'Reserved 
words', which cannot be used as variable names, and also punctuation marks, 
are underlined with double bars, other tokens with single bars. (This clue 
is valuable in cases in which you have accidentally used a reserved word as 
the name of a variable. See Appendix XXX for a list of all reserved words.) 

Missing Quotation Marks 

If you accidentally omit a quote mark (apostrophe) in your program, 
then whatever happens to follow the resulting unmatched quote mark will be 
taken as part of a quoted message (i.e., 'quoted string'). To prevent this 
rule from affecting the whole of your program, an arbitrary limit of 128 
characters is e«tablished as the maximum permitted length of a quoted 
string; so recovery from this kind of error will normally take place a few 
lines later. When this kind of error occurs it will give a 
characteristically strange appearance to the list of tokens following the 
word PARSING in the very next error message; this should tip you off to the 
fact that the problem is a missing apostrophe 

Comments preceded by dollar signs ('$', see Section X) are bypassed by 
the grammatical analysis process, and will never appear in the list of 
tokens following an error message. This can give such lists a different 
appearance from the program text to which they refer, especially if a 
comment many lines (or even pages) long has been bypassed. 

Other features of the compilation history. 
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In your compilation listing, the lines that we have just been 
discussing are actually preceded by a largely blank page, containing just a 
few lines of information which looks approximately as follows: 

CIMS.SETL.PRS(81121} THU 13 AUG 81 07:00:19 PAGE 1 

PARAMETERS FOR THIS COMPILATION: 

S OUR C E FIL E : I = DB C O : [NY USE TL • BERKOWITZ ] T ST • ST L ; 2 • 
LISTING FILE: L = DBCO: [NYUSETL.BERKOWITZ]TST.LIS;l. 

POLISH STRING FILE: POL= TST.POL. 
AUXILIARY STRING FILE: XPOL = TST.XPL. 

LIST DIRECTIVES: LIST= l, AT= l. 
PARSE ERROR LIMIT: PEL= 999. PARSE ERROR FILE: TERM= SYS$ERROR:. 
CHARACTER SET: CSET =EXT.MEASUREMENTS: MEAS= O. 

Don't pay too much attention to this material at first: it merely dates the 
listing and records various standard options which the compiler is using. 
You will only become concerned with these options (which are described more 
fully in Section 8.5.1) when you are working with long complex programs or 
want to secure one or another special effect. 

Assuming that all goes well, the SEM phase will insert the following 
information into your output listing: 

CIMS.SETL.SEM(81121} THU 13 AUG 81 07:00:22 PAGE l 

PARAMETERS FOR THIS COMPILATION: 

POLISH STRING FILE: POL= TST.POL. AUXILIARY STRING FILE: XPOL = TST.XPL. 
BINDER FILE: BIND•. IND. BIND FILE: IBIND •. 
LITTLE Ql FILE: Ql • TST.LQl. SETL Ql FILE: SQl =. 
SEMANTIC ERROR LIMIT: SEL • 999. SEMANTIC ERROR FILE: TERM s SYS$ERROR:. 
GLOBAL OPTIMIZATION: OPT• O. DIRECT ITERATION: DITER • O. 
USER DATA STRUCTURES: REPRS • O. 

NO ERRORS WERE DETECTED. 

Ql STATISTICS: 
SYMTAB(279,16383}, VAL(242,16343), NAMES(746,16343). 
FORMTAB(52,2047), MTTAB(35,2047). 
CODETAB(23,8191), ARGTAB(33,16383}, BLOCKTAB(3,1023). 

NORMAL TERMINATION. 

This will be followed one page later by similar output produced by the COD 
phase, namely 
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CIMS.SETL.COD(81099) THU 13 AUG 81 07:00:30 

PARAMETERS FOR THIS COMPILATION: 

LITTLE Ql FILE: Ql • TST.LQl. SETL Ql FILE: SQl •. 
Q2 FILE: Q2 • TST.COD. SAVE INTERM FILES: SIF • O. 

PAGE 

CODEGEN ERROR LIMIT: CEL • 999. CODEGEN ERROR FILE: TERM• SYS$ERROR. 
GLOBAL OPTIMIZATION: OPT• O. BACKTRACKING: BACK• O. 
RUN-TIME ERROR MODE: REM• 2. ASSEMBLY CODE: ASM • O. 
CONSTANTS AREA SIZE: CA• 65535. SYMBOL TABLE SIZE: ST• 8191. 
INITIAL HEAP SIZE: H = 600000. 

NO ERRORS WERE DETECTED. 

Q2 STATISTICS: 
MIN SYMTAB SIZE= 186. MIN CONSTANTS AREA• 47. MIN DYNAMIC HEAP• 483. 
Q2 CODE SIZE• 38. INITIAL HEAP SIZE• 66018. MIN HEAP SIZE• 1088. 
EXEC STATEMENTS• 4. Q2 INSTRUCTIONS• 19. 
Q2 FORMAT DATE• 81099. 

NORMAL TERMINATION. 

1 

As for the PRS phase standard output, all this material merely records 
various standard options which are being used for compilation. Since both 
the SEM and (much more rarely) the COD phase of the SETL compiler can detect 
a few subtle errors in your code which the PRS phase may he missed, you will 
want at least to glance quickly at this output, to determine whether it ends 
with the line -- NORMAL TERMINATION -- signifying the absence of error. If 
not; the presence of errors is indicated. For an account of the errors 
which might be detected during the SEM and COD phases, see Section XXX. 
Note however that errors in an earlier phase can cause mistaken error 
messages to be emitted by a later compiler phase. Thus, unless you have 
become expert in the use of the SETL system, you will only want to pay 
attention to error messages generated by the first compilation phase which 
detects any errors at all. 

Note also that the output produced by your program follows immediately 
after the last line of standard material put out by the COD phase. Thus, 
especially if your program has produced only a few short lines of output, it 
is very easy to lose sight of your program's actual output, which may be 
concealed from your eye by the larger mass of standard material which 
precedes it. In this case, you may be confused into thinking that no output 
has been produced. Grow accustumed to looking for output quite carefully. 
The following shows the actual appearance of output from our sample program, 
in its physical relationship to the standard material produced by the 
compiler's COD phase. 

CIMS.SETL.COD(81099) THU 13 AUG 81 07:00:30 PAGE 1 

PARAMETERS FOR THIS COMPILATION: 
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LITTLE Ql FILE: Ql • TST.LQl. SETL Ql FILE: SQl •. 
Q2 FILE: Q2 • TST.COD. SAVE INTERM FILES: SIF • O. 
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CODEGEN ERROR LIMIT: CEL • 999. CODEGEN ERROR FILE: TERM• SYS$ERROR. 
GLOBAL OPTIMIZATION: OPT• O. BACKTRACKING: BACK• O. 
RUN-TIME ERROR MODE: REM• 2. ASSEMBLY CODE: ASK• O. 
CONSTANTS AREA SIZE: CA• 65535. SYMBOL TABLE SIZE: ST• 8191. 
INITIAL HEAP SIZE: H • 600000. 

NO ERRORS WERE DETECTED. 

Q2 STATISTICS: 
KIN SYKTAB SIZE• 186. MIN CONSTANTS AREA• 47. KIN DYNAMIC HEAP• 483. 
Q2 CODE SIZE• 38. INITIAL HEAP SIZE• 66018. KIN HEAP SIZE• 1088. 
EXEC STATEMENTS• 4. Q2 INSTRUCTIONS• 19. 
Q2 FORMAT DATE• 81099. 

NORMAL TERMINATION. 
99 
The difference of twelve and nine is: 3 
3025 

Review of principal actions which occur when~~ ism 

The following summary lists all the principal system actio~s performed 
on your behalf between first submission of a program and the moment at which 
output produced by your program appears. Normally all this will proceed 
smoothly and require little attention on your part. However, trouble can 
occasionally develop, and then you will need to have at least some idea of 
all that is going on, if only in order to know whether the problems that 
have developed trace back to something wrong with your program or to 
difficulties elsewhe%e in the system: 

1. User identity verified 

2. Command lines analyzed and verified. 

3. Ope~ating systems prograas (temporarily) pass contrbl of computer 
to PRS phase of SETL compiler program, which reads, analyzes, and validates 
the SETL program which you hav~ supplied. 

4. PRS phase completes, producing listing as 
command including error diagnostics if any errors 
errors have been detected. Otherwise a data 
half-digested version of your program is saved 
compiler phase. 

specified by initiating 
detected. Run may end if 
file representing the 

for use by the next (SEK) 

s. Operating system programs (temporarily) pass control of computer to 
SEK phase of SETL compiler, which continues analysis and translation of the 
SETL program which you have supplied. 
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6. Second (SEM) phase of SETL compiler is moved by operating system 
programs to the computer's central memory, and scheduled for execution. 

7. The operating system programs (temporarily) pass control of 
computer to COD phase of SETL compiler, which completes the translation of 
the SETL program which you have supplied. 

8. The SEM phase completes, adding to the output listing, and 
returning control to operating system programs. Additional error 
diagnostics may be tramnsmitted to the output listing. Otherwise a data 
file representing the partially translated version of your program is saved 
for use by the next (COD) phase of SETL compiler. 

9. The third· (COD) phase of the SETL compiler is moved by operating 
programs to the computer's central memory, and scheduled for execution. 

10. The operating system programs (temporarily) pass control of 
computer to the COD phase of the SETL compiler, which completes the 
translation of the SETL program which you have supplied. 

11. The COD phase completes, adding final compilation messages to 
output listing. Control is returned to the operating system programs, and a 
data file representing the internal, translated version of your program is 
saved for use by the SETL run-time system. 

12. The SETL run-time system-program is moved into central memory of 
the computer by operating system programs, and is scheduled for execution. 

13. The operating system programs (temporarily) pass control of 
computer to the SETL run-time system, which follows the instructions found 
in the translated version of your program, producing output, and eventually 
either terminating, aborting if an illegal situation is found, or being 
forceably terminated by the operating system if it runs for long or produces 
too much output. 

14. If your program is being run interactively from a terminal, the 
terminal will return to 'command mode' to await your next general 
instruction. If the program is being run on a 'batch' system, an additional 
'dayfile' summary of system actions will be transmitted to the end of your 
output file which will then be released for printing. Later it will be 
printed and delivered to your standard output pick-up point. 

$ 

---------------------- ------





"HAPTER 2 

DATA AND EXPRESSIONS 

This chapter has two parts. Sections 1 and 2 deal with the various 
kinds of data which the SETL language allows and is able to manipulate. The 
remainder, Sections 3 through X, describes the various kinds of expressions 
provided by SETL, using which new data objects can be formed. SETL provides 
data objects and expressions which are significantly ~icher than the objects 
provided in most other programming languages, so this chapter will be a bit 
longer than most others. 

Chapter Table Of Contents 

2.1 The main classes of data objects 
2.1.1 Integer, Real, and Boolean constants 
2.1.2 Constant Sets 

2.1.2.1 Sets of successive integers 
2.1.3 Tuples 

2.1.3.1 Tuples of sequences of integers 
2.1.4 Maps 
2.1.5 The size of composite objects: the operator 

2.2 Exercises 
2.3 Expressions and statements 

2.3.1 Variable identifiers 
2.3.2 Integer operators 

2.3.2.1 Exercises 
2.3.3 String operators 
2.3.4 Boolean operators 

2.3.4.1 Exercises: Boolean equivalences 
2.4 Set operations and setformers. 

2.4.1 Setformer expressions 
2.4.2 Existential and universal quantifiers 
2.4.3 Some illustrative one-statement programs 

2.5 Tuple operators and tuple formers 
2.5.1 Binary tuple operators 
2.s.2 Unary tuple operators 
2.5.3 Other tuple operators 

2.6 Tuple formers. Simple tuple and string iterators 
2.7 Map Operations 

2.1.1 The image set operator f{x} and the image operator f(x) 
2.7.2 The single-valued image operator f(x) 
2.7.3 Some remarks on multi-valued maps 
2.7.4 Two useful map operations 
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2.7.5 Multi-parameter maps 
2.8 Compound operators 
2.9 Types and type-testing operators 
2.10 The? operator 
2.11 Exercises 
2.12 General form of the SETL assignment 

2.12.1 'Assigning forms' of infix operators. 
Assignment expressions 

2.12.2 Other positions in which assignment operators are allowed 
2.12.3 The operators FROM, FROME, and FROMB 

2.13 Operator precedence rules 
2.14 Exercises 
2.15 OMS and Errors 

2.1. The main classes of data objects. 

Like certain other programming languages, SETL allows one to manipulate 
two main kinds of data items, namely simple data items and composite data 
items. Four of the simple kinds of data items, namely 

integers 
floating point numbers 
character strings 
boolean values 

are very much like those provided in most other programming languages. A 
fifth kind of data item, called 'atoms', will be a bit less familiar, but 
are still relatively easy to use. One very special quantity,. namely the 
undefined value (called -OM-) is used frequently in SETL programs, and its 
somewhat nonstandard properties will become fully familiar as we go along. 
In addition to these simple data items, SETL provides exactly two kinds of 
composite objects, namely 

sets 
and 

tuples 

It is the fact that it allows sets to be used freely that gives SETL its 
name 'SET-L'. 

Sets of _one particular kind, namely sets of ordered pairs, play 
particularly important roles and therefore are sometimes referred t-0 by a 
special term, namely 

maps 

These are all the classes of data values which the SETL language 
allows. 

2.1.1 Integer, real, and boolean constants 

To use object~ of any of these kinds in a program we occasionally need 
to be able to write them out directly. For example, to give a variable x 
the value 3.14159 we may want to write 
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X := 3.14159; 

A value written into a program in this way is called a constant, a constant 
denotation or (by some authors) a literal. The rules for the various forms 
of constants allowed in SETL are as follows: 

(a) integers: Integers are written in the standard way, as sequences 
of decimal digits possibly preceded by a+ or - sign. Examples are 

0 
1066 

-50 
+35 

001616232358 

The way in which an integer denotation can be constructed can be summarized 
by means of a diagram, or graph, which looks as follows : 

+ digit 

The diagram consists of rounded boxes, square boxes, and paths 
connecting these boxes. Each diagram has an edge that leads 
and edge that exits from it. A path through the diagram that 
edges in the indicated directions is a valid instance 
construct. The two kinds of boxes have the following meaning 

with arrows 
into it, and 
follows the 

of a language 

(i) A rounded box denotes a symbol of SETL, which must appear as is 
when used. For example, the+ and - signs, the parenthesis, keywords such 
as IF, LOOP, EXISTS, and so on. 

(ii) Square boxes correspond to other language constructs for which a 
separate diagram is provided. For example, the construct -digit- is 
described fully by a diagram that lists the 10 digits as valid instances of 
this construct. A full list of diagrams for SETL is provided in Appendix A. 
To test your understanding of these, ~erify that the diagram presented above 
allows you to write -12345678 as a SETL integer, but forbids ->12345678. 

(b) floating point numbers: Floating point numbers are written in one 
of the notations that have become standard, namely either in decimal form or 
in exponent form. A real number in decimal form is a sequence of decimal 
digits, followed by a decimal point, followed by a second sequence of 
decimal digits, and possibly preceded by a+ or - sign. The initial but not 
the final sequence of digits can be omitted. Examples are 

o.o 
.3156 (but note that 3. is illegal) 

1066.6 
-so.so 
+35.50 

3.1415928 
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A real number in exponent form is a real number in decimal form, immediately 
followed by the letter E, and then by an integer (the exponent). Exampl~s 
are 

This last 
notation 
ordinary 

l.OElOO 
31415.9E-4 
6.0E+23 

form for real constants corresponds to the ordinary 'scientific' 
for decimals, e.g. these three examples would be written in 

scientific notation as 

100 
as 1.0 * 10 

-4 
, 31415.9 * 10 

23 
and 6.0 * 10 • 

The previous description of floating point is summarized by the following 
diagram: 

• E sign 

This diagram makes it clear that any valid floating point constant must have 
one digit or more after the decimal point, but may have none before it. 

(c) string: A string is an ordered sequence of zero or more 
characters. To write a string as a constant we enclose it within (single) 
quotes (i.e., apostrophes) as in the following examples: 

'Brother, can you spare a dime?' 
'*11-;*11' 
, , 

This last example shows the null string, i.e., the (unique) string 
consisting of zero characters. Note that blanks appearing within a string 
are significant,·i.e., are treated in the same way as any other character. 
Thus, although the number of characters in 'Hello' is 5, the number of 
characters in 'Hello 'or' Hello' is 6, and the number of characters in ' 
Bello' is 7. 

If the quote mark (i.e., apostrophe) itself is to appear within a 
string s it must be written doubled, to indicate that it is part of sand 
not the end of s. Thus, to write the string - Mary's mom - as a constant, 
we would write 

'Mary''s mom' 

Note that the doubled apostrophe after the letter -y- serves to denote 
a single apostrophe in the actual string constant.· 

Any of the characters available in the machine which you are using can 
be used in a string constant, although SETL programs which are to be run on 
a variety of different computers should restrict themselves to the 
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characters available on all computers to avoid character-set translation 
problems. 

Sometimes one will need to write a long string constant, so long that 
it must cross a line boundary. This can be done by ending the first part of 
the string with a quote {i.e. apostrophe) and then' continuing immediately 
on the next line, with a second quote character to continue the string. 
This "line break" sequence is called a string continuation and is not 
included in the actual string value of the multiline string constant. This 
means, for example, that we can write the string assignment statement 

x :='Brother, can you spare a dime?' 

on two lines as 

x := 'Brother, can you spa' 
're a dime?' 

when there appears to be any reason to do so. 

{d) Boolean values: There are two Boolean values, truth and falsity, 
in SETL. These are written as TRUE and FALSE respectively. These values 
are typically produced as the results of tests, e.g. the value of the 
expression {3 > 1) is TRUE and the value of {1 < 3) is FALSE. 

(e) atoms: atoms are generated names, or tags, that can be used to 
label objects in a SETL program. Atoms are different enough from other data 
types in their functions and use, that we will postpone their discussion 
until Sec. 2.8. 

Let us now discuss the rules for writing constant composite objects, 
namely sets and tuples. 

2.1.2 Constant sets. 

Sets in SETL are finite collections of arbitrary values. To write a 
set constant, we simply list the members of the set, with commas between 
successive members, within th~ set brackets '{' and '}'. Three examples 
are: 

{1,2,3,4} 
{'Tom', 'Dick', 'Harry'} 
{TRUE,FALSE} 

The first of these is the set of all integers between 1 and 4; the second 
is a set of three strings, namely, 'Tom, 'Dick', and 'Harry'; the third is 
the set consisting of the two possible boolean values TRUE and FALSE. 

The 'null' or 'empty' set, i.e. the (unique) set having no members at 
all, is a legal SETL value. It is written as follows: 

{ } 

Any legal SETL value {with the sole exception of the undefined value OM) can 
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be a member of a set. Examples illustrating this are 

{1,TRUE,'Tom'} 
{1,TRUE,'Tom', {3}} 

The first of these two examples is a perfectly legitimate set whose three 
members are the integer 1, the Boolean value TRUE, and the string 'Tom'. 
The second has four elements, the integer 1, Boolean value TRUE, string 
'Tom', and the set {3} , i.e., the 'singleton' set whose sole member is the 
integer 3 • This shows that sets need not be homog.eneous, i.e. are not 
restricted to have members all _of the same kind, and that sets can be 
members of other sets. Note also that the integer 3 is not a member of the 
set {l,TRUE,'Tom', {3 }} , but that the set {3}, which is quite a different 
thing, is. A more complex example illustrating this same fact is 

(*) {l, {2}, {{3}}, {}, {5,6}} 

This is a set of five members, namely: the integer 1, the set {2} whose 
sole member is the integer 2; the set {{3}}, whose sole member is the set 
{3} ; the null set{} , and the set {5,6} consisting of the integers 5 and 
6. Note that in this example the integer 3 is neither a member nor a member 
of a member of set (*); rather, it is a member of a member of a member of 
(*). 

As ordinarily in mathematics, set values never actually contain 
duplicate members, and the members of a set have no implied order. Thus the 
sets {1,1} and {1}, both of which are legal, designate exactly the same 
set, namely the set whose sole element is the integer 1. Similarly, {1,2} 
and {2,1} designate the same set, namely the set whose memb~rs are the 
integers land 2. For a more complex example, note that 

{l, 2, {3,4}} 
and 

{{4,3},2,l} 

designate the same set, namely the set whose three elements are the integers 
l and 2 and the set {3,4} (but {1,2,3,4}, which is a set of four elements, 
namely the integers l through 4, is different). 

Since the elements of a set are not considered to have any particular 
order within the set, it is incorrect to speak of the first, second, or last 
element of a set. That is, it is incorrect to speak of the string 'Tom' as 
the first element of the set 

{'Tom', 'Dick', 'Harry'} 

or to speak of the string 'Harry' as its last element, since this same set 
can as well be written as 

{'Harry', 'Tom', 'Dick'} 
or 

{'Dick', 'Tom', 'Harry'} 

In working with sets, one must always remember that their elements have no 
particular order, and that duplicates are eliminated. 
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2.1.2.1 Sets of successive integers. 

Sets whose elements are successive integers, such as 

{1,2,3,4,5,6,7}, {-3,-2,-1,0,l,2,3} 

arise often enough that a special notation is provided for them. To 
describe the set of all integers lying in the range M to N inclusive, where 
Mand N are integers, we write: 

{M •• N} 

The two dots (not three, and not commas!) stand for all the integers M+l, 
M+2, and so on up to N-1. Sets of integers of the form: 

{1,3,5,7,9} or {10,5,0,-5,-10,-15} 

that is to say, sets that represent an arithmetic progression, are also 
useful enough to be given their own notation in SETL: We represent such 
sets by giving the first, second, and last element of the progression, as 
follows: 

{1,3 •• 9} {10,5 •• -15} 

note again the use of two dots to indicate middle part of the sequence. 
These notations will be used frequently in what follows. 

When sets are printed, their elements can appear in any arbitrary 
order. For example, 

print({l •• 10}) 

might be expected to produce {1,2,3,4,5,6,7,8,9,10} • 
it out, you will see the following appear: 

However, if you ~ry 

{4,5,6,7,1,2,3,9,10} 

(or perhaps some similar permutation of the integers from 1 
emphasizes the fact that the elements of a set have no 
the set {1 •• 10} contains the integers in the range 1 •• 10, 
these integers have no particular order. 

2.1.3 Tuples. 

to 10). This 
particular order; 
but in the set 

In contrast to sets, tuples (sometimes also called vectors) in SETL are 
finite ordered sequences of arbitrary elements. To write a tuple constant, 
we simply list its successive components, in order, within the tuple 
brackets '[' and ']'. Components in such a list are separated by commas. 
Three examples are 

[1,2,3,4] 
['Tom', 'Dick', 'Harry'] 
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[TRUE, FALSE] 

The successive components of a tuple, as distinct from the elements 
set, do have a definite order within the tuple. Thus a tuple is a 
different kind of object from a set, even though the components of the 
may all be elements of the set, and vice versa. As an example of 
rules, note that 

[1,2,3,4] and {1,2,3,4} 

of · a 
quite 
tuple 
these 

are regarded in SETL as entirely different objects, and, indeed, as objects 
of entirely different types; the first is a tuple, the second is a set. 
Note also that [1,2,3,4] and [2,1,3,4] are different objects, since the 
components of a tuple are considered to have a specific order and two tuples 
are only equal if they have the same components in the same order; however, 
the sets {1,2,3,4} and {2,1,3,4} are the same, since a set, as distinct from 
a tuple, is defined by the collection of its elements, not by their order. 

Tuples, like sets, need not be homogeneous, i.e. the components of a 
tuple need not all be of the same type. Tuples can have sets as their 
components and sets can have tuples as their members. Indeed, sets and 
tuples can be nested within each other to arbitrary depth as members and 
components, permitting construction of a great variety of data objects. 
Examples are 

(1) 
(2) 
(3) 

[1, 'Tom', {'Dick'}, ['Harry']] 
{ 1, 'Tom', ['Dick'], {'Harry'}} 
[1, {'Tom', ['Dick', 'Harry' ]} ] 

The first of these constants represents a tuple of four components, which, 
in order, are the integer 1, the string 'Tom', the singleton set {'Dick'}, 
and the one-component tuple ['Harry']. The second represents a set of four 
elements, which (in no particular order) are the integer 1, string 'Tom', 
the one component tuple ['Dick'], and the singleton set {'Harry'} • The 
third represents a tuple of just two components, namely the integer 1, 
followed by the two-element set {'Tom', ['Dick', 'Harry']}. We can 
therefore assert that the string 'Harry' is the first (and only) component 
of the fourth component of the tuple (1); that 'Harry'is also a member of a 
member of the four-element set (2); · and finally that 'Harry' is a member of 
the second component of a member of the second component of the tuple (3). 

Another· example of a perfectly legal though highly nested SETL 
construction is 

{{{{}}}} 

this designates a set (let's 
member of the only member of 
occasionally (though rarely) 

call its), and the 
the only member of s. 
in real SETL programs. 

empty set is the only 
Such constructs are used 

Repetition of tuple components, as distinct from repetition of set 
elements is logically possible and changes the tuple value. For example the 
three tuples 

["Tom'] , ['Tom','Tom'] , and ['Tom', 'Tom', 'Tom') 
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are all distinct; the first has just one component and is of length l; the 
second is of length 2; and the third is of length three, and has three· 
components: its first, second, and third components are all defined, and 
each of them is the string 'Tom'. In contrast, the constants 

{'Tom'}, {'Tom','Tom'}, and {'Tom','Tom','Tom'} 

designate the same set, which has just one element, namely the string 'Tom'. 
Since tuples, as distinct from sets, are consider~d to have a definite 
order, It does make sense to refer to the 'first', 'second', ••• , 'last' 
component of a tuple. For example, the first component of 

['Tom', 'Dick', 'Tom', 'Tom'] 

is the string 'Tom'; its last (also fourth) component is also 
second component is 'Dick'. 

'Tom'; 

There is a (unique) 'null' or 'empty' tuple, which is·written as · 

[ J 

This· plays much the same role for tuples that the important null set, 
{}, plays for sets. 

2.1.3.1 Tuples -2..! sequences of integers. 

its 

Tuples whose components constitute an arithmetic progression can be written 
in a special SETL notation similar to that used for sets of integers. The 
tuple construct: 

[M •• NJ 

where Mand N are integers, describes the tuple whose components are the 
integers M, M+l, M+2 and so forth, up to N. If N is less than M, this 
construct is equivalent to the empty tuple. 

Similarly, an arithmetic progression of the form 

M, M+k, M+2*k, •• N 

where k ~s some integer (positive or negative), can be described by writing 
its first, second and last component; specifically, the tuple whose 
components constitute such a sequence can be written as: 

(N, N 1 • • M] 

where Ml, the second term in the sequence, has the value (M+k). For 
example, the construct (3,6 •• 600) represents a tuple whose components are 
the first 200 positive multiples of 3, in increasing order. This construct, 
and the related set construct {N, Nl •• M}, are simple instances of a general 
numeric iterator construct, which will be discussed in detail in Sec.J.x.y. 
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In SETL a map is simply a set all of whose elements are pairs, i.e. 
are tuples of length 2. Some properties of maps can be· deduced from their 
structure, I.e. from the fact that all their components are pairs. But 
maps are importah-t enough to have a number of operations that apply solely 
to them. We will see that maps are one of the most expressive programming 
features of SETL, and that the proper use of maps is a hallmark of good SETL 
style. Maps allow us to associate elements of various collections of 
objects: countries with their capitals, numbers with their cubes, people 
with their dates of birth, courses with their sets of students, and so 
forth. Suppose for example, that the children in a family, listed in 
increasing order of age, are 

Sue, Tom, Mary, Alphonse. 

Suppose that we want to associate each child x in this family with 
number of younger sisters that x has. For this purpose, we could use 
following map: 

(1) { ('Sue',OJ, ['Tom',1], ('Mary',1), ('Alphonse',2)} • 

Similarly, the map 

(2) {['Sue',OJ, ['Tom',OJ, ['Mary',1], ('Alphonse',1)} 

the 
the 

associates each child x with the number of younger brothers that x has. The 
map 

(3) {['Sue', {'Mary'}], ['Tom', {'Sue' ,'Mary'}], 
['Mary', {'Sue'}], ['Alphonse', {'Sue' ,'Mary'}]} 

associates each child x with the set of sisters of x. Note therefore that 
maps can be used~ associate values of~~ with other values of any 
llll• 

(4) 

Another interesting map is 

{ ['Sue', 'Mary'], 
{['Mary','Sue'], 

['Tom','Sue'], ('Tom','Mary']}, 
['Alphonse';'Sue'], ['Alphonse','Mary']}. 

This contains a separate pair associating each child x with each of the 
sisters of x (rather than one pair associating x with the set of all the 
sisters of x ·cas in (3); (3) and (4) are different, but closely related and 
record much the same information). Since several different pairs in (4) 
(e.g. ['Tom','Sue'] and ['Tom','Mary']) have the same first component, (4) 
is called a multivalued map. Maps for which this does not happen, i.e. in 
which no two distinct pairs share the same first component, are called 
single-valued maps. 

Given a map M, we can form the set D of all first components of pairs 
in M. This is called the domain of M, and is written 

DOMAIN M 

We can also form the set R of all second components of pairs in M, which is 
called the range of Mand is written 
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RANGE M 

The following table shows the domain and range of the maps appearing in 
examples just presented. 

map 
number 

(1) 
(2) 
(3) 

(4) 

domain M 

{'Sue','Tom','Mary','Alphonse'} 
{'Sue','Tom','Mary','Alphonse'} 
{'Sue','Tom','Mary','Alphonse'} 

{'Sue'}, 
{'Sue','Tom','Mary','Alphonse'} 

range M 

{0,1,2} 
{0,1} 

{'Mary'}, {'Sue','Mary'}} 
{'Sue', 'Mary'} 

Maps and ihe map-related operations of SETL, which will be presented in 
Section X below, are the most characteristic and important features of the 
language. 

Be sure you understand the rules and distinctions concerning sets and 
tuples"; duplicates, ordering, nesting, and maps presented in the preceding 
pages. Review this material if necessary, and work the exercises of Section 
2.2. This material must be mastered before proceeding, since it will be 
used constantly in all later chapters. 

2.1.s The size of composite objects: the# operator. 

One of the most important characteristics of a composite object is the 
number of components which it has. SETL provides provides a single operator 
to determine the size of sets, tuples, maps and strings : the'#' operator. 
The'#' operator is called indifferently length, size, or cardinality. 

When applied to a string it yields its length, i.e. the number· of 
characters is contains; when applied to a tuple, it yields the length of 
the tuple, i.e. the largest position in the tuple that is occupied by a 
component whose value is not OM; and when applied to a set it yields its 
cardinality, i.e. the number of its ~lements. For a map, it yields the 
number of pairs in it • Thus 

#'Tom' 

#'Tom is hot' 

#['Tom','Dick','Harry'] 

#['Tom','Tom','Tom'] 

I {'Tom','Dick','Harry'} 

# {'Tom','Tom','Tom'} 

#{} 

is 3, since 'Tom' has 3 characters 

is 10, since 'Tom is hot' has ten characters 
(including 2 blanks) 

is 3, since this tuple has 3 components 

is 3, since this tuple also has 3 components 

is 3, since this set has 3 elements 

is 1, since this set has 'Tom' as its only 
member 

is O, since the null set has no members 
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# [ 1 ,,, 
# {[4,2], [4,-2) [0,0)} 
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is O, since the null tuple has no components 

is O, since the null string contains no 
characters 

is 3, becuase this set (or map) contains three 
elements (pairs). 



DATA AND EXPRESSIONS 

2.2 Exercises 

1. Which of the following objects are the same, 
and which are different? 

(l .a) 
(1. b) 
(1. C) 
(1. d) 
(1. e) 
(1. f) 
(1. g) 
(1 .h) 
(1. i) 

'The' 
'The man' 
['The', 'man'] 
{'The','man'} 
{'The man'} 
{ 'The','The','man'} 
['The','The','man'] 
['The','man'] 
['The', 'man'] 

and 
and 
and 
and 
and 
and 
and 
and 
and 

'The' 
'Theman' 
[ 'man' , 'The' ] 
{'Man','The'} 
{ 'man The'} 
{'The','man'} 
['The', 'man'] 
{'The','man'} 
{'The, man'} 

2. Write the size #x of the following strings, sets, 
and tuples. For each set and tuple, also write 
the list of all its integer elements or components 
and the size of each of its set, tuple, or string 
elements or components. 

(2.a) {1,2,2,'Tom' } 
(2.b) (1,2,2,'tom'] 
(2.c) {1,{2,2} ,'Tom'} 
(2.d) { 1, 1 , { } , {}} 
(2.e) [ {} ,[ [) ]] 
(2.s.f) 'abracadabra' 
(2.g) 'abracadabra' 
(2.h) 'abra, cadabra' 
(2.i) {l,'abra','cadabra'} 
(2.j) {1,'abra''cadabra'} 
(2.k) {1,'abra,cadabra'} 
(2.1) {1,'abra','cadabra' } 
(2.m) {1,'abra'',''cadabra'} 
(2.n) {[],", {} ,'[]',' {[)} , , '{}'} 

3~ Write the size of the first, second, and last component 
of each of the following tuples: 

(3.a) 
(3.b) 
(3.c) 

['Tom','Dick','Harry'J 
['Tom','Dick','Harry','Tom'] 
['Tom', ['Tom'],' [Tom]','(]',","'') 

4. Indicate whether Tom is a member, component, member of 
component, component of member, component of component, etc. 
of each of the following sets or tuples: 

(4.a) 
(4.b) 
(4.c) 
(4.d) 
(4.e) 

[1,'Tom'J 
{ ['Tom' ,31, ['Dick' ,4), ['Harry' ,5)} 
{ {'Tom','Dick','Harry'}} 
[ [(['Tom'J,'Tom'J,'Dick', 'Tom', 'Harry')] 
['Tom' , 'Dick' J , 'Tom' , 'Harry' ] 

5. Write a map which indicates the age of each of your brothers 
and sisters by associating their age with their first name. 

Page 2-13 
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Write the range and domain of this map. 

6. Write a map which associates each component of the tuple 
['Tom','Dick','Harry'] with the square of th~ component length. 
Write the range and domain of this map. 

7. How many maps are there whose domain is {'Tom','Dick'} 
and whose range is {'Sue','Hary'}? How man~ of these 
maps are single-valued? 

8. A map M associates the age of each child in a family 
with the name of the child. The domain of Mis {7,9,13} 
and the range is {'Sue','Mary','Tom','Dick'} • 
What is interesting about this family? 

9. Consider the following map M: 

{['Smith', {['Sue',11],['Jim',13]} ], 
['Jones', {['Albert', 1], ['Anna' ,3], ['Ron' ,9]} ] , 
['Skallagrim', { ['Thorolf', 7], ['Egil' ,5], ['Asgerd' ,4]} ] } 

What information might this map represent? What is its domain? 
What is its range? 

10. Let S be the set {'Tom',{'Dick,['Harry','Arthur',{'Tom'}]}} 
'Dick' is a member of s. Match each name in the following list 
with the manner in which it appears in S: 

(a)Tom 
(b)Harry 
(c)Arthur 

(i)component of member 
(ii)member of component of member 
(iii)member 

11. Consider the map Mas a set. What are all the members of this 
set? Which of the components of the members of Mare sets, and what are the 
members of these members? What are all the components of the members of all 
the components of the members of M which are sets? What are all the lengths 
of all the components of the members of M which are not sets? 

12. Write a map which associates each of the Pacific coast states with the 
name of its state ~pital. 

13. For bow many integers between 1 and 100 is I=S*(I DIV 5) true? For 
exactly which integers is this true? For how many integers between 1 and 
100 is I•(S*I) DIV 5 true? 
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2.3 Expressions and Statements 

The use of expressions like those of algebra are one of the main 
features of many programming languages, including SETL. Expressions denote 
values, which can be printed, saved as the values of variables, etc. The 
following are typical (though simple) expressions: 

3+5*(7-11) 

17.0/31.3131 + 19.9 

X + y 

xl+x2+x3+yl*y2*y3 

As these examples show, an expression can involve 
variables (also called identifiers). Values are 
assignments, of which the following, which assigns 
variable zzl, is typical: 

zzl := 3; 

both constants and 
given to variables by 

the value 3 to the 

Note that an assignment is written using the := (colon-equal) sign, 
sometimes called the assignment operator. The assignment is the first type 
of statement that we will use. Statements are the basic building blocks out 
of which programs are constructed. In this chapter we will only use two 
types of statements : the assignment statement, and the print statement, 
whose purpose is to display (on the screen, or on an output listing) the 
result of a computation. The print statement has the format : 

PRINT(expressionl,expression2 ••• ) 

that is to say, it consists of the keyword PRINT, followed by a list ·of 
expressions, enclosed between parentheses, and separated by commas. Any 
number of expressions can appear in a print statement. A print statement 
that does not include a list of expressions will simply produce a blank 
line. 

A variable appearing in an expression always stands 
value. Thus, if we write the commands 

zzl := 3; 
zz2 := 17; 
print(zzl) ; 
print ; 
print(zzl+zz2); 

for its current 

The current value of the variables zzl and zz2 at the moment that the 
-print- instruction is executed will be 3 and 17 respectively, so that the 
output of this program fragment will be : 

3 
20 
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(Note the blank line separating the two printed values). 

Suppose next that we write the commands 

zzl := 3; 
zz2 := 17; 
print(zzl); 
zzl := 4; 
print(zzl + zz2); 
print(zzl) 

This will produce the output 

3 
21 
4 

Page 2-16 

because the value of the variable zzl has been changed by the assignment 
statement 'zzl := 4' after the first print statement but before the second 
'print' statement, and because (we say it again) a variable apparing in an 
expression always stands for its current value, i.e. the last previous 
value given to the variable by any assignment (or assignment-like) 
statement. Do not .&.£ .Q.!! before ~ understand this point. To test 
yourself, see if you can tell what output the following sequence of command 
will produce: 

X : = 1 j 
print(x); 

s : • 2; 
print(x); 

y :- 3; 
print(x + y); 

X : • 0 i 
print(x + y); 

y : • O; 
print(x + y); 

X : • 1; 

print (x + x); 
y :• l; 

print(x + x); 
print(x + y); 

Expressions can be compounded, that is, an expression el can be 
substituted for any variable appearing in another expression e2, thereby 
generating a more complicated but still legal expression. For example, by 
substi~uting x+y for z in 2*z, one generates the expresion 2*(x+y). Then, 
by substituting 3*a*b for yin the result, one generates the expression 
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2*(x+3*a*b). 

As in algebra, the order in which a compound expression containing many 
operators is evaluated is determined by the 'precedences' of the operators 
involved, as modified by the rule that subexpresions enclosed within 
parentheses must always be evaluated before any operation is applied to 
them. Multiplication and division are given higher precedence than addition 
and subtractions, and are therefore performed before the latter. For 
example, 1+2*3 has the value 7 rather than 9, because the multiplication 2*3 
is performed before the addition; but (1+2)*3 has the value 9 since the 
parentheses force the addition to be performed first. 

Both binary operators like the'+' in x+y, and unary operators like the 
' ' in x+(-y) can appear in expressions. As these examples indicate, some 
operator signs like ,_, can designate both binary and unary operators: 
unary if they are preceded by a left parenthesis or by another operator, 
binary otherwise. On the other hand, some operator signs are only used to 
designate binary operators, while others are only used to designate unary 
operators. All the (binary and unary) SETL operators will be described in 
this Chapter and in Chapter V, and are summarized for ready reference in 
Section XXX. Section 2 .11 contains a t-able giving the precedences of all 
operators. 
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2.3.1. Variable identifiers 

Almost all programming languages make it possible to perform 
calculations and then save their results for re-use later. This is done by 
assigning the results of calculations to a variable identifier (sometimes 
abbreviated simply as variable, or as identifier). An example is 

X := 1 + 2 + 3 + 4 + 5; 

which saves the result of the expression 1 + 2 + 3 + 4 + 5 appearing to the 
right of the assignment operator :=, making the result the value of the 
variable identifier x appearing to the left of this assignment operator. 
Since the value in question is 15, the command 

PRINT(x}; 

would then print the current value of the variable x, namely 15. 

Identifiers are composed of the letters, digits, and the underscore 
character ' '• The first character of an identifier must be a letter. The 
following are examples of valid identifiers: 

X 

x23 
bigl 
End_of_Input_flag 
set_OF_garbage_symbols 
zl23456789 
eta_ 

On the other hand, the following are not valid identifiers: 

big 1 
x.23 
23x 

because the first two contain characters other than letters, digits, and 
underscores (blank in the first case, period in the second}, while the third 
begins with a digit rather than a letter. 

Identifiers can be of any length, but cannot be split beween two lines. 

Except within quoted string constants, capitalization is ignored by the 
SETL compiler. Thus all the identifiers 

Big_set 
big_set 
BIG_SET 
big_SET 
BiG_sEt 

are considered to be identical. 
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The following diagram describes the structure of valid identifiers : 

The proper choice of identifiers can make an important contribution to 
the clarity and professionalism of your programs. If you choose identifiers 
thoughtfully, your program will be easier for others to read and understand, 
and, equally important, will be easier for you to understand. Careless 
errors are -also less likely to occur, since the inner 'rhythm' of a 
well-chosen set of identifiers will make errors easier to detect when your 
program is written, typed, and proofread. Here are some useful guidelines 
for the choice of identifiers: 

(a) Choose 'mnemonic' identifiers, i.e. identifiers which explain the 
meaning of the quantities which they represent. E.g., an identifier which 
represents some sort of upper limit value in a program should be called 
upper_limit or uplim rather than simply u or L. 

(b) Avoid ambiguity in the choice of identifiers, and use standard 
spellings. It is certainly bad practice to have two different identifiers 
called, e.g., STACK and STAK. It is also bad practice to use variant 
spellings like STAK, since without noticing it you may slip back to the 
standard spelling. Use the standard spelling STACK instead. (Note in 
connection with (a) and (b) that some of the SETL dump facilities; which 
when switched on (see section X) print out information useful for 
pinpointing program errors, truncate identifier names to eight ·characters. 
It is therefore a good idea to ensure that variable names used in contiguous 
contexts can be identified using their first eight characters only, i.e. 
use names like TABLE_l_IDENTIFIER and TABLE_2_IDENTIFIER rather than 
TABLE IDENTIFIER 1 AND TABLE_IDENTIFIER_2, which could not be told apart in 
an error dump.) 
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2.3.2 Integer operators: +,-,*,**,DIV,MOD,=,/m, >, <>, >=, <>=, MAX, MIN, 
ABS, EVEN, ODD, FLOAT, RANDOM. 

We begin our systematic description of the operators SETL by discussing 
those operators that take arguments of integer type. Some of these 
operators yield a value of the same type: for example the familiar 
arithmetic operators of addition, subtraction, multiplication and division. 
Another group of integer operators yields a truth value: TRUE or FALSE. 
This is the case for the comparison operators (Greater than, equal to, etc.) 
These operators are often called predicates. Finally, a conversion 
operator, namely FLOAT, allows us to convert an integer into a floating 
point quantity. The binary integer operators provided by SETL are as 
follows: 

i+j computes the sum of i and j 

i-j computes the difference of i and j 

i*j computes the product of i and j 

i**j computes i to the jth power. An error results if 
j is negative or if i and j are both zero. 

i DIV j computes the integer (whole number) part of the 
quotient of i by j. The fractional part of the 
quotient is simply discarded. An error results 
if j = O. See the examples given below for the 
way in which i DIV j works if one of i or j is negative. 

i MOD j computes the remainder left over when i is divided by j. 
An error results if j = 0 • The result is always positive. 

i MAX j yields the larger of i and j 

i MIN j yields the smaller of i and j. 

Integer predicates 

i - j yields TRUE if i and j are the same, FALSE otherwise 

i /• j yields TRUE if i and j are different, FALSE otherwise 

i > j yields TRUE if i is bigger than j, FALSE otherwise 

i < j same as j > i 

i >• j yields TRUE if i is no smaller than j, FALSE otherwise 

i <• j same as j >• i 

Examples of use-of these operators are 

print (1+1); 
print(l-1, 1-10); 

yields 
yields 

2 
0 -9 
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print(1*2, l*(-2), (-1)*2, (-1)*(-2) ); yields 2 -2 -2 2 
print(2**3,(-2)**3,2**0,(-2)**0); yields 8 -8 1 1 
print(! DIV 3' 2 DIV 3, 3 DIV 3' 

4 DIV 3) ; yields 0 0 1 1 

print(! MOD 3' 2 MOD 3, 3 MOD 3, 
4 MOD 3) ; yields 1 2 0 1 

print(7 DIV 3, (-7) DIV 3' 
7 DIV(-3), (-7) DIV(-3)); yields 2 -2 -2 2 

print(7 MOD 3, (-7) MOD 3 ) ; yields 1 2 

print(! MAX 2 ' (-1) MAX (-2)); yields 2 -1 
print(! MIN 2' (-1) MIN (-2)); yields 1 -2 
print(l = 1 ' 1 = 2); yields TRUE FALSE 
print(l I= 1 ' 1 I= 2 ) ; yields FALSE TRUE 

print(! > 1 ' 1 > 2' 2 < 1) ; yields FALSE FALSE FALSE 
print(l > 1 ' 1 < 2' 2 < 1) ; yields FALSE TRUE FALSE 
print(! >= 1 ' 1 >= 2 ' 2 >= 1 ) ; yields TRUE FALSE TRUE 
print(! >= 1' 1 <= 2' 2 <= 1 ) ; yields TRUE TRUE FALSE 

Concerning i DIV j and i MOD j, it is useful to note that for i (and j) 
positive we always have i = (i DIV j) *j+(i MOD j), but for i negative this 
is false, e.g. 

but 
(-7) DIV 3 

(-7) MOD 3 

is -2, 

is 2. 

Unary integer operators compute a result value from a single 
Two of these operators are predicates, namely ODD and EVEN. 
integer operators provided are as follows: 

+i has the same value as i 

-i computes the negative of i 

ABS i computes the absolute value of i 

EVEN i yields TRUE if i is even, FALSE if i is odd 

ODD i yields FALSE if i is even, TRUE if i is odd 

FIX i converts the floating-point (i.e. real) number i to 
the corresponding integer value. (See Section 5.1 for a 
discussion of real numbers). 

FLOAT i converts the integer i to the corresponding floating 

input i. 
The urtary 

point (i.e. real) value. (See Section 5.1 for a discussion 
of floating-point numbers). 
If the conversion causes overflow, which is possible 
if i has a very large value, then an error results. 
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RANDOM i returns an integer selected at random from the range 
from zero to i, including both end points. For example, 
RANDOM 5 will give one of the six integers 0,1,2,3,4,5. 
Successive uses of this operator will in general give 
different randomly selected values. 

Examples.of these unary operators are: 

print(+l, +(-100)); 

print(-1, -(-100)); 

print(ABS 1, ABS(-2)); 

print(EVEN 1, EVEN 2, EVEN (-1)); 

print(ODD 1, ODD 2, ODD (-1)); 

print(FLOAT 1, FLOAT (-1), FLOAT 2); 

print(RANDOM 5, RANDOM 5, RANDOM 5); 

yields 1 -100 

yields -1 100 

yields 1 2 

yields FALSE TRUE FALSE 

yields TRUE FALSE TRUE 

yields 1.0 -1.0 2.0 

yields O 4 3, or 
some other sequence of integers 
chosen independently and at random 
from the range O through 5 
inclusive. 

print(RANDOM(-5),RANDOM(-5),RANDOM(-5)); yields -2 0 -4 or 
some other sequence of integers 
chosen independently and at random 
from the range O through -5 
inclusive. 
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2.3.2.1 Exercises 

Ex. 1 What output will be produced by the following code? 

Program one ; 
x:•l;y:=2 
print(x+y); 
x:=3; 
print(x+y); 
y:=x+y; 
print(x+y); 

END ; 

Ex.2 What is the output producd by the following program? 

PROGRAM multiply_x_by_y; 
x:=l;y:=2; 
print(xy); 
END; 

Ex. 3 What output will the following code produce? 

program thr3 ; 
number:=1; Number:=2; NUMBER:=3; 
print(number+Number+NUMBER); 
number:=number*NUMBER; 
print(number+Number+NUMBER); 

END ; 

Ex. 4 Which of the following are valid identifiers? 

(4a) number_l (4b) number 1 (4c) number.1 

Ex. 5 What output will the following code produce? 

PROGRAM five; 
numberl:=1; NUMBERl:=2; Number_l:=3; 
print(numberl+Number_l+Numberl); 
numberl:=Numberl*Number-1; 
print(number_l+Numberl+NUMBERl); 

END PROGRAM; 

Ex. 6 What output will the following code produce? 

PROGRAM xs; 

x:=1; y:=2; z:=3; w:=4; 
print(x+y), ~*(x+y), z*x+y, w+z*(x+y)); 
w:=2; 
print(w+z*x+y,z*y/w, y**(x+y)*z); 

END PROGRAM xs; 
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Ex. 7 Which of the following are valid expressions? 

(7 .a) X (7.b) x+y (7 .c) (x+y)**w 
(7 .d) (x+y)**w**w (7 • e) a - 1 DIV (x+y)**w**w 

Ex. 8 Evaluate the following constant expressions: 

(8.a) 2**2 (8.b) 2**2**3 
(8.d) 2**(2**3) (3.e) 3 DIV 2 
(8.g) (1+2) DIV 4 (8.h) (-11) MOD 5 
(8.1) 2**2**3/•64 (8.m) 3-0 I 3 
(8.o) (-35) MIN 1 

Ex. 9 

(9.a) 
(9.b) 
(9.c) 
(9.d) 
(9.e) 

Simplify the following expresions: 

+-+--x 
----x 
x MAX y MIN y 
x MAX (y MIN y) 
x MAX x 

(8.c) 
( 8. f) 
(8.i) 
(8.n) 

Ex. 10 

(10 .a) 
(10 .c) 
(10 .e) 
(10.g) 

Evaluate the following constant expressions: 

ABS -1 + ABS -2 
ABS (1 MIN -1) 
1 MIN 2 MIN 3 
2 + 2 MAX 3 + 3 

(10.b) 
(10.d) 
(10. f) 
(10.h) 

ABS(-1 + ABS -2) 
ABS (1 MAX -1) 
1 MAX 2 MAX 3 
-2 -2 MAX -3 -3 
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(2**2)**3 
1 DIV 2 
-11 MOD 5 
3-0<3 

Ex. 11 Re-express the following expressions in as simple a way as you car 
using the MAX, MIN, and ABS operators: 

(11 .a) 
(11.c) 
(11 .d) 

x MAX -x (11.b) x MIN -x 
(x MAX o) + (x MIN 0) 
(x MAX 0) + (-x MAX 0) 
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String operators: S(i), S(i •• j), S(i •• ), +, *, •, /=, 
>=, >•, #, ABS, CHAR, STR 

>, <, 

Binary string operators compute a result value from two inputs, at 
least one of which is a string. Some of these operators take two strings as 
their arguments, while others take a string and a positive integer as their 
arguments. Some of these operators are predicates, and perform string 
comparisons analogous to the integer comparisons discussed above. 

In what follows, sand ss are always strings, 
integers. 

while i and j are 

The string operators are the following: 

s(i) 

s(i •• j) 

s(i •• ) 

s + ss 

i * s 

s = s 

s /= ss 

s > ss 

s < ss 

computes the i-th character of the strings; the result 
is a one-character string. If i is negative, an error 
results; if i is greater than the length of s, then the 
value OM is returned. 

this 'string slice' operator computes and returns the 
substring of s which extends from its i-th through its 
j-th characters, inclusive. If i = j-1, a null string 
is returned. See Table 2.1 below for a description of the 
treatment of other marginal and exceptional cases for this 
operator. (Note that this operator actually has three, 
rather than two, arguments.) 

this computes and returns the substring of s which extends 
from its i-th character through the end of s, inclusive. 
See Table 2.1 below for a description of the treatment of 
marginal cases of this operator. 

concatenates the two strings sand ss. 

concatenates i successive copies of the strings. 
If i • O, then i *sis he null string. If i < 0 
then an error results. 

yields TRUE ifs and ss are identical, FALSE otherwise. 

Yields TRUE is sand ss are distinct, FALSE otherwise. 

yields TRUE ifs comes later than ss in standard 
alphabetical order, FALSE otherwise. (Note that this 
operation, as well as the other string comparisons 
s < ss, s >• ss, s <• s' are implementation 
dependent, as they depend on an assumed alphabetical 
order of characters ('collating order'). Of course, 
alphabetic characters will always have their standard 
order, but the relative order of punctuation marks, and 
also the way in which alphabetics compare to numerics, 
may differ from implementation to implementation.) 

yields TRUE ifs comes earlier than ss in standard 

- -- ---------------------
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s >• ss 

s <• ss 

s IN ss 

s NOTIN ss 

alphabetic order, FALSE otherwise. 

yields TRUE ifs is either identical with is or 
comes later in standard alphabetic order, FALSE 
otherwise. 

yields TRUE ifs is either identical with ss or comes 
earlier in standard alphabetic order, FALSE otherwise. 

yields TRUE ifs occurs as a substring of ss, FALSE if not. 

yields FALSE ifs occurs as a substring of ss, TRUE if not. 

To give examples of these operators, we shall suppose that the value of sis 
the string 'ABRA', and that the value of ss is the string 'CADABRA'. Then 

print(ss(l),ss(4)); 

print(s(l •• 2),s(2 •• 4),s(2 •• 2)); 

print(s(l •• O)); 

print(s(l •• ),s(2 •• ),s(3 •• ),s(4 •• )); 

print(s(6 •• )); 

print(s(6)); 

print(s+ss); 

print(3*s); 

print(s > ss,ss >s); 

print('AA' > 'A', 'A' > '') ; 

print('AA' < 'A', 'A' < '') ; 

print(s IN as, ss IN s); 

yields 

yields 

yields 

yields 

yields 

yields 

yields 

yields 

yields 

yields 

yields 

yields 

C A 

AB BRA B 

the null string 

ABRA BRA RA A 

the null string 

OM 

ABRACADABRA 

ABRAABRAABRA 

FALSE TRUE 

TRUE TRUE 

FALSE FALSE 

TRUE FALSE 

The unary string operators compute a value from a single string input 
s. These operators are 

#s 

ABS s 

CHAR i 

yields the number of characters in the strings. 

heres must be a one-character string or an error results. 
Ifs is a single character, then ABS s returns the internal 
integer code for this character. Note that ABS and CHAR are 
are inverse operators. 

here i must be an integer-which can be the internal code of 
some character c. If this is so, then CHAR i yields the 
single character c (i.e., a 1-character string). Otherwise, 
an error results. (The range of integer values used as 
character codes is implementation independent.) 
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The following table shows the way that the string extraction operators 
s(i), s(i •• ), and s(i •• j) behave in various marginal cases. 

Table 2.1. Behavior of String Operators in Marginal Cases 

Operator Condition E f feet 

s(i) i negative or zero causes error 
s(i) i > #s yields OM 
s(i •• ) i negative or zero causes error 
s(i •• ) i - #s+l returns null string 
s(i •• ) i > #s+l causes error 
s(i •• j) i negative or zero causes error 
s(i •• j) i > j+l causes error 
s(i •• j) j negative causes error 
s(i •• j) j > Is causes error 
s(i •• j) i - j+l returns null string 

To each string extraction operator there corresponds 
assignment operator which modifies the string section 
corresponding assignment operator would retrieve. These string 
are indicated by writing either s(i), s(i •• ), or s(i •• j) to the 
assignment operator':•'• For example, ifs is a string, we can 
section of it extending from its second to its fourth character 
by writing 

(1) s(2 •• 4) :• x; 

a string 
which the 

assignments 
le ft of the 
modify the 
(inclusive) 

where xis any string. Note that x need not be a string of 
that the assignment operation (1) can lengthens (if x has 
than 3) or shorten it (if x has length less than 3). Similar 

length 3, so 
length greater 
remarks apply 

- to the string assignment operation 

s(i •• ) :• x; 

which is treated exactly as if it read 

s(i •• #s) :=- x; 

However, the r~ght-hand side of the simple string assignment 

s(i) :• x; 

must be a single character, or an error will result. 

For examples of all this, suppose that sl,s2, ••• ,s7 are seven 
variables, all having the string value 'ABRACADABRA' initially. Then the 
following assignments produce the indicated results. 

s1(3 •• 5) : = 'XXX'; $ now sl ... ABXXXADABRA 
s2(3 •• 4) := 'XXXXXX'; $ now s2 - ABXXXXXXCADABRA 
s3(3 •• 4) : = 'X'; $ now s3 .. ABXCADABRA 
s4(3 •• 4) : = , , . 

$ now s4 - AB CAD ABRA 
' s5(7 •• ) : = 'XXX'; $ now s5 - ABRACAXXX 



------- -----~---
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s6(7 •• ) :-- " ; 
s7(1) := 'Y'; 

$ now s6 • 
$ now s7 = 

ABRACA 
YBRACADABRA 

To summarize, the three string assignment operators are: 

s(i) := x; 

s(i •• j) := x; 

s(i •• ) := x; 

x must be a single character, and i must be an integer 
and lie between land #s, otherwise an error results. 
This modifies the i-th character of s. 

i must be an integer at least equal to 1 and at most equal 
to j+l or an error results. j must also be an integer, and 
cannot exceed s. The section of s between i and j is made 
equal to x, which may expand or contracts. Note that if 
i=j+l, x will be inserted into s immediately after its i-th 
position. The case i = #s+l, j •#sis legal, and adds x to 
the end of s. 

this is treated exactly as if it read s(i •• #s) := x. Thus 
i must be an integer which is at least 1 and at most #s+l. 

As an example of the case i = #s+l, which is allowed, note that 
and s2 are both initially equal to 'ABC', then both the assignment 

if sl 

sl(4 •• 3) := 'XXX' 

and the assignment 

s2(4 •• ) 

yield 'ABCXXX'. 

: • 'XXX'; 
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Boolean Operators: AND, OR, IMPL, NOT 

Boolean operators compute a boolean result from one or two input 
boolean quantities c, cc. That is, both the inputs of these operations and 
the results they produce must be one of the two possible boolean values TRUE 
and FALSE. These operations are generally used to combine results produced 
by prior comparisons or other tests, i.e. they typically appear in contexts 
such as 

IF (i > j AND j > k) OR (k > j AND j > i) ... 
The binary boolean operators supported by SETL are as follows: 

c AND cc yields TRUE if both c and cc are TRUE, FALSE otherwise. 

c OR cc yields TRUE if at least one of c and cc is TRUE, FALSE 
otherwise. 

c IMPL cc This is the 'logical implication' operator, and yields TRUE 
except when c is TRUE and cc is FALSE. That is, if either c is 
FALSE, or cc is TRUE, then c IMPL cc yields TRUE; but if c is 
TRUE and cc FALSE, then c IMPL cc yields FALSE. 

The only unary boolean operator provided is 

NOT C yields the logical opposite of c, i.e., FALSE if c is TRUE, 
TRUE if c is FALSE. 

In using these operations one will often make use 
rules of logic like those called 'De Morgan's rules'. 

of various well-known 
For example since 

(NOT c) OR (NOT cc) 

is TRUE if either c or cc is FALSE, but is FALSE if both c and cc are TRUE, 
it is equivalent to 

NOT (c AND cc) • 

Various other equivalences between boolean expressions are listed in the 
following table: 

NOT (c OR cc) 
NOT (c IMPL cc) 
c IMPL cc 
NOT (NOT c) 

is equivalent to 
is equivalent to 
is equivalent to 
is equivalent to 

(NOT c) AND (NOT cc) 
c AND (NOT cc) 
(NOT c) OR cc 
C 

These and other related logical equivalences can often be used to 
simplify Boolean expressions that occur in programs. For example, since 

c OR ((NOT c) AND cc) 

is TRUE if and only if at least one of c and cc is TRUE, it simplifies to 
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c OR cc • 

Thus, instead of writing 

IF i > j OR ((NOT i > j) AND k > j) ••• 

in a program we can simplify this to 

IF i > j OR k > j ••• 

Other useful relationships of this sort appear in Exercises 1 through 8 of 
Section 2.3.4.1. 



DATA AND EXPRESSIONS Page 2-31 

2.3.4.1 Exercises 

Boolean Equivalences 

A tautology is a Boolean expression E which evaluates to TRUE no matter 
what Boolean values are given to the variables appearing in E. An 
equivalence is a statement of the form El=E2 which evaluates to TRUE no 
matter what values are given to the variables appearing in it. Given any 
Boolean statement, we can easily write a program which substitutes values in 
all possible ways for the variables appearing in it, and this makes it easy 
to detect Boolean tautologies and equivalences~ For example, since 

{[x,y]: x IN {TRUE,FALSE},y IN {TRUE,FALSE}i(x AND y)/=(y AND x)} 

evaluates to null, it follows that 

(x AND y)=(y AND x) 

is a universally valid Boolean equivalence. The following exercises list 
various tautologies and Boolean equivalences, which you are asked to prove 
either in this way or by appropriate mathematical reasoning. 

Ex. 1 Prove the equivalence (A OR B)=(B OR A). 

· Ex. 2 Prove the equivalence ((A ORB) OR C)=(A OR (B OR C)), and also ((A 
AND B) AND C)=(A AND (BAND C)). 

Ex. 3 Prove the equivalence (A AND A)=A, also (A OR A)=A. 

Ex. 4 Prove the equivalence (A AND (B OR C))=((A AND B) OR (A AND C), also 
(A OR (BAND C))=(A ORB) AND (A OR C). 

Ex. 5 Prove the equivalence (A OR ((NOT A) AND B))=A ORB). 

Ex. 
also 

6 (De Morgan's Rules) Prove that (NOT (A AND B))=((NOT A) OR (NOT 
(NOT (A OR B))=((NOT A) AND (NOT B)). 

B) ) , . 

Ex. 7 Prove that NOT(NOT A)=A. Using this fact and the results proved in 
Ex.6, show that 

(A AND B)=(NOT((NOT A) OR (NOT B))), also that 
(A OR B)=(NOT((NOT A) AND (NOT B))). 

Ex. 8 Prove the following equivalences: (A AND TRUE)=A, 
FALSE)=FALSE, (A OR TRUE)=TRUE, (A OR FALSE)=A. 

(A AND 

----------------------------~ ---- - --------~-



DATA AND EXPRESSIONS Page 2-32 

2.4 Set Operations and Setformers. 

SETL provides several important kinds of set operators, of which the 
easiest to understand are the built-in, elementary set operations and the 
setformers discussed in Sec.2.4. We shall review these constructs in the 
present section; the even more important map operations are presented in 
Section x. 

The binary set operations compute a result value from two inputs, one 
or both of which must be a set. These operations are as follows (in what 
follows, sand ss are always sets, while x ca-0 be an arbitrary value): 

s + ss 

s - ss 

computes the 'union' of two sets, i.e. the set of all 
objects which belong either to s or toss. 

computes the 'difference' of two sets, i.e. the set of 
all objects which belong to s but not toss. 

s * ss computes the 'intersection', or common part of two sets, 
i.e. the set of all objects which belong to both sand ss. 

x IN s tests x for membership in the sets. The value TRUE is 
produced if xis a member of s, FALSE otherwise. 

x NOTIN s tests x for nonmembership in the sets. The value TRUE 
is produced if xis not a member of s, FALSE otherwise. 

s WITH x produces a set whose members are the members of s, with 
x inserted (if xis not already a member of s) 

s LESS x produces a set whose members are the members of s, 
with x removed (if necessary, i.e., if xis a member of s) 

s = ss tests sand ss for equality, yielding TRUE ifs and ss 
have exactly the same members, FALSE otherwise. 

s/=ss tests sand ss for inequality, yielding FALSE ifs and ss 
have exactly the same members, TRUE otherwise. 

s INCS ss .tests ss for inclusion withins, yielding TRUE if every 
member of ss is also a member of s, FALSE if ss has any 
member which is not also a member of s. 

s SUBSET ss tests s for inclusion within ss, yielding TRUE if every 
member of sis also a member of ss, FALSE ifs has any 
member which is not also a member of ss. 

n NPOW s here the first argument n must be a nonnegative integer. 

s NPOW n 

This operation yields the collection of all subsets of s 
which contain exactly n elements. An error results if n 
is negative. 

here the first argument is a set and the second is an 
integer. This is equivalent ton NPOW s. 
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Examples of these binary set operators are 

print({l,2} + {'Tom','Dick'}); 
print({} + {1,2 , {} + {}); 

print({l,2,3} - {1,4}, {1,2,3} - {}); 

print({l,2,3} - {3,1,2}); 

print({} -{1,2,3}); 

print({l,2,3} * {2,5,3}); 

print({l,2} * { 3,4 }); 

print({} * {3,4}); 

print({{l},2,3} - {1,2,3}); 

print({{l}, {2,3}} - {1,2,3}); 

print(l IN {1,2,3} , {1} IN {1,2,3} ); 

print({} IN {}, {} IN { {} }); 

print(l NOTIN {l}, {} 

print({l,2,3} 

print({l,2,3} 

WITH 5); 

WITH 1); 

NOTIN {}); 

print({l,2,3} LESS 1, {1,2,3} LESS 4); 

print({l,2,3} = {3,2,1}); 

print({}= [] , {} = {{}}) ; 

print({l,2} /= {2,1}, {1,2,2} /= {1,2}); 

print(2 NPOW {1,2,3}); 

p r int ( { 1 } I NC s· { } , { } INC S { 1 } ) ; 

print({l,2} INCS {1,2}) ; 

print({2,2,2} SUBSET {1,2 }) ; 

yields 
yields 

yields 

yields 

yields 

yields 

yields 

yields 

yields 

yields 

yields 

yields 

yields 

yields 

yields 

yields 

yields 

yields 

yields 

yields 

yields 

yields 

yields 
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{ 1 2 'Tom' 'Dick'} 
{ 1 2} {} 

{2 3} { 1 2 3} 

{} 

{} 

{2 3} 

{} 

{} 

{{1}} 

{{1}, {2 ,3}} 

TRUE FALSE 

FALSE TRUE 

FALSE TRUE 

{ 1 2 3 5 } 

{ 1 2 3} 

{2 3} { 1 2 3} 

TRUE 

FALSE FALSE 

FALSE FALSE 

{ {1 2} { 2 3} { 1 3}} 

TRUE FALSE 

TRUE 

TRUE 

Unary set operators compute a result value from a single set input s. 
The unary set operators are as follows: 

II s 

POW s 

yields the number of (distinct) elements of the sets 

yields the set of all subsets of s (which is also called 
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the 'power set' of s; hence the name POW) 

RANDOM s yields a randomly selected element of s. Successive 
uses of RANDOM swill yield independently selected elements 
of s. 

ARB s Yields an arbitrarily selected element of s. 
(Depending on the particular SETL implementation used, 
successive uses of ARB s may or may not yield the same 
element of s). 

Examples of these unary operators are: 

print(# {2}, #{2,2,2,2}) ; 

print(# {1,2,3,4,1,2,3,4,40}); 

print(POW {1,2}) ; 
print(ARB {1 2,3}, ARB {1,2,3}) ; 

print(ARB {1,2,3}, ARB {3,1,2}); 

print(RANDOM {1,2,3}, RANDOM{l,2,3}) ; 

yields 1 1 

yields 5 

yields {{} {1} {2} {1 2} 
yields 1 1 
(or possibly 2 2 or 3 3) 
can yield 1 2 (even 
though 
{1,2,3} • {3,2,1} 
yields TRUE) 

(possibly) yields something like 2 1 2 3 

Of course, the basic construct 

{xl,x2, ••• ,xk} 

which forms a set by enumerating its elements explicitly is also a 
(multi-argument) set operator. The xl,x2,x3, ••• ,xk appearing in this 
construct can be arbitrary expressions. As several of the preceding 
examples show, this construct can form a set of fewer thank elements. For 
example, if x has the value {1,2} and y the value {1}, then {x,y,x+y} is the 
two element set {1,2}. 

As already noted, the set of all integers in the range from m to n 
(inclusive) can be written as 

and the set of all integers n, n+k, n+2k, etc. up tom can be written 

{n,n+k •• m} 

In this last form, the 'step' k can be negative, and n+k need not actually 
be a sum, but can be any arbitrary expression. For example, 
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print({3,6-l •• 10}) yields {3 5 7 9} 

If them in n •• m is less than n, then the nullset results. 
appy to {n,n+k •• m}, for example 

print({3,5 •• l}) yields { } 

print({3,2 •• -3}) y {3 2 1 0 -1 -2 -3} 

print({3,2 •• 4}) yields { } 

print({3,3 •• 5}) results in an error. 

See section 3.3.4 for additional details. 
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Similar rules 

Many interesting mathematical relationships connect the set op•rators 
presented in this section. For example, the values of (s*sl) SUBSET s, and 
(sl+s2)*s3 = sl*s3+s2*s3 are always TRUE. Many other relationships of this 
sort appear in the exercises of Section 2.14. 
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2.4.1 Setformer Expressions 

Sets are the basic data objects of SETL, and the language provides a 
number of ways of constructing sets. We have seen already in Sec.2.1.1 that 
constant sets are constructed by listing thier elements and enclosing the 
list between set brackets. More generally, sets can be constructed by 
enumerating their elements, be they constants, 
For example, the set expression 

variables or expressions. 

{ X , y , x+y , [ ] } 

describes a set whose components are the value of the variable x, the value 
of variable y, the expression (x+y) and the null tuple. Such sets 
constructed by enumeration can contain any number of expressions of any 
type. 

In mathematics, the most powerful and general way of forming a set is 
simply to define it by stating a characteristic property of its elements. 
The standard mathematical notation for this is 

(1) {x I C} 

read 'the set of all x having the property C', or equivalently 'the set of 
all x such that C'. Any Boolean-valued expression can be used for C, for 
example we are allowed to write 

(2) { x I x <0} 

whichh is read 'the set of all x such that x <O'. (As this example shows, 
the Boolean expression C of (1) will almost always depend on the variable 
Xo) 

SETL supports, and generalizes, a notation very close to (1). There 
is, however, one restriction which is always imposed. SETL is not only an 
abstract mathematical notation; it is also a programming language, which 
can be used to print out the actual value of any legal expression which it 
allows one to write Hence it works only with finite, not with infinite sets. 
This makes it necessary to impose a restriction on the way in which the 
notation (1) can be used, in order to prevent formation of obviously 
infinite sets like (2), which describes all of the negative numbers. This 
is done simply by insisting that the range of variation of the variable x in 
(1) be limited, in advance, by the condition that x should belong to some 
other finite object, e.g. some other set. That is, we allow, not exactly 
(1), but only the significantly more restricted construct 

(3) {x IN s I C} • 

Then, since the sets used in (3) always has to be 
evaluated, it follows that s must be finite; 
designate a finite set whose list of elements can be 
In (3), we have the basic SETL setformer construct. 

defined before (3) is 
and then (3) must also 

calculated explicitly. 
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Several important generalizations of the construct (3) are used in 
mathematics and also allowed in SETL. Suppose, for example, thats is a set 
of numbers. Rather than simply forming the set (3), we may want to form a 
set of numbers obtained from (3) by a~plying some common transformation to 
all its elements, for example, by squaring them. To form this set, we are 
allowed to write 

{x*x: x IN s I C} 

which can be read: 
the set s such 
setformer is 

'the set of all values x squared, for all x ranging over 
that C'. The general form of the more powerful kind of 

(4) { e: x IN s I C} 

In (4), e can be any expression, s any set valued expression, C any 
Boolean-valued expression. We can read (4) as 'the set of all values e, 
formed for those x -ins for which Chas the value TRUE'. Usually both· e and 
C will depend on the value of x, i.e. on the various values of the members 
0 f S • 

This reading of the notation (4) suggests a further generalization, 
which again is used in standard mathematics and is also legal in SETL. 
Specifically, there is no reason why in forming a set like (4) we should 
only allow one variable x to range over one sets. Instead, we can allow 
any number of variables to range over any number of sets. The notations 

(Sa) 
(Sb) 

et_c. 
Note 
over 
over 

{e: x IN sl, y IN s2 I C} 
{e: x IN sl, y IN s2, z IN s3 I C} 

express this more general constructions that this remark suggests. 
that (Sb) can be read 'the set of all values e, formed for x ranging 

sl, y (independently) ranging over s2, z ranging (again independently) 
s3, but only in combinations x,y,z for which Chas the value TRUE.' 

Subsequently we will see that even further generalizations _?f ~he 
set former constructs (3), (4), (Sa), (Sb), etc. are allowed. But, even as 
they stand, these constructs are extremely powerful, and we will now time to 
exhibit their power by giving a few interesting examples of their use. For 
this, we begin by considering the problem of printing out so-called prime 
numbers, for example all prime numbers in a given range, let us say the 
range {1 ••• 100}. We remind the reader that positive numbers like 6 • 2*3, 9 
• 3*3, 4 = 2*2 which are the product of two smaller numbers, are called 
composite, and that numbers, larger than 1 which are not composite are 
called prime; examples of primes are 3,5,7,11,13,17 •••• 

It is easy to express the set of all composite numbers up to 100 using 
a set.former (of type (Sb)), namely as 

(6) {i*j: i IN {2 ••• 10}, j in {2 ••• 100} I i * j < 101} • 

Since the prime numbers we want are exactly the elements of {2 ••• 100} which 
do not belong to the set (6), we can print them out simply by writing 

PRINT({2 ••• 100} - {i*j: i IN {2 ••• 10}, j in {2 ••• 50} I i*j < 100}); 
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Sometimes the condition C appearing in (4), (Sa), (Sb), etc. is 
unnecessary. For example, given a sets of numbers we may simply want to 
form all the squares of numbers ins. In such cases one is simply allowed 
to drop the condition C, i.e. to write {e: x IN s}, read 'the set of all 
values e formed for x IN s'. Similarly, we can write 

{e: x IN sl, y IN s2}, 

{e: x IN sl, y IN s2, z IN s3}, etc. 

For example, we can write the set of all pairs x,y, where x ranges over sl 
and y ranges over s2, as 

{[x,y] : x in sl, yin s2}. 

(In mathematics, this set is called the 'Cartesian product' of sl and s2, 
afer Rene Descartes, the inventor of coordinate geometry.) Using these 
'elided' setformers we can print the sets of primes considered above a bit 
more simply, for example we can print the primes up to 100 by writing 

PRINT({2 •• 100} - {i*j: i IN {2 •• 10}, j in {2 •• 50}}) 

Mathematicians who study prime numbers are often interested in primes 
having particular forms, for example primes p which are one more than a 
multiple of four, or three more, than a multiple of four. Since the set of 
all numbers (greater than 1) up to 100 which are one more (resp. three 
more) than a multiple of four can be expressed as 

and 
{4*n+l 

{4*n+3 

n in {0 •• 24} 

n in {O •• 24} 

4*n+l < 101} 

4*n+3 < 101} 

respectively, we can print the set of primes (up to 100) which are one more 
than a multiple of four by writing 

PRINT({4*n+l: n IN {1 •• 24} I 4*n+l < 101} 
- {i*j: i IN {2 •• 10}, j IN {2 •• 50} I i*j < 101}) ; 

and the corresponding set of primes which are three more than a multiple of 
four by writing 

PRINT({4*n+3: n IN {0 •• 24} I 4*n+3 < 101} 
- {i*j: i IN {2 •• 10}, j in {2 •• 50} I i*j < 101}) ; 

2.4.2 Existential and Universal Quantifiers. 

Very often, the key to a mathematical problem is to determine whether 
there exists any element x satisfying a given condition C, and the key to a 
programming problem lies in finding such an x if it exists. Using 
setformers, it is easy to express the condition that there should exist an x 
ins satisfying C: we have only to write 



DATA AND EXPRESSIONS Page 2-39 

( 7) {x IN s I C} /• {} • 

Moreover, if the condition (7) is satisfied, we can easily find such an x, 
simply by writing 

... ( 8) ARB {x IN s I C} • 

Since the test (7) is so important and common, a special abbreviation is 
provided for it, namely 

(9) EXISTS X IN s IC • 

This is a boolean-valued expression, yielding exactly the same value as (7). 
Moreover, if it yields the value TRUE, it will set x to the value of (8), 
i.e. to some value satisfying C. If (7) is false, then the variable x in 
(8) gets 

value OM. 

As in a setformer, the s in (9) can be an arbitrary set-valued 
expression, while C can be an arbitrary boolean valued expression. 

Generalizations of 
(Sa), (Sb) are allowed. 

(9) corresponding to the generalized 
Specifically, one can write 

(1Oa) 
(1Ob) 

EXISTS x IN sl, y IN s2 I C 
EXISTS x IN sl, y IN s2, z in s3 I C 

set formers 

etc., where sl,s2, ••• are arbitrary set-valued expressions and C a Boolean 
expression. The constructs (1Oa), (1Ob), ec. search the set of all x in 
sl, yin s2, ••• for values satisfying the condition c. If such values are 
found, then (1Oa) (or (lOb)) yields the value TRUE and the variables x,y, ••• 
are set to these values. Otherwise (1Oa) (or (lOb)) yields the value FALSE 
and x,y, •• get indeterminate values. 

The constructs 
quantifiers. 

( 9) , (1 Oa) (1Ob) etc. are called existential 

The existential quantifier allows us to express naturally the common 
query : does there exist an object in a certain collection, which satisfies 
a given criterion ? A related query, which is also very common in 
programming contexts, is the following : do ALL the objects in a collection 
satisfy some stated criterion? Such queries are expressed in SETL by means 
of constructs such as the following: 

(lla) 
(11 b) 
(llc) 

FORALL X IN s I C 
FORALL x IN sl, y IN s2 I C 
FORALL x IN sl, y IN s2, z in s3 IC 

which make use of the keyword 'FORALL' • These constructs which are called 
universal quantifiers, are closely related to existential quantifiers. The 
three cases just given are equivalent to: 

(12a) 
(12b) 

NOT EXISTS x IN s I (NOT C) 
NOT EXISTS x IN sl, y IN s2 I (NOT C) 
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(12c) NOT EXISTS x IN sl, y IN s2, z IN s3 (NOT C) 

respectively. For example, (llc) searches the set of all x in sl, yin s2, 
z in s3 for values such that the condition C takes on the value FALSE. If 
none exists then (llc) returns the value TRUE (and the variables x,y,z take 
the value OM). HHowever, if values satisfying C exist, then (llc) returns 
the value FALSE (and the variables x,y,z take on values (in sl, s2, and s3 
respectively) fulfilling the condition C). 

By using quantifiers we can write a simpler and more readable setformer 
representing the set of all primes up to 100. Specifically, an integer n is 
prime if there exists no smaller integer m (o~her than 1) which divides n 
evenly, i.e. such that n MOD m • O. Hence 

PRINT({n in {2 •• 100} NOT EXISTS min {2 •• n-1} In MOD m • 0}); 

will print the set of primes up to 100. Similarly, 

PRINT({n in {2 •• 100} ((NOT EXISTS min {2 •• n-1} In MOD m = 0) 
AND (n-1) MOD 4 • 0)); 

will print all the primes up to 100 which are one more than a multiple of 
four, while 

PRINT({n in {2 •• 100} I ((NOT EXISTS min {2 •• n-1} In MOD m = 0) 
AND (n-3) MOD 4 = 0)}); 

will print the set of all primes up to 100 which are three more than a 
multiple of four. 

As we have said, the existential quantifier (9) returns exactly the 
same value as the expression (7). However, the quantifier calculates this 
value more efficiently than (7) would, since to evaluate (9) the SETL system 
will search systematically through the elements of s but stop searching and 
return the value TRUE as soon as an x satisfying Chas been found, whereas 
to evaluate (7) it would always search through the whole of s building up 
the set {x in S I C}, and only test it for nullity after it had been 
evaluated fully. This distinction becomes particularly important if 
evaluation of the boolean condition C causes side effects, since in this 
case evaluation of the two expressions (8) and (9) will have different 
cumulative side effects. Similar remarks apply to universal quantifiers 
(11), (lla), ~nd (llb). 

A remark on bound variables in compound setformers and quantifiers 

The variables x, y, z occurring in (9), (lOa-b),(lla-c), and (12a-c) 
are called bound variables, since the quantifiers in which they appear cause 
them to be iterated over some set. Quantifiers (or setformers) such as 
(lOa-b), (llb-c), or (12b-c) involving more than one bound variable cause 
multiple iterations, e.g. in evaluating (10a) xis given successive values 
from the set sl, and then for each of these values of x, y is given all 
possible values from s2. For this reason, the expression s2 in (10a) is 
allowed to depend on the bond variable x, but sl must be independent of Y• 
Similarly, in 10b), s3 can depend on both x and y, s2 can depend on x but 
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not y, and sl cannot depend on either x or y. Similar rules apply to 
universal quantifiers and to setformers. 
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2.4.3. Some illustrative one-statement programs. 

Thus far we have introduced only a few of the facilities which the SETL 
language makes available. Only one or two of the commands available to the 
programmer have been described yet, so that we cannot yet show any 
substantial programs. However, the mechanisms that have been described are 
powerful enough to allow various interesting single-statement programs to be 
written. In this section, we collect a few such progams. 

a. More about prime numbers. 

As noted in the preceding section, an integer is called prime if it is 
not evenly divisible by any smaller (positive) integer other than 1. 

To form the set of all prime numbers up to 100 we can use the one-line 
program given in the preceding section, which simply prints a setformer: 

PRINT({n in 2 •• 1001 NOT EXISTS min 2 •• n-11 (n MOD m) = 0}); 

The output of this single-statement program is 

{2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97} 

Note however that since sets are 
printed in any arbitrary order. 
significance) will depend on the 
is using. 

not ordered the elements of this set can be 
The actual order used (which has no logical 
particular SETL implementation which o ne 

Mathematicians who study prime numbers are sometimes interested in find 
not all the primes in a given range, but only those which have various 
special properties. For example, a prime n is said to belong to a prime 
pair if both n and n+2 are primes. (Note that, since all primes except 2 
are odd, we cannot expect both n and n+l to be prime, because if n is a 
prime then n+l will be even, hence not a prime.) To find all prime pairs up 
to 100 we can simply write 

PRINT({n IN {2 •• 100} I 
(NOT EXISTS min {2 •• n-1} 

and (NOT EXISTS min {2 •• n+l } 

The output of this program is 

{3 5 11 17 29 41 59 71} 

(n MOD m) • 0) 
((n+2) MOD m) • O)}); 

indicating that the only such twin-prime pairs are 

(3,5], (5,7], (11,13], [17,191, (29,31], [41,431, (59,61), (71,73), 

Sometimes one is interested in primes which satisfy particular 
quadratic equations, for example primes n of the form n • k**2+1. Since if 
n is not larger than 100, any integer k solving this equation would have to 
be smaller than 10, we can find all the primes of this form just by writing 
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PRINT({n in {2 •• 100} I (NOT EXISTS m IN {2 •• n-1} 
and (EXISTS k IN 0 •• 10 I 

( n MOD m) = 0) 
n = k*k+l)}); 

Similarly, to find al the primes up to 100 which have the form 2k**2+3 we 
can write 

PRINT({n in {2 •• 100} -I (NOT EXISTS m IN {2 •• n-1} I (n MOD m) = 0) 
and (EXISTS k IN {0 •• 10} I n = 2*k*k+3)}); 

the output of the first of these programs is 

{2 5 17 37} 

and the output of the second program is 

{3 5 11 53} 

b. Integer right triangles. 

The famous theorem of Pythagoras states that the length h of the 
hypotenuse of a right triangle and the lengths a and b of its two sides are 
related by the equation a** 2 + b ** 2 = h ** 2. Whole-number solutions of 
this equation are useful to people who make up elementary mathematics exams 
and want to invent problems that have whole number answers. Examples of 
such 'integer right triangles' are 3,4,5 and 5,12,13. The following 
single-statement program finds all integer right triangles a,b,h for which a 
is less than b and both are less than 30. We let b range over the set 
{1 •• 30}, and a range over the set {1 •• b-1}. To find if a*a + b*b is a 
perfect square, we simply search for an integer h qhose square is equal to 
that sum. The possible range of his from 1 to a+b. (Approximately. Can 
you give a more precise range for it ?). 

Note that we eliminate all triangles for which a and b 
divisor, since these are simple multiples of smaller 
triangles. 

PRINT({ [a,b,h] : b IN {l. .30}, a IN {l. .b-1} I 
(EXISTS h IN {2 •• a+b} (a*a+b*b = h*h)) and 

have a 
integer 

NOT EXISTS c IN {2 •• b-1} ((b MOD c) = 0 and (a MOD c) = 0)}); 

The output of this program is 

{[3 4 5] [5 12 13] [8 15 17] [20 21 29] [7 24 25]}. 

common 
right 

It is not hard to prove mathematically that there exist infinitely many 
different integer right triangles. 
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2.5 Tuple Operations and Tuple Formers 

We have mentioned repeatedly that sets are unordered and 
duplicate or undefined members; tuples are ordered 

can never have 
and can have both 

duplicate and undefined components. For example, 

[1,0,l,O,OM,OM,l,O] 

is a perfectly legal tuple; its first, third, and seventh components are 
all 1, while its fifth and sixth components are undefined. In spite of this 
very fundamental difference between sets and tuples, the binary and unary 
operators on tuples which SETL provides ~re similar to corresponding set 
operators. In addition, tuple formers that construct tuples in the same 
manner that set formers build sets, exist with a similar sybtax. In fact, 
all set forming expressions can be transformed into tuple forming 
expressions, by replacing the set brackets with tuple brackets. 

2.5.1 Binary Tuple Operators 

Binary tuple operators compute a result value from two inputs, one or 
both of which must be a tuple. The binary tuple operators are as follows 
(in what follows, t and tt are always tuples, while x can be an arbitrary 
value): 

t + tt 

n * t 

t * n 

x IN t 

x NOTIN t 

t WITH x 

t - tt 

t /= tt 

concatenates tt to the end oft. 

here, n must be an integer. This forms n 
copies oft and concatenates them end to end, 
to form a tuple n times as long as t. 
If n == O, then the null tuple (i.e. []) is obtained, 
if n < O, an error results. 

if n is an integer, this is equivalent to n*t 

yields TRUE if x equals one of the components 
oft; FALSE otherwise. 

yields FALSE if x equals one of the components 
oft; TRUE otherwise. 

yields a new tuple identical tot except 
that xis appended to it as an additional 
final component 

yields TRUE if all components oft are identical 
to the corresponding components of tt, 
FALSE otherwise. 

yields TRUE if some component oft differs from 
the corresponding component of tt, FALSE otherwise. 

It should be noted that a tuple is considered to extend from its first 
component to its last defined component, i.e., its last component differen 
from OM. That is, all tuples are regarded as ending with an indefinitelJ 
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long sequence of OM components, but when a tuple is printed only its non-OM 
components are shown. For example, 

[OM,OM,OM,OM] 

[l,OM,2,0M] 

[l,OM] 'WITH OM 

is equivalent to 

is equivalent to 

is equivalent to 

[ ] 

[ 1, OM, 2] 

[ 1] 

Some examples of the binary tuple operators are: 

print([l,2] + (3,4]) 

print ( [ 1 , 2] 'WI TH [ 3, 4] ) ; 

print(2*[1,2], [1,3]*2); 

yields 

yields 

yields 

[1,2,3,4] 

[1 2 [3 4]] 

[1 2 1 2] 

print(l IN [1,2,3], [1,2] IN [1,2,3]);-
yields TRUE FALSE 

print(OM IN [1,2,3], OM IN [1,0M,3]); 
yields FALSE TRUE 

print([l,2]=[2,1], [1,2,1,2] • [l,21,2]); 
yields FALSE FALSE 

[1 3 1 3) 

print ( [ 1 , 2 , 1 , 2] / = [ 1 , 2 , 1 , 2 , 1 ] , [ 1 , 1 ] / = [ 1 , 1 , 1 ] , [ 1 ] / == [ 1 , OM] ) ; 
yields TRUE TRUE FALSE 

print ( {} / = [] ) ; y i e 1 ds TRUE 

2.5.2 Unary Tuple Operators 

Unary tuple operators produce a value from a single tuple operand. The 
unary tuple operators are: 

#t yields the index of the last non-OM component oft 

RANDOM t yields a component oft picked at random from 
its first to its last non-OM component. 
All components, including OM components in this 
range, have an equal chance to be picked. 
Note that successive uses of RANDOM twill 
generally yield different, independently chosen 
random components. 

The following are examples of the unary tuple operators. 

print(#[3], #[], #[l,OM]); 

print ( # [ 1 , OM] , # [OM, 1] , # [ 1 , 1 , 1 ] ) ; 

print(#[l,OM,OM,OM,OM,l]); 

yields 1 0 1 

yields 1 2 3 

yields 6 
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print(#[l,OM,OM,OM,OM]); yields 1 

print ( II [ 1 , 2 , 3, 4 l , # [ 1 , 2 , [ 3 , 4 l l , II [ [ 1 , 2 , 3 , 4 l l ) ; y i e 1 ds 4 3 1 

print(RANDOM [1,2,3), RANDOM [1,2,3), RANDOM [1,2,3), RANDOM [1,2,3)); 

(probably) yields something like 2 1 2 3 

2.s.3 Other Tuple Operators 

As for sets, so for tuples the construct 

[xl,x2, ••• ,xk] 

which forms a tuple by enumerating its elements explicitly, is also a 

(multi-argument) tuple operator. As should be obvious, the various xj 
appearing in this construct can be arbitrary expressions. If some of the x 
appearing at the end of this construct evaluate to OM, then a tuple o 
length less thank will be formed. For example, if t has the value 
[ l ,OM,OM, 2), then 

[t(4), t(3), t(2), t(3)] 

forms the tuple [2, OM, OM, OM], i.e. 
course l. 

the tuple [2], whose length is o 

The tuple of integers ranging from m ton (inclusive) can be written a 

[ n ••• m] 

and the tuple of integers n, n+k, n+2k, etc. up tom can be written 

[n, n+k, ••• ,m]. 

In this last form, the 'step' k can be positive (producing an 
ascending sequence) or negative (producing a descending sequence). The 
quantity n+k need not actually be a sum, but can any integer-valued 
expression. If them in [n ••• m] is less than n, then the null tuple 
results. Similar rules apply to [n, n+k, ••• ,m]. For example, 

print([3,5, ••• ,l]); 
print( [3,2, ••• ,-3]; 
print( [3,2, ••• ,4]); 
print([3,J, ••• ,5]); 

yields 
yields 
yields 
yields 

[ ] 
[3 2 1 0 -1 -2 -3] 
[ ) 
[ ] 

Tuple indexing, 'slice' and assignment operators, which resemble tt 
string slice and assignment operators described in Section 2.3.3, a1 
provided. The indexing and slice operators are as follows (we assume as 
before that t designates a tuple): 

t(i) yields the i-th component of the tuple t. 
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If i is zero or less, an error results; 
if i exceeds the index of the last non-OM 
component oft, then t(i)_ yields OM. 

t(i •• j) yields the section or 'slice' oft extending 
from its i-th through its j-th components, 
inclusive. If i is zero or negative, or if 
i exceeds j+l, an error results. 
If i = j+l, then t(i ••• j} always yields the 
null tuple. If i exceeds the last non-OM 
component oft, then a null tuple is returned. 

t(i •• ) yields the section or 'slice' oft extending 
from its i-th through its last non-OM component, 
inclusive. This operator is equivalent to 
t(i •• #t). Thus if i is zero or negative, or 
if i exceeds #t+l, an error results. 
If i = #t+l, then t(i •• ) yields the null tuple. 
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To give examples of these operators, we assume that t is the tuple 
[10,0M,30,0M,50,0M,70]. Then: 

print(t(l), t ( 2) , t(3)); yields 10 OM 30 

print(t(7), t(8)); yields 70 OM 

print(t(2 •• 5), t(2 •• 6)); yields [OM 30 OM 501 [OM 30 OM 50] 

print(t(2 •• 8)); yields [OM 30 OM 50 OM 7 0] 

print(t(3 •• 2)); yields [ ] 

print(t(8 •• 11)); yields [ 1 

print(t(3 •• ), t(8 ••• )) yields [30 OM 50 OM 7 O 1 [ 1 

print(t(9 •• )); results in an error 

It should also be noted that if the 1th component of t 
tuple or a strtng, then further indexing of t(i) is possible. 
example, that t is the following tuple of tuples of strings: 

is itself a 
Suppose, for 

[ ['Tom','Dick','Harry'], ['Peter','Paul','Mary'], ['Mutt','Jeff']] 

Then: 

t(2) 
t(2)(3) 
t(2)(3)(1) 
t(2 •• 3) 
t(2 •• 3)(2 •• ) 
t(2 •• 3)(2 •• )(1) 
t(2 •• 3)(2 •• )(1)(2 •• ) 
t (2 •• 3) (2 •• ) (1) (2 •• ) (1) (2) 

yields 
yields 
yields 
yields 
yields 
yields 
yields 
yields 

[Peter Paul Mary] 
Mary 
M 
[[Peter Paul Mary] [Mutt Jeff]] 
[ [Mutt Jeff]] 
[Mutt Jeff] 
[Jeff] 
e 

------ -~-----
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Similar constructs involving map assignments are allowed; see Section 2.12. 

The tuple assignment operators are as follows (we assume as before that 
the values oft and tt are tuples): 

t(i) := X ; modifies the i-th component of the tuple t, 
setting it equal to the value of x. If i is 
zero or negative, an error results. If i exceeds 
the index of the last non-OM component oft, then 
twill be extended with as many OM components 
as necessary, and then its 1-th component will 
be set equal to x. (Therefor~ the assignment 
t(i) := x can increase the length oft by any 
amount up to 1) 

t(i •• j) := tt; modifies the section tif t extending from its 1-th 
through its j-th component, setting it equal to 
tt. If i is zero or negative, or if i exceeds 
j+l, an error results. If i = j+l, then tt will 
be inserted into t immediately following position 
1. If i exceeds the index of the last non-OM 
component oft, then twill be extended with as 
many OM components as necessary, and then tt will 
be appended. 

t(i •• ) := tt this assignment is equivalent to t(i •• #t) := tt. 
Thus it modifies the section oft extending from 
its i-th component to its last non-OM component, 
setting it equal to tt. If i is zero or negative, 
or if i exceeds llt+l, an error results. If 
i = #t+l, then tt is appended to the end oft• 

To give examples of these operators, suppose that t 1, t2, ... , 
have the value [ 1 , 2, 3, OM, OM, 6] • Then 

tl(2) : = OM $ now tl = [ 1 OM 3 OM OM 6) 

t2(4) : = 40 $ now t2 = [ 1 2 3 40 OM 6] 

t3(8) : =· 70 ; $ now t3 = [ 1 2 3 OM OM 6 OM 8] 

t4(9) : = OM $ now t4 = [ 1 2 3 OM OM 6) 

t5(2 •• 4):= [OM 30 40) ; $ now t5 = [ 1 OM 30 40 OM 6) 

t6(2 •• 2) : = [ 2 0] $ now t6 = { 1 20 3 OM OM 6) 

t7(2) . - 20 $ now t7 = [ l 20 3 OM OM 6] 

t8(2) . - [ 2 0] $ now t8 = [ l 20 3 OM OM 6] 

t9(2 •• 2) : = 20 ; $ results in an error 

t22 all 
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t10(2 •• l):= [ 2 0 OM 30] $ now tlO = [ 1 2 20 OM 30 3 OM OM 6] 

tl1(6 •• S):= [ 2 0 OM 30) $ now tll = [ 1 2 3 OM OM 6 20 OM 30 1 

t12(1..0):= [ 2 0 OM 30] $ now tl2 = [ 1 20 OM 30 2 3 OM OM 6] 

t13(8 •• 9):= [ 2 0 OM 30) $ now tl3 = [ 1 2 3 OM OM 6 OM 20 OM 30] 

tl4(S •• S):= [ 2 0 OM 30) $ now tl4 = [ 1 2 3 OM 20 OM 30 6] 

tlS(S •• S):= [ 2 0 OM OM] $ now tl5 = [ 1 2 3 OM 20 6) 

t16(4 •• 5):= [ 1 ; $ now tl6 = [ 1 2 3 6) 

t17(2 •• 3):= [ 2 0] $ now tl7 = [ 1 20 OM OM 6) 

tl8(2 •• 4):= [ 2 0] $ now tl8 = [ 1 20 OM 6) 

tl9(6 •• ) : = [ ] $ now tl9 = [ 1 2 3] 

t20(S •• ):= [SO 60 70 80) $ now t20 = [ 1 2 3 OM 50 60 70 80) 

t21(7 •• ):= [SO 60 OM 80J $ now t21 = [ 1 2 3 OM OM 6 50 60 OM 80) 

t22(8 •• ):= [ 2 0 OM 30] $ results in an error 

Repeatedly indexed tuple (and map) assignments such as 

t(i)(j •• k)(l) : = t t ; 

are possible in some cases; see Section 2. 12 for a general discussion of 
these assignments. 

2.6 Tuple Formers. Simple Tuple and String Iterators. 

The construct 

(1) [ e: X IN s I C] 

read 'the tuple of all values assumed by the expression e as X ranges over 
the elements of s for which the condition C has value TRUE' is similar to 
the set former 

(2) {e: x IN s I C}, 

(see Section X) except that (2) eliminates duplicates and builds a set, 
whereas 1) builds a tuple and does not eliminate duplicates. The order in 
which the components of the tuple (1) are arranged is determined by the 
order in which iteration proceeds over the elements x of the sets. 

As in the case of setformers, the condition C appearing in (1) need not 
appear, i.e. one can write 

(1) [e: X IN s] 
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read 'the tuple of all values assumed by the expression e as x. ranges over 
all the elements of s'. Moreover, multiple iterations can be used in a 
tuple formers, i.e. constructs like 

(3a) 
(3b) 

[e: x IN sl, y IN s2] 
[e: x IN sl, y IN s2, z in s3] 

etc., are allowed. Again, the order in which the components of (3a) or (3b) 
are arranged depends on the order in which iteration proceeds over the 
elements of sl, s2, etc. However, in (3a) and (3b) a complete iteration 
over s2 will always be made each time the variable x advances from one 
element of sl to the next, and in (3b) a complete iteration over c3 will 
always take place each time the variale y advances from one element of s2 to 
the next. 

If thee in (4) is simply x, then it can be elided, i.e. we can simply 
write 

[x IN s I C] 

read 'the tuple of all x IN s for which the condition C evaluates to TRUE'. 
It is even possible to elide both e and C, thereby writing 

[x IN s] 

this simply arranges the elements of the sets in (arbitrary) order as a 
tuple. Notice that s itself could be a tuple, in which case [x ins] is 
simply another copy of the tuple s. Similar elisions are allowed for 
set formers. 

As noted in Section 2.4.2, the 'iterator' x IN s appearing in such 
constructs as the set former 

(4) {e: x IN s I C} 

and the existential quantifier 

(5) ••• EXISTS x IN s C • • 

iterates over the elements of s, assigning each one of them in turn as the 
value of x, until the iteration terminates, either because (as in (4)) all 
elements of shave been processed, or because (as in (5)) an element x of s 
satisfying the condition Chas been found. Since iterative constructions 
and searches of this kind are quite useful, corresponding iterators over 
tuples and strings are also provided. If t is a tuple, then the iterator 

-x IN t-, which can be used in such contexts as 

(4a) {e: x IN t I C} 

and 

(4b) ••• EXISTS X IN t I c •• 

iterates over the components oft, in order, from its first component to its 
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last non-OM component, assigning each component in turn as the value of the 
variable x, until the iteration terminates for one of the two possible 
reasons stated above. The iteration advances over all components, including 
OM components, in turn, but components not satisfying the Boolean condition 
C appearing in (4a) and (4b) are bypassed. We emphasize that, even though 
the corresponding set iterator, e.g • 

• • • EXISTS X IN s I C 

can iterate over the elements of the sets in some unpredictable, arbitrary 
order, the tuple iterator (4b) always iterates over the components .£1. tin a 
known order, namely from first component tp last. Therefore, if the 
existential search (4b) finds any component x oft satisfying the condition 
C, it will always find the leftmost such component, which will become the 
value of x. 

We can iterate over the successive characters of a string in similar 
fashion. If in (4a) t is a string, then (4a) iterates over its characters, 
in order, from its first character to its last, assigning each character in 
turn as the value of the variable x, until the iteration terminates for one 
of the two possible reasons stated above. Characters not satisfying the 
condition C appearing in (4a) are bypassed. Similar remarks apply to the 
setformer (4a) and to universal quantifiers which iterate over strings and 
tuples. 

Note, as an easy application of all this, that the set s of all 
distinct components of a tuple t can be formed by writing 

{x IN t}. 

If tis a string, this same expression will form the set of all its distinct 
characters. 

For a more general account of the iterator forms usable in setformers, 
tuple formers, compound operators, and FOR-loops, see Section 3.3. 

By writing the iterator 

x IN [M •• N] 

as part of a set former or quantifier we can cause x to be iterated over all 
the integers of the numerical range M through N inclusive in order. 
Similarly, by writing the iterator 

x IN [M,M+k •• N] 

we cause x to be iterated over integers lying between Mand N, starting with 
M and proceeding by steps of k. This iteration will proceed either in 
increasing or in decreasing order, depending on whether k is positive or 
negative. (If k = 0, the iteration will be terminated as soon as it is 
attempted.) For example, to find all the vowels in a string which are 
followed by other vowels and print the corresponding set of all double 
vowels or 'dipthongs', we can simply write 

print({s(i •• i+l): i IN 1 •• #s-l I s(i) IN vowels AND s(i+l) IN vowels}); 
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(where the variable -vowels- must first be assigned. the value 
{'a','e','i','o','u','y'}. Similarly, to find the set of all places in a 
tuple of integers at which the sign of its component changes from+ to-, we 
can simply write 

print ({ i IN [ 1 •• # t-1] I t ( i) > 0 AND t ( i + l) < 0}) • 
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2.7 Map operations 

Sets of a somewhat special kind, namely sets all of whose elements are 
pairs (that is, all of whose elements are tuples of length 2) have a very 
special importance in SETL because they can be used to record associations 
between pairs of objects. Sets of this kind are called maps, and the most 
significant operators of SETL, its so-called map operators, apply only to 
such sets. In this section, we will describe these operators and review 
their use. 

2.7.1 The image-set operator f{x} and the image operator f(x). 

Suppose that f is a map, i.e. a set of pairs 

(1) {[xl,ylJ, [x2,y2], ••• , [xk,yk]}. 

Then f{x}, called the image set .21. f il the point x, is defined to be the 
set of all second components of pairs inf whose first component is x. 
Using the standard set former, we can write this set as 

(2) {y{2): yin f I y(l) = x}. 

The significance of this operation lies in the fact that, if we regard f as 
representing a certain abstract relationship R, then f{x} is precisely the 
set of all elements which stand in the relationship R to the object x. 

Suppose, for example, that f contains the pair [s,c] if and only if s 
is a student in a particular school and c is a course in which sis 
registered. Then f{s} designates the set of all courses in which student s 
is registered. Suppose next that g is another map, which contains the pair 
[c,s] if and only if f contains the pair [s,c]. (This map is called the 
inverse of the map f.) Then for each course c, g{c} is the set of all 
students registered in the course. 

For a still more specific example, suppose that f is the map 

(3) {['Jones','Tom'J, ['Khalid','Leila'], ('Smith','Mary'], 
['Khalid','Fatima'J} 

Then: 

f{'Jones'} is {'Tom'}; f{'Smith'} is {'Mary'}; f{'Khalid'} is 
{'Leila','Fatima'} 

moreover 

f{'Chang'} is the nullset ({}) 

Since no pair beginning with 'Chang' is present in the map (3). 

Note that the DOMAIN off, namely the set of all first components of 
pairs in f, is also the set of all x for which f{x} is different from{}, 
and that the RANGE off, namely the set of all second components of pairs in 
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f, is also the set of ally which belong to at least one set of the form 
f{x} • 

2.1.2 The single-valued image operator f(x) 

If the image set f{x} contains exactly one element y, that is, if f{x} 
is {y}, then we can also write this element y simply as f(x) (rather than as 
ARB f{x}) The quantity f(x) is called the image (or sometimes, for 
additional emphasis, the single-valued image), of the element x under the 
map £, and we say that the map f sends x into f(x). If x is not in the 
domain of £, so that f{x} is empty, or if f{x} contains more than one 
element, then f(x) yields the value -undefined- or OM. 

This last rule can be understood as follows. If, as before, we regard 
f as representing an abstract relationship R, then f(x) represents the 
unique element y which stands in the relationship R to x. If x is not in 
DOMAIN f, then f(x) is obviously undefined, since no element stands in the 
relationship R to x. If f{x} contains more than one element, then f(x) is 
still undefined, since we cannot tell which one of the several elements of 
f{x} the expressions f(x} is supposed to represent. We can only speak of 
the element standing in the relationship R to x if f{x} contains exactly one 
element; thus the case in which f(x} gives a non-OM value. 

For an example of all this, suppose once more that f is the map (3). 
Then 

f('Jones') is 'Tom'; £('Smith'} is 'Mary'; 
£('Chang') is OM, since 'Chang' is not in the domain off; 
£('Khalid') is OM, since £{'Khalid'} is a set 

containing more than one element. 

A map f is said is called singl~-valued at x if f(x) is defined, but is 
called multiple-valued il x if f{x} contains more than one element. The map 
f is said to be a single-valued map (or simply to be single valued) if it is 
single-valued at each element x of its domain. 

Note that maps are also sets (namely sets all of whose elements are 
tuples of length 2), so that all set operations also apply to maps ■ In 
particular, we can form the union, intersection, and difference of maps, add 
elements to and subtract elements from a map using the WITH and LESS 
operators, evaluate f where f is a map, etc ■• Note that if f and g are both 
maps, then f+g, f*g, and f-g are also maps since every element of any one of 
these sets will be a pair; the same remark applies to f LESS z for any Z• 
Moreover, if f is a map and z is known to be a pair, then f WITH z is still 
a map sice all its elements are pairs. For example, if f is the map (3) and 
we let £2 be 'f WITH ['Jones','Sue'], then f2 is still a map, moreover 
f2{'Jones'} is {'Tom','Sue'}, and f2('Jones') is OM ■ 

SETL allows us, not only to evaluate expressions like 
but also to use such expressions as assignment targets ■ 

is a map, the map assignment 

(4) f(x) : .. y ; 

f{x} and f(x), 
If the value off 
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is always legal. The effect of this assignment .!.!, !E_ modify £, and, as the 
notation (4) is intended to suggest, to modify it in such a way as to cause 
the value of f(x) to be y if f(x) is evaluated immediately after the 
assignment (4) is executed. This is done by modifying fas follows: 

(a) First, all pairs [x,z] whose first component is x are removed from 
f. (Th is has the e f feet of removing x from DOMAIN £). 

(b) Next (if y has a value other than OM), the single pair [x,y] is 
inserted into f. Thus f will contain exactly one pair [x,y] whose first 
component is x, guaranteeing that f(x) will evaluate toy. 

(c) However, if y has the value OM, then only step (a), but not step 
(b), is performed. In this case x will simply have been removed from DOMAIN. 
£, guaranteeing that f(x) will evaluate to OM. 

Rules (a), (b), and (c) tell us that if y /• OM, then (4) has exactly 
the same effect as the assignment 

(Sa) f := {z: z inf I z(l) /• x} WITH [x,y]; 

while if y = OM, then (4) has the same effect as the assignment 

(Sb) f :• {z: z in f I z(l) /• x}. 

The intuitive significance of the assignment (4) can be explained as 
.follows: it directs us to drop any prior association to the element x that 
is recorded in£, and then to associate x with y (for which we insert the 
pair· [x,y] into f if y /• OM, but simply leave x without any association if 
y = OM). This is exactly the effect of steps (a-c). 

For examples of all this, suppose again that f is the map (3), and that 
we first perform the assignment 

£('Jones') := 'Thomas'; 

This changes f to 

{['Jones','Thomas'], ['Khalid','Leila'], ['Smith','Mary'], ['Khalid', 
'Fatima']} 

Suppose that the assignment 

£('Chang') :• 'Zhong-Tien' ; 

is performed next. In this case, no pairs need to be removed from. £, but 
one pair is added, changing f to 

{['Jones', 'Thomas'], ('Khalid', 'Leila'], ['Smith', 'Mary'], 
['Chang','Zhong-Tien'], ['Khalid','Fatima']} 



DATA AND EXPRESSIONS Page 2-56 

Next, suppose that the assignment 

f ('Cohen') : • OM ; 

is performed. This will simply remove all pairs with first component 
'Cohen' from f; but since there are none such, it will actually leave f 
unchanged. After this, suppose that the assignment 

£('Khalid') :• 'Nuri' ; 

is performed. This removes the pairs ['Khalid','Leila'] and 
['Khalid','Fatima'] from f, and gives f the value 

{['Jones','Thomas'], ['Smith','Mary'], ['Khalid','Nuri'], 
['Chang','Zhong-Tien']} 

Assignments of the form (3), which change the element y associated with 
an element x, are generally used for one of three purposes: 

(1) 
(ii) 

(iii) 

to update an attribute f(x) of x; 
to define an attribute of x which has previously 
been undefined; 
to drop an attribute f(x) that is no longer needed, 
which we do by executing f(x) :• OM. 

Suppose, for example, that f is being used to keep track of the number 
of times that each word x has been seen in a body of text that is being 
scanned. On encountering a word, we test to· see if it has been.seen before; 
if so, we simply increment its count. Otherwise, we must initialize its 
count attribute, which will be undefined, to the value 1. This is done by 
the following code, which uses several map assignment operations. 

IF f(x) • OM THEN $ word is new 
f(x) :• 1; $ establish initial count for new word 

ELSE 
f(x) :• f(x)+l; $ increment count of word previously seen 

END IF; 

Note that a map assignment f(x) :• y begins (see (a) above) by 
attempting to remove a certain set of pairs from f, which assumes that f is 
already a map. Hence the operation f(x) :• y (like the operations y :• f(x) 
and y :• f{x}) can only be applied!_! f .!!_already~ map. The question then 
arises as to how to initialize a map f. This can be done in one of two 
ways: 

(i) If f is initially supposed to be the ('everywhere undefined') map 
whose domain is null (so that initially f(x) • OM for all x and f{x} • {} 
for all x), we simply put 

f :• {} ; 

This makes f the everywhere undefined map with null domain and null range. 
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(ii) A map value can be built up directly using a setformer, providing 
that all elements of the set which is formed are pairs. For example, we can 
write 

f := {[x,#x]: x in {'Tom','Dick','Harry'}}; 

this makes fa map with domain {'Tom','Dick','Harry'}, and f maps each 
element x in its domain into the length of x. 

The multivalued map assignment 

(6) f{x} :=- y ; 

is also legal in SETL. 
modifies f in such 
evaluated immediately 
(6) makes no sense, 
set. 

As the notation 
a way as to cause 

after the assignment 
and will generate an 

(6) suggests, this assignment 
the value f{x} to bey if f{x} is 
(4) is executed. It follows that 
error, if the value of y is not a 

The multivalued map assignment (6) is performed as follows. 

(a) We first check that f is a map (i.e. a set consisting of pairs 
only), and that y is a set. If either of these conditions is violated, an 
error is generated. 

(b) All pairs x,y whose first component is x are removed from x. 
has the effect of removing x from DOMAIN f.) 

(This 

(c) After this, the set of all pairs x,z, for ally, is added to f. 
This guarantees that f{x} will evaluate toy. 

These rules tell us that 
assignment 

(6) has exactly the same effect as the 

(7) f :• {u: u inf I u(l) /= x} + {[x,z]: z in y}. 

Note therefore that if y /• OM, (4) has exactly 
the same effect as the map assignment 

(Sa) f{x} := {y} ; 

while if y = OM, then the effect of (4) is exactly that of 

(Sb) f{x} := {} ; 

The value (Sb) given to f by either f(x) :• OM or by f{x} :• {} can 
also be written in another form, namely as the expression 

(9) f LESSF x 

which occasionally is more convenient. Note that (9), like the map 
assignment operators, applies only to maps, and will generate an error if 
applied to set f which contains any non-pair elements. 
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(3,) 

As an example of all this, suppose again that f is the map 

{['Jones' ,'Tom'], ['Khalid' ,'Leila'], ['Smith' ,'Mary'], 
['Khalid', 'Fatima']} 

Then the assignment 

f{'Khalid'} := f{'Khalid'} WITH 'Omar' 

gives f the value 

{ ['Jones', 'Tom'], ['Khalid', 'Leila'], ['Khalid', 'Omar'], 
['Smith','Mary', ['Khalid','Fatima'] } 

If we subsequently execute the assignment 

f{'Jones'} := {} 

then f will take on the value 

{['Khalid','Leila'], ['Khalid','Omar'], ['Smith','Mary'], 
['Khalid','Fatima'] } 
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Along with the general set former construct, the map operations f(x), 
f{x}, f(x):=y, and f{x}:=y are the most characteristic and important 
operations of the SETL language. Their importance derives from the fact 
that they allow arbitrary objects x to appear as 'indices', i-e~ any object 
can appear as the x in a construct like f(x)· or f(x):•y. Of course, other 
lower level programming languages, such as PL/1, PASCAL, and Ada, support 
constructs with exactly this syntax and with a very similar intended use. 
However, in these other languages, an fused in this way must be an 'array' 
(an object much like a SETL 'tuple'), and the x appearing in f(x) or in an 
assignment f(x):•y must be an integer. This complicates the manipulation of 
attributes associated with arbitrary objects x (and attribute manipulation 
is basic to programming). To manipulate attributes of a non-integer object 
x (say string or a set) in these other languages, one must first find a way 
of associating an integer with x, and then must use this integer, instead of 
x itself, whenever the attributes of x need to be used or manipulated. This 
introduces a layer of artifice into programs, making them less direct, less 
readable, and more error- prone. This objection applies even to a language 
as elegant and powerful as APL, which only allows integers (and arrays of 
integers) to appear as indices. The only well-known languages which support 
something like the map operations of SETL are SNOBOL (through its TABLE 
feature) and some of the more advanced versions of LISP. 

In deciding whether to use map operations like f{x} and f(x), or map 
assignments like f{x} := y or f(x) := y, it is important to realize that 
they are performed efficiently. 

The internal representation of a map f (described in more detail in 
Sections 10.2, 10.4) makes it easy to locate all the pairs [x,y] off which 
share a common first component x. This is done by using an exceptionally 
fast searching technique (known technically as 'hashing'). If the value of 
xis something relatively simple (like an integer or string) this makes it 
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possible to retrieve either of the values f(x) or f{x} in approximately a 
hundred millionths of a second (assuming that your program is running on a 
typical modern computer able to perform about a million addition operations 
per second). Note that the map operation f{x} is performed in a time which 
is essentially independent of the size off. Similar remarks apply to the 
important Boolean set membership-operation x IN s. See Section X for 
additional information on the way in which SETL objects are actually 
represented within the memory of a computer, and on the way that primitive 
SETL operatons, like the evaluation of f(x) or f{x}, are implemented. 

2.7.3 Some remarks on Multi-Valued Maps 

Set-valued maps can be handled (in SETL) in one of two nearly 
equivalent styles. Either &tyle is acceptable, and neither has any 
overwhelming advantage, but they are different, and to avoid error it is 
important to distinguish cl•arly between them. These two possibilit~es are 
as follows: 

(i) A set-valued map f can be represented as a single-valued map 
whose value f(x) is a set; but 

(ii) The same map can be represented by a multivalued map g such 
that g{x}=f(x). 

If f is avail~ble, then g can be produced by writing 

(10) g:={ [x,y]: s=f(x), y IN 1) 

Conversely, if g is availabl~, then f can be produced by writing 

(11) f:={[x,s]:s•g{x}} 

(See Section 3.3.6 for an explanation of the 'map iterator' construct 
s = g{x} appearing in OU• Note als,, that if (10) is followed 
immediately by (11), thea elements x such that f(x)={ } 
will drop out of the do~ain off.) 

A new pair [x,y] can be added tog :;imply by writing 

g WI TH:= [ x • y] 

(See Section 2.12.1 for an explanatic1n of the 'assigning operator' 
WITH:= appearing here.) 

The equivalent transformation off inust be written 

f{x} WITH:• y; 

which is a bit clumsier (see Sections: 2.12.1 and 2.12.2). 

To initialise g to a set of pairs dHfined by a condition C, one 
would normally write something like 

g:={[x,y]: x IN sl, y IN s2IC} 
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The corresponding initialisation off, namely 

f:•{[x,{y IN s2IC}]:x in sl}; 

is a bit clumsier. 
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These small technical differences sometimes lead one to prefer the 'g' 
representation of set_val·ued maps to the 'f' representation. 

2.7.4 Two useful map operations 

The 'inverse' of a map g is the map h such that [x,y] IN h if and only 
if [x,y] IN g. (If g is single-valued, this is equivalent to the condition 
that y•h(x) if and only if x•g(y)). We can produce h from g simply by 
writing 

h:•{ [y,x]: [x,y] in g}; 

This important construction occurs frequently. 

The 'product' or 'composite' of two maps gl, g2 is the map G such the 
[x,y] IN G if and only if there exists a z such that [x,z] IN gland [z,y] 
in g2. (If gland g2 are both single-valued , this is equivalent to 
G(x)•g2(gl(x)).) To produce G from gland g2, we can simply wr~te 

G:•{Cx,y]: z•gl{x}, y IN g2{z}}; 

or, in the single-valued case, 

G:•{ [x,g2(z)]: z•gl(x) lg2(z)/•OM}; 

This 'map product' operation is also ~uite important. Note for example 
that if Fa maps each person x onto the fa 1ther of x, and Mo maps each person 
y onto the mother of x, then the composite of Mo and Fa maps each person x 
onto x's paternal grandmother, while the composite of Fa by Mo maps each x 
onto x's maternal grandfather. 

2.7.5 Multi-parameter maps 

f{x} 
with 
this 

(la) 
(lb) 

As noted above, maps fare used to ausociate attributes f(x) or sets 
of attributes with elements x. tit is occasionally necessary to deal 

attributes f(xl, •• ,xk) that depend in two or more objects xl ••• xk. For 
purpose, the generalised map operations 

f{xl, ••• ,xk} 
f(xl, ••• xk) 

and the corresponding map asignments 

(2a) f{xl, ••• ,xk}:•y 
(2b) f(xl, ••• ,xk):=y 

are provided. These simply abbreviate 
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(la,) 
(1 b,) 

and 

( 2 a') 
(2b') 

f{[xl, ••• ,xk]} 
f([xl, ••• ,xk]) 

f{ [xl, ••• ,xk] }:=y 
f ( [ x 1, ••• xk] ) : =y 
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respectively. That is, a 'multiparameter' map f(xl, ••• ,xk) of k parameters 
is regarded simply as a map whose domain consists of tuples of length k. 
Note that such a map cannot be used as a function ofany smaller number of 
parameters, since for j < k we will always have f{xl, ••• xj}•{ } (except for 
j=l, where of course we have f{[xl, ••• ,xk]}•f(xl, ••• ,xk)). 

All SETL's map constructs can be used with multi-parameter maps if they 
are regarded as one parameter maps whose domain elements are tuples. For 
example, if f is a k-parameter map, then the setformer 

{y:z=f(y)} 

will form the domain DF f by iterating over all the k-tuples y 
in DF. (See Section J.J.6 for additional material concerning the 'map 
iterator' construct appearing here.) 
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2.8 Compound Operators 

Binary operators like+ or* are often used to sum or multiply all the 
components or members of a set or tuple, as in 

t(l) + t(2) + ••• + t(n) 

To make it more convenient to form combinations of this kind, SETL allows 
any binary operator sign (including both built-in operators and user-defined 
binary operators introduced by OP declarations, see Section 4.7.2 below) to 
be followed immediately by a / (slash) m~rk. This introduces so called 
compound operators, such as+/ or*/• Such operators can be used either in 
prefix or in infix position, i.e. either as 

(lA) bop/t 

or as 

(lB) 

The t appearing in (lA) or (lB) must be either a set or tuple. 
form (lA) of the compound operator represents the result 

(2A) el bop e2 bop••• bop en 

The prefix 

obtained by combining all the elements or components of ej of t together 
using the underlying binary operator bop repeatedly. The infix form (lB) is 
similar, but also includes its first argument x in the result, i.e. forms 

(2.b) x bop el bop e2 bop ••• bop en, 

where again the ej are all the elements or components oft. If t is null, 
the value of (lA) is OM and that of (lB) is x; if t has just one component 
or element el the (1.1 represents x bop el, and (lA) simply represents el, 
i.e. does not involve any application of -bop-. 

The following are some typical uses of compound operators: 

+/t $ sum of all the elements oft, OM is tis null 
0+/t $ sum of all elements oft, 0 if tis null 
MAX/s $ maximum element ins, OM ifs is null 
0 +/[a(i)*b(i):t in [1 •• #a]) $ dot product of a and b 
*/[x IN tlx/•0] $ product of all the nonzero components oft 

As these last two examples illustrate, when a compound operator is used to 
combine an explicitly given sequence of terms, a tuple former should 
normally be used. If a set former is used then duplicate elements will only 
appear once, as in 

0+/{x in tlxO} $ duplicate elements not summed 

I 
I 
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Moreover, the SETL compiler recognises expressions which apply compound 
operators to tuple-formers and implements them efficiently, without actually 
building an unnecessary tuple. For example, the sum t/[2*t(i): i IN 
[1 •• #t]] is formed simply by iterating overt; no tuple is actually built. 

The compound operator -bop/- can be formed with either built-in binary 
operators of SETL or with user-defined binary operators. For example, if, 
using the mechanisms described in Section 4.7.2, one introduces an infix 
operator COMP which forms the composite -f COMP g- of two maps, as defined 
by the for mu la 

f COMP g = {[x,f(y)]:x IN DOMAIN_§, y IN g{x}lf(y)/=OM}, 

then COMP/twill form the composite fn COMP... COMP f2 COMP fl of a 
sequence [fl,f2, •• ,fn] of maps, and therefore COMP/[f:k in [1 •• n]] will form 
the 'nth power' of the map f, i.e the result of taking its composition with 
itself n-1 times. 
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2.9 Types and type-testing operators 

The possible types of SETL values are Atom, Boolean, Integer, Real, 
String, Set, and Tuple. The built-in monadic primitive operator TYPE 
applies to any operator and produces its type, as a capitalised string. 
I.e., for any x TYPE x is either 'ATOM', 'BOOLEAN', 'INTEGER', 'REAL', 
'STRING', 'SET', or 'TUPLE'. The language also provides a set of built in 
binary operators called IS_ATOM, IS_BOOLEAN, IS_INTEGER, IS_STRING, IS_SET, 
IS_TUPLE, each of which yields TRUE if applied to an object of the 
corresponding type, FALSE if applied to an object of any other type. 

One additional monadic operator, IS_MAP, yields TRUE when applied to a 
set all of whose elements are pairs, FALSE otherwise. 

The undefined value Om cannot be expected to have a type, and indeed 
the expression TYPE(OM) yields OM itself. In addition, any of the type 
predicates, such as IS_SET(OM) or IS_ATOM(OM), yields FALSE. 

2.10 The ? Operator 

In certain situations undefined (i.e. OM) results can be expected to 
appear and one will want to replace them by some other default values when 
they do appear. A typical situation of this kind is that in which one is 
counting the number of occurences of words in text: here it is natural to 
use 

count(wd):=count(wd)+l ; 

to update a map -count- representing the number of times each word -wd­
has been seen. But then, if -wd- has never been seen before, count(wd) will 
be OM, and we will want to replace OM by the more meaningful default O. To 
do this we could write (using a syntax to be described more precisely in Ch. 
3) 

(1) count(wd):aIF count(wd)•OM THEN O ELSE count(wd) + 1 END ; 

however, since constructs 
abbreviation x?y, which makes 
definition of x?y is simply 

like 
them 

this occur so 
easier to express, 

IF (temp:•x)/•OM THEN temp ELSE y END, 

frequently, 
is provided. 

an 
The 

where -temp- is a compiler-generated variable not otherwise accessible 
to the SETL user. Using this convenient operator, we can write (1) very 
conveniently as 

count(wd):•count(wd)?O+l. 
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2.11 Exercises 

Ex. 1 Write a program which calculates the set of all integers from 2 to 
100 which are the product of exactly two primes. 

Ex. 2 The Goldbach conjecture states that every even number greater than 2 
can be written as the sum of two prime numbers. Write a I-statement SETL 
program which verifies that this conjecture is true for the first 100 even 
numbers. 

Ex. 3 Which of the following equations are valid for all tuples tl,t2,t3 
and positive integers n,m? 

(a) tl+t2= t2+tl 
(b) tl+(t2+t3)= (tl+t2)+t3 
(c) #(n*tl)= n*#tl 
(d) n*(tl+t2)= n*tl+n*t2 
(e) (n+m)*tl= n*tl + m*tl 
(f) (n*m)*tl= n*(m*tl) 

If an equation is not always true, give an example showing a case in which 
it is false. 

Ex. 4 Given a tuple t, write an expression which forms a tuple tl in which 
every distinct component of t occurs exactly once. For example, if tis 
[1,2,1,2,3,3], tl should be [1,2,3]. Also, write an expression which forms 
the set of all components oft which occur at least twice int. 

Ex. 5 Given a tuple t, write 3n expression which counts the number of 
non-OM components oft ■ Also, write an expresion that produces a tuple with 
the same components as t, but !n reverse order. 

Ex. 6 What are the values of the following Boolean expressions? 

(a) [1,2, [3,4]]=[1,2,3,4] 
(b) 3 IN [1,2, [3,4]] 
(c) #[l,2,0M,3,0M]=4 
( d) [ 1 , 2 , [ 3 , 4] , OM] / = [ 1 , 2 , 3 , 4 ] 
(e) [l. ■ 4]=[1,2,3,4] 

Ex. 7 The tuple tis [l,OM,2,0M 1 3]. Evaluate the following sequences: 

(a) t{l),t(2),t{3),t{4),t(5) 
(b) t(l •• l),t{2 •• 2),t(3 •• 3),t(4 •• 4),t(S •• 5) 
(c) t{l •• ),t(2 •• ),t(3 •• ),t(4 •• ),t(S •• ) 

Ex.8: write a tuple former that constructs the sequence of all prime 
numbers from 2 to 100, in ascending order. 

Ex. 9 The tu p 1 e t is [ 'Tom' , 'Dick' , 
tuple-former whose components are 
least two vowels. 

'Harry', 'Sue', 'Lois']. Write a 
those components oft which contain at 

Ex. 10 Write a tuple assignment of the form t(i •. j):mx which will convert 
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the tuple t=[l,2,31 to each of the following: 

(a) [4,5,6,71 (b) [] (c) [l,31 (d) [l,OM,OM,31 (e) [1,4,10,31 

Ex. 11 Write a program that reads a tuple t of numbers and prints its three 
largest components in decreasing order. 

Ex. 12 Changing as few of the elements of the set { [1,2], [3,41, [51, [ 1} 
as possible, produce a sets such that IS_MAP(s) evaluates to true. 

Ex. 13 Given a tuple t of integers, write an expression which yields the 
index of the largest component oft. 

Ex. 14 Assuming that sl and s2 are non-null sets of integers, in what cases 
do the equations 

+/(sl+s2)=+/sl +/s2 
and 

*/(sl+s2)=*/sl */s2 

hold? What happens if sl or s2 is null? How can we keep the null case from 
being exceptional? 

Ex. 15. Write a definition of the sets DOMAIN f and RANGE f using set 
formers. 

Ex. 16. The inverse INV f of a map f is the set of 
which [x,yl belongs to f. Express INV(INV f) 
set former. 

all pairs [y,xl for 
in terms.off using a 

Ex. 17. 
different 
DOMAIN f? 

Given a map f, express the sets of all x for which f(x) is 
from OM in terms off. What is the relationship betweens and 
In particular, when ares and DOMAIN f identical? 

Ex. 18. Express the condition 

[x,yl IN f 

in terms of the image set f{x}. 

Ex. 19. Let f denote the set 

{[i,j]: i in [1 •• 101, j in [1 •• 1011 i>j} 

What is the domain off? What is the range of f? 
different from OM? What is f{5}? What is f(5)? 
(cf. Ex.16) of the map f? 

For what x is f(x) 
What is the inverse map g 

Ex. 20. Answer question 19, but for the set f defined by the set former 

{[i,i*il: i in [-5 •• 51} 

Ex. 21. Answer question 19, but for the set f defined by the set former 
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{ [i,i*(i-1): i in [-5 •• 5)} 

Ex. 22. The map f has the set of strings 'Tom', 'Dick', 'Harry', 'Louis' 
as its domain; the map fl has 'Sue', 'Mary', 'Helen', 'Martha' as its 
domain. Each of these maps sends every string elements of its domain into 
the length s of s. The maps F and Fl are the inverses off and fl, 
respectively (see Ex.16). Answer question 19, but for the sets F and Fl, 
the union set F + Fl, and the intersection F*Fl. 

Ex. 23. Let f be the map 

{ [i,i*l]: i in (-2 •• 2)} 

(a) Write a series of map assignments of the form f(x):=y which will make f 
equal to the nullset { }. (b) Write a series of such assignments which make 
f single-valued by reducing its domain progressively. (d) Write a series of 
such assignments which make f single-valued without ever changing its range. 

Ex. 
map? 

24. The range of a map is the null set { 
What is the map? 

What is the domain of the 

Ex. 25. The range of a map consists of the two elements {TRUE,FALSE} and 
its domain consists of the three elements {1,2,3}. (a) How many elements 
can the map itself contain? (b) How many such maps are there? (c) How many 
such single-valued maps are there? (c) How many such maps whose domain 
includes all three elements {1,2,3} are there? (d) How many such maps whose 
range includes both elements {TRUE,FALSE} are there? (e) Can you write SETL 
expressions which would evaluate the answers to all these questions? 

Ex. 26. (a) The range of a map consists of the two elements {TRUE, FALSE}. 
How many elements can the map itself contain? (b) The domain of a map f 
consists of the three elements {1,2,3}. How many elements can the map 
itself contain? If we suppose that f is single-valued, how many elements 
can the map itself contain, and how many elements can its domain contain? 

Ex. 27 A sets is a subset of every other set. 
subset of every other map. What is f? 

What is s? A map f is a 

Ex. 28 Suppose that the variables has a set value, the variable t 
tuple value, and the variables sl and s2 have string values. 
expressions which produce the following quantities: 

has a 
Write 

(a) A tuple whose components are the elements of s, arraged in some order. 

(b) A set whose elements are the components of t, with duplicates 
eliminated. 

(c) A tuple whose components are the successive characters of sl. 

(d) Assuming that sl and s2 have the same length, a map from each character 
of sl to the corresponding character of 

Ex. 29 Given two sets sl and s2, express #(sl+s2) in terms of #sl, #s2, and 
#(sl*s2). If s2 INCS sl is TRUE, express #(sl-s2) in terms of Isl and #s2. 
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Ex. 30 Given two sets sl and s2, express the number of single-valued 
maps f such that DOMAIN f•sl and RANGE f=s2 in terms of sl and s2. 

Ex. 31 The map part of a sets is the collection of all elements of s which 
are ordered pairs. Write an expression whose value for any givens is the 
map part of s. (Make sure that your expression can be evaluated for any 
value of s, whether or not this value is a set; ifs is not a set, your 
expression should have the value OM.) 

Ex. 32 The single-valued part of a maps is the set of all pairs ins whose 
first component is unique. taking the same precaution noted in Exercise 30, 
write an expression whose value for any given_s is the single-valued part of 
s. s2. 
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2.12 Q~ne_L_<!l:_ form of the SETL assignment. The opera:tors JFROl!tt FROME, 
a,nd FROME. 

In preceeding sections, we have o~served that ~ome of the coastructs 
which can appear in an expression; and which retri,ve valu~s or parts of 
values, car, also appear on the left hand side of an a,es,ignmdnt,. :al.lowing the 
corresponding values to be assigned or modifi'eat. Pop e:leampl:e, when it 
appears in an expression the expresston f{x} retrieves ·tb,e image .,set of x 
under the map f, but when it appears to the left of a~.assignment, as in 

f{x} := e; 

then the image set of x becomes e. -Similarly, ~hen ~he e~pressl6u 1s(t •• j) 
appears in an expression it yields a string or tiple slice~1 but when it 
appears to the left of an assignment, as in 

s(i. .j) := e; 

is causes the val•e of this strina 6r tuple slibe to become e. 

Constructs which can appear to the left of an assignment operator can 
also appear in expressions, and the relationship betw•eft le~t~hdnd and 
right-hand appearances (i.e., ordinary appearances within an expr~ssion) of 
any such construct always exhibits an important ,logicai symmetry. 
Specifically, if, -lhs- denotes any construct which, like the constructs 
f { x } and s ( i •• j ) , can appear to the left of an ass i g tne n t, then · the; effect of 
the assign,nent 

lhs := e 

is to assnrc• thet immediately subsequE>.nt evaluation of -ths- '(within an 
expression, i.e., in a 'right-hand' contekt) will yield the,assi~ned value 
e • 

The elementary constructs which are allowed to appear to the le~t of an 
assignment operator are the follo~ing: 

( i ) A ~ariable identifier x. The assignment 

X : =- e 

modifies the value of x. 

(ii) A tuple-former [xl, •• ,xk]. 

(Notice that the elipsis: , ••• , stands for some unspecifie-d number of 
other components of the tuple. This should not be confused with the SETL 
substring operation s(x •• y) ). 

The assignment: 

[xl, •• ,xk] :== e 

modifies the value of each of xl, •• ,xk. In such an assignment, any of the 
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xj can be replaced by the dummy symbol 
assignment is performed for this particular xj. 
to the general rule that any construct which 
assignment can also appear to its right.) As an 
the assignment 

' ' (dash), in which case no 
(This is the one exception 

can appear to the left of an 
example of this, note that 

(la) [x,-,y] := [1,2,3]; 

gives x the value 1 and y the value 3. Moreover, the assignment 

(lB) [x,-,y] := [1,2,3,4]; 

has the same effect, since the fact that y occurs as the third component of 
the tuple on the left of (lB) means that the third component of the 
right-hand side of (lB) will be assigned to Y• For the same reason, the 
assignment 

(le> [x,-,y,z,w] := [1,2,3,4]; 

gives x,y,z, and w the respective values 1,3,4, and OM. 

(iii) A tuple, string, or map selection f(x). The assignment 

f(i) := e; 

modifies component i off if f is a tuple, character i of f if f is a 
string, and the value f(i) if f is a map. 

(iv) A multiparameter map selection f(xl, •• ,xk). This is equivalent to 
f([xl, ••• xk]), and the assignment 

f(xl, ••• ,xk) :• e; 

is equivalent to f([xl, ••• ,xk)) :• e. 

(v) A multivalued selection f{x}. The assigment 

f{x} :• e ; 

modifies the set f{x}. 

(vi) A multivalued, multiparameter map selection f{xl, ••• ,xk}. This is 
equivalent to f{[xl, ••• xk]}, and the corresponding assignment 

f{xl, ••• ,xk} :• e ; 

is equivalent to f{[xl, ••• ,xk]} :• e; 

(viii) A string or tuple slice t(i •• j) or t(i •• ). The effect of 

t(i •• j) := e or t(i •• ) := e 
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is to modify the portion t(i ••• j) of the string 
value of the string or tuple expression e may 
that of the subsection oft which e replaces, 
increase or decrease length oft. See Sections 
2.1, for a discussion of marginal cases of these 
i= t+l. etc. 
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or tuple. Note that the 
have a length different from 

so these assignments can 
2.3.3 and 2.5.3, also Table 
assignments, e.g. j•i-1, 

Simple expressions, of any of the types we have just listed, which can 
appear on the left of an assignment, can also be compounded to build up more 
complex 'assignment targets' that are also allowed to appear to the left of 
an assignment operator. For example, if f and g are maps, t is a tuple, and 
sis a string, then the assignment 

(IA) [[x,y],f(u),g{v},t(i),s(j •• )] := e 

is a legal assignment, whose effect is the same as that of the following 
sequence of assignments 

(lB) [templ,temp2,temp3,temp4] := e; 
[x,y] := templ; 
f(u) := temp2; 
g{v} := temp3; 
s(j •• ) := temp4; 

Map and tuple component extraction operators can also be compounded, 
e.g. we are allowed to write h{u}(v)(i) if his a map such that Hl=h{u} is 
also a map for which Hl(v) is a tuple whose i-th component can be extracted. 
The value x that h{u}(v)(i) produces is exactly that produced by the 
sequence 

Hl := h{u}; 
H2 := Hl(v); 
x := H2(i); $ Hl and H2 are otherwise unused, compiler-generated 

$ variables 

Compounds of this sort can also be used to the left of assignment operators, 
for example we can write 

(2A) h{u}(v)(i) := e; 

This has exactly the same effect as the following sequence, into which the 
SETL compiler expands (2A): 

(2B) Hl := h{u}; 
H2 : = Hl(v); 
H2(i) : = e; 
Hl(v) : = H2; 
h{u} : = Hl; 

The general rules used to expand compound assignments can be stated as 
follows: 

(i) An assignment of the form 
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(3A) [el, ••• ,ek] :• x 

is legal if, for each j between 1 and k, either ej is the sign ,_, 
or if an assignment of the form 

(dash), 

ej : ... y 

would be legal. If it is legal, (3A) is expanded into the code sequence 

(3B) el :• x(l); 

• • • 
ek :• x(k); 

but in (3B) every assignment corresponding to an ej 
omitted. 

(11) 

(4A) 
(4B) 
(4C) 
(4D) 
(4E) 
(4F) 

An assigment of one of the forms 

e(i) := x; 
e(il, •• ,ik) :• x; 
e{y} :• x; 
e{yl, •• ,yk} :• x; 
e(i .. j) := x; 
e(i •• ) :=- x; 

of the form 
, , is 

is legal if and only if e is an expression, other than a tuple- former 
[zl, •• ,zk], which could appear to the left of an assignment operator, and if 
in addition the corresponding code sequence 

(SA) temp_var := e; temp_var(i) : = x; e : = temp_var; 

(SB) temp_var := e. 
' 

temp_var(il, •• ,ik) := x; e : = temp_var; 

(SC) temp_var :• e; temp_var{y} : = x; e : :: temp_var; 

(SD) temp_var :• e; temp_var{yl, •• ,yk} := x; e := temp_var; 

(SE) temp_var :• e; temp_var(i •• j) :• x; e :z temp_var; 

(SF) temp_var :• e • 
' 

temp_var(i •• ) := x• 
' e := temp_var; 

would be legal. (Here, -temp_var- is an otherwise unused, 
compiler-generated auxiliary variable). When an operation (4A-F) is legal, 
it is expanded into the corresponding assignment sequence (SA-F). Of 
course, the final assignment of each of these sequences may itself require 
expansion; if necessary, this is performed recursively, leading to 
expansions like those shown in (lB) and (2B) above. 

2.12.1 'Assigning forms'~ infix operators. Assignment expressions. 

SETL allows abbreviation of any assignment of the form 
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(6) lhs := lhs OP e; 

where OP designates any built-in (or user-defined, see Section 4.7.2) 
infix operator, and -lhs- designates any simple or compound expression which 
can legally appear to the left of an assignment operator. For example, we 
can abbreviate 

i := i+l; 

and 

x:=x MAX y; 

as 

i +:= l; 

and 

x MAX:= y; 

respectively. One is always allowed to abbreviate (6) as 

(7) lhs OP:=e; 

2.12.2 Assignment expressions 

Simple assignments x := y (and even more complex assignments such as 
f{u}(v) := y) can be used as expressions. The value of such an 'assignment 
expression' is simply its right-hand side y, but of course 'evaluation' of 
such an 'expression' always has a side effect, namely it modifies the value 
of the variable Xo 

Assignment expressions of this sort are frequently used to abbreviate 
sequences of assignments which initialise a collection of variables by 
giving the same value to all of them. For example, the assignment 

X := y := z := w := O; 

which is equivalent to 

x := (y := (z := (w := 0))); 

gives all four variables x,y,z,w the value zero. Another common use of 
assignment expressions is to save the value of quantities that one needs to 
use just past the point at which they are first evaluated. The code 
fragment 

(8) IF (x := f(u) + g(v)) IN s THEN f(u) := x; ELSE ••• 

illustrates this. Since the quantity f(u) + g(v) is needed immediately 
after the test in which it is first evaluated, the programmer may find it 
convenient to assign this quantity as the value of an auxiliary variable x, 
saving re-evaluation, and, equally important, abbreviating the program 
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source text. A related example, showing another common use of the 
assignment expression construct, is 

(9) IF (x := y+z) > 0 THEN 
positives WITH:=x; 

ELSE 
negatives WITH:=x; 

END IF; 

Over-enthusiastic use of assignment expressions will lead to a crabbed 
programming style in which important operations flit by without sufficient 
syntactic emphasis. This will be bad if it deprives a program's reader of 
too much of the redundancy on which his understanding of the program 
depends. A good rule of thumb is to use an assignment expression only when 
the subsequent target variable of the expression occurs within a very few 
lines after the assigning expression being written. 

2.12.2.1 Other positions in which assignment targets are allowed 

A few of the other positions in which variables can occur resemble the 
left-hand sides of assignment operators, in that new values are assigned to 
variables appearing in these positions when the contexts containing them are 
evaluated. These 'assigning positions' are as follows: 

(i) The position of x in an iterator 

(FOR X IN s I... ) ••• 

is assigning, since the iterator will assign successive values to x. The 
same remark applies to the position of x in an existential quantifier 

EXISTS x IN sl••• 

and in a universal quantifier 

FORALL x IN sl••• 

Of course, 
positions 
in 

the same remark applies to variables appearing in corresponding 
in multiple iterators, as in the case of the variables x,y, and z 

(FOR x IN s, y IN t, z IN [1 •• n]I•••> 

(ii) The position of x and i in a map, tuple, or string iterator 

( FOR x= f ( i) I •• ) 

or in a multi-valued map iterator 

(FOR x=f{i}I •• ) 

is assigning. Of course, the corresponding positions in multiple iterators 
and in quantifiers are also assigning positions. (See Section 3.3.6 for 
aditional material concerning the 'map iterator' construct appearing here.) 
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(iii) Argument positions in function and procedure invocations corresponding 
to formal procedure or function parameters (see Chap. IV) that carry the 
read/write qualifier RW are also assigning positions (see Section 4.5). 

Precisely the same expressions that can appear to the left of an 
assignment operator are allowed to appear in any other assigning position. 
Thus, for example, the construction 

(FOR x+y IN sl•••> 

is illegal, since 

x+y := e 

would also be illegal; x+y is not a legal assignment target. On the other 
hand, 

(10A) 

(lOB) 

(lOC) 

(FOR [x,y] IN sic) ••• 

(For f(x) IN slC) ••• 

(FOR [[u,v],y] IN slC) 

are all legal, and have the same respective meanings as the code fragments 

(1 lA) 

(llB) 

(1 lC) 

(FOR temp_var IN s) [x,y] := temp_var; IF not C THEN QUIT; END; 

(For temp_var IN s)f(x) := temp_var; IF NOT C THEN QUIT; END; 

(For temp_var IN s) [[u,v] ,y] := temp_var; IF NOT C THEN QUIT; END; 

into which the SETL compiler expands them. Much the same remark applies to 
quantifiers containing iterators in assigning positions, for example in 

(12) ••• EXISTS [x,y] IN slC(x,y) ••• 

The iteration implicit in the existential quantifier (12) will generate 
successive elements z of sand perform an implicit assignment [x,y] :• z 
before the Boolean expression C(x,y) is evaluated. 

As already noted, the position of i in 

(13A) (FOR x=f(i) I••>••• 

and in 

(13B) (FOR x=f{i}I••>••• 

also the positions of il, ••• ,ik in 

(13C) (FOR x=f(il, ••• ,ik)I•••>••• 

and in 

(13D) (For x=f{il, ••• ,ik}I•••>••• 
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are assigning. (See Section 3.3.6 for additional explanation of the 'map 
iterator appearing in (13A-D).). 

Any expression which can appear to the left of an assignment operator can be 
substituted for the i in (13A) or (13B), or for any of il thru ik in (13C) 
or (13D). For example, we can write 

(14) (FOR [x,y]•f([u,v])I C(x,y,u,v)) ••• 

In (14), the iterator will generate successive elements z of the domain off 
and w of its range, and then perform implicit assignments [x,y] :•wand 
[u,v] :• z before the Boolean expression C(x,y,u,v) is evaluated. Note also 
that (13C) and (13D) are equivalent to 

(15C) (FOR x•f( [il, ••• ,ik]) I•••) •• • 

and 

(15D) (For x=f{[il, ••• ,ik]}I••>••• 

respectively. 
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2.12.3 The operators FROM, FROME, and FROMB 

A useful, but somewhat nonstandard operator on sets s, and two similar 
operators on tuples t, have assignment-like side effects. These are 

(16) 

and 

(17 A) 
(17B) 

x FROM s; 

x FROME t; 
x FROMB t: 

$ take x 'from the end' oft 
$ take x 'from the beginning' oft 

The effect of (16) is to select an arbitrary element of s, assign it to 
the variable x, and remove the selected element from s. Thus (16), like 
(17A) and (17B), has a somewhat unusual effect in that it modifies two 
variables. Ifs is null then x becomes OM ands remains null. 

The form (16) can also be used as an expression; 
way, it yields the value assigned to x. 

when used in this 

Similarly, the effect of (17A) is to remove the last (non-OM) component 
oft and assign it to the variable x. If tis null, then x becomes OM and t 
remains null. The effect of (17B) is to remove the first component oft and 
assign it to the variable x. If this first component is OM, then xis 
becomes OM, butt is reduced in length by 1 (its leading OM component is 
removed). If tis null, then x becomes OM and t remains null. 

Like (16), the forms (17A) and (17B) can be used as expressions. 
used in this way they both yield the value assigned to x. 

When 

Note that, if t has OM components immediately preceding its last non-OM 
component, then (17A) can decrease the length oft by more than 1. For 
example, the sequence 

t : = [ 1 , 2 , OM, OM, 3] ; 
x FROME t; y FROME t; 
print(x,y,flt); 

will produce the output 

3 2 [1]. 

The position of x in (16), (17A), (17B) is assigning. Any expression which 
could appear to the left of an assignment ope~~tor can also appear in this 
position. For example, we can write 

[ x, y] FROM s ; 

this is equivalent to the sequence 

temp_var FROM s; [x,y] := temp_var; 
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2.13 Operator precedence rules 

The table in this section shows the precedence rules which determine 
the order in which the operators in an expression are evaluated. If two 
operators share a common operand, then the one with the higher precedence is 
evaluated first. If both operators have the same precedence, then the left 
hand one is evaluated first (i.e. operators of a given precedence level are 
evaluated in a left associative manner.) 

Parentheses can be used freely to emphasize or alter the order of 
operations as determined by this table. 

Precedence Operators 

11 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

0 

:= (on left side) 
assigning operators (on left side) 
FROM (both sides) 

All unary operators except 
NOT and the IS_xx operators. 

** 

* / MOD DIV 

+ 

User defined binary operators 

= /= < <=>>•IN NOTIN SUBSET INCS 

NOT and the IS_type operators 

AND 

OR 

IMPL 

:• (on right side) 
assigning operators (on right side) 

The following examples of equivalent expressions with and without 
parentheses illustrate the operation of these rules: 

a+b+c*d 

is the same as 

(a+ b) + (c * d) 

a+ b +:s c DIV d 
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is the same as 

is the same as 

a+ (b +:= (c DIV d)) 

a+ CEIL b := c 

a+ (CEIL (b := c)) 

Page 2-79 
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2.14 Exercises 

Ex. 1 Given that tis a tuple, explain the meaning of ?/t. 

Ex. 2 Write a setformer which will produce the set of all proper subsets of 
a sets, i.e. the set of all subsets sl of s which are different from s. 

Ex. 3 Express #pow(s) in terms of #s. Is there any set such that scpow(s)? 
For what sets is #pow(s)=l? Is there any set that #s=#pow(s)? Is there any 
set such that #pow(s)•2? 

Ex. 4 Given 
{[x,y):s IN 
cprod(s,t)={ 
#cprod(t,s). 

two sets s and 
s, y IN t}. 

}, what are s 

t, their Cartesian product cprod(s,t) 
Express #cprod(s,t) in terms of #sand #t. 

and t? Express #cprod(s,t) in terms 

is 
If 
of 

Ex. 5 It can be shown that two set expressions el and e2 involving any 
number of variables xl, •• ,xn and formed using only the set union, 
intersection, and difference operations are equal for all possible set 
values of the variables xl, ••• ,xn if and only if they are equal whenever 
each of these variables has one of the two values { } and {1}. Therefore, 
we can check a set-theoretic iden~ity lke x*y=y*x simply by evaluating 

ll{[x,y]:x IN {{ },{1}}, y IN {{ },{l}}lx*y/=y*x} 

and observing that its value is zero. Moreover since x INCS y is 
equivalent to x*y=y, this same technique can be used to check inclusions of 
the form el INCS e2. Using this technique, verify that the following 
set-theoretic identities and inclusions are true for all possibie set values 
of x,y, and z: 

(a) (x*y)=(y*x) 
(b) (x+y)=(y+x) 
(c) ((x*y)*z)=(x*(y*z)), also ((x+y)+z)=(x+(y+z)) 
(d) ((x+y)-z)•((x-z)+(y-z)) 
(e) (x*x)•x, also (x+x)•x 
( f) (x-x) •{ } 
(g) ((x+y)*z)•(x*z+y*z), also ((x*y)+z)•((x+z)*(y+z)) 
(h) (x+(y-x))•(x+y) 
(1) (x-(y+z))•((x-y)*(x-z)) 
(j) (x*{ })•{ }, also(x+{ })•x 

If f is a map ands is a set, then the image set of s under f, 
sometimes written f{s), is by definition the set {y: [x,y) IN fix IN s}. The 
inverse image of sunder f, sometimes written f_inv[s], is by definition the 
set {x: [x,y] IN f I y IN s}. These notations will be used in the next group 
of exercises. 

Ex. 6 Express f[s] in terms of the sets f{x}, using a compound operator. 
What is £[DOMAIN f]? What is f-inv[RANGE f]? 

Ex. 7 In how many ways can two pairs of parentheses be inserted into the 
expression 
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1 + 2 - 3 * 4 DIV 5 

to produce a legal expression? Take twenty of these expressions and 
write their values. Do the same for 

1 + 2 -- 3 * 4 DIVS. 

Ex. 8 Determine the type of the value of x in each of the following 
code fragments, assuming that the code shown executes without causing any 
error. 

(a) x := z+l; 

(b) x := z+'l'; 

(c) x := z-{1}; 

(d) x := z--[1); 

(e) read(x); 
IF x>O THEN print(x); END; 

(f) x := ARB s; 
(FORALL y IN sly>O)print(y); END; 

(g) IF EXISTS x IN s l#x(i ••• j)<j-i THEN print(x); END; 

Ex. 9 Execute the programs 

[A,A,A] :=[1,2,3); print(A); 

and 

[A,B,A,B] := [l,2,3,4); print(A,B); 

What result do you expect? What is going on? 

Ex. 10 Write expressions which will find the following positions in a 
strings: 

(a) The position of the first occurence of the letter 'a' (b) The 
of the second occurence of the letter 'a' (c) The position of 
occurence of the letter 'a' (d) The position of the last occurence 
that is preceded by no more than five occurences of 'e'. 

position 
then-th 
of 'a' 

If the desired occurences do not exist, your expression should return the 
value OM. 

Ex. 11 Write an expression which, given a tuple t of integers, forms the 
tuple t2 of all 'partial sums' of the components oft. That is, the j-th 
component of t2 should be the sum of components 1 thru j oft. 

Ex. 12 A tuple t of tuples, all of the same length n, can be regarded as an 
m x n rectangular array of items. Write a program which rearranges this 
array by turning it 90 degrees, so that it becomes an n x m rectangular 
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array of items, represented by a tuple t2 of tuples all of length m. If 
this operation is repeated twice, what happens? 
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2.15 OMS and Errors 

When an illegal operation or an operation having an undefined result is 
evaluated during the running of a SETL program, one of two possible things 
will happen. Errors classified (somewhat arbitrarily) as 'severe' will 
cause execution to terminate. In this case, a brief error indication will 
be placed at the end of the program's output file. Moreover, if the 
terminal dump option has been switched on (section 8.5.1.4 below explains 
how this can be done), a terminal dump will be written to the dump file 
specified; valuable hints concerning the cause of error can then be gleaned 
by examining this dump. 

The following errors terminate execution:· 

(i) Type errors, e.g. an attempt to evaluate 

l+{0}, 1.0+2, [0]+{1}, '1'+2. s{y} wheres is a string or tuple etc. 

(ii) Illegal use of OM, e.g. attempts to evaluate 

{OM}, f(OM), OM IN s, s WITH OM, OM WITH x, etc. 

(iii) String or tuple parameters which are grossly out of bounds, 
e.g. attempts to evaluate 

s(O) or s(-1), 

wheres is a string or tuple. 

(iv) Illegal file operations, e.g. attempts to manipulate files which have 
not been opened. 

(v) Floating point operations which overflow out of the range of a 
particular SETL operation, and also conversions of very large integers to 
floating point form. 

'Mildly erroneous', deliberately intended, operations whose result is 
undefined will return the undefined value OM. These include 

(a) selection of an element from an empty set or tuple, as in 

X FROM { }, X FROM [ ], X FROME [ ], or ARB { } 

(b) evaluation of a map at a point at which it is undefined or multiple 
valued, as in f(O) or f(l) where f is 

{[1,1], [1,2)}; 

also evaluation of an undefined component of a 
execution is not immedately terminated, it 
result in this case, giving greater semantic 
constructs exploiting this flexibility are: 

tuple. Since in these cases 
is possible to test for an OM 
flexibility. Some typical 

IF (x FROM s)/=OM THEN ••• $ test a set for nullity and extract 
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$ an element if not null 

IF f(x)/=OM THEN •• $ see if the map f is uniquely defined at x 

On the other hand, since the legal uses of OM are severly restricted, 
unexpected OM values are likely to force error termination soon after they 
appear. Consequently, errors of this sort can generally be tracked down 
rather quickly. 
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CONTROL STRUCTURES 

Chapter 3. Control structures 

Execution of a SETL program proceeds sequentially , one 
executed after the other. In the simplest case, the order 
simply the order in which the statements are written in the 
example, consider: 

, a ; = 1; 
print('Initially, a = 
a := a + l; 
print('Finally, a= , , a) ; 

a) ; 

statement being 
of execution is 

program. For 

In this 
message 
mesaage 

example, the variable a is assigned the value 
is printed; a is then assigned the value 2; 
is printed. 

l; then the first 
and finally the second 

Only the simplest computations can be carried out by such straight-line 
programs. In order to perform more complex calculations, we need to be able 
to describe conditional computations, i.e. computations that are to be 
executed only when certain conditions are met, and we also need to program 
repeated computations, i.e. computations to be executed a number of times, 
(100 times, or for all elements in a set, or until a certain calculation 
converges, or as long as a certain value has not been reached, etc). 

The order in which these more complex computations are to be executed 
is specified in the program text by means of language constructs commonly 
called control structures. In this chapter we will examine the most 
important control structures of the SETL language, namely: the IF 
statement, CASE statement, LOOP statement, and GOTO statement. The IF, 
CASE, GOTO and some variant of the LOOP constructs are commonly found in 
most modern programming languages, and are regarded as the basic tools of 
'structured programming'. The LOOP construct in SETL is a bit richer than 
the loop constructs provided by most other languages, and some of its 
features are specially tailored for the objects that characterize SETL, 
namely sets, tuples and maps. 

Chapter Table of Cont~nts 
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3.1 The IF statement. 
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The IF statement is used to route program execution along 
alternate paths, chosen according to some stated condition. 

one of several 
An example is 

IF balance> 0 THEN 
print('Your line of credit is: ', balance); 

ELSE 
print('you are overdrawn by: ', -balance); 

END IF; 
print('Do you want additional information (y/n)?'); 

Here, the condition (i.e. whether the value of -balance- is positive or 
negative) determines which of two messages is printed. If the condition 
being tested is TRUE (i.e. the balance is positive) the statement following 
the keyword THEN is executed; if the condition is FALSE, the statement 
following the keyword ELSE is executed instead. 

After execution of the statements in either branch of the IF statement, 
program execution continues from the first statement following the end of 
the IF. In the example above, after execution of one of the branches of the 
IF, the query - Do you want additional information(y/n)?-will be printed. 

Any number of statements can appear in either branch of an IF 
statement. For example, we can write: 

IF line>= 50 then 
page :=page+ l; 
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line : = 
ELSE 

line : = 
END IF; 

In this case, if the 
to page and line are 

1 ; 

line + 1; 

condition - line >=50 
per formed; otherwise, 

- is true, 
-line- is 
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then the assignments 
incremented. 

The syntax of the form of the IF statement shown above is: 

IF condition THEN 
group of statements 

ELSE 

group of statements 
END optional tokens; 

The construct condition denotes any boolean expression, ( See Section 2.xxx) 
i.e. any expression which yields either TRUE or FALSE. The group ..£1 
statements in each branch of the IF designates any sequence of executable 
statements, which can be assignments, control statements such as other IFs, 
loops, etc. 

The end of the IF construct is indicated by the keyword END, followed 
optionally by the keyword IF, and by up to 5 of the tokens that follow the 
opening IF. This convention is particularly useful for clarifying the range 
of statements governed by IF statements nested within other IF's, and is 
used for other nested control structures as well. The following example 
illustrates the use of nested IF statements, and displays the convention we 
have just described for indicating the end of an IF. 

IF a/= 0 then 

ELSE 

IF b**2 > 4.0*a*c THEN 

ELSE 

discr := sqrt(b**2 - 4.0*a*c); 
print('rl = ', (-b + discr) / 2.0*a ); 
print('r2 = ', (-b - discr) / 2.0*a ); 

print('Complex roots'); 
re_part := -b/2.0* a; 
im_part := sqrt(4.0*a*c - b**2) / 2.0*a; 
print('rl = ', re_part, '+i', im_part); 
print('rl = ', re_part, '-i', im_part); 

END IF b**2; 

IF b /= 0 THEN 
print('Single root: ', -c/b); 
print('degenerate equation: a= b = 0'); 

END IF b /= O; 
END IF a/= 0; 

3.1.2 Omitting the ELSE branch£.! an ..U:. statement. 

Sometimes we want to perform a series of actions when a certain condition is 
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met, but to do nothing if it isn't. 
ELSE branch of an IF statement, as 
ex amp le: 

In this case it is possible to omit the 
illustrated in the following simple 

IF token NOTIN keywords THEN 
print('Unrecognized operator: ', token); 

END IF; 

If the condition is true, the statement(s) following the THEN are executed; 
if the condition is false, the IF statement does nothing. 

3.1.3 The null statement. 

For reasons of readability, it is often advisable to indicate both branches 
of an IF statement, even if one of them is to do nothing. A -do nothing­
statement is provided for this purpose. It is written thus: 

pass; 

and causes no computation at all. 
example as follows: 

IF token notin keywords THEN 

This allows us 

print{'Unrecognized operator: ', token); 
ELSE pass; 
END IF; 
This can also be expressed as: 
IF token in keywords THEN 

pass; 
ELSE 

print{'Unrecognized operator:', token); 
END IF; 

3.1.4 Multiple alternatives 1.£ an IF statement. 

to write the previous 

We often encounter the following programming situation: when the condition 
of an IF statement is false, we immediately perform another test to choose 
among another pair of alternatives, and so on. This can be expressed by 
means of nested IFs, but can be more clearly stated by 'continuing' the IF 
statement by means of a special construct to designate subsequent 
alternatives. In SETL, this is done using ELSEIFs, as shown in the 
following example: 

IF month= 'February' THEN 
IF year mod 4 = 0 and year mod 200 /= 0 THEN 

days := 29; 
ELSE 

days := 28; 
END IF year; 

ELSEIF month in {'september','April' ,'June' ,'November'} THEN 
days := 30; 

ELSE 
days:= 31; 

END IF; 
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Here, three alternatives are being examined: whether month is February, or 
is one of the 3O-day months, or is one of the remaining months. Any number 
of alternatives can appear in this more general IF construct, whose syntax 
is: 

IF condition THEN 
group .£.i statements 

ELSEIF condition THEN 
group .£.i statements 

ELSEIF ••• 

ELSE 
group .£.i statements 

END optional tokens 

·_statement 

seif" 

Fig 3.1: IF_Statement syntax diagrams 

Note the important syntactic point: 

ELSE 

- ELSEIF is a single word, and it indicates an alternate 
current IF statement. 

test within the 

- ELSE IF, on the other hand, indicates that within the ELSE branch of 
the current IF statement, a nested IF statement is present, which will need 
its own closing END. Be warned: if you use ELSE IF when ELSEIF should be 
used, syntax errors, namely 'missing END' messages, will result. 

3.1.S An important note on indentation and programming style. 

The physical layout of a SETL program on a printed page (or the screen) is 
of no concern to the SETL compiler. As long as the syntax of the language 
is obeyed, the user is free to write successive SETL statements with 
bizarrely varying indentation, to place several statements on the same line 
of text, etc. For the human reader, on the other hand, a good choice of 
program layout can make all the difference between clarity and hopeless 
muddle. This is particularly true when a program needs to to be read and 
understood by several programmers. Proper indentation should reflect 
program structure in such as way as to serve as an additional implicit 
documentation on the intent of a program. In th~s connection, the following 
maxim should be kept in mind: PROGRAMMING IS A SOCIAL ACTIVITY. If the 
programs you write are of any interest, there is a high likelihood that 
somebody else will want to examine them, so as to extend, modify or simply 
to understand their workings. (Often enough, this somebody else may be 
yourself, going back to a program written months before, trying to recapture 
the thought processes that led you to various programming decisions). In 
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other words, a program must be seen as a tool for communication, not only 
from programmer to computer, but also among programmers. From this 
perspective, it is easy to see that good indentation and program layout, 
helpful choice of variable names, and ample and carefully considered 
documentation, are the hallmarks which distinguish the professional 
programmer's work from that of the amateur. 

In the case of IF statements, it is natural to regard the group of 
statements in each branch of the IF as subordinate to the the condition 
which introduces them. This is clearly reflected in the text if we INDENT 
the statements in each branch, with respect to the IF and ELSE keywords, as 
was done in the examples above. An additionai rule to follow is to place 
the ELSE in a line by itself, unless the corresponding branch reduces to a 
single short statement (for example: pass; ). The examples in this text 
follow these rules, as well as other ones which we will mention in 
connection with other control structures. As is usually the case for rules 
of style, these should only be regarded as guidelines and suggestions, to be 
tempered by individual taste. We cannot emphasize enough, however, the need 
for SOME consistent choice for indentation and paragraphing in the 
preparation of programs. 

3.1.6 The IF expression. 

An IF statement often is used to assign one of several values 
given variable. For example, one may write: 

IF a> b then maxab := a; ELSE maxab := b; END IF; 

to a 

When this is all that is wanted, the IF expression (also called 
conditional expression) provides a clearer way of achieving the same intent. 
An IF expression is an expression whose syntax is similar to that of the IF 
statement, and which denotes a value which depends on the outcome of a test 
(or tests). The general syntax of an IF expression is: 

(1) IF testl THEN exprl ELSEIF test2 THEN expr2 •••• ELSE exprn END 

Fig 3.2: Syntax of the IF expression. 

This construct may be used in any position where an expression of any other 
kind would be acceptable. For example the IF statement (1) can be written 
as: 

(2) maxab := IF a> b THEN a ELSE b END; 

The following are also valid examples of IF expressions: 
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PRINT ( IF filler= ,, THEN '***' ELSE filler+'*' END); 
PRINT ((IF filler=,, THEN'**' ELSE filler END)+'*' ); 
distance :=distance+ (IF edge• OM THEN 0 

ELSE length(edge) END); 
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The following syntactic details of the IF-expression should be noted: 

a)In an IF expression, an ELSE part must always be present 
that the expression has a value in all cases). 

(to. insure 

b) the terminator of an IF expression must be a simple END, not END IF 
or END IF with extra tokens. c) There is no semicolon preceding the 
keywords ELSEIF and ELSE in an IF-expression. This is because these 
keywords are preceded by expressions. In contrast, these same keywords are 
preceded by semicolons in an IF-statement, because in that case a semicolon 
terminates the statement previous to the keyword. 

IF expressions can be nested, as the following rewriting of our· 'days 
in the month' example shows: 

days := IF month= 'February' THEN 

(IF year mod 4 = 0 and year mod 200 /= 0 THEN 29 

ELSE 28 END) 

ELSEIF month in {'September','April','June','November'} 

THEN 30 

ELSE 31 END; 
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3.2 The CASE statement. 

The CASE statement is a generalization of the IF statement. Whereas 
the IF statement controls the flow of execution of a program by choosing 
among two alternatives, the CASE statement allows us to choose among any 
number of alternative paths of exe~ution. The CASE statement is available 
in two forms. Of these, the first and most general is: 

Fig J.J: 

CASE OF 
(testl): blockl 
(test2): block2 
(test3): block3 

•• 
(testn): blockn 
ELSE blocke 
END; $ Or END CASE; 

CASE-OF statement syntax diagrams 

Each of blockl, block2 •• and blocke must be a sequence of one or more 
statements. Each of the expressions testl,test2.. must be a boolean 
expression. Execution of this form of the CASE statement proceeds as 
follows: 

a) The expressions testl, test2 •• are evaluated. If one of them, say testi, 
yields TRUE, then the corresponding block. i.e. blocki, is executed, and 
then execution proceeds to the first statement that follows the CASE 
statement. If several of the expressions testl,test2 •• evaluate to TRUE, 
then any one of them is chosen and the corresponding block executed. The 
CASE statement thus differs from a similar sequence of IF and ELSEIF 
statements, where the tests are made in sequence. b) If none of the tests 
evaluates to TRUE, then blocke, which follows the ELSE clause of the 
statement, is executed. This ELSE clause is optional. If the ELSE clause 
is absent, and none of the tests in the CASE statement evaluates to TRUE, 
the CASE statement is simply bypassed, and execution continues with the 
first statement that follows it. 

It is possible to attach more than one test to a given branch of the 
CASE by writing: 

(testl,test2 ••• testJ): blockn 

In this case, blockn is a candidate for being executed if any one of the 
tests testl,test2 •• yields TRUE. 
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As a first example of the use of a CASE statement, the following SETL 
fragment calculates the volume of various geometric figures: 

CASE OF 
(figure= 'CUBE'): 

volume:= side** 3; 
(figure= 'SPHERE'): 

volume:= (4/3) *PI* radius** 3; 
(figure= 'CYLINDER'): 

volume:= PI* radius** 2 * height; 
ELSE 

print('Sorry, I don''t recognize this figure'); 
volume:= O; 

END CASE; 

As this example shows, it is quite common for the tests in a CASE statement 
simply to test a particular variable or expression for equality with a 
series of constants ■ The following second form of the CASE statement 
simplifies the writing of CASE statement of this kind: 

CASE expr OF 
(constantl): blockl 
(constant2): block2 

(constantn): blockn 
ELSE blocke 
END; $ OR more generally END CASE tokens; 

c_ex_st~tement 

CASE CASE ••• 

elsec --' ( ELSE}i struts j ....... l_ 
Fig 3.4: CASE-EXPN-OF statement syntax diagram 

The expression in the header is evaluated (once) to give a test value. If 
the evaluation yields one of the constants prefixed to a branch of the case, 
say constanti, then the associated block blocki is executed. The ELSE block 
is executed if the value of -expr- does not appear as the prefix of any 
branch of the CASE statement. The ELSE block can be omitted if no action is 
to be taken when this happens. As in the first CASE statement form, 
multiple tests can be attached to one branch by writing: 

(constantl,constant2 •• constantn): block 
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If this is done, the block will be executed if the value of the expression 
in the CASE header equals any of the values constantl •• constantn. 

3.2.1 The CASE expression 
One will sometimes want to use a CASE construct simply to assign one of 
several alternative values to a variable. This can be done with a CASE 
statement, for example: 

CASE day of 
(Sunday): discount:= 0.6; 
(Saturday): discount:= 0.4; 
(Monday,Tuesday,Wednesday,Thursday,Friday): 

discount:= O.O; 
END CASE; 

In this example, the purpose of the CASE Statement is simply to assign an 
appropriate value to the the variable -discount-. The CASE expression 
allows this kind of thing to be written in a way that makes their purpose 
clearer. A CASE expression can appear wherever an expression can appear. 
Its svqtax can be that described by either of the following syntax diagrams: 
case_or_exPr 

CASE 

Evaluation of a CASE expression closely resembles that of the CASE 
statement. The execution of a CASE expression of the form (1) proceeds as 
follows: a) The expression following the CASE keyword is evaluated, 
yielding some value v. b) If V equals the value of one the constants that 
mark each branch of the CASE expression, then the value of the expression 
tagged by that constant is the value of the CASE expression. c) If none of 
the constants equal V, then the value of the expression that follows the 
keyword ELSE is the value of the CASE expression. Using this construct, the 
preceding example can be rewritten as follows: 

discount := CASE day of 
(Sunday): 
(Saturday): 

ELSE O.O 
END; 

0.6, 
0.4 

Note that a comma is used to separate successive alternatives of the CASE 
expression, and that no comma appears before the ELSE keyword. 

The second form of the CASE statement has no ruling expression, and 
each case is marked by a list of expressions,each of which must yield a 
boolean value. The value of CASE expression is the value of the expression 
tagged by a value of TRUE. 
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3.3 Loops. 

There are several ways of constructing programs out of elementary 
statements. In Sec.3.1 we examined one of them: the IF statement, also 
called the alternation or conditional statement. We now turn our attention 
to iteration, or looping. 

Almost every program involves some iteration. Whenever we need to deal 
with aggregates of data (all the books in a catalog, all the students in a 
class, all the prime numbers less than 1000, etc.) we are apt to specify 
some computation that is to be performed repeatedly. For example, we may 
want to do the following: 

a) List all the members of a set (For example, all the students 
registered in a given course). 

b) Modify each component of a tuple. (For example, discount all 
entries in a price list by 10 %). 

c) Modify selected members of a tuple, for example raise the tax 
charged to every Texas resident appearing in a tuple by 6%, 
while leaving unchanged the taxes payed by residents of other 
states. 

We may even want to perform an action repeatedly when no data aggregates are 
involved. For example: 

d) Perform a series of actions a stated number of times. (E.g., 
print the string-*-*-*-*-*-*- 10 times). 

e) Perform a series of actions as long a a certain condition is 
true. (E.g. to estimate the logarithm (base 2) of a 
number, we can divide it repeatedly by two as long as the result is 
greater than one, and count the number of times the division is 
per formed). 

f) Perform a series of actions until some condition is met. 
E.g. read input data until an End-of-file is detected. 

The first three types of looping are expressed in SETL by 
tuple iterators. Iterations of type d) are expressed 
iterators. Types e) and f) correspond to WHILE and 
respectively. As we will see subsequently, SETL allows us 
these ways of expressing a repeated calculation into a very 
construct. 

using set and 
using numeric 

UNTIL loops 
to combine all 
general Loop 

We now start our review of these various loop constructs, beginning 
with the simplest and most 'natural' ones: the set and tuple iterators. We 
have already encountered various iterator forms when we discussed tuple and 
set formers. We will now examine them in greater detail. 

3.3.1 Set iterators. 

The set iterator is used to specify that a certain 
performed for each of the elements in a given set. 
reads as follows: 

LOOP for x in S DO 
list of statements --- --

(1) 

calculation is to be 
In its simplest form, it 



CONTROL STRUCTURES Page 3-12 

end optional token; 

The keywords LOOP and DO can be replaced by left and right parentheses, 
respectively, and we will often write our iteration loops using this shorter 
form: 

(FOR x INS) list of statements END tokens; 

The meaning of (1) is as follows: 

a) Obtain the elements of set Sin succession. 
b) Perform the list£!. statements once for each element of s. 
c) During successive iterations of the loop, assign the value of successive 

elements of S to variable x. 

For example, suppose that Sis the set: 

{'Springfield', 'Albany', 'Sacramento', 'Boston'} 
Then the loop: 

(FOR city INS) 
print(city, ' is a state capital.'); 

END; 
will produce the following output: 
Springfield is a state capital. 
Albany is a state capital. 
Sacramento is a state capital. 
Boston is a state capital. 

The variable x in the construct 'x in S' is called the bound variable 
of the iterator, or simply the iteration variable, or loop variable. As you 
can see from the example above, its name is arbitrary. We chose to call it 
'city' in this case but we could have called it 'c', or 'capital_city', or 
whatever, i.e. exactly the same output would have been obtained with the 
loop: 

(FOR c in S) print(c, 'is a state capital.'); END; 

Each time the list of statements (also called the loop body) is 
executed, the bound variable is assigned the value of another element of s. 
The loop body is executed exactly as many times as there are elements in s. 
When all elements of Shave been dealt with, the program moves on to execute 
the statements that follow the end of the loop. 

Consider the following example: 

Fibl3:= {1,1,2,3,5,8,13,21,34,55,89,144,233}; 
count:= O; 
(FOR NIN Fibl3) 

IF N MOD 3 = 0 THEN 
PRINT(N, ' is a multiple of 3'); 
count:= count+ 1; 

END IF; 
END; 
PRINT('There are', count, 'multiples of 3 in Fibl3'); 
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The purpose of this short code fragment is to list the multiples of 3 
that appear in the set Fibl3 (which happens to be the set of the first 
thirteen so called 'Fibonacci' numbers). Each element of Fibl3 is tested 
for divisibility by 3, and printed if the test succeeds. A count is kept of 
the multiples of 3 that we encounter, and this count is printed at the end. 
The output of this program is: 

3. is a multiple of 3 
144 is a multiple of 3 
21 is a multiple of 3 
There are 3 multiples of 3 in Fibl3 

You may be surprised by the order in which the.numbers 3, 144 and 21 appear 
in the output. Why are they not listed in the same order as in the set 
Fibl3 ? The reason is of course that sets have no particular ordering, and 
when we iterate over a set, we don't know in what the order its various 
elements will be obtained. All we know is that we will obtain all of them, 
in some order, and that is all that matters. (When order matters, we must 
use tuples instead of sets. More about this below). 

The bound variable that appears in a set iterator receives its. values 
from successive elements of the set over which we iterate. When the 
iteration is complete, that is to say when all elements of the set have been 
assigned to the loop variable, the loop variable gets the value OM. The 
following loop: 

(FOR number IN {1,3,10} + {15,30}) 
print('number is: ', number); 

END; 

print, 
print('Now number is: ', number); 

produces the output: 
number is: 3 
number is: 1 
number is: 15 
number is: 10 
number is: 30 

Now number is* 

Note two things in this example: 

a) We can iterate over any expression whose value is a set. (I.e. 
the expression does not have to be a simple variable). 

b) OM, the undefined value, is printed as an asterisk ('*'). 

c) The command 

print; 

by itself, i.e. without any arguments, prints a blank line. 

The reason for calling the loop variable a BOUND variable should be clear: 

- ---- , ____ ------------ ----------------------------
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the values taken by the loop variable are controlled by the iteration 
mechanism; the programmer cannot modify this sequence of values by means of 
assignment statements within the body of the loop. 

Assignments to the loop variable within the body of the loop are not 
explicitly forbidden by SETL, but should be avoided on stylistic grounds. 
Note that such assigments have no disastrous consequences; they simply do 
not affect the course of the iteration. Consider the following fragment: 

(FOR x IN {l,2,3}) 
print('x = ', x); 
x:= x + l; 
print('after increment, x = ', x); 

END FOR; 

The output of this fragment will be something like: 

X = 3 
after increment, X = 4 
X = 2 
after increment, X - 3 
X - l 
after increment, X = 2 

Note that the valu~s received by the loop variable during this iteration are 
3,2,1, regardless of the extra assignments toxin the loop body. 

3.3.1.2 Conditional set iterators. 

Consider the following problem: the holdings of a library are described by 
means of a set CATALOG and a series of maps: AUTHOR, SUBJECT, and so on. 
We want to list those books in the catalog whose subject is calculus. This 
can be achieved by means of the program fragment: 

(FOR book IN CATALOG) 
IF SUBJECT(book) = 'calculus' THEN 

print(book); 
END IF; 

END FOR; 

The same effect is achieved by the following code: 
(FOR book IN CATALOG I SUBJECT(book) = 'calculus') 

print(book); 
END FOR; 

The vertical bar: 'I', already-introduced in sec. 2.xxx, is read 
'such that', so that the last iterator can be expressed in English as 
follows: 'iterate over the elements of CATALOG which are such that their 
subject is "calculus"'• In other words, the 'such that' construct appearing 
in a conditional iterator allows us to specify an iteration over a specified 
SUBSET of a given set. 
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The general form of the conditional iterator is the following: 

(FOR~ IN set expression I boolean condition) 
list tl statements 

END optional tokens; 

,i.-Ple_i terator 

lhs 

lhs 

Fig 3.6: Simple iterator syntax diagrams 

In this construct, boolean condition designates any predicate expression 
i.e. any expression that yields either TRUE or FALSE as its value. The 
meaning of this construct can be stated as follows: 

a) Iterate over the elements of set expression, 
successive values of these elements to name. 

and assign the 

b) After each of these assignments, evaluate the boolean condition. If 
the condition yields TRUE, perform the list£.! statements. Otherwise, skip 
directly to the next value of set expression. 

Typically the iteration variable will appear in the boolean condition. 
is shown in our previous example. 

This 

However it is possible, though inelegant, to write a conditional 
iteration whose boolean condition does not depend on the iteration variable. 
For example: 

(FOR X IN s I TRUE) 
is equivalent to: 

(FOR x INS) 

because the boolean condition is -true- for all elements of S. 

The following iteration is less artificial than the preceeding example: 

------- -----·-- -- -- ---------------
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(FOR x INS flag) ( 2) 

where -flag- is some boolean variable. It selects the elements of S 
according to the current setting of -flag-. This variable may be set 
elsewhere in the program, perhaps in the body of the iteration loop. 
However, the intent of (2) is expressed more clearly by the equivalent code: 

(FOR x INS) 
IF flag THEN •••• 

which should be preferred to (2) on stylistic grounds. 

3.3.2 Tuple iterators, first form. 

Iterations over tuples can be 
iteration over sets. That is, 

described in exactly the 
they can be given the form: 

(FOR~ IN expression I boolean condition) 
~ -2.f statements 

END optional tokens; 

same manner as 

If expression is a set expression, the loop is a set iteration. If 
expression yields a tuple, it is a tuple iteration. One significant 
difference between set and tuple iterators is that for the latter we know 
the order in which the components of the tuple will be examined by the 
iteration. Namely, they are produced in order of increasing index. For 
ex amp le 

width := [1,3,5,7,9,2,2]; 
(FOR w IN width) print( w * '*' ) ; END; 

always produces the ouput: 

* 
*** 
***** 
******* 
********* 
** 
** 

In this example, the iteration variable w takes on the values of the 
components of the tuple -width-, exactly in the order in which they occur: 
first 1,3,5,7,9, and finally 2,2. (Question: what would the picture look 
like if we had defined width as {1,3,5,7,9,2,2} ? ) 

If a boolean condition is present, the tuple iterator obeys the same 
rule as the set iterator: the body of the loop is executed only for those 
tuple components for which the condition yields true. 

3.3.3 String iterators, first form. 

An iteration over a character string is specified in exactly the same manner 
as an iteration over a tuple. The following example illustrates this. 
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no vowels . - , , . . - . 
(FOR c IN 'antidisestablishmentarianism' c NOTIN 'aeiou') 

no vowels+:= c; 
END FOR c; 
print(no_vowels); 

The output of this loop is the string: 'ntdsstblshmntrnsm' 

Page 3-17 

The action of a string iterator is very similar to that of a tuple iterator: 
successive components (in this case characters) are assigned to the loop 
variable, and the body of the loop is executed for those values of the loop 
variable that satisfy the stated boolean condition. The characters are 
iterated over in the order in which they appear in the string, from left to 
right. 

3.3.4 Numerical Iterators. 

An iterative computation is often expressed as follows: 'Repeat the 
following calculation N times ' Here the iterative process does not depend 
on a data aggregate, such as a set or a tuple, but rather depends on an 
integer, namely the value of N. Such iterations are in fact the type of 
iterative construct most commonly supported by other programming languages. 
In SETL, this type of iteration is expressed by a simple variant of the 
tuple iterator: performing a computation C repeatedly N times is equivalent 
to performing C once for each one of the integers in the range: 1,2,3 •• up 
to N. This range of values is expressed in SETL by means of the expression: 

[ 1. • N] 

and thus the repeated computation of C is expressed as follows: 

(FOR i IN [l. .N] ) 
C; 

END; 

The construct [l •• N] looks like a tuple former, and indeed in contexts where 
a tuple is permissible, it is a valid tuple expression, as we saw in our 
discussion of tuple formers (2.7). But in an iteration this construct 
designates the range of values taken on by the loop variable in the course 
of the iteration. Note that an iteration variable appears here, just as it 
did in set and tuple iterations. This variable takes on the values 
specified by the range construct, in the order indicated, that is to say 
from 1 up to Nin steps of 1. 

Because of the importance of numeric iterators in 
provides a still more general form to describe them. 
explain this more general numerical iterator form. 

3.3.4.2 The general form£! the numerical iterator. 

programming, SETL 
We now proceed to 

Any numerical iterator defines the sequence of integer values to be taken on 
by the iteration variable of a loop. The simple iterator form given above 
specifies the beginning (or lower bound) of the iteration to be performed as 
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1, and the end (or upper bound) as N. The step between successive values of 
the sequence iterated over is 1. In a more general numerical iterator, 
these three quantities: lower bound, upper bound and step, can be specified 
by means of expressions. To do so use the following construct: 

[first, second •• last] 

where first, second and last are integer-valued expressions. For example 

[l,3 •• 9] 
[2,5 •• 17] 

specifies the sequence 1,3,5,7,9 
specifies the sequence 2,5,8,11,14,17 

As these examples indicate, 
follows: 

the sequence iterated over is calculated as 

a) The lower bound is the first expression in the iterator. 
b) The step between successive elements is the difference between the 

second expression and the first. If the second expression is missing, 
then, as in the examples of Section 3.3.4 then the step is understood 
to be 1. 

c) Successive elements of the sequence are produced by repeatedly 
adding the value of the step, until we reach the value of the 
last expression. 

This description immediately raises three questions: 

1) What happens- if the step is negative? 
ii) What happens is the upper bound is not in the generated sequence? 
iii) What happens if the step is zero? 

The answer to 1) is what you would intuitively expect, namely: if the step 
is negative, then the elements of the sequence are produced in decreasing 
order. In that case, the third expression must be smaller that the first. 
For example, the iterator: 

[10,8 •• 0] specifies the sequence 10,8,6,4,2,0 

because the step is 8 - 10 = -2. 

This form of the iterator is often used when the elements of a tuple 
must be processed in reverse order. For example, suppose that the elements -
of tuple Tare numbers sorted in increasing order, and we want to list them 
in decreasing order, starting from the largest. The following loop will 
accomplish this: 

(for i in [#T, #T-1 •• 1]) 
print(T(i)); 

end; 

In this example, the 
expression UT; the 
the index of the last 
conclude that the 
over is 1. 

first element of the sequence is given by the 
first value of the iteration variable -i- is therefore 
element of T. The next value is #T-1, from which we 

step for this sequence is -1. The last value iterated 



CONTROL STRUCTURES Page 3-19 

Next consider the second question raised above, namely: what if the 
final value appearing in the construct [first,second •• last] is not in the 
generated sequence ? For example, what is the sequence generated by the 
following iterators: 

and 
[1,3 •• 10] 

[15,10 •• 1] 

The answer to this question is determined by the following rule: a sequence 
iterated over is generated by successive additions of the step to the first 
element ■ If the sequence is increasing (i.e. if the step is positive) we 
generate all numbers in the sequence which are smaller than or equal to the 
last element. If the sequence is decreasing, we generate all the numbers 
that are larger than or equal to the last element. Thus, for example, 

[1,3 •• 10] 
[15,10 •• 1) 

specifies the sequence 1,3,5,7,9 
specifies the sequence 15,10,5 

What about [1,3 •• 1]? According to the rule just stated, we start with 
1. The step is 2. The next value in the sequence would be 3, but that is 
already greater than the stated upper bound of 1. Thus this iterator 
generates a singleton sequence, whose only element is 1. This leaves one 
final question: what is the meaning of the iterator if the step of the 
sequence is zero ? In that case, the convention used by SETL is that the 
iteration is empty, i,e. iterates over no values at all. A loop whose 
iterator has a step of zero is simply not executed. The following are 
examples of empty loops: 

(FOR I IN [1,1..1000)) 
PRINT('This message will never be seen'); 

END; 

(FOR x IN{}) 
PRINT('Nor will this one, because{} has no elements'); 

END; 

(FOR i IN []) 
PRINT('Need we say more?'); 

END; 

The previous rule also answers another lingering question: what is the 
value of the loop variable on exit from a numerical loop ? We saw that in 
the case of set and tuple iterators, the loop variable became undefined on 
exit from the loop. In the case of numeric iterators, the value of the loop 
variable on exit is the first value in the sequence: 

first, first + step, first + 2*step •• 

which lies outside of the specified range. If the step is positive, this 
means the first value of that sequence which is larger than the stated 
bound; if the step is negative, it is the first value which is smaller than 
the bound. 
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The preceding remarks apply (as you may have gessed) to the set- and 
tuple former constructs which build sequences of integers. In fact the 
iterators that we have been describing function in the same way in both 
contexts: when controlling loops with statement blocks, and when they 
control the construction of a composite object. This symmetry should be 
even clearer from the following code fragments, both of which build a tuple 
T by means of a numerical iterator: 

(1) T := [first, second •• last]; 

(2) T := []; 

(FOR x in [first,second •• last]) T with:= x; END; 

The action of the numerical iterator' FOR i in [expl, exp2 •• exp3]' can 
also be defined by the following 'low-level' code which uses labels and GOTO 
statements. (The intent of the GOTO statement, which is described fully in 
Sec.3.4, is to indicate the next statement in the program that should be 
executed following the execution of the GOTO itself). 

:= expl; start 
step 
bound 

:= exp2 - expl; 
: = exp 3; 

IF step= 0 then GOTO quit_loop; END IF; 
i := start; 

test_loop 
IF (step> 0 and i > bound) OR 

(step< 0 and i < bound) THEN 
GOTO quit_loop; 

END IF; . . . . . 
i +:= step; 
GOTO test_loop; 

quit_loop : 
. . . . . 

$ Body of loop • 

$ Statements following the loop. 

3.3.S Additional 1£.£.E_ control statements: CONTINUE and QUIT. 

The CONTINUE and QUIT statements increase the syntactive 
SETL's loop constructs. Their syntax is simply: 

flexibility of 

CONTINUE optional 1£.£.E. tokens; 

QUIT optional~ tokens; 

In both cases, the optional ~ tokens define the loop to which 
intended action (continue the iteration, or quit altogether) refers. 
actions caused by CONTINUE and QUIT are as follows. 

the 
The 
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a) When a CONTINUE statement is 
execution of the rest of the body is 
the next value of the loop variable. 

executed in the body of a loop, 
skipped, and the iteration proceeds to 
Thus, the loop: 

(FOR x INS I C(x)) 
some statements ••• 

END; 

can be expressed as follows: 

(FOR x INS) 

END; 

IF C(x) THEN 
some statements •• 

ELSE CONTINUE; 
END IF; 

b) Execution of a QUIT statement terminates the execution of a loop, and 
causes execution to continue from the first statement following the end of 
that loop. For example, consider the following fragment: 

sum:= O; 
(FOR x IN [1..100]) 

sum:= sum+ x; 
IF sum> 10 THEN QUIT; END; 

END; 
print(sum); 

This code fragment adds the integers in the range 1 •• 100 until the sum 
is greater than 10. After 5 iterations through the loop, sum is 1+2+3+4+5 = 
15, and at that point the QUIT statement is executed. The value printed is 
15, and the 95 iterations that remain are simply not executed. 

The CONTINUE statement might be typically used in a search loop, when 
an object x satisfying a property C(x) is to be found in some data aggregate 
S, and then processed in some way. When so used, the body of the loop is 
code that tests each element of S for the property c. It may be the case 
that we can determine that a given element y of S does not have the property 
C, even before completing the execution of the loop body. In that case, the 
CONTINUE statement allows us to avoid processing it, and proceed to the next 
element of S. We will see an example of such use below. 

Like the CONTINUE statement, QUIT also appears typically in search 
loops. However, whereas CONTINUE usually bypasses unsuccessful cases, QUIT 
is used to signal that there is no need to continue with the iteration, 
either because the search has been successful, or because it has become 
clear that the search will in fact be unsuccessful even _if the remaining 
elements are examined. In what follows we will see examples of both uses of 
QUIT. 

c) When they are written without additional tokens, the CONTINUE and 
QUIT statements always refer to the innermost loop within which they appear. 
They also have an extended form, for example 
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(4) CONTINUE FOR x INS; 

which can be used to indicate which of the several nested loops within which 
a CONTINUE (or QUIT) statement like (4) appears, is to be CONTINUED ■ In 
this example, the loop meant is the innermost loop whose iterator starts 
with the tokens: 

(FOR x INS ••• 

The same applies to sequences of tokens following a QUIT statement ■ 

To illustrate the use of these statements let us return to the problem 
of producing a table of prime numbers. This time, we will write our program 
as a series of loops. Moreover, we will start with a simple solution to the 
problem, and improve this initial solution in order to develop more and more 
efficient versions of it. Our initial solution simply restates the 
definition of prime number: it is a number that has no factors except 1 and 
itself. In order to determine whether N is prime, we divide N by all 
numbers smaller than itself. If any of these divisions turns out to have no 
remainder, N is not prime, and we do not need to continue examining other 
divisors. If no division is exact, N is prime. Our first version reads as 
follows: 

PROGRAM primesl; 

$ The desired range. N := 1000; 
primes:=[]; $ Sequence to be constructed ■ 

(FOR num IN [2 •• N]) $ Examine all numbers in the range 

(FOR factor IN [2 •• num-1]) $ Range of its possible divisors 
if num MOD factor= 0 then 

$ num has an exact divisor. Skip it. 
CONTINUE FOR num; 

end if; 
END FOR; 

$ If we reach this point, num is a prime. 
primes with:= num; 

END FOR; 
print('Primes in the range 1 to ',N, ' '); 
print(primes); 

end PROGRAM; 

This simple program involves many redundant calculations, 
proceed to discover and remove. 

which we will 

First, note that an even number (with the exception of 2) cannot be a 
prime number. There is therefore no need to iterate over all numbers in the 
range [2 •• N]. It is sufficient to consider only the odd numbers in that 
range. By the same token, these numbers can only have odd divisors. The 
outer loop should therefore have the range: 
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(FOR num in [3,5 •• N]) 

and the inner one 

(FOR factor in [3,S •• num-1]) 

This modification of the initial program makes it four times faster (only 
half as many operations are performed during each of the two nested levels 
of iteration.) 

Next, note that to determine whether -num- is prime, we do not need to 
examine all its possible divisors: it is sufficient to examine its possible 
prime divisors, i.e. all prime numbers smaller than it. If we modify the 
inner iterator accordingly, we obtain the following program: 

$ The range. 

PROGRAM primes2; 

N := 1000; 
primes := [2]; $ The first prime. 

(FOR num IN [3,5 •• N]) 
(FOR factor IN primes) 

IF num MOD factor= 0 then 
CONTINUE FOR num; 

END IF; 
END FOR; 
primes with:= num; 

END FOR; 

print('primes in the range 1 to', N, ': '); 
print(primes); 

END; 

Out next improvement generalizes the observation that allowed us to 
eliminate all even numbers from consideration: whenever we find a new prime 
P, we can calculate all the multiples of Pin the range 1 •• N and mark them 
'not primes' so that we do not have to examine them for primality later on. 
The easiest way of acomplishing this is to keep a set of candidate numbers, 
from which we remove the multiples of each prime we find. This leads us to 
an improved program which reads as follows: 

PROGRAM primes3; 

N := 1000; 
primes := [2]; 
candidates := {3,S •• N}; $ At first, all odd numbers. 

(FOR num in [3,5 •• N] I num IN candidates) 
(FOR factor IN primes) 

IF num MOD factor= 0 then 
CONTINUE FOR num; 

END IF; 

----------- --~--- --- ---------~ 
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END FOR; 

primes with:= num; 
$ Now delete all multiples of nu~ from the set of candidates 
(FOR multiple in [num, 2*num •• n]) 

candidates less:• multiple; 
END FOR; 

END FOR num; 
print('Primes in the range 1 to', N, ': '); 
print(primes); 

END PROGRAM; 

This suggests yet another substantial improvement to our program. We 
notice that whenever we examine -num- for primality, we will have already 

-deleted from (-candidates-) all multiples of prime numbers smaller then 
-num-. Therefore, -num- is not a multiple of any of them, and it definitely 
ll the next prime. In other words, whenever we reach a number in the range 
1 •• N which is still in the set of candidates, we know that that number is 
definitely prime, and the loop to find a factor for it is unnecessary. Our 
program now reduces to the following procedure known as the Sieve of 
Erastosthenes: 

PROGRAM primes4; 

N := 1000; 
primes:= [2]; 
candidates := {3,5 •• N}; $ At first, all odd numbers. 

(FOR num in [3,5 •• NJ num IN candidates) 

primes with:= num; 
$ Now delete all multiples of num from the set of candidates 

(FOR multiple in [num, 2*num •• n]) 
candidates less:• multiple; 

END FOR; 

END FOR num; 

print('Primes in the range 1 to', N, ': '); 
print(primes); 

END PROGRAM; 

Several small additional improvement to prime4 can still be made. Let 
us mention the following simple one: the set -candidates- may become empty 
before the outer iteration is completed, in which case all subsequent 
evaluations of the predicate: -num IN candidates- will fail. We can bypass 
these final useless iterations by adding the following statement immediately 
after the loop that eliminates multiples of the latest prime found: 
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IF candidates={} then QUIT; END IF; 

When a loop is exited by means of a QUIT statement, rather than after 
completion of its iteration, then the loop variable retains the value it had 
just before execution of the QUIT statement. This makes it possible to tell 
outside of the loop what was the last value of the domain of iteration that 
was examined. For example, in order to tell whether our last modification 
to primes4 was particularly useful, we could add the following statement on 
exit from the outer loop: 

print('Last number examined: ', num); 

In this case it turns out that 997 is a prime, ·so that testing to determine 
whether (candidates={}) saves us only one check in the iterator. 

3.3.6 Map iterators. 

We have emphasized repeatedly that maps are sets. 
over all the elements p of a map f we can simply write 

Hence to iterate 

( FOR p IN f) ••• 

In this iteration, the bound variable pis assigned successive elements of 
f, that is to say ordered pairs. If within the body of such a loop we 
wanted to refer to successive elements in the domain off, we could 'unpack' 
p by writing: 

(FOR p IN f) 

. . . . 
X := p(l); 
y := p(2); 

$xis in the domain off 
$ y is the corresponding point 
$ in the range • 

This same unpacking effect could also be obtained by placing a tuple 
assignment of the form: 

[x,y] := p; 

(See Sec.2.8) at the start of the body of the iteration or by changing the 
iteration header itself to read 

(FOR [x,y] IN f) 

Because of the importance of this type of iteration a still more elegant, 
map-like alternative notation is provided for it, namely 

(5) (FOR y = f(x)) 

This form of iterator is called a map iterator. Note that both the 
variables x and y are bound by this iterator: x receives successive values 
taken from the domain of f, while simultaneously y is set to the 
corresponding range value f(x). 
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For example, suppose that f is the following map: 

{ ['New York', 'Albany'], ['California', 'Sacramento'], 
['Massachusetts', 'Boston'], ['Illinois',. 'Springfield'], 
['North Dakota', 'Fargo'], ['Idaho', 'Boise'] } 

and that mid west is the set: 

{'Kansas', 'llinois', 'South Dakota', 'North Dakota', 'Michigan', 
'Iowa', Nebraska'} 

then the following loop: 

(FOR capital= f(state) state NOTIN mid_west) 
print('the capital of', state, 'is', 'capital'); 

END FOR; 

will have the output: 

The capital of New York is Albany 
The capital of Cai fornia is Sacramento 
The capital of Idaho is Boise 
The capital of Massachussetts is Boston 

The syntax appearing in (5) can also be used for tuple iterators. 
tuple, then the iterator 

(FOR comp= T(i)) 

If T is a 

assigns the integer values 1,2 •• #T to -i-, and simultaneously assigns the 
values of the corresponding components of T to -comp-. The advantage of 
this form over the simple tuple iterator is that it makes the index of each 
component available at the same time as the component. (The use of a syntax 
like that of map iterators for tuple iterators once again underlines the 
logical similarity between tuples and maps: tuples are very similar to maps 
whose domain is a set of integers.) 

The iterator (5) can only be used for single valued maps, and the 
system will generate a run-time error if we attempt to use it on a 
multivalued map. To iterate over a multivalued map, the following form is 
provided: 

(FOR s = f{x}) ( 6) 

Like (5), this construct, sometimes called a multivalued map iterator, 
controls both the values of x ands. The variable x receives successive 
values from the domain of f, ands becomes the corresponding image set of x, 
that is to say f{x}. For example, let f be the map 

{[i,j] : i in [1 •• 4], j in [1 •• 4] i > j} 

Then the iteration 

(FOR s = f{x} I ODD #s) 
print(s, 'is the image of', x); 
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END; 

will produce the following output: 

{1,2,3} is the image of 4 
{1} is the image of 2 

3.3.7 Compound iterators. 

A compound iterator is a useful shorthand notation 
iteration loops. For example, the code fragment: 

(FOR x IN Sl) 
(FOR y IN S2) 

END; 
END; 

can be written as follows: 

(FOR x IN Sl, y IN S2) 

END; 
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to describe nested 

Any number of nested loops can be combined in this fashion. A single END 
statement closes all of them. The iterators in a compound iterator are 
understood to be nested from left to right. The rightmost iterator in the 
compound is the innermost; its loop variable changes most rapidly. 

All iterator forms can appear in a compound iterator: 
iterators, numeric iterators, map iterators. For example: 

set and tuple 

(FOR x IN S, y IN [l. .x-1], z = f(t)) . . . . 
Compound iterators can also have a 'such that' clause. 
understood to apply to the innermost iterator in the 
say, this clause is evaluated for every assignment to 
variable. 

Such a clause is 
compound, that is to 
the innermost loop 

CONTINUE and QUIT statements appearing within a compound iterator apply 
uniformly to the outermost iterator therein: there is no way to continue or 
quit any of the inner members of the compound. (If it is necessary to do 
so, the iterators should be written in the usual nested form). 

3.3.8 The general 1:..££.E. construct. 

Each of the iterators discussed so far generate a sequence of values: the 
successive elements of a set, the components of a tuple, the characters of a 
string. We have seen how iteration loops are described by means of such 
iterators: the body of a loop is executed once for each value that appears 
in the generated sequence. Different kinds of loop constructs called WHILE 
and UNTIL loops, are used to describe computations that repeat until a 
desired state of affairs is reached, rather than according to some preset 
sequence of values. For example, we may want to process input data which is 
to be read from a file, but we may not know how many items are actually 
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present on the file. In this case, we need to express the following intent: 
"Process the input as long as there is data to process. " Numerical 
analysis furnishes a second example. Many numerical problems have the 
following general flavor: find a sequence of better and better 
approximations to a desired value (for example, to the root of an equation) 
and stop when the answer is 'close enough'. (Close enough usually means 
that rather than looking for an exact answer, we are satisfied with an 
answer which differs from the exact one by a very small number, say lE-7. ) 
In these cases, we generally cannot state in advance how many times the loop 
body may have to be repeated. For use in these situations, SETL makes a 
very general loop construct available. The simplest form of this general 
construct is the 'indefinite loop', whose syntax is as follows: 

LOOP DO 
block 

END; $ Or END LOOP; 

As with the simpler iterator forms, the keywords LOOP and DO can be 
represented by parentheses. Thus, the indefinite loop can also be written: 

() block END; 

An indefinite loop specifies that the loop body should be repeated 
'forever'. This is clearly an overstatement: the computation will have to 
finish somehow! In fact, an indefinite loop can be terminated either by 
using a QUIT statement, by a CONTINUE statement which refers to an enclosing 
loop, or by means of a GOTO to a label which is outside the loop body. 

The indefinite loop is not used very often, because ordinarily the 
condition under which it will terminate execution can more clearly be 
expressed by means of extremely useful loop forms, namely the WHILE and 
UNTIL LOOPs. Let us now examine these. 

3.3.8.1 The WHILE loop. 

A WHILE loop is written as follows: 

LOOP WHILE condition DO 
block 

END; 

or equivalently 

(WHILE condition) 
block 

END; 

Execution of such a loop proceeds as follows: 

The condition is evaluated. If its value is TRUE, then the loop body 
is executed. After each execution of the body, the condition is evaluated 
anew, and as long as it yields TRUE, the body continues to be executed 
again. As soon as the condition becomes FALSE, looping ends, and execution 
proceeds with the first statement that follows the loop. 



CONTROL STRUCTURES Page 3-29 

If the first evaluation of the condition yields FALSE, then the loop 
body is not executed at all. If follows that a WHILE loop can be executed 
zero or more times. 

Let us look at some examples. As we have already seen, the processing 
of a stream of data received from input is a typical case: suppose that we 
want to read a list of names and print those that start with 'A'. We do not 
know the number of items in the data stream, and it may even be that there 
are none. Fortunately, the SETL system uses a very simple convention to 
indicate that data has been exhausted~ When we attempt to read data from a 
file, but have reached the end of the file, the READ statement yields OM. 
Thus, the following simple code fragment can be used to handle a stream of 
input data and stop when the end of the data has been reached: 

read(name); 
count := O; 
(WHILE name /= OM) 

IF name(l) = 'A' THEN 
print(name); 
count+:= l; 

END IF; 

$ Get first name from input file. 

$ As long as we read something 

read(name); $ Acquire next data item from input. 

END WHILE; 

print(count, 'names starting with A were found'); 

Note that in this code we execute one READ statement before the loop, t 
'prime' the loop, so to speak. Doing this ensures that -name- receives a 
value before the first evaluation of the WHILE condition. If the input file 
was not empty, then -name- is not OM, and the body of the loop is executed. 
If the input file was empty, then -name- is OM, and the loop is bypassed 
altogether. At the end of each execution of the loop body, we perform 
another READ operation. As long as something is read, the loop will be 
executed again. As soon as the strem of input data is exhausted, the READ 
statement will yield OM, the WHILE condition evaluate to FALSE, and 
execution of the WHILE loop will terminate. Program execution will then 
proceed to the statement following the loop, which in the case above is the 
one that prints the little statistical report on the data. 

Our next, more complex example is motivated by the following practical 
problem. Suppose that the catalog of a school specifies a set of 
prerequisites for each course that is offered. That is to say, for each 
course C, it specifies a set of courses which the student must have taken 
before being allowed to take c. Needless to say, the prerequisites of C 
often have further prerequisites of their own, and we will sometimes want to 
know the full set of courses that have to be taken before C is tackled. 
These include the prerequisites of C, the prerequisites of those 
prerequisites, and so on. Let us assume that the map -prerequisites-

.contains the standard information that appears in the school catalog, that 
is to say the list of immediate prerequisites of each course c. Then the 
desired set can be obtained as follows: 
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P := prerequisites(C); 

all_P :• P; 

(WHILE P /• {}) 

course FROM P; 

all P WITH:= course; 

$ get the 'immediate' pre-
$ requesite for the course C 

$ init~alize the set we aim 
$ to build 

$ as long as there is some pre­
$ requisite that has not been 
$ processed. 

$ take one of them. 

$ Add to full set of pre­
$ requisites. 

P +:= prerequisites(course); $ add all the prerequisites 
$ of P to the set 

END WHILE; 
print('Before taking ', C,' the following must have been taken'); 
print(all_P); 

This example deserves careful study, because it embodies a very common type 
of program schema, sometimes called the use of a 'workpile'. The set P 
originally consists of the immediate prerequisites of c. Each of these is 
placed in all_P, which is to be built up to the full set of prerequisites we 
are gathering, and each of their prerequisites in turn must be placed in 
all_P, and also into the set P, to see whether further prerequisites are 
implied by them. The process terminates when we reach courses that have no 
prerequisites at all (there must be some of those!). The 'workpile' set P 
shrinks with each execution of the FROM statement, but can increase again 
with the addition of the prerequisites of the course we have just extracted 
from P. 'Workpile' algorithms of this kind typically involve WHILE loops. 

3.3.8.2 The UNTIL loop. 

The syntax of the UNTIL loop is similar to that of the WHILE 
write: 

LOOP UNTIL condition DO 
block 

END; 

or equivalently 

(UNTIL condition) 
block 

END; 

An UNTIL loop is executed as follows: 

loop. We 

The body of an UNTIL loop is always executed at least once. After it is 
executed the loop condition is evaluated. If it yields TRUE, then execution 
proceeds to the first statement following the loop. If it yields FALSE, the 
body of the loop is executed again. We can therefore say that thE test of a 
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WHILE loop is performed~ the beginning of the loop body, while the test of 
an UNTIL loop is performed at the end of the loop body. Note also that the 
body of an UNTIL loop is always executed one or more times, in contrast to a 
WHILE loop, which may not be executed at all. 

As an example, let us consider the problem of finding the smallest 
number of steps that can take us from one point in a graph to another. In 
order to tackle this problem we must say a word about graphs, and about the 
ways in which they can be described in SETL. A graph consists of a set of 
vertices, and a set of edges which connect the vertices. Edges of a graph 
can be represented in SETL by ordered pairs, whose first component is the 
starting vertex for an edge, and whose second component is the arriving 
vertex for that edge. For example, the simple graph: 

is described by the following set of pairs (i.e. edges): 

{ [A,B], [B,A], [A,C], [C,D], [B,D], [D,A]} 

Since in SETL a set of pairs is at the same time a map, we can also regard 
this representation as a 'successor map' (also called an 'adjacency list') 
whose domain is the set of vertices of the. graph. Th~n, for each vertex V, 
the value of the mapping succesor{V} is the set of vertices that are 
reachable from V by means of some edge that starts at v. For example, in 
the graph above, successor{B} is the set {A,D}, because of the existence of 
edges from B to A and D. 

Using this bit of notation, our problem can be stated as follows: 
given a graph G, described by means of its set of edges, and given two 
vertices s(ource) and t(arget) find the length of the shortest path between 
s and t, i.e. the smallest number of edges that must be traversed in order 
to go from s tot. If we do not know~ priori what path to take, we may 
have to explore a substantial number of paths starting from s, until we find 
one that reaches t. A possible way of organizing this exploration is to 
find all the vertices that can be reached from sin one step, two steps, 
etc., until we reach t. Our problem will therefore be solved by the 
following: 

seen := {s}; 

length := O; 

$ The set of vertices already 
$ reached. 
$ The length of the path so far. 
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(UNTIL t IN seen) 
$ Add to -seen- all the vertices that can be reached by 
$ following one more edge from vertices already reached. 

(FOR v IN seen) 
seen+:• successor{v}; 

END F_OR; 

length+:• l; 

END UNTIL; 

print('There is a path of length', length, ' from', s, 
'to', t); 

Various shortcomings of this code are easily noted: for example, what if 
our graph is such that there is no path from s tot? As written, our 
algorithm will iterate indefinitely, and the condition -t IN seen- will 
never be met. We will endlessly retrace the edges that lead out of the 
vertices already reached. In order to prevent this behavior, we can modify 
our algorithm, so that at each step -seen- contains only those vertices that 
have not been reached on previous steps. This can be achieved as follows: 

seen : = {s}; $ The set of vertices reached 
$ at each step. 

reached :-= {s}; $ The set of all vertices 
$ reached so far. 

(UNTIL t IN seen OR seen={}) 

$ We collect the new vertices reachable from the latest set, 
$ which were not reached previously. 

seen :•+/{successor{v}: v IN seen} - reached; 

reached +:a seen; 

length+:• l; 

END UNTIL; 

IF seen={} THEN 
print(t, ' is not reach~able from', s); 

ELSE 
print('There is a path of length', length, ' from', s, 

'to', t); 
END IF; 

See section 4.3.1 for a further example continuing this theme. 

3.3.8.3 The general LOOP construct. 

The indefinite loop, the WHILE, and the UNTIL loops are all simple cases of 
a more general SETL loop construct, whose impressive full syntax is as 
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follows: 

LOOP 
INIT blocki 
DOING blockd 
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$ Loop initialization statements. 
$ Step statements at startof loop. 

WHILE 
STEP 

testw 
blocks 

$ Termination test at start of loop. 
$ Step statements at end of loop. 

UNTIL blocku $ Termination test at end of loop. 
TERM blockt $ Loop termination statements. 

DO 
blockb $ Body of loop 

END; $ Or END LOOP tokens; 

iteratiqn 

i te rat.or· 

ini 1Jntil i..Prn,i n 

Fig 3.6: General iteration syntax diagram 

You will notice that WHILE and UNTIL clauses are both included in this very 
general loop form. Its full structure is complex. However, as you may have 
surmised from the previous sections, every single clause in this loop 
construct is optional If we leave all of them out, we obtain the 
indefinite loop: LOOP DO ••• The WHILE and UNTIL loops are obtained by 
keeping only one of the loop clauses. To explain the full construct, we 
must now describe the purpose of the remaining four clauses in it: !NIT, 
DOING, STEP, and TERM. 

3.3.8.4 The DOING and STEP clauses. 

The reader will have noticed that the body of 
always includes at least one statement that affects 
condition that controls the execution of the loop. 
this was the statement: read(name); which can set 
loop execution. In example 2, it is the statement 

P +:= prerequisites(course); 

WHILE and UNTIL loops 
the value of the boolean 
In example 1, above, 

name to OM and terminate 

that affects the boolean condition controlling the loop. The readability of 
a loop is often improved by indicating 'housekeeping' actions directly in 
the loop header, close to the condition that governs loop execution. This 
can be done using the DOING and STEP clauses of the loop construct. 

a) If a DOING clause appears in a loop construct, then the block of 
statements labelled by the keyword DOING is executed each time through the 
loop, before the loop body is executed, and also before the WHILE condition 
(if present) is evaluated. 
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b) If a STEP clause appears in a loop construct, then the block of 
statements labelled by the keyword STEP is executed each time through the 
loop, immediately after the loop body has been executed, and before the 
UNTIL condition (if present) is evaluated. For example, using the DOING 
clause, our first example can be rewritten as follows: 

LOOP WHILE name /= OM STEP read(name) DO 

END LOOP; 

Similarly, example 4 can be rewritten as follows: 

seen := reached := {s}; 

LOOP STEP reached+:= seen; 
length+:= 1; 
UNTIL tin seen DO 

END LOOP; 

All the the numeric iterators which we examined in Section.3.3.S can be 
described using WHILE and UNTIL statements with STEP clauses. For example, 
the following loops are all identical in their effect: 

(FOR i in [1. .100]) •• END; (1) 

i : = 1; 
(WHILE i <= 100 STEP i +:=1;) •• END WHILE; ( 2) 

i : = 1; 
LOOP UNTIL i = 100 STEP i +:= l; DO •• END; (3) 

i : = 0; 
(WHILE i <= 99 DOING i +:= l;) ( 4) 

END WHILE; 

Choosing between these constructs is a matter of style. If the iterator is 
numeric, and the associated actions are arithmetic increments, then (1), 
which is simplest, is to be prefered. The reader will find it instructive 
to transcribe the various forms of the numeric iterators into loop 
constructs that use WHILE, UNTIL, STEP and DOING clauses. (See exercises 
XXX-YYY). 

3.3.8.S The INIT and TERM clauses. 

Th INIT and TERM clauses of the loop construct allow us to specify 
initialization actions and termination actions to be performed upon entry 
and exit from the loop. 

a) If the INIT clause is present, then the block of statements labelled 
by the INIT is executed once before any execution of the loop body, and 
before evaluation of the WHILE clause (if present). 
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b) IF the TERM clause is present, Then the block of statements labelled 
by the TERM keyword is executed once on exit from the block, after 
evaluation of the UNTIL clause (if present). 

To summarize, the precise effect of the complete loop construct: 

LOOP INIT blocki 
DOING blockd 
WHILE testw 
STEP blocks 
UNTIL testu 
TERM blockt 

DO 
block 

END; 

can be described by the following equivalent sequence of statements: 

blocki $ The INIT block. 
start: 

blockd $ The DOING block. 
if NOT testw then $ The WHILE condition. 

step: 

term: 

GOTO term; 
end if; 
block 
blocks 
if testu THEN 

GOTO term; 
end if; 
GOTO start; 

blockt 

$ The actual body of the loop. 
$ The STEP block. 
$ The UNTIL condition. 

$ To continue looping. 

$ The TERM block. 

The labels appearing in this code segment also allow us to give a 
simple definition of CONTINUE and QUIT statements in a loop construct. The 
statement 

CONTINUE; 

is equivalent to the statement 

GOTO step; 

where -step- is the label that precedes any code taken from the STEP clause. 
The statement: 

QUIT; 

is equivalent to 

GOTO term; 

where term is the label that precedes the code associated with the TERM 
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clause. 

3.4 The GOTO and STOP statements. 

In the example given just above, and also in the previous chapters, we 
have several times made use of the notion of a GOTO and the concept of a 
label. 

It is time to describe this very basic statement carefully. A GOTO 
statement changes the flow of program execution in the most direct fashion. 
When we execute the statement: 

GOTO there; 

then execution of the program passes immediately to the statement marked by 
the label -there-. (A SETL label is simply an identifier followed by a 
colon.) Any executable statement can be labeled, and any number of labels 
can appear before a statement. 

The GOTO statement has come to be regarded as a dangerous construct, 
whose use should be avoided, and some programming languages exclude this 
statement altogether. While avoiding this puritanical approach, we stress 
that the GOTO statement is only rarely useful, and that one should strive to 
describe control flow using the safer constructs described so far: 
conditionals, case statements and loops, but not GOTO's. 

Reservations concerning unrestricted use of the GOTO rest on sound and 
pragmatic grounds. Programs that depend heavily upon the use of GOTO's are 
hard to read and to understand, difficult to modify, error-prone and thus 
dangerous. Heavy use of labels and GOTO's obscures the logical structure o 
a program. In particular, when backward jumps appear in the middle of a 
large program, their intent is obscure, and the purpose of the code is 
therefore harder to comprehend. 

There are however a few cases in which the GOTO statement is useful. 
The most common of those cases has to do with abrupt exits from a sequence 
of related code fragments. If these all test for some common kind of error, 
it may be appropriate to place a label past the end of all these fragments, 
and to GOTO this label if an error is detected. This is most commonly in 
this guise that the GOTO will be seen in this book. Note that exit from 
loops is clearly described by QUIT and CONTINUE statements, which should 
always be preffered to GOTOs and labels. 

SETL imposes certain restrictions on the position of labels 
GOTOs that refer to them. These restrictions as the following: 

and of 

a) A GOTO lying outside of a loop construct 
appear within the body of the loop. 

cannot refer 

b) A GOTO can only refer to a label that appears within the 
or main program as the GOTO. (See Chapter IV for 
'procedures' and the notion of a 'main program'). 

c) Label names are local to the procedure in which they 

to labels that 

same procedure 
a discussion of 

appear. (See 
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Sec.4.2 for information on 'scoping rules'). 

The STOP statement 
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The STOP statement is simply used to terminate execution when for some 
reason your program has decided that it cannot go on. This statement can be 
used either in your 'main' program or in any 'subroutine' or 'function' (see 
Chapter 4.) A typical example of its use might be 

IF x > 0 AND x*x < 0 THEN 
print('*** SITUATION ALL FOULED UP. PROGRAM CANNOT CONTINUE***'); 
STOP; 

ELSE 
$ do whatever needs doing 

Of course, your program will always ·stop by itself when it has executed 
the last statement of your (main, see Chapter 4) program. So no STOP 
statement is needed there (even though it does no harm to put one in.) 

3.5 Programming example: an interpreter for~ simple language. 

One of the most typical uses of the CASE statement is programming an 
'interpreter'. An interpreter is simply a program that executes sequences 
of commands written in some formalized language. An interpreter works by 
reading one command at a time, executing it, and then reading the next 
command, etc. Interpreters serve as an obvious means of creating 
special-purpose languages, and we will say more about this at the end of 
this section; but first we will present an example of an interpreter. This 
will make use of most of the control structures that we have examined so far 
in this chapter. 

We will write an interpreter for the so-called 'Turtle language' used 
in a popular system for grade-school computer education. The Turtle 
language consists of a series of commands that control the motion of a 
'Turtle' on a screen or on a sheet of paper. The motions of the turtle 
generate a picture, and the purpose of the interpreter is to read a series 
of commands in Turtle language and construct the corresponding picture. The 
position of the Turtle at any given time is described by its coordinates, 
and its direction of motion. The turtle can be commanded to move forward a 
certain number of steps, turn left or right, and put its pen down (to draw) 
or up (to move without drawing a line.) The full list of commands and their 
syntax is the following: 

FORWARD N 
RIGHT 
LEFT 
PEN UP 
PEN DOWN 
DRAW 
END 
For example, 
PEN DOWN 
FORWARD 5 

Move forward N steps. 
Turn right from current direction of motion 
Turn left from current direction of motion. 
Move without leaving a trace. 
Draw every motion. 
Display picture of motions so far. 
Terminate picture, draw it and stop. 

the sequence of commands: 
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RIGHT 
FORWARD 10 
RIGHT 
FORWARD 5 
RIGHT 
FORWARD 5 
RIGHT 
FORWARD 10 
DRAW 

generates the following picture: 

* 
* 
* 
* 
* 

* * * * * * * * * * * 
* 
* 
* 
* 
X 

(Turtle starts here) 

* 
* 
* 
* 

* 
* 
* 
* 

* * * * * * 

Construction of~ Turtle language interpreter. 
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The preceding description of the meaning and purpose of each Turtle 
language command should make it clear that our interpreter will consist 
largely of a simple CASE statement, each of whose options correspond to one 
command in the Turtle language. That is to say, the basic structure of the 
interpreter will look as follows: 

etc. 

CASE command of 
(RIGHT'): ••••• 
('LEFT'): ••••• 
(FORWARD'): 

Of course, we have to fill the dotted sections with an exact description of 
the actions that represent the corresponding motion of the turtle. This 
requires that we decide on how to represent the picture being drawn, and 
also the position and direction of motion of the turtle at each step. 

First let us examine the matter of picture representation. In order to 
keep our task simple, we asurne that the track of the Turtle will be 
displayed by means of PRINT commands. Each PRINT statement generates one 
line of output, and it is reasonable to describe the picture as a sequenc~ 
of lines. To make matters definite, we must choose the height and width of 
the picture: We let that be 50 by 50, so that it can fit easily on a simplE 
page of printed output. This size will not change during execution of th< 
program so we just initialize the picture to be an array consisting of 50 
strings of length 50, consisti~g only of blanks: 

picture:= 50 * [ 50 *' ']; 
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Notice the double use of the replication operation'*': the expression 50*' 
'yields a string of fifty blanks; The brackets around this expression give 
us a tuple whose only element is such a string; and the outer replication 
operation yields a tuple with 50 elements, each of which is a blank string. 

Note that this is not 
picture.(Try to think of 
shall see that this choice 
picture. 

the only possible way of representing the 
some alternative representations). However we 

simplifies the creation and display of the 

The position of the turtle at each step is defined by giving a line and 
a character position on the line. If we think of each line as drawn 
horizontally accross the picture, then the choice of [row, column] to 
designate the turtle position imposes itself. In our simple interpreter the 
turtle can move in one of four directions, which we can label 'NORTH', 
'EAST', 'SOUTH' and 'WEST', with the usual (Northern Hemisphere) convention 
that north is up. We choose to start the turtle on its trek from the lower 
left-hand corner of the picture, facing north. 

Next let us sketch the actions performed upon each Turtle command. The 
turning commands: RIGHT and LEFT, are the simplest: they only change the 
direction of motion of the turtle, not its position, and they do not add 
anything to the picture being drawn. We have chosen to implement those 
commands simply by looking up the direction that lies to the right or left 
of the present direction of motion. This lookup operation uses SETL maps. 

The pen commands: PEN UP and PEN_DOWN, affect neither the position nor 
the direction of motion of the turtle. We describe their effect using a 
boolean variable called -tracing-, which is interrogated whenever the turtle 
actually moves. 

The only non-trivial command is -FORWARD N- where N is some positive 
integer. This command alters the position of the turtle, and produces a 
segment of the picture if the -tracing- indicator is TRUE. Clearly the 
action of FORWARD depends on the current direction of motion. If the turtle 
faces east, the motion will be to the right, along a line or row. The same 
is true if the turtle faces west. On the other hand, if the turtle faces 
north or south, then its motion is along a column, and its row position is 
altered. The forward statement is therefore best described by a CASE 
statement. Let -distance- designate the extent of the specified forward 
motion, and let new_row, new_col be the coordinates at which the turtle 
finds itself after the motion. Then the effect of FORWARD can be described 
as follows: 

CASE direction of 

('NORTH'): new row - : = row - distance; 
new col : = column; 

('EAST'): new col - : = column + distance; 
new row : = row; -. . . . . 

etc. 
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Finally, how is the picture itself to be created? We want to fill in the 
trajectory described by the turtle using some printable character, say the 
asterisk: '*'• After each FORWARD command, we want to place asterisks 
along the line from [row, column] to [new_row, new_column]. This is simple 
if the motion is horizontal, i.e. new_row = row, since in this case the 
line to be drawn is a part of the current row. If we recall that the 
picture is described by an array of horizontal lines or rows, then it is 
clear that the line on which the turtle is currently moving is given by: 
picture(row). The motion of the turtle fills a substring of this row, and 
in the case of Eastward motion this can be expressed as follows: 

picture(row)(col •• new_col) :=distance* , * , . 
' 

Westward motion is equally simple to 
trifle harder to handle. In such 
column but crosses several rows. The 
each row traversed. We lay down the 

describe. North-South motion is a 
a motion, the turtle stays on the same 
line it traces has one character on 

(FOR i in [row •• new_row]) 
picture(i)(column) := 

end; 

trace as follows: 

, *, . , 

Finally, we want our interpreter to read any number of turtle commands, and 
we do not know a priori how many there will be. We therefore enclose our 
bas~c case statement in another loop, this one bracketed by the lines: 

and 
LOOP DO 

END LOOP; 

Finally, the statement: 

STOP; 

which our interpreter must associate with the END command, will terminate 
interpretation. 

PROGRAM TURTLE; 
.s 

right := {['NORTH', 
['WEST', 

'EAST'], 
'NORTH'] 

['EAST', 'SOUTH'], 
} ; 

['SOUTH', 'WEST'], 

$ The map giving the direction to the left of any direction is obviously 
$ the inverse of the -right- map. 

left := { [dl,d2] [d2,dl] in right}; 
• s 

picture := 50 * [50 * ' ']; 
.s 

$ Initially the turtle is at the lower left-hand of the picture, 
$ facing north. 

direction := 'NORTH'; 
row:= 50; 
column := 1; 
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tracing := FALSE; 

LOOP DO $ Main loop of the interpreter ■ 

read(command); 

CASE command of 

('RIGHT'): direction := right(direction); 

('LEFT'): direction := left(direction); 

('PEN_UP'): tracing := FALSE; 

('PEN_DOWN'): tracing := TRUE; 

('DRAW','END'): (FOR line IN picture) 
print(line); 

END; 

picture:= SO* [50 *' ']; 
IF command='end' THEN stop; END IF; 

('FORWARD'): read(distance); 

CASE direction of 

('NORTH'): new row := (row - distance) MAX 1; 
new col := column; 

('EAST'): 

('WEST'): 

new col := (column+ distance) MIN 50; 
new row:= row; 

new col := (column - distance) MAX 1; 
new row := row; 

('SOUTH'): new row := (row+ distance) MIN 50; 
new col := column; 

END CASE; 

IF tracing THEN 

IF new row= row THEN 
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$ Find first and last column needed for tracing. 
min col := column MIN new_col; 
max col := column MAX new_col; 

picture(row)(min_col •• max_col) := 
distance * '*'; 

ELSE 

$ Find first and last row. 
min row:= row MIN new_row; 
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max_row := row MAX new_row; 

(FOR r IN [min_row •• max_row]) 
picture(r)(column) := '*'; 

END; 

END IF; 
END IF; 

row:= new_row; 
column := new_col; 

ELSE print('INVALID COMMAND: ',command);· 

END CASE; 

END LOOP; 

END PROGRAM turtle; 

Several additional details of this program deserve notice: 
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a) Two Turtle commands produce an actual drawing: the DRAW command, and the 
END command. It is natural to place both commands in the same CASE tag, and 
add an additional simple check, made after the picture has been produced, to 
determine whether the program should stop. 

b) We all make mistakes, and the interpreter should be prepared to receive 
do, for less-than perfect instructions. What should the interpreter 

example, with the commands: 

FORWARD 10 
RIGHT 
PEN UP 

and so on? In this program we have chosen to notify the user that a 
command just read is not part of the known set of Turtle commands. This is 
the purpose of the ELSE clause of the CASE statement. A more ambitious 
program might try to recognize misspellings of the known commands, accept 
abbreviations for them, accept upper- and lower-case names for commands, and 
so on. Some of these extensions are pursued in the exercises below. 

c) A different sort of error is exemplified by the command: 

forward 200 

Which attempts to move the turtle beyond the bounds of the picture. In the 
program above, we have made sure that the values of new_row and new_col are 
always in the range 1 to SO. 

c) The printer is not the best device on which to display a 
If you run the program as written, you will notice that the 
between successive lines is greater than that between successive 
on a line. As a result the picture looks cramped in the 

picture. 
separation 
characters 
horizontal 
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direction. A more aesthetic result is obtained if we count each horizontal 
step as two characters, or always add a blank between horizontal characters. 
This modification is left to the reader. 

3.5.1 Various elementary sorting techniques. 

Sorting is the problem of taking a set or tuple of items which (like 
integers, real numbers, or strings) can be compared to one another, and 
putting them in order. Dozens of interesting ways of using a computer to 
sort are known, and a few of the more interesting high--efficiency sorting 
techniques will be presented in later chapters. In the present section, we 
present only some very simple sorting methods, which serve to illustrate 
various control structures discussed in this chapter. The first and 
simplest of these, the so-called bubble-sort method, sorts a tuple. It 
works simply by scanning the tuple for adjacent components which are out of 
order, and interchanging them if they are found. In this way, large items 
'bubble up' to their proper_position in the tuple. When no out-of-order 
pairs remain, the tuple is sorted. 

In SETL this is simply 

(WHILE EXISTS i IN [l •• #t-1) I t(i) > t(i+l)) 
[t(i),t(i+l)] := [t(i+l),t((i)J; $ interchange the items. 

END WHILE; 

The bubble-sort procedure has a number of interesting variants. In one 
of them, we simply sweep repeatedly through the tuple, interchanging all 
pairs of adjacent items which are out or order. 

If we perform this sweeping operation at least as many times as the 
tuple has components, all items will be swept into their proper positions, 
since even if the smallest item originally came last it will have time to 
move down to the first position in the tuple. 

We can express this 'sweeping' procedure as 

(FOR number of times IN [1..#t]) 
(FOR i IN [l •• #t-1) I t(i) > t(i+l)) 

[t(i),t(i+l)] := [t(i+l),t(i)]; $ interchange 
END FOR; 

END FOR; 

This can also be put more succinctly as 

(FOR number_of_times IN [1..#t], i IN [l •• #t-1]) 
[t(i),t(i+l)J := [t(i+l),t(i)]; 

END FOR; 

A very different sorting method is to search 
element of a tuple, put it at the end of a new 
up, and delete it from the original tuple. This 
sort method. It can be written as 

repeatedly for the minimum 
tuple which is being built 
is called the selection 

newt up : = [ ] ; $ initialise tuple to be build up. 
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(FOR i IN [l •• #t]) 

min_till_now := t(l); min_place=l; 
$ save minimum element scanned, and its location 

(FOR j IN [2 •• //t] t(j) > min till_now) 

min till now - - := t(j); $ save value of newly found minimum 
$ save position of new minimum min_place := j; 

END FOR; 

new_tup(#new_tup) := min_till_now; 

END FOR i; 

$ put minimum element at 
$ end of new tuple 

Beyond the methods shown above, you will find that it is instructive to 
review all the ways you can think of to sort a deck of cards by hand, and to 
express these hand-sorting techniques in SETL. 

3.6 Exercises 

Ex. 1 A set of Markov productions is an ordered collection of rules of the 
form sl>s2, where sl and s2 are both character strings, neither of which 
contains the character '>'. The string sl is called the left side of the 
production sl>s2, and the string s2 is called its right side. To apply such 
a set of productions to a strings, one searches through s, lo9king for a 
substring which coincides with the left-hand side of some production; if 
any such production is found, this substring is replaced by the right-hand 
side of the production. 

Write a 'Markov production interpreter' program which reads in a set of 
Markov productions and a strings, and then applies n successive productions 
to s, displaying the result every m steps. 

Ex. 2 How would you express a FOR loop of the form 

( FOR n IN [ 1 •• k] I C ( n)) •• 

in terms of a WHILE loop? What about FOR loops of the form 

(FOR x IN tlC(x)) ••• 

and 

(FOR x =t(i)IC(x)) ••• 

where tis a tuple? 

Ex. 3 Write a program which will compare two poker hands (each consisting 
of five cards) and decide which of the two is the winning hand according to 
the values of Poker. 

Ex. 4 Write a program which prints all the numbers from 
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2 to 100 together with their prime factorizations. The 
first three entries printed should be 

2 [ 2] 
3 [ 3] 
4 [2,2] 
etc. 
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3.7. Reading and Writing Data 

We have been usi_ng the two basic Input-Ouput commands, READ and PRINT, 
which allow a SETL program to communicate with the rest of the world, 
informally till now. Now let us discuss them more systematically. 
(However, we pospone discussion of the more elaborate SETL input/output 
features, such as READA, PRINTA, GET, PUT,etc. to Section 8.1.) 

To produce printed output (or, in the case of an interactive run from a 
terminal, to send output to the terminal), the PRINT statement is used. 
This has the form 

PRINT(expl,exp2, ••• ,expk), 

where each 
appear in 
values and 
tuples can 

of expl, ••• ,expk is an expression. Any valid expression can 
a PRINT statement, and any valid SETL value, including boolean 

atoms (see Section 5.3) can be printed. In particular, sets and 
be printed. Thus it is perfectly acceptable to write 

PRINT (2+2, {1,2,3}, [{1},{{2}}, [{3}]], 'HELLO THERE'); 

The output produced by this PRINT statement will look like 

4 {3 1 2} [{1} {{2}} [{3}]] HELLO THERE 

This example illustrates several details concerning the PRINT primitive: 

(a) Expressions are evaluated before being printed. 

(b) The elements of sets are grouped within set brackets, and tuple 
components are grouped within tuple brackets. For ease of reading, set 
elements and tuple components are separated by blankg rather than by commas 
(even though this can lead to ambiguities when structures containing strings 
are printed). 

(c) Strings are printed without quotation marks, e.g. 
the constant 'HELLO THERE' only the characters 

when we print 

HELLO THERE 

appear in the output file. 

(d) Since sets have no particular order when sets are printed, 
elements can appear in any order. 

their 

(e) Integers and floating point numbers are printed in standard decimal 
formats. Their representations require a number of characters defined by 
their size and nature. Floating point numbers are always printed in 
exponential form with a fixed number of decimal places, e.g. 2.3 is printed 
as 

2. 300000E+OO_. 
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(f) Other kinds of SETL values will be represented by strings formed 
accordind to somewhat arbitrary rules. The undefined atom OM is printed as 

* 

The boolean values TRUE and FALSE are printed as #T and #F respectively. 
Atoms (see Section 5.3) are represented by strings of the form #nnn, where 
nnn denotes the integer 'serial number' of the atom. Note that these rules 
inevitably lead to a degree of ambiguity, e.g. the output produced by 

print([OM, '*']); 
print([TRUE,'#T',FALSE,'#F'); 
[ * *] 
[ /IT IIT IIF !IF] • 

(g) Since sets are not printed in any particular sorted order, it can 
be hard to locate elements in the printed representation of sets, especially 
large sets. 

(h) A single print statement (even a print statement with many 
arguments) will always try to put all the output which 
single logical 'line' of output. If the value or values to 
too large and complex to fit on a single line, they will 
many lines as necessary. When this happens, the points 
physical line of print Ends and the next begins will fall 
it can be something of a trial to read the resulting output. 

(i) Each print statement starts a new logical line. 
print statement can be used to generate a blank print line. 

print('AA','BB','CC'); 

will produce the output 

AA BB CC, 

the command 

print('AA'); print('BB'); print; print('CC'); 

will produce the output 

AA 
BB 

cc 

it produces on a 
be printed are 
be printed on as 

at which one 
haphazardly, and 

A parameterless 
Thus, whereas 

(j) As illustrated by the preceding examples, successive output items 
produced by a single print statement are separated by a few blanks but do 
not start a new line. 
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The SETL print facility is quite easy to use, but does not produce 
output compaiing in elegance with the formattted output generated by 
programs written in various other languages, especially languages such as 
PL/I or COBOL, which have something of a commercial orientation. To produce 
more elegant formulated output in SETL, it is necessary (albeit easy to make 
use of string primitives which the language provides (see Sections 2.3.3 and 
5.2.) These allow one to build up output strings of arbitrary format and 
complexity. Note in particular that the STR operator produces the very same 
string representation of a value that the -print- command would print, but 
makes this string available as an internal object which can be manipulated 
using the powerful string operations which SETL provides ■ These facilities 
make it possible to program an arbitrarily complex 'pretty rint' function in 
SETL. Such a procedure can indent nested sets and tuples nicely, can sort 
their elements to make searching easier, etc. Utilities of this kind are 
well worth developing when large objects need to be printed and inspected 
repeatedly; in such cases, it is particularly important to sort the output ■ 

To read input from the standard input file (or, for interacti~e runs, 
from the terminal) the READ statement is used. This has the form 

(1) RE AD (Rh s 1 , Rh s 2 , •• ■ , Rh s k) , 

where each of Rhsl, ••• ,Rhsk is (either) a simple variable (or a more complex 
expression of the kind which could legally appear on the left-hand side of 
an assignment statement: see Section 2.11). The statement (1) reads in a 
sequence of SETL values from the standard input file and makes them the 
values of Rhsl,Rhs2, ••• ,Rhsk respectively. For example, if the next three 
items in the input file are 

{1 2 3} 
'HELLO THERE' 
[{1},2,A], 

then the command 

READ(x,y,z) 

will give x,y, and z the respective values {l,2,3}, 
[{1},2,'A'J. This example illustrates several of 
governing the READ primitive. 

'HELLO THERE', and 
the following rules 

(i) Successive items in a bracketed SETL value to be read can be 
separated either by commas or by blanks. For example, to read in the set 
{1,2,3} we can write its external representation either as 

{1,2,3} 

or as 

{l 2, 3} 

or as 

{ 1 2 3} 
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etc. 

(ii) Unbracketed items separated by blanks will be read in 
successive READ statements even if they all appear on a single line. 
of them will be bypassed, and reading will advance from one line to the 
only when more input data is needed to complete the line being read. 
example if the first three lines of the input file are 

1 

10}, 

2 3 4 
8 9 

5 {6 

then the commands 

READ(x,y,z); 
READ(u,v); 
READ (w); 

7 

by 
None 
next 

For 

will give the variables x through z the same values that they would be given 
by the following assignments: 

x := l; y := 2; z := 3; u := 4; v := 5; w := {6,7,8,9,10}; 

(iii) When read in, valid identifiers, i.e. unbroken strings of 
letters and numbers starting with a letter, will be read as strings even if 
they are not enclosed in quote marks. For example, if the input file 
contains 

[A BB Cl23], 

then the command READ(x} will have the same effect as the assignment 

x := ['A','BB','Cl23']; 

(iv) Other items, namely the Boolean values TRUE and FALSE and the 
undefined atom OM can be read in if they are written in the form in which 
they would be printed by a PRINT command. In particular, TRUE and FALSE can 
be read in if they are represented as #T and #Fin the input file, and OM 
can be read in if it is represented as* in the intput file. For example, 
if the input file contains [*, *, _ T, _ F, *, *] the command READ(x) will 
give x the same value that the assignment 

x : = [ * , *, TRUE, FALSE] ; 

would give it. These rules imply that the READ and PRINT operations are 
almost inverses of each other, i.e. that a file of data written by PRINT 
can almost be read back in using READ. Unfortunately, this is not quite the 
case (however, this perfect inverse relationship does hold for SETL 'binary' 
input/output primitives, namely GETB and PUTB; see Section 8.1 below). For 
example, if the string 'Hello there' is written out using PRINT, and then 
read back in using READ, it will appear as the pair 'Hello' 'there' of 
successive string items. Moreover, if the string 'Hello!there' is written 
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out using PRINT then any attempt to read the result will cause an error, 
since the unquoted character '!' happens to be indigestible to the READ 
primitive. (Also, the external form of an atom, see Section 5.3 below, is 
indigestible to the READ primitive. Thus READ and PRINT are only inverses 
to one another if the value being printed and then read back in contains no 
quoted strings which are not valid identifiers (and also contains no atoms). 

As READ operations are successively executed, an implicit 'read 
position' pointer moves progressively forward in the standard input file, 
past one SETL value at a time, until eventually the very end of the input 
file is reached. Thus the input file behaves like a 'tape' on which 
successive SETL values are written and from which they can be read. Even 
when the end of the input file has been reached, the READ operation will 
continue to execute without any error occurring, but in this case all 
further values read from the input file will be OM. Therefore the input 
file behaves exactly as if its actual contents were followed by infinitely 
many OMs. To detect the actual end of input, one must use another SETL 
primitive operation, represented by the keyword EOF (end of file). This can 
be used in expressions just like any other variable, but its value is always 
FALSE if the last READ operation executed did not encounter the end of the 
input file which it is reading. Conversely, EOF is TRUE if the end of the 
input file was reached by the last READ statement executed. The value of 
the quantity EOF changes as soon as a first attempt is made to read past the 
end of the input file. For example, if the input file contains just the 
three items {1} {2} {3}, then the loop 

(FOR j in [1..4)) READ(x); print(x,EOF); END; 

will produce the output 

{ l} IIF 
{2} IIF 
{3} #F 
* /IT 

It follows that to read all data items present in the input and print them 
out one wants to use a loop which tests the EOF condition immediately after 
an item is read, as in the following example: 

LOOP DO $ loop to read and echo all items 

READ ( x) ; 
IF EOF THEN QUIT; END; 
PRINT(x); 

END LOOP; 

$ in the input file 

If a bracketed item which is not properly closed and one attempts to 
read it, then a run-time error will occur. For example, any attempt to read 
an input file whose last two lines are 

{l,2,3 
'HELLO' 

or whose last line is 
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{1,2,3] 

is fatal. 3.7.1 Reading data from~ terminal. 

Interactive programs typically take their input from the user terminal. The 
rules described above also apply to READ statements that take their data 
from the terminal screen: a READ statement will read as many items as it 
needs, spread over several lines if need be. If not enough items were 
supplied ot it, the READ statement will simply wait until the full input is 
supplied. To indicate that the input is complete, always enter a Carriage 
Return following the end of the data. 

A terminal is a potentially infinite source of data. How is the 
program to determine that an end-of-file has been encountered in reading 
from the terminal? The answer depends on the operating system on which you 
are running. Special characters are used to indicate end-of-data, and you 
should find out the conventions used by the operating system on which your 
SETL system runs. On DEC systems, the character combination Control-Z marks 
an end-of-file, so that entering CRT.L-Z will make the EOF test true. 

J.7.2 Character sets. 

The simple READ and PRINT primitives described in this section get 
input from the standard input file and send output to the standard output 
file. As explained in Section XXX, if input is to be read from the standard 
input file the lines of data constituting this file should be supplied 
following your SETL program (for a batch run) and should be typed in 
interactively at a terminal (in an interactive run). Other more advanced 
input-output primitives (described in Section 8.1 below) allow output to be 
read from and written to other files. These files are made available to 
your SETL program in a manner which necessarily depends (to a certain extent 
at least) on the operating system being used. See Section Y for additional 
details. 

As noted in Section Z, not all the computer systems on which SETL runs 
support the full character set assumed in this book. Where particular 
characters are missing, they are represented either by single substitute 
characters which are available, or by pairs of such characters. Obviously, 
this will affect some details of the output produced and of the input 
expected by the READ primitive. See Appendix XXX for additional details 
concerning alternative character representations. Note that the character 
set which SETL will use can sometimes be controlled by supplying appropriate 
control card parameters. See Section W for details. 

-------~---·---- ----·--------
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3.8 Exercises 

Ex. l Write a program which reads a sets of integers and prints out a 
list, in ascending order, of all the members of s which are prime. 

Ex. 
Write 

2 A set of vectors of length n and a vector x of length n are given. 
code which selects the elements of s which has the largest number of 

components in common with x. 

Ex. 3 Write a program to read a character string, reverse the order of its 
characters, and print it out. 

Ex. 4 Write a program that will scan a string of characters containing 
parenthesis, square brackets, and set brackets, and determine whether it is 
properly bracketed. (A string is properly bracketed if each left bracket or 
parenthesis is matched by a following right bracket or parenthesis of the 
same kind. For example, {[ ]} is properly bracketed, but{[}] is not.) 

Ex. 5 Write a program that reads in successive pairs of strings s,t, of the 
same length, and determines whether t can be obtained from s by substituting 
for the characters of sin some single-valued way. For example, 'ipstf' is 
obtained from 'horse' by the substitution {['h','v'], ['o','p'], ['r','s'], 
['s','t'], ['e','f']}, but 'beer' cannot be obtained from 'anna' in this 
way, since two different characters would have to be substituted for 'a'. 

Ex. 6 Write a program which will translate an arbitrary message into Morse 
code. The Morse codes for all characters of the alphabet and for the 
commonest punctuation marks are shown in Fig. x. Write a p~ogram which 
will translate Morse code back into English. 

Figure Morse cdes for alphabetic and special characters. 

Ex. 7 A publisher produces books both in hard cover and paperback. Any 
given book can ,be either long, medium, or short, and can be either 
elementary or advanced. A short, elementary, paperback book sells for $5. 
Exactly $2 is added to the price of a book if it is hard cover; 
medium-length books sell for exactly $1 more, and long books for exactly $3 
more, than short books. The price of a book is doubled if it is advanced. 
Write a small program which will print_ out all possible categories of books 
together with their prices. 
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Ex. 8 Write a program that will read an integer n and print its 
digits separated by spaces, starting with its leftmost digit. 

successive 

Ex. 9 Write a program which can read an arbitrary integer and print it in 
English. For example, -143 should print as 'minus one hundred 
fourty-three'. Can you do the same for French? For German? For Chinese? 

Ex. 10 Write a program to read in three points x,y,z, each represented by a 
pair of real numbers. Determine whether these three points: 

(a) all lie along a 
equilateral triangle; 

line; (b) form the corners of an isoceles 
(c) form the corners of a right triangle. 

Print out an appropriate message in each case. 

or 

Ex. 11 Write a program which will read in a sequence of lines, each 
containing someone's name, first name first, and print out an alphabetised 
list of these names, in alphabetic order of last names. Repeat this 
exercise, but this time print the alphabetised list with last names first. 

Ex. 12 Making use of a map from family names into their probable ethnic 
origins, write a program which reads a list of names and attempts to guess 
the ethnic origins of their bearers. Your program should also make use of 
facts like the following to increase its coverage: names beginning with 
'Me' are probably Irish, with 'Mac' probably Scottish; names ending in 
'ski' are probably Polish, in 'ian' probably Armenian, in 'wetz' probably 
East-European Jewish, in 'ini' probably Italian, etc. How well does your 
program guess the family origins of your classmates? 

Modify this program so that it uses first names to guess 
here that names ending in 'a' are probably female, etc. 

sex. Note 

Ex. 13 A college collects statistics on the members of its entering 
freshman class. The basic data for each student is a line in a data file, 
consisting of the following items, in sequence, seperated by blanks: 

student's last name, first name, age(in years), sex(M or F), 

maritial status (O=single, !=married, 2=divorced or separated) 

Write a program to print out the following information: 

(i) 
(ii) 
(iii) 
(iv) 
(v) 
(vi) 

Percent under 21 years old 
Percent over 21 years old 
Percent over 30 years old 

Percent male and female 
Percent of males single, married, and divorced or separated. 
Percent of females single, married, divorced, or separated. 

Ex. 14 An automobile sales agency employs 25 salespersons. Sales records 
are kept on cards, each card holding the following information, separated by 
blanks: 

(a) Salesman's last name 
(b) Make of car sold 
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(c) Amount of sale 
(d) Net amount of sale (i.e., total amount minus discount allowed for 
trade-in.) Write a program which will read a monthly file of such cards and 
print out the commission due to each salesperson. The rules determining 
commissions are as follows: 

(i) Standard commission is 5% on the first $20,000 of net sales, 6% on 
the next $10,000 of net sales, and 7% on all sales over $30,000. 

(ii) Indvidual sales totaling more than $10,000 earn a 1% bonus. 

(iii) Sales on which less than $500 trade-in is allowed earn a bonus of one 
half of 1%. 

Ex. 15 A factory's payroll is prepared from a set of daily time cards and a 
mapping f giving the hourly wage rate for each employee. Each time card 
contains an employee's social security number followed by the number of 
hours worked on a particular day. The mapping f sends each employee social 
security number into the employee's name, hourly wage rate and tax 
withholding rate. Total pay is number of hours worked, times hourly base 
rate, times (1-r), where r is the tax witholding rate; however, all hours 
in excess of 40 are paid at a time -and-a-half rate. Write a program to 
read a file representing a week's payroll records, and print out a payroll 
showing employee name, social security number, total pay, tax withheld, and 
net pay. 

Ex. 16 Suppose that the daily time cards of Exercise 18 are grouped into 
batches separated by cards which contain only the single digit O, with the 
Monday batch coming first, Tuesday next, etc., and that work performed on 
weekends is paid at a double-time rate. Modify the program of Exercise 18 
to handle this rule also. 

Ex 17 In bowling, a complete game consists of ten frames. Either one or two 
balls is rolled in a frame. If all ten pins are knocked down by the first 
ball rolled in a frame (this event is called a 'strike') the score for the 
frame is 10, plus the number of pins knocked down by the next two pins 
rolled. If all ten pins are knocked down by the two balls rolled in a frame 
(called a 'spare), the score for the frame is 10, plus the number of pins 
knocked down by the next ball rolled. Otherwise the score for the frame is 
the number of pins knocked down by the two balls rolled in the frame. If a 
spare is rolled in the tenth frame, then you are allowed an extra ball; if 
a spare is rolled in the tenth frame, then you are allowed two extra balls, 
so can earn up to 20 more points. 

Write a program which will read a 
knocked down by each ball rolled 
corresponding score. 

tuple representing the number of pins 
during a game and print out the 

Ex. 18 Explain how the conditional statement 
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IF Cl THEN block of statements 1 

ELSEIF C2 THEN block of statements 2 

ELSE IF ••• 

ELSE block_of statements n 

can be re-expressed using IF-statements of the simple form 

IF C THEN GOTO label_j 

but no other conditional statements. 

$ 

• 
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HAFTER 4 

FUNCTIONS AND PROCEDURES 

A -unction in SETL is a computational process which has been given a 
name and which, using one or more data items passed to it, will compute and 
deliver a value. Most of the built-in SETL operators, for example MAX, 
which returns the maximum of two values x and y, and COS, which returns the 
cosine of a floating point number x passed to it, are functions in this 
sense. However, since no finite collection will ever exhaust the whole 
catalog of functions that a programmer may want to use, it is important to 
have a way of defining, and then using, as many additional operations as are 
helpful. 

Chapter Table .£1 Contents 
4.1 Writing and Using Functions 
4.1.1 Some simple sorting procedures 
4.1.2 A character-conversion procedure 

4.2 Name Scopes; the VAR declaration 
4.3 Programming Examples 
4.3.1 The 'buckets and well problem'- a simple artificial 

intelligence example 
4.4 Recursive Functions 

4.4.1 Robert Floyd's Quicksort procedure 
4.4.2 Another recursive procedure: mergesort 
4.4.3 Binary searching: a fast recursive searching technique 
4.4.4 The 'Towers of Hanoi' problem 

4.5 Procedures Which Modify Their Parameters 
4.6 Exercises 
4.7 Other Procedure-related Facilities 
4.7.1 Procedures and functions with a variable number of arguments 
4.7.2 User-defined infix operators 
4.7.3 Refinements 

4.8 Rules of Style in the Use of Procedures 
4.9 Exercises 

4. 1 Writing and using functions 

To make the above point more convincing, we can consider a simple 
example. Suppose that some numerical quantity associated with a relatively 
standard product, for example the weight of eggs coming from a chicken farm, 
is measured daily, thus producing batches of measurements, each of which can 



FUNCTIONS AND PROCEDURES Page 4-2 

be thought of as a set of numbers, e.g. 

(1) {2.1, 2.85, 1.90, ••• ,1.85}. 

Suppose that in order to exert some sort of quality control, various 
statistical properties are to be reported for each such batch, and that 
these statistics are to include the weights of the three largest and the 
three smallest eggs in the batch. 

To make this calculation easily, it would be convenient to use a 
pre-programmedfunction to which a sets like (1) can be passed, and which_ 
would then produce a tuple t 

(2) [1.86, 1-90, ••• , 2.7, 2.85] 

in which all this members of s are arranged in increasing order. Since the 
function would simply sort the members of s, it might appropriately be 
called -sort-. We would like to be able to produce the ordered tuple t from 
the set (1) simply by writing 

(3) t:=sort(s). 

Note that if this can be done, then to print the three largest and three 
smallest measurements we have only to write 

print('three smallest measurements are:',t(l),t(2),t(3)); 
print('three largest measurements are:',t(_ t),t(_ t-1),t(_ t-2)); 

Of course, sorting the sets is not hard, and can be done by· the simple 
method explained in Section 3.5.1, which is to say using the code 

(4) t:•[]; 

(WHILE s/•{ }} 
t WITH:•(x:•min/s); 
s LESS:=x; 

END WHILE; 

However, what we want is to package the code (4), giving it the name -sort­
and invoking it by the name. By doing this we make it possible to get the 
effect of the code (4), without having to concern ourselves with its inner 
workings, simply by writing (3). To 'package' bits of code in this way 
becomes absolutely essential when one is constructing large programs (say a 
few hundred lines or more). Programs of such sizes can only be built 
succesfully if they are organized hierarchically into a modular collection 
of subprocedures; typically such a collection will include both high-level 
functions which simply .make use of facilities provided by lower level 
functions, and low level procedures, like the "sort" which we have been 
discussing, which encapsulate general, useful primitive operations. SETL 
does provide a facility for defining as many new functions as you need, and 
we now proceed to explain how this is done. 

To 'package' or 'encapsulate' the code (4), all we need to do is to 
enclose it between procedure 'header' and 'trailer' lines, and add a RETURN 
statement. This gives 
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( 5) PROCEDURE sort(s); 

t:=[]; 

(WHILE s/={ }) 
t WITH:=(x:=MIN/s); 
s LESS:=x; 

END WHILE; 

RETURN t; 

END PROCEDURE sort; 

In (5) the function header line is 

(Sa) PROCEDURE sort(s); 

Page 4-3 

This line, introduced by the special keyword PROCEDURE (which can also be 
abbreviated as PROC), opens the procedure (5), gives it a name (in this 
case, the name -sort-), and also names its formal parameters, (sometimes 
simply called parameters) i.e. the values which will be passed to the 
function whenever it is used (as in (3) above), and from which the function 
will calculate the value which it returns. (In (5), the value returned is t 
and there is only one formal parameter, namely -s-.) The concluding trailer 
line 

(Sb) END PROCEDURE sort; 

marks the end of the function. 
functions, would ordinarily 
function.) 

The command 

(Sc) RETURN t; 

(And, in a large program making use of many 
be followed by the header line of another 

which appears in (5) indicates the point at which the function has finished 
calculating the value which it is to produce, and also defines the value 
that the function will return. 

To 'use' or 'invoke' the function -sort- defined by (5), we have only 
to write sort(e), where e can be any expression. This automatically 
calculates and makes available the value returned by the function (5). For 
example, if we write 

(Sd) print(sort({5, 1, 2, 7, O})) 

the result will be 

[0 1 2 5 7] 

The expression e occuring in such a 'use' or 'invocation' sort(e) of the 
PROCEDURE "sort" is called the actual argument, or supplied argument of the 
invocation. Whenever evaluation of a function invocation like (5d) begins, 
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the value of the actual 
transmitted to the procedure 
procedure's formal parameter 

argument (or arguments) appearing in 
invoked, and becomes the initial value 
(or parameters). 

it is 
of the 

To explain more of the details involved in the use of SETL 
consider a simple invocation of such a function, namely 

functions, 
we will 

( 6) x := sort({5, 1, 2, 7, 0}); 

As with 
of its 
of the 

all assignment statements, execution of (6) begins with evaluation 
right-hand side. Since -sort- is the name of a function, evaluation 

function invocation appearing on the right-hand side of the 
assignment (6) involves the following steps: 

(i) The current value of the actual argument {S, 1, 2, 
function invocation is assigned as the initial value of the 
variables appearing in the procedure ~code' or 'body' (5). 

7, 0} of the 
formal parameter 

(ii) Execution of the procedure (5) begins: the statements appearing 
in the body of this procedure are executed in the ordinary way. Wherever 
the formal parameter appear, in the body of the procedure, the value of the 
actual parameter passed to the function is used. 

(iii) As soon as any RETURN statement is encountered, control is passed 
back from the procedure (5) to the instruction immediately following the 
invocation (6). Just before this happens, the expression following the 
keyword RETURN is evaluated and becomes the value which the function (5) 
yields. (E.g., becomes the value of the variable -x- in (6).) 

The 'detour and return' action typical of function invocations is shown 
schematically in the following diagram: 

value of 'actual argument' of call 
becomes value of 'formal parameter' 
of 

FUNCTION INVOCATION----~~ 
templ := sort(sl); 

control is 
transfered 
to body, 
body is 
executed. 

t : = 
function body 

I l, temp 2 : = sort ( s 2); "-

- --~ ..---,-RETURN 
-..------------vRETURN t; 

expression 

value of 
RETURN 
expression 
defines 
value which 
function yields 

RETURN •••• 
statement 
sends END PROC sort; 
control 
back to 
statement following 
invocation. 
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Figure 4.1 Detour and return in function invocations 

The following analogy should help to clarify the important distinction 
between the 'formal parameters' and the 'actual arguments' of a procedure. 
The formal parameters of a procedure can be compared to the item names which 
occur in a cook-book recipe. For example, a recipe may say 'break an egg 
into half a cup of flour and stir for 24 hours or until the mixture becomes 
firm'. The names 'egg' and 'flour' appearing in such a recipe are 'formal 
names' which stand for all the actual eggs and actual half cups of flour 
which will be needed when the recipe is actually used. As in the case of a 
function, new actual items, i.e. a different egg and a different half cup 
of flour, must be supplied each time the recipe is used, even though the 
formal names 'egg' and 'flour' appearing in the recipe remain the same. 
Continuing this analogy, the text of the recipe can be compared to the body 
of a function, which will yield something (e.g. a cake) when 'actual' 
ingredients matching the 'formal' ingredients to which it refers are passed 
to it. 

It is instructive to consider 
namely 

a 

(6b) x:=sort(sl) + sort(s2) 

somewhat more complicated example, 

Suppose, for example, that sl and s2 happen to have the values {3,1,0} and 
{-3,-1,0} respectively when (6b) is executed. Then evaluation of sort(sl) 
will produce the value ·[o, 1,3] and evaluation of sort(s2) will produce the 
value [-3,-1,0), so that after (6b) is executed the variable x will have the 
value [0,1,3,-3,-1,0]. 

The way this happens is as follows. As with all assignment statements, 
execution of (6b) begins with evaluation of its right-hand side, i.e. 
sort(sl) + sort(s2). This is an expression, and is evaluated by first 
evaluating its two subexpressions sort(sl) and sort(s2) and then combining 
the two resulting values using the '+' operator. As always,the leftmost of 
these two subexpressions, namely sort(sl), is evaluated first. 

These details are more accurately and fully represented if we break up 
the evaluation of (6b) into smaller steps, as follows. This is considerably 
closer than the 'source text' (6b) to the so-called 'internal text'or 
'directly executable code' which the SETL system actually uses: 

( 7) templ := sort(sl) 
temp2 := sort(s2) 
x := templ + temp2 

(The additional variables templ and temp2 which appear in this code are 
so-called 'compiler temporaries'. They are automatically generated by the 
SETL compiler to store necessary intermediate values and are not in any way 
directly accessible to the ordinary SETL user.) As you can see, (7) involves 
two succesive invocations of -sort-, followed by a use of the '+' operator 
to combine the two results produced. 

The following important rules govern the use of functions. 
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a) The formal parameters that appear in the procedure heading must be 
valid identifiers, that is to say they are variable names; furthermore no 
two parameters can be the same. For example, both 

(Ba) 

and 

(8b) 

are illegal; 
(8b) because 
On the other 
(arbitrarily 
For example, 

(9a) 

PROCEDURE pl(s*t) ; 

PROCEDURE p2(s,t,s) 

(8a) because the parameter s*t is not a simple variable, and 
the first and the third formal parameters of p2 are identical. 

hand, any actual argument of a function invocation can be an 
complicated) expression, and actual arguments can be repeated. 

x := sort({x IN sslx>O}) 

is legal if ss is a set (and if ss were {-10,20,-20,15,10}, would give x 
the value (10,15,20)). Similarly, if dot_prod(x,y) is a function which 
calculates and returns the dot-product of the two tuples x and y, then 

(9b) a := dot_prod(u,u) 

is legal (and will put the sum of the squared components of the tuple u into 
a). 

(b) Each invocation of a function must have exactly as many actual 
arguments as the function has formal parameters. (However, it is possible 
to define functions and procedures for which this rule is relaxed, see 
Section 4.7.1). When a function is invoked, the value of its first (resp. 
second, third, etc.) argument becomes the value of its first (resp, second, 
third, etc) formal parameter. For example, if the function whose header 
line is 

PROCEDURE intermingle(a,b,c) 

is invoked by 

x := intermingle({x IN s I x>O}, {y IN s2ly<O}, {x IN slx>O}) 

then a and c initially get the value {x IN s I x>O}, while the value {y IN 
s2 I y<O} is transmitted to b. 

(c) The body of a function can contain any number of 
and often will contain more than one. The following 
calculates and returns the maximum of two quantities, 
remark: 

PROCEDURE my_very_own_max_function(x,y); 

IF x > y THEN 
RETURN x; 

RETURN statements, 
code, which simply 
exemplifies this 
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ELSE 
RETURN y; 

END IF ; 

END PROCEDURE my_very_own_max_function; 

Page 4-7 

Generally speaking, a RETURN statement should be inserted at whatever point 
or points in the body of a proced~re at which thL_value which the procedure 
is supposed to yield has been calculated; an expression yielding this value­
must follow the keyword RETURN. Since the point at which a function has 
calculated its intended result will often depend on the actual value of the 
arguments passed to it, it is often appropriate to write RETURN statements 
at several points in a function's body. In this case, whichever RETURN 
statement that is executed first will end the execution of the function (and 
return control to the routine which invoked the function). If no RETURN 
statement is encountered, execution of the function will terminate when and 
if its trailer line END PROC is reached, and in this case the undefined 
value OM will be returned. 

Note that the keyword RETURN can be followed by an arbitrary 
expression. This expression is calculated immediately before control is 
switched back from the function to the point at which it was invoked. If 
such a 'return expression' is at all complex, the whole body of the function 
may simply consist of a single RETURN statement and nothing else, as in 

PROCEDURE positive_elements_in(s); 
$ returns the set of positive elements of s 

RETURN {x IN s Ix> O}; 

END PROCEDURE positive_elements_in 

(d) Functions can invoke other functions (including themelves) without 
restriction. When control is transferred to a function f which in turn 
invokes a function g, execution will proceed within the body off until an 
invocation of g is encountered, at which point execution off will be 
suspended and execution of g will begin. Thereafter, g will execute until a 
RETURN statement is encountered withing, at which point g will terminate, 
sending control, and possibly a value, back to f. Subsequently, when a 
RETURN statement is encountered in f, f will itself be terminated, sending 
control (and a value) back to the procedure from which f was invoked. This 
will lead to patterns of control transfer like that shown in the following 
figure. 

:invocation 

. - t, X); 

. . . 

of f) 

contro1.Jl PROCEDURE f(z); 

~nters -7 . . . ________ ,,...., ___ J• 
h = g(y);---' controlJ 

control 
returns 
from f RETURN e; 

END PROCEDURE f; 

enters 
g 

control 
returns 
to f 

. . . 
g(w); PROCEDURE 

1 
RETURN el; 

END PROCEDURE g; 
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Figure 4.2 Patterns of control transfer in multiple function calls. 

(e) Function invocations are themselves expressions, and can be used freely 
as parts of more complex expressions. For example, if -sort- is a function 
which returns the elements of a sets in sorted order as a tuple, and 
-sum_square- is a function which returns the sum of the squares of the three 
first elements of a tuple, then we can write 

print(sum_square(sort(s))); 

to display the sum of the three smallest elements of s. 

4.1.1 Some simple sorting procedures. 

One of the simplest sorting procedures is the so-called 'bubble-sort' 
method, which simply stated operates as follows : as long as there are two 
adajacent elements that are out of order in the sequence, permute them. 
This is not a very efficient sorting method (and in the form presented below 
it is even more inefficient than the standard bubble sort) but it is one of 
the simplest to state and program. The input to the procedure is a tuple 
and the output is another tuple, whose elements are in increasing order. 
Note that the code that follows applies equally well to a tuple of integers, 
a tuple of floating point numbers, or a tuple of strings: in all three 
cases the comparison operator'>' defines the desired ordering. 

PROC sort(t); $ sorts a tuple by the bubble-sort method 

(WHILE EXISTS i IN [l •• #t-1] I t(i) > t(i+l}) 
[t(i), t(i+l)] := [t(i+l), t(i)] 

END WHILE; 

RETURN t ; 

END PROC sort 

The attentive reader may wonder whether it is dangerous for this function to 
modify its own parameter t. In fact, doing so causes no problems; but the 
rule guaranteeing this will only be stated in Section 4.5. (This same 
remark also applies to several of the functions presented later in this 
section.) 

As we mentioned, the function shown just above can be used to sort any 
tuple of integers, of reals, or of strings. For example, if we write 

print(sort({'Joe', 'Ralph', 'Albert', 'Cynthia', 'Robert', 'Alfredo'})) 

the result would be 

[Albert Alfredo Cynthia Joe Ralph Robert] 

More complex 
One reason for 
'records' into an 
In SETL, such 

sorting routines than that shown above are often needed. 
this is that sorting is often used to arrange more complex 
order determined by some common 'subfield' of the records. 

records are typically repr,~sented as tuples. Suppose, for 



FUNCTIONS AND PROCEDURES Page 4-9 

example, that a group of students have taken a course in which their grades 
on a series of homework exercises and examinations have been collected, 
producing a set of tuples having the following form: 

records:={['Gonzalez,Aldo', 80,87,0M,73,90, •• J, 
['Whyburn, Linda', 82, 89, 85, 91, 90, 65, •• J, 
['Luciano, Luigi', 80, 81, 75, 79, OM, 70, •• J, 
. . . } 

Grades are assumed to be represented by integers, and missed exercises or 
examinations by occurences of OM. One might then want to list these records 
into various orders, e.g. 

(a) Alphabetic order of student names 
(b) Order of grade averages, with largest first 
(c) Order of grades on mid-term examination, largest first 
(d) Order of number of exercises not handed in, largest first, etc. 

To make it easy to sort these records according to any of their fields, 
we modify our original sorting procedure, so that it takes two arguments: 

i) The tuple of records to be sorted. 

ii) The record component by which the records must be sorted. 

This leads to the following procedure: 

PROCEDURE sortl(t, pos) 

$Tis a tuple of records (tuples) to be sorted. 
$ pos is the index of the component in each record, along which 
$ the records are to be sorted in increasing order. 

(WHILE EXISTS i in [l •• #t-1] 
t(i) (pos) > t(i+l) (pos) ) 

[t(i), t(i+l)] := [t(i+l), t(i)] 
END WHILE ; 

RETURN t ; 

END ; 

Using this function, we can print the class records 
simply by writing 

(FOR x in sortl(records, 1)) 
print(x) 

END ; 

in alphabetical order 

Suppose now that we want to list these records in order of decreasing 
midterm grades, with students that have missed the mid-term coming last. If 
the mid-term is the 11-th entry in the record, we may be tempted to sort the 
records along that component (in increasing order) and then list them in 
reverse. The attentive reader will notice that sortl will not work very 
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well in the presence of missing grades: recall the convention that a missed 
test is marked as OM in the record. The comparison (OM> x) where xis same 
value, is not meaningful, and in fact the SETL system will stop any program 
at the point at which such a comparison is attempted. As a final 
modification to our sorting procedure, let us replace the comparison that 
drives the WHILE loop, so that a value of OM is regarded as smaller than any 
existing grade. Using the 'is undefined' operator, we simply replace 
t(i)(pos) by t(i)(pos) ? (-1). Our improved sorting routine now reads: 

PROCEDURE sort2(t, pos) 

$Tis a tuple of records, some of whose components may be OM. 
$ pos is the index of the record component along which the records 
$ are to be sorted in increasing order. 

(WHILE EXISTS i in [1 •• #t -1) I 
t(i)(pos) ? (-1) > t(i+l)(pos) ? (-1)) 

[t{i), t(i+l)] := [t(i+l), t(i)] 
END WHILE ; 

RETURN t ; 
END ; 

With this modification, we can print the desired ordering by midterm 
with the following code (recall that the name is the first component 
record, the midterm grade is the 11-th component of the record, and 
this grade may be undefined): 

ordered:= sort2(records, 11) 
(FOR i in [ ordered, ordered -1 •• l]) 

print(ordered(i) (1), ordered(i) (11) ? 
END FOR; 

'**absent**') 

grades 
of the 

that 

Other plausible applications of this same kind appear in exercises XXX-YYY. 

The 'main program block'. 

A program which makes use of sub-PROCEDUREs must of course include 
commands which invoke these subprocedures. As we have explained, the first 
function invoked can invoke any or all of the other functions, but at least 
one instruction not belonging to any PROCEDURE is needed to trigger this 
first invocation. In a program including one or more PROCEDUREs, the 
initial, 'directly executed' portion of the program, i.e. everything not 
included in any sub-PROCEDURE, is called the main block£..! the program, or 
the main program for short. This block of instructions has exactly the form 
of a PROGRAM body, as described in Chapters II and III, and it must precede 
all PROCEDURES. The main program and all the procedures which follow it 
must be prefixed by a PROGRAM header line of the usual form, and a 
corresponding trailer line starting with the keyword END must follow the 
last procedure. 

For example, a complete program consisting of the -sort- function shown 
above and the two fragments of code which invoke it would have the following 
overall structure: 
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PROGRAM print_grade_info; $ program to print student grade records 

read(records); $ acquire the basic data 
print('student records in alphabetical order') ; 
print('-------------------------------------') 

(FOR x IN sort(records, 1)) 
print(x) 

END ; 
print('students and mid-term grades, in decreasing grade order'); 
print('-------------------------------------------------------') 
ordered := sort(records, 11) ; 
(FOR i in [#ordered, #ordered-1 •• 1]) 

print(ordered(i)(l), ordered(i)(ll) ? ' **absent**') 
END FOR; 

PROC sort(t, pos); 
$ t is a tuple of records. 
$ pos is the position of the record component according to which 
$ the records are to be sorted in increasing order. 

(WHILE EXISTS i IN [l •• #t-1] I 
t(i)(pos) ? (-1) > t(i+l)(pos) ? (-1) ) 

[t(i),t(i+l)] :=[t(i+l),t(i)]; 
END WHILE; 

RETURN t 

END PROC sort; 

END PROGRAM print_grade_info; 

Execution of such a program begins at the first statement of its main 
program block and ends as soon as the last statement of its main program 
block has been executed (or when a STOP statement is encountered; see 
Section XXX). 

4.1.2 A character-conversion procedure 

We continue to present an illustrative series of functions. Our next 
function takes a string and returns a similar string in which all lower-case 
alphabetic characters have been changed into the corresponding upper-case 
characters. Blanks and punctuation marks are not affected. 

PROC capitalize(s); $ capitalizes the strings and returns 
$ the result. Non-alphabetic characters are left 
$ alone 

small letters 
big_letters 

:= 'abcdefghijklmnopqrstuvwxyz'; 
:= 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'; 

capital_of := {[1,big_letters(i)]: l=small_letters(i)}; 
maps each small letter into the corresponding capital. 

RETURN +/[capital_of(let) ? let : let= s(i)] 

$ 
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$ Note that the map capital_of is defined over 
$ alphabetic characters only. Non~alphabetic 
$ characters, such as punctuation marks, 
$ are not converted but left as they are ■ 

$ This is the purpose of the'? let' expression. 
END PROC capitalize; 

A function can have any number of parameters. Occasionally it is even 
appropriate to write functions which have no parameters. For example, we 
may want to use a function which reads an input string, uses the 
-capitalize- procedure to capitalize this input, and returns the capitalized 
result. This function can be written as follows: 

PROC next_line; 

read (x); 

$ procedure to read and capitalize a line 

$ read a quoted string 

RETURN IF x=OM THEN OM ELSE capitalize(x) END; 
$ return its capitalized form ■ 

END PROC next_line; 

To invoke a parameterless procedure of this sort, one writes its name, 
followed by an empty parameter list ■ For example, to invoke the -next line­
function and print the capitalized string which it returns, we would write 

print(next_line( )); 

Note that the empty parameter list, i ■ e ■ the'( )' following the name of 
parameterless function -next_line-, is obligatory. 

(c) A package of procedures for manipulating polynomials 

As a further illustration of the use of functions, we give a set of 
procedures for adding, subtracting, multiplying, and dividing in polynomials_ 
a single variable polynomials with real coefficients • Such polynomials are 
ordinarily printed in a standard algebraic form like 

3.l*x**2 + 7 ■ 7*x+4.S, 

but in the procedures which follow we will assume that a polynomial 
represented internally by a SETL map which sends the exponent of each 
of the polynomial into the coefficient of that term. For example, 
polynomial shown above would be represented internally by the map 

{[2, 3.1], [1, 7.7], [O, 4.5]}. 

As in algebra, we simply omit terms whose coefficients are zero. 

is 
term-­
the 

To add (resp. subtract) two polynomials, we simply add (resp. 
subtract) the coefficients of corresponding terms ■ Hence functions which 
calculate polynomial sums and differences can simply be written as follows: 
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PROC sum(pl,p2); $forms the sum of two polynomials. 

RETURN { [e,c]: cl=pl(e) 
+ { [e,c2]: c2=p2(e) 

(c := cl+(p2(e) ? 0.0)) /= O.O} 
p 1 ( e) =OM}; 

END PROC sum; 

PROC diff(pl,p2); $forms the difference of two polynomials 

RETURN { [e,c]: cl=pl(e) 
+ {[e,-c2]: c2=p2(e) 

END PROC diff ; 

(c := cl-(p2(e)?O.O}) /= O.O} 
p 1 ( e) =OM} ; 

To multiply two polynomials, we can simply multiply all pairs of 
individual terms, and then group together and sum all resulting terms 
identical exponents. Finally, we eliminate terms which turn out to 
zero coefficients. This is simply 

PROC prod(pl,p2) 

p:={ [el+e2, cl*c2]: 

$ forms the product of two polynomials 

cl=pl(el), c2=p2(e2)}; 

RETURN {[e,c]: all_coeffs=p{e} 

END PROC prod ; 

(c := +/all_coeffs) /= O} 

their 
having 

have 

Next, we show how to divide a polynomial pl by a polynomial p2. Let 
cl*x**jl be the leading term of pl i.e. the term having largest exponent, 
and let c2*x**j2 be the leading term of p2. Then we subtract 
cl/c2*x**(jl-j2) times p2 from pl, to eliminate the leading term of pl, and 
sod~ repeatedly until all terms of pl with exponents larger than j2 have 
been eliminated. The collection of all terms by which p2 is multiplied 
constitute the terms of the quotient. 

PROC div(pl,p2); $ forms the quotient polynomial pl/p2 

if p2={ } THEN RETURN OM; END; $ this is the case p2=0. 

el : = MAX/ [ e: c = p 1 ( e) ] ; $ largest exponent of 
e2 : = MAX/[e:c=p2(e)]; $ largest exponent of 

qcoeff:={ } ; $ start with an empty 

(FOR j in [el-e2,el-e2-l •• O] I pl(e2+j)/=O.O) 
qcoeff(j) := pl(e2+j)/p2(e2); 
pl := diff(pl, { [e+j, qcoeff(j)*c] : c=p2(e)} ) ; 

END FOR; 

pl 
p2 

quotient 

RETURN q coe ff; 

END PROC div; 

$ return the map representing the quotient. 



----· --------------- ------

FUNCTIONS AND PROCEDURES Page 4-14 

We note that techniques for manipulating polynomials by computer have 
been studied very intensively, and that much more efficient methods than 
those used in these simple illustrative procedures are known. See Knuth, 
The Art of Computer Programming, Vol.2, for an account of these 
developments, which go beyond the scope of the present book. 

4.2 Name scopes; local and global variable names. The VAR declaration. 

In writing a long program, which can involve hundreds of procedures, it 
is irritating, as well a highly error-inducing, to have to remember which 
variables had been used for which purposes through the whole of a long text. 
To see this, consider the plausible case of a function invocation imbedded 
in a WHILE loop like 

(1) i := 0 ; j := 0 
(WHILE (i+j) < f(j)) ••• 

and suppose that f is an invocation of a function whose body is found 
somewhere else in a long program text. It is entirely plausible that, 
unknown to the author of the code (1), the body of the function f should 
make use of the convenient variable name i, e.g. in a loop like 

(2) (FORALL i IN [1..//t]) ••• 

But then, if the i appearing in (1) and the i appearing in (2) were regarded 
as representing the same variable, the function invocation f(j) which occurs 
in the WHILE loop could change the value of i in ways not at all hinted at 
by the outward form of the code(l). Were this the case, a programer wishing 
to write a loop like (1) would first have to examine the body of the 
function f, note all the variables which it used, and carefully avoid all 
unplanned use of similarly named variables. This would introduce many higly 
undesirable interactions between widely separated parts of a lengthy 
program, and make large programs harder to write. 

To avoid these very undesirable effects, most programming languages 
make use of rules which restrict the scope of names. The SETL rule is as 
follows. In the absence of explicit declarations, variables retain their 
meaning only within a single procedure (or main program). This implies that 
ordinarily a variable i appearing in one procedure and a variable i 
appearing in another procedure are treated as distinct. In effect, the SETL 
compiler applies the following renaming procedure the program text which it 
processes: 

(a) The main program which begins the program text is numbered zero, 
and the procedures which follow this main program are numbered 1,2, •• in 
their order of occurence. 

(b) Every variable name xxx used in then-th procedure, including the 
names of its formal parameters, is implicitly changed to xxx n. 

As an example, consider the program 

PROGRAM example; 
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X := {J,0,1,2}; 
print(squares(sort({i in x:i > O}))); 

PROC sort{i); $ sorts by the 'quicksort' method 

RETURN IF (x:=ARB i)=OM THEN [ 
ELSE sort({e in i I e < x}) + [x] 

+ sort({e IN i I e > x}) END ; 

END PROC sort; 
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PROC squares(x); $ forms and returns the tuple of squares of the 
$ components of the ~uple x 

RETURN [e*e : e=x(i)J; 

END PROC squares; 

END PROGRAM ; 

Given the above program as input, 
apply the renaming rules (a),(b), 
following renamed variant: 

PROGRAM example; 

the SETL compiler will implicity 
and therefore it will really see the 

x_0:={3,0,1,2}; $ main program 
print(squares(sort({i_O in x_O:i_O > 0}))); 

PROC sort(i_l); $ subfunction number 1 

RETURN IF (x_l:=ARB i l)=OM THEN [ ] 
ELSE sort({e_l IN i 1 I e 1 < x_l}) + [x_l] 

+ sort({e_l IN x 1 I e 1 > x_l}) END; 

END PROC sort; 

PROC squares(x_2); $ subfunction number 2 

RETURN [e 2*e 2 e_2=x_2(i_2)]; 

END PROC squares; 

END PROGRAM; 

As stated above, rule (b) serves to isolate variables of the same name 
from each other if they are used in different procedures. Variables used in 
this way are said to be local to the procedures in which they appear. This 
is generally what we want. However, in some cases, we do want a variable 
used in several procedures to refer to the same object in all of them. For 
example, one or more 'major' data objects may be used by all the functions 
in a related group of functions and in this case it can be convenient to 
allow all the functions to refer to these objects directly. To see this, 
consider the case of a group of functions written as part of an inquiry 
system to be used by the executives of a bank. This might involve many 
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functions, for example 

PROC payments(customer_name); 
. . . 

$ returns a given customer's payment 
$ record 

PROC tel_no(customer_name); $ returns a given cu~tomer's 
$ telephone number 

PROC overdue(ndays); $ returns set of a customers whose payments 
$ are more than ndays overdue 

••• etc. ,etc. 

It should be plain that all these routines will have to make use of one or 
more 'master files•. (When represented in SETL, these 'files' are likely to 
be sets of tuples representing records, maps sending customer names, or 
perhaps customer identifiers such as social-security or account numbers, 
into associated records, etc.) Instead of insisting that these 'master 
files' be passed as arguments to all the functions which need to use them, 
it is more reasonable to make them available directly to every function, 
giving them easily recognizable variable names such as 
-master_customer file-. To make this possible, SETL provides a special form 
of statement, called the VAR declaration. By writing 

VAR master_customer_file; 

at the very start of the overall PROGRAM in which the functions listed above 
appears, we make -master customer file- a global variable which designates 
the same object in all the functions which reference this variable. The 
required layout of a program using one or more global variables is shown in 
the following example: 

PROGRAM banking_system; $ header line for overall program 

VAR master_customer_file; $declaration of global variable 
(additional global variable declarations come here) 

(body of 'main' program of banking_system comes here) 

PROC payments (customer_name); $first subfunction 
. . . 

END PROC payments; 

PROC tel_no; 
. . . 

END PROC tel_no; 

PROC overdue; ... 
END PROC overdue; 

$ second subfunction 

$third subfunction 

(additional functions and subprocedures come here) 

END PROGRAM banking_system; 
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The statement 

VAR master_customer_file; 

appearing first in this example is called a declaration rather than an 
executable statement because it serves to modify the meaning of other 
statements rather than to trigger any particular calculation. 

The general form of a VAR declaration is 

VAR xl,x2, ••• ,xn; 

i.e. it consists of the keyword VAR followed by a comma-separated 
distinct variable identifiers. 

Such declarations can appear in one of two positions: 

list of 

(a) In a PROGRAM, before the program's first executable stat-ement. 
Variable identifiers appearing in such a declaration are defined to be 
global variables directly accessible to each following PROCEDURE in the 
program. A VAR declaration appearing in this position is called a global 
VAR declaration. 

(b) In a PROCEDURE within a program, before the procedure's first 
executable statement. A VAR declaration appearing in this postion is called 
a local VAR declaration. Variable identifiers appearing in such a 
declaration are defined to be local variables accessible only within the 
procedure. Since variable names not appearing in any VAR declaration are in 
any case local to the procedures in which they appear, VAR declarations 
appearing in this position often serve only to document the way in which a 
procedure uses its variables. However, if the procedure is recursive (see 
Section 4.4), VAR declarations appearing in it have a more significant 
effect, which will be described more fully in Section XXX below. 

Any number of VAR declarations may appear either at the start of a 
PROGRAM or within a PROCEDURE, but all such declarations must precede the 
first executable statement of the PROGRAM or PROCEDURE in which they appear. 
No variable should appear twice in VAR declarations (either global VAR 
declarations or declarations within a single procedure), nor is it legal for 
any procedure parameter name to appear in a global VAR declaration. See 
section 9.1 for the rules which apply to VAR declarations appearing in 
DIRECTORYs, MODULEs, and LIBRARYs within large, complex SETL programs; see 
Section YYY for an account of the modified VAR declaration used to declare 
backtracked variables. 

A global variable retains its value between invocations of the 
procedures which use it. (The same remark applies to a variable appearing 
in a VAR declaration within a procedure). 

To sum up, there are two ways 
between seperate PROCEDUREs. 

in which values can be communicated 

(i) By being passed as parameters or RETURNed as function values. 
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(ii) By direct global communication, i.e. by being the values of 
variables which have been declared to be global and hence are accessible to 
more than one procedure. 

Method (ii) is powerful, 
functions to influence each 
is therefore good programming 
declared global variables. 
global only if 

but potentially undisciplined, since it allows 
other in ways that their invocations hide. It 
practice to avoid using more than a very few 
Generally speaking, variables should be made 

(A) They represent 'major' data objects accessed by most of a PROGRAM's 
functions, and their usage is subject to c~early understood rules of style 
which pervade the entire program. 

(B) They represent 'flags' or other conditions 
need to test (e.g., to determine whether particular 
be produced), but which play no role in the normal 
procedures and are rarely modified. 

which many procedures 
debugging traces should 

functioning of these 

(C) They need to be shared between procedures which do not call each 
other and must be kept alive between successive invocations of these 
procedures. 

(D) They represent constants, too complex to be set up conveniently 
using a CONST declaration (see Section YYY), which need to be used whenever 
a procedure is invoked. 

(E) They need to be accessible to all logical copies of a recursive 
procedure (See Section 4.4). 

The -capitalize- function appearing in Section l 
illustrate point {d). As written, this forms the map 

can be used to 

capital_of := {['a','A'], ['b','B']. ['c','C'J, ••• ,['z','Z']} 

each time it is invoked. To do this is of course wasteful of computer time. 
Using the CONST declaration described in Section 6.2 we would instead 
declare capital_of to be a constant having this value, but to do so we would 
have to write out all the elements of const_of explicitly, a nuisance since 
this would require us to type 104 apostrophes, 51 commas, 52 brackets, etc ■ 

It is more convenient to declare 

VAR capital_of; 

and then to add the instructions : 

small_letters 
big_letters 
capital_of 

:= 'abcdefghijklmnopqrstuvwxyz' ; 
:= 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' ; 
:= {[l,big_letters(i)]: l=small_letters(i)} 

as part of a main program block before the first use of -capitalize-. The 
-capitalize- function reduces to the following simple form: 

PROC capitalize(s); 
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RETURN +/[capital_of(let) ? let 

END PROC capitalize ; 

4.3 Programming examples 

let= s(i)] 

Page 4-19 

. , 

4.3.1 The 'Buckets and Well' problem: a simple 
example. 

'artificial intelligence' 

The following kind of problem, often called the 'buckets and well' 
puzzle, commonly appears on intelligence tests. Suppose that one is given 
several buckets of various sizes, and that· a well full of water is 
available. To focus on a simple specific case, suppose that just two 
buckets, a 3 quart bucket and a 5 quart bucket, are given, and that we are 
required to use them to to measure out exactly three quarts of water. Since 
exactly this amount of water to be measured out, no non-precise operation is 
allowed. This means that only three kinds of operations can be used in a 
solution of this problem: s.nf 

(a) any bucket can be filled brim-full from the well; 

(b) any bucket can be emptied completely; 

(c) any bucket can be poured into any other, until either the 

first bucket becomes completely empty or the second bucket 

becomes brim-full. 

As an example, the following is a way_ of measuring out exactly 4 quarts 
using only a 3 and a 5 quart bucket. 

(i) Fill the 5 quart bucket. 

(ii) Pour the 5 quart bucket into the 3 quart bucket (leaving 
2 quarts in the 5 quart bucket.) 

(iii) Empty the 3 quart bucket. 

(iv) Pour the contents of the 5 quart bucket into the 3 quart 
bucket. (Now 2 quarts are in the 3 quart bucket, and the 5 
quart bucket is empty). 

(v) Fill the 5 quart bucket. 

(vi) Pour the 5 quart bucket into the 3 quart bucket, until the 
3 quart bucket becomes full. (This leaves exactly 4 quarts in the 
5 quart bucket.) 

(vii) Empty the 3 quart bucket. 

(Now exactly 4 quarts have been measured out). 
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The fact that it is easy to program a computer to solve problems of this 
kind might be considered surprising, since such solutions are often 
considered to require 'intelligence'. Nevertheless a systematic approach is 
not hard to find. The key idea is that of 'state'. Specifically, as one 
moves through the steps of any solution to this kind of problem, the objects 
being manipulated (in this case, the buckets) will at any moment be in some 
particular condition. In the case we consider, this 'condition' or 'state' 
is determined by the amount of water in each of the buckets. We can 
represent this state as a tuple, of as many components as there are buckets. 
Initially, when both buckets are empty, the state is [O,O]. The 'target' 
state for the example considered above.is that in which exactly four quarts 
have been measured into the 5 quart bucket; this is represented by the 
tuple [0,4]. The state in which both buckets are completely full is [3,5], 
that in which the three quart bucket is full and the 5 quart bucket is empty 
is [3,0), etc. In this representaton, the problem solution given by (i-vii) 
above would be represented as the following sequence of states: 

[0,0), [0,5), [3,2], [0,2], [2,0], [2,5], [3,4], [0,4] 

This way of looking at the problem makes it plain that what we need to 
consider is the set of all possible states, and the manner in which new 
states can be reached from old. Suppose that the tuple -state- represents 
the amount of water currently in the buckets, so that state(i) is the amount 
of water in the i-th bucket, and that the tuple -size- represents the sizes 
of all the given buckets, so that size(i) is the capacity of the i-th 
bucket. In the buckets-and-well problem, only the three manipulations (a), 
(b), and (c) are allowed. If bucket i is poured into bucket j until either 
i becomes empty or j becomes full, then the amount poured will be 

state(i) MIN (size(j)-state(j)). 

Hence the following procedure returns the collection of all states than can 
be reached in a single step from an initially given state: 

PROC new_states_from(state); 

RETURN {empty(state,j): j IN [1 •• //state]} 
+ {fill(state,j): j IN [1 •• /lstate]} 
+ {pour(state,i,j): i IN [l. .I/state], j IN [l •• I/state] I (i/=j)}; 

END PROC new_states_from(state); 

PROC empty(state,j); 

state(j):=O; 
RETURN state; 

END PROC empty; 

$ empties bucket j 

PROC fill(state,j); $ fills bucket j 

state(j):=size(j); $ the 'size' tuple is assumed to be global 
RETURN state; 
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END PROC fill; 

PROC pour(state,i,j); $ pour bucket i into bucket j 

amount := state(i) MIN (size(j)-state(j)); 
state(i) -:= amount; state(j) +:= amount; 

RETURN state; 

END PROC pour; 

$ amount that can be poured 

We can now solve our problem by a systematic process of state 
exploration. We start in the initial 'all buckets empty' state ((0,0] in 
the preceding example). Next we use the new_states_from routine to generate 
all the states which can be reached in one step from this starting state. 
Then we generate all states which can be reached in one step from these 
second level states, etc. States which have been encountered previously are 
ignored; the ones which remain are precisely those which can be reached 
from the start in two steps but no fewer. From these, we generate all 
states which can be generated in three steps but no fewer, and so forth. As 
we go along, we check to see if the target state has yet been reached. 
Eventually, we either reach the target state, thereby solving our problem, 
or find that no new states can be generated, even though the target state 
has not been reached. In this latter case, the problem clearly has no 
solution. 

The following figure illustrates the notion of state-search and shows 
some of the states that come up during search for a solution of our 
two-bucket example: 6------...­

y:~rt state) 

[3%1 (0,5] 

co~ 3J-t,,c3,51---.-c 3~21 

[3~3] [0~2] 

c1~51 c2fo1 

c1~01 c2!51 

[0~1] [3~4] 

[3!11 [0+4] (target state) 

Figure 4.3. States of a two-bucket problem; bucket sizes are [3,5] 

Note that in this figure we only show transitions which lead to states 
that have not been seen before. Other transitions are redundant, since the 
shortest path from start state to the target state will never pass through 
the same state twice. 

~--·------- ---- - ------
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To be sure that we can reconstruct the path from start to target once 
the target has been reached, we proceed as ·follows. Whenever a new state ns 
is seen for the first time it will have been generated from some immediately 
preceding old state os. As states are generated, we keep a map came_from 
which maps each new state ns into the old state os from which ns has been 
reached. Once the target state has been reached, w~ can use this map to 
chain back from the target to the start state ■ Then the desired soultion is 
simply the reverse of the sequence thereby generated. 

The following code implements this state-generation and backchaining 
procedure ■ It is deliberately written in a manner which hides all 
information concerning the structure of states, as well as all details 
concerning the way in which new states arise from old. This makes it 
possible to use the same routine to solve many different kinds of 
state-exploration problems. 

PROC find_path(start,target); 

came from:= {[start,start]}; 

just_seen := {start}; 

(WHILE just_seen/={}) 
brand_new := { }; 

$ general state-exploration procedure. 

$ the start state is considered 
$ to have been reached from itself 

$ initially, only the start 
$ state has been seen 

$ while there exist newly seen states 
$ look for states that have not 

$ been seen before 
{FOR old_state IN just seen, new_state IN new_states from(old_state) 

!came from(new_state)=OM) 

brand_new WITH:=new_state; $ record a brand new state 
$ and record its origin came from(new_state) := old state; 

IF new_state=target THEN GOTO got_it; END; 
$ since problem has been solved 

END FOR; 

just_seen := brand_new; $ now the brand-new states define those which 
$ have just been seen 

END WHILE; 

RETURN OM; $ at this point all states have been explored, and the 

got_it: 

$ target has not been found, so we know that no solution 
$ exists. 

$ at this point the target has been found, so we chain 
$ back from the target to reconstruct the path from start 
$ to target 

rev_path := [target]; $ initialize the path to be built 

(WHILE (last_state := rev_path(#rev_path))/=start) 
rev_path WITH:= came_from(last_state); 

END WHILE; 

RETURN [ rev_path ( j): j IN [{!rev_path, llrev __ pa th-1 •• 1 J) ; 
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END PROC find_path; 

The following main program can be used to acquire a problem­
specification interactively and to invoke the find_path routine to solve it. 
Again we hide all problem-specific information in appropriate subroutines. 

VAR 
size; $ global variable for storing problem specification 

(WHILE (prob_specs:=get_prob_specs( ))/=OM) 

[start, target, size] := prob_specs; 

IF (path := find_path(start,target))=OM THEN 
print('This problem is ·definitely unsolvable') 

ELSE 
print('The following sequence of states constitutes a' 

solution:'); 
(FOR x IN path) print(x); END; 

END IF; 

END WHILE; 

The 
acquire 
solved. 
is being 

parameterless get_prob_specs function interrogates the user to 
the description of a particular buckets-and-well problem to be 
(Note that we assume here that the program we have been considering 
run interactively from a terminal.) 

PROC get_prob_specs; 

LOOP DO 

$ acquires and returns specifications 
$ of problem 

print('Enter a tuple to define bucket sizes, or type ''STOP'' to halt:'); 

read(x); 
IF x='STOP' THEN QUIT; END; 

print('Enter a tuple of the same length to define initial bucket states:'); 

read(y); 
IF y='STOP' THEN QUIT; END; 

print('Enter a tuple of the same length to define target of problem:'); 

read{z); 
IF z='STOP' THEN QUIT; END; 
data := [y,z,x]; 
IF EXISTS t=data(i) I 

OR EXISTS c=t(i) 
(NOT IS TUPLE(t) OR #t /= #data(l) 
I NOT IS INTEGER(c) OR c < 0) THEN 

print('Illegal problem specification.' 'Please re-enter or type ''STOP'' 

to halt.'); 
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CONTINUE; 
ELSE 

$loop, to try again 

RETURN data; 
END IF; 

END LOOP; 
RETURN OM; $ Since this point 

$ has been typed. 
END PROC get_prob_specs; 

will only be reached if 'STOP' 
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Since the notion of 'problem state' used in the foregoing is quite 
general and since we have written the find_path procedure and the main 
program block shown above in a manner which insulates them from the details 
of the problems that they solve, we can use these procedures to handle any 
path-finding problem of the same general class as the 'buckets and well 
problem'. Another amusing problem of this kind is the 'goat, wolf, and 
cabbage' puzzle. In this puzzle, a man, who brings with him a goat, a wolf, 
and a cabbage, comes to a river which he must cross in a boat just large 
enough for himself and one but not two of the objects goat, wolf, and 
cabbage. He can never leave the goat and wolf, or the cabbage and goat, 
alone together, since in the first case the wolf would eat the goat and in 
the second the goat would eat the cabbage. How is he to cross the river? 

To develop a program which solves this puzzle, we have only to rewrite 
the -new states from- function and the parameterless­
get_prob_specs-procedure. First, we need to decide on a representation of 
the states of the puzzle. We can designate the four objects appearing in 
the puzzle by their initials as 'G', 'W', 'C', and 'M' (man) respectively, 
and represent each state of the puzzle by a pair [1,r], where -i- designates 
the set of all objects remaining to the left of the river, and -r­
designates the set of all objects that have been moved across the river. 
For example, 

[{'G', 'M'}, {'W'.'C'}] 

represents the state in which the wolf and the cabbage have been 
moved across, and the man has returned to the left side of the 
river to get the goat. The start state is then 

[{'G', 'W', 'C', 'M'}, { }] 

and the target state is 

[ { }, {'G', 'W', 'C', 'M'}] 

The -new_states_from- procedure appropriate for 
represented as follows: 

this problem can be 

PROC new_states_from(state); 

[1,r] := state; $ 'unpack' state into its 'left' and 'right' portions 

RETURN IF 'M' IN 1 THEN {[1-{'M',x}, r + {'M',x}]: 
x IN 11 x/='M' AND is_legal(l-{'M',x})} 
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ELSE 
{[1 + {'M',x}, r-{'M',x}]: x IN rl x/='M' AND is_legal(r-{'M',x})} 

END; 

END PROC new_states_from; 

PROC is_legal(s); $ test to see ifs meets conditions of puzzle 

RETURN NOT ({'G', 'C'} SUBSET s OR {'G', 'W'} SUBSET s); 

END PROC is_legal; 

4.4 Recursive Functions. 

The value that a mathematical function f(x) of an 
set variable takes on for a particular x can often be 
the value of the same function for smaller argument 
examples of this general principle are: 

integer, tuple, or 
expressed in terms of 
values x'. Several 

(i) The 'factorial' function n!, 
satisfies the identity 

equivalent to */[i:i in [1 •• n]], 

n! = IF n = 1 THEN 1 ELSE n*((n-1)!) END 

(ii) The sum sigma(t)=+/t of all the components of a tuple t satisfies the 
identity 

sigma(t) = IF t=O THEN OM ELSEIF t=l THEN t(l) 
ELSE t(l) + sigma (t(2 •• )) END; 

(iii) The tuple sort(s) representing the elements of sin sorted order 
satisfies the identity 

sort(s) = IF s=O THEN [ ] ELSE [MIN/s] + sort(s-{MIN/s}) END 

This same function sort(s) also satisfies many other interesting identities. 
Suppose, for example, that we pick an arbitrary element x from the sets, 
and then divide the remaining elements of s into two parts, the first, L, 
containing all elements less than x, the second, G, containing all elements 
greater then x. Then if we sort the elements of Land G, and concentrate 
the resulting sorted tuples, sandwiching x between them, we clearly get a 
tuple t which contains al the elements of sin sorted order. This shows 
that the function sort(s) also satisfies the identity 

sort(s) = IF (x:= ARB s)= OM THEN [ ] ELSE 
sort({y IN s:y<x}) +(x] + sort({y IN s:y>x}) ·END; 

Identities of the kind appearing in the preceding examples 
recursive definitions and the functions appearing in them 
recursively defined functions. Such recursive definitions all 
following features: 

are called 
are called 

have the 
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{a) For certain particular simple or 'minimal' values {like n=l in {i) 
or t=[ ] in (ii)) of the argument variable x of a recursively defined 
function f(x), the value of f(x) is defined explicitly. 

(b) For all other argment values x, the value of f(x) is expressed in 
terms of the value that f takes on for one or more s~aller argument values 
xl,x2, •• xn. That is, there exists a relationship of the general form 

f(x) = some_combination{f{xl),f(x2), •• ,f(xn)) 

(c) Repeated use of the relationship {b) will eventually 
value f{x) in terms of various values f{y) each of which has 
which is minimal in the sense of {a), so that all values f(y) 
which f(x) is ultimately expressed are known explicitly. 

express any 
a parameter y 
in terms of 

Any recursive relationship satisfying (a,b,c) gives a method for 
calculating f(x) for each allowed argument x. Like many other programming 
languages, SETL allows one to express such recursive calculations very 
simply and directly, by writing recursive functions, i.e. functions which 
invoke themselves. This can be done for each of the three examples given 
above, which then take on the following forms: 

PROC factorial{n); $ calculates the factorial n! 

RETURN IF n=l THEN 1 ELSE n*factorial(n-1) END; 

END PROC factorial; 

PROC sigma{t); $ calculates +/t 

RETURN IF t=O THEN OM ELSEIF t=l THEN t{l) 
ELSE t(l) + SIGMA (t(2 •• )) END; 

END PROC sigma; 

PROC sort(s); $ recursive sorting procedure 

RETURN IF s ={ } THEN [ ] 
ELSE [MIN/SJ+ sortl{s LESS MIN/S) END; 

END PROC sort; 

These examples illustrate the 
recursive procedures: 

following general remarks concernin& 

(i) Syntactically, recursive functions (and procedures) have the samE 
form as other functions and procedures. The only difference is that 
recursive procedures invoke themselves, while other procedures happen not 
to. 

(ii) The same name-scoping rules apply to recursive as 
procedures. 

to other 
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Note that a recursive function f(s) 
itself to arguments smaller than s; 
eventually terminates. 

uses itself, but always applies 
this is why the calculation off 

Recursive functions f need not invoke themselves directly: 
invoke other functions g which invoke f, or g can invoke some h 
invokes f, etc. A group of functions which invokes each other is 
called a mutually recursive family of functions, and any function 
to such a mutually recursive family is itself called recursive. 

They can 
which then 

sometimes 
belonging 

For an example of such a mutually recursive family, consider the 
problem of defining an overal order for SETL objects, which will allow any 
two SETL objects to be compared to each other.· (Such an order could, for 
example, serve as the basis for an output routine which always arranged the 
elements of sets in increasing order, thereby making it easier to locate 
elements in large sets when they were printed.) To define such an order, we 
can agree on the following conventions: 

(a) OM always comes first, integers before reals, reals before strings, 
strings before atoms, atoms before tuples, and tuples before sets. (Atom is 
a SETL data-type. For more on atoms see section 5.3). 

(b) Among themselves, integers and reals are arranged in their standard 
order, strings in their standard alphabetical order, and atoms in the order 
of their external printed representations, i.e. if x and y are two atoms 
then x comes before y if and only if (STR x) < (STR y). (Note that the STR 
x operator produces a string identical with the external printed form of the 
object x; see Section 2.1.) 

(c) Tuples are arranged in lexicographic order, i.e. tl comes before 
t2 if, in the first component in which tl and t2 differ, tl has a smaller 
component than t2. 

(d) To compare two sets, first arrange their elements in order • 
allows them to be regarded as tuples; then apply rule (c). 

. This 

The following mutually recursive group of 
ordering strategy we have just described. 

functions implements the 

PROC is_bigger(x,y); $ return TRUE if x>y in the 
$ order just described 

RETURN IF x=y OR y=OM THEN TRUE 
ELSEIF x=OM THEN FALSE 
ELSEIF TYPE x /= TYPE y THEN type_number(x) > type_number(y) 
ELSEIF TYPE x = 'ATOM' THEN STR x > STR y 
ELSEIF TYPE x= 'TUPLE' THEN lex_compare(x,y) 
ELSE lex_compare(sort(x),sort(y)); $ x and y are sets 

END PROC is_bigger; 

PROC sort(s); $sorts the elements of the sets into the order defined 
$ by is_bigger 
$ A sorted tuple is returned. The 'bubble' method 
$ is used for sorting 
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t:=[x IN s]; $ arrange the elements of s as 
$ a tuple in arbitrary order 

(WHILE EXISTS i IN [1 •• t-1] I is_bigger(t(i),t(i+l))) 
[t(i),t(i+l)] :=[t(i+l),t(i)]; 

END WHILE; 

RETURN t; 

END PROC sort; 

PROC lex_compare(tl,t2); $ compare two different tuples, 
$ in their le~icographic order, 
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$ components being compared by is_bigger 

RETURN EXISTS cl=tl(i) 

END PROC lexcompare; 

PROC type_nu~ber(typ); 

is_bigger(cl,t2(i)); 

$ converts typ, which is the name of 
$ a valid SETL type, into an integer 

tno:= { ['INTEGER' ,1], ['REAL' ,2], ['STRING' ,3], ['ATOM' ,4], 
['TUPLE' ,S], ['SET' ,6] }; 

RETURN tno(typ); 

END PROC type_number; 

Until now we have regarded recursive SETL functions simply as SETL 
representations of recursive mathematical relationships, and have ignored 
the question of how they are implemented, i.e. how the calculations which 
they define are actually performed. This is actually the best way to look 
at the matter, since the calculation used to evaluate a recursive function 
can be complex and tricky to follow even when the mathematical relationship 
on which it is based is simple and easy to understand. Nevertheless one 
occasionally needs to understand how recursive calculations are performed. 
For example, when an incorrectly programmed recursive procedure 
malfunctions, one needs to know what is happening in order to diagnose the 
problem and correct it. 

Implementation of recursive functions, like that of mutually recursive 
groups of functions, is based upon the following rule. Whenever a function 
f invokes itself, a new logical copy of the function is created, initial 
parameter values are passed to this new logical copy, and execution of this 
new logical copy begins with its first statement. While the new copy of f 
is executing, the old copy of the function f, from which the new copy was 
created, remains in existence, but execution of it is suspended. The new 
copy can in turn invoke f, thereby creating a third copy off, which can 
even go on in the same way to create yet a fourth copy, etc. However, if 
the recursion has been written correctly, the arguments x passed to thee 
successive copies off will be getting smaller and smaller. Eventually one 
of them will get small enough for the corresponding value f(x) to be 
evaluated directly. Once this happens, the currently active copy of the 
function f will execute a statement 
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RETURN e 

for some directly evaluable expression e. This will pass the value of e 
back to the place from which the current copy off (call it CCF) was 
invoked. CCF will then become superfluous and will disappear. The 
immediately prior copy off will then become active, and when it finishes 
its execution it will in turn pass a value back to the copy off from which 
it has been invoked and disappears, etc. Eventually a value, and control, 
will be returned to the very first copy of f, and the whole recursive 
evaluation will be completed as soon as this first copy executes a RETURN 
statement. 

As an example of this process of recursive evaluation, suppose that the 
recursive -sort- routine shown earlier in this section is invoked, and that 
initially the argument value {30,0,60,40} is transmitted to it. This will 
trigger the following steps of recursive evaluation. 

(i) Copy 1 of -sort- begins to evaluate sort({30,0,60,40}) 

(ii) The minimum element O is removed from the sets, and -sort­
is invoked recursively to evaluate sort({30,60,40}) 

(iii) Copy 2 of -sort- begins to evaluate sort({30,60,40}) 

(iv) The minimum element 30 is removed from the sets, and -sort­
is invoked recursively to evaluate sort({60,40}) 

(v) Copy 3 of -sort- begins to evaluate sort({60,40}) 

(vi) The minimum element 40 is removed from th sets, and -sort­
is invoked recursively to evaluate sort({60}) 

(vii) Copy 7 of -sort- begins to evaluate sort({60}) 

(viii) The minimum (and only) eleraent 60 is remoed from the set 
s, and -sort- is invoked recursively to evaluate sort({ }). 

(ix) copy 5 of -sort- immediately returns [ ] as the value of sort({ }) 
to copy 4, and disappears. 

(x) Copy 4 of sort appends the returned value [ ] to [60), returns the 
result [60) to copy 3, and disappears. 

(xi) Copy 3 appends the returned value [60) to [40), returns the 
result [40,60) to copy 2, and disappears. 

(xii) Copy 2 appends the returned value [40,60) to [30), returns 
the result [30,40,60) to copy 1, and disappears 

(xiii) Copy 1 appends the returned value [30,40, 60) to [0), and 
returns [0,30,40,60), as the final result of the whole recursive 
evaluation, to the place from which -sort- was first invked. 

The complexity of this sequence of steps underscores the fact that 
whenever possible a recursive SETL function like -sort- should be 

----~--------------- --- ------
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looked at as the transcription of a recursive mathematical 
relationship in this case, the very obvious relationship 

sort(s) = IF s={ } THEN ELSE [MIN/s] + sort(s LESS MIN/s) END; 

rather than in terms of the sequence of steps required for its evaluation. 
However, the way in whch recursive routines are evaluated becomes relevant 
if they are miswritten and consequently malfunction. Certain common 
pathologies are associated with malfunctioning recursive routines and one 
needs to be able to recognize them when they appear. A common error is to 
write a recursion which does not handle its easy, directly evaluable cases 
correctly, or which for some reason never reaches a directly evaluable case. 
If this happens, a recursive routine will create more and more copies of 
itself without limit, until the entire memory of the computer on which it is 
running is exhausted, and a final, 'MEMORY OVERFLOW' error message is 
emitted. 

In somewhat more complex cases, a malfunctioning recursive function 
will loop indefinitely, first creating additional copies of itself, then 
returning from and erasing these, then again creating new copies of itself, 
again returning from and erasing these, etc., without any overall progress 
to termination ■ Such a 'nonterminating recursive loop' is likely to produce 
much the same symptoms as a nonterminating WHILE loop, namely the program 
will run on, either with no output or with a flood of repetitive output, 
until the operating system notices that it has outrun its time limit and 
terminates it forcibly. This situation is most easily diagnosed at an 
interactive terminal, simply by printing out the parameters transmitted to 
the recursive function each time it is invoked; this pattern of parameters 
will fail to show the logical pattern upon which your hopes for eventual 
termination of the recursion rest. 

Having said all this, we now go 
recursive procedure, namely 

on to describe another interesting 

4.4.1 Robert Floyd's Quicksort Procedure ■ 

Quicksort: This sorting method, due to Robert Floyd of Stanford 
University, works as folows: If the tuple t of elements to be sorted has no 
elements or just one element, we have nothing to do, since an empty tuple or 
a tuple with just one element is always sorted. Otherwise, we remove the 
first element x from t, and divide what remains into two parts, the first 
('small_pile') consisting of all those component smaller then x, the second 
('large_pile') consisting of all those components at least as large as x. 
We then sort these two piles separately. This can most readily be done just 
by using quicksort itself recursively. Finally, we recombine to get all the 
original components in their sorted order. This is done by putting the 
sorted smallpile first, followed by the element x, and then followed by the 
sorted largepile ■ 

See the attached figure for furthet explanation of the 
quicksort works ■ Code for this procedure can be written as 

way in 
follows: 

PROC quick_sort(t); $ Fluyd quicksort procedure, first form 

IF #t<2 THEN RETURN t; END; 

which 
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X := t(l) 
small_pile := [y 

large_pile := [y 
y=t(i) 
y=t(i) 

$ take the first component 
y < x] 
y >=x and i > 1] 

RETURN quick_sort(small_pile) + [x] + quick_sort(large_pile) 

END PROC quick_sort ; 
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f --------------------------] 3 1 55 7 11 -3 9 5 

--~-----------------------, 
first element x 

X 

f-3~ 11~~:[~s~~~1~~9~~~11~s~ 

a) tuple t to be sorted 

b) form small-pile and 
large-pi'le 

c) sort small-pile and 
large-pile using quicksort 
recursively 

d) concatenate, putting x in 
the middle to form 
final sorted result 

Figure 4.4: Robert Floyd's Quicksort Procedure 
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By using SETL expression features more strenuously, we can write this 
whole procedure in just one statement, namely as 

PROC quick_sort(t); $ Floyd quicksort procedure, second form 

RETURN IF #t < 2 THEN t 
ELSE 

quick_sort ( [y 
+ quick_sort([y 
END ; 

END PROC quick_sort; 

y=t(i) 
y=t(i) 

y < t(l)]) + [t(l)] 
y >= t(l) and i>l] ) 

4.4.2. Another Recursive Procedure: Mergesort 

The 'quicksort' procedure that has just been presented sorts by 
separating the array to be sorted into two piles which can be sorted 
separately and then combined. This recursive approach, sometimes called 
'divide and conquer', forms the basis for many efficient data-manipulation 
algorithms. It is often most effective to divide the problem given 
originally into exactly two halves of equal size. 'Quicksort' does not 
always lead to this equal division, since random selection of a component x 
of a tuple t may cause it to be divided into parts [y:y IN t I y < x] and 
[y:y IN t I y > x] which are very different in size. For this reason, we 
will now describe another recursive sorting technique, called mergesort, 
which does begin by dividing the tuple t that is to be sorted into two parts 
of equal size. This procedure works as follows: 
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(i) Divide t (at its middle) into two equal parts tl and t2, 
them separately. 
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and sort 

(ii) Then merge the two sorted parts tl, t2 oft, by removing either 
the first component of tl or the first component of t2, whichever is 
smaller, and putting it first in the sorted version of the full tuple t, 
after which we can continue recursively, merging the remaining components of 
tl and t2. 

Code for this procedure is as follows: 

PROC sort{t); $ recursive mergesort procedure 

RETURN IF #t < 2 THEN t 
$ since a tuple of length O or 1 is ipso facto sorted 
ELSE merge(sort(t(l •• #t/2)), sort(t{#t/2+1 •• ))) END; 

END PROC sort; 

PROC merge(tl,t2); $ auxiliary recursive procedure for merging 

RETURN IF tl=[ ] THEN t2 
ELSEIF t2=[ ] THEN tl 
ELSEIF tl(l) < t2{1) THEN [tl{l)] + merge(t1(2 •• ),t2) 
ELSE t2(1) + merge(tl,t2(2 •• )) END; 

END PROC merge; 

Instead of programming the -merge- procedure recursively, we can write 
it iteratively. For this, we have only to work sequentially through the two 
tuples tl and t2 to be merged, maintaining pointers il, i2 to the first 
component of each which has not yet been moved to the final sorted tuple t 
being built up. Then we repeatedly compare tl(il) to t2(i2), move the 
smaller of the two tot, and increment the index of the component that has 
just been moved tot. This revised merge procedure is as follows: 

PROC merge(tl,t2); 

t := [ ]; 
il := 12 := l; 

$ iterative variant of -merge- procedure 

$ merged tuple to be built up 
$ indices of first components not yet moved 

(WHILE il < #tl AND i 2 < #t2) 
IF tl(il) < t2(i2) THEN$ 'move ' tl(il) tot 

t WITH:= tl(il); 
il +:= l; 

ELSE $ 'move' t2(i2) tot 
t WITH := t2(i2); 
t2 +:= l; 

END IF; 

END WHILE; 

RETURN t + tl(il •• ) + t2(i2 •• ); 
$ note that at most one of tl(il •• ) and t2((i2 •• ) is non-null 
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END PROC merge; 

Binary searching: ~ fast recursive searching technique. 

If the components of a tuple tare arranged in random order, then to 
find the component or components having a given value we must search 
serially through every one of the components oft; clearly no component of 
t can go unexamined, since this may be precisely the component we are 
looking for. On the other hand, if the components of t are numbers or 
character strings, and if they are arranged in sorted order, then, as every 
one who has ever looked up a word in a dictionary or a name in a telephone 
book should realise, a much faster searching procedure is available. The 
most elegant expression of this searching pro~edure is recursive, and is 8$ 

follows: 

(i) Compare the item x being sought to the middle item t(#t/2) of the 
sorted tuple t. If xis greater than (resp. not greater than) this middle 
item, proceed recursively to search for x in the upper (resp. lower) half 
oft. 

(ii) The search ends when the vector in which we are searching has 
length equal to 1. 

In coding this procedure, we maintain two quantities -lo-,-hi-, which 
are respectively the low and the high limits of the zone oft in which we 
must still search. When the search procedure is first called, lo should be 
1 and hi should be #t. When -lo- and -hi- become equal, we return their 
common value. If this locates a component oft equal to x, we have found 
what we want; otherwise we can be sure that xis not preserit int, i.e. 
that no component oft is precisely equal to x. 

Recursive code for this searching procedure is as follows: 

PROC search(x,t,lo,hi); 
$ binary search for x int between -lo- and -hi-

RETURN IF lo=hi THEN lo 
ELSEIF x <= t(mid := (lo+hi)/2) THEN search (x,t,lo,mid,hi) 
ELSE search (x,t,mid+l,hi) END; 

END PROC search; 

It is easy to express this search iteratively rather than recursively, 
namely we can write 

PROC search((x,t); 

lo := l; hi := #t; 

(WHILE lo< hi) 

$ iterative form of binary search procedure 

$ initialise search limits 

IF x <= t(mid := (lo+hi)/2) THEN 
hi := mid; 

ELSE 
lo := mid+l; 
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END IF; 

END WHILE; 

RETURN lo; 

END PROC search; 
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Binary searching can be enormously more efficient than simple serial 
searching. Suppose, for example, that the sorted tuple t to be searched is 
of length one million. Then to search t serially several million elementary 
operations will be required. On the other hand, since 1,000,000 is roughly 
2**20, only twenty probes will be required to locate a component of t by 
binary searching. Hence, for sorted t~ples of this length, binary searching 
is roughly 50,000 times as fast as serial searching. This illustrates the 
vast efficiency advantage that can be gained by proper choice of the 
algorithm that you will use. 

4.4.4 The 'Towers of Hanoi' Problem 

Among the many different kinds of 
toyshops, the 'Towers of Hanoi' puzzle is 
board with three identical pegs and a set 
diameter which will fit snugly around any 
the puzzle looks like this: 

Peg 1 Peg 2 Peg-3 

Figure 4.5: The 'Towers of Hanoi' Problem 

puzzles that can be bought in 
a classic. This puzzle involves a 
of rings of decreasing external 
of the pegs. As initially set up, 

To solve the puzzle one must move all the disks from the particular peg 
(peg 1) on which they are originally placed to one of the other pegs (say, 
to peg 3). However, only one disc can be moved at a time, and it is 
forbidden to ever place a larger disc on top of a smaller disc. 

Recursion gives us an amazingly effective way of writing a solution to 
this problem. The key idea is this: since a large disk can never be placed 
atop a smaller, all the disks except the bottom one must be moved to peg 2 
before we can move the bottom disk from peg 1 to peg 3 ■ Hence, to move a 
pile of n disks from peg 1 to peg 3, we must 

(a) move a pile of (n-1) disks from peg 1 to peg 2; 

---------- - -------- -----~~~~ 



-- ---- ---------------------- - --~------------

FUNCTIONS AND l'R<H:1•:DIJl{ES Page 4-36 

(b) movP the n-th disk from peg 1 to peg 3 
(c) move a pile of (n-1) disks from peg 2 to peg 3 

The following elegant recursive function 
moves required; eRch move is represented as 

generates the sequence of 
Ii pair [f,t) showing the pegs 

from which and to which a peg is moved. 

PROC moves(ndisks, fr, to, via); $ moves n disks from peg -fr- to 
$peg-to-

RETURN ( IF ndisks=l THEN [[fr,to]] 
ELSE moves(ndisks-1, fr, via, to)+ [[fr,to]] 

+ moves(ndisks-1, via, to, fr) END ) 
END PROC moves; 

A function is always sent some collection of parameter values, and 
calculates a single result value, which it RETURNs, from them. 
Occasionally, however, one wants to use PROCEDURES in a somewhat different 
way, namely, one wants to invoke a procedure expressly in order to modify 
some object that already exists. In this case, such a procedure is invoked 
for its effect, rather than for the value it delivers. This use of 
procedures moves us away from the notions of 'value' and 'expression' and 
focuses more on the somewhat different notion of program state, i.e., the 
collection of all values local and global variables have at each moment 
during a computation. What we will be describing now is the way in which 
procedures are used to modify this program state. There are two ways in 
which procedures can have this effect: one of them is to construct 
procedures which modify one or more of.their calling parameters; the second 
is to have a procedure modify one or more global variables. We shall 
examine each of these possibilities separately. 

4.5 Procedures which modify their parameters 

A function is always sent some collection of parameter vales, and 
always calclates some single value, which it returns, from them. 
Occasionally, however, one wants to use PROCEDURES in a somewhat different 
way. More specifically, one wants to transmit (zero or more) arguments to 
them, but thhen to have the procedure modify some or all of tis parameters, 
after which it must make these modified values available to the code which - --- --- --- ----- ---- ------ - -- ---
has invoked it. A related possibility is to invoke a procedre simply in 
order to modify one or more globally available variables. (See Section 
4.5). 

as 
in 

This use 
follows. 

of procedures is perfectly legal in SETL, and is accomplished 
A procedure's header line lists its parameters, as for example 

PROCEDURE my_proc(x,y,z); 
Parameters listed in this way can be modified within the body of the 

procedure (i.e., within -my_proc- ) but parameter values are ordinaiily 
local to the 
procedure, so that these modifications are not be cransmitted back 
to the point from which the procedure was invoked. For example, 
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if we define the procedure 

PROC change_parameter(x); 

x:=O; 

RETURN x; 

END PROC change_parameter; 

and invoke it by 

(2) y := 1 ; 
z := change_parameter(y); 

print('z is:', z, 'y' is:,y); 

then the -print- statement will produce the output 

z is: 0 y is: 1 
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This reflects the fact that the RETURN statement in the PROC returns 
the final value of the variable x (which is local to the PROC), but that 
modifications to the procedure parameter x are not transmitted back to the 
point of invocation and therefore do not affect the value of the actual 
argument y appearing in (2). Thus the argument y remains unchanged. 

This is the rule which ordinarily applies to PROCs, and which is most 
appropriate for PROCs used as functions. However, it is possible to bypass 
this rule, and to create PROCs which do modify one or more of the actual 
arguments with which they are invoked. To do this, one simply prefixes the 
'parameter qualifer' RW (meaning 'read/write parameter') to each parameter 
corresponding to one of these modifiable arguments. Suppose, for example, 
that we modify the procedure (la), making it 

(1 b) PROC change_parameter(RW x); 

x:=O; 

RETURN x· 
' 

END PROC change_parameter; 

Then the output of the -print- statement in (2) will change to 

z is: 0 y is: O, 

reflecting the fact that now changes in the value of the parameter x of the 
PROC (lb) will be transmitted back to the point from which the PROC was 
invoked. 

PROCs whose parameters are qualified in this way will generally not be 
used as functions that return values (though technically it is legal to use 
them as functions). Instead, they will ordinarily be invoked simply by 
writing their names followed by their actual argument lists, as is 
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illustrated by 

(3) y:=l; 
change_parameter(y); 
print('y is:',y); 

which produces the output 

y is: 0 
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Any procedure my_proc(xl, •• ,xn) can be 
simply by writing a statement of the form 

invoked in this way, 

( 4) my _pro c ( a 1 , ••• , an) ; 

where al, ••• ,an 
'actual arguments' 
logically equivalent 

is any list of expressions 
of the invocation (4)). 
to an invocation 

(4b) junk variable := my_proc(al, ••• ,an); 

(called, as 
An invocation 

usual, the 
like (4) is 

where -junk_variable- can be the name of any variable whose value is 
never used for anything else. 

Of course, if the procedure -my_proc- invoked by (4) does not modify 
any of its arguments, an invocation like (4) will generally not be very 
useful, since none of the arguments al,-• •• ,an will change and since the 
value returned by -my_proc- is simply thrown away. On the other hand, if 
the procedure -my_proc- does modify its arguments, then the invocation (4) 
will trigger corresponding modifications of any arguments ag which 
correspond to parameters carrying the qualification RW. 

PROCs which modify some of their arguments and which are normally 
invoked in this way are often called 'simple- procedures', as distinct from 
'functions', i.e. from PROCs which do not modify their arguments and are 
normally invoked in the manner illustrated by 

x : = my_function(al, ••• ,an); 

Since the value RETURNed by a simple-procedure will just be thrown 
away, the expression e appearing in a statement 

RETURN e; 

within such a procedure is usually without significance and may as well be 
OM. SETL allows 

RETURN OM; 

to be abbreviated simply as 

RETURN; 
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and this is the form of the RETURN statement which is appropriate to use in 
simple-procedures. Note also that a RETURN statement immediately preceding 
the trailer line of a simple-procedure can be omitted. 

Simple-procedures with no parameters can be invoked just by writing 
their names followed by a semicolon, as in 

my_simple_proc_without_parameters ; $ invokes procedure with 
$ this name. 

As an example, here is a simple-procedure which 'compresses' a tuple by 
dropping out all of its OM compnents: 

(Sa) PROC compress (RW t); 

t : = [ X IN t I X /=OM] ; 

END PROC compress; 

(Here we have made use of one of the rules stated above to save writing a 
RETURN statement just before the trailer line of this PROC.) 

Note that if x initially has the value 
invocation 

(6b) compress(x); 

will give x the value [1,2,3]. 

[l,OM,OM,OM,2,OM,3], then the 

As a matter of style, note also that instead of writing (Sa) we could 
have written a closely related function, namely 

(Sb) PROC compress (t); 

RETURN [x int I x/=OM]; 

END PROC compress; 

in which case would have had to write 

(6b) x := compress(x); 

to get the effect of (6a). The form (6a) is sometimes slightly more 
convenient to write and it is this convenience that can induce us to write a 
simple-procedure rather than a function for some purpose we have in mind. 

In addition to the parameter qualifier RW, two ad.ditional qualifiers RD 
and WR are provided. In general, parameter qualifiers have the following 
significance: 

RD read parameter: can be read and written within its PROCEDURE, 
but modifications to it will not be transmitted back to the 
corresponding actual argument. 
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RW read/write parameter: can be read and written within its 
PROCEDURE, and modifications to it will be transmitted 
back to the corresponding actual argument. 

WR write-only parameter: can be written and will be 
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transmitted back to the corresponding actual argument, but will not 
be read. 

If none of these qualifiers is attached to a particular procedure 
parameter, the parameter will be treated as if it were qualified with 'RD'. 
Thus RD is the 'default' qualifier for otherwise unqualified parameters of 
procedures. 

Next suppose that a procedure called -my_proc- has one (or more) 
parameters x which are qualified with RW or WR. In this case an invocation 

(7a) my_proc(e) 

of -my_proc- is translated by introducing an otherwise unused 'compiler 
temporary' variable (call it -var-), and treating (7a) exactly a if it were 

(7b) var := e 
my_proc(var); 
e := var; 

Thus the only forms of expressions which can appear as actual arguments in 
place of parameters qualified by RW or WR are those which can legally appear 
to the left of an assignment operator. (See Section 2.12 for a 
comprehensive discussion of these '~ssignment targets'). This means that 
the invocations 

and 
my_proc(3) 

my_proc(x + y); 

are both illegal, since the assignments 

3 := var; 
and 

x + y := var 

would both be illegal. 

my_proc(t(i)) 
and 

my_proc( [x,y]); 

On the other hand, the invocations 

$ where t is a map or tuple 

are both legal, and have exactly the same meanings as 

and 

var := t(i) 
my_proc(var) 
t(i) := var; 

var := [x, y] 
my_proc(var) 
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[x, y] := var 

respectively. 
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One final, rather esoteric, point deserves mention. Actual argument 
- values are transmitted to a procedure and become the values of its formal 

parameters immediately upon invocation of the procedure. These values are 
transmitted by copying, i.e., each parameter receives a logically 
independent copy of the appropriate actual argument value upon procedure 
invocation. If the procedure modifies its parameters, it is these copied 
values that are modified; the original argument values remain unchanged. 
Moreover, even if the procedure transmits changes in its parameter values 
back to the point of invocation, these changes are only transmitted when the 
procedure executes a RETURN, at which time an assignment like that appearing 
in (7b) takes place. These rules are natural enough, and normally require 
little thought. However, examples which show their effects can be 
contrived. For example, consider the following code, in which the variable 
y is global 

PROGRAM esoteric; 

VAR x,y; $This declaration makes x and y global 

x : = ' in i t i a 1 v a 1 o f x , ' ; y : = ' i n i t i a 1 _ v a 1 _ o f _y ' 

manipulate(x,x,y) 
print('y is:',y); 

PROC manipulate(~,v,RW w) 

is' ,v) print('u is',u,'v 
$ this will print: u is initial val of xv is initial val of x - - -

u: = 'changed,'; 

print('u is',u,'v is',v); 
$ this will print: u is changed vis initial val of x 

S Note that u and v remain different even though the 
$ corresponding actual arguments are the same 

w := 'mangled,'; 

print('w is',w,'y is',y); $ note that y is global 
$ this will print: w is mangled, y is initial_value_of_y 

$ note that y is still unchanged, even though the change in 
$ w will be transmitted back toy when we return frora this PROC 

END PROC manipulate; 

END PROGRAM esoteric; 
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Note finally that the last line of output produced by this program, 
which will be produced by the -print- statement (in line 5 of the program) 
which immediately follows the invocation of -manipulate- will be 

y is mangled 

4.6 Exercises 

Ex. 1 Write a procedure whose inputs are a tuple t of integers and a 
tuple s of integers in increasing order, and which returns a tuple tl of 
length s+l defined as follows: the first component of tl is the number of 
components of t which are not greater than s(l); for j between 2 and #s, 
the j-th component of tl is the number of components oft which are greater 
than s(j-1) but not greater than s(j); ad the last component of tl is the 
number of components oft which are greater than the last component of s. 
Try to make your procedure efficient. 

Ex. 2 'Bags', used in some programming languages, are like sets, but their 
elements can occur multiply. In SETL, a bag b can be represented in two 
obvious ways, namely 

(a) by a tuple: i.e. the elements of b can be arranged in some arbitrary 
order, and made the component of a tuple; or 

(b) by a map, which sends each element of b into the number of times that it 
occurs within G. 

Write a pair of 
representations of 
extend the following 

procedures which convert between these t~o differe~t 
a bag G. Also, write a collection of procedures which 
set operations to bags in the most useful way: 

(i) bl+b2, bl*b2, and bl-b2 (where bl and b2 are bags) 

(ii) x IN b (were bis a bag and xis arbitrary) 

Ex. 3 The following table describes the tax due or D dollars of taxable 
income. Write a procedure which, given·D, will return the amount of tax 
due. 

TO BE CONTINUED 

Ex. 4 Write a program which will read in a sequence of lines, each 
containing someone's name, first name first, and print out an alphabetized 
list of these names, in alphabetic order of last names. Repeat this 
exercise, but this time print the alphabetized list with last names first. 

Exercises On Permutations 

A permutation is a one-to-one mapping of a set s of n items into 
itself. If the set s consists of the integers from 1 ton, then such a 
permutation can be represented as a vector v of length n such that every 
integer from 1 ton appears as a component of v. The following exercises 
concern various properties of permutations. 
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Ex. 5 The product prod(vl,v2) of two permutations vl and v2 is the vector v 
such that v(i)=vl(v2{i)) for each i in {1 •• #v}. The identity permutation e 
of n integers is the permutation represented by the vector [1,2, •• ,n]. The 
inverse inv(v) of a permutation is the permutation in such that 
prod(v,inv(v))=e. Write two SETL functions -prod- and -inv- which realize 
these operations. Write a procedure rand_perm(n) which generates a 
different random permutation of the integers from 1 ton each time it is 
called. 

Ex. 6 Check the following facts concerning permutations by generating a few 
random permutations and verifying that each fact asserted holds for these 
permutations. (The routines described in Exercise 5 should be used for this 
purpose.) 

(a) The product of two permutations is a permutation, and the 
product of permutations is associative. 

(b) prod(inv(v),v)=e for each permutation v. 

(c) prod(inv{u),inv(v))=inv(prod(v,u)) for any two permutations 
u,v of n elements. 

(d) Define power(u,k) to be the product of k copies of the 
the permutation v. Check that power(v,j+k)=prod(power(v,j), 
power(v,k)). Check that for each permutation v there exists 
a positive integer k such that power (v,k)=e. 

(e) Is prod(u,v)=prod(v,u) true for every pair u,v of 
permutations of n items? 

Ex. 7 A program to generate all permutations (rearrangements) of the 
integers 1 thru n can be built up as follows. Start with the numbers in the 
sequence s=[l •• n]. Then repeatedly find the last element s(j) in the 
sequence s such that s(j+l)>s(j). Let s(i) be the last element following 
s(j) such that s(i)>s(j). Interchange s(i) with s(j), and then reverse the 
sequence of elements following the j-th position. This gives the next 
permutations s. 

Write this permutation-generation procedure in SETL, and use it to 
write out the list of all permutations of the integers 1 thru 5. Use this 
same procedure to create a program which reads in a string of length 5 and 
prints it out in all possible permutations, but without any repetitions. 

Ex. 8 If a second order polynomial P(x)=A*(x**2)+B*x+C with integer 
coefficients A,B,C has a first-order polynomial M*x+N as a factor, then Mis 
a factor of A and N is a factor of c. Write a procedure which uses this 
fact to test polynomials like P(x) to see if they can be factored, and which 
produces the two factors of P if P can be factored. How efficient can you 
make this factorization procedure? 

Can you devise a similar procedure 
polynomials with integer coefficients? 

for factoring third order 

Ex. 9 As of the present date (early 1981), tokens on the New 
subway system cost 60 cents. Tokens are sold at change booths. 

York City 
Purchasers 
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normally pay for tokens without saying anything, simply by passing a sum of 
money to the change booth attendant. Certain sums of money (e.g. $1, which 
will purchase only one token) a~e unambiguous. Others, like a five dollar 
bill, are ambiguous, since they will purchase anywhere from one to eight 
tokens. On the other hand, $5.50 is unambiguous, since the likely reason 
for adding the last fifty cents is to pay for nine rather than just eight 
tokens. Write a program which will read a tuple designating a collection of 
bills and coins, decide whether this is ambiguous or unambiguous, and print 
out an appropriate response (which might be either 'How many tokens do you 
want?' or 'Here are n tokens'.) 

Ex. 10 Write a function whose argument is a tuple t with integer or real 
coefficients and which returns the positions of all the local maxima int, 
i.e all the components of t which are larger than either of their 
neighboring components. 

Ex. 11 Before Britain began to use decimal coinage, its money consisted of 
pence, shillings worth 20 pence each, and pounds worth 12 shillings each. 
Write a procedure to add sums of money represented in this way, reducing the 
sum to pounds, shillings, and pence. (Summ of money can conveniently be 
represented as triples.) Write a procedure that will subtract sums of money 
represented as pounds, shillings, and pence, and which could have been used 
to make change in pre-decimal British shops. 

Exercises On Recursion 

Ex. 12 The greatest common divisor GCD(x,y) of two positive integers is the 
largest positive integer z such that (x MOD z)=O and (y MOD z)=O. (If x and 
y are equal, then GCD(x,y)=x). Write procedures each of which calculates 
GCD(x,y) efficiently by exploiting one of the following mathematical 
relationships: 

(a) GCD(x,y)=GCD(x-y,y) if x>y 
(b) GCD(x,O)=x and GCD(x,y)=GCD(x MOD y,y) if x>y. 
(c) GCD(x,y)=2*GCD(x DIV 2,y DIV 2) if x and y are both even. 

GCD(x,y)=GCD(x DIV 2,y) if xis even and y is odd 
GCD(x,y)=GCD(x-y,y) if x and y are both odd and x>y. 

Ex. 13 Suppose that we make the GCD procedure of Exercise 8 into an infix 
operator .GCD and then evaluate .GCD/s for a sets. What result does this 
produce?. Assuming that sl and s2 are non-null sets is the identity, is 

GCD/(sl+s2)=(.GCD/sl).GCD/s2 

always true? What will happen if one of sl or s2 is null? 

Ex. 14 A fraction m/n (with integer numerator and denominator) can be 
represented in SETL as an ordered pair [m,n]. Using this representation, 
write definitions for OPs called .RS, .RD, .RP, and .RQ, which respectively 
form the sum, difference, product, and quotient of two fractions. These 
operators should reduce fractions to lowest terms, for which purpose one of 
the GCD procedures developed in Exercise 12 will be found useful. 
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Ex. 15 Supposing that fractions have the representation described in 
Exercise 14, write a procedure which takes a set of fractions and sorts them 
into increasing numerical order. 

Ex. 16 The following mathematical relationships can be used as the basis 
for recursive procedures for calculating various functions • Write out 
appropriate recursive procedures for each of these functions. 

(a) The value x occurs as a component of a tuple t if and only if it occurs 
either as a component of the left half oft or as a component of the right 
half of t. 

(b) The sum of all the components of a tuple t of intgers is the sum of the 
left half oft plus the sum of the right half oft. 

(c) The reverse of a tuple t is the reverse of its right half, 
the reverse of its left half. 

followed by 

Think of at least four other relationships of this kind, and write out 
recursive procedures based on these relationships. 

Ex. 17 The Fibonnacci numbers F(n) are defined by the 
F(l)=F(2)=1, F(n+l)=F(n) + F(n-1) for n>l. 

following facts: 

(a) Write a recursive procedure for calculating F(n). 

(b) Write a procedure which calculates F(n) without using recursion. 

Ex. 18 Write a recursive procedure to calculate the number of 
ways that an integer n can be written as the sum of two squares, 
of two cubes, and as the sum of three cubes. Print out a table 
values and see if they suggest any interesting general results. 

different 
as the sum 

of these 

Ex. 19 To compute the power x**n, one can multiply x**m by x**k for any 
positive integers m and k satisfying m+k=n. Write a recursive procedure 
which uses this fact to determine the minimum number M(n) of multiplications 
needed to calculate x**n. Print out a table of M{n) for all n from 1 to 
100. Use the technique explained in Exercise XXX to ensure that your 
recursive procedure is not unnecessarily inefficient. 

Ex. 20 Take Mergesort (Section 4.4.2) and one other recursive procedure, 
and track their recursive operation by inserting code which computes the 
level of recursion reached by every invocation of the procedure being 
tracked. (A global variable should be introduced for this purpose). 
Messages like the following should be printed: 

invoking Mergesort from recursion level 3 
entering Mergesort at recursion level 4, parameter is ••• 
returning from Mergesort to recursion level 3, result is ••• 

Ex. 21 The correlation corr(u,v) of two vectors u,v of n real numbers is 
the quotient 
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(u(l)-Mu)*(v(l)-Mv)+ ••• +(u(n)-Mu)*(v(n)-Mv)/sqrt(VAu*Vav) 

where Mu and Mv are the means of u an v respectively, while VAu and VAv are 
the variances of u and v respectively (see Exercise 6). Write SETL 
procedures which calculate and return this value. Use this procedure to 
calculate and print the correlation of ten randomly selected pairs of 
vectors. What is the largest value that corr(u,v) can possibly have? What 
is the smallest? 

Ex. 22 Write a procedure which will read a number written in any specified 
number base from 2 to 36, and convert it to the integer it represents in 
decimal notation. Numbers in bases below ten will involve only the digits 
'O' thru '9'; numbers written in larger bases will use the capital letters 
'A' thru 'Z', in increasing order, as additional digits. For example, base 
16 numbers will be written using the characters 

0 1 2 3 4 5 6 7 8 9 ABC DEF, 

and base 18 numbers will be written using the characters 

0 1 2 3 4 5 6 7 8 9 ABC DEF G HI. 

Also, write a procedure 
representation in any of 
the fact that an illegal 
converted to an integer. 

which will convert an integer to 
these bases. These programs should 
character might occur in a string which 

its 
allow 

is 

string 
for 

to be 

program which can be used to prepare an alphabetized 
your friends' names, addresses, and telephone numbers. The 

program is assumed to be a list of multi-line entries, each 
a line having the format 

Ex. 23 Write a 
directory of 
input to this 
starting with 

*key, 

where -key- designates an alphabetic key which determines the alphabetic 
position of the given entry. (These keys are not to be printed in the final 
directory.) For example, two entries might be 

*Smith 
Mary Smith 
222 Flowery Way 
Ossining, N.Y. 10520 
*Termites 
Acme Exterminators 
(Termite Specialists) 
(Recommended by Mary) 
(202) 789-1212 

Ex. 24 Write a 'personalized letter' generator. The inputs to this program 
should be a form letter L and a file F containing 'addresses' and 
'variations'. The letter Lis given as a text containing substrings **j**, 
and the file F given as a sequence of items **sl**s2**•·•**sn, each sj being 
some 'personalising' string. The expanded form of the letter is produced by 
inserting the address in an appropriate position, and replacing each 
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substring **j** in the form L by the string sj. For example, if L begins 

Dear **l**: 
Since only **2** weeks reman before you will graduate from 
**3**, 

and the first entry in Fis 

Ms. Nancy Holman 
353 Bleeker St 
N.Y.C., 10012 NY 
**Nancy**six**New York University 

the 'personalized' letter generated will be 

Ms. Nancy Holman 
353 Bleeker St 
N.Y.C., 10012 NY 

Dear Nancy: 
Since only six weeks remain before you will graduate from 

New York University, ••• 

The personalized letters that your 
right-justified and attractively formatted. 
features which will improve the utility 
generator. 

program generates should be 
Try to think of, and implement, 
of the personalized letter 

Ex. 25 Write a procedure which will print a string of 
characters in 'banner' format on your output listing. In this 
character is printed one and a half inches wide and two inches 
whole banner should also be centered on the listing. 

up to 
format, 
high; 

six 
each 

the 

Ex. 26 The set of distances between the centers of cities x,y directly 
connected by a road not going through any other city is given by a map 
dist(x,y). (Whenever dist(x,y) is defined, so is dist(y,x), and of course 
dist(x,y)=dist(y,x).) Write a pr~gram that will use this information to 
calculate the shortest driving distance between any two cities (whether or 
not they are connected directly by a road). This information should be 
printed out as an inter-city distance chart of the usual form. Also, print 
out a chart which describes the shortest driving route between cities by 
listing the city z that you should drive to first if you want to go from x 
to z. 

Ex. 
list 
t2. 

27 Write a procedure which, given two tuples tl and t2, prints out a 
of the number of times each component of tl occurs as a component of 

Ex. 28 Write a procedure whose parameters are a string x and a set s of 
strings, and which returns the element of s which has the largest number of 
sucessive character pairs in common with x. How would you structure this 
procedure if it is to be called repeatedly, always with the sames, but with 
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many different values of x? 

Ex. 29 Write a code fragment that determines whether a 
letter, digit, blank, or special character. Try 
efficient• 
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character C 
to make your 

is a 
code 

Ex. 30 Manhattan island was purchased in 1626 for $24. If instead 
this money had been deposited in a bank account drawing 6% annual interest, 
how much would it be worth now? 

4.7 Other PROCEDURE-related facilities 

4.7.1 Procedures and functions with a variable number of arguments 

Occasionally one wants to write a procedure or function which can 
accept a variable number of arguments. One may, for example, want to write 
a function which sums the value of all its integer arguments, or a procedure 
which can take any number of arguments, capitalize, and print them. Another 
example is furnished by SETL's built-in -read- and -print- functions; the 
-print- function accepts any number of arguments and prints them one after 
an6ther, the -read- function accepts any number of arguments and modifies 
them all by assigning to them SETL values read from input. 

SETL does in fact allow such procedures and functions to be written. 
To define a function with a variable number of parameters, a he~der- line of 
the form 

PROC function_name(xl,x2, ••• ,xn(*)) 

must be used. Here as before, any -function_name- can be used to name the 
function, and xl, ••• ,xn are as usual its parameters. However, a function 
declared in this way can be invoked with any number of arguments greater 
than n-1. All arguments from then-th onward are then gathered into a tuple 
which is assigned as the value of the last parameter xn. Thus, for example, 
in the body of the function, the references xn(l) and xn(S) would refer to 
then-th and (n+4)-th argument respectively. Only the last parameter of 
such a function can be followed by the sign (*) to indicate that it actually 
represents a list of arguments whose length can vary. 

The special reserved symbol NARGS can be used within the body of such a 
function; its value will be the actual number of arguments with which the 
function was invoked. 

Here, for example, is a modified -print- procedure which accepts any 
number of arguments and prints them one after another, but which starts a 
new line whenever it begins printing a set or a tuple, or whenever more than 
five items have been printed on a single line: 

PROC nicer_print(x(*)); 

next := 1 ; $ next item to print 
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(WHILE next<=NARGS) 

IF EXISTS j in [next •• NARGS MIN (next+ 5)] 
ITYPE x(j) IN {'TUPLE', 'SET'} THEN 
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print(x{j)); $ then print the tuple or set on its own line 
next:=j+l ; 

ELSE 
print_on_line(x(next •• next+4)) 
next+:= 5 ; 

END IF; 
END WHILE; 

END PROC nicer_print; 

PROC print_on_line(t); $ prints the components oft on one line 

CASE flt OF 

( 0) : RETURN; $ nothing to print 

(1): print(t(l)) 

(2): print(t(l),t(2)) 

(3): print(t(l),t(2),t(3)) 

(4): print(t(l),t(2),t(3),t(4)) 

(5): print(t(l),t(2),t(3),t(4),t(5)) 

END CASE 

END PROC print on line 

The qualifiers RD,RW,WR can be attached to any of the parameters of a 
procedure having a variable number of arguments. This is shown in the 
following example, which gives code for a modified -read- operation which 
'echos' all the information that it reads, i.e., copies this information to 
the standard output file. 

PROC echo_read(RW x(*)) 

(FOR j IN (1 •• NARGS]) 
read(y) print(y) 
x(j) := y ; 

END FOR; 

END PROC echo read 

To use this procedure, we could for example write 

---- -------------
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echo_read(x,y,z); 

this would read values into x,y, and z in the normal way, 
print the information that it read. 

but would also 

4.7.2 User-defined prefix and infix operators 

Function names must always be written before their lists of 
and these agruments must always be enclosed in parentheses. 
functions of two arguments, 'infix' notation is generally more 
for example, it is more convenient to write 

a+b 

than to have to write 

plus(a,b) 

and certainly 

a+b+c+d 

is more convenient than 

plus(plus(plus(a,b),c),d). 

arguments, 
However, for 

convenient; 

For this reason, SETL allows its user to define two-parameter infix 
operators (and also one-parameter prefix operators, which however are 
considerably less useful). The names of such operators must be ordinary 
SETL identifiers to which the character '•' (period) is prefixed. To 
introduce such operators, a perfectly ordinary function body followed by a 
trailer line is used, but the header line introducing the operator is 
changed to 

OP .name(a) 
or 

OP .name(a,b) 

$ to introduce a prefix operator 

$ to introduce an infix operator 

Suppose, for example, that we wish to introduce an operator called 
-.dot- which forms the dot-product of two vectors of equal length, i.e. the 
sum of the products of their corresponding components. This can be done as 
follows; 

OP .dot(u,v) 

If #u /= #v THEN 
print('tuples of mismatched length',u,v); 
RETURN OM; 

ELSE 
RETURN +/[u(i)*v(i) 

END IF; 

END OP .dot; 

i IN [ 1 •• #v] 
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Once this operator has been defined, we can invoke it simply by writing 

u .dot v 

Another example is the useful operator -.c-, which forms the composition of 
two (possibly multivalued) maps: (See Section 2.7.4 for an explanation of 
the meaning of map 'composition'.) 

OP .c(f,g); 

RETURN { [x,y]: z=g{x}, q in z, y IN f{q}} ; 

END OP • c; 

User-defined infix operators of this kind can be combined with the 
token ':=' to form assigning operators (see Section 2.12.1). For example, 
in the presence of the preceding definition we can write 

f .c:= g; 

to abbreviate the common construct 

f := f .c g; 

Moreover, both built-in and user-defined infix operators can be used to 
form compound operators. For example, we can use the -.c- operator in the 
following way to vrite an operator which forms then-th power of a map f. 

OP f • to n; 

RETURN IF n=O THEN { } 
ELSE .c/[f:i IN [l..n)] 

END OP .to; 

$ the identity map 
END; 

User-defined prefix operators are less useful than user-defined infix 
operators, since they cannot appear in either of these convenient contexts. 
However, by defining a function of one parameter as an operator rather than 
an ordinary PROCEDURE, we save what might otherwise be irritating 
parentheses. For example, if we define a unary operator minus by writing 

OP .minus(u); 

RETURN [-x: x IN u] 

END op.minus; 

Then the negative of a vector u can be formed by writing 

.minus u 

If instead of this we made -minus- an ordinary function, we would 
have to write 
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minus(u) 

instead. 

The arguments of a user-defined infix or prefix operation always carry 
the implicit qualifier RD, so that attempting to give them either of the 
qualifications WR or RW is illegal. Attempting to attach the qualifier 
'(*)' (See Section 4.7.1) to a parameter of an infix or prefix operator is 
also illegal. 

The precedence of any user-defined binary operator is lower than that 
of any built-in binary operator, with the exception of the following 
comparators and Boolean operators: 

= /= < <=>>=IN NOTIN SUBSET INCS AND OR IMPL 

Assignments and assigning operators seen from the right also have lower 
precedence than user defined infix operators. User-defined unary operators 
have the same precedence as built-in unary operators (See Section 2.13 for 
details concerning operator precedence). The following examples illustrate 
these rules: If .op is a user-defined binary operator, then 

a+b .op c means (a+b) .op c 

b .op c = d means (b .op c) = d 

b .op c AND d means (b .op c) AND d 

b .op c + d means b .op (c+d) 

a+:= b .op c means b .op (c+d) 

a+:= b .op c means a+:= (b .op c) 

4.7.3 Refinements 

Procedures play various roles, and in particular serve to clarify the 
logical structure of a complex program by dividing it into subsections whose 
names hint at their purposes. However, the use of procedures is a bit 
'heavy' syntactically, in part because procedures require header and trailer 
lines to introduce them, in part because the variables of a procedure are 
logically isolated from all other procedures. (Unless these variables are 
made global; but then they become accessible to all procedures, which, as 
pointed out in Section, 7.1 is often highly undesirable.) This slight 
clumsiness discourages the use of small groups of short procedures which 
need to share many variables amongst themselves. To fill the need for a 
facility of this kind, whose use can aid considerably in documenting and 
clarifying the logical structure of a program, SETL provides a less powerful 
but easier-to-use alternative to PROCEDUREs, namely refinements. 
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A refinement is a block of statements which is labeled by an identifier 
followed by a double colon, as in 

solve_equation:: x := (-b+sqrt(b*b-4.O*a*c))/(2.O*a); 

Within a procedure or a main program block, a refinement can be invoked by 
using its label as a statement. This is shown in the following example 

PROGRAM quadratic; 

input_data; $ this and the next 2 lines invoke refinements 

solve_equation; 
output_results; 

solve_equation:: $ a first 'refinement' 

X : = (-b +sqrt(b*b-4.O*a*c))/2*a; 

output_results:: $ a second 'refinement' 

print('Root is',x); 

input_data:: $ a third 'refinement' 

read(a,b,c); 
print(a,b,c); 
check_eof; $ this invokes the fourth refinement shown just below 

check eo f: : $ a fourth 'refinement' 

IF EOF THEN print('improper data'); STOP; END IF; 

END PROGRAM quadratic; 

This example illustrates the following rules: 

(a) All refinements (if any) must follow at the end of the procedure or 
main program block within which they are used. 

(b) Refinements are written one after another, but can appear in any 
sequence. 

(c) A refinement can be invoked anywhere 
program, but can be invoked only once. 
invoked more than once, it should be made 
refinement. 

in a procedure or a main 
If a section of code is to be 
a procedure rather than a 

(d) Refinements have no parameters. They make use of the same 
variables as the main program block or procedure P to which they belong. 
Variables used in refinements have the same meaning that they would have in 
(this block or procedure) P. Refinements are executed by inserting the 
series of statements of the refinement in place of the reference to the 
refinement. 
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Rules of Style in the Use of Procedures 

Effective programming depends more on the proper use of procedures than 
on any other single factor. Your use of procedures should aim to achieve 
various important stylistic goals: 

(a) Procedures are 
into manageably short 
logical function, which 

used to 'paragraph' programs, i.e., to divide them 
subsections, each performing some easily definable 

can be read and understood in relative indepen-
dence from each other. Here the key term is independence: it is important 
to write your procedures in a manner which isolates each of them as much as 
possible from the internal details of other procedures. Only a small number 
of well-defined data objects should be passed between procedures. Very few 
data objects should be shared globally between procedures; sharing is 
dangerously productive of errors, so that all data object sharing should be 
carefully planned, should adhere to clearly understood stylistic rules, and 
must be scrupulously documented. Be sparing in your use of global VAR 
declarations! 

(b) Procedures are also used to abbreviate, i.e., to give frequently 
used compound constructions a name facilitating their repeated use. This 
usage will often give rise to short procedures, the shortest of which may 
reduce to a single RETURN statement. Code sequences used more than a very 
few times should be replaced by short procedures, since such procedures will 
only need to debugged once, while repeated code sequences can be repeated 
incorrectly, and can interact in unanticipated ways with code surrounding 
them (for example, by accidental overlap of names). These facts make 
repetition of code sequences dangerous, and their replacement by procedures 
advantageous. 

{c) Procedures define one's conceptual approach to a programming task, 
and are used to clarify and help document programs. If this is done well, a 
program's topmost procedure will document the main phases of the program and 
explain the principal data structures passed between its phases. Then each 
intermediate level procedure will both realize and 'flow chart' an important 
substep of processing. Each b~ttom-level procedure will realize some 
well-defined utility operation and will be separately readable. The 
narrative commentary which accompanies the program should be organized 
around the layout of its procedures. Comments concerning overall approach 
and main shared data objects will accompany top-level procedures, and 
detailed remarks on particular algorithms will be attached to the low-level 
subprocedures which implement these algorithms. 

(d) Procedures are used to decompose programs into separate parts which 
have different degrees of generality/specificity, or which have 
significantly different 'flavors' in some other regard. The 'buckets and 
well' example considered in Section 4.3.1 exemplifies this point. In this 
program, procedures new_states_from, pour, fill, etc. concentrate all 
details particular to the specific problem being solved, while procedure 
find_path, which simply realize a general technique for searching overstates 
and constructing paths are independent of these details. This separation 
makes it possible to use find_path to solve other problems of the same kind, 
simply by replacing new_states_from and pour, etc. 
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(e) When one is writing a program which addresses a mathematical or 
application area which makes use of some well-established set of concepts, 
it can be very advantageous to define SETL representations for all the kinds 
of objects used in this area, and then to write a collection of utility 
procedures which can be used to apply all the important operations of the 
area to these objects. These procedures should be written in a way which 
allows their user to ignore the internal details of the object repre­
sentations, making it possible for him to think more as a specialist in the 
application area rather than as a programmer. This is the important 
principle of 'information hiding': structure your programs in a way which 
allows the representational details of objects manipulated by the highest 
level programs to be concealed from the authors of these programs. (So 
important is this principle that some modern programming languages include 
syntactic mechanisms for enforcing it rigorously.) A family of procedures 
which manipulate objects whose internal representational details are known 
only to these procedures is sometimes called a package. The package of 
polynomial manipulation procedures shown in Section 8.6.5 is an example; 
other examples appear in the exercises listed in Section YYY. 

It is worth saying a bit more concerning the paragraphing of code. 
Elusive errors easily creep into codes whose logic is spread over very many 
lines. For this reason, one should always strive to break codes into 
independent 'paragraphs' no more than ten or so lines in length. (Longer 
paragraphs can be used where this is unavoidable, but as these grow to a 
page or more in size, the likelihood of troublesome multiple errors, as well 
as the difficulty of understanding what is going on when the code is read 
subsequently, will rise rapidly.) The three main constructs which can help 
you to paragraph code adequately are 

( i) 
(ii) 
(iii) 

use of procedures and functions 
use of refinements (see section 4.7.3) 

use of the CASE statement 

Each procedure, function, and refinement whose integrity is not compromised 
by an undisciplined use of shared global variables constitutes an 
independent paragraph of code. Moreover, since only one of its alternatives 
will be performed each time a CASE statement is executed, the seperate 
alternatives of a CASE statement can be regarded as independent paragraphs. 
Hence, whenever the body of a procedure extends over more than a few dozen 
lines, most of this body should consist of one or more CASE statements each 
of whose alternatives is short. If this is not done, then the rules of good 
style are being violated; and this violation should either have compelling 
justification or be removed. 

Nesting of loops and of IFs also raises interesting stylistic 
questions. Since iterations will rarely be nested more than three deep, 
nested iterations can generally be used without significant confusion 
resulting. When deeper nests start to build up, or even the body of an 
outermost iteration tends to grow long, an effort should be made to relegate 
parts of its body to one or more separated subprocedures. 

Deep nesting of IFs leads very rapidly to confusion. Where ·at all 
possible nested IF's more than two deep should be replaced by uses of CASE 
statements, or by segregation of the more deeply nested alternatives into 
procedures. A third alternative is to 'flatten' a deeply nested IF 
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construct into an IF-construct which is less deeply nested, but in which the 
alternatives of the original IF-nest have been combined using the Boolean 
AND, OR, etc. (However, this will tend to generate longish sequences of 
ELSEIF's.) For example, instead of writing 

IF a>O THEN 
IF b<O THEN 

a+:= 1 
ELSE 

a-:= 1 
END IF 

ELSE 
IF b<O THEN 

b +:= 1 
ELSE 

b -:= 1 
END IF 

END IF ; 

it is preferable to 'flatten' and write 

IF a>O AND b<O THEN 
a+:= 1 

ELSEIF a>O AND b>=O THEN 
a-:= 1 

ELSEIF a<=O AND b<O THEN 
b +:= 1 ; 

ELSEIF a<=O AND b>=O THEN 
b -:= 1 

END IF 

Still better, one can use the following CASE statement: 

CASE OF 
(a >0 AND b<O) : a +:= 1 
(a>O AND b> 0) : a -:= 1 
(a<O AND b <0) : b +:= 1 
(a <0 AND b >0) : b -:= 1 

END CASE . 
' 

Note than an extended the IF •• ELSEIF •• ELSEIF ••• construct 
has some of the same paragraphing advantages as an extended sequence 
of CASE alternatives. However, IF alternatives are less fully 
independent than CASE alternatives; since implicit conditions 
accumulate from each branch of an IF statement to the next. 
Some of the 
confusion which this will cause can be avoided by using auxiliary 
comments to indicate the conditions under which each branch of an 
extended IF will be executed, but is is even safer to use a CASE 
statement instead. 

4.9 Exercises 
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The 'dot-product' of a pair u,v of equally long vectors with integer or 
real coefficients is the sum +/[u(i)*v(i):i IN (1 •• #v]]. 

Ex. 1 Write a SETL OP definition for an infix operator .DP such that x .DP 
y is the dot-product of the vectors x and y. Write a prefix operator .RV n 
which returns a randomly chosen integer-valued vector of length n each time 
is is invoked. Use these two functions to test the validity of the 
following statements concerning vector dot products: 

(a) (x .DP y)=(y .DP x) 
{b) (x .DP x) >= (MAX/x)*(MAX/x) 
(c) (x .DP y)**2 <= (x .DP x)*(y .DP y) 
(d) (x .DP y) <= (MAX/x)*(MAX/y)*l/x 

Ex. 2 The sum of two integer or real vectors x, y of equal length is 
[x(i)+y(i):i IN (1 •• 1/x]], and their difference is [x(i)-y{i):i IN [1 •• //x]]. 
Write definitions for two OPs called .s and .D which produce these two 
vectors. Proceed as in Exercise 1 to test the following statements: 

(a) ((x .s y) .s z) = (x .s (y .s z)) 
(b) (x .s (y .D x)) = y 
(c) ((x .s y) .DP z) = (x .DP z) + (y .DP z) 
(d) ((x .D y) .DP z) = (x .DP z) .D (y .DP z) 

Ex. 3 Write a procedure which, given two tuples tl and t2, prints out a 
list of the number of times each component of tl occurs as a component of 
t2. Write another procedure which, given a tuple t, calculates a map which 
sends each component x of t into the index of the first occurence of x 
within t. Express f ~n terms oft, in the simplest way you can. 

Ex. 4 The storage space needed to represent a map f can sometimes be 
reduced very considerably by writing fin the form f(x) = fl(x)? (IF x IN s 
THEN f2(x) ELSE OM END), where fl has a small domain, s has a simple 
representation, and f2 is a programmed function. Write a procedure 
-compress- which, given f, s, and f2, will calculate fl. The function f2 
should be called by -compress-, and it is assumed that user of the 
-compress- is required to supply code representing f2. 

Ex. ,5 Write a room assignment program which reads information concerning 
available rooms and classes needing rooms, and generates a room assigment. 
The first of the two data items read by your program should be a map from 
room numbers to seating capacities. The second input read by your program 
should be a tuple of triples, each consisting of a class number (a string of 
the form n.m where n is a course number and ma section number), number of 
students, and hour (Possible hours are 8,9,10,11,.. up to 20). No two 
classes meeting at the same hour should be scheduled into the same room. 
Your program should print out a table, arranged by hour and room, of 
assignments. Starting with the largest-class scheduled to meet in a given 
hour, each class should be assigned the smallest room into which it will 
fit. Classes which cannot be scheduled should be appropriately listed. 
Empty rooms should be indicated in the output table you print. 

The next three exercises relate to the earlier exercises on Boolean 
identities, found in Section 2.3.4.1. 



FUNCTIONS AND PROCEDURES Page 4-58 
' 
i 

Ei. 6 Boolean 'implication', which we will write as an infix operator x -
.tMP y is TRUE if either x is FALSE or y is TRUE. Thus x .IMP y is 
e4uivalent to (NOT x) or y. Write a SETL op definition for this operator, 
which will be used in the next two exercises. 

Ex. 7 Using the .IMP operator defined in Exercise 1 and the method for 
checking Boolean statements described in Section 2.3.4.1, show that each of 
the following statements is true no matter what the Boolean values of the 
variables occuring in it. 

(a) (x OR NOT y)=(y .IMP x) 
(b) ((x AND y) .IMP z)=(x .IMP (y .IMP z)) 
(c) (x .IMP (y OR z))=((x .IMP y) OR (x .IMP z)) 
(d) ((x .IMP y) AND x) .IMP y 
(e) (x .IMP NOT x) .IMP NOT x 
(f) x .IMP (y .IMP x) 
(g) (NOT x) • IMP (x • IMP y) 

Ex. 8 None of the following Boolean formulae are valid for all Boolean 
values of x and y; each represents a common logical fallacy. Proceeding as 
in Exercise 2, write a SETL program which will find a case in which each of 
these formulae evaluates to FALSE. 

(a) ((x .IMP y) AND y) .IMP X 

(b) ((x .IMP y) AND (x .IMP z}) .IMP (y .IMP z) 
(c) ((x OR y) AND x) .IMP NOT y 
(d) ((x .IMP y) AND NOT x) .IMP NOT y 

Ex. 9 When a sequence of data items are read by a read 
statement of the form 

read(x,y, •• z), 

it will often be appropriate to check the items read to make sure that they 
have appropriate types and lie in appropriate ranges. For this purpose, the 
following approach, based upon the notion of a 'descriptor string', is may 

. be convenient: 

(a) Capital letters are used in the following way to designate the princ~pal 
SETL object classes: 

letter 

I 
R 
s 

value 

integer 
real 
string 

letter 

T 
E 
A 

value 

tuple 
set 
atom 

(b) The ranges of integers and of real numbers can be constrained. For 
example, 1-100 •• 100 designates an integer belonging to the set {-100 •• 100}, 
10 •• designates a non-negative integer, R-1.0 •• 1.0 designates a real number 
lying between -1.0 and +1.0. 

(c) The descriptors T and E can be qualified to show the types of their 
components or members. For example T(IIR) describes a tuple of length 3 
whose components are an integer, an intege~, and a real respectively; T.I 
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describes an unknown-length tuple of integers; 
pairs of integers. 
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E.T(II) describes a set of 

(d) To describe successive items in a list of variables being read, 
descriptors are simply concatenated. For example, if three items x,y,z, the 
first an integer, the second a set of pairs of integers, and the third a 
tuple of strings, are being read, we would describe it by IE.T(II)T.s. 

Write a multi-parameter procedure read_check whose first parameter is a 
descriptor string defining the data expected and whose remaining parameters 
are the variables whose values are to be read. E.g., in the example 
appearing in (d), we would write 

read_check('IE.T(II)T.S',x,y,z); 

The read_check procedure should generate a report if data it encounters 
any of data unexpected form. Of course, the read_check procedure must be 
foolproof. 

Ex. 10 Extend the read_check procedure of Exercise 9 so that any data item 
to which there corresponds a descriptor followed by the letter 9 will be 
checked for membership in a set of possible values that is given explicitly. 
This set should come directly after the data-item being read, in the list of 
arguments of the extended read-check procedure. For example, if we expect x 
to be an indication ('M' or 'F') of sex, and y to be an age, we could write 

read_check(SXI0 •• 150,x,{'M','F'},y); 

Ex. 11 Modify the read_check procedure of Exercise 8.6.5 so that it echoes 
and labels all data read. For this modified procedure, the sequence of 
names of the variables being read should follow the data descriptor in the 
procedure's first parameter. These names should be separated from the data 
descriptor and from each other by blanks. 

$ 
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DATA OBJECTS AND EXPRESSIONS, CONCLUDED 

In this chapter we will complete our discussion of the various classes 
of data objects supported by SETL, and of the forms of expression which the 
language provides. 

Chapter Table of Contents: 

5.1 Real Operators 
5.2 String Scanning Primitives 

5.2.1 Examples of Use of the String Scanning Primitives 
5.2.1.1 A Simple Lexical Scanner 
5.2.1.2 A 'Concordance' Program 
5.2.1.3 A 'Margin Justification' Procedure 

5.3 Atoms 
5.4 Additional Examples 

5.4.1 Solution of Systems of Linear Equations 
5.4.2 An Interactive Text-editing Routine 
5.4.3 A Simplified Financial Record-keeping System 

5.5 Exercises 

5.1 Real Operators: +, -, *, /, **, =, >, <, >•, <=, MAX, MIN, 
ATAN2, ABS, FIX, FLOOR, CEIL, ACOS, ASIN, ATAN, COS, 
EXP, LOG, RANDOM, SIGN, SIN, SQRT, TAN, TANH 

Binary real operators compute a result value from two real values, x 
and Y• The binary real operators provided by SETL are as follows: 

x+y 
x-y 
x*y 

x/y 

x**i 

computes the sum of x and y. 
computes the difference of x and y. 
computes the product of x and y. 

computes x divided by y. An error results if y is zero, 
of if the division causes floating point overflow. 
this variant of the exponentiation operator yields x raised 
to the integer i. An error results if exponentiation causes 
floating point overflow, or if x and i are both zero. 
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x•y 
x/=y 
x>y 
x<y 
x>•y 
x<•y 
x MAX y 

x MIN y 
x ATAN2 

yields TRUE if x and y are equal, FALSE otherwise. 
yields TRUE if x and y are unequal, FALSE otherwise. 
yields TRUE if xis greater than y, FALSE otherwise. 
same as y>x. 
yields TRUE if xis at least as large as y, FALSE otherwise. 
same as y >• x. 
yields the larger of x and y. 

yields the smaller of x and y. 
yields the arc tangent of the quotient x/y. The result 
is given in radians. 

Unary real operators compute a result value from a single floating 
point input x. The unary real operators are as follows: 

+ X 

- x 
ABS x 

FIX x 
FLOAT 

FLOOR 

CEIL x 

EXP x 
LOG x 

COS X 

SIN x 
TAN x 

ACOS x 

ASIN x 

i 

X 

ATAN x 
TANH x 
SQRT x 
RANDOM x 

SIGN x 

yields x. 
yields the negarive of x. 
yields the absolute value of x, i.e. yields x if xis 
positive, -x if xis negative. 
yields the integer part of x, dropping its fractional part. 
yields a real quantity numerically equal to 1, where 
1 is an integer. 
yields the largest integer which .is not larger than x. (See 
the examples given below for the rules which applies if x 
is -negative). 
yields the smallest integer which is at least as large as x. 
(See the examples given below for the rule which applies if 
xis negative). 
yields e**x, where e is the base of natural logarithms. 
yields the natural ('base e') logarithm of x. An error results 
if xis zero or negative. 
yields the cosine of x, which is assumed to be given in radians. 
yields the sine of x, which is assumed to be given in radians. 
yields the tangent of x, which is assumed to be given in 
radians. 
yields the arc cosine of x; the result is given in radians. 
An error results if x does not lie between -1.0 and +1.0. 
yields the arc sine of x; the result is given in radians. 
An error results if x does not lie between -1.0 and +1.0. 
yields the arc tangent of x; the result is given in radians. 
yields the hyperbolic tangent of x. 
yields the square root of x. An error results if xis negative. 
yields a real value which is randomly distributed over the 
range from zero to x including zero but excluding x. 
Note that successive calls to this function will return 
distinct, independently choosen random quantities. 
yields one of the integer results -1, O, or +l depending on 
whether xis negative, zero, or positive. 

Examples of some of these operators are as follows: 
1.1 + -1.1 yields o.o 
1.1 * 1.1 yields 1.21 
1.1 ** 2 yields 1.21 
1.1 ** 2.0 yields 1.21 
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1.1 = 1. 11 yields FALSE 
1 • 1 = 1. 10 yields TRUE 
1.1 MAX 1.1001 yields 1. 1001 
1.1 MIN 1. 101 yields 1 • 1 
+1.1 yields 1 • 1 
- - 1. 1 yields 1 • 1 
ABS - 1. 1 yields 1. 1 
print(FIX 1 • 1 , FIX -1.1) 

print(FLOOR 1.1, FLOOR -1.1, FLOOR -1.0) 
print(CEIL 1.1, CEIL -1.1, CEIL 1.0) 

yields 1, -1 

yields 
yields 

1, -2, -1 
2, -1, 1 

print(FLOAT 1, FLOAT -1, FLOAT 0) yields 1.0, -1.0, 0.0 
print(FLOAT 123456789123456789123456789123456789123456789) 

can result in an overflow error. 

The forms in which real constants can be written are described in 
Section 2.1.1. 

Note that for real numbers x and y, the use of the comparators 
x/=y can be a bit tricky since rounding effects might cause (0.5 
1.0 to yield FALSE and 1.0 = l.0000000000000000001 to yield TRUE. 
mind the fact that real values can always turn out to have values 
different from the exact values that you may expect. 

x=y and 
+ 0.5) = 
Keep in 
slightly 
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s.2 String Scanning Primitives 

SETL supports 
pioneered by the 

some of the 
designers 

handy string-string primitives whose use was 
of the SNOBOL programming language. These 

generally have the form 

(1) operation_name(scanned_string,pattern_string). 

Each of these operations attempts to match a portion of its scanned_string 
parameter in a manner defined by the pattern_string. If a portion of the 
scanned_string is successively matched, it is removed from the 
scanned_string and becomes the value of the function (1). If no portion of 
the scanned_string is matched by (1), then scanned_string is not changed, 
and the value of the function (1) is OM. Since these operations write their 
first parameter, only expressions which can appear on the left hand side of 
an assignment are acceptable in the scanned_string position of (1). 

The first of these scanning operation: namely, 

( 2) SPAN(ss,ps) 

scans over as large an initial part of ss as consiste Rf ~-•~•cters which 
belong to ps. This part of ss is broken off, and t.-e.to-•• Utit value of the 
function (2); the remainder becomes the new value of••• lf -ot even the 
first character of ss belongs tops, then ss is unchaa,ed·••4 the function 
(2) yields OM. 

Here are a few illustrations of the action (,If 'th•···••• primitive: 
Suppose that ss has the value 'If, gentlemen'. Thea 

ANY(ss,'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefgbij') 
has the value 'If' and gives ss the value', gentlemen'. Also, 

SPAN(ss,'abcdefghijklmnopqrstuvwxyz') 
has the value OM and does not change the value of ss. 

The remaining string-scanning primitives pr-o.vi-H4. t,y , SETL are as 
follows: 

(2) ANY(ss,ps) 

breaks off and yields the first character of ss if this belongs to ps. If 
the first character of ss does not belong tops, then ss is unchanged and 
the value returned by ANY is OM. For example, the code fragment 

ss := 'ABC' 
print(ss,ANY(ss,'AEIOU'),ss,ANY(ss,'AEIOU'),ss); 

will yield 

(3) 

ABC A BC OM BC • 

The scanning primitive 

BREAK(ss,ps) 

scans ss from the left up to but not including the first character which 
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does not belong tops. This part of ss is broken off and becomes the value 
of the function (3). If ss contains no characters not belonging tops, then 
(3) has the value OM and ss is not changed. If the very first character of 
ss belongs tops, then (3) has a nullstring value and ss is not changed. 

The scanning primitive 

( 4 ) LEN(ss,n) 

has an integer second parameter. If #ss >= n, then (4) yields the value 
ss(l •• n) and the assignment ss := ss(n+l •• ) is performed; otherwise (4) 
yields OM and ss is not changed. The primitive 

(5) MATCH(ss,ps) 

yields ps if #ps <= #ss and if ps = ss(l •• #ps), then the assignment ss := 
ss(#ps+l •• ) is performed. Otherwise (5) yields OM and ss is unchanged. The 
primitive 

(6) NOTANY(ss,ps) 

breaks off and yields the first character of ss that does not belong to the 
string ps. In the contrary case (6) yields OM and ss is unchanged. 

Each of the above string primitives is also provided a 'right-to-left' 
form which starts from the right, at the last character of the scanned 
string, rather than from the left to right, starting at the first character 
of the scanned_string as in the cases already considered.' The following 
table shows the right-to-left variant of each of the primitives described 
above. 

Left-to-right variant 
ANY(ss,ps) 
BREAK(ss,ps) 
LEN(ss,n) 
MATCH(ss,ps) 
NOTANY(ss,ps) 
SPAN(ss,ps) 

Right-to-left variant 
RANY(ss,ps) 
RBREAK(ss,ps) 
RLEN(ss,n) 
RMATCH(ss,ps) 
RNOTANY(ss,ps) 
RSPAN(ss,ps) 

Two additional string utilities are provided to make productions of 
decently formatted string output easier. These are 

LPAD(ss,n) and RPAD(ss,n) 

The LPAD primitive returns the string obtained by padding its first argument 
ss out to length n (which must be an integer) by adding as many blanks to 
the left of ss as necessary. If #ss=n, then LPAD(ss;n) is simply ss. The 
RPAD primitive behaves similarly, but adds blanks on the right. 

5.2.l Examples E..f Use E..f the String Scanning Primitives 
5.2.1.1 A Simple 'Lexical Scanner' 
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One of the first problems that arises when one begins to program a 
compiler for a programming language (like SETL, BASIC, or any ofthe other 
language with which you may be familiar) is to break the original or 'source 
form' of the pogram into a stream of individual identifiers, constants and 
operators (collectively, these items ae called 'tokens'). The program, 
which the computer will read, must be decomposed into these elements before 
we can determine its meaning. For example, on reading the fragment 

'AO= Bl *Cl+ 3.78' 
of text, one must break it up into the tuple 

['AO', '=', 'Bl', '*', 'Cl', '+', '3.78']. 

Note that the first of these items is an identifier, the second an operator 
sign, the last a constant, etc. (Blanks separating tokens are ordinarily 
eliminated as the source text is scanned). 

A procedure which performs this kind of decomposition of strings 
representing successive lines of program text is called a lexical scanner. 

It is easy to write a lexical scanner for a simple language using the 
string scanning operations that we have just described. We will now show 
how to do this, but to avoid complications, we will suppose that the 
following rules apply: 

(a) The program text to be scanned contains only identifiers, 
signs, integers, real constants and blanks. 

operator 

(b) An identifier is any string starting with an alphabetic and 
containing only alphabetic and numeric characters. 

, . , . , 
(c) Any 'special' character (i.e. characters like'+', ' ', ' ' and 
which are not blank, alphabetic, or numeric) will be regarded as an 

operator. 

(d) An integer is a sequence of numerics not foliowed by a period. A 
real number is a string of numerics including at most one period. 

From the string being analyzed, the following procedure repeatedly 
breaks off a section consisting of a run of blanks, a run of digits, an 
identifier or a single 'special' character of some other kind. Blanks are 
ignored. If a run of digits is found, we check to see if a decimal point 
and a second run of digits follow. If so, they are concatenated to the run 
of digits originally found. In each case, a nonblank section broken from ss 
constitutes a token, and it is added to the tuple of tokens which is 
eventually returned. The code assumes that -num- and -alphanum- are 
constants which must be initialized as follows: 

num := '0123456789' 
alphanum := 'abcdefghijklmnopqrstuvwxyz' 

+ 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' + '0123456789'; 
PROC lex_scan(stg); $ lexical scan routine where the 

tup := [ ]; 
stg +:= ''; 
(WHILE stg /=") 

$ parameter is a string. 
$ Initialize the tuple to be returned. 
$Adda terminating blank. 
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token := SPAN{stg,' ')? SPAN{stg,num)? SPAN{stg,alphanum)? 
LEN {st r, l) ; 

$ Break off a run of blanks, a number, 
$ a variable name or a single letter. 

IF token{l) =' 'THEN CONTINUE; END; $ Ignore blanks. 
IF token(l) IN num THEN $ Test for following'•' and 

$ numerics. 
IF MATCH(stg,'.') THEN$ Look for digits following 

$ the decimal point. 
token+:='.'+ (SPAN{stg,num)?''); 

END IF MATCH; 
END IF token; 
tup +:= token; $ Add token to tuple being built up. 
END WHILE; 

RETURN tup; 
END PROC lex_scan; 

5.2ol.2 A 'Concordance' Program 

The following code generates a 'cross reference listing' or 
'concordance' of a source text. The source text is assumed to consist of a 
sequence of strings containing words separated by punctuation marks or 
blanks. The words present in the source text are printed in alphabetical 
order, each word being followed by a formatted list of all the lines in 
which the word occurs. 

PROGRAM concordance; $ concordance generator 

VAR capital_of; $ All upper and lower case alphabetics. 
initialize(capital_of, alphabetics); 

line_number := O; 
lines_word_is_in :={}; 

$ Initialize line_number count. 
$ Initialize this to the empty map. 

(WHILE (tuple_of_words := break_next_line(line_number)) /= OM) 
$ break next line is assumed to read a line of text 
$ and t~ decompose it into the words it contains by capitalizing 
$ them and eliminating punctuation marks. 
(FOR word IN tuple_of_words) 

lines_word_is_in(word) := 
lines_word_is_in(word)?[] WITH line_number; 

END FOR; 
END WHILE; 

$ Now sort, putting all words encountered into alphabetical order. 
$ This is done using the procedure described in Section 4.4.l. 

(FOR [word,lines] IN 
sort({ [wd, [wd,lns]]: [wd,lns] 

print(word); arrange(lines); 
END FOR; 

--- -------·----

IN lines_word_is_in})) 
$ Arrange the line numbers neatly. 
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PROC break_next_line(RW line_number); $ Input and scanning routine. 
$ This procedure reads a line of input and scans it 
$ to break out the words which it contains. These words are 
$ capitalized and placed in a tuple. 

line number+:= 1; $ Advance the line number. 
read(line); 
IF EOF THEN RETURN OM; END; 

words:=[]; $ Start a new tuple of words. 

(while line/='') $ Until the line has been digested. 
break(line,alphabetics); $ Drop any leading nonalphabetic characters. 
words with := capitalize(SPAN(line,alphabetics)); 

$ Note that the SPAN is OM if the line is empty. 
END WHILE; 

RETURN words; 

END PROC break_next_line; 

PROC arrange{lines); $ Routine to print sequence of line numbers. 
$ This routine prints up to ten line numbers per line of the concordance 
$ and arranges them neatly in fields six characters wide. 

(WHILE lines/= []) $ Until all line numbers are processed, 
group := lines(l •• 1O); $ break off a first group of up to ten lines. 
lines := lines(ll MIN (#lines+l) •• ); 
print{12*' '+/[LPAD(STR ln,6): ln in group]); 

END WHILE; 

END PROC arrange; 

PROC capitalize(word); $Capitalizes its parameter. 

RETURN IF word= OM THEN OM $ Returning capitalized version. 
ELSE ''+/[capital_of(let)?let]: let IN word] END; 

END PROC capitalize; 

$The-sort- procedure which should appear here is the one 
$ shown in Section 4.4.1; we do not repeat it. 

PROC initialize(RW capital_map, RW alphabet_string); 
$ Initialization routine. 

small_lets := 'abcdefghijklmnopqrstuvwxyz'; 
big_lets :• 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'; 
alphabet_string := small_lets + big_lets; 
capital_map := {[small_let,big_lets(i)]: small_let•small_lets(i)}; 

END PROC initialize; 

END PROGRAM concordance; 
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5.2.1.3 A 'Margin Justification' Procedure 

Our third example is a 'margin justification' procedure which takes a 
sequence of words separated by blanks, and arranges them into lines which 
fit between left_margin and right_margin with the first nonblank character 
placed in position left_margin and the last nonblank character placed in 
position right_margin. Extra blanks are inserted at random positions 
between the words to force 'justification' of the right margin. Procedures 
of this sort are often used in text preparation programs. 

PROC justify(tuple_of_lines, left_margin,right_margin); 

tuple_of_words := [] +/ [break_words(line): line IN 
tuple_of_lines]; 

(UNTIL is last) 

line words := break_next_line(tuple_of_words, 
right_margin - left_margin+l); 

$ break_next_line breaks off and returns the tuple of words 
$ to be placed on the next line. 

IF (is last : = (tuple_o f_words = [])) THEN 
$ Output last line with no justification. 

print((left_margin)*' '+/ 
[word+' ': word IN line_words]); 

ELSE $ Print justified line. 
spaces := $ Calculate vector of extra spaces. 

put_spaces(#line_words,right_margin 
-(left_margin-1+/[#word+l: word IN line_words])); 

print((left_margin-1) *' '+ line_word(l) 
+/ [line_word(i+l) + (nspace +l) *' ': nspace=spaces(i)]); 

END IF; 

END UNTIL; 

END PROC justify; 

PROC break_words(line); 

tup := [ ]; 

(WHILE line /='') 

$ Breaks line at blanks and returns a tuple 
$ of words. 

$ Initialize tuple. 

IF (word := BREAK(line,' ')) /= OM THEN 
tup WITH := word; 

ELSEIF SPAN(line,' ')=OM THEN $ last word 
tup WITH := line; 
QUIT; 

END IF; 

END WHILE; 
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RETURN tup; 

END PROC break_words; 

PROC break next line(RW tuple_of_words, nchars); 
$. This procedure breaks off and returns the longest sequence of words 
$ that will fit into -nchars- character positions; 
$ this sequence is broken off from tuple_of_words. 
sum:• O; 

(FOR word • tuple_of_words(i •• )) 
IF (sum+:• #word+ 1) > nchars THEN $ Too far, back up one word. 

save :• tuple_of_words(l •• i-1); 
tuple_o £_words : • tuple_o £_words (i •.); 
RETURN save; 

END IF; 

END FOR; 

save :• tuple_of_words; 
tuple_of_words :• []; $ Else this is last line; return all words. 

RETURN save; 

END PROC break_next_line; 

PROC put_spaces(between_kwords, nblanks); 
$ This procedure finds the positions where n blanks are to be placed 
$ between k words. The blanks are placed at random for 
$ appearance's sake. 

space_count :• (size :• (between_kwords-1)) * (O]; 

(FOR j IN [1 •• nblanks]) 
space_count(RANDOM size)+:• l; 

END FOR; 

RETURN space_count; 

END PROC put_spaces; 

$ Place a blank. 

Additional procedures related to the above are described in Exercises 
14-16. 
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5.3 Atoms 

Mathematical constructions occasionally make use of abstract 'points' 
which have no particular properties other than their identity. For example, 
in dealing with graphs we generally regard them as abstract collections of 
points (or 'nodes') connected by edges (See Figure 5.1). 

P4 

P6 

Figure 5.1: A graph: six nodes connected by edges. 

In this case, to make a new copy of a graph we need a supply of new 
'points'. What these 'points' are is of no significance as long as they can 
be generated in a way which guarantees that all newly generated 'points' are 
definitely distinct from all such 'points' previously encountered. 

To handle situations of this sort, SETL provides a special kind of 
object called an 'atom', or for emphasis a 'blank atom'. These objects can 
be members of sets or components of tuples, but very few other operations 
act on these atoms. In particular, there is only one way of producing 
objects of this kind: namely, by calling a special, built-in and 
argument-free (i.e. 'nullary') function written as 

NEWAT 

Each time a program invokes this construct, it yields a new atom, distinct 
from all previously generated atoms. The only operations involving a pair 
of atoms a and aa, are 

a -= aa 
a /a: aa 

yields TRUE if a and aa are the same, FALSE otherwise 
yields TRUE if a and aa are different, FALSE otherwise. 

In addition, atoms can be made members of sets or tuples (e.g. by the WITH 
operator) and can be tested for set membership (by the IN and NOTIN 
operators). Moreover, previously generated atoms which have been put into 
sets or made into components of tuples can reappear when one iterates over a 
set of tuple in which they have been placed. 

To facilitate debugging of programs which use atoms, the -print- (but 
not the -read- operation) can be applied to atoms. The internal 
representation of an atom carries a system-generated integer (not accessible 
to the SETL user) called i~s serial number; when an atom is printed, the 
representation of it is placed on the output medium as 
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#nnn 

where nnn is the serial number of the atom. Thus, for example, if the very 
first statement in a program is 

print({NEWAT: j IN (10 •• 20)}) 

the output produced, namely 
{#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11} 

will represent a set of 11 distinct atoms. 

Another important use of atoms is to represent objects whcih have a 
continuing identity, independent of any varying data attributes, associated 
with them. Consider, for example, the problem of maintaining a simple data 
base, which keeps track of a few items of data, e.g. name, address, and 
telephone number for each of a varying group of people. 

A given person will of course retain his identity if he (or she) 
changes his address, telephone number, or even name. Since these 
informations may change, it is not always appropriate to identify a person 
with a tuple [name,address,tel_no] even if this tuple gives all available 
information about him. The most appropriate treatment of such situation may 
be, in fact, to represent the person by an atom x, and to maintain three 
maps, called name, address, and tel_no, which map x into the name, address, 
and telephone number of the person represented by x. Then a name change for 
person x can be implemented simply by writing 

name(x) :• new_name; 

To give a small example of the use of atoms, we shall suppose that .a 
graph G is given a a set of order~d pairs, each pair [x,y]. representing a 
directed edge of G going from node x of the graph to node y of the graph. 
In graph theory, one often wishes to form new graphs from old by introducing 
new points and edges that serve to simplify sbme mathematical argument. 
Suppose, in particualr, that for some reason we wish to introduce two new 
graph nodes nl and n2, and to connect nl to each node of G which is the 
initial point of an edge in G, and also to introduce an edge [x,n2] for each 
node x of G which is the second n~de or 'target' of an edge of G. This will 
define a new graph G2 within which the original graph G, with all its edges 
and nodes, is imbedded as a subgraph. 

To represent this construction in SETL, it is reasonable to introduce 
new atoms for the points nl ·and n2. This leads us. to the following short 
and quite straightforward code fragment: 

nl 
n2 

G2 

: • NEWAT; 
:• NEWAT; 

:•G+{[nl,x]: 

$ Generate first new point. 
$ Generate second new point. 
$ Now introduce ~ew edges to build G2. 

x IN DOMAIN G} + {[y,n2]: y IN RANGE G}; 
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5.4 Additional Examples 

In this section we collect a few additional examples which illustrate 
the various use of the operations discussed in this chapter. 

5.4.1 Solution of System of Linear Equations 

Suppose that we are given a system of n linear equatipns inn unknowns 
xl, x2, ••• ,xn. We can suppose that these equations have the form 

(1) all* xl + al2 * x2 + ••• + aln * xn • bl 
a21 * xl + a22 * x2 + ••• + a2n * xn • b2 
anl * xl + an2 * x2 + ••• + ann * xn • bn. 

Solution of equations of this kind is one of the most fundamental prob1ems 
of numerical analysis and has been intensively studied. Without wishing to 
enter very far into the enormous literature that has developed around this 
problem, we shall now represent a simple SETL code for solving such systems 
of equations. The technique we will use is a variant of the famous (though 
essentially straightforward) technique introduced by Karl Friedrich Gauss 
(1777-1855), 'The Prince of Mathematicians'. This technique is known as 
Gaussian elimination. 

The idea can be summarized as follows: Each equation in the system (1) 
involves n coefficients ajl,aj2, ••• ,ajn. If in any equation all of these 
coefficients are zero, then the whole left-hand side of the equation is 
zero, and the whole equation reduces to 

0 = bj. 

If the quantity bj occurring on the right-hand side is not zero (this is 
impossible), then the original systems of equations (1) simply has no 
solutions. At any rate, a system of equations (1) which either contains an 
equation all of whose coefficients ajl,aj2, ••• ,ajn are zero or whose 
solution leads to such an equation, is said to be singular. Singular 
systems of equations require somewhat special analysis. In what follows, we 
will avoid the analysis and simply assume that the system (1) which we are 
trying to solve is not singular. 

If this is the case, we can take any one of the equations in (1), say 
the first, and find at least one nonzero coefficient, say alj, on its 
left-hand side. Then we can pass to an equivalent system of equations by 
subtracting akj/alj times the first equation from all the k-th equations for 
each k = 2, ••• ,n. This subtraction eliminates the coefficient akj from all 
these other equations, i.e. (after subtraction) makes the coefficient akj 
of the variable xj equal to zero fork • 2, ••• ,n. Hence we can regard 
equations 2, ••• ,n as a system of (n-1) equations for the (n-1) unknowns, 
x2, ••• ,xn. Then by proceeding recursively, we can solve these equations for 
x2, ••• ,xn. Once this has been done, we can substitute the values of 
x2, ••• ,xn into the first equation, thereby reducing it to a single linear 
equation in a single unknown. This can then be solved for the remaining 
variable, xl, by a single sub~raction followed, by a division. 
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We can write a SETL code representing this procedure most clearly if we 
write it recursively. To do this. we will need to use both an outer 
procedure -Gauss- which sets up initial parameters and an inner 'workhorse' 
procedure -Gauss_solve- which performs the actual arithmetic operations. 
Since the value of the matrix M must be accessed and manipulated by all 
recursively generated invocations of the -Gauss_solve- routine (see Section 
5.4.1), we adopt the (typical) expedient method of making it a global 
variable. Thus the only parameters that need to be passed to Gauss_solve 
are a set, namely the set of variables for which a first nonzero coefficient 
still has to be found and an integer, namely the number of the next equation 
to be considered. The -Gauss_solve- routine returns OM if it encounters a 
singularity; otherwise, it returns a vector giving the values of the 
variables for which it has solved. 

CONST 
VAR 

PROC 

eps • l.OE-4 
glob_M; 

$ (Note: 
Gauss(M); 

$ De fine 
$ Matrix 

these declarations 
$ Solves 

a utility constant close to zero. 
of equation coefficients. 
must precede the first PROC). 
equations by Gaussian elimination. 

glob_M :• M; $ Make original matrix globally available. 
glob_soln :• []; $ Initialize tuple of solution values. 

RETURN Gauss_solve{{l •• #M.}, 1); 

END PROC Gauss; 

PROC Gauss_solve(var_numbers,next_eqn); 
$ Inner recursion for Gaussian elimination. 
$ var numbers is the set of all indices of variables 
$ still to be processed; next_eqn is the index of· 
$ the next equation to be examined. 

IF var_numbers • { } THEN RETURN []; END; $ No variables, return the· 

row:• glob_M(next_eqn); 
IF NOT EXISTS vn IN var_numbers ST 

RETURN OM; 
END IF; 
(FOR j IN (next_eqn+l •• #glob_M]) 

$ empty solution. 
$ Get the matrix row. 

row(vn) > eps THEN 
$ Since system is singular. 

row_j :• glob_M(j); 
subtract :• row_j(vn)/row(vn); $ Multiple of row to be subtracted. 
(FOR vnx IN var_numbers) row_j(vnx) -:•subtract* row(vnx); END; 
M ( j) : • row_j ; 

END FOR j; 
$ Now call Gauss solve recursively to solve for the remaining 
$ variables. 
IF(soln :• Gauss_solve(var_numbers LESS:• vn, next_eqn+l)) • OM THEN 

RETURN OM; $ Since a sigularity has been detected. 
END IF; 
$ Substitute to determine the value of the vn-th variable. 
soln(vn) :• (row(#row+l) -/( soln(vnx) * row(vnx): vnx IN var_numbers]))/ 

row(vn); 
RETURN soln; 
END PROC Gauss_solve; 
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It is not difficult to rework this procedure to use iterations rather 
than recursion • (lhe iterative form of the procedure is shown below). The 
relationship between the recursive and iterative forms of code is typical 
and is worth close study. Note that the iterative form of the procedure 
must implicitly save information, as the order in which variables are 
processed, which the recursive form of the procedure saves implicitly 
(namely in the multiple procedure invocations which are created when the 
recursive procedure is executed). This is the reason that the quantity 
-var_order-» which has no counterpart in the recursive procedure, appears in 
the iterative variant shown below. Aside from this., note that the 
-Gauss_solve- routine only invokes itself when it is near the point at which 
it will RETURN; hence the only items of information which need to be saved 
for use after return from this invocation are -vn- (the number of te 
variable currently being processed) and -row-. However, -row- is just 
M(vn); thus only -vn- needs to be saved. This explains why we are able to 
transform the recursive procedure shown above i.nto the following somewhat 
more efficient iterative procedure. The initial sequence of recursive calls 
that would otherwise be required is first represented by a 'forward 
eliminition' pass over the rows of M, and in which the subsequent sequence 
of recursive returns becomes an iterative 'back-substitution' pass. 

PROC Gauss(M); 
CONST eps = l.OE-4; 

$ Solves linear equations by Gaussian elimination. 
$ Define a constant close to zero. 

solo := []; 
var_numbers 

var_order := []; 

( FOR i IN [ 1 n] ) 
row := M(i); 

$ Initialize solutions to be built. 
:= #M}; $ Initially, all variables need 

$ to be processed. 
$ This tuple will record the order 
$ in which variables are processed. 
$ Process rows one after another. 

IF NOT EXISTS vn IN var numbers ST row(vn) >= eps THEN 
RETURN OM; $ Since system is singular. 

END IF; 
(FOR j IN [i+l. ,n]) 

row _j ; = M ( j ) ; 
subtract := row_j(vn)/row(vn); $ Amount to be subtracted. 
(FOR vnx IN var_numbers) row_j(vnx) -:• subtract*row(vnx); 
M ( j ) : = row _j ; 

END FOR j; 
$ Note variable just processed 

END; 

var_order WITH := vn; 
var_numbers LESS.:= vn; $ and exclude it from further processing. 

END FOR i; 
$ Next we work through the variables in the reverse 
$ order from which they were initially processed while calculating 
$ their values. Note that at this point, the set var_numbers 
$ has become empty. 
(FOR i IN [n,n-1 •• 1]) 

row : = M (i); 
vn := var_order(i); 
soln(vn) : 3 (row(n+l) -/ [soln(vnx) * row(vnx): vnx IN var_numbers]) 

var_numbers 
END FOR; 
RETURN soln; 

/ row (vn); 
WITH := vn; 

$ Re turn >'-:.h(, ormal solution. 
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END PROC Gauss; 
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5.4.2 An Interactive Text-editing Routine 

Our next example will serve to illustrate some of the internal workings 
of an interactive text editor (though actually the program to be given will 
support only a few of the features which a full-scale editor would provide, 
and even these are highly simplified). This editor has the following 
capabilities: 

(a) A vector of strings representing a text file to be edited can be 
passed to it. 

(b) The editor prompts its user for a command by printing 
waits for him to respond. 

, ,, , . , and 

(c) The allowed responses are as follows: 

(i) A response of the form '/ABCD •• E/abc •• e' makes ABCD •• E a 
member of a collection of search strings that the editor maintains 
and indicates that some of the occurrences of ABCD •• E in the text 
file are to be replaced by abc •• e. Note that here ABCD •• E and 
abc •• e are intended to represent arbitrary strings which need not 
be of the same length; abc •• e can even be null. Moreover, the 
'delimiting character', which we have written '/', can be any 
character which does not appear in ABCD •• E. 

(ii) A response of the form '/tBCD •• E' with just one occurrence of 
the initial 'delimiting character' indicates that ABCD •• E is no 
longer to be searched for. 

(iii) A response of the form'//' indicates that searching is to 
start again from the beginning of the text file. A response of 
the form '//done' indicates that editing is complete and triggers 
a return from the edit procedure. 

(iv) A nullstring response searches forward in the text file for 
the next following occurrence of any search string ABCD •• E. If 
any such occurrence is found, it is displayed on the user's 
terminal, with a line of 'underscore' characters placed 
immediately above it to mark its position. After this, another 
null response will trigger a search, but the response '/' will 
replace the string ABCD •• E that has just been found by the 
corresponding string abc •• e. 

PROC edit(RW text); $ Text editor routine. 
line_no := line_pos :=l; $ Start at the first character of 

$ the first line of the text file. 
replacement:=search_strings:={ }; $ Initially no search strings have 

$ been defined. 
last_pos := OM; $ last_pos will be the last character 

$ position in a zone located by 
searching; 

$Seethe -search- procedure below. 
$ Initially, this is undefined. 

------ ---------- ----------
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first_chars :• ''; $ first_chars is a string consisting of 
$ the first characters of all search strings. 

LOOP DO 
IF (r :• response( ))/•'' THEN $ Search forward from current position 

search(line_no, line_pos, last_pos, search_strings, 
first_chars, text); 

$Seethe -search- procedure given below for an account of its 
$ parameters. 

ELSEIF #r • 1 THEN $ Try to make replacement. 

IF last_pos • OM THEN $ Successful search did not precede 
$ replacement. 

print('**NO SEARCH POSITION HAS BEEN ESTABLISHED**'); 
ELSE $ Perform replacement. 

text(line)(line_pos •• last_pos) :• 
replacement(text(line)(line_pos •• last_pos)); 

END IF; 

ELSE 
C :• r(l); 

$ The user's response was at least two characters 
$ long. Get first character of this response. 

IF NOT EXISTS i IN [2 •• #r] I c • r(i) THEN $ Drop search string. 

replacement(strg :• r(2 •• )) :• OM; 
search_strings LESS :• strg; 

$ Recalculate the 'first-chars' string. 
first_chars :• +/{x(l): x IN search_strings}; 

ELSEIF #r • 2 THEN $'/!';hence restart search at top. 

ELSE 

line_no :• line_pos 
last_pos :• OM; 

: - 1; 
$ Invalidate search position. 

$Anew replacement is being defined. 

replacements(strg :• r(2 •• i-l)) :• r(i+l •• ); 
search_strings WITH:• strg; 

$ Recalculate the string. 
first_chars :• +/{x(l): x IN search_strings}; 
last_pos :• OM; $ Invalidate any prior search. 

END IF NOT; 

END IF; 

END LOOP; 

END PROC edit; 

PROC SEARCH (RW line_no, RW line_pos, RW last_pos, search_strings, 
first_chars, text); 

$ This procedure searches forward, starting at a given text line 
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$ and given character position, for the first position Pat which 
$ any member of the set -search_strings- of strings occurs. If such a 
$ position is found, then -line_no- is set appropriately, 
$ -line_pos- is set top and -last_pos- is set to the index 
$ of the last character matched. If no such position is found, 
$ then -last_pos- becomes OM while -first_pos- and -line_pos-
$ remain the same. 

$ If -last_pos- is not OM, indicating that a successful search 
$ has just taken place, then the search starts one character after 
$ -line_pos-; this prevents repetitive searching. 

search_string := text(line_no)(line_pos+l •• ); 

(WHILE line_no <= #text) 

(WHILE search_string /= '') 
$ While a portion of the current line remains to be examined. 

IF break(search_string, first_chars) • OM THEN 
$ No significant character in this line, so go to next line. 

search_string := 
, , . 

• 

ELSE $ See if one of the strings we are 
$ looking for is found here. 
TO BE CONTINUED 
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5.4.3 A Simplified Financial Record-keeping System 

Next we will give SETL code representing some small part of the 
operations of a bank, albeit in simplified form. The system to be 
represented corresponds in a rough way to the 'Checking Plus' service 
offered by Citibank in New York City. Note, however, that the simple code 
shown below does not deal adequately with all the anomalies and error 
conditions that a full scale banking system would have to handle, nor does 
it support all the functions that are actually required. For example, the 
code we give does not provide any way for customer accounts to be opened or 
closed. A more ambitious commercial application showing how such matters 
can be treated is given in Section 5.4.3, but since the issues that enter 
into the design of a full-scale commercial system can grow to be quite 
complex, we prefer for the moment to evade many of them. 

The simplified system which we consider is aware of a collection of 
customers, each of whom has an account. A customer's account consists of 
two p~rts, a balance representing funds available to him, and an overdraft 
debit representing the amount that he has drawn against the 'Checking Plus' 
feature of his account. This debit is limited for each account not to 
exceed a given -credit_limit-, established when the account is opened. The 
bank pays 5% per annum daily interest on positive balances in checking 
accounts, and charges 18% per annum daily interest on overdraft debits. 

Like most commercial application programs, the code shown below 
maintains a 'data base', i.e. a collection of maps which collectively 
represent the situation with which the program must deal, and reads a 
'transaction' file whose entries ibform it of changes in this situation. 
Using these files it produces various output documents, for example, lists 
of checks deposited for transmission to other banks, monthly statements 
which are mailed to customers, etc. 

The transactions supported by our simplified system are as follows: 

TRANSACTION CODE 

deposit (D) 

withdrawal (W) 

payment (PA) 

presentation (P) 

clear (C) 

return (R) 

EXPLANATION 

Customer deposits either cash, a 
check drawn on another bank, or a 
check drawn on this bank. 
A customer appears at a teller's 
booth and attempts to withdraw cash. 
Customer transfers a stated sum from 
his available balance to reduce his 
overdraft debit. 
Check is presented by another bank for 
payment. 
Another bank informs this bank that a 
check has cleared for payment. 
A previously deposited check, sent to 
another bank for payment, 
is returned either as a 
bad check or for lack of available 
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funds. (Checks written without 
sufficient funds cause their author's 
account to be debited $5.00). 

end of day (DAY) End of banking day has arrived; 
daily interest is to be credited/ 
debited to all accounts. 

On the last day of each month, an -end_of_day- transaction triggers the 
production of bank statements which are sent to each customer. On the last 
day of December, this statement includes an indication of interest charged 
and interest earned during the year. 

Each transaction handled is represented by a single line (string) in 
the transaction file. This line always starts with a code letter 
identifying the transaction, and for the rest consists of various 'fields', 
separated by blanks. The fields expected for the various transactions 
supported are as follows: 

D customer name -
w customer number -
PA customer number -p customer number -
C check number -
R check number -
DAY 

amount 

amount 
amount 
amount 

reason 

bank_number account_number 
(missing if cash deposit) 

teller_terminal_number 

check_number bank_number 

The continuing data structures used to support our simplified banking 
system are as follows: 

(1) cust info 

The components of a 
balance available 
balance_deposited 

overdraft_debit 
overdraft_limit 

This map sends each customer_number into the record 
maintained for the corresponding customer. 

customer record are: 
\ 

balance currently available 
balance showing checks deposited but not yet 
cleared 
amount currently drawn against 'Checking Plus' 
maximum overdraft allowed 

transactions_this_month list of all completed tansactions this month 
total interest earned this year interest earned 

interest_paid 
name 
social security 
address 
telephone number 

(2) bank_info 

total interest paid for overdrafts this year 
customer name 

number customer social security number 
customer address 
customer telephone number 

This map send the numerical code of each bank 
from which checks will be accepted into the bank's 
address information. 

(3) pending_checks When check deposited are sent along to another 
bank for confirmation of payment, they are issued 
unique numerical identifiers. This maps sends 
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each such identifier into the transaction to 
which it corresponds. 

Having now outlined all the transactions which our simplified banking 
system will support and listed the principal data structures which it uses, 
we are in position to give the code itself. 

PROGRAM bank_checking; $ simplified check-processing program 
$ ****** DECLARATION OF GLOBAL VARIABLES, MACROS, AND CONSTANTS******* 

VAR 

Cust_info, 
Bank_info, 

Pending_checks, 

This_banks_code, 
Check_counter, 

Message_list, 

Bad_transactions, 

Last_day; 

$ global variables 

$ maps account number into customer record 
$ maps bank number into bank address, etc. 

$ maps each suspended transaction numbers into 
$ detailed transaction record 

$ code identifying this bank 
$ counter identifying checks sent to other banks for 
$ verification 

$ maps each bank identifier into a list of 
$ messages to be sent to the bank. 

$ accumulated list of bad transactions 

$ last day for which 'DAY' operation 
$ was run 

MACRO customer_items; $ The vector of items constituting a customer's 
$record.Note that all amounts are kept 
$ as integer numbers of pennies. 

[balance_available, balance_deposited, overdraft_debit, 
overdraft limit, transactions this month, interest earned, 

- interest_paid, name, sec_no, address, tel_no] 

ENDM; 

CONST 
CASH_DEP, 
CASH_WITHDRAWAL, 
PAYMENT, 
OVERDRAW, 
NOFUNDS, 
BAD_CHECK; 

$ strings indicating transaction results 
$ cash deposit 
$ cash withdrawal 
$ payment of check 
$ charge for overdrawn check 
$ funds not available to pay check 
$ check drawn on nonexistent account 

CONST Transaction_codes • {D,W,PA,P,C,R,DAY}; 
$ Constants designating transactions. 

CONST Involves_customer={D,W,PA}; 
$ Transactions whose second parameter is a customer number. 
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CONST Needs_updating = {D,W,PA,P,C,R}; 
$ Transactions which modify customer record. 

CONST DIGITS= '0123456789'; $ the decimal digits 

CONST Annual_rate=6, 
Overdraft_rate=l8; 

$ interest paid on checking balances 
$ interest charged on overdrafts 

$******MAIN PROGRAM OF BANKING SYSTEM****** 

initialize_system; $ call initialization procedure to read in 
$ all required global data structures. 

LOOP DO 

get(transaction); $ read next transaction 
IF EOF THEN quit; END; $ all transactions processed 
process_transaction(transaction); $ otherwise process 

$ transaction 
END LOOP; 

finalize_system; $ write state of system to output file 

print; print; print('END OF TRANSACTION PROCESSING'); 

PROC process_transaction(t); $ The principal transaction-processing 
$ procedure. 

IF (dee := decode transaction(t)) = OM THEN RETURN; END; 
$ Since transaction is bad. 

[code, number, amount, p4, p5] := dee; $ Get fields of transaction. 

IF code IN Involves_customer THEN$ Obtain fields of customer record. 

customer_items := Cust_info(number); 
$ Make balance_available, balance_deposited, overdraft_debit, 
$ overdraft_limit, etc. available. 

END IF; 

CASE code OF 

(D): $ deposit 

IF p4 = OM THEN$ deposit is cash: accept it immediately 

balance available+:= amount; 
balance=depositecfl+:= amount; 
transactions_this_month WITH:= post(CASH_DEP,amount); 

ELSEIF p4 = This_banks_code THEN$ check is drawn on this bank 

$ We handle a check drawn on this bank as a 
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$ combination of a 'P' transaction with the transaction (either 
$ 'C' or 'R') that responds to this 'P' transaction. For this, 
$ it is convenient to allow this procedure to call itself 
$ recursively. 

balance_deposited +:• amount; 
pending_checks('O') :• t; 

process_transaction('P '+ p5 +' '+ dollar(amount) + 'O' 
+This_banks_code); 

result :• Message_list(This_banks_code)(l); $ Get result and 
Message_list(This_banks_code) := [ ]; $ clear message list 

process_transaction(result); $ proccess the resulting 'C' or 'R' 

ELSE$ The check is drawn on another bank. Note, but do not 
$ credit, the deposit. 

balance_deposited +:• amount; 
identifier :• STR (Check_counter +:• 1); 
Pending_checks(identifier) :• t; $ Save transaction for 

$ later completion. 

Message_list(p4) WITH:•$ send nofification to bank o~.which 
$ the check is drawn 

'P '+ p5 +' '+ dollar(amount) +' '+identifier+ , , +This_banks_code; 

END IF; 

(W): $ Withdrawal 

IF ok_withdraw(amount,balance_available, overdraft_debit, 
balance_deposited, overdraft_limit) THEN 

send_teller(p4, 'PAYMENT APPROVED'); 
transactions_this_month WITH:• post(CASH_WITHDRAWAL,amount); 

ELSE 
send_teller(p4,NOFUNDS); 

END IF; 

(PA): $ payment of portion of overdraft debit 

will_pay :- amount MIN balance_available MIN overdraft_debit; 
balance_available -:• will_pay; 
balance_deposited -:• will_pay; 
overdraft debit-:• will pay; 
transacti;ns_this_month WITH:• post(PAYMENT,will_pay); 

(P): $ presentation (for approval) of check by other bank 

IF(c_info := Cust_info(number))=OM THEN$ check is bad 
Message_list(p5) WITH := 'R '+ p4 +' '+ BAD_GHECK; 

RETURN; $ abort transaction 
END IF; 



DATA OBJECTS AND EXPRESSIONS, CONCLUDED Page 5-25 

(C): 

(R): 

customer_items := c_info; $ make fields of customer info available 

IF ok_withdraw(amount,balance_available,overdraft_debit, 
balance_deposited,overdraft_limit) THEN 

Message_list(p5) WITH:= 'C '+ p4; $ confirm clearance 
transactions_this_month WITH:= post(PAYMENT,amount); 

ELSE 

Message_list(p5) WITH := 'R '+ p4 +' '+ NOFUNDS; 

$ In this case the customer is charged a $5.00 fee, 
$ or whatever smaller amount remains in his account 

charge := 500 MIN (balance_available+overdraft_limit-
overdraft_debit) MAX O; 

ASSERT ok_withdraw(charge,balance_available,overdraft_debit, 
balance_deposited,overdraft_limit); 

transactions_this_month WITH:= post(OVERDRAWN,charge); 

END IF; 

$ pending check clears 

ASSERT(dec := decode_transaction(Pending_checks(number)))/=OM; 

$ We can make this assertion because the system 
$ represented here does not allow customer accounts to be 
$ closed. However, this assertion would continue to hold true even 
$ in a more realistic system, since in such a system we would not 
$ close an account until all its outstanding deposit transactions 
$ have been completed. 

Pending_checks(number) 
[-,-,amount] :• dee; 

:= OM; $ drop from pe~ding list 

customer_items := Cust_info(number); 
balance_available +:= amount; $ credit to available balance 
transactions_this_month WITH:= post(CHECK_DEP,amount); 

$ pending check fails to clear 

reason := p4; $ in this, case the p4 field contains the reason 
$ for refusal of the check transmitted for approval 

ASSERT (dee := decode_transaction(Pending_checks(number)))/=OM; 
$ see comment following case(C) 

Pending_checks(number) := OM; $ drop from pending list 
[-,-,amount] := dee; 
customer_items := Cust info(number); 
balance_deposited -:= -amount; $ Debit the estimated total 

$ of deposits. 
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transactions_this_month WITH:• post(reason,amount); 

(DAY): $ End of banking day: take end-of-day, and if necessary 
$ end-of-month, actions. 

end_of_day; $ take end of day actions 

IF day(DATE) • 'l' THEN 
end_of_month; 

END IF; 

ELSE$ have some system error. Take end_of day action, 
$ save system, and note error. 

print('SYSTEM ERROR*** ILLEGAL TRANSACTION:', t); 

end_of_day; 
finalize_system; 

STOP; 

END CASE; 

IF code IN Needs_updating THEN $ customer information must be updated 
Cust_info(number) :• customer_items; 

END IF; 

END PROC process_transaction; 

PROC ok_withdraw(amount,RW bal_avail, RW over_debit, RW bal_deposit, 
over_limit); 

$ This auxiliary procedure checks to see if the stated -amount­
$ can be withdrawn from an account, by increasing 
$ the overdraft debit if necessary. If so, the balance 
$ available, amount provisionally on deposit, and the 
$ overdraft debit are appropriately adjusted, 
$ and TRUE is returned; otherwise FALSE is returned. 

IF amount> (avail+ over_limit - over_debit) THEN$ no good 

RETURN FALSE; 

END IF; 

bal_avail -:• (amt_frm_bal :• amount MIN bal_avail); 
bal_deposit -:• amt_frm_bal; $ decrement amount provisionally on deposit 
over_debit +:• amount - amt_from_bal; 

RETURN TRUE; 

END PROC ok_withdraw; 

PROC post(trans_type,amount); 
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$ This auxiliary routine converts transactions into strings consisting 
$ of an amount, a coded indicator of the transaction type, and a 
$ date; the result is suitable for printing in a customer's 
$ end-of-month statement. 

RETURN DATE+' '+ trans_type +' '+ dollar(amount); 

END PROC post; 

PROC decode_transaction(t); $ decodes string form of transaction 

$ This procedure reads the string form of a transaction and 
$ decodes it into the various blank-separated fields of which it 
$ consists. It verifies that each field has the expected type. 
$ If any field is found to be bad, or if any field is missing, then 
$ the transaction is posted to a 'rejected transactions' list, and 
$ this procedure returns OM. Otherwise, a tuple consisting of the 
$ converted fields is returned. 

CONST Check_strings •$Map from transaction type to 
$ pattern of fields expected for transaction. 
$ See procedure -field_check-, below, 
$ for an explanation of the codes appearing here. 

{[D,XCABX], [W,XCAX], [PA,XCA], [P,XXXXX], 
[C,XX], [R,XXX], [DAY,X] }; 

decoded_trans := [ ]; $ tuple for decoded form of transaction 
nfield :• O; $ counter for field number 

check_string :• 'T'; $ check character for first field is 'T' 

(WHILE t/= '' AND (nfield +:= 1)<6) 

IF SPAN(t,' ')/• OM THEN CONT; END; $ span off blanks 

IF (field := field_check(BREAK(t,' '), 
Check_strings(nfield))•OM THEN 

Bad_transactions WITH:= t; 
RETURN OM; 

END IF; 

$ If the first field has just been decoded, use it to determine 
$ what further checks are necesary. 

IF nfield =l THEN check_string :• Check_strings(field); END; 

decoded_trans WITH:• field; $ otherwise store field 

END WHILE; 

$ Check that all required fields, and no others, are present. 
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IF #decoded_trans•#check_string 
OR decoded_trans(l) • D AND #decoded_trans•3 THEN 

RETURN decoded_trans; 
END; 

Bad_transactions WITH:• t; $ Otherwise missing or superfluous 
$ fields. 

RETURN OM; 

END PROC decode_transaction; 

PROC field_check(field, test_char); $ auxiliary test/convert 
$ procedure 
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$ This procedure checks the -field- passed to it fo~ conformity 
$ with the expected field type, which is descibed by its 
$ -test_char- argument. 

$ The allowed test_char characters, and their significance, 
,$ are as follows: 

$ 'T': must be transaction code 
$ 'X': no test required 
$ 'C': must be customer account number 
$ , A,: must be dollar amount 
$ 'B': must be identifier of correspondent bank 

$ If the test fails, then OM is returned; if the test succ~eds, 
$ and the field type is 'A', then the field is converted from 
$ standard D,DDD.CC 'dollars and cents' form to an integer 
$ number of 1: ents, 

CASE test_char OF 

('T'): RETURN IF field IN Transaction_codes THEN field 
ELSE OM END; 

('X'): RETURN field; 

('C'): RETURN IF Cust_info(field) • OM THEN OM ELSE field END; 

('A'): dollars :• SPAN(field,Digits)?''; 

IF MATCH(field,'.')•OM THEN RETURN OM; END; 

cents :• SPAN(field,Digits)?''; 
IF #cents/•2 OR field/•'' THEN RETURN OM; END; 

RETURN VAL(dollars + cents); 

('B'): RETURN IF Bank_info(field)•OM THEN OM ELSE field END; 

ELSE 
RETURN OM; 
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END CASE; 

END PROC field_check; 

PROC initialize_system; $ system initialization code 

$ First we acquire the name of the input file 
$ for this run of the banking system, which is supplied as a 
$ 'control-card' parameter; see Section 8.5. 

input_file :• getspp('OLD•OLD.DAT/OLD.DAT'); 
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$ Next we read the code for this bank, the pending transaction 
$ counter, the master customer file, 
$ the bank address file, and the last previous processing date, 
$ from the specified input information file. 

OPEN(input_file,~CODED'); $ Open the input file for reading. 
$ (See Section 8.1). 

reada(input_file, This_banks_code,Check_counter, Cust_info, 
Bank_info,Last_day); 

CLOSE(input_file); $ now finished with input file; release it 
$ (See Section 8.1). 

$ Next various subsidiary initializations are performed. 

Pending_checks := { }; 
Bad_transactions : • [ ),; 
Message_list := {[bank,[ 

$ pending check mapping is empty 
$ list of bad transactions is empty 
]] : x = Bank_info(bank)}; 
$ start an empty message file for each. 
$ correspondent bank 

END PROC initialize_system; 

PROC finalize_system; $ end-of-run 'dump' procedure 

$ First we acquire the name of the output file for this run of 
$ the banking system, which is supplied as a 'control card' 
$ parameter; see Section 8.5. 

output_file := getspp('NEW=NEW.DAT/NEW.DAT'); 

OPEN(output_file,'CODED-OUT'); $ open the output file for writing. 
$ (See Section 8.1). 

$ Next we write the code for this bank, the pending transaction 
$ counter, the master customer file, and the bank file to the 
$ specified output file 

printa(output_file, This_banks_code, Check_counter, Cust_info, 
Bank_info,DATE); 
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CLOSE(output_file); $ now finished with output file; release it 
$ (See Section 8.1). 

END PROC finalize_system; 

PROC send_teller(terminal_no,msg); 

$ In an actual system, this procedure would send the message 
$ -msg- to the teller terminal identified by -terminal_no-. Since 
$ it is not easy to use SETL to send messages to more than 
$ one terminal, we simplify this procedure drastically, and simply 
$ print -msg-, with an indication of the number of the terminal 
$ to which msg should actually be sent. 

print(msg, 'has been sent to terminal', terminal_no); 

END PROC send_teller; 

PROC end_of_day; $ end of day procedure 

$ This procedure is called at the end of each banking day 
$ In practice, it would write out a collection of files, 
$ including the following: 

$ (a) 
$ 

for each bank with which this bank does business, 
a file of messages, each representing either a 

$ (i) confirmation that a check transmitted for approval 
$ was actually approved; 

$ (ii) rejection of a check, with an indication of the reason 
$ for rejection; 

$ (iii) request for approval of a check, 

$ (b) a list of bad transactions, for visual inspection and 
$ possible re-entry. 

$ We begin by crediting interest payments and making 
$ interest charges for all customers. 

$ First check to ensure that interest has not already been 
$ credited today. 

IF DATE/• Last_day THEN 

(FOR c_info • Cust_info(number)) 

interest_earned +:• 
(earned :• (balance_available*Annual_rate) DIV 36500); 
balance_available +:• earned; 

$ Next, make charges on the customer's overdraft debit 
interest_paid +:• 

(owed := (Overdraft_debit*Overdraft_rate) DIV 36500); 
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$ Draw this interest out of the account if possible. 
$ If not enough remains, interest will be charged as an 
$ overdraft, even though this causes the actual overdraft to 
$ exceed its stated limit. 

IF NOT ok_withdraw(owed,balance_available,overdraft_debit, 
balance_deposited,overdraft_limit) THEN 

$ run an 'excess overdraft' 
overdraft_debit +:= owed - balance_available; 
balance_deposited -:= balance_available; 
balance_available := O; 

END IF; 
Cust_info(number) :• c_info; 

END FOR; 

END IF DATE; 

$ Write a file of messages for each bank with which this bank does 
$ business. 

(FOR bank_inf = Bank_info(code) I code/= This_banks_code) 

write_message_file(bank_inf, Message_list(code)); 
Message_list(code) := [ ]; $ clear the message list to avoid 

$ resending. 

END FOR; 

$ Write out the file of bad transactions. 
write_bad_transactions(Bad_transactions); 
Bad_transactions := [ ]; $ clear the list of bad transactions 

END PROC end_of_day; 

PROC write_message_file(bank_inf, mess_list); 

$Ina realistic system, this procedure might write 
$ a list of messages to a magnetic tape which was then 
$ sent by air-express or special courier to one of the banks with 
$ which this bank does business. However, in our simplified 
$ system, we simply print out -bank_inf- as a header, 
$ and follow it by the individual messages of mess_list. 

print; print; print(bank_inf); print; print; 

(FORALL m IN mess_list) print(m); END; 

END PROC write_message_file; 

PROC write_bad_transactions(list); 

$Ina realistic system, this procedure might write its list of 
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$ transactions to an on-line disk file, which would then be 
$ scrutinized and manually edited, reference being made if 
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$ necesary to the original handwritten or typed document which 
$ first ordered the transaction. However, in our simplified 
$ system, we simply print out the list of bad transactions. 

print; print; print('BAD TRANSACTION LIST'); print; print; 

(FORALL m IN list) print(m); END; 

END PROC write_bad_transactions; 

PROC end_of_month; $ end-of-month procedure 

$ This procedure, called on the last day of each 
$ month, prepares a monthly statement for each customer. 
$ If the month is January, a statement of total 
$ interest charged/earned appears on the statement, 
$ and the accrued interest fields in the customer record are 
$ cleared. 

IF DATE a Last_day THEN RETURN; END; $ since statements have already 
$ been prepared. 

is_January :• (month(DATE) • 'l'); $ test for January 

(FOR customer_items • Cust_info(cust_number)) 

print; print(name,sec_no); print(address); print(DATE); print; 

(FOR trans IN transactions_this_month) print(trans);END; 

transactions_this_month :• [ ]; 

IF is_January THEN 
print; 
print('SAVE THIS STATEMENT-IT CONTAINS VALUABLE TAX' 

'INFORMATION'); 
print; 
print('Interest earned:', interest earned); 
print('Interest paid:', interest_p~id); 

END IF; 

END FOR; 

END PROC end_of_month; 

END PROGRAM bank_checking; 
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5.5 Exercises 

Ex. 1 Write a program that will read a real number x and print the number 
of decimal positions of x which lie to the left of the decimal point. 

Ex. 2 Write an expression which will take any SETL tuple t and generate a 
map f which indicates how many components of t are of type 'ATOM', 
'BOOLEAN', 'INTEGER', 'REAL', etc., and how many components oft are OM. 

Ex. 3 Which of the following operations will cause an error: 

(a) 2.2 (1.1 + 1.10-2.200) 
(b) -2.2*-2.2**2.2 
(c) (-2.2)**2.2 
(d) FLOAT(-2)*2 
(e) (-2.2 MAX 2.2)**-2.2 
(f) (-2.2 MIN 2.2)**2.2 
(g) SQRT(-2 MAX 2) 

Ex. 4 Test the following boolean expressions to see if they yield TRUE or 
FALSE: 

(a) l.0=2.0-1.0 
(b) 2.0=SQRT(4.0) 
(c) SIN(ASIN(0.5))=0.5 
(d) SIN(0.5)*SlN(0.5)+COS(0.5)*COS(0.5)•1.0 

t 

Determine the size of the difference between the left and the right 
hand side of each equality which yields the value FALSE. 

Ex. 5 Which of the following statements are true for all values of the 
variable x? 

(a) ABS(FLOAT(x))=FLOAT(ABS(x)) 
(b) FIX(FLOAT(x))•FLOAT(FIX(x}) 
(c) FLOOR(x) < FIX(x) 
(d) CEIL(x) >= FIX(x) 
(e) EXP(LOG(x)) • x 
(f) LOG(EXP(x)) = x 

Ex. 6 For what positive values of xis COS(x) closest to O.O? What is the 
value of ASIN(l.O)? Check your answers by computer evaluation. 

Ex. 7 How small is the sum SIN(x) + SIN(x + 3.1415928)? (Evaluate it at 
the points x=-3.1415928, o.o, 3.1415928, etc.) Can you find a constant c 
such that SIN(x) + SIN(x+c) is smaller than SIN(x) + SIN(x+3.1415928) for 
several values of x? 

Ex. 8 Square the quantity x:=2.0/SQRT(4.0) repeatedly to see how its higher 
powers behave. How many squarings are required to calculate x**l024? 

Ex. 9 Write the values for which x, y and z will have after each of the 
following sequences is executed. 
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(a) x:•'abc'; y :• SPAN(x, 'ABC'); 
(b) x:•'abc'; y :• ANY(x,'ABC'); 
(c) x:•'abc'; y :• SPAN(x,'ab'); z ,:- RANY (y, 'ab'); 
(d) x:•'abc'; y : -BREAK(x,'ABC'); 
(e) x:•'abc'; y :• BREAK(x, 'abc'); 
( f) x:•'abc'; y :• RBREAK(x,'ABCabc'); 
(g) x:='abc'; y :• LEN(x,4); 
(h) x:•'abc'; y : ... NOTANY (x, 'ABC'); 
(i) x:•'abc'; y : -RNOTANY(x,'ABC'); 

Ex. 10 Write a program which will read a string s and will 

(a) delete all sequences of blank spaces immediately preceding a 
punctuation mark, 

(b) insert a blank space immediately after each punctuation mark that 
is not followed by either a blank or a numeric character. 

Ex. 11 Write a program which prints a sets of words in an alphabetized, 
neatly formatted arrangement; the words printed should be lined up in rows 
and columns. As many columns as possible should be used, but at least two 
blank spaces must separate any two words printed on the same line. 

Ex. 12 Modify the lexical scanner procedure of Section 5.2.1.1 so that it 
returns a pair [toks_and_types,val_map], where toks_and_types is a tuple of 
pairs [tok,tok_typ], each -tok- being a token appearing in the source text 
scanned, and -tok_typ- is the type (i.e. 'INTEGER', 'REAL', 'IDENTIFIER', 
or 'SPECIAL') of -tok-. The quantity -val_map- should be a map ~ending the 
string form of each integer and real number appearing t~ the sequence of 
tokens to its value. 

' Ex. 13 As written, the lexical scanner procedure of Section 5.2.1.1 always 
treats the underbar character as a special character and does not allow r~al 
numbers like '. 3' which begin with a period. Modify this procedure ,so that 
it allows underbars within identifiers (but not as the first character of 
identifiers) and allows real numbers to start with the'•' character. 

Ex. 14 Modify the concordance program shown in Section 5.2.1.2 so that 

(a) all words less than three cbaracters long are omittted from the 
concordance; 

(b) the program begins by reading a list of 'insignificant' words which 
occur on a sequence of lines terminated by a line containing the string 
'*****'• It then omits them from the concordance. (Multiple insignificant 
words can also occur, separated by blanks on a single line). 

Ex. 15 Modify the concordance program shown in Section 5.2.1.2 so that it 
begins (cf. Exercise 14) by reading a blank-separated list of words, and 
reports only on the occurrences of words belonging to this list. 

Ex. 16 Modify the concordance program shown in Section 5.2.1.2 so that it 
reports only on 'infrequent' words, i.e. words that occur no more than 
twice. Words belonging to a specified sets of words should be ignored even 
if they are infrequent. Programs of this kind can be used to locate 
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'suspicious' identifiers in other programs, i.e. identifiers which may have 
been misspelled or simply forgotten during program composition. 

Ex. 17 The simplified text editor shown in Section 5.2.1.3 does not protect 
its user against any of the errors that are likely to occur during a lengthy 
edit session. Add code which will alleviate this deficiency by implementing 
the following additional features: 

(a) Demand that '//', rather than any arbitrary string of two identical 
characters, be used to restart editing from the first line of the file F 
being edited, and that'/', rather than any arbitrary one character string, 
be used to trigger a replacement. 

(b) Allow an additional command 'x', which should produce a formatted 
display of all search strings, with their replacement strings. 

(c) Allow an additional command 'f', which should undo the last 
correction made. Your system should allow up to five successive changes to 
be undone using the 'f' command. 

(d) Allow the command'\' to trigger a search backward through the 
file, i.e. a search from the current character position through earlier 
positions and lines. 

Ex. 18 Browse through the user's manual of some text editor of medium 
complexity to become familiar with the various features it provides. Select 
an interesting one of these features, and modify the text editor code shown 
in Section 5.2.1.3 so that it implements the feature which you have 
selected. 

Ex. 19 The function SIN(x) is the sum of the infinite power series whose 
n-th term is ((-l)**n)*(x**(2*n+l))/(2*n+l)! (n ranges upward from O). 

(a) Let S5(x) and SlO(x) denote the first five and first ten terms of 
this series respectively. Calculate and print the difference S5(x)-SIN(x) 
and SlO(x)-SIN(x) for each value of x from O.O to 3.14159 by steps of 0.1. 
What maximum deviation between S5(x) and SIN(x) do you find? Can you find a 
constant b such that addition of b to S5(x) reduces this maximum deviation? 

(b)'Repeat part (a) for COS(x). This is the sum ofthe infinite series 
whose n-th term is ((-l)**n)*(x**(2*n))/(2*n)! (again, n ranges upward from 
O). 

Ex. 20 Modify the character-string search procedure shown in Section 
5.2.1.3 so that it can locate strings which run over from one line to the 
next. How should the editor program of Section 5.4.2 be modified to allow 
easy editing of strings of this sort? 

Ex. 21 Certain types of forests are subject to infestation by budworms. 
The following rules can be used to model the results of such an ~nfestation. 
We suppose for simplicity that the forest consists of an n by m rectangular 
array of trees. In a given year, any tree will be either healthy, infested, 
or leafless, having been infested the year before. A tree infested one year 
will be leafless the next year; a tree leafless one year will be healthy 
the next year. A tree healthy one year will be healthy the next year unless 
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its neighbor to the North, South, East, or West is also infested, in which 
case it will also become infested the next year. 

Write a program which will simulate the progress of a budworm 
infestation obeying these rules. Track the progress of an infestation.which 
starts with just one infested tree, and the progress of an infestation that 
starts with a row of three infested trees. Your program should print out a 
diagram of the forest in each of a sequence of years, together with a count 
of the number of infested, leafless, and healthy trees. 

Ex. 22 Write a procedure which can be used to print a coarse 'graph' for 
any real-valued function f of a real variable x. This should be written as 
a procedure with real parameters lo, hi (the lower and upper limit of the 
values of x for which f(x) will be graphed), lo_range, hi_range (the lower 
and upper limits of the range of f that will be graphed), and an integer 
parameter n (the number of lines on the printed output listing that the 
graph should occupy). Your procedure should call a subprocedure, 
'£_to-graph' to obtain the values of the function to be graphed. Vertical 
and horizontal axes should be printed with the vertical axis at the extreme 
left of the output listing. These axes should carry suitable markings to 
indicate the scale. The x-axis should run horizontally. 

How would you change this procedure if the x-axis is to run vertically 
down the length of the output listing? 

Ex. 23 Write a procedure which can be used to print a graph showing the 
values of several functions f(x). The main input to this procedure should 
be a sequence of tuple t of real numbers all having the same length. Each 
of these tuples will reperesent a sequence of values of one function f(x). 
Auxiliary inputs will be two real numbers, -lo- and -hi-, defining the 
minimum and maximum values of the domain over which the dependent variable x 
has been evaluated to produce the tuple t, a character string whose jth 
character will be used to print points belonging to the graph of the jth 
function, and an integer n indicating the number of lines of· the output 
listing which the graph is to occupy. Your proce~ure should be written to 
accept various numbers of tuples t. The scale of the graph should be 
adjusted to reflect the largest and the smallest values appearing in any of 
the tuples t. Axes should be printed with scales marked on both the x and y 
axis. If the tuples tare too long to be displayed with the x axis running 
horizontally, the graph should be turned 90 degrees so that the x axis runs 
vertLcally down the listing. 

Ex. 24 Write a procedure P which can be used to generate a variety of 
commercial reports in graphical form. The inputs to P should be two tuples, 
tl and t2, of sales or production figures; tl representing the 'current 
year' and t2 the 'prior year'. The third parameter of P should be a two 
character string defining the bar chart desired, encoded in the following 
way: 

'm' - monthly· figures desired 
'c' - cumulative monthly figures desired 
'd' - difference between current and previous year desired 
'p' - percentage difference between current and previous year desired. 

The 'd' chart should be organized as a series of adjacent pairs of bars 
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showing figures of the current year and the previous year. Axes should be 
printed with the vertical axis using an appropriate scale and the horizontal 
axis carrying the names of the months. The 'p' chart requires only a single 
bar for each month. What other useful features can you design and implement 
for a program of this kind? 

Ex. 25 Write a procedure which prints 'bar charts' or 'histograms'. The 
inputs of this procedure should be a tuple t of real numbers and an integer 
n indicating the number of lines on your listing that the chart is to 
occupy. A set of bars representing the components oft in graphic form 
should be printed. The scale of the bars should be adjusted to reflect the 
largest component and the smallest component oft, and the thickness of the 
bars should be adjusted to the length of t and the number of columns 
available on the output listing. Axes should be printed with the vertical 
axis being scaled. If tis too long for the required number of bars to fit 
horizontally, the chart should be turned 90 degrees so that the bars of the 
chart are horizontal. 

Ex. 26 Generalizing the procedure of Exercise 25, write a procedure which 
prints bar charts with bars which are divided into different 'zones' 
representing different sets of quantities. The main input to this procedure 
should be a sequence of tuples t of real numbers all having the same length. 
(But think of a good way to handle the case in which not all tuples have the 
same length!) The auxiliary inputs to the routine are a character string 
whose jth character will be used to print the jth zone of each bar and an 
integer n indicating the number of lines that the chart is to occupy on your 
listing. The procedure should be written to allow various number of 
parameters t. If the tuples tare too long for the required number of bars 
to fit horizontally, the chart should be turned 90 degrees so that the bars 
are horizontal. 

Ex. 27 Write a procedure which can be used to print a graph of the 'level 
curves' or 'contours' for a real-valued function of two 

TO BE CONTINUED 

Ex. 28 Write a translation program which translates French to English 
word-by-word. (Warning: such a program will produce extremely mediocre 
translations). The program should read a file of lines containing 
successive blank-separated pairs of French words and their English 
translations, and then read a French passage to be translated and print out 
its English translation. 

Ex. 29 Modify the word-by-word translation program described in Exercise 28 
so that it becomes interactive, and so that it is prepared for the fact that 
certain French words might have several possible translations into English. 
When such words are encountered during translation, a numbered menu of all 
of them should be displayed, and the user should then have the ability to 
continue by selecting one of these possible translati~ns. 

Ex. 30 PERT charts are used by project administrators to track progress and 
monitor critical activities in large projects. To set up such a chart, one 
first reads in a set s of pairs [activityl, activity2] defining the 
collection of all activities that must finish before any given activity2 can 
start. One also reads a map T sending each activity to its expected 
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duration. Then one calculates the earliest time that each activity A can 
finish, and for each such A, the set of all activities whose completion is 
critical to completing A by this time. Then one can print a list of all 
activities in order of their completion times. Then, working back from the 
final activity which marks the completion of the whole project, one can 
calculate the set of all critical activities, that is, all activities which 
must be completed on time if completion of the whole project is not to be 
delayed. One can also calculate and print the degree of 'slack' available 
for each activity, i.e. the amount that its completion could be delayed 
without slowing completion of the whole project. 

Develop a program that calculates this information and prints it out in 
a set of attractively formatted tables. 

Ex. 31 (Continuation of Exercise 30) Once started, large projects often 
begin to 'slip' because some of their critical activities are not completed 
on time. Modify the PERT program of Exercise 30 to allow it to read a list 
of activities which have already been started, together with their expected 
comple~ion times, a new list of critical activities, and a revised table of 
'slack for all (started and unstarted) activities. Can you design and 
implement any additioanl features which would invoke this PERT program more 
a useful planning tool, especially if it is to be used interactively? 

Ex. 32 Write a program which will generate the integers from 4000 through 
4100 and print them out with appropriate check characters (See Exercise XXX) 
appended. Write another program which will read in items to which -check 
characters have been appended and reject items in which errors are detected. 
For the integers from 4000 through 4100 with check characters appended, see 
how many will yield undetected errors if one digit is mistyped or if two 
digits are transposed. 

Ex. 33 Add code to the banking system shown in Section 5.4.3 so that it 
insists that a customer pays at least five percent of his overdraft debit by 
the end of each month and adds a warning notice to his monthly statement if 
this is not done. 

Ex. 34 Add code to the banking system shown in Section 5.4.3 so that it can 
handle a 'report' transaction (R), which generates a report of the total 

·number of transactions handled and the total dollar volume of transactions 
handled, by category of transaction for each hour of the current day, up to 
the current hour. 

Ex. 35 A confidence man trying to pass forged checks drawn on an account 
which is not his own may try to go from one teller to another (in one or 
more branches of a bank) cashing checks repeatedly at teller windows. Add 
code ~o the banking system shown in Section 5.4.3 which will make this more 
difficult to accomplish. Your code should keep track of all withdrawals 
made from a given account within two days before the current day. If these 
withdrawals add up to more than 20% of the total amount that can be drawn 
from the account, the teller entering a withdrawal should be alerted by 
receiving a statement of the total number of checks withdrawn on each of 
these days, and of the total amount withdrawn on each of these two days. 
Withdrawals for which this warning is issued should be held until the teller 
sends in a go (G) transaction and should be dropped if the teller sends in a 
kill (K) transaction instead. 
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Ex. 36 Write a print_monthly_statement procedure invoked near the 
the -process_transaction- procedure shown in Section 5.4.3. Your 
should print this statement in an appealing format, appending end 
information and warning messages as required. 
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end of 
procedure 

of year 

Ex. 37 Write the print_interbank_balances procedure invoked near the end of 
the -process_transaction- procedure shown in Section 5.4.3. This should 
list balances due to and from other banks in two ways, the first sorted in 
decreasing order of net amount due to/from other banks, the second sorted 
alphabetically by the name of the bank. The total change in sums due 
to/from other banks should also be reported. 

Ex. 38 A meteorological station measures the temperature every hour, 
producing records arranged as a sequence of tuples t, each t having length 
24 and representing a day's temperature measurements (the first being taken 
at midnight). Write a program which will read this data and print out a 
record of the highs, lows, and mean temperature for the entire day, and also 
the highs, lows and mean temperature for the 'daylight' hours (7 AM through 
6PM). 

Ex. 39 The bureau of crime statistics receives annual reports from all 
cities and incorporated towns, showing the number of major felonies recorded 
for the year. It then calculates the total number· of cities and towns 
reporting felonies in the ranges 1-100, 101-500, 501-1000, 1001-2000, and 
more than 2000. Assume that the file of data being read is a set of cards, 
each of which contains the name of a town and the number of reported 
felonies, separated by a blank, write a program for preparing and printing 
this report. 

Ex. 40 When commands need to be entered interactively at a terminal, it is 
convenient to allow the shortest unambiguous prefix of any command to serve 
as an abbreviation for the command. Write a procedure which makes this 
possible. (Hint: alphabetize the set of allowed commands and locate 
prefixes by a fast search in this alphabetized list). 

Ex. 41 Large sets of alphabetic strings which need to be stored can be 
represented in compressed form by arranging them in alphabetical order. 
Then all the strings beginning with a particular character, say 'a', can be 
preceded by the string 'la', and the initial letter 'a' dropped from all of 
them. Similarly, if the group of strings beginning with the letter 'a' 
contains more than two successive strings whose second character is 'b', 
then the whole group of such strings can be prefixed by the string '2b', and 
theinitial letters 'ab' dropped from all of them. This transformation can 
be applied to as many initial characters as are appropriate. 

Write a procedure which takes a sets of strings, alphabetizes it and 
compresses it using this technique. Write another procedure which takes a 
sets of strings represented in this form and prints s in its original 
alphabetized form. 

Ex. 42 Generate about a hundred random pairs of tuples, tl and t2, of the 
same length, all of whose components are real numbers. Then count the 
number of those t's which satisfy the following inequality: 

(+/[x*x: x IN tl])*(+/[x*x: x IN t2]) 
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< ABS(+/(tl(i)*t2(i): x IN (1 •• #tl]J). 

(Be careful not to be· fooled by small errors in the computation, i.e. a 
pair of tuples that barely satisfies or fails to satisfy the preceding 
equality should be considered indeterminate and ignored). What percentage 
of the tuples tested satisfy this inequality? What do you deduce from this? 

Ex. 43 Run the following programs and see what results they produce 

(a) x:•2.0; (FOR n IN [1 •• 100]) x:•x*x; print(n,x); END; 

(b) x:•0.5; (For n IN (l •• 100)) x:•x*x; print(n,x); END; 

Ex. 44 Build and print out the following sets, letting x 
vary over 10 real numbers chosen at random from the range 
1.0 to 10.0: 

(a) The set of x for which x**O or x**O.O is different from 1.0. 

(b) The set of x for which x**O or x**O.O is different from 1. 

(c) The set of all differences sqrt(x)-x**0.5. 

(d) The set of all differences x**0.5 - x**(l.0/2.0). 

(e) The set of all differences x*x-x**2.0, and the 

set of all differences x**2-x**2.0. 

(f) The set of all differences x-(x**3)**(1.0/3.0). 

(g) The set of all differences x*x/x-x. 

(h) The set of all x such that SIN(x)**2+cos(x)**2•1.0. 

Ex. 44 Write a short program which would work perfectly if perfectly 
accurate real arithmetic were performed but which fails catastrophically 
because of small inaccuracies in the computer representation of reals. 

$ 
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ADDITIONAL CONTROL-LIKE FEATURES OF THE SETL LANGUAGE 

In the present, relatively short, chapter we round out our account of 
the control structures of SETL by describing certain useful facilities not 
covered in earlier chapters. 

Chapter Table of Contents 

6.1 Refinements 
6.2 The CONST Declaration 
6.J The ASSERT Statement 
6.4 Macros 

6.4.1 Macro Definitions 
6.4.2 Parameterless Macros 
6.4.J Macros with Parameters 
6.4.4 Macros with Generated Parameters 
6.4.5 The Lexical Scope of Macros. Macro Nesting 
6.4.6 Dropping and Redefining Macros 

6.5 Programming Examples 
6.5.1 Iteration Macros 

6.6 Exercises 

6.1 Refinements 

By now you will be familiar with the general process of program 
development. Starting from the description of a problem, one sketches out a 
general approach, breaks the problem into simpler subproblems, and then 
refines an initial program sketch until a full program, complete in all its 
details, emerges. This process of stepwise refinement is central to 
programming: breaking down the initial problem into more manageable pieces 
is the only way we have of coping with really complex tasks. Without some 
machinery to help us in this subdivision process, it would be impossible 
(not just difficult) to write large programs. The main tool used to 
decompose a problem into relatively independent components is that presented 
in Chapter IV, namely the use of functions and procedures, which communicate 
with each other by passing parameters and returning values. However, in 
some cases there is no need to cling to this parameter-passing discipline: 
the problem breaks down into a simple sequence of actions which can as well 
be made global. For use in such cases, SETL provides a different syntactic 
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dechanism: the REFINEMENT, which allows the user to name groups of actions 
in the procedure in which they are used and to invoke them by name • 

A refinement is a sequence of SETL statements, preceeded by a name and 
two colons, as in the following example: 

converge:: 
X : • 0 ; 
y : = 1 ; 
z := fun(x,y,100) ; 

A procedure which uses refinements names the refinements it uses in the 
order in which they are used. A given refinement can only be invoked once. 
If a given sequence of statements is to be used more than once, it must be 
made into a procedure. The following example shows the use of refine~ents. 

program roots ; 
get_coefs ; 
eval_discr ; 
eval_roots ; 
print_roots ; 

$ Calculate and print roots of quadratic equation. 
$ Step 1: get coefficients of the equation. 
$ Step 2: evaluate the discriminant of the equation. 
$ Step 3: evaluate the roots of the equation. 
$ Step 4: print the roots. 
$ Next follows the four refinements just invoked. 

get_coefs:: read(a,b,c) ; 

eval discr:: -

eval_ roots: : 

IF a• 0 THEN print('Degenerate case') 
END IF ; 

d :• b ** 2 - 4-0 * a * C . , 
IF d < 0 THEN 

print('Complex roots') stop . , 
ELSE 

discr : "' sqrt(d) 
END IF; 

xl :• (-b + discr)/(2.0 * a) 
x2 :• (-b - discr)/(2.0 * a) 

print_roots:: print('First root: 
, 

xl) . , , 
print('Second root: 

, 
x2) ; , 

stop 

STOP 

Execution of a program with refinements proceeds as if the body of the 
refinement (the statements that follow the double colon) had been inserted 
at the point at which the refinement is named. Note that the refinements 
have no parameters and need contain no RETURN statements. They are in the 
same scope as the procedure, module or main program in which they appear; 
thus they have access to all the identifiers that are visible in this 
procedure, module· or main program. In the example above, the variables xl, 
x2 and discr are used in several refinements and could also be used in the 
main program which invokes these refinements. 
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Refinements allow us to write a procedure or program with a 'table of 
contents' as it were. To someone who is only interested in the rough 
structure of an algorithm, reading only the names of the refinements and the 
comments attatched to these names may be sufficient to gain a quick 
understanding of its workings. This requires that the names chosen for the 
refinements be meaningful and reflect their purpose. Here, as elsewhere, a 
judicious choice of names will add significantly to the understandability of 
a program. 

6.3 The CONST Declaration 

It is often convenient to use a symbolic name for a constant appearing 
repeatedly in a program. Among other things, naming a constant and using 
its name rather than its explicit representation makes it much easier to 
modify your program if modification subsequently becomes necessary. To 
define constants, one or more constant declarations are used. Generally 
speaking, such declarations will have the form 

(1) CONST const_namel•const_expnl,const_name2•const_expn2, •• , 
const_namek•const_expnk; 

An example is 

CONST pi•3.14159,two_pi•6.28318,vowels•{'A','E','I','O','U'}; 

This example illustrates the following rules: 

(i} Each const_namej in (1) must be a valid SETL identifier. By virtue of 
its appearance in (1), this identifier becomes a constant identifier, i.e. 
a synonym for the constant denotation, const_expnj, matched to it in (1). 
It retains this meaning throughout the scope of the identifier. 

(ii) Each const_expnj appearing to the right of an 
declaration like (1) must be a valid constant expression. 
are built out of the following: 

equal sign in a 
Such expressions 

(a) Elementary constant denotations, each of which designates an 
integer, a real number, or a quoted string. 

(b) Constant identifiers, i.e. 
introduced by earlier CONST declarations. 
to write 

identifiers of constants 
For example, it is possible 

CONST one•l,two=2,one_and_two•{one,two}; 

This is equivalent to 

CONST onelml,two=2; 
CONST one_and_two={l,2}; 
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(c) Simple identifiers. An otherwise undeclared identifier 
appearing within a CONST declaration is treated as an impl~citly 
declared string constant whose value is its capitalized name. For 
example, in the absence of other declarations, the declaration 

CONST colors•{red,green,blue}; 

is equivalent to 

CONST colors•{'RED','GREEN','BLUE'}; 

(d) Compound constant denotations can also appear in CONST 
declarations. Such denotations are built from elementary constants of 
the above forms (a-c) using set and tuple brackets but no other 
operators. This means that the constructs 

CONST complex_thing•[{'A',l},{'B',2},{{}}]; 

CONST let_l='alpha',let_2='beta',let_map•{['A',let_l], ['B',let_2]}; 

are all legal, but that the declarations 

CONST two_pi•2.O*3.14159; 

and 

CONST sixty_blanks•6O*''; 

are invalid, since they both involve operators other than set or tuple 
brackets. Note also that a nested construct like 

(2) CONST number_name•{ [l,one], [2,two], [3,three] }; 

can be used even in the absence of other declarations. Assuming that 
no other declarations are present, (2) is exactly equivalent to the 
declaration 

CONST one='ONE' ,two='TWO',three='THREE'; 
number_name•{ [ 1, 'ONE'], [2, 'TWO'], [3, 'THREE']}; 

(See (c) above). 

(e) A constant identifier introduced by a CONST declaration 
retains its fixed constant meaning over the scope of the identifier 
(see Sections 4.2 and 9.1). This scope will be either an entire 
program, a program module, or a single subprocedure. 

In addition to the CONST declaration form (1), the abbreviated 
form 

(3) CONST const_namel, ••• ,const_namek; 
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is allowed. That is, some or all of the parts '=const_expnj' appearing in 
(1) can be omitted. An identifier appearing with this elision in a CONST 
declaration is treated as an implicitly declared string constant, whose 
value is its capitalized name. For example, 

CONST one,two,three; 

is equivalent to 

CONST one='ONE',two='TWO',three='THREE'; 

See Section XXX for an explanation of the place within programs or 
procedures at which CONST declaration can appear. 

6.4 The ASSERT Statement 

The form of an ASSERT statement is 

(1) ASSERT expn; 

where -expn~ designates any Boolean-valued expression_. To execute such a 
statement, the -expn- it contains is evaluated. If the resulting value is 
FALSE, a message of the form 'ASSERTION FAILED AT LINE XXX OF PROCEDURE YYY' 
is produced, and execution terminates; if TRUE, then control passes 
immediately to the statement following the ASSERT statement. (More 
precisely, a FALSE assertion will terminate execution if the 'check 
assertions' feature of the SETL execution-time system is switched on. 
Moreover, if the 'confirm assertions' feature of the SETL execution-time 
system is switched on, then each TRUE assertion will produce a message 
'ASSERTION PASSED AT LINE XXX' OF PROCEDURE YYY'. (See the discussion in 
Section 8.5.1.4 of the execution-time control card parameter ASSERT). 

ASSERT statements are ordinarily used in a program for one of two 
reasons: 

(i) To document and to check logical conditions which the 
to be critical for correct functioning of his program. 
ASSERT statements constitute a powerful program debugging 
7.2 and 7.7.1 for additional discussion of this point. 

programmer knows 
Used in this way, 

aid. See Sections 

(ii) To trigger any side effects caused by evaluation of the Boolean -expn­
that the statement (1) contains. Note that this -expn- can contain 
assignments or other subexpressions (such as existential or univers•l 
quantifiers) whose evaluation causes side effects. Evaluation of the ASSERT 
statement (1) will always trigger these side effects even if assertion 
checking is switched off). (See the discussion of control-card parameter 
ASSERT in Section 8.5.1.4). 

Perhaps the commonest case of this second use of the ASSERT statement 
is in constructs of the form 

ASSERT EXISTS x IN slC(x); 

This construct can be used whenever one is certain that the set {x IN 
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slC(x)} is non-null, and in this case it will always give x a value such 
that C(x) is TRUE. A similar, somewhat more elaborate use of the ASSERT 
statement is shown in• 

ASSERT (EXISTS x IN slC(x)) OR (EXISTS x IN sllCl(x)); 

Assuming that the assertion is TRUE, execution of this statement will always 
set x either to an element of s for which C(x) is TRUE or set x to an 
element of sl for which Cl(x) is TRUE. 

6.5 Macros 

Macros are abbreviations that obviate the need to write similar pieces 
of code repeatedly ; they allow the SETL programmer to introduce and use 
various convenient 'shorthand' notations for constructs that are used many 
times in a program. Macros, like procedures, are defined once and can then 
be used several times. 

MACROs and PROCEDUREs resemble each other in that both give ways of 
associating names with bodies of code text and of invoking this code when 
the name is mentioned. However, when a macro is mentioned in a program 
after having been defined, the program text which it represents is 
substituted directly for the invoking occurrence of the macro name; this 
substitution is called macro-expansion, and is to be contrasted with the 
detour-and-return action (see Section 4.1) triggered by a procedure 
invocation. That is to say, macros make use of a purely 'textual' 
mechanism; they simply replace the name of the macro by its definition at 
the point where the name appears. This means that unlike procedures (which 
can be invoked before their definition has been seen), macros mus~ be 
defined before they are used, i.e. the definition of a macro must appear 
physically in a program before the macro is first used. 

6.5.1 Macro Definitions 

Macros in SETL are defined by using one of the following constructs: 

(1) MACRO m_name; 
macro-body 

ENDM; 

(2) MACRO m_name(p_namel,p_name2 ••• p_namek); 
. macro-body 

ENDM; 

(3) MACRO m_name(p_namel •• ,p_namek; gpnamel, •• ,gpnamej); 
macro-body; 

ENDM; 

The form displayed in (1) is that of a parameterless macro. The construct 
(2) shows that macros can have parameters. The form (3) includes generated 
parameters,-whose purpose and use will be described below. 
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After a macro has been introduced by one of the above constructs, it 
can be invoked simply by using its name, followed by appropriate parameters. 
We will now examine the use of these forms, starting from the simplest one, 
the parameterless macro. 

6.5.2 Parameterless Macros 

Macros without parameters provide for the simplest kind of 
abbreviation: the name of such a macro simply stands for its macro body, 
which replaces the macro name whenever this name appears. For example, we 
can write: 

(4) MACRO countup; 
t :• t+l; 
if t>limit then 

errmsg('out of bounds') 
end if 

ENDM; 

Following the appearance of definition (4) in a program, module, or 
procedure, any subsequent appearance of the name -countup-, for example in 
the line 

(5) countup; 

triggers replacement of (5) by the body of 4, i.e. by the four lines of 
SETL code shown above (which of course increment and test the variable t). 

We note that this replacement is made by the compiler, but it is not 
shown in the source program listing which the computer produces. Line (5) 
appears in the listing as is. However, compilation proceeds as if the macro 
body of (4) had occurred instead of (5). 

Our next example shows that a macro body need not consist of a group of 
statments, but can be any sequence of tokens, including sequences which are 
not meaningful in themselves. A macro which exploits this fact is: 

MACRO find; ASSERT EXISTS ENDM; 

This macro can be used as follows: 

find x in slc(x); 

6.5.3 Macros with Parameters 

Macros with parameters are introduced by macro definitions of the form 

(1) MACRO mname(pnamel, ••• ,pnamek); 
body 

ENDM; 
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Here, -mname- can by any legal SETL identifier which becomes the name 
of the macro introduced by (1); pnamel, ••• ,pnamek, called the formal 
parameters of the macro, can be any list of distinct identifiers. The 
-body-, known as the body of the macro, or equivalently as its macro text, 
can be any legal SETL text fragment. 

After being introduced by 
be invoked simply by using 
arguments, at any place within 
this invoking occurrence is 

a macro definition (1), the macro -mname- can 
its name, followed by a list of k actual 

a program. Suppose, to be specific, that 

(2) mname(argl, ••• ,argk) 

Then the SETL compiler replaces the macro invocation (2) with an 
occurrence of the -body- of the corresponding macro-definition (1), but in 
this body every occurrence of a formal parameter name -pnamej- will have 
been replaced by an occurrence of the corresponding argument -argj-. We 
emphasize again that this is done by replacement of text, and not, as in the 
case of a PROCEDURE call, by evaluation of arguments and transmission of 
their values. This means that the arguments -argj- of macro-invocation need 
not even be complete, evaluable expressions; indeed, they can be arbitrary 
sequences of keywords, operator-signs, constants, or identifiers. (However, 
since commas are used to separate the successive arguments of a macro 
invocation, no argument of such an invocation can contain an imbedded 
comma). This gives macros a syntactic flexibility which procedures do not 
have, and which is sometimes useful. Suppose, for example, that we wish to 
print out a series of examples illustrating the use of the compound operator 
in SETL. This could be done directly by using the following code: 

v:=[1,2,3,4,5]; 

print('Combining the components of V using the operator + gives', +/v); 
print('Combining the components of V using the operator * gives', */v); 

print('Combining the components of V using the operator MAX gives', 
MAX/v); 

etc. 

y using a suitable macro, we can abbreviate this repetitive code, as 
follows: 

(3) MACRO print_op(opsign,op); 
print('Combining the components of v using the operator',opsign, 

'gives',op/v) 
ENDM; 

v:=[1,2,3,4,5); 

print_op('+',+); 
print_op('*',*); 
print_op('MAX',MAX); 



ADDITIONAL CONTROL-LIKE FEATURES OF THE SETL LANGUAGE Page 6-9 -

This illustrates the possibility of transmitting an isolated operator 
sign to a MACRO as an argument; notice that no corresponding possibility 
exists for PROCEDUREs. 

For a second example illustrating the syntactic flexibility which 
sometimes justifies the use of a MACRO rather than a PROCEDURE, consider the 
common situation in which we need to check repeatedly for erroneous data and 
return some appropriate error indication if an error is detected. Suppose, 
to be specific, that these checks need to be made as part of some procedure, 
and that when an error is detected, we want the procedure to return 
immediately and to transmit an appropriate numerical error indication. The 
following MACRO is suitable for this purpose. 

(4) MACRO check(condition,error_no); 

IF NOT condition THEN RETURN error_no; END 

ENDM; 

After introducing this macro, we can check for errors very simply, e.g. by 
writing 

(5) check(a<b,l); $ error numberl 

check(f(x)/•OM,2); $ error number 2 
••• etc. 

Note that a PROCEDURE invocation could not trigger an immediate RETURN 
in the same convenient way that this MACRO does. 

A syntactic point to be noted is that neither the body of the MACRO (2) 
nor the body of (3) ends with a semicolon. This is simply because it is 
most natural to put the semicolon which terminates an invoked macro body 
after the macro invocation which triggers insertion of this body (cf. (3) 
and (4)). Since a substituted body replaces each macro invocation, putting 
a semicolon both after a macro body and after its invocation would lead 
(after substitution) to the (harmless) occurrence of a double semicolon. 
This is the stylistic reason why semicolons are omitted after the last line 
of the body of the macros (2) and (3). 

As a final example, let us mention the oft-used macro which names the 
last component of a tuple: 

MACRO top(stack); 
stack(#stack); 
ENDM; 

This macro can be used in expressions as well as in assignments, for 
example: 

etc. 

x :• top(v); 
top(v) :• y+l; 
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6.5.4 Macros With Generated Parameters 

In addition to 
use of generated 
variables play for 
definitions having 

its ordinary parameters and arguments, macros can make 
parameters which play the role for macros that local 

procedures. To make use of this feature we write macro 
the form 

(6) MACRO mname(pnamel, ••• ,pnamek;gpnamel, ••• ,gpnamen); 
body 

ENDM; 

The additional parameters gpnamel, ••• ,gpnamen appearing after the first 
semicolon in (6) but not in (1) are called generated parameters. The 
programmer is not supposed to supply arguments corresponding to parameters 
of this kind when a macro like (6) is invoked. Instead, one invokes a macro 
like (6) in exactly the same way as the macro (1). However, when a macro 
like (6) with generated parameters is invoked, the SETL compiler generates 
new tokens (of an artificial form that cannot be used accidentally by the 
programmer) and substitutes them for occurrences of the corresponding 
generated parameter names in the -body- of (6). 

A common use of this option is to generate a supply of fresh variable 
names when these are required for local use within the substituted body of a 
macro. Suppose, for example, that we want to write a macro which tests the 
value of an expression e for membership in a given sets, and which returns 
immediately from the procedure invoking the macro in case the test e IN s 
fails. Suppose also that in case of failure we want to return both a 
numerical error indication and the value of the expression e. If we write 

MACRO double_check(e,error_no); 
IF e NOTIN s THEN RETURN [error_no,e]; 

ENDM; 
END; 

we would not get exactly the desired effect because when this macro is 
invoked, it will insert the actual argument fore in two places, which will 
lead to repeated evaluation of e. For example: 

double_check(f(y)+g(y), 15); 

would expand as 

IF f(y)+g(y) NOTIN s THEN 
RETURN (15,f(y)+g(y)]; 

END; 

In order to avoid this double evaluation we can use the following macro: 

(7) MACRO in_check(e,error_no;temp) $ macro with generated parameter 

IF (temp:•(e)) NOTIN s THEN RETURN [error_no,temp); END 

ENDM; 
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To invoke this macro we could, for example, write 

(8) in_check(t WITH:• x,1); ... 
in_check(t WITH:= y,1); 
••• etc. 

$ error number 1 

$ error number 2 
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Note that if (as in (8)) an argument expression -e-, causing-some side 
effect, is passed to the macro (7), it becomes essential that the value of 
-e- should be assigned to a auxilary variable (the generated parameter 
-temp-) and that e should not be evaluated twice. Note also that each use 
of (7) will generate a new name for the parameter 'temp' so that no 
accidental interference will occur between invocations of this macro. 
Finally, note the use of a precautionary extra pair of parentheses around 
the occurrence of the parameter -e- in the body of (7); these parentheses 
ensure that the argument transmitted to the macro in place of -e- will be 
handled as a unit, no matter what its actual syntactic form happens to be. 

6.5.5 The Lexical Scope of Macros. Macro Nesting. 

The scope within which a macro will be active is determined by the 
context in which its definition appears. A macro name introduced by a macro 
definition appearing in a PROCEDURE (resp. a MODULE, PROGRAM, or LIBRARY, 
but outside any PROCEDURE) maintains its meaning as a macro throughout this 
PROCEDURE (or PROGRAM, MODULE, or LIBRARY), but not past the PROCEDURE's 
end. Note however that the macro can be redefined by a later macro 
definition appearing in the same PROCEDURE (or MODULE, etc.), or can be 
dropped. The way in which macros are redefined and dropped is explained in 
more detail below). 

Macro-bodies can contain invocations of other macros; and macro- names 
can be transmitted to other macros as arguments. For example, suppose that 
we define the following two macros: 

MACRO triple(pa); 
pa,pa,pa 

ENDM; 

MACRO q; 
'hello there' 

ENDM; 

Then, after expansion, the macro invocation 

triple(q) 

becomes 

'hello there','hello there','hello there' 

This example illustrates the fact that macro-expansion is outside-in and 
recursive. That is to say, the expansion of a given macro body may trigger 
the expansion of an inner macro invocation. 
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Macro bodies can also contain imbedded macro definitions. For example, 
the definition 

(9) MACRO def_x(pa); 
MACRO x;pa ENDM; 

ENDM; 

is legal. 
the macro 
expanded. 

An imbedded macro defintion IMD becomes active when one invokes 
M in which IMD is imbedded, thus causing the body of M to be 

As an example, note that after expansion the sequence 

(10) 

becomes 

(11) 

de f_x ( 'aaa' ) ; 
X X X 
def_x('bbb'); 
X X X 

'aaa' 'aaa' 'aaa' 
'bbb' 'bbb' 'bbb' 

This happens in following way. The first line in (9) 
becomes the macro definition 

MACRO x;'aaa' ENDM; 

is expanded, and 

Then the second line of (10) is subsequently expanded. It generates 
the first line of (11). After this, the third line of (10) is expanded into 

MACRO x; 'bbb' ENDM; 

This changes the meaning of the macro x, causing the fouTth line of 
(10) to expand into the second line of (11). 

6.5.6 Dropping and Redefining Macros 

If a macro is only needed over a limited portion of a program, it is 
possible to 'undefine' it so that the name of the macro can be used for 
another purpose. To erase a macro definition, one uses the following SETL 
construct. 

DROP macrolist; 

where macrolist is a list of macro names, separated by commas. Once a macro 
has been dropped, it is possible to give it a new definition, or to use its 
name for any SETL· object, without confusion. For example, 

(12) MACRO x; print('now you see it') ENDM; 
x; 
DROP x; 
x; 

$ this drops x from macro-status 
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MACRO x; print('now you don''t'); ENDM; 
x; 

expands into 

(13) print('now you see it'); 
x; 
print('now you don't'); 
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This follows since the first line of (12) makes x a macro equivalent to 'now 
you see it', but then the third line of (12) drops x from macro status, so 
that the fourth line of (12) carries over unchanged to become the second 
line of (13). The new definition of xis then seen, invoked, and expanded. 

Note that the compiler will see the line 

x; 

as an invocation of some unspecified procedure x. If no such x exists, the 
program will of course not execute. 

Considerably more elaborate macro features than those we have described 
are supported by other programming languages, especially by machine level 
'assembly languages'. However, high level languages like SETL have less 
need for complex macro features than do lower-level languages, and thus the 
macro facility that SETL provides will be found adequate for the use 
normally made of it. Let us remark that macros, like procedures, perform 
the useful function of hiding low-level details, and thus help make a 
program more readable and more modular. The information-hiding capablity of 
macros is most useful when we want to 'shield' a program from possible 
changes in the structure of composite objects which it manipulates. · The 
organization of a data-base is a good example. Suppose that a library 
catalog is to be built. Each book has an entry in the catalog, whi~h 
includes the title, author, date of publication, subject, and library of 
Congress number. The catalog itself can be structured, let us say as a map 
whose domain is the set of call numbers, and whose range is a set of tuples 
of length 5, containing the above information. In this situation, we may 
find it appropriate to write 

MACRO title(call_number) 
catalog(call_number)(l) 

ENDM; 

MACRO author(call_number) 
catalog(call_numbeT)(2) 

ENDM; 

• 
• 
• 

thereby hiding the tuple structure of the data from its user. 
us to write: 

if author(x) • 'Barth'••• 

---------- ----

This allows -
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rather than having to recall that the author is stored in the second 
component of an element of the range of the catalog, etc. 

6.6 Programming Examples 

In this section we collect various programming examples which illustrate the 
use of the SETL features descibed in this section. 

Iteration Macros 

Frequently one will be given a map (or programmed function) and an 
initial element x, and will need to iterate over all the elements y• x, 
f(x), f(f(x)), ••• , performing some operation repeatedly until an OM element 
terminating the itertion is reached. Iterations of this kind can be written 
as 

(1) y:• X 

(WHILE y/= OM) 

END; 

body of iteration 
y:= f(y); 

However, if a program uses many iterations of this kind, it may be worth 
introducing a macro to abbreviate them. Using SETL's generalized loop 
construct such a macro can be written as 

MACRO ORBIT(y,x, f); 
INIT y:= x; WHILE y/=OM STEP y:= f(y) 

ENDM; 

This macro enables us to write the loop Ml as 

(lA) (ORBIT(y,x, f)) body of iteration END; 

Note that the iterator introduced in this way can also be used in 
setformers and tuple-formers, e.g. we can write 

+/[e(y): ORBIT(y,x,f)] 

to form the 
e(f(x)), ••• 

sum e(x) + e(f(x)) + ••• , which includes all terms 
up to the point at which f first becomes undefined. 

e(x), 

Another commonly occurring but somewhat more complex case is that in 
which a map f is multi-valued, and we wish to generate all elements y 
belonging to any sequence of elements zl ,z2, ••• ,zn starting with x•zl such 
that [zi,z(i+l)] is a member off for all i in [1 •• n-1]. (In mathematics, 
this set is called the transitive closure of {x} relative to f). To iterate 
over the elements of this transitive closure (in a somewhat unpredictable 
order), we can use the following loop, which makes use of two auxiliary 
variables -to_process- and -seen_already-

I 

I 
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(2) s:= {x} 

to_process:= seen_already:= s; 

(WHILE to_process/• { }) 
body of iteration 
y FROM to_process; 
to_process +:• f{y}-seen_already; 
seen_already +:• f{y}; 

ENDM; 

This loop can be abbreviated by introducing the following macro 

MACRO TRANS_ORBIT(y,s,f; to_process,seen_already); 

ENDM; 

INIT to_process:• seen_already:= s; 
STEP y FROM to_process; 

to_process +:• f{y}-seen_already 
WHILE to_process/• { } 
seen_already +:• f{y}; 

Using this macro, the loop (2) can be written as 

(2A) (TRANS_ORBIT(y,{x},f)) $ y iterates over all the elements 
$ of the transitive closure off 

body of iteration 
END; 
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This iterator can also be used in setformers, tuple-formers, etc. For 
example, we can write 

+/[e(y): TRANS_ORBIT(y,s,f)] 

to sum the expression e over all the points belonging to the transitive 
closure of s relative to f. 

6.7 Exercises 

Ex.l Write a constant map which sends each month of the year into the number 
of days in the month. Assume that February always has 28 days. 

Ex. 2 The code 

sum:• O; 
(FOR c•t(i)) sum+:• c; END 

sums the components of the tuple t. 
statement which relates the value 
Execute this code and verify that the 
How much slower do you expect the 
loop run? 

$ 

Into this loop insert an ASSERT 
of the variable sum to the integer 1. 

asserted assertion is always TRUE. 
inserted ASSERT statement to make this 
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PROGRAM DEVELOPMENT, TESTING, AND DEBUGGING 

As noted in Section I.2, the normal stages of a program's life-cycle 
are 

(i) Initial conception, formulation of requirements. 

(ii) Overall design of a progam that will meet these requirements. 

(iii) Detailed design and coding. 

(iv) Program review, with rework and extension as needed to clarify, 
simplify, or improve efficiency. 

(v) Development of a test plan; testing and debugging; removal 
of errors, and retest. 

(vi) Operational use of program. 

(vii) Enchancement and repair during continuing operational use. 

(viii) Retirement. 

This chapter discusses various key aspects of this program life-cycle, 
providing hints that aim to help the inexperienced programmer to cope 
effectively with the pragmatic problems normally associated with program 
design, debugging, and maintenance. Proper understanding of these issues 
can improve the overall effectiveness and quality of your work. 

Chapter Table .2!_ Contents: 

7.1 Bugs: how to minimize them 
7.2 Finding Bugs 
7.3 A checklist of common bugs 
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Any small error affecting the behavior of a program is called a bug. 
Bugs are inevitable, but a few cardinal rules can help minimize the degree 
to which they infest your programs. 

(i) Know that they will occur. Since any small error, i.e. forgetting 
a line, typing ,_, where '+' is meant, misspelling an identifier or keyword, 
mis-parenthesising an expression, will cause a bug, you must train and 
discipline yourself to higher levels of logical and typographical accuracy 
in programming than are required in any other human activity. Be 
suspicious. Program defensively. Check your programs scrupulously for 
syntactic and logical correctness, several times if necessary, before you 
try to run them. If in doubt as to the meaning of any operation or 
programming language construct, look it up. 

(ii) When bugs occur, your problem is to locate, recognise, and remove 
them. Bugs cannot be located unless you know the programming 1anguage with 
which you are working well enough to recognise problems when you are looking 
at them. Bugs cannot be eliminated until you have understood them well 
enough to know why and how they cause the faults that betray their presence. 
Finding bugs, like finding needles in a haystack, calls for systematic 
sifting, for careful detective work. A program is a delicate piece of 
machinery, and it is simple folly to think that you can make it work by 
kicking it hard in some random way to make its pieces fall into place. 
Because they involve many submechanisms, all of which must interface 
correctly if they are to work together properly, programs, like elaborate 
combination locks, require careful analysis and attentive sensing of their 
hidden internals when they need repair. The novice who tries to fix a 
malfunctioning program without fully understanding the way in which it is 
working is attempting a task that is far less hopeful than that faced by 
someone who tries to open an unfamililiar safe without understanding its 
workings or combination. 'The sequence 33-8-19-27 doesn't work? Then I'll 
try 23-92-69-46. This doesn't work either? Then maybe 17-51-85-34 will be 
luckier.' A student who allows himself to be drawn into of this sort of 
thoughtless, random attempt to diagnose or repair a program will inevitably 
find that his efforts drag on unsuccessfully, not only till the end of the 
term or year, but until the end of the solar system, without revealing 
anything. What is needed instead is a systematic, analytic approach. 
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(iii) Though programs are almost never entirely bug-free, observance of 
the rules of good programming style can reduce the density of bugs in your 
initial program drafts and allow bugs to be found more quickly once testing 
of your program begins. Finding the right approach to the programming task 
that confronts you, the right style in which to start writing the code that 
you need, is of prime importance. To find this 'right approach' requires 
careful consideration of the logical structure of your programming task, 
with the aim of defining a collection of intuitively transparent operations 
which work well together and can be used to accomplish this task in as 
straightforward a way as possible. Code should impress by its clarity, 
naturalness, and inevitability, all of which make avoidance and exposure of 
bugs easier, rather than by obscure trickery and impenetrable cleverness. 
Programs that achieve brevity without sacrificing clarity are most 
desirable, since lines of code that you never need to write will never 
contain bugs. Effective brevity is attained by a correct choice of 
intermediate operations and by systematic use of these operations to produce 
the program you require. SETL is in itself a powerful programming language, 
but especialy for larger, more complex applications it may be well to 
program by first inventing a still more powerful language specially adapted 
to your intended application. Then your initial program draft can be 
written in this (possibly unimplemented) language, after which it can be 
transcribed mechanically into SETL to make it executable. In this sort of 
approach, the primitives of your invented language will become the 
second-level procedures and macros of your SETL code. By using an auxiliary 
language in this way and by handling its transcription into SETL in as 
mechanical a style as possible, valuable protection against error is gained. 
See Sections 4.2, 9.1 below for a discussion of related issues, and Section 
xxx for an extended example of what is meant here. 

(iv) Careful program documentation also serves to expose and eliminate 
bugs. Good documentation will add an important degree of redundancy to your 
program. Your code expresses your intent in one way and your comments 
express the same intent in another. Discrepancies between the two indicate 
the presence of bugs. Carefully thought-out comments should be added to a 
program as soon as the code is written. Some comments will in fact be 
written before the code to which they refer, in order to guide composition 
of the code. Any additional comments needed to make documentation complete 
should be added to the code while it is still 'fresh'; this creates an 
opportunity to review the code, checking it for logical faults. After the 
whole text, code plus comments, has been constructed and put into proper 
format, it should be left to 'cool' for a few hours or days, after which it 
should be reviewed attentively and suspiciously. Such a 'cooling off 
period' will dispel some of the initial misapprehensions which may have 
crept into a code, and thus will allow various systematic errors to be 
corrected. 

(v) As has been said, brevity in coding is desirable, but this should 
be the kind of brevity that flows naturally from an effective overall 
approach to the programming task at hand, not the undesirable brevity which 
comes from stinting redundancy (e.g., by using short, un-mnemonic, variable 
names.) Use the features of the SETL language vigorously and eliminate 
clumsy circumlocations where direct modes of expresion exist; but avoid 
obscure tricks even even where these gain brevity. 

(vi) Certain constructions, for example those which perform elementary 
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arithmetic computations to determine positions in strings and tuples (for 
which 'off-by-one' errors can easily occur) are bug-prone and need to be 
approached with cau~ion ■ For example, what is the length of a string 
s(i •• j), is it j-i, j-i+l, or j-i-1? To ensure that s(i •• j) is exactly k 
characters long, what value do we give j: i+k-1, or i+k+l? Learn to 
recognise these trouble spots, double-check item when preparing your code, 
and surround them with ASSERT checks when you do use them. For example, if 
you write 

ASSERT 

immediately 
pinpointed 
way back to 
introduce, 
situations 
the macros 

before proceeding on this assumption, your error will be 
immediately; if you omit this check, you may have to find your 
this error from some obscure symptom. A related idea is to 
and use, a collection of standard macros to handle these touchy 

in ways that are more instructive. For example, by introducing 

MACRO len_from(i,j); j-i+l ENDM; 
MACRO make_len(i,k); i ■■ i+k-1 ENDM; 

we can accurately extract a string of length k from (s) 
character position i by writing 

s(make_len(i,k)) 

starting at 

and can evaluate the length of s(i •• j) by writing len from(i,j) 
(vii) As Donald Knuth has ·remarked, premature opiimisation is the root 

of all evil in programming. Compulsive (and ultimately ineffective) 
attempts to gain minor efficiency advantages often complicate programs and 
introduce bugs into them ■ As you compose a program, remember that 
substantial efficiency advantages will be gained globally by choice of 
effective algorithms, not locally by complicating seizure of minor 
advantages. 

(viii) Prescreening routines, for example routines which examine a 
program for tokens (such as RETRN) which are likely to be mispellings of 
other, more frequently used, variable names or keywords may be available to 
you. Grow accustomed to using these bug-finding aids (like RETURN in this 
case), as well as any other available compile-time debugging aids based on 
more sophisticated global program analysis routines. 

(ix) Your program test plan should begin to be developed as your program is 
being written, and a substantial portion of the collection of test-and 
debug-~riented PRINT and ASSERT statements that you will use to test your 
program should be composed and entered as soon as the first draft of the 
program begins to approach completion. Early attention to your test plan 
will serve to pinpoint complex program sections that require careful 
testing. These are also the sections whose logic needs to be inspected most 
closely before testing begins. See Sections 7.4 and 7 ■ 7 for additional 
discussion of this point. 
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7.2 Finding'Bugs 

Even, alas, if you are very systematic and professional, some bugs will 
creep into your program, and the problem will then be to find and fix them. 
The following remarks should help you learn how to do this effectively. 
Debugging always starts with evidence that a program error has occurred 
somewhere during a program run. The problem in debugging is to work one's 
way back, from the visible symptom first noticed, to the underlying error. 
The errors one is looking for can be called the error sources or primal 
anomalies: These are the first (incorrectly written) operations or 
statements which get correct data from what has gone before them, but pass 
data that is no longer correct to what comes after them. They are the 
instructions at which your program first 'runs off the rails'. The initial 
evidence of error that you see may relate only indirectly to these primary 
error sources. The difficulty of finding the erroneous statements is 
complicated by the fact that the full history of an extensive computation 
comprises a vast mass of data, impossible to survey comprehensively. In 
debugging you must therefore aim to explore as narrow a path as possible, 
while still finding your way back to one or more primal anomalies. 

A good first step, but one that should not be allowed to hold you up 
too long, is to look closely at whatever fragments of correct output have 
been produced. If little or no output is correct, then your program may 
have, failed before even the first PRINT statement was executed. This hint 
may help you narrow the bug hunt. On the other hand, if some output is 
correct, then the program was probably functioning correctly till some point 
past the statement which produced the last correct output. Find the ,Point 
in your program at which this output was produced, and see what comes before 
and after it. Again, this may narrow the hunt. Examine the erroneous 
output carefully and try to see if its logical pattern reminds you of any 
particular section of your program. This also can sometimes yield useful 
hints concerning the likely location of the bug, especially if different 
parts of your output data are produced by recognisably different sections of 
code. If certain items of output that you expect are missing, try to see 
what evidence there is that all the code that you expected to execute did 
actually execute: remember than unanticipated data may have caused your 
program to follow an unexpected path through its code, so that it may have 
bypassed, or may never have reached, the code sections which were supposed 
to. have produced the output which you are surprised not to see. Evidence of 
this general kind, analysed, will in favorable cases point the finger of 
suspicion at certain narrow program sections. However, in less favorable 
cases, the available evidence will be ambiguous. In this case, you will 
need to generate more extensive traces and dumps. This can be done in one 
of two ways: 

(a) By inserting additional PRINT statements into your program, to make 
it print out something of a 'motion picture' of what has happened. 

(b) By inserting various other checks, especially ASSERT statements, 
which check assumptions on which your program depends, but which you are 
afraid might .be failing. 
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Sections 8.5.1.4 below will have more to say about technique (b), which 
is related to the general issue of formal program validation. The following 
more pragmatic hints ~ill help you to apply this technique effectively. It 
is particularly important to place ASSERT statements in sections of code 
known to involve delicate constructions, especially if (as in the case of 
the 'off by l' bugs considered in the last section) the necessary checks are 
simple. Since the correct functioning of a program often hinges upon the 
assumption that key variables will change in a consistent way as iterative 
execution proceeds (for example, always increasing or always decreasing) it 
can be useful to save the last previous value of each significant variable 
-var- and to write checks which compare the last previous value of -var­
with its current value. This can be done by introducing an auxiliary 
variable -last var- for each -var-, and writing an assignment 

last_var:= var; 

whenever it is desirable to save the last value of -var-. 

ASSERT var=last_var; 
ASSERT var/=last_var; 

Then checks like 

ASSERT last var=OM OR var*last_var={ } AND var/=last_var; 

etc. will all prove useful. 

It may be useful to check an assertion the first few times it is 
encountered, but not subsequently. (If this is done, and you select the 
option (see Section 7.2) which prints a confirmation message each time an 
assertion is checked, you should be able to tell that your program is 
following its expected path.) The following macro is convenient for this 
purpose: 

MACRO ASRT(n;temp); 
temp ?:= (n+l); ASSERT (temp -:= 1)=0 OR 

ENDM; 

If we use this macro, and for example write 

ASRT(3) C; 

then the condition C will be checked the first 3 times that it encountered. 
(Look at this macro definition carefully, and make sure you understand the 
way in which the dangling OR at the end of it controls the execution of the 
expression C which we want to ASSERT a few times.) 

Ultimately, however, the problem with a purely assertion-based 
debugging technique is that it is not easy to formulate the necessary checks 
comprehensively enough to make it unlikely that a bug (which probably 
relates to something that has been overlooked) can slip through. 

Hence one must often fall back on on method (a), which generates 
additional raw evidence for inspection. The problem in using this method is 
to avoid burying yourself in too voluminous a trace of the thousands, or 
even millions, of events that take place as a program executes. To avoid 
this danger a carefully planned sequence of probes is necessary. A good 
idea is to resurvey your program, mentally list its main subphases, and 
determine all the data objects which each phase passes to the next phase. 
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If your program has been well designed, there should not be too many of 
these objects, and then it is reasonable to print them out for inspection. 
Before inspecting this information, review the logic of your program, and 
make sure you know just what features you expect to find in values of the 
variables that you have printed. Try to be aware of every feature on which 
any part of your program depends. Then check the actual data. If the data 
printed at the end of a phase looks correct in every detail, then this phase 
is probably correct. If something strange looking appears in the data 
produced by a given phase, while the data supplied to this phase looks 
correct, then there is probably something wrong with the code of this phase. 

When this stage of debugging is reached, you will at least have 
determined which of the several phases -0f your code contains the error for 
which you are hunting. At this point, it is a good idea to think over all 
the evidence that you have examined, and see if any compelling picture of 
the problem seems to suggest itself. Sometimes the fact that the offending 
phase has now been located removes enough confusion for the difficulty to be 
guessed quickly. If not, you will have to carry your tracing to a more 
detailed level. This is a matter of inserting PRINT and ASSERT statements 
more densely into the offending phase, in order to locate the particular 
subphase that contains the error. As before, this is the subphase to which 
good data is being supplied, but which is seen to pass bad data along to its 
successor subphase. 

(c) Once the bug location has been pinned down to a program section 
roughly a dozen lines long, review the logic of these lines. Read them very 
closely, looking for some misunderstanding which could have produced the 
anomalous data which you know that this section has generated. Try again to 
correlate data features with the operations responsible for producing these 
features. If this doesn't work, take the data supplied to the erroneous 
subphase, and try to trace the way that the subphase will act on this data, 
by hand, step by step, until you spot some error. 

(d) In most cases, these steps will find the bug without too irritating 
an expenditure of effort. However, in the stubbornest, fortunately rare, 
cases the problem for which you are hunting may still elude clear 
identification. In these particularly resistant cases one of three causes 
may be at fault: 

(i) If the algorithm which you are using is complex, you may have 
misunderstood its logic. It may be that no single line of your code is 
wrong: rather, its overall pattern may be subtly wrong, causing it to 
produce the output you see, rather than the results you wrongly expected it 
to generate. Global logic errors of this sort are often quite confusing. 
If you come to suspect that a problem of this sort has occurred, you should 
reason once more through the structure of your program, trying to convince 
yourself by careful analysis that it is logically sound. Section 7.7 below 
describes the formal rules that underlie reasoning of this sort. 
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(ii) There may be nothing wrong: you may simply have misunderstood 
what output your program was supposed to produce. Or you may have been 
looking at the wrong phase of a program which really does contain a bug, 
because you thought that the output of this phase showed some error, while 
in reality the bug was elsewhere. Or you may not have been running the 
program you thought you were running, or the version of the program you 
thought you were running, or your program may have been reading input data 
different from that assumed. In such case, take a few minutes to cool off, 
review the whole situation, including the logic of your program, once more, 
and start over. 

(iii) Your problem may be caused by a true 'system bug', that is, an 
error, not in your program, but in one of the many layers of prepackaged 
software, including the SETL compiler, execution-time library, or operating 
system under which you are running. Concerning bugs of this kind we can say 
the following: 

(iii.a) Don't be too quick to suspect them. Though such problems do 
crop up from time to time, they are much rarer than errors in your 
newly-written programs. Remember that dozens of people are using the same 
software systems that you are, and that if the problem afflicting you is a 
system-level problem, it would affect all of these people. Before you 
become willing to blame your problem on anything other than an elusive fault 
in your own program, you should always have examined your program with great 
care, located a section just a few lines long which you can be sure is 
receiving correct input (because you have printed and inspected its input) 
and producing bad output (again, you must have printed and inspected this 
output.) Finally, meticulous examination of these few lines, with review of 
the definition of all the operations these lines involve, of the 
parenthesisation of those lines, and of any applicable rules of operator 
precedence must give you 'courtroo~' evidence that the system is not 
performing according to its specifications. At this point you are almost 
(but still not quite) in postion to report a system problem to the expert in 
charge of maintaining your copy of the SETL system (or of the operating 
system within which the SETL system runs.) Before doing so, however, you 
should try to simplify the evidence still further, isolating the 
malfunctioning lines into a malfunctioning program just a few lines long, 
and then paring this program down still further if possible, ideally to the 
point at which it contains just three lines: an assignment initialising a 
very few variables, a single line which obviously does not function as it 
should, and a print statement which confirms the fact that this line has 
failed to act in the manner demanded by the rules of SETL. If the system 
problem which you think lies at the root of your troubles disappears 
somewhere during this sequence of steps, the cause of your difficulties may 
not be a system problem at all, but an error or misunderstanding on your 
part, which your attempts to locate the suspected 'systems problem' may have 
clarified. In this case, chastened, you should return to your original 
program, fix the error in it, and continue your debugging. If, however, you 
do succeed in creating a very short program which gives unmistakable 
evidence of system malfunction, you should transmit a complete, clean copy 
of this program to a system expert. This should be accompanied by a clear 
explanation of the problem you have pinned down. He will then take steps to 
fix the SETL system, or to have it fixed. 
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Note that problems in the SETL system, like problems in your own 
programs, are most likely to concern marginal, rarely exercised cases, e.g. 
treatment of null-sets, null-tuples, null-strings, etc. Though the system 
has been in use for a few years and has been tested fairly extensively, 
exhaustive testing of so complex a system is simply not possible. (See 
S.ection 7.4.1 for a discussion of some of the issues involved in attempts to 
test programs comprehensively.) 

There is a few cases in which it is reasonable to jump a little more 
rapidly to the conclusion that a system bug is affecting you. One is the 
case in which two runs of absolutely identical programs and data yield 
different results. Another is the case in which insertion into your program 
of a statement which is harmless by definition changes the behavior of the 
program significantly. For example, if insertion of a -print statement­
changes your program's flow of control, something is obviously amiss at the 
system level ■ This may be evidence that can be reported to an expert 
immediately: but see the caution extended in (f) below. 

(e) It should be clear from what has been said that one of the very 
first things you will want to trace when you start to analyse a 
malfunctioning program is the input data it is reading. Always 'echo' this 
data by printing it out immediately after it is read. Your input data may 
not be what you think it is, or you may be reading it incorrectly. 

(f) Especially if a difficult bug is being pursued, debugging as an 
activity tends to create an atmosphere of confusion, which grows like a 
thundercloud as the mind struggles to free itself from the misapprehension 
which first allowed the bug to slip in. Particularly difficult bugs 
sometimes make one feel that one is going insane, since the laws of logic 
seem to be breaking down. To combat this perilous confusion, you must 
maintain a very deliberate, step-at-a-time, and above all skeptical, attiud~ 
while you are debugging. Verify the situation at every turn; look at what 
really is in your source text rather than trying to remember what was there: 
print out a record of what your program is really doing rather than guessing 
what is going on. Inexperienced student programmers often come to advisors 
with old versions of programs that they are trying to debug, claiming that 
'I ran this program on Tuesday, and I made two or three changes that I am 
sure are harmless, and now it does't work.' A more experienced programmer, 
who knows that the only valid evidence to work from is a current, single, 
untorn listing showing program and output unmistakably together, will only 
laugh at this ■ 

To reduce the level of your own confusion, it is sometimes helpful to 
work over your problem with a friend, trying to explain what is going on, 
and reviewing salient parts of the logic of your program with him, till he 
begins to understand it. A more expert consultant will often be able to 
spot the trouble that you have missed, but even if your 'consultant' is less 
expert than you yourself, you will often find that the very act of 
explaining the problem lets you spot what is wrong. 

when 
(g) Even when a program has once begun to function (and often even 

it has been used successfully and intensively over a considerable 
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period), it may still contain bugs, which .can lurk within sections of code 
which are rarely, perhaps almost never, exercised. For this reason, code 
inserted for debugging should generally not be removed once the bug is 
found. Don't throw away your crutches: it may become necessary to debug 
the same program again! Instead of removing debug code, you can 'comment it 
out' by inserting a dollar sign at the start of each line inserted for 
debugging. (Only inserted lines that never generated any evidence useful 
for debugging should be wholly removed.) Another technique, particularly 
useful during extended development and debugging of large programs, is to 
make the most valuable debug prints and checks 'conditional', by including 
them in IF-statements containing conditions which are normally false but can 
be turned on by supplying control card parameters. (See Section X for a 
discussion of control card parameters.) If this is done, it becomes possible 
to examine the inner working of a malfunctioning program quickly, without 
having to recompile it all ■ 
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7.3 A checklist 2..i. common bugs. 

Certain bugs occur quite frequently, and the experienced programmer 
learns to recognize their characteristic symptoms. Here is a checklist of 
commonly occuring bugs, with some indication of the symptoms they are likely 
to produce. We only list bugs that would pass through compilation 
undetected. 

Variable not given any initial value 
Incorrect termination of a loop 

(e.g. count off by 1) 

Incorrect limits in string and 
tuple slices (e.g. count 
off by 1) 

Incorrectly structured WRILE-loop 
conditions or bodies, or 
incorrect initial conditions 
in WHILE-loops 

Incorrect treatment of initial cases 
in recursions, or bad procedure calls 

Omission of QUIT or CONTINUE 
statement 

Mispelled variables, e.g. AO for AO, 
Bl for 'Bl, cl for ci 

Reading unexpected data 

Unanticipated characters encountered by 
string-scan operations 

Not resetting a counter or accumulator 

Failure to set a program switch 

Parameters out of order in 
procedure call 

Shared global variable unexpectedly 
modified by invoked procedure 

Likely SETL Symptom 

'Illegal data-type' error 
Mi~sing items in data 

collections, sums too 
small if loop terminates 
too soon; 'Illegal data-type' 
error if loop terminates too late 

(Similar to incorrect loop 
termination) 

Failure of program to 
terminate 

Failure of program to 
terminate. Possible memory 
overflow. Other effects 
can sometimes be very 
subtle 

Program 'runs on' into code 
not intended for execution. 
Effects can be quite 
subtle. 

(Like uninitialised variable) 

'Illegal data-type' error, 
possibly no output 

Failure of program to 
terminate 

Effects can be subtle. 
(see 'Incorrect loop 

termination') 
Effects can be subtle 

'Illegal data-type' error 
(generally easy to find) 

Efforts can be very subtle, and 
particularly hard to 
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or function 

Variable inadventently modified 
by assignment to a variable 
intended to be different but 
having the same name. 

Complex, incorrect combination of 
Boolean conditions 

Mis_parenthesisation of logical 
or arithmetic errors, 
misunderstanding of precedence 
rules. 

Variables out of order in READ 
statement 

Read operations of program 
inconcistent with data 
actually present in input file 

Target of an assignment 
statement misspelled 

find if a function is 
involved 
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If no data-type error is 
caused, effects can be 
subtle 

Effects can be very subtle 

Effects can be very subtle 

Illegal data-type error 
(generally easy to find) 

Illegal data-type error 
(generally easy to find) 

Effects can be very subtle 
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7.4 Program Testing 

Debugging is the process of searching for the exact location of a 
program error when you know that some error is definetely there. Testing is 
the systematic exercise of a program which you believe might be correct, in 
an effort to see whether bugs are really absent. If testing shows a bug, 
debugging starts again. If your tests are not systematically designed, then 
bugs may go undetected evep if present in your program. All one knows about 
a poorly tested program is that it works in the few cases for which it has 
been tried; it may fail in many others. 

Test design is as important a part of program development as the choice 
of algorithms and data structures. Development of a test plan should begin 
while a program is being written. A procedure which is hard to test is apt 
to be bug-prone, and should be simplified if possible. By keeping 
testability in mind, you will avoid unnecessarily complex constructions, and 
produce cleaner, sounder code. 

Testing falls into three distinguishable phases, •hich we will call 
first stage testing, second stage or quality assurance testing, and 
maintainance or regression testing. First stage testing begins as soon as a 
program is complete enough for execution to be possible. Its hypothesis is 
that bugs are present in sufficient numbers to prevent much of the program 
from working at all. During first-stage testing, one aims to make the main 
facilities of the program being debugged operable by finding and removing 
bugs quickly. Quality assurance testing begins where first stage testing 
ends. It assumes that a few obscure bugs remain. in the program to· be 
tested, and aims to test systematically enough to smoke them out. 
Maintainance testing aims to ensure that new bugs are not introduced into 
old programs during their extension and repair. 

First stage testing 

First stage testing should work through a program 'bottom up', first 
testing the bottom-level procedures (or code paragraphs) which implement the 
basic operations used by the rest of the program. Once the code realising 
these operations has been checked and found to be operable, the testing 
process will focus on intermediate-level procedures, and once these have 
been checked one will begin testing the program's main capabilities. 
Attempts to short-circuit this systematic, level-by-level test procedure by 
jumping directly to tests of higher program l~vels are more apt to waste 
time than to speed things up, since the lower-level causes of high~r-level 
failures will then be hard to understand. For systematic testing, test 
input will need to be prepared for each procedure to be tested; this should 
be designed to make the output produced easy to inspect. If any of the 
procedures being tested make use of difficult or obscure data ~tructures, it 
may be necessary to develop auxiliary output procedures which print these 
data structures in formats which clarify and emphasize their: logical 
meaning~ When such procedures become necessary, they should be written and 
tested immediately. 
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Perhaps because realism might conduce to suicide, programmers are 
generally over-optimistic concerning the likelihood that a program that they 
have just written will work right away. Careful preparation of a first 
stage test plan serves to counteract this common illusion; the more 
realistic attitude thereby engendered encourages more careful initial 
program inspection, and this often reduces the number of bugs present when 
first stage testing begins. This is why programs developed cautiously often 
become operational quickly, whereas programs developed in too optimistic a 
frame of mind often begin to work only after frustrating and totally 
unexpected delays. 

An effective way of organising tests is to group them into 
procedure called -test_prog(s)-, whose one parameter s is 
consisting of test names separated by asterisks. The -test_prog­
have the following structure: 

PROC test_prog(s); $ skeleton of test procedure 
(WH'.ILE s/='') 

. . . 

IF SPAN(s,'*')/=OM THEN CONTINUE; END; 
IF (tn:=BREAK(s,'*'))=OM THEN tn:=s,s=''; END; 
PRINT('Beginning Test',tn); 
CASE tn OF 

(put sequence of named tests here) 

ELSE 

END 
END 

i 

print('Unnown test 
CASE; 
WHILE; 

END proc test_prog; 

name'); 

a single 
a string 
can then 

To trigger a sequence of tests named test_4, test_2, etc. one has only 
to write something like test_prog('test_l*test_2*•••'). Later, when first 
stage testing is complete, thi~ call, and the -test_prog- procedure, can be 
left in the progr~mrl P that has been tested, but the argument of the 
test_prog call can b~ ~hanged so that it reads te~t_prog(getspp('TESTS=/')) 
(see Section 8.5 for an account of the -getspp- library procedure.) If this 
is done, no tests will be executed unless Pis invoked with a control card 
parameter of the form TESTS=testl*test2 ••• *testn, in which case the named 
tests will be performed. This approach makes it easy to retest a program in 
which unexpected trouble has developed. Of course, the test facilites 
available should be carefully documented at the start of the -test_prog­
procedure. 

Especially when a long program P is being developed, it may be 
desirable to begin testing before all parts of P have been coded (or even 
designed in detail. Of course, such a approach will be reasonable only if P 
has a sound, hihgly modular overall design, and only if the missing sections 
of P have been designed in enough detail so that you can be sure that no 
inconsistency will develop when they are designed and coded in detail.) This 
mode of organization of development and testing is sometimes called 
'top-down' testing. It has the advantage of allowing testing and 
development to proceed in parallel. A related advantage is to provide 
particularly early confirmation of overall design soundness, or, if a design 
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proves to be unsound (say, in terms of 'human factors', i.e. 
to give early warning of trouble. 
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useability), 

If a top-down approach to development and testing is taken it will be 
found useful to provide a standard, multiparameter library routine having 
the name MISSING_SECTION. Then parts of your program that have not yet been 
coded can be replaced by invocations 

ISSING_SECTION(name_of_missing_section); 

where the string-valued parameter -name_of_missing_section- should assign 
the missing section a name that can be printed. The MISSING-SECTION 
proceduFe should also allow optional ~dditional parameters, so that it can 
be invoked by 

MISSING_SECTION('name_of_missing','pl p2 ••• pk',pl, ••• ,pk); 

where 'pl', 'p2',•• name various parameters with which the missing section 
would have to deal or which might explain why it was (perhaps unexpectedly) 
invoked. 

7.4.1 Quality assurance testing 

Second stage (or 'quality assurance') testing should aim to exercise a 
program comprehensively, in at least the following senses: 

(i) It is obvious that parts of your program that have never been 
executed during debugging may well contain unrecognised errors. The battery 
of tests you develop should therefore force every line of your program to be 
executed at least once. 

(11) If your program branches on a Boolean condtion, then you will 
want to supply at least one test case in which the condition evaluates to 
TRUE, and another in which the condition evaluates to FALSE. 

(iii) Improper treatment of extreme values is a common cause of program 
failure. A program may work for nonnull sets, tuples, or'strings, but not 
.for the corresponding null cases; for positive integers n but not if n•O; 
for integers less than the length of some string, but not for integers equal 
to this length, etc. It may work when a WHILE or a FORALL loop which it 
contains is entered, but fail if the loop is bypassed entirely. 

In preparing a comprehensive collection of teats, you will therefore 
need to survey your program systematically, listing marginal situations of 
this kind as exhaustively as you can; then at least one test that will 
force each logically possible situation to occur should be prepared. 

-- -- ----------------------------------------
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(iv) Once a list of all procedures, loops, branches, code sections, and 
marginal cases to be tested has been collected and a comprehensive set of 
tests has been developed, it may be worth preparing a formal test coverage 
matrix which shows which tests exercise each program feature. A chart of 
this kind makes it easier to spot cases that have never been tested. It can 
also help to select tests to be run during regression testing (see below), 
and can help to pinpoint program sections to be examined when a test f~ils. 
Such a chart will also make it easier to avoid running too many tests all of 
which exercise the same limited group of program features but never use 
others. Note that, if regarded as a kind of test, 'production' use of a 
program is subject to this objection, i.e. daily use of a program often 
exercises only a limited subset of its features. This is why programs that 
have been in heavy use for extended periods sometimes fail when their usage 
pattern changes significantly. 

(v) Compilers sometimes include features which make it easier to 
determine the coverage provided by a family of tests. For example, it may 
be possible to generate a listing of all program statements executed during 
a sequence of runs, of all branches taken, of all procedures invoked, etc. 
The SETL measurement facility described in Appendix XXX is not untypical of 
:profiling' facilities of this kind. You will want to familiarise yourself 
with these facilities, since they can help assure that the test-sets you 
develop for your programs are adequate. 

(vi) Once developed, test sets become an important adjunct to the 
programs that they test. Such test sets should therefore be organised in a 
manner which facilities their long-term maintainance and re-use. The tests. 
which are available, and the coverage they provide, should be adequateli 
documented. 

(vii) Programmers often find it hard to bring sufficient enthusiasm to 
the task of systematically rooting obscure bugs out of code that they 
themselves have written. In part, this is a matter of over-optimism; in 
part, a result of the mental fatigue which tends to set in at the end of a 
lengthy code development; in part, a consequence of the difficulty of 
overcoming the very mind-set which introduced an error in the first place. 
For all these reasons, it is good practice to make testing of large programs 
the responsibility of a quality assurance group independent of the 
development group that produced these programs. If this is done, then,· 
knowing that an independent group of programmers will probe their work 
systematic~lly to find shortcomings, the original development group will be 
encouraged to simplify their product so as to improve its reliability. 

Even where resources do not permit fully independent organization of 
the activity of program testing, it is well to ensure that every line of a 
complex code is read •nd understood by at least two programmers, each of 
whom will be able to spot problems and suggest tests that the other might 
have overlooked. 

7.4.2 Regression Testing 
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Regression testing is testing routinely appl~ed whenever a previously 
working program is amended, to ensure that newly introduced code has not 
caused new errors. Tests which will be used in this way should be written 
so as to be self-checking, i.e. to produce little or no output if they have 
run correctly, but to produce copious output pinpointing a problem as 
closely as possible when an error· is detected. This can be done by 
organising the tests so that they perform various calculations, always in at 
least two different but logically equivalent ways. If these· paired 
computations produce the same result, then either no output, or a simple 
message 'TEST xxx PASSED', should be printed, but if a discrepancy is 
detected output which shows the discrepancy and displays the values of all 
variables related to the discrepancy should be printed. 

If a chart has been prepared showing the program features exercised by 
each test (see iv above) it can be used when a test fails to suggest what 
part of the program should be examined first to find the cause of failure. 
If some one of these program sections has just been changed, it will of 
course ~ome under immediate suspicion. 
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7.5. Analysis of program efficiency 

7.5.1. Efficiency£..!~ of the basic SETL operations; 
execution time of loops. 
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estimating the 

It is very easy to use SETL (or any other programming language) to 
write programs which would take years, or even hundreds or thousands of 
years, to finish executing. Consider, for example, the code fragment 

(1) sum:=O; 

(FOR i IN [ 1 •• 1000]) 
(FOR j IN [1 •• 2000]) 

(FOR k IN [1 •• 3000]) 
(FOR 1 IN [l. .4000]) 

sum +:=(2*i*i*i+j*j*j+k*k+l); 

END FOR 1; 
END for k; 

END for j; 
END for i; 

In this code, for each successive value i, the variable j iterates over 2000 
different values; for each value of i and j, the variable k iterates over 
3000 values; and for each value of i,j, and k, the variable 1 iterates over 
4000 values. Thus, all in all, the innermost statement of the code fragment 
(1) will be executed 1000x2000x3000x4000 times, i.e. 240 billion times. 
This statement involves 6 multiplications and 4 additions, so that at least 
2.4 trillion elementary arithmetic operations are required to execute the 
code (1). Even on a computer capable of executing a million arithmetic 
operations per second (a fairly typical performance figure nowadays) and 
even if the code (1) were written in a programming language capable of 
exploiting this raw arithmetic capability to the utmost, 2.4 million seconds 
would be needed to execute the code (4). Since an hour is about 4,000 
seconds, this is about 600 hours, i.e. about 24 days. However, since SETL 
(which pays a price in efficiency for its very high level) is roughly 30 
times less efficient than this, execution of the SETL code (1) would require 
roughly two continuous years of computer time. This makes it quite clear 
that in writing SETL programs one needs some way of estimating the 
computational resource which will be consumed to execute the code that one 
sets down. 

At least for the most straightforward programs, this is not hard to do. 
Elementary operations on integers and real numbers can be considered to take 
one nominal 'unit' of time. (Depending on the speed of your computer and 
the quality of the SETL implementation that you are usng, this 'unit', in 
terms of which we will state all our other timing estimates, could be 
anything from a millionth to a ten thousandth of a second.) Any simple 
assignment operation x:=y should take roughly one unit of time, as should a 
tuple indexing operation t(i). If f is a map, than the map indexing 
operation f(i) is somewhat slower, say roughly five times as slow. The set 
membership test x IN s also takes roughly five time units. (See Section 
10.2.) 
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Basic opperations on composite objects, for example set union, 
difference, and intersection, also tuple and string concateration, take a 
time proportional to the size of the objects involved. For example, forming 
the concatenation tl+t2 of two tuples (or strings) takes a time proportional 
to the sum of the lengths of tl and t2, since all the components (or 
characters) of both tl and t2 must be moved into the concatenated tuple that 
is being formed; at the elementary 'machine' level which underlies the SETL 
implementation, these components are moved one at a time. Generally similar 
remarks apply to the operation of forming the union of two sets, but here 
the situation is actually somewhat more complicated, and we postpone its 
detailed discussion to Section XXX. 

Iteration over a set, as for example in 

(FOR x IN s) ••• END; 

or over a map, tuple, or string, as in 

(For·x=t(i)) ••• END; 

produces set elements (or map values, tuple components, or string 
characters) at a rate of one per cycle. Essentially the same remark applies 
to numerical iterators, like those in (1) above. Hence to estimate the time 
required to execute a loop, we have only to multiply the number of times the 
loop will be executed by the (average) time that it will take to execute the 
body of the loop. An obvious generalisation of this rule applies to 
imbedded loops: if one FOR loop is imbedded within another, then the time 
required to execute the outer loop is the product of the number of times it 

- will be executed, times the (average) number of times the imbedded loop will 
be executed, times the time required to execute the body of the imbedded 
loop. For example, the double loop 

(FOR i IN (1 •• 1000], j IN [l..i]) ••• END; 

will execute in a time roughly equal to 1000x500 multiplied by the amount of 
time required to execute the loop body, since the (implicitly) imbedded loop 
over j will execute an average of 500 times for each successive value of i 
(This number 500 is halfway between the number 1 of times that j changes 
when i=l and the number 1000 of times that j changes when 1=1000) 

Since quantifiers and set formers are 
iterations, very similaT rules apply to them. 
quantifier like 

(2) ••• EXISTS x IN slC(x) ••• 

in effect pre-packaged 
To evaluate~~ existential 

will take a time to equal to the number of items x examined multiplied by 
the average time required to evaluate the Boolean condition C(x). If the 
quantifier (2) evaluates to FALSE, then all the members of swill need to be 
examined, so the time required will be s multiplied by the average time to 
evaluate C(x). If (2) evaluates to TRUE, then iteration over s will 
terminate as soon as an x satisfying C(x) is found; since iteration over a 
set is performed in a somewhat unpredictable order, the number of iterations 
needed to find such an x should be roughiy #s/(#sat+l), were -sat- is the 

-~-- --~ ---------------------
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set of all x satisfying the condition C(x). 

Similar remarks apply to setformers and tupleformers, except that 

(a) each insertion into a set 
iterative step, because of the 
duplicate elements, and 

takes somewhat longer than a simple 
necessity to check for and eliminate 

(b) The implicit iteration appearing in a set or tuple former like 

{x IN slC(x)} 

must always proceed until all the elements of shave been examined. 

As an application of these rules, note that execution of the harmless 
looking code fragment 

(3) f:•{ }; 

(FOR x IN s) 
f(x):={y IN sl(EXISTS z in slC(x,y,z))}; 

END FOR; 

involves three nested loops: first the FOR-loop which appears explicitly, 
next the implicit iteration overs in the setformer {y IN s •• }, and then 
finally the implicit iteration overs in the quantifier EXISTS z IN s ••• 
Therefore the number of cycles required to execute (3) can be as high as the . 
cube of the number of elements of the sets. 

The possibility that a program can loop forever in an ill-constructed 
WHILE loop should serve to alert us to the fact that analysis of the time 
required to execute a WHILE loop can be much subtler than FOR-loop analysis. 
Of course, some WHILE loops are easily analysed. For example, if the 
variable k is not modified in its body, the loop 

k:•O; 

(WHILE (k+:•l)<n AND t(k)/=OM) 
• • • 

END WHILE; 

behaves .ji,-1!, 'very mu ch 
terminatEJ•· after no 
the loop 

(4) t:•n*[O]; 

the same way as a FOR-loop, and therefore will 
more than n-1 iterations. On the other hand, consider 

(WHILE EXISTS x•t(i) lx•O) 
print(t); 
t ( i) : = 1 ;. 
t(l •• i-1):= (i-1)*[0]; 

END WHILE; 
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This begins by generating a tuple t:•[O,O, •• OJ of n zeroes, and then 
repeatedly sets the first nonzero coordinate of t to 1 and all the 
coordinates preceding this coordinate to zero, thus carrying out a 
(left-to-right) form of binary counting. The sequence of tuples printed is 

[O,O,O, ••• OJ 
c1,o,o, ••• 01 
co,1,0, ••• 01 
c1,1,o, ••• 01 
co,0,1, ••• 01 
[1,0,1, ••• oJ, etc. 

and is plainly of length 2**n ■ Hence the 
execute the WHILE-loop (4) is at least 
loop will execute for roughly 320 years 
performed per second. 

number of cycles required to 
2**n, which means that if n•50 the 
even if 100,000 iterations are 

For a more realistic example of the way in which WHILE loops are 
typically used, consider the bubble sort 

(.5) (WHILE EXISTS i IN [1 •• t-1) lt(i)>t(i+l)) 
[t(i),t(i+l)J :•[t(i+l),t(i)J; 

END WHILE; 

This searches a tuple t for out-of order components and interchanges a pair 
of such components whenever one is found. Plainly the number of cycles 
required to execute (5) is the average time required to search the tuple t 
for an out-of-order pair of adjacent components, multiplied by the number of 
interchanges required to put t in sorted order. Even though precise 
analysis of these times requires a close and subtle analysis going far 
beyond the scope of this book, it is not hard to estimate these time 
requirements crudely. We can guess that, as long as an out of order pair 
exists, one such pair will be found after searching through some fraction of 
the length of tuple t being sorted; thus evaluation of the existential 
quantifier appearing in the first line of (5) is estimated to require c* t 
cycles, where tis some constant which we wiYl not attempt to evaluate here. 
Moreover, since each execution of the body of the WHILE-loop (5) corrects 
exactly one case in which a pair of elements appears in inverted order, the 
expected number of times that (5). must iterate to put t into its final 
sorted order should be roughly equal to the number of pairs of components of 
t which occur in inverted order. In a random arrangement of the components 
of t, roughly half the components to the left of a given t(i) should be 
larger than t(i), and roughly half the components to the right of t(i) 
should be smaller than t(i). Thus each component t(i) oft should appear in 
roughly #t/2 inverted pairs, and it follows, since t has ft components (and 
since this way of looking at things counts inverted pars twice, once for 
each of the components in such a pair) that the expected number of inverted 
pairs in a randomly chosen arrangement of the components oft should be 
roughly (1/4)*((#t)**2). Multiplying this exp~ession by c*lt, representing 
the estimated time required to evaluate the existential quantifier in the 
first line of (5), we arrive at 

(6) (1/4*c)*((#t)**3) 

for the time required to execute the bubble-sort code (5). 
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The approximations which we have made in arriving at the estimate (6) 
are too crude for the constant (1/4*c) appearing in (6) to be a good 
estimate. (Exercise 7.6.2 outlines an experimental procedure for estimating 
this coefficient more accurately.) The significant feature of the estimate 
(6) is that it tells us that the time required to sort a tuple by the 
bubble-sorting method is proportional to the cube of the length oft~ i.e. 
that sorting a tuple of length 10 by this method should take roughly 120 
cycles, sorting a tuple of length 100 roughly 120,000 cycles, and sorting a 
tuple of length 1000 roughly 120,000,000 cycles. These figures, which are 
not very favorable, reflect the rapidity with which the cube of n grows as n 
increases; in the jargon of algorithm analysis, one says that bubble-sort 
is 'an n cubed algorithm'. Clearly, any sorting algorithm whose time 
requirement grows less slowly than the cube of the length of·t will be very 
much superior to bubble sort as a technique for sorting large tuples t. 
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7.5.2 Efficiency analysis of recursive routines 

That the behavior of recursive routines resembles that of WHILE loops 
has already been pointed out in Section XXX. Like WHILE loops, recursive 
procedures can fail to terminate properly, and this warns us that even if 
they terminate they can execute for a very long time, so that careful 
analysis is needed to estimate their efficiency. On the other hand, 
recursive procedures can sometimes be surprisingly efficient. To show this, 
we will analyse the performance of just one rather simple recursive 
procedure, namely Floyd's quicksort, which has already been presented in 
Section 4.4.1. This procedure, which can sort any homogeneous set s of 
integers, real numbers, or strings, is simply 

(7} PROC quick_sort(s); 
IF S""'l THEN RETURN [ ] ;END; 
x:•ARB s; 
RETURN quick_sort ({y IN sly<x}} 

+[x] + quick_sort ({y IN sly>x}); 
END PROC quick_sort; 

Let T(n) be the number of cycles that this procedure will typically require 
to sort a set of n elements. Counting the sets can require a number of 
cycles proportional ton, and building up the two sets which appear in the 
final RETURN statement of (7} will require a like number of steps. Thus the 
time required to execute (7) is equal to some small constant multiple c*n of 
the length n oft (c=3 is a fair guess), plus the time required to execute 
the two recursive invocations of quicksort which appear in the second RETURN 
statement of (7). Since typically the element x chosen from s by the ARB 
function of (7) will lie roughly halfway between the largest and the 
smallest elements of s, each of the two sets'{y IN sly<x} and {y IN sly>x} 
should contain approximately half the elements of s. Thus, given that T(n) 
is the time required to sort a collection of n elements by the quicksort 
method, sorting each of these sets by use of quicksort should require 
roughly T(n/2) cycles. It follows that _T(n) satisfies the recursive 
relationship 

(8) T(n)=2*T(n/2)+c*n• 

The first of the terms on the right of (8} represents the time typically 
required to execute the two recursive invocations of quicksort appearing in 
(7), and the term c*n represents all the work needed to prepare for then two 
invocations. 

Having now derived the relationship (8), it is easy to solve it, and 
thus to arrive at an explicit estimate for T(n). To solve (8), we 
substitute the expression (8} for the occurence of Ton the right of (8), 
getting 

(8A) T(n)•c*n+2*c*(n/2)+4*T(n/4) 
•2*c*n+4*T(n/4), 

and then substituting (8) for T(n) on the right of (8A) we get 

(SB) T(n)=2*c*n+4*c*(n/4)+8*T(n/8) 
=3*c*n+8*T(n/8). 

- --- ------ ---------------- --------- -- --
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Continuing inductively in this way we will clearly get 

T(n)=4*c*n+16*T(n/16), 
T(n)=S*c*n+32*T(n/32), 
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and so forth, until eventually, when the power of 2 in the denominator on 
the right becomes roughly equal ton (which will happen after log n steps, 
where log n designates the logarithm of n to the base 2), we will find that 
T(n) is roughly 

c*n*logn+n*T(l), 

i.e., that T(n) can be estimated as the product of a small constant c (still 
roughly 3), times n, times the logarithm of n. One therefore says, in the 
jargon of algorithm analysis, that quicksort is an 'n log n' algorithm. 

For n at all large and c roughly equal to 3, c*n*log n will be vastly 
smaller than the cube of n. For example, for n=lOOO, n**3 is 1,OOO,OOO,OOO, 
whereas c*n*log n is only 30,000. Therefore quicksort can be used to sort 
large tuples, which could not be sorted in any reasonable amount of time 
using bubble sort. For example, if #t=lO,OOO and on a computer capable of 
executing 100,000 of our nominal instruction cycles per second, sorting t 
using the bubble sort method will require approximately 16 hours, whereas 
quicksort will accomplish the same operation in roughly 4 seconds. 

This simple example shows why it is so important to find algorithms 
whose time requirements do not rise rapidly as the arguments passed to them 
grow larger. Very considerable efforts have been devoted to the search for 
such high efficiency algorithms during the past decade, and a great many 
ingenious and important algorithms having this properly have been devised~ 
Unfortunately, most of these algorithms lie beyond the scope of the present 
introductory work. For basic accounts of this important material, se- the 
Bibliography which follows Chapter xr. 
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7.5.3 More about the efficiency E..!. the primitive SETL operations. 
A warning concerning value copying. 

Some SETL operations, likes WITH x, wheres is a set and t WITH x 
where t is a tupl~, also s LESS x, x FROM s, x FROMB t, and x FROME t, 
modify a composite object (i.e. a sets or tuple t) which may be large. 
The same remark applies to the tuple assignment t(i):•x, and to map 
assignments like f(i):=x and f{i}:=x. The time required to execute these 
operations will vary dramatically, depending on whether or not the large 
composite argument of the operation needs to be copied. 

To understand this important point, note first of all that copying is 
sometimes necessary. Consider, for example, the code 

(1) s:={1,2,3,4,5,6,7,8,9,10,15,20}; 
sl:=s; 
s WITH:=25; 
sl LESS:=2; 
print('s=',s,'sl=',sl); 

The output that this will produce is 

s= {1 2 3 4 5 6 7 8 9 10 15 20 25} sl= {1 3 4 5 6 7 8 9 10 15 20} 

Since two different values will have been created by the time we reach the 
final step of (1), it is clear that somewhere along the way to this final 
step the single set constant assigned to the variable s will have to be 
copied. This (logically necessary) copying can be done when the value of s 
is assigned to the second variable sl in the second line of (1) (copying on 
assignment), or can be done in the third line of (1), when the value of s 
(but not that of sl) is modified by addition of the extra element 25 
(copying on modification). Where copying actually takes place will depend 
on the particular version of the SETL compiler that you are using, and 
especially on whether or not this compiler includes an 'optimisation' phase. 
But in any case, some copying is necessary, and copying a set or tuple with 
n components always requires n cycles. Hence execution of an apparently 
harmless operation like t(i):=x can require a number of cycles proportional 
to the length oft. 

On the other hand, copying is frequently unnecessary, and both the 
optimising version of the SETL compiler and the SETL execution-time support 
system include mechanisms for avoiding copying when it is not logically 
necessary. (Since these are implementation-level mechanisms, and fairly 
complex ones at that, we shall say little about how this is done.) When no 
copying is involved, the operations WITH xis only two or so times slower 
than the membership test x IN s, and similar remarks apply to the other 
operations in the group we have been considering. For example, the 
assignment t(i):=x can be done in just one of our nominal 'cycles', and in 
the same circumstances map assignment is roughly five times as slow. 

Equality and inequality comparisons between composite objects are also 
interesting operations to consider. To perform an equality (or inequality) 
comparison between two tuples, we first compare their lengths. If these are 
the same, the tuples may be equal, but even so their equality must be 
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checked by iterating over them in parallel and checking corresponding 
components for equality. A similar technique is used to determine equality 
of two sets when both· of these have equally many members: we iterate over 
one of the sets, verifying that each of its members is also a member of the 
other set. Hence if they are different, comparison of two sets or tuples 
for equality may require only a few cycles, but if they are equal a time 
proportional to the size or the sets or tuples being compared may be needed 
to compare them. 

Declarations which instruct the SETL compiler to modify the data 
structures which it uses to represent SETL objects will be described in 
Chapter x. These declarations allow set operations like 'x IN s', 'y=f(x)', 
'f(x):=y', etc., to be handled as efficiently as tuple operations like 
'y:=t(x)' and 't(x):=y' Used properly, they can increase the efficiency of 
set operations like sl+s2. sl*s2, and sl=s2 very substantially. 
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7.5.4 Data structures for high-efficiency realization of important 
operations 
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We have seen in the preceding pages that execution of some of the most 
important operations which SETL provides, for example set union and tuple 
concatenation, requires a time proportional to the size of the arguments to 
which these operations are applied. However, if the programs performing 
these unions and concatenations use the relevant sets and tuples only in 
restricted, particularly favorable ways, we can sometimes improve their 
efficiency very greatly by alternate, more complex representations for the 
objects appearing in these programs. Although doing this is something of a 
violation of the 'SETL spirit', which emphasises ease of programming over 
efficiency of program, SETL can be used to explain these efficiency-oriented 
techniques. Of course, it is important to understand these techniques 
because efficiency sometimes becomes an essential issue. 

To· focus our discussion of this matter, let us consider the problem of 
concatenating two tuples tl and t2. SETL permits this concatenation to be 
f~rmed simply by writing tl + t2, but, as indicated earlier, execution of 
this operation can involve copying all the components of tl and t2, and 
require a time proportional to the sum of the lengths of tl and t2. It is 
therefore of interest that an alternative 'list' representation of tuples 
can sometimes be used to produce this concatenation much more rapidly. 

In this representation, a tuple t:=[xl, ••• xn] is represented using a 
pair of mappings, called -next- and -val_of-, and by a variable -compl­
which locates the first component xl of the tuple. The first component of 
the tuple is val_of(compl), the next component is val_of(nex~(compl)), etc. 
Thus the -next- mapping steps us along from one component ~index' to the 
next 'index' (we will use atoms for these 'indices'), whereas the -val_of­
mapping gives us the actual component value associated with each 'inde~'. 
The last 'index' en in the list is distinguished by having next(cn)=OM. 

. . . . 
val. of 

Figure 1.1. A tuple represented by a 'chained list' of elements. 

At first sight, representing a tuple in this way may not appear 
to be a very good idea. Of course, it is not hard to iterate 
over tuples having this representation: we simply start at -compl­
and apply -next- repeatedly to step along, always applying -val_of­
to get the component value corresponding to whatver index we have 
reached. For example, instead of writing · 
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(lA) IF EXISTS x = t(i) IC(x) THEN ••• ELSE ••• 

as we would if t were· a standard SETL tuple, we would write 

(lB) i:=compl; $ initialise search index 
(WHILE i /= OM) 

x : =v a 1 _ o f ( i ) ; 
IF c(x) THEN QUIT WHILE; END; 
i:=next(i); $ advance search index 

END WHILE; 
IF i/=OM THEN••• ELSE ••• 
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Although no less efficient than (lA), the code (lB) is certainly more 
complex and harder to read than (lA). Moreover, finding a given component 
t(k) oft is much less efficient in the list representation, since for 
standard tuples the operation 

x:=t(k) 

is performed in one or two cycles, whereas if t has the list repre~entation 
we will instead have to execute tbe code 

i:=compl; 

(FOR j IN [l..k-1)) i:=next(i); END; 

x: =v a l_o f ( i) ; 

whose execution requires at least k cycles. On the other hand, other 
important tuple operations can be performed much more rapidly in the list 
representation than for standard SETL tuples. For example, for a st~ndard 
tuple the operation which inser~~;x immediately after the i-th component of 
t requires time proportional to the length of t, since to create the 
expanded tuple all of the elements oft will have to be copied into new 
positions. On the other hand, if t has the list representation, this 
operation can be done in just a few cycles, since all we have to do is 

(a) 
value x; 

c re a t e a new a t om i x t o s e r v e a s .. the ' i n de x ' for the new component 

(b) link ix at the appropriate position into to list representing t. 

Similar remarks apply to the operation t(i.~i):=[ which deletes a 
given component from a tuple in list representation. The following two 
procedures represent these operations. In writing these procedures, we 
suppose that a single pair of maps -next- and -val_of- will be used to 
represent all tuples, and that the variables -next- and -val of- have been 
declared global. We also suppose that only one logical ref~rence to any of 
the tuples we consider is ever extant, so that no copying (see the preceding 
section) ever needs to be performed. 

PROC insert(x,i): 
$ inserts x immediately after the tuple component whose index is i 

next(ix:=NEWAT):=next(i); $create a new index ix, and make it 
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next(i):=ix; 
val_o f(ix): =x; 

END PROC insert; 

PROC delete(i); 

$the predecessor of next(i) 
$and the successor of i 
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$delete the component immediately following that whose index is i 

next(i):=next(next(i)?i); $ unless i is the last index in its tuple 

END PROC delete; 

$ make i's successor the successor of i's 
$ original successor 

Provided that neither tl nor t2 will be required after tl and t2 are 
concatenated, and that the index i of the last component of tl is easily 
available, the concatenation of tl -and t2 can also be formed in a number of 
cycles independent of the length of tl and t2. The following procedure, in 
which we assume that each tuple tin list form is represented by a pair 
[first,last] consisting of the first and the last index oft, shows this: 

PROC concat(tl,t2); 

[tl_first,tl_last] :=tl; 

[t2_first,t2_last] :=t2; 

IF tl first=OM THEN 

$ 'unpack' the first and last 
$ indices of tl 

$ and the first and last indices of t2 

$ tl 
RETURN t2; 

ELSEIF t2 first=OM THEN $ t2 
RETURN tl; 

ELSE 
next(tl_last):=t2_first; $ 
RETURN [tl_first,t2_last]; 

END IF; 

END PROC concat; 

is an empty tuple 

is an empty tuple 

link the two lists 

Quite a few other trick representations of tuples, sets, maps, etc. are 
known. If the family of operations applied to a SETL object is 
appropriately limited, use of one of these special representations can be 
very advantageous. Since further exploration of this very important issue 
would take us beyond the scope of the present work, we refer the reader to -
the bibliography appearing after Chapter XI for additional material 
concerning the issue of 'data structuring'. 
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7.6 Exercises 

Ex. 1 How could you use the techniques described in Section XXX to make 
nonterminating recursions less likely to occur? 

Ex. 2 Take the Bubble-sort procedure described in Section 4.1.1 and. the 
Merge-sort procedure described in Section 4.4.2, and modify them by 
inserting code which will count the number of comparisons which they make 
when used to sort a given vector t. Use these modified routines to sort 
tuples of length 50, 100, and 200, counting the number of comparisons 
performed, and measuring their relative efficiencies. Try tuples with 
random components, and also try tuples with only a few components out of 
sorted order. 

Ex. 
laid 

3 The following SETL code is syntactically correct, but very 
out. Put it in a better format, and add appropriate comments. 

PROGRAM sort;read(s);t:=[ ]; (WHILE s/={ })s LESS:•(x:•MIN/s); 
t:=[x]+t;END;print(t);END; 

poorly 

Improve the following program, which is also correct but poorly laid out. 

PROGRAM find_palindromes; $'Madam Im Adam' 
LOOP DO read(x); IF x/=OM THEN y:=+/[c:c IN xlc/=' ']; 
IF y=[y(j):j IN [#y,#y-1 •• l]]THEN print(x);END;ELSE 
QUIT;END;END; 

Ex. 4 What cases should be run to test the following recursive sort 
procedure comprehensively? 

PROC sort(s); $ recursive sort of a set of integers 

RETURN IF (x:=ARB s)=OM THEN [ ] 
ELSE sort({y IN sly<x}) + sort({y IN sly>=x}) END; 

END PROC sort; 

Run your tests, and try to estimate how thoroughly they test this code. 

Ex. 5 Suppose that G is a graph represented as a set of ordered pairs. If 
G contains a cycle C then C can be regarded as a subset of G such that for 
each x in G there exists a yin C (namely the edge y folowing the edge x in 
the cycle C) such that x(2)=y(l). Conversely, if this condition is 
satisfied, then there exists a cycle, since starting with any x in C we can 
find an x' such that x(2) = x'(l), then an x'' in in G such that 
x'(2)~x''(l), and so on, until eventually we must return to an edge that 
occurs earlier in the chain x,x',x'', ••• , at which point a cycle will have 
been formed. This leads to the following program for testing a graph to see 
if it has a cycle: 

PROGRAM test_for_cycle, $ tests·any graph for the existence 
$ of a eye le 

read(G); 
print(IF EXISTS C in POW(G}I 

FORALL x IN clEXISTS y IN clx(2)=y(l) 
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THEN 'There exists a cycle' 
ELSE 'There exists no cycle' END); 

END PROGRAM test_for_cycle; 
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Work out a good battery of tests for this program, test it, and try to 
estimate how comprehensive your tests really are. 

Ex. 6 In the quick_sort program shown in Section X, change the expression 

sort({y IN s: y<x}) + [x] + sort({y IN s:y>x}) 
to 

sort({y IN x:y<x}) + sort ({y IN s: y>x}), 

thereby introducing a bug. Then run the erroneous program. What hapens? 
Could you guess the problem from the symptom? What would be a good way of 
debugging this program? 

Ex. 7 Suppose that the subexpression [x] in Exercise 
is accidentally mistyped as [z]. What will happen? 
if it is accidentally mistyped as [OJ? As {x}? 

6 is not omitted, but 
Why? What will happen 

Ex. 8 For debugging purposes, it is useful to have a monadic operator .OUT 
such that .OUT x always has the value x, but such that '~valuation' of .OUT 
x prints the value of x. A binary operators .OUT2 x which return x but 
prints both s and x can also be useful. Write definitions for these 
operators. How might you use them to debug the faulty recur~ave procedure 
described in Exercise 6? 

Ex. 9 Each string in the following set consists of characters which are 
easily mistyped for each other: 

{'III/',· '7>', 'L>', 'DOOO', 'S5s', 'Z7', 'UVuv~, '6b', 
'4+t*', ' __ ,, 'GC6' }. .,, 

Write an expression that converts this set of strings into a set s 
consisting of all pairs of letters that~are easily confused for one another. 
Use this set to create a 'bugging program' B, which can read the text of any 
SETL program P, introduce one randomly selected character substitution 
chosen from Pinto it, and write the erroneous version of P thereby produced 
into a file. Collect various short sample programs from your friends, 'bug' 
them using B, and ask your friends to see if they can spot the error. Then 
debug these programs, to see how long it takes you to track down the errors 
which B has introduced. If B is modified so that it never changes 
characters in SETL keyworda; but only in identifiers, how much more elusive 
do the bugs that it introduces become? 

Ex. 10 Suppose that the9statement 

[t(i), t(i+l)] :=[t(i+l),t(i)]; 

in the bubble-sort procedure of Section 4.1.1 is replaced by 

(*) t(i):=t(i+l); t(i+l):=t(i); 

What would happen? If we checked the resulting version of bubble sort by 
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adding 

ASSERT FORALL 1 in [1 •• t-1) I t(i) <= t(i+l); 

would the problem introduced by the change (*) be found? What checking 
assertion could we write to catch the sort of error that (*) introduces? 

Ex. 11 Suppose that in the bubble-sort procedure of Section 4.1.1 we 
inadvertently wrote [1 •• #t] instead of [l •• #t-1). What would happen? If we 
wrote [//t •• 1] instead? If we wrote [l •• #t-2)? If we wrote [2 •• #t]? 

Ex. 12 Take the bubble-sort procedure shown in Section 4.1.1 and find at 
least three errors that might plausibly be made in writing or typing it, any 
of which would cause the code to loop endlessly. None of these errors 
should involve changing more than six characters. Take these erroneous 
versions of bubblesort to friends, and see how long it takes them to spot 
the errors. (This problems assumes that at least three of your friends know 
how to program!) 

Ex. 13 Take the merge sort program shown in Section 4.4.2. Then m6dify it, 
to produce four different erroneous versions of merge sort, each of which 
contains one of the following list of common bugs. (Try to make your 
modifications as plausible, and as hard to spot, as possible.) 

(1) 
(11) 
(iii) 
(iv) 

Boolean condition stated in reversed form. 
one branch of an IF statement omitted. 

Premature exit from a loop. 
Input data not checked, data of the wrong type read. 

For each of these erroneous versions of estimate the time that would be 
required to find the error if you did not know where it was. Write a 
battery of tests sufficient to show that there is something wrong with each 
of these erroneous programs. 

Ex. 14 Rep~at exercise 13, but for the buckets-and-well program shown in 
Section 4.3.1. Produce five erroneous versions of this program, each wJth 
one or two plausible errors in every procedure. Devise a debugging p~an 
which could discover most of these errors quickly. In what order does,;it 
seem best to test the procedures of this program? Where would it be most 
useful to place ASSERT statements? Try to devise assertions that can be 
checked quickly, but whose verification will be string evidence that the 
program is working as it should. 

Ex~ 15 The following version of quicksort contains just one error. What is 
it? 

PROC quicksort(t); $ t is assumed to be a tuple of integers 

IF t•[ ] THEN RETURN; END; 

x:=t(l); 
tl:=[y:y=t(i) ly<x]; 
t 2 : = c y: y = t < i > I y =x l ; 
t3:=Cy:y=t(i) ly>xl; 
quicksort(tl); quicksort(t3); 
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t:=tl + t2 + t3; 

END PROC quicksort; 
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Ex. 16 How many of the errors by the 'bugging program' described in 
Exercise 9 could be found more easily using a program which reads SETL 
programs and prints out a list of all identifiers appearing only once in 
them? 

Ex. 17 Write a maintainance test which could be used to check a sort 
program by comparing its results with those of quicksort. Use this test to 
verify that the merge-sort procedure shown in Section 4.4.2 is correct. 

Ex. 18 Write a SETL system maintainance test which computes fifty set- or 
tuple-related values in two radically different ways and compares the 
results obtained. Your test should exploit various set-theoretic 
identities. For example 

{e(x): x IN DOMAIN£}= {e(x): [x,y] IN£} 
= {e(x): y=f(x)} 

should be true for every map f, and 

sl*s2 = sl-(sl-s2) 

should be true for every pair of sets. 

Ex. 19 To see what parts of a program have been executed in a series of 
tests, we can inroduce a global variable called POINTS, and a macro 

MACRO POINT(k); POINTS LESS:=k ENDM; 

Then if we 
statements 
at the end 
section of 

initialise POINTS by writing POINTS:={1 •• n}, insert a sequence of 
POINT(j), j=l, ••• ,n into the code being tested, and print POINTS 

of execution, each remaining member of POINTS will represent a 
code that has never been executed.· 

Apply this technique to develop a comprehensive set of tests for the 
bank accounting program described in Section 5.4.3. Add tests to your set 
until the condition POINTS={ } is achieved, to make sure that your 
collection of tests does not leave any section of code unexecuted. 

Ex. 20 A boundary test for a program Pis a systematic collection of tests 
which exercises Pin all the legal but extreme cases which Pis suppose to 
handle. Work up several such boundary tests for the bank accounting program 
described in Section 5.4.3. Your tests should include items like checks for 
$0.00, empty transaction files, etc. 

Ex. 21 The bank accounting program described in Section 5.4.3 is totally 
unprotected against bad input. Modify it so that all input is 
systematically examined for acceptability; your input-examination 
procedures should check for all remotely plausible input errors. Write an 
English-language explanation of the input errors for which you check. 

Ex. 22 Take one of your programs, approximately 10 lines long. Strip all 
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comments from it, and then introduce one misprint, to cause a bug (not one 
that syntax analysis would find.) Give the result to a friend (a good 
friend!) with a 3-line explanation of what the program is supposed to do. 
See if your friend can find and fix the error without expending more than an 
hour's effort. 

Ex. 23 Develop test data for the GCD program outlined in Exercise XXX. 
Your tests should include cases in which the data is zero, negative, etc. 
and should test all relevant combinations of 'extreme' data of this kind.' 

Ex. 24 Write the 'MISSING SECTIONS' procedure described in Section XXX. 
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7.7 Formal Verification of Programs 

The growing importance of programs to banks, airlines, engineering 
firms, insurance companies, universities, indeed to all the major 
institutions of our society, lends an inescapable importance to the question 
of program correctness. Once a program has been written, how can we be sure 
that it is correct, i.e. that when given legal input it will always produce 
the output that its author desires? This is a deep question, whose 
systematic exploration would take us far beyond the boundaries of the 
present introductory text. Nevertheless, in order to shed some light on the 
issues involved. we will use the present section to say something about it. 

To begin with, we emphasise that mere program testing, even systematic 
testing like that described in Section 7.4, can never prove a program's 
correctness in any rigorous sense. Testing, to repeat an important maxim of 
the Dutch computer scientist Edsger Dijkstra, can show the presence, but not 
the absence, of bugs. Though systematic testing is an essential tool of 
program development, in asserting the rigorous correctness of a program we 
are asserting that it will run correctly in each of a potentialy i~finite 
family of cases. Clearly, no finite sequence of test cases can cover all of 
them, and so any rigorous assertion that a program functions correctly in 
all possible cases must rely on some sort of mathematical proof. 

The basic raw material out of which such proofs can be built is not too 
hard to find. When a programmer has written a program and checked it 
carefully for the first time, why does he believe that it will run 
correctly? If legitimate, this feeling of correctness must always rest on a 
comprehensive logical analysis of the conditions that arise as control moves 
from point to point during the execution of a program. 

To show what such analysis involves, we will take a very simple 
program, namely one which calculates the product of two integers n and m by 
adding n to itself in m times. (The basic technique that we will use to 
prove the correctness of this trivial program is entirely general; however, 
the mass of technical detail needed to handle more complex examples grows 
rapidly, and to avoid this it is best to stick to a rudimentary example.) 
Since it is a bit easier to handle WHILE loops than FOR loops, we write our 
multiplication code as follows: 

(1) prod:• 0 ; 
iterations :• O; 

(WHILE iterations /s m) 
prod:• prod+ n; 
iterations :•iterations+ 1 

END WHILE; 

To.begin to prove this program correct, we must first supplement it by 
adding a formal statement of what it is that the program is supposed to 
achieve. This can be done by adding an ASSERT statement at the very end of 
the program, giving us 
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(2) Line 1: 
Line2: 

Line3: 
Line4: 
LineS: 
Line6: 

prod : • 0 ; 
iterations:• 0; 

(WHILE iterations/• m) 
prod:• prod+ n; 
iterations :•iterations+ 1 ; 

END WHILE ; 

Line7: ASSERT prod• m*n; 

------ --- --- --
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In (2), all lines of the program have been labeled to facilitate later 
reference. Note that addition of the final ASSERT statement is an 
absolutely necessary preliminary to any attempt to prove anything at all 
about the program until we have stated what a program is supposed to do, we 
cannot even begin to prove that it does what it is supposed to! This is to 
say that all rigorous proofs of program correctness are really proofs that 
two di_fferent descriptions of a computation, one a deliberately very high 
level, mathematical statement (like the final line in (2)) of what an 
algorithm accomplishes, the other a more detailed procedure (like t·he rest 
of the code (2)), really say the same thing. 

This fundamental principle being understood, we go on to remark that in 
proving a program correct what one basically needs to do is just to write 
down the logical relationships between data items upon which the programer's 
understanding of his program's behavior rests. However, these relationships 
must be written down in a sufficiently complete manner, and must be 
expressed formally, using additional ASSERT statements. 

To see what is involved, let us first analyse program (2) informally .• 
If the author of (2) wished to convince a skeptical colleague that it really 
does compute the product m*n, what facts about (2) would he point out, what 
more detailed analysis would he offer? The crucial fact upon which program 
(2) depends is that each time the loop starting at Line 3 begins to repeat, 
the variable -prod- will be equal to the product of the variable 
-iterations- by the variable -m-. This is certainly true on the first 
iteration, since then both -prod- and -iterations- are zero, so we certainly 
have 

(3) prod=iterations*n 

(i.e. O•O*n) on first entry to the loop. But if (3) is true at the start 
of k-th iteration, it must also be true at the end of the k-th i~eration, 
since the body of the loop increments -prod- by n and -iterations- by 1. 
Hence (3) remains true during every iteration. But since the loop only 
terminates when the variables -iterations- and -m- are equal, (3) implies 
that prod=m*n at the end of the loop, which is what we wanted to prove. 

The argument we have just presented is a satisfactory informal proof of 
the correctness of the program (2). Nevertheless, it is not quite what we 
require. In proving that a program is correct, we aim to rigorously exclude 
the possibility of any small, easily overlooked program 'bug'. For this, 
merely informal, English-language proof is insufficient, since such proofs 
are no less likely than programs to contain small errors. Moreover, some of 
the likeliest errors in programs (for example, counting in a manner that is 
off by 1) correspond closely to errors that occur frequently in mathematical 
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proofs (for example, starting a mathematical induction at the wrong place or 
missing one among multiple cases that a proof needs to examine.) Therefore, 
when we set out to prove a program rigorously correct, we must aim at 
something more formal and machine-checkable than an ordinary 
English-language proof of the kind ordinarily found in textbooks. 

7.7.l Formal Verification using Floyd assertions: general approach 
This observation drives us to a more formal approach, like that devised 

by Robert Floyd, for proving programs like (2) correct. Floyd's formalism 
requires us to add ASSERT statements to a program P that we are trying to 
prove correct. These auxiliary ASSERT statements, sometimes called the 
'Floyd assertions' for P, must satisfy two principal conditions: 

(a) Enough ASSERT statements must be added so that there can exist no 
indefinetely long path through the program P which does not pass through at 
least one ASSERT statement. Another way of putting this is to say that at 
least one auxilary ASSERT statement must be inserted into every loop in the 
program P. 

(b) Consider any one of these auxiliary ASSERT statements. 
form 

(4) ASSERT C 

It will have the 

where C which can be any Boolean-valued expression, is called the condition 
of the assert statement. The auxiliary assertion (4) will occur at some 
specific place in the progrm P, say, to be specific, immediately after Linej 
of P. Then we require C to assert every fact about the state of the 
program's variables that is relevant at Linej, i.e. every fact upon which 
the correct functioning of P from Linej onwards will depend. This important 
rule ensures that all the essential facts needed for proving the corectness 
of P are explicitly and formally written down in the auxiliary assertions 
added to P, and this is what makes a rigorous proof of correctness possible 
in principle. 

Once the required assertions (4) have been added to P, we proceed as 
follows. Starting either at the first statement of Porat some one of the 
auxiliary ASSERT statements in it, we move forward line-by-line through the 
program along every possible path (i.e. path of control flow, which is to 
say path that the program could follow during its execution. All possible 
paths through P which start at an ASSERT statement but do not pass through 
any ASSERT statement must be considered one after another.) Because (by 
condition (a) above) there are no infinite loops not passing through an 
ASSERT statement, there will exist only finitely many such paths, and each 
such path will be bounded in length. 

Tracing out all such paths q, we will use each of them in the following 
way to generate~ set V of verification clauses. (With one exception, noted 
in (f) below, the verification clauses associat~d with a particular path q 
collect logical relationships between variable values which are certain to 
hold along q.) 

(a) Suppose that th• path q starts at an ASSERT statement ASSERT C, where C 
is a Boolean formula. Then we begin by putting C into Vas its first 
clause. (This simply reflects the fact that C is assumed to be true at the 
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start of q.) 

(b) If the path q passes through an assignment statement of the form 

(A) x :• expn; 

(where expn can be any expression) we introduce a new variable identifier x' 
(this identifier simply designates the value which x has after execution the 
assignment (A)) and add the clause 

(B) x'=expn 

to v. Occurences of x encountered later along the path q (but prior to any 
subsequent assignment to the same variable x) are then replaced by 
occurences of x'. (But at and after any later assignment to x we replace x 

. by yet another new identifier x''.) For example, the sequence of assignments 

x := x+l; y:=y+l; z:=x+y; x:=x+z; 

would generate the clauses 

x'=x+l, y'=y+l, z'=x'+y', x''=x'+z'. 

These rules just reflect the fact that 
variable x takes on immediately after 
equation (B), and that x retains this value 
subsequent assignment. 

the new value x' which the 
the assignment (A) satisfies the 
until it becomes the target of a 

(c) If the path q passes through an assignment of the special form 

(C) x:-=ARB s; 

wheres is some set-valued expression, then just as in paragraph (b) 
we introduce a new name for x, but in this case we add the clause 

(D) x' IN s 

above 

to v. (This reflects the fact that the ARB operator can select an arbitrary 
element of s, so that (D) asserts everything we can know about the new value 
x' given to the variable x by the assignment (C).) 

(d) Conditional and unconditional GOTOs: 
a control statement of the form 

(E) GOTO Label; 

If the path q passes through 

then the path q must continue with the statement following the Label that 
appears in (E), but we add no clause to Vat this point, since a simple GOTO 
does not test any condition or change the value of any variable. 

On the other hand, if the path q passes through a control statement of 
the form 

(F) IF C THEN GOTO Label; END; 
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then the path q can go on either to the statement immediately following (F) 
or to the statem~nt following the Label that appears in (F). In the first 
case, we add the clause NOT C to v. in the second case we add the clause C 
to V• These rules simply reflect the fact that NOT C must hold if and when 
q passes through a control statement (F) without the instruction GOTO Label 
applying, but that C must hold if and when q reaches (F) and the instruction 
GOTO Label is applied. 

(e) The rules for more complex control structures, for ·example general 
IF-constructs, WHILE loops, and UNTIL loops, can be deduced by rewriting 
them in terms of the more primitive constructs (E) and (F) and then applying 
the rules stated above. For example, if q encounters a multi-branch IF 
statement of the form 

(G) IF Cl THEN 
blockl 

ELSEIF C2 TJIEN 
block2 

END IF; 

and ~hen enters block2, it is obvious that we must add the two clauses 

NOT Cl, C2 

to v. Later, if and when q passes from the last statement of block2 to the 
first statement following the multi-branch IF, no clause needs to be added 
to V, since this transition, like (E), counts as an unconditional transfer. 

THe,rules applying to a WHILE loop 
( H ) (WHILE C ) 

body 
END WHILE; 

are similar~: If and·when q passes through the WHILE heider, either by 
entering the loop from the statement immediat~ly prior to (H) or by 'looping 
back' from the final statement of the body of (H~i we mu&t add the Boolean 
clause C t~ v. On the other hand, if the path ~-encounters the WHILE 
header, but then leaves ,fhe loop (H) immediately, we must add the negated 
clause NOT C to v. 

~· J.i; 

When q encounters the END WHILE line in (H) 1~~~11 go immediatiely to 
the loop header standing at the start of (~). Since this is an 
unconditional transfer we add no clause to Vin the case. 

When q enters an UNTIL loop we need not add any clause ~q V since entry 
to such a loop is unconditional. However if and when q encO'Unters the END 
UNTIL terminating such a loop the action that we must take is a bit more 
complex. Suppose~ to be sp~cific, that th~ loo~ in question has the form 

(I) (UNTIL C) 
body 

END UNTIL; 

------------- - --------- - ------
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If, after encountering the END UNTIL statement, q exits the loop, then 
plainly we must add the clause C to v. On the other hand, if q encounters 
the END UNTIL clause and then loops back and continues with the first 
statement of the body of the loop, we must add the negated clause NOT C TO 
v. 

(f) Eventually, the path q that we are following will end at an AISERT 
statement 

ASSERT C' 

Our aim is then to show that C' is necessarily .true at the end of q, 
provided that the assertion Cat which q starts (see (a) above) is true at 
the beginning of q, and provided also that program execution does indeed 
follow the sequence of steps corresponding to q. It is most convenient for 
this purpose to add the negated condition 

NOT C' 

to v. After doing this our aim must be to show that the set V of cliuses is 
inconsistent, i.e., that not all the clauses of V can be true 
simultaneously. This is equivalent to requiring that, taken all together, 
the clauses of V, other than its final clause NOT C', imply the condition 
C'. 

(g) To complete the set of rules stated in ihe preceding paragraphs, we 
would need rules that tell us how to handle PROCEDURE definitions and 
invocations. However, since these rules are somewhat more complex than 
those stated above, we omit them. This means that the rules stated suffice 
for the formal verification of programs containing no procedure invocations, 

~ but not for programs which make use of procedures. This deficiency i~ not 
serious - it would not be terribly hard to remedy it - but to do so would 
take us beyond the limits proper to the present introductory work. 

Once we have taken a program P. containing ASSERT statements and 
generated the set V of verification- clauses corresponding to each path q 
starting and ending•a~ an ASSERT statement. (but not passing through any 
other ASSERT statement), we are in position to prove the correctness of P 
mathematically. To do this, we must prove mathematically that each of the· 
clause sets V which we have generated (i.e. each of the clause sets 
corresponding to a path q) is inconsistent. Suppose that we can succeed in 
doing tWis. We can then·note that the dlause ·cI initially placed in Vis 
true by assumption, and•that, ~1th th~ exrieption of the fin~l clause CF of V 
(see (f) above) all•~he othernclauses ·inserted into V are true in virtue of 
the very meaning of the statements which the path q traverses. Hence, by 
showing that Vis inconsist~nt,aw~ will have shown that if CI is true at the 
start of q, then CF is true at the end of q. Once this has been 

- demonstrated for every path q through the program P (or, -~ere precisely, 
every path which connects two ASSERT statements but does not through any 
other ASSERT statement), it will follow by mathematical induction that every 
ASSERT statement written into P must evaluate to TRUE whenever it is 
reached, provided only that the ASSERT statement standing at the very head 
of Pis true at the moment that execution of P begins. (This initial ASSERT 
statement, often called the input assertion of P, will normally summarise 
all the assumptions concerning input data on which the program P relies.) 
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All in all, we will have shown that the truth of every assertion written 
into P follows from the assumption that its input assertion is true. 

It is important to realise that this final step of a formal program 
verification, i.e. the step of proving that each set V of verification 
clauses corresponding to a path q between ASSERT statements is inconsistent, 
is a purely mathematical task. I.e., when we begin this task we will 
already have decoupled the work which remains from any entanglement with the 
control structures and other programming dictions present in the original 
program P. It is precisely in order to achieve this, i.e. precisely in 
order to transform our original program-related verification task into a 
purely mathematical question, that we go to the trouble of reducing the 
program P to the collection of clause sets V that it generates. Note again 
that, once all the necessary Floyd assertions have been written into the 
text of P, generation of the clause sets V using the rules stated above is a 
simple mechanical matter, essentially a matter of systematic variable 
renaming and extraction of suitable portions of the statements encountered 
along each of the paths q. 

7.7.2 Formal verification using Floyd ass~rtions. An Example. 
To apply the formal verification technique just outlined to the example 

(2) considered above, we must insert an auxiliary ASSERT statement into the 
WHILE loop appearing in the example. We choose to insert this ASSERT 
statement immediately after Line3 of (2). Call this place P• As explained, 
this added assertion must put on record every condition C which always holds 
at p and which would appear, implicitly or explicitly, in an informal proof 
of the correctness of the program (2). Since we have already given an 
informal proof that this simple program is correct, we already know what the 
inserted statement should say (namely it should say that (3) is always true 
at the beginning of an iteration.) Such an assertion is easily written and 
inserted; doing so, we obtain 

(5) Line 1: prod : - 0 
Line2: iterations :• O• , 

Line3: (WHILE iterations I= m) 
ASSERT prod•iterations*n; 

Line4: prod :• prod + n; 
Line5: iterations :• iterations + 1; 
Line6: END WHILE; 

Line7: ASSERT prod = m*n; 

Writing (5) puts us in position to generate the clause sets needed to 
verify the correctness of the program we are considering. There are just 
four paths through this program that need to be taken into account. The 
first of these i~ the path running from the start of (5) to the first ASSERT 
statementin (5). By the rules stated above, this path generates the clause 
set 

(6) prod'•O, iterations'=O, iterations' /• m, 
NOT (prod'•iterations'*n) 
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The second path that we need to consider runs from the start of (5), to 
the WHILE-loop header but not into the WHILE-loop, and then to the final 
ASSERT statement. This path generates the clause set 

(7) prod'•O, iterations'•O, NOT (iterations'/=m), 
NOT (prod'=m*n), TRUE. 

(Note that the final TRUE clause in both (6) and (7) can as well be dropped, 
since such an assertion, being logically vacuous, can never contribute to a 
logical contradiction.) 

A third path between ASSERTS runs from the ASSERT statement following 
Line3, through the body of the WHILE loop, and then back to this same ASSERT 
statement. This generates the clause set 

(8) prod= iterations*n, prod'=prod+n, iterations'=iterations+l, 
iterations' /= m, NOT (prod'=iterations'*n). 

The fourth and final path that we need to consider is 
runs from the ASSERT statement following Line3 through the 
L~op, but then exits the loop, passing through Line3 
immediately to Line7. The rules stated above tell 
generates the clause set 

the one which 
body of the WHILE 

and then going 
us that this path 

(9) prod•iterations*n, prod'=prod+n, iterations'=iterations+l, 
NOT(iterations' /= m), NOT (prod' = m*n) 

These are all possible paths not running through any ASSERT statement, 
and hence are all the clause sets that we need to consider. Once these 
clause sets have been generated it is easy to prove that each of them is 
inconsistent. In view of the simplicity of our original example, nothing 
more than elementary algebra is needed for any of these proofs. In (6), the 
first two clauses plainly contradict the fourth clause; in (7), the first 
three clauses contradict the fourth. In (8), the first three clauses 
contradict the fifth; in (9), the first four clauses contradict the fifth. 
This completes our formal verification of the program (2). 

It is important to note that this formal verification is very close in 
spirit to the informal, English-language proof of the correctness of (2) 
that we gave earlier; the f~rmal proof only regularises and systematises 
the informal proof. However, this formalisation has the vital effect of 
making it possible to proceed mechanically, thereby ruling out the 
possibility of small errors. Strictly speaking, for error to be 
impossible,, the clause sets would have to be generated mechnically by an 
extension of the SETL compiler, and the informal proof of inconsistency 
which we have supplied for to each clause set would have to be checked 
mechanically. This can be done, but not easily. As already observed~ the 
clause-set generation process that we have applied to the example program 
(2) is quite general, and will apply with much the same ease to any othei 
long or short program which has been decorated with a sufficiently full set 
of assertions. However, for more complex programs the clause sets generated 
will not be as simple as (6), (7), (8), and (9). Program (2) involves 
algebraic operations only, and this is why the clause sets generated from it 
consist entirely of elementary algebraic formulae. Less elementary programs 
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generally involve both algebraic and set-theoretic operations, and this will 
cause set-theoretic expressions to appear in the Floyd assertions and hence 
in the clause sets associated with these programs. (Several programs 
illustrating this remark appear in the verification-oriented exercises of 
Section 7.9.) To show that such clause sets are inconsistent is considerably 
less trivial than to deal with the clause sets arising in the highly 
simplified example that we have considered. Nevertheless, with care and 
sufficient effort the proofs required to show clause set inconsistency can 
always be checked formally after they have been constructed, by using only 
the tools which formal mathematics and symbolic logic make available. In 
this sense, the formal ASSERT-statement based verification approach that we 
have described reduces the problem of rigorous program verifiction to a 
purely mathematical question, namely that of proving the inconsistency 
certain clause-sets written in a formal mathematical notion. This is as far 
as we will carry our discussion of focmal verification, since to discuss the 
mathematical problems that must then be faced would take us outside the 
scope prbper to an introductory text. 
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7.8 Formative influences on program development 

At this point in• our text we have presented programs ranging from the 
simple to the complex, and have discussed both the pragmatic methods used to 
test programs systematically and the considerably more formal techniques 
that can be used to prove their correctness rigorously. The present section 
will discuss a deeper but more amorphous issue, specificaly we will try to 
give some account of the formative influences which shape programs and which 
determine the features that programs typically exhibit. By gaining some 
understanding of this fundamental question we can hope to put other 
important issues such as program design and program testing into a helpful 
broader perspective. 

To understand what underlying forces shape the development of programs, 
it is well to observe that ingredients of two fundamental sorts enter into 
the composition of a program. Material of the first kind serves to define 
user desires and expectations concerning an intended application, for 
example the nature of expected input, and of outpput, including output text 
formats, graphic output, prompts and warnings issued by interactive systems, 
error diagnostics generated by compilers, etc. This material, which often 
constitutes the overwhelming bulk of a particular application-oriented 
program, is motivated by user-oriented considerations having an 
intrinsically nonmathematical character. Material of a second, much more 
highly algorithmic kind also apears in programs. This internal program 
material creates the toolbox of operations which is then used to achieve 
whatever external behavior is desired. Depending on the relative weight of 
program material belonging to these two categories (external and internal), 
a program can be called an 'externally motivated' or 'internally motivated' 
program, an 'application' or an 'algorithm'; one might even say a 
'superficial' or a 'subtle' program. 

Looking back over some of the programs presented in earlier chapters, 
it is easy to apply this distinction. For example, the shortest path code 

. presented in Section XXX of Chapter III is an internally motivited algorithm 
(though not a very deep one). In contrast, the cross reference program 
presented in Section s.2.1.2 of Chapter V has very little algorithmic 
content; most of its details relate to such external matters as the rules 
which distinguish words from punctuation marks in English text, and one 
whole subprocedure, namely PROC XXX of this program, is needed only because 
we want to print lists of line numbers in a neat, easy-to-read tabular 
arrangement. Other examples are the quicksort procedure of Section ZZZ and 
the mergesort procedure of Section 4.4.2, which is algorithms whose recusive 
structure gives them a certain depth in spite of their brevity; and the 
polynomial manipulation procedures of Section YYY, which are also 
algorithms, albeit rather easy· ones since they are little more than 
transcriptions of the ordinary algebraic definitions of polynomial sum, 
difference, product, etc. On the other hand, the 'turtle language' 
interpreter presented in Section ZZZ is externally rather than internally 
determined: this code uses no nontrivial algorithm, but merely reflects the 
rules of the turtle language in an· almost one-to-one manner. The 'buckets 
and well' program of Section 4.3.1 makes the distinction between internally 
and externally motivated code· particularly clear, since one of its 
procedures, namely the crucial PROC find_path, is an internally motivated 
algorithm (very close in spirit to the path-finding PROC XXX of Section 
ZZZ), while all its other procedures are externally motivated, some of these 
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relating to such issues as the acquisition and checking of initial data, 
while others merely serve to represent the rules of the 'buckets' problem 
itself. 

The basic concepts and notations of mathematics, which SETL makes 
available as tools of programming, serve very adequately to define the 
internally motivated, algorithmic parts of programs. We have already seen 
that SETL's set-theoretic features allow mathematical functions to be 
described either in a deliberately succinct, 'high' style which defines them 
very directly, or more procedurally by algorithms which compute these same 
functions, sometimes in surprising, clever, much more efficient ways. We 
have also noted that useful mathematical operations which are not directly 
provided by SETL can be built up by writing suitable families of procedures, 
and have emphasised (see our discussion of the family of 
polynomial-manipulating pr~cedures developed in Section XXX) that such 
families should be w~itten to hide the internal representational details of 
the mathematical objects they manipulate, allowing a user to think in terms 
of these objects (e.g. polynomials) rather than in more primitive 
set-theoretic terms. By using such approaches, by studying important 
algorithms carefully, and by consulting the rapidly growing te~hnical 
literature of algorithms, which by now describes many useful, highly 
sophisticated algoritms, you will find that the purely algorithmic side of 
programming can be brought under a reasonable degree of control. 

The externally motivated aspects of programs reflect a considerably 
more miscellaneous congeries of influences, for example the physical or 
administrat\ve structure of real-world systems; the form and sequencing of 
expected input and desired output; the reactions, including prompts and 
warnings, expected from interactive systems; heuristic approaches used to 
manipulate physical or symbolic objects effectively, etc. How can we come 
to terms with such varied material? 

There ha~ develope~ a large, though largely admin~strative literature 
concerning the imp~rtant problem of how to come to terms with external 
aspects of application design before the start of detailed programming. 
This is the ~o- called problem of requirem~nts specification. Concerning 
the literatur~ devoted to this problem, the astute observer C.J. Myers 
comments: 'Although no methodology exists for external design, a valuable 
principle to follow is the idea of conceptual integrity, [i.e.J... the 
harmony (or l~.ck of harmony) among the external interfaces of the system ••• 
The easiest way not to achieve coneptual harmony is to attempt to produce an 
external design with too many people. The magic.~number seems to be about 
two. Depending on the size of the project, one or two people should have 
the responsibility for the external design. ••• Who, then, should these 
select responsible people be? ••• The process of external design has 
little or nothing to do with programming; it is more directly concerned 
with understanding the user's environment, problem, and needs, and the 
psychology of man-machine communications... Becatrse of its increasing 
importance in software development, external design requires some type of 
specialist. The specialist must understand all the fields mentioned above, 
and should also have a familiarity with all phases of software design and 
testing to understand the effects of external design on these phases. 
Candidates that come to mind are systems analysts, behavioral psychologists, 
operations-research specialists, industrial engineers, and possibly computer 
scientists (providing their education includes these areas, which is rarely 
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the case).' 

Though Myers' general remarks are helpful, it is still important to try 
to say something more about the organisation of externally motivated, 
applications-oriented programs. 

One important possibility in this area is to develop special 
applications-oriented programming languages whose objects and operations 
define useful standard approaches to important application areas. Even if 
such languages remain unimplemented and are not available to be run on any 
compputer, their notations and general conceptual structure can serve as 
important tools of thought. In particlar, in developing an application it 
may be well to write out a first version of the application in a helpful, 
even if unimplemented, auxiliary language. This first version can then be 
translated into SETL by choosing iETL representations for all the kinds of 
objects appearing in the auxiliary language and writing SETL routines which 
implement its primitive operations. Used in this way, the auxiliary 
language serves to tell us what families of operations can work harmoniously 
together, and into what procedures a SETL application code can most ~sefully 
be organised. For this reason, comparative study of numerous disparate 
application-orieted languages, for example SNOBOL, APL, GPSS, APT, COBOL, 
etc., is recommended as an intellectual exercise for the would-be 
programmer. 

Another useful suggestion, which plays a role in the design of 
appication-oriented programming languages, is to strive deliberately to use 
general mathematical operations rather than tailored special cases of them 
in developing prototype applications. Contrasting with this recommended 
practice, ordinary application-oriented code tends to mix internally and 
externally motivated program material inextricably, i.e. output details are 
allowed to control the choice of algorithms, and opportunities to generate 
output which an algorithm seems to afford are allowed to determine much of 
what the end-user sees. The result is often an inartistic package, which 
meets user requirements only minimally, and which is full of redundant, hard 
to maintain, and inefficient algorithmic fragments. By separating external 
application design from choice and elaboration of internal algorithms much 
more cleanly, it should be possible to treat these two problems separately, 
and thus to arrive at more satisfactory solutions of both of them. 

A related suggestion is to use well-designed, relatively 
general-purpose application packages as building blocks for the construction 
of more complex applications. Consider, for example, the problem of 
designing an interactive system into which formatted commands will be 
entered to elicit system responses. As part of the design of such a system, 
command -input conventions and command decomposition routines always need to 
be developed. It may be possible to handle this command input task by 
adapting a standard text editor very slightly. If this is done, the 
suitably modified editor will also serve to define and implement command 
facilities which can be as flexible and successful as the editor itself. 
This example illustrates the way in which well-designed, flexible 
application modules can be used, alongside of internally-oriented 
mathematical operations, as building blocks for more advanced applications. 
What is desirable is to familiarise yourself with a library of 
applicatio~-oriented modules which can be used somewhat as one uses a 
library of algorithms, but with the significant difference that they address 
moie application- and user-oriented issues. 
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As we have said, much of the text of an applications-oriented program 
is nothing more than a restatement, in programming language terms, o,f 
external facts and rules pertaining to the intended application. Once on~ 
has found a way of representing these facts and rules in a form which is a 
succinct and clear as a well-conceived English language description of these 
same details would be, one has programmed these external aspects about as 
effectively as can be expected ■ Beyond this, the algorithmic content of a 
highly 'external' program will normally be small. However, the following 
elements will often play some role: 

(a) A few genuine but generally rather elementary algorithms may be used. 
For example one may want to sort, perform a binary search, or put the data 
to be processed into some arrangement which makes it easy to locate 
significantly interelated groups of data items. 

(b) To improve efficiency, one will often apply the process of 'formal 
differentiation' described in Section XXX to an application-oriented code ■ 
As explained in Section XXX, this is the technique of speeding up the 
calculation of a quantity E that will be required repeatedly by storing its 
value in a variable value_of_E, which must then be updated whenev'er any 
parameter on which E depends is changed. (Whenever this common technique is 
applied, it tends to complicate the application code, since it replaces a 
single, integral, often self-explanatory computation of E by multiple 
scattered, harder-to-fathom updates of value_of_E,) A related technique is 
to replace direct use of set-formers and tuple-formers by loops which build 
these same values. Sometimes this is done in order to combine several such 
loops, all of which iterate over the same set, into a single loop. For 
example, in application-oriented code (and even in hand- optimised 
algorithms) one is less apt to see 

(la) nuc_rich_families := #{x IN families J 
family_income(x) >= 100000}; 

num middle families := #{x IN families I 
f-;mily_i~come(x), < 100000 AND family_income(x) > 5000}; 

num_poor_families := #{x IN families I , 
family_income(x) <• 5000}; 

than to see something like 

(lB) nurn_rich_families := num_middle_families :a 
num_poor_families := O; 

(FOR x IN families) 

IF (income:•family_income(x))>=lOOOOO THEN 
num_rich_fami lies+:,= 1; 

ELSEIF income>SOOO THEN 
num_middle_families+:=l; 

ELSE 
num_poor_families+:=l; 

END IF; 

END FOR; 

The code (lB) arises from (lA) by expansion into loops of the three 
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set-formers appearing in (lA), followed by combination of the three 
resulting loops, and then by the application of a few other rather obvious 
optimising transformations. Note that (lB), although much more efficient 
and not much lengthier than (lA), is not quite as obvious a piece of code; 
certainly (lB) is less brutally direct than (lA). 

Internally motivated code passages, which is to say significant 
algorithms, use a much wider range of tricks than ordinarily appear in more 
superficial, application-oriented, programs. (It is partly for this reason 
that it is well to separate internally determined from externally determined 
code sections: externally oriented code can often be ground out routinely 
once a good approach has been defined, whereas deeper, internally-oriented 
code needs to be approached much more cautiously, more 'by the book'.) 
Formal differentiation, as described above, plays a great role in the design 
of internally oriented algorithms. 

Another important technique of algorithm design is exploitation of 
recursive mathematical relationships which express some desired function f 
of a cQmposite object x in terms of values f(xl), ••• ,f(xn) calculated for 
one or more smaller subparts xj of x. As noted in Section 4.4, 
relationships 

· f ( x) =g ( f ( x 1) , •• , f ( xn) ) 

of this recursive kind underly such high-efficiency algorithms as mergesort 
and quicksort. 

Beyond these two most common techniques,J the ongoing work of algorithm 
designers has already uncovered many sophiiticated techniques which can be 
used to accomplish a great range of important tasks with remarkable 
efficiency. Some of these algorithms rest on quite subtle mathematical 
relationships, whose discussion goes beyond the scope of this book. 
However, your ability to devise truly ~ffective approaches to programming 
problems will be strongly conditioned by your familiarity with the rich and 
growing literature of algorithms, and you are strongly advised to proceed 
with the study of this material as soon as y~u have mastered the more basic 
material contained in this book. A short list of useful collections of more 
advanced algorithms is found at the end of this chapter. 

7.9 Exercises 

Ex. 1 Into the bubble-sort code shown as (5) of Section 4.1.1, insert code 
which will count the number of iterations performed. 
Then: 

(a) Measure this number I of iterations for a randomly chosen tuples of 
varying lengths L, and calculate the ratio of I to L**3, to estimate the 
constant C that should appear in the formula I=C*L**3 projected in Section 
7.5.1. Do the same for the quicksort method of section 4.4.1. 

(b) How much more efficient than the bubbl~ sort method (5) of 
would you expect the quicksort method (YYY) to be, for sorting a 
elements? For sorting a tuple of 100, or 1000 elements? 

Section X 
tuple of 10 

Ex. 2 Take the Bubble-sort procedure described in Section 4.1.1 and the 
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Merge-sort procedure described in Section YYY, and modify them by inserting 
code which will count the number of comparisons which they make when used to 
sort a given vector t. Use them to sort tuples of length 50, 100, and 200, 
counting the number of comparisons performed, and measuring their relative 
efficiencies. Try both tuples with random components, and tuples with only 
a few components out of sorted order. 

Ex. 3 Use the technique described in Section 7.5.2 to estimate the time 
required to sort· a vector of length _t using the merge sort algorithm shown 
in Section YYY, and also the time required to search for a specified 
component in a sorted vector using the binary search algorithm given in 
Section zzz. 

Ex. 4 What set will be printed by the following code? 

n:=10; 
s: ={ } ; 

(For i IN [1 •• n]) s WITH:=s; END; 

If we changed the first statement ton:= 1000, for roughly how long would 
you expect the resulting code to execute? 

Ex. 5 Comp are the time required to ex,ecu t e the fo.l lowing codes: 

n:=500; 
s:={ }; 

(FOR i IN [1 •• n]) s \lITH:=2*1; END; 

and 

n: =500; n. 
s: -{ } ; 

(FOR k IN [1 •• n]) s WITH:•2*i, t:•s; END; 

What accounts for the difference? 

Ex. 6 Write a -program which will execute the ten elementary SETL operations 
which you consider most important, 1000 times each, and from this will 
estimate the time required to execute each such instruction. To eliminate 
the time required just to execute looping operations, your tests should 
compare loops like 

(FOR i IN [l •• n]) x:•y+z; END; 
(FOR i IN [l •• n)) x:•y+z; x:•y+z; END; 

The time difference per iteration is then clearly the cost of executing 
the additional operation. 

Ex. 7 
modify 
one of 
it is 

Take the buckets-and-well program described in Section 4.3.1 and 
it by inserting code which will count the number of times that every 

its procedures is called and the number of times that every loop in 
executed. This information should be written to a tuple, and a 
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general purpose routine which prints this information in an attractive 
format should be designed and implemented. 

Ex. 8 One reason why the Eulerian path program shown in Section 11.1 is not 
as efficient as a reprogrammed version of it could be is that to build up 
the final Eulerian path it makes repeated insertions into the middle of the 
path p being developed. As explained in Section XXX, each such insertion 
forces us to copy p if pis represented in the standard way as a SETL tupie. 
A better possibility is to represent p by a 'list' of the form described in 
Section YYY, i.e. by a map f which sends each point of p into the next 
point, so that if xO is the first point of p, then p is 
[xO,f(xO),f(f(xO)), •• ]. Rewrite the Eulerian path program to represent pin 
this way. Try for an efficient variant, e.g. one which avoids unnecessary 
sarching through lists. 

Ex. 9 A tuple tall of whose components are different from OM can be 
represented in the 'list' form described in Section XXX, i.e. by a pair 
[xl,f] .such that xl is the first component oft and f is a map which sends 
each component oft into the next component oft. Use an iteration ~aero to 
write short codes which convert a tuple t from its standard form to this 
list form and vice-versa. 

Ex. 10 Rewrite program (2) of Section XXX by introducing labels and GOTOs 
in place of the WHILE loop appearing in this program. More precisely, the 
WHILE-loop header should be replaced by the following labeled statement: 

Label!: If iterations /= m THEN GOTO Label2; END; 

and the WHILE loop trailer END WHILE should be replaced by the sequence 

GOTO Label!; 
Label2: $ the final ASSERT statement of (2) should 

$ follow this label 

·If we transform (2) in this way we can insert the auxiliary assertion 

ASSERT prod•iterations*n; 

immediately after Labell. Make this assertion; then generate clause sets 
as in Section 7.7.1 and prove -that the resulting variant of program (2) is 
correct. How does this proof compare in difficulty to the proof of 
correctness of program (2) given in Section 7.7.2? 

Ex. 11 A set-theoretic iteration 

(1) (FOR x IN s) 

can be rewritten as a WHILE loop in the following way: We introduce a new 
variable s' (representing the collection of elements of s that have not yet 
been iterated over.) Then the loop header (1) can be rewritten as a WHILE 
loop header in the following way: 

(WHILE s' /•{ }) 
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x := ARBs'; s' :• s'-{x}; 

(The END FOR corresponding to (1) must be replaced by END WHILE.) Applying 
this technique, prove that ifs is a set of integers then the program 

(2) countl := O; count2 := O; 
(FOR x IN s) 

IF x>O THEN countl := countl+l; END; 
IF x<=O THEN count2 := count2+1; END; 

END FOR; 

gives the variables countl and count2 final values satisfying the equations 
countl+count2=#s. You are required to work out a full set of Floyd 
assertions for the program, and to write out the clause sets generated by 
these Floyd assertions. A rigorous English-language proof that each of 
these clause sets is inconsistent should then be given. 

Ex. 12 Assume that sl and s2 are two sets. 
prove that the program 

count:=O; 
(FOR x IN sl) 

(FOR y IN s2) 
count := count+l; 

END FOR; 
END FOR; 

Proceeding as in Exercise 11, 

gives the variable -count- a final value equal to #sl*#s2. 

Ex. 13 Take the merge-sort program of Section 4.4.2 and introduce as many 
hard to-find bugs into it as possible. Give the result to a friend, and see 
if he can find all the bugs, and what is the average time needed to find one 
bug? 

7.10 References to material on alternative data structures. - - ---Re fer enc es for add i t ion a 1 ma t e r i a 1 on a 1 go r i t h·m s • 

Reingold, Nievergelt, and Deo: Combinational Algorithms - Theory and 
Practice (Prentice-Hall Publishers, 1977) is an intermediate-level work 
which presents many useful techniques for generating combinatorial objects, 
fast searching and sorting, and graph processing. It also discusses the 
mathematical techniques used to estimate algorithm efficiency, and can serve 
well as a guide to further reading in this important area. 

The Design and Analysis of Computer Algorithms by A. Aho, J. 
Hopcroft, and J. Ullman (Addison-Wesley Publishers, 1975), which is more 
advanced, contains an excellent survey of many important algorithms, 
data-structuring techniques, and methods for determining the efficiency of 
algorithms. This useful book also describes various important techniques 
for proving upper bounds on the speed with which various quantities can be 
calculated. The first three volumes of Donald Knuth's famous Art of 
Computer Programming (Addison-Wesley Publishers, 1973) cover several 
important classes of algorithms (including basic combinatorial algorithms, 
polynomial manipulation, multiprecision arithmetic, calculation of random 
numbers, sorting, and searching) very comprehensively. Knuth gives many 

- ------~------------ - - ------- --- -------------
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detailed analyses of algorithm efficiency and is the basic reference for 
this topic. Borodin and Munro, Computational Complexity tl Algebraic and 
Numeric Problems (American Elsevier Publishers, 1975) is a specialised work 
which presents many algorithms for high-efficiency processing of polynomials 
and for related algebraic and arithmetic processts• 

Numerical algorithms, i.e.algorithms for carrying out numerical 
computations, including solution of linear and nonlinear equations, 
calculation of integrals, solution of differential equations, minimisation 
of functions of several variables etc. have a very extensive history, which 
reaches back to the nineteenth century and beyond. A first-class modern 
inroduction to this classical area of computational technique is found in 
Dahlquist, Bjorck, and Anderson Numerical Methods. (Prentice-Hall 
Publishers, 1974) 

Methods for treating systems of linear equations and inequalities form 
the content of the area of algorithmics known as linear progrmming. For an 
account of this interesting and important subject, see D. Luenberger, 
Introduction to linear and nonlinear programming. (Addison-Wesley 
Publishers, 1973). 

Many areas of algorithm design have developed very actively during the 
last few years. One of the most fascinating of these is computational 
geometry, the body of techniques used for the rapid calculation of solutions 
to geometric problems ■ For an introduction to recent work in this area, see 
M. Shames, Computational Geometry Ph. d. Thesis, Yale University(l978). 

$ 
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ADDITIONAL I/O AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING 

Chapter 8: Additional I/O and Environmental Functions; 
Backtracking 

In this chapter, we cover various SETL capabilities that have been 
ignored in the preceeding, more elementary chapters. These include 
additional facilities for input/output, for sensing aspects of the 
environment in which a SETL program is running, and for passing strings or 
integers as parameters to SETL runs in a particularly convenient way. A 
full account of all the memory options and listing control commands which 
can be used to modify significant aspects of SETL compilation and execution 
is given. Finally, we give an account of of an interesting, somewhat 
unuaual type of control facility which SETL supports: backtracking, which 
makes an intriguing kind of non-deterministic programming availale. 

Chapter Table of Contents: 

8.1 Input-output facilities 
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8.2.1 Implementation of backtracking 
8.2.2 Total failure; generation of all solutions 
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s.s.1.J Code generation phase options J 

8.s.1.4 Run-time support options 
8.5.1.5 Other command parameters used for system 

checkot and maintenance 
8.6 Exercises 
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8.1 Input-output facilities 

While less developed than those of some other languages, the 
input-output facilities of SETL are adequate for most ordinary applications. 
Faciiities for reading and writing simple string input, structured input 
representing SETL objects, and input/output using an internal 'binary' 
format which can be handled more efficiently than SETL's structured input 
are all supported. Note that relatively powerful string facilities 
available in SETL can also be used to format text that is to be printed. 

The SETL I/0 operations deal with files of two kinds: 

(a) 'Text' (also called 'coded' files), which can be read, either as 
sequences of lines (which are read in as simple character strings, using 
'GET', described below), or as structured encodings of SETL objects 
(possibly extending over multiple lines; these are read in using 'READ'). 

(b) 'Binary' files. These can only be written using PUTB and can only 
be read using GETB (see below). These files store SETL objects in their 
internal representation, And are read or written more efficiently than coded 
files. 

All files are treated in strictly 'sequential' fashion by the SETL I/0 
primitives. That is, a file is regarded as a logical sequence (either of 
strings or of SETL Objects) from ~hich input can only be read sequentially, 
starting with the, first item in the file, and reading through the file to 
its last item, until end-of-file is eventually reached. Read operations are 
performed by READ, READA, GET, or GETB, see below. Output operations (i.e. 
PRINT, PRINTA, PUT, or PUTB) always add items to the end of a file, thereby 
making it longer. At each moment, a given file can only be used either for 
input or for output, not both, and must be used one of the two mutually 
exclusive modes (a) or (b), depending on whether the file contains binary or 
coded information. 

The input-output operations which SETL supports are as follows: 

(1) OPEN(file,mode). This opens the file specified by its first 
argument, thereby making the file available for other operations. Both 
arguments of the OPEN operation are strings. The forms acceptable for the 
first argument are machine dependent since they are identical with the forms 
of file names as defined by the execution environment. For example, on the 
DEC VAX running under the VMS/2.0 operating system, the following file 
parameters would all be acceptable: 

OPEN('data.','CODED'); 
OPEN('test.dat','BINARY-IN'); 
OPEN('[dewar.doc]book.txt','CODED'); 

$ simple file name 
$ qualified file name 
$ directory name followed 
$ by file name 

The second argument of the OPEN function must be one of the following 
strings: 

'BINARY' 
'BINARY-IN' 

(same as BINARY-IN) 
opens file for input by GETB 
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'BINARY-OUT' 
'CODED' 
'CODED-IN' 
'CODED-OUT' 
'PRINT' 

'TEXT' 
'TEXT-IN' 
'TEXT-OUT' 

opens file for output by PUTB 
(same as CODED-IN) 
opens file for input by READ, READA, and GET 
opens file for output by PRINT, PRINTA, and PUT 
opens file intended for printing 
the file is opened for output. 
Files opened in this manner will include special 
'carriage control' characters; see below for details. 
(same as 'CODED-IN') 
(same as 'CODED-IN') 
(same as 'CODED-OUT') 

The OPEN primitive returns the value TRUE if the operation of opening the 
file succeeds, FALSE if this operation fails. Since the OPEN operation 
always involves communication with an underlying operating system, the 
~eaning of 'success' and 'failure' is environment-dependent to a certain• 
degree. Generally speaking, however, opening a file for input will succeed 
if a file having the name specified in the OPEN operation is available in 
the operating environment and has not already been opened; opening a file 
for output will succeed if the file has not already been opened. Opening an 
already open file causes an error. 

(ii) CLOSE(file). This terminates input/output to a file established 
by a pr~or call to OPEN, and releases the file to the operating environment. 

(iii) GET(file,lhsl, ••• ,lhsk): This gets successive lines from the 
specified file, and assigns them (as strings) to lhsl, ••• ,lhsk in turn. 
(Here and below, lhsl, ••• ,lhsk must be either simple variables or 
expressions which can legally occur on the left-hand side of an assignment 
statement.) Lines read by GET should not ordinarily be enclosed iri quote 
characters; if quote characters occur in such lines, they will be treated 
not as string delimiters but as parts of the string being read. · For 
example, if the first two lines of a file 'xxx' are 

THIS IS LINE 1 
'THIS IS LINE 2' 

then the effect of the GET statement 

GET('xxx',lna,lnb); 

is exactly the same as that of the pair of assignments 

lna :a 'THIS IS LINE l'; 
lnb :='''THIS IS LINE 2'''; 

If GET encounters end of data on the file that it is reading, it 
READ, see Section XXX) behaves as if it had read an OM. 

(like 

To GET input from the standard input file, the standard file name 
'INPUT' should be used. 
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(iv) GETB(file,lhsl, ••• ,lhsk). This reads successive SETL objects from 
the specified file, and assigns them to lhsl, ••• ,lhsk in turn. (As in the 
case of GET, lhsl, ••• ;lhsk must be expressions which could legally appear on 
the left-hand side of an assignment.) In this case, the file being read must 
be a SETL binary file, and must have been opened by the command 
OPEN(file,'BINARY-IN'). Note that a SETL binary file will almost always 
have been created using PUTB. 

If GETB encounters end of data on the file that it is reading, it 
behaves as if it has read an OM. 

(v) PRINT(expnl, ••• ,expnk). This writes the values of expnl, ••• ,expnk 
to the standard output file. See Section XXX above for details. 

(vi) PRINTA(file,expnl, ••• ,expnk)~ This is simil*r to PRINT, except 
that its first argument is the name of a file (of 'CODED' type) to which the 
output produced by this operation is written. 

(vii) PUT(file,expnl, ••• ,expnk). This writes text lines to the file 
specified by its first argument, which must be of 'CODED' type. The 
expressions expnl, ••• ,expnk must evaluate to strings. Each such expression 
causes a single line to be sent to the specified file. 

(viii) PUTB(file,expnl, ••• ,expnk) ■ This writes the values of 
expnl, ••• ,expnk to the specified file, which must be a SETL binary file, and 
must hav~ been opened by the command OPEN(file,'BINARY-OUT'). Here 
expnl, ••• expnk can be arbitrary SETL values. 

Provided that they involve no atoms, values written by PUTB can always 
~ ' 

be read back -in GETB. (The special rules which govern the handling of atoms 
by PUTB and GETB are explained below.) Note that the very desirable 
symmetrical relationship between PUTB and GETB that this rule reflects does 
not hold for PRINTA and READA, simply because strings written by PRINTA will 
not include the quote marks which READA requires. Hence, if you want to 
write SETL Objects to external media for temporary storage and then read 
them back you must do so using PUTB and GETB, rather than PRINTA and READA. 

(ix) READ(lhsl, ••• ,lhsk) ■ This reads a sequ~nce of SETL values from 
the standard input file. (As in the case of GET, lhsl, ••• ,lhsk must be 
expressions which could legally appear on the left-hand side of an 
assignment.) 

If READ encounters end of data, it behaves as if it had read an OM. 

(x) READA(file,lhsl, ••• ,lhsk). This is similar to READ, except that 
its first argument is the name of a file (of 'CODED' type) from which the 
input produced by the READA operation will be obtained. 

(xi) EOF. This is a nulladic operation which yields TRUE if the most 
recent input operation executed (which will be either a READ, READA, GET, or 
GETB operation) reached the end of the file being read; otherwise EOF 
yields FALSE. 
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Since every input operation affects the value of EOF, it may become 
necessary in some programs to save EOF values by assigning them explicitly 
to auxiliary variables. 

(xii) EJECT( ) or EJECT(file). This writes a page eject character to 
the specified file, or, if no file is ~pecified, sends a page eject to the 
standard output file. The file to which an eject command is directed must 
either be the standard output file or must have been opened using the 
command OPEN(file,PRINT). Only files opened in this way can accept 
carriage-control characters like the 'eject' character. 

(xii) TITLE( ) OR TITLE(str). These operations initiate and suspend 
generation of titles for the standard output file. TITLE(str) must have a 
stri.ng-valued argument. TITLE causes a page eject on the standard output 
file, and establishes its argument as the title string, which then appears 
at the head of all subsequent pages (until the title is changed later by 
another TITLE command.) Titled pages are numbered sequentially. TITLE with 
no argument disables generation of titles. (See Section XXX for a related 
titling facility.) 

Note that if the PUT primitive is used with a file which was opened by 
an OPEN(file,'PRINT') command and which is intended for printing, the first 
character of each line of the file printed will be treated as a carriage 
control character ·rather than a as a normal print chfracter. Characters 
treated in this way will not be printed, and their presence may cause 
unexpected page ejects or other undesirable effects. For this reason, the 
PUT primitive should not be used in p~ace of PRINT or PRINTA ~xcept by 
programmers familiar with carriage-control conventions. 

The PUTB primitive ~an be used to write atoms to a BINARY file. These 
atoms can be read back by GETB. Note however that if a file containing 
atoms is read in by a program that has just started to run, regeneration of 
atoms will restart at atom number 1, and hence some of the newly generated 
atoms may appear to be identical with old atoms obtained from a file via 
GETB. To avoid difficulties in this case, it may be necessary to use some 
annoying artifice, e.g. to begin by generating many 'throwaway' atoms, 
until the last atom present in the data. structure read in by GETB has been 

,'Y,. 
bypassed. 

The input-output facilities described above can be used to write output 
interactively to a terminal (and acquire input from a terminal.) See Section 
XXX for the conventions that apply in this case. 

8.2 Backtracking 

'Backtracking' or 'nondeterministic programming' is an ingenious 
technique useful for solving a very common and important type of search 
problem. Such problems can be regarded as logical or combinatorial 
'mazes' which a program must explore in order to find a desired solution 
point. In favorable cases, one will be able to do this by devising an 
algorithm which proceeds in relatively direct fashion from an initial 
position to a solution, along a path involving little or no 'trial and 

-------·--· -----------------------------
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error'. However, some problems are too complex for such algorithms to 
be available, and it is for these problems that the method of 
backtracking is mos·t useful. Characteristically, programs for solving 
these problems encounter situations in which a decision must be made as 
to which of several alternatives is to be explored next, but in which no 
clear grounds can be found for making one rather than another decision. 
A correct decision will lead on to a solution of the problem being 
explored, but an incorrect decision will wind up in a dead end, and the 
program will have to revert to the point at which it took its first 
wrong turning and try an alternative originally overlooked. F~nding 
paths through mazes and solving geometric and spatial puzzles like the 
well-known 'instant insanity' puzzle are obvious examples of this kind 
of problem. 

The backtracking primitives to be described in this section make it 
easy to program solutions to these problems. Just two primitives, whose 
power at first seems almost magical, are required. These two 
primitives, whose workings we will describe in this section, are called 
OK and FAIL respectively. 

OK is a (parameterless) Boolean-valued function,_ but one which we 
can think of as having a very major additional effect. More 
specificaly, wherever OK is called, we at once 'split' our program into 
two copies of itself, identical except that OK yields the value TRUE in 
one of these copies, and FALSE in the other. After splitting, both 
these copies continue to execute independently and in parallel. If 
either of these copies subsequently encounters another OK, it will split 
yet again in the same way. If it subsequently encounters an occurence 
of our second backtracking primitive FAIL (which is simply a 
parameterless statement) it will immediately cease execution and 
disappear. The problem that our program is solving becomes solved as 
soon as one of the many copies into which the program has split reaches 
a solution. 

The way in which we really implement this kind ~f 'splitting' will 
be described later in this chapter. For the moment, let us simply 
assume that such splitting is possible, and note how powerful and 
general its effects are. Suppose, for example, that a program needs to 
make a simple binary choice, say to perform one of two complex 
calculations, but that no algorithm for making this choice at that point 
is known. Then we can simply write 

IF OK THEN x := fl(x,y,z); ELSE x .- f2(u,w,v); END; 

This creates two copies of our program, one of which executes the 
invocation of fl, the other one of f2. If one of these copies 
subsequently encounters the statement FAIL it will simply disappear. 
Hence (ignoring implementation difficulties) we concentrate our 
attention on that 'lucky' copy of the program which eventually finds the 
problem solution that we are looking for. From the point of view of 
this lucky copy, OK has acted as a magical 'oracle': when called it 
returned one of the possible values TRUE or FALSE; the value chosen was 
always such as to steer the program past any lurking occurence of FAIL. 
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Note that OK can be used to make any kind 
multiple choices, and to chose among multiple 
example, consi<ler the following statement: 

IF OK THEN RETURN e; END; 

of choice, to 
alternatives. 
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make 
For 

This splits our program into two, one of which immediately returns with 
the value e, while the other continues executing the function in which 
the IF statement appears. This shows how 'extreme' a choice OK can 
make. 

To explore multiple choices, we can for example write 

IF OK THEN 
IF OK THEN x := north(y); ELSE x :• south(y); END; 

ELSE 
IF OK THEN x := east(y); ELSE x := west(y); END; 

END IF; 

This creates four copies of an initial program, within each of which one 
of the four functions north, south, east, west, will be invoked. 

To choose among still more highly multiple alternatives, we can 
even write 

IF EXISTS x IN s I OK THEN 
RETURN x; 

ELSE 
FAIL; 

END IF; 

wheres is a set. In this case, the iterative search triggered by 
the EXISTS construct will iterate over all of the elements x of sin 
turn. For each such element, OK will be evaluated. This will cause a 
split into two program copies, in one of which x will be considered 'ok' 
and will be returned, while in the other copy x will have been rejected 
and the iteration (i.e. the iterative search triggered by the EXISTS 
construct) will continue on to the next element of s, again splitting, 
etc. This will create as many logical copies of the original program as 
s has elements, in each one of which one particular element x of s will 
have been selected and returned. (It will also generate a copy in which 
no xis accepted and the EXISTS primitive yields FALSE; but this copy 
immediately executes a FAIL and disappears.) This useful backtracking 
fragment can be embedded in a function: 

PROC choose(s); 

IF EXISTS x IN s I OK THEN 
RETURN x; 

ELSE 
FAIL; 

END IF; 

END PROC; 

$nondeterministic choice procedure 
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The net effect of a call to choose(s) will be to split the 
executing it into as many copies as there are elements in the 
string, or triple) s;· each element (or character, or component) 
the value returned by -choose- in one of these copies. 

8.2.1 Implementation ..Q.f Backtracking 
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program 
set (or 
of s is 

To actually implement the logical 'splitting' implied by the OK 
primitive, one can proceed as follows. Each time OK is evaluated, make 
a complete copy of the state of the program in which it occurs. This 
should record the value of all variables, including temporary variables, 
the sequence of procedure calls outstanding, the instruction currently 
being executed, etc. Call all this information an 'environment', and 
save it somewhere on a stack. Then give OK the value TRUE, and continue 
the current computation. If the current computation succeeds in finding 
the solution it wants and terminates normally, nothing more is 
necessary. If, on the other hand, it subsequently executes a FAIL and 
disappears, then retrieve the last environment saved, and restart the 
computation from the state recorded in this environment, but this "time 
give the OK which it is just a process of evaluating the value FALSE. 
(Note that each environment saved contains all the information needed to 
restart a calculation from a prior point in its history, and that each 
of these restart points represents a calculation in the very act of 
evaluating the function OK). It is clear that this process of serial 
exploration will eventually either find the solution being sought, or 
will work through the history of all the split computations generated by 
successive evaluations of OK, to discover that all of them FAIL. In 
this latter case, an error exit is taken, and a diagnostic message is 
issued: 

***EXECUTED-FAIL- IN PRIMAL ENVIRONMENT 

The preceding paragraphs describe something very close to · the way 
in which SETL implements the backtracking primitives OK and FAIL. This 
implementation allows the semantics of these operations to be modified 
slightly, iu part to improve their efficiency, in part to allow other, 
occasionally useful, slightly more complex effects to be obtained. 
First of all, rather than saving the values of all variables whenever OK 
is executed, the SETL system requires an indication from the user as to 
which variables should be restored to their previous values after a 
FAIL. When FAIL is executed, only the values of those variables 
declared by the user to be backtrack variables are restored. (Of 
course, the system itself will restore the stack, program counter, 
internal variables, etc.). The variables which are to be restored to 
their previous values a£ter a FAIL are declared in the following 
example: 

VAR x,y,z BACK; 

In the presence of this (and only this) BACK declaration, the attribute 
-BACK- would be attached to the variabl~s x, y and z, and no others, and 
only those will be saved and restored on OK/FAIL. 
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We will illustrate the use of OK, FAIL, and the BACK declaration by 
using them to solve a simple but very well-known combinatorial problem, 
the so-called 8 queens problem, which can be stated as follows. 

On an 8 by 8 chess board, place 8 queens (i.e. pieces that move 
up, down and diagonally) in such a fashion that no two queens attack 
each other. 

Note that there is no obvious non-backtracking approach to the 
problem. However, the backtracking primitives allow it to be solved 
easily. 

We simply place queens successively on the board, in apropriate 
unattacked squares, until all have been placed. The OK primitive is 
used (as an oracle!) to ensure that we never make the mistake of placing 
a queen on a inappropriate square. If there were queens still to be 
placed but no unattacked squares left, we would have to FAIL, but we can 
take the complacent attitude that the values returned by OK will prevent 
this from ever happening. If for the moment we omit the necessary BACK 
declaration, and postpone the easy subfunction which tells us which 
squares are unattacked, SETL code for solution of the 8-queens problem 
can be written simply as: 

used :={}; 

(WHILE #used< 8) 

possible:= safe(); 

$ the set of board squares which 
$ are occupied by a queen 
$ While not all queens have been 
$ placed 

$ squares which are not under 
$ attack 

IF EXISTS square in possible I OK THEN 

used WITH:= square; 

ELSE 
FAIL; 

END IF; 
END WHILE; 

$ put queen on one more square 

$ All squares are under attack. 

print_board; $ Display the solution. 

In order to complete this program, we must 

a) Decide on the variables which must be backtracked. 

b) Choose a representation for the board, and specify the 
-safe- and the output procedure -print_board-. 

function 

The variables which need to be backtracked (i.e. restored to their 
previous values after a FAIL) are those which will be used before being 
redefined following some OK, and which also might be modified after an 
OK. In the code shown above, both -used- and -possible- must be 
backtracked. The iteration variable -square- need not be saved, because 
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whenever we backtrack 
previously chosen square. 

it is precisely in order to discard 
Thus , we only need the declaration: 

VAR used, possible: BACK; 
VAR board; 

some 

The representation of the board, and the nature of the procedures -safe­
and -printboard- are independent of our backtracking schema. For 
completeness, here is a possible description of these items: 

bl) The board is 
represented by a pair 
economical representations 
invent some). 

a set of positions, each position being 
of coordinates in the range [1 •• 8]. (More 
suggest themselves, and you may want to 

board :a { [i,j] : i in [1 •• 8], j in [1 •• 8]}; 

b2) The function -safe- iterates over all board positions, and discards 
the ones which are under attack by queens placed in used squares. 

PROC safe(); 
RETURN {square IN board I 

END PROC safe; 

(NOT EXISTS queen IN used I 
attacks(queen, square)) }; 

Finally, the predicate -attacks(pl,p2)- establishes whether 
. positions pl and p2 are mutually threatening: 

board 

PROC attacks(pl, p2); 
RETURN 

(pl(.l) • p2(1)) OR 
(p1(2) "" p2(2)) OR 
((pl(l)-pl(2)) • (p2(1)-p2(2))) OR 
((pl(l)+pl(2)) = (p2(l)+p2(2))); 

END PROC attacks; 

$ pl and p2 are on same row. 
$ or on same column. 
$ or same upwards diagonal. 
$ or same downwards diagonal. 

The procedure -print_board- is left as an exercise to the reader. 

8.2.2 Total failure, and the generation 
combinatorial problems. 

of all solutions .!.Q. 

In all our examples so far, we have assumed that the problem we are 
tackling actually has a solution. This may not always be the case. For 
example, how would the queens program behave if we specified a board 
size which was smaller than the number of queens to place? In such a 
case, the program would search through all possible positionings of the 
queens on the existing board, and fail on each of them. Eventually, a 
final failure would be executed, for which no backtracking alternatives 
exist (all positions having been tried). At this point, the SETL 
system, having run out of options, would terminate execution in the 
manner indicated above, i.e.: 

*** EXECUTED -FAIL- IN PRIMAL ENVIRONMENT. 
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If we do not know a priori whether our problem has a solution or not, we 
may want to ensure that our backtracking program does not terminate 
abruptly upon terminal failure, but gives us some information as to the 
nature of the unsuccessful search (e.g. the number of tries) and 
perhaps awaits further input; in a word, we want the program to retain 
control. This can be achieved by inserting a top-level -OK- to which we 
will fall back in case a search fails completely. This correponds to 
the following general backtracking schema: 

if OK THEN 

ELSE 

(while not complete(solution)) 

possible_moves := moves(solution); 

IF EXISTS move IN possible_moves OK THEN 
solution :• update(solution, move); 

ELSE 
FAIL; 

END IF; 

END WHILE; 

display(solution); 

print('Problem has no solution'); 
$ Actions upon find failure. 

END IF; 

As the example shows, information about the history of a backtracking 
computation can be gathered in non-backtracked variables, i.e. 
variables that do not appear in a -back- declaration. The values of 
non-backtracked variables are unaffected by the execution of OK and 
FAIL. An example of a variable that monitors the execution of a 
backtracking program is the variable -failure- in the tiling program 
shown below. The variable is used simpl•y to count the number of times 
-FAIL- was executed. 

8.2.3 Tiling problems. 

The so-called 'tiling' problem can be stated as follows: given a 
set of square tiles of various sizes, find whether they can be used to 
cover a rectangular area of given height and length exactly. 

To solve this problem by backtracking, we use the following 
approach: we keep track of the perimeter of the area which remains to 
be filled. Initially, this is just the perimeter of the rectangle to be 
tiled. At each step, the bottom of this perimeter must include a 
'valley', i.e. a sequence of four vertices whose two middle ones are at 
a lower height than its first and last as shown in the following figure: 
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1 
or or 

At each step 
corner of such 
greater than that 
of the area which 

of our exploration, we insert into the lower left 
a valley, one of the remaining tiles whose width is no 
of the valley, update our description of the perimeter 
remains to be tiled, and continue. 

In the code that follows, the condition that determines the 
acceptability of a given tile is expressed as a conjunction: we want to 
find a tile among those remaining which fits(i.e. is no wider than) an 
existing valley, and which is OK, ~i.e. which will subsequently allow 
us to place all remaining tiles and complete the solution). 

The only data structure of special interest in this program is the 
perimeter of the area remaining to be filled. It is described as a 
sequence of points, listed in counterclockwise order, starting from the 
upper left-hand corner of the area to be tiled. Thus, the original 
perimeter constitutes a valley, and the first tile to be placed goes in 
its lower left-hand corner. Each point on the perimeter is described by 
an ordered pair of coordinates ■ Further details of the algorithm can be 
gleaned from the commented code that follows. 

PROGRAM tiling_puzzle; 

$ This is a backtracking program that finds an arrangement of 
$ given set of square tiles to fill in a specified rectangle ■ 
$ The area still to be filled is specified the global variable 
$ -perimeter-, which is the counterclockwise sequence of vertices 
$ of the unfilled space that remains. 
$ The algorithm proceeds by finding a valley in the bottom 
$ of the empty area into which one the remaining tiles fits ■ 

$ Of area to be tiled. 
$ Of tiles already used. 

$ Of available square tiles. 
$ Of tiles in each size. 

VAR perimeter, 
placement, 
sizes_left, 
count, 
corner, 
next size: 

$ Defining valley for next tile ■ 
$Tobe tried. 

BACK; 

VAR length, height, 
tiling; 

$ Dimensions of rectangle to be filled. 
$ For display of successive placements ■ 

$ The following macros establish some geometric vocabulary. 

MACRO abcissa(i); perimeter(i)(l) 
MACRO ordinate(i); perimeter(i)(2) 

$ Macros describing properties of edges. 

MACRO up(i); 

MACRO down(i); 

(abcissa(i) = abcissa(i+l) AND 
ordinate(i) < ordinate(i+l)) 

(abcissa(i) = abcissa(i+l) AND 

ENDM; 
ENDM; 

ENDM; 
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ordinate(!) > ordinate(i+l)) ENDM; 

start: 
print('enter length, height of area to be tiled'); 
read(length, height); 
print('enter tuple of tiles to be used'); 
read(tiles); 

$ Verify that tiles can cover exactly the specified area. 

IF +/[t ** 2 : t IN tiles] /•length* height THEN 
print('no possible covering with this set'); 
GOTO start; 

END IF; 

perimeter:= [ [O,height], 
placement := []; 

[0,0], [length,0], [length, height]]; 

sizes := {t : t IN tiles}; 
count := { [t, #[tl : tl IN 
sizes_left := sizes; 

tileslt = tl]] t IN sizes}; 

failures := O; $ this variable keeps a count of the number of times 
we have backtracked 

$ Define the topmost environment to which we will return in case of 
$ complete failure. 

IF OK THEN 

(WHILE sizes_left /• {}) $ Continue placing tiles. 

$ Find valley in current perimeter: there must be one. 

ASSERT EXISTS corner IN [l •• #perimeter-2] 
down(corner) AND up(corner+2); 

IF EXISTS next_size IN sizes left I fits(corner,next_size) AND OK 
THEN 

count(next_size) -:• l; 

IF count(next_size) • 0 THEN 
sizes_left LESS:• next_size; 

END IF; 

rebuild(corner, nextsize); 
printboard; 

ELSE failures+:= l; FAIL; 

END IF EXISTS; 

END WHILE; 

$ Fill in perimeter. 
$ Display solution so far. 

print; print('Solution:'); print; printboard; 
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ELSE 
print('no solution for this set' ); 
print('backtracked ' failures,' times'); 

END IF; 

PROC fits(c,tile); 

$ Determine whether -tile- fits in the valley defined by the points 
$ c,c+l, c+2, c+3 in current perimeter. Note also that we assuming 
that all tiles are square. 

RETURN 
(abcissa(c+2)-abcissa(c+l)) >= tile AND 

(height - ordinate(c+l)) >= tile; 

END PROC fits; 

PROC rebuild(i,tile); 

$ A valley exists, delimited by points i to i+3, into which -tile-
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$ fits. Note the placement of the tile at the lower left corner (point 
$ i+l on the perimeter) and update the area which remains to be tiled. 

placement WITH:= [perimeter(i+l), tile]; 

$ Calculate the position of the remaining vertices of the tile we 
$ have just placed. 

pl 
p2 
p3 

: = 
: = 
: = 

[abcissa(i+l), ordinate(i+l) + tile]; 
[abcissa(i+l) + tile, ordinate(i+l) + tile]; 
[abcissa(i+l) + tile, ordinate(i+l)]; 

$ new points on the perimeter of the (partially) filled valley. 

new_points := [perimeter(i),pl,p2,p3,perimeter(i+2)]; 

$ discard edges of length zero. 

IF pl= perimeter(i) THEN new_points := new_points(3 •• ); END IF; 

$ eliminate hairpin turns. 
IF p3(1) = abcissa(i+2) THEN 

redundant FROME new_points; 
redundant FROME new_points; 

END IF; 

$ Check for exact fit. 
IF p2 = perimeter(i+3) THEN 

redundant FROME new_points; 
perimeter := perimeter(l •• i-1) + new_points + perimeter(i+4 •• ); 

ELSE 
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perimeter :• perimeter(l •• i-1) + new_points + perimeter(i+3 •• ); 
END IF; 

RETURN; 

END PROC; 

PROC printboard; 

$ Display succesive tiling arrangements. 
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$ As ordinarilily printed, the space occupied by a character is about 
$ twice as tall as it is broad. To give our ouput the correct appearance 
$ we double the number of character positions in the horizontal direc-
$ tion. Thus a square of sizes whose lower-left corner is positioned 
$ at (x,y) is actually drawn with its vertices at character positions 
$ 
$ [2*x+l, y+l], [2*x+s+l, y+l], [2*x+s+l, y+s+l], [2*x+l, y+s+l]. 
$ 
$ The area to be tiled is represented by a tuple of strings, one for 
$ each horizontal line. 

titing :• (height+!) * [ (2*length+l) *' ']; 

(FORAL~ [[x,y], tile] IN placement) 

bottom 
top 
left 

:• 
:• 
:• 

y + l; 
y +tile+ l; 
2 * X + 1; 

right :• 2 * (x +tile)+ 1; 

$ draw top and bottom of each square. 
tiling(bottom)(left+l •• right-1) :• 

tiling(top)(left+l •• right-1) :• (2 * tile -1) * '_'; 

$ Complete upper corners of square, if they are not covered by 
$ another tile. 
IF tiling(top)(left) •' 'THEN 

tiling(top)(left) :• '.'; 
END IF; 

IF tiling(top)(right) • 
tiling(top)(right):• 

END IF; 

$ Draw sides of tile. 

' 'THEN 
, , . . , 

(FORALL z IN [bottom •• top-1)) 
tiling(z)(left) := 'I'; 
tiling(z)(right) :• 'I'; 

END FORALL; 

END FORALL; 
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$ Display tiling. 

(FORALL i IN [#tiling,#tiling-1 •• 1]) print(tiling(i)); END; 

END PROC; 

END PROGRAM tiling_puzzle; 

8.2.4 Other uses of OK and FAIL 

The -OK- and -FAIL- primitives are useful in other contexts than 
those of backtracking programs. We will now describe two such less 
obvious uses. 

8.2.4.1 Combinatorial generators. 

The generation of a set of combinatorial objects (all the subsets o~ a 
set, or all the permutations of a sequence, etc.) can often be given a 
simple description using OK and FAIL. We proceed the generation of each 
object from the desired set by an OK, and each time the construction of 
an object is completed, we execute a FAIL to force the generation of 
another object in the set. As an example of this, consider the problem 
of generating all the permutations of a set S. This can be done as 
follows: build a sequence by picking elements from Sin any order; 
regard each choice of an element among the remaining ones as a 
backtracking point in order to force all possible choices to be made for 
a given position in the sequence. We also provide a top~level 
backtracking point, to which we return when all permutations have been 
generated. The following code shows the use of this technique: 

PROC permutation_generator(S); 

VAR S,x,perm: BACK; 

perms := {}; 
perm := []; 

IF OK THEN 

(WHILE EXISTS x INS I OK) 
S LESS := x; 
perm WITH:== x; 

END WHILE; 

IFS={} THEN 
perms WITH:= perm; 

END IF; 

$ Now force a different choice. 
FAIL; 

$ Topmost backtracking point. 

$ This element has been used. 
$ And added to the current perm. 

$ add to set of permutations. 



ADDITIONAL I/0 AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-17 

ELSE 

RETURN perms; 

END IF; 

END PROC permutation_generator; 

8.2.4.2 Failures and exceptions. 

$ All permutations have been 
$ generated. 

The FAIL primitive can also be used to exit from a complex calculation 
in circumstances in which the calculation cannot proceed any further. 
This mechanism allows a form of error-handling which exists in some 
programming languages under various names (exceptions, ON-conditions, 
etc.) The need for such mechanisms is particularly clear when we 
consider recursive programs which may uncover an abnormal situation (for 
example invalid data) after a number of recursive calls. In such cases, 
it may become necessary to notify all pending recursive calls that an 
abnormal situation has arisen, and that the computation should not 
continue any further. This is a trifle awkward to program in the 
absence of some exception-handling mechanism. The OK/FAIL pair provides 
a simple mechanism of this type. We can establish a 'recovery point' at 
the top level of a program by writing: 

IF OK THEN . . . . 
The code attached to the ELSE branch of this conditional statement is 
executed when a FAIL is performed during program execution (assuming 
that this is the only OK in the program). This code functions as an 
'exception handler' and the FAIL is said to 'raise the exception'. It 
is possible to program the handling of several exceptions, i.e. to 
execute FAIL under diverse abnormal circumstances, and note in some 
global variable (accessible to the exception handler) what the nature of 
the abnormal condition is. 

8.2.5 Nondeterministic programs, or It Is OK After All. 

There is another way of looking at the backtracking primitives just 
described, which adds nothing to the technical details of their 
workings, but sheds a different light on the meaning of backtracking. 
If we examine the sequence of choices made by a backtracking program 
which succeeds, then it is clear that those choices were correct: they 
led to the solution, after all! If we ignore the computer time which 
has been used, it is immaterial that the program may have come back 
several times to a certain OK, undoing its previous choice and trying 
something else; eventually, the proper choice was made. From the point 
of view of the end-result, each OK was infallible! We can therefore 
think of the OK primitive as an Oracle, which will somehow make the 
right choice when faced with various alternatives. (This explains the 
name: -OK- rather than a more tentative -TRY- for example). It is 
instructive to think of backtracking programs in this fashion, ignoring 
the trials and errors which will be executed by the running program, and 
instead seeing each OK as a point at which we have said (to the run-time 
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system): "You choose the right way. I don't know nor care how." 

8.2.6 Auxiliary backtracking primitives. 

SETL provides two additional primitives, SUCCEED and LEV, 
allow additional control over the backtracking mechanism. 

Housecleaning: the SUCCEED primitive. 
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which 

Our description of the implementation of the OK primitive should 
make it clear that a price is paid for each execution of OK, namely 
storage must be used to preserve the value of backtracked variables and 
other run-time information. This information defines the environment in 
which an OK is executed. The storage utilized by each execution of an 
OK remains in use until execution of a subsequent FAIL brings us back to 
the environment in which that OK was executd. In the case of a program 
that reaches a solution (or partial solution) after executing a OK 
statement, the storage thus occupied is useless, because we will not 
fail again into that environment. If space starts to run short, we will 
want to release this reserved space. This can be accomplished by 
invoking the SUCCEED primitive. When invoked, all the information 
stored by the most recent execution of an OK, is erased from the system. 
Execution of a subsequent FAIL will no return us to the environment of 
that OK, but to some earlier one, if such exists. In other words, 
SUCCEED is a selective way of burning ones bridges behind one. Needless 
to say, this should only be done if the search has in fact succeeded. 

8.2.6.2 Controlling the depth of the search: the LEV primitive,-

The computational steps taken by a backtracking program can be seen 
to form a tree. Each node of this tree corresponds to some "(partial) 
trial version of the soiution being built. The descendants of a given 
node N correspond to the possible sequences of choices the OK primitive 
might make in moving forward from the situation corresponding to N. 
point in the computation. The root of the tree represents the starting 
state of the calculation. For example, in the 8 queens problem, the 
root of the tree corresponds to the empty board, the nodes immediately 
below this node correspond to possible placements of the first queen, 
etc. In the case of the 8-queens program, we can easily see that the 
full tree to be explored by the program has a height of 8 (counting the 
root to be at heigth zero) because there are only eight queens to be 
placed. For some backtracking problems, the height of the solution may 
not have an obvious upper bound, which means that the search may have to 
perform many tentative guesses (OKs) and may have to backtrack 
correspondingly many times. It is often necessary to know the current 
depth of the computation, i.e. the number of OKs which have been 
performed, and to which it may be necessary to backtrack on failure. 
The value of the system variable LEV is precisely that number. It is 
useful, when we happen to know that the solution for which we are 
searching cannot lie 'too deep' in this tree to cut off fruitless 
searches over unpromising parts of the tree. In such cases, we can, for 
example, write: 
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if LEV> maxlevel THEN FAIL; END; 

8.3 Use of auxiliary 'Inclusion Libraries~ 

Carefully crafted procedures which perfor~ common utility functions 
such as sorting, output formatting, parsing, etc. can be used over and 
over again in SETL programs. SETL supports several features intended to 
facilitate the use of such standard program libraries. One of these is 
the LIBRARY feature described in Section XXX, which makes it possible to 
bind pre-compiled collections of library programs into a composite 
program. (See Section YYY for additional material concerning binding of 
separately compiled programs.) In the present section, we will describe 
a simpler but related facility, which makes it possible to insert 
sections of source text gathered from an auxiliary 'inclusion library' 
into a SETL program that is about to be compiled. 

An 'inclusion library' used in this way 
sequence of standard SETL source lines, 
interspersed lines of the form 

(1) ■ =MEMBER membername 

must be 
divided 

structured as a 
into 'MEMBERS' by 

Each such line introduces, and names, a 'member~ of the inclusion 
library, which consists of all lines following the line (1), up to the 
next occurence of a line beginning with' .=MEMBER'. (Note that the 
characters .=MEMBER in a header line like (1) must occupy character 
positions 2 thru 9 in the line; the first character in the header line 
must be blank.) The last member of the inclusion library extends from 
the header line which introduces it to the very end of the library. 

All MEMBERs of an inclusion library must have distinct member 
names. To import a member -membername- of an inclusion library into a 
SETL program text P that is to be compiled, a line of the form 

( 2) .COPY membername 

is required. This line must occur in Pat the point at which the body 
of the inclusion library MEMBER introduced by line (1) is to be 
inserted. Like (1), the line (2) must begin in character position 2, 
following an initial blank ■ The -membername- in (2) must be identical 
with the -membername- in the line (1) introducing the text which is to 
rep lace (1). 

During (th~ first, parse phase of) compilation, each ■ COPY line of 
the form (2) is replaced by the body of the MEMBER introduced by the 
correspondina Line (1). For example, in the presence of an inclusion 
library containing the lines 

. . . 
• •MEMBER constants 

small lets:•'abcdefghijklmnopqrstuvwxyz' 
big_l;ts:='ABCDEFGHIJKLMNOPQRSTUVWXYZ'; 
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.=MEMBER quicksort 
PROC quicksort(s); 
RETURN IF (x:=ARB·s)•OM THEN [ 

ELSE quicksort({y IN sly<x} + [x] 
+ quicksort({y IN sly>x}) END; 

END PROC quicksort; 

.•MEMBER prettyprint 
. . . 

The source text 

PROGRAM something; 
.COPY constants 

PROC another; . . . 
END PROC another; 

.COPY quicksort 

will be compiled exactly as if it read 

PROGRAM something; 
smalllets:='abcdefghijklmnopqrstuvwxyz'; 
biglets:='ABCDEFGHIJKLMNOPQRSTUVWXYZ'; . . . 
PROC another; 
. . . 
END PROC another; 
PROC quicksort(s); 
RETURN IF (x:=ARB s)•OM THEN [ ] 

ELSE quicksort({y IN sly<x}) + [x] 
+quicksort({y IN sly>x})END; 

END PROC quicksort; 
. . . 
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The file used as inclusion library during a SETL compilation which makes 
use of the .COPY feature is specified by the control card parameter 
ILIB; see Section XXX and YYY(a) for additional details. 

8.4 Listing-control commands 

It is possible to alter the form of the listing which the SETL 
compiler produces by including listing control command lines of the form 
described below in your source program text. These commands, each -of 
which must always occur on a separate line beginning with the two 
characters ' .', have no effect on compilation or execution other than 
to modify the form of the compilation listing. The allowed listing 
control commands are as follows; 

NOLIST 
suspends listing of source text lines 

LIST 
resumes listing of source text lines 

EJECT 
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advances compilation listing to new page 
TITLE pagetitle 

This command specifies a pagetitle which will appear at the 
top of subsequent pages. 
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Note that the page title appearing in the preceding command cannot 
contain the apostrophe character, also that the AT control card 
parameter described in Section XXX can be used to request 'automatic 
titling'. If automatic titling is enabled, then each new PROCEDURE 
encountered will begin on a new page, which will be given a title 
derived from the PROCEDURE header line. (See Section XXX for the 
run-time equivalent of this compile-time command). 

8.5 Environment operators and SETL command parameters. 

SETL includes several facilities for sensing aspects of a program's 
external environment and for controlling optional details of compilation 
and execution. These facilities will be described in the pres~nt 
section. 

( i) Parameterless keyword quantities. 

The parameterless keyword 

TIME 

yields an integer representing the execution time, in milliseconds, used 
by your program from the start of execution up to the moment at which 
the TIME quantity is evaluated. This special quantity can be used to 
monitor the amount of processor time which your program is consuming. 

The parameterless keyword quantity 

DATE 

yields a standard string consisting of the current day, date, and clock 
time, expressed as hours, minutes, and seconds. For example, the result 
of the command 

print(DATE); 

might be 

SUN 01 MAR 81 14:49:13 

(ii) Initial Program Parameters. 

Integer or string parameters to be transmitted to a SETL program 
can be included in the operating system command-language line which 
initiates execution of the program. The precise external form in which 
these parameters should be given will depend to some extent on the 
operating system being used. For example, to transmit parameters Pl and 
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P2 with values 'YES' and 35 to a SETL program running under the DEC VAX 
VM 2.0 system, we would write 

(lA) /Pl=YES/P2=35 

If running under the CDC CYBER NOS system we would have to write 

(lB) (PlaYES,P2=35) 

instead, and running under the IBM/370 CMS system we would 
write 

(lC) (Pl=YES P2=35) 

(See Appendix XXX for an account of all the systems under which versions 
of SETL are available.) 

Built-in functions called GETSPP and GETIPP are used to read these 
pro gram command parameters. For example, to read the values of. the 
string-valued parameter Pl appearing in the preceding examples and save 
the value in a variable x, we would write 

x:=GETSPP('Pl=defval/altval'); 

where -defval- and -altval- stand for arbitrary string constants. The 
GETSPP primitive searches the command line which initiated the SETL run 
for the occurence of a parameter definition of the form Pl=abcde, where 
-abcde- can be an arbitrary string, or if the first occurence of Pl in 
the command line is not followed by an equal sign, simply for an 
occurence of the parameter name Pl. Then 

(i) If Pl=abcde occurs on the command line, without a value being 
assigned to it, xis given the value abcde. 

(ii) Otherwise, if Pl occurs on the command line, x is given the 
value -altval-. 

(iii) Otherwise Pl is given the 'default' value -defval-. 

The function GETIPP works in exactly the same way, except that it reads 
integer instead of string parameters, and supplies integer rather than 
string default values. 

Suppose, for an example of all this, that the code 

xl:=GETSPP('Pl=LITTLE/BIG'); x2:=GETIPP('P2=1/0') 

appears in a program being run under the DEC VAX VM/2.0 system. Then 
the appearance of the following parameter strings on the command line 
initiating a run of the program would give xl and x2 the values 
indicated in the following table: 
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Command-Line Parameter String xl value x2 value 

/Pl=MEDIUM/P2=2 'MEDIUM' 2 
/Pl=MEDIUM/P2 'MEDIUM' 0 
/Pl=MEDIUM 'MEDIUM' 1 
/Pl/P2=2 'BIG' 2 
/P2=2 'LITTLE' 2 
/P2 'LITTLE' 0 
(no parameters) 'LITTLE' 1 

A typical use of the GETIPP primitive is to switch on debugging or 
tracing facilities selectively. To do this, one can, for example, 
introduce a collection of variables called tracel, trace2,... etc. 
Debugging prints in your SETL program can then be made conditional on 
the values of these variables, e.g. by writing statements like 

IF tracel3=1 THEN 
print( ••• ); $ print appropriate debugging information 

END IF; 

If the variables tracel, trace2, ••• are initialised by statements 

tracel:=GETIPP('TRACEl•0/1'); 
trace2:=GETIPP('TRACE2=0/l'); 

etc., then by passing TRACEj (i.e.,TRACEj•l) to a run (as a parameter of 
the command used to bring your SETL program into execution; see Section 
XXX) one can cause the corresponding trace output to be produced. Note 
that this will switch debug output on without you having to recompile 
the program being debugged. 

Facilities very much like GETSPP and GETIPP are used in the SETL 
implementation, where they support the battery of compiler and run-time 
options described in the following sections. 

8.5.1 Standard SETL command options 

The SETL compiler and run-time systems themselves read a variety of 
control card parameters, using the GETIPP and GETSPP facilities of the 
SETL language. These parameters switch various compilation and 
debugging features on and off. In describing these parameters, we will 
use a notation typified by the example 'A=0/1', that is, the name of a 
parameter to be described will be given first, followed by an equal 
sign, followed by the 'default value' that the parameter will be given 
if its name does not appear in a parameter string followed by a slash, 
followed by the 'alternate value' that the parameter will be given if it 
is simply mentioned as a SETL command parameter name, but no value is 
explicitly assigned to it. 

A parameter passed to the SETL system can be significant either to 
the parse, semantic analysis, or code generation phases of the SETL 
compiler, or to the SETL run-time support library, or to a SETL program 
containing an invocation of either GETSPP or GETIPP. The list of 
standard parameters which now follows lists parameters according to the 
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phase of the SETL system to which th~y are significant. 

(a) Parse phase opti~ns. 

AT•O/1 (automatic titling) 

Page 8-24 

This option controls automatic titling of the parse phase output 
listing. AT•l causes each SETL procedure to start a new page on the 
li~ting; AT=O suppresses this automatic page advance. 

CSET=EXT/POR (character set) 

This option specifies the character set used in your SETL source. 
POR specifies that only the 'portable' subset of the collection of all 
possible characters is allowed; EXT specifies that both the 'portable' 
set and a wider class of 'extended' character sets are allowed. These 
character options allow or disallow the following character 
repres·en tat ions: 

left set bracket 
right set bracket 
left tuple bracket 
right tuple bracket 
'such that' 

'Portable' 
--epres ent at ion 

<< 
>> 
(/ 
/) 
ST 

'Extended' 
representation 

{ 
} 
[ 

1 
or 

(The printed characters shown 
corresponding ASCII standard 
printed or typed for these codes 
from one printer to another.) 

above are intended to represent the 
internal codes. The actual characters 

may vary from terminal to terminal, or 

ETOKS•S/5 (error tokens) 

The value of ETOKS controls the number of tokens listed in parse 
error diagnostic messages. 

!=filename (input file) 

The value of I specifies the name of the source file containing the. 
SETL text to be compiled. 

ILIB•filename (inclusion library) 

As noted in Section XXX, text from an auxiliary 'inclusion library' 
can be imported into a SETL program being compiled. The value of ILIB 
defines the name of this inclusion library. 

L=filename (listing file) 

The value of L specifies the name of the standard 'listing' file to 
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which all compilation-phase output will be written. 

(list compilation output) 

The option LIST•l causes a compilation-phase listing to be 
produced; L•O suppresses this listing. 

MLEN•l000/1000 (macro length) 

The value of MLEN defines the maximum number of tokens allowed in a 
single macro body. 

PEL•l000/1000 (parse error limit) 

The value of PEL specifies the parse-phase error limit. If more 
than the specified number of errors are detected by the parse phase, 
compilation is terminated. 

PFCC•l/0 (write printer carriage-control information) 

PFCC•l causes the output listing to contain carriage control 
information; PFCC•O suppresses carriage control information. 

PFLL•0/0 (line limit) 

This command parameter is used in conjunction with PFPL; 
description of PFPL for additional information. 

PFLP•60/0 (lines per page) 

see the 

The value of PFLP determines the number of lines that will be 
printed on each output page. 

PFPL•l00/0 (page limit) 

This parameter, together with PFLL, determines the amount of output 
that a program will be allowed to produce before being forcibly 
terminated. The limits imposed are as follows: 

PFPL•O, PFLL•O 
no output limit enforced. 

PFPL•n, PFLL•O (n>O) 
a limit of n pages or n*PFLP output lines is imposed. 

PFPL•O, PFLL=n (n>O) 
a limit of n output lines is imposed. 

PFPL=n, PFLL•m (n>O,m>O) 
a limit of n pages or m output lines is imposed. 

POL=filename ('Polish' file name) 
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This specifies the name of the 'parsed source' file passed by the 
SETL compiler's parse phase to its semantic analysis phase. See Section 
XXX for an explanation of the role played by this file. 

TERM=filename (interactive terminal identification) 

The SETL system will normally expect to write certain short 
messages, generally error and warning messages, to an interactive 
terminal. If no such terminal is available, or if for any other reason 
it is desired to write these messages to some other file, then 
TERM=filename can be used to designate this file. The option TERM•O 
suppresses this 'terminal' output. · 

(b) Semantic analysis phase options 

BIND=O/filename (binder file) 

This parameter, and the associated parameter !BIND (see below) are 
used to pass seperately compiled files in QI-format to the semarttic 
analysis phase; see Section XXX for additional explanation. If either 
BIND or !BIND has a value different from zero, the semantic analysis 
phase will read various QI-format files, and combine them with newly 
parsed SETL source input (named by the POL and XPOL parameters described 
below), producing a QI-format file (named by the Ql parameter described 
below). This output file represents the logical concatenation of all 
its input files in a parsed, semantically analysed form. 

DITER=O/I (modificatons during iteration are possible) 

This option indicates whether the compiler can assume that objects 
being iterated over in a loop are not modified within the loop. DITER•O 
disallows this assumption and causes the object being iterated over to 
be copied before an iteration begins; DITER=l suppresses thes~ copying 
operations. 

IBIND=filename (auxiliary list of input QI files) 

. This parameter, and the associated parameter BIND (see above) are 
used to pass seperately compiled files in Ql-format to the semantic 
analysis phase. The file named by the IBIND parameter should itself be 
a list of file names, one name per record, these file names having 
whatever format is appropriate in view of tKe operating system under 
which the SETL compiler is running. All the files named in this list of 
files will be read and 'bound' together into the QI-format output file 
which the semantic analysis phase produces. See parameter BIND (above), 
and also Section XXX for additional information. 

L=filename (listing file) 

Specifies the name of the standard 'listing' file to which all 
printable compilation-phase output will be written. 
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OPT=0/1 (optimisation) 

Selecting the option OPT=l causes a global optimisation phase to be 
executed between the normal semantic analysis and code generation 
phases. Note that this option has an effect only for implementatons 
which make the SETL optimiser available. 

PFCC 
PFLL 
PFLP 
PFPL 

(carriage control} 
(line limit} 
(lines per page} 
(page limit} 

See subsection (a} above for details concerning these parameters. 

POL=filename ('PoJish' file name} 

Specifies the name of the 'parsed source' or 'Polish' file passed 
from the SETL. com~iler's parse phase to the semantic analysis phase. 
See rem~rks concerning POL made in subsection ·ca} above. 

Ql=filename (~Ql' file} 

Specifies the name 
SETL compiler's parse 
phase. Sec Section XXX 
file. 

of the 'preliminary' code file passed from the 
phase to its optimisation or code generation 

for an explanation of the role played by this 

SEL•l000/1000 (semantic error limit} 

The value of SEL specifies the semantic analysis phase error limit. 
If more than the specified number of errors are detected during the 
semantic analysis phase, compilation is terminated. 

SIF•0/1 (save inter,piediate files) 

The option S1F=l causes the 'preliminary code' or 'Ql' file 
produced by the semantic analysis phase to be saved. (See preceeding 
remarks concerning the parameter Ql. Normally this file will be deleted 
by the compiler's code generation phase.) Note that a file of this sort 
must be saved if SETL's separate compilation and 'binder' facilities are 
to be used; see Section XXX for additional details. 

UV•0/1 (check for undeclared variables) 

Selecting the option UV=l will cause a warning message to be issued 
for each variable name used in your program which does not appear in any 
VAR statement. (This gives a handy way of ensuring that all variables 
appearing in the program have been documented, and for checking against 
accidental variable-name misspellings.} 

(c} Code generation phase options 

ASM=0/1 (produce assembler code} 
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The ASM=l option will cause the SETL compiler to produce machine 
code for the computer on which you are running. ASM•O will cause 
production of a less ~fficient but generally more compact int•rpretable 
code form. See Appendix XXX for more details concerning these options, 
which may not be implemented in all SETL systems. 

BACK=0/1 (backtracking enabled) 

The BACK•l option allows generation of code supporting 
backtracking, and must be selected if the backtracking facilities of 
SETL (cf. Section XXX) are being used. 

CA=0/0 (constants area size) 

This code phase parameter is used to control the size of the 
'constants area', which stores the values of constants appearing in your 
program. The option CA=O sets the constants area size equal to half the 
initial memory size allocated for your program (see parameter H, below). 
If a positive value less than 1024 is specified for CA, then this value, 
multiplied by 1024, becomes the constants area size; thus CA~2 is 
equivalent to CA=2048. See Section XXX for additional information about 
the way in which the SETL system uses memory. 

CEL=l000/1000 (code generation error limit) 

This specifies the code-generation phase error limit. If more than 
the specified number of errors are detected by the code-generation 
phase, compilation is terminated. 

H=0/0 (heap size) 

The value of H specifies the initial virtual memory size that will 
be used when program execution begins. If H•O is selected, an 
implementation-dependent default initial memory size is used~ If a 
positive value less than 1024 is specified for H, this value, multiplied 
by 1024, becomes the initial memory size; thus H•2 is equivalent to 
H=2048. See Section XXX for additional information about the way in 
which the SETL run-time system uses memory. 

L=filename (listing file) 

Specifies the name of the standard 'listing' file to which all 
printable compilation-phase output will be written. 

PFCC 
PFLL 
PFLP 
PFLL 

(carriage control) 
(line limit) 
(lines per page) 
(page limit) 

See subsection (a), above, for details concerning these parameters. 

Ql=filename ('Ql' file) 
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Specifies the name of the 
SETL compiler's parse phase 
phase. See remarks concerning 

'preliminary' code file passed from the 
to its optimisation or code generation 

this parameter in subsection (b), above. 

Q2=filename ('Q2' file) 

Specifies the name of the 'interpretable' code file passed from the 
SETL compiler's code generation phase to the run-time support phase when 
the SETL system is being run interpretively. See Section XXX for an 
explanation of the role played by this file. 

(d) Run-time support library options 

ASSERT=l/2 (assertion switch) 

This parameter can have O, 1, or 2 as its value. These values have 
the following significance: 

ASSERT=O Evaluates all Boolean conditions occuring in ASSERT 
statements, but does not test their values. (Note that· 
evaluation of these conditions may trigger side-effects 
essential to the proper functioning of the program being 
run.) 

ASSERT=l Evaluates and tests all assertions. Assertions which 
fail yield a run-time error. 

ASSERT•2 Evaluates and tests all assertions. A message is printed 
for each assertion which evaluates to TRUE. Assertions 
which fail yield an error. 

(Heap size) 

This command parameter, which specifies the initial (virtual) 
memory length used during a SETL run, is significant to both the code 
generation phase of the compiler and to the run-time support library. 
See the account of this parameter in the preceding subsection for 
additional details. 

LCP•O/1 (list execution time parameters) 

The option LCP•l causes the values chosen for standard control card 
options to be listed on the output file at the start of SETL program 
execution. 

LCS•l/O (list execution statistics) 

The option LCS•l 
during execution of 
program execution. 

causes various 
your program to 

Q2•filename ('Q2' file) 

standard statistics collected 
be printed at the end of SETL 
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Specifies the name of the 'interpretable' code file passed from the 
SETL compiler's code generation phase to the run-time support phase when 
the SETL system is being run interpretively. See the remarks concerning 
this parameter in subsection (c) above. 

REL=0/0 (run-time error limit) 

The value of REL specifies the run-time error limit. If more than 
the specified number of errors are detected during SETL execution, then 
execution terminates. 

SB={ }/<<>> (set brackets) 

The value of SB specifies the characters to be used 
set brackets. 

SNAP=0/1 (snap dump switch) 

for printing 

The SNAP=l option causes an abbreviated dump of recent variable 
values to be produced when a run-time error is detected. Specify SNAP•O 
to suppress this dump. 

STRACE=0/1 (Statement trace) 

Selecting the option STRACE=l causes production of a dynamic trace 
giving the statement number of each statement executed. This option 
should be used cautiously, since it tends to produce very voluminous 
output. The statement numbers used are those which appear on the parse 
phase output listing. 

TB=[ ]/( ) (tuple brackets) 

The value of TB specifies the characters used 
brackets. 

for printing tuple 

(e) Other command parameters used for system checkout and maintainance. 

In addition to the command parameters listed above, the SETL 
compiler recognises various other parameters, which are provided for 
purposes of system checkout and maintainance and are not needed in 
normal use. Note, however, that you must avoid using the names of these 
parameters to designate other quantities which your SETL program will 
read from the control card using GETIPP and GETSPP. 

We list these special parameters with brief indications of their 
function, but give no details concerning them. For more information 
about these parameters, consult the SETL Maintainance Manual. The 
maintainance facilities listed above are activated by the SETL command 
parameters listed. A second family of maintainance facilities are 
activated by inserting special statements of the form 

DEBUG doptl, ••• ,doptk; 
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into the text of a SETL program being compiled. Here, doptl, •• ,doptk 
should be a list of keywords designating debug options. Some of these 
debug options refer to the parse phase of the SETL system, others to the 
semantic analysis, code generation, or execution phases. Since the 
ordinary user will have little reason to concern himself with these 
options, we list them here in abbreviated fashion only; see the SETL 
Maintainance Manual for more informtion. 

(i) Parse phase debug options: 

(ii) 

PTRMO 
PTRMl 

PTRPO 
PTRPl 

PTRTO 
PTRTl 

PRSOD 
PRSPD 
PRSSD 

disable macro-processor trace 
enable macro processor trace 

disable parse trace 
enable parse trace 

disable token trace 
enable token trace 

list tokens corresponding to loops and IFs still pending 
list polish and xpolish tables 
list symbol table 

Semantic analysis phase options: 

STREO 
STREl 

STRSO 
STRSl 

SQlCD 
SQlSD 
SCSTD 

disable entry trace 
enable entry trace 

disable trace of operator argument stack 
enable trace of operator argument stack 

list Ql code 
list semantic analysis phase symbol table 
list stack used for processing control structures and 
other nested constructs 

(iii) Code generation phase options: 

CQlCD 
CQlSD 
CQ2SD 

list Ql code 
list code generation phase symbol table 
list generated Q2 code 

(iv) Execution phase options: 

RTREO 
REREl 

RTRSO 
RTRSl 

RTRCO 
RTRCl 

disable trace of entry to run-time library procedures 
enable trace of entry to run-time library procedures 

disable statement number trace 
enable statement number trace 

disable code trace 
enable code trace 
(The code trace prints each internal 'Q2' instruction 
as it is interpreted.) 

- -------------------------------- -----
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RTRGO 
RTRGl 

RGCDO 
RGCDl 

RDUMP 

disable garbage collector trace 
enable garbage collector trace 

disable dynamic storage dumps during garbage collection 
enable dynamic storage dumps during garbage collection 

dump dynamic storage to file 
(The file to which an image of dynamic storage is 
written is specified by a control card parameter: 
DUMP=filename. The auxiliary maintainance program 
DMP reformats this file in a readable form.) 

8.6 Exercises 

Ex. 1 Write a program which will read a sequence of lines constituting 
an English language text, and print it out after eliminating all 
multiple blanks and assuring that every punctuation mark (other than 
hyphen) is followed by exactly one blank ■ 

Ex. 2 The position on a chessboard is defined by a mapping f which 
sends every square [i,j] occupied by a piece into the name of the piece 
occupying it ■ Pieces are designated by their names, e.g. 'pawn', 
'king', 'queen', etc ■ White pieces are designated by lower-case names, 
e.g. 'pawn'. Black pieces are designated by upper-case names, e.g. 
'PAWN'. Write a procedure which prints an attractive visual display of 
the board position. 

Ex. 3 Given the representation of chessboard position described in 
Exercise 2, write procedures which will 

(a) return the set of all moves possible for white or black; 
(b) return the set of all white or black pieces threatened 

with capture; 
( C) return the set of all squares attacked by white or black 

pieces. 

Ex. 4 When crucial items of information like invoice or customer 
numbers need to be keyed into a computer system, the possibility of 
keypunch error is often quite alarming. To prevent such errors, one 
often adds 'check characters' to the item being keyed in. Such check 
characters allow miskeyed items to be detected in most cases. If any 
alphanumeric check character from o •• z can be used, the following is a 
convenient way of assigning check characters: 

(a) Number all alphanumeric characters, assigning them values lying 
in the range o •• 35. 

(b) Go through the characters of the item to be keyed in, from 
right to left. Multiply the number associated with the j-th item by j, 
and sum all the resulting integers. Reduce the sum modulo 37, to obtain 
an integer n. 
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(c) The check character is the character corresponding ton, or is 
Zif n is 36. 

Ex. 5 Write a key-entry verification program. This program should 
begin by reading a file F of lines that are to be verified. Those same 
lines should then be re-entered at the terminal. If a line L re-entered 
has exactly the same form as the corresponding line in the file F, then 
L should simply be displayed. If not, then the terminal should (if 
possible) emit a warning audio signal, and the line LO present in the 
original file F should be displayed along with the Ll just entered. 
Characters which need to be replaced in LO to make L match Ll should be 
marked by displaying appropriate replacement characters under Ll; 
characters which need to be deleted should be indicated by displaying a 
double quote character under Ll. If one or more characters need to be 
inserted, they should be displayed in a vertical column under the 
character of Ll after which they need to be inserted. In the event of a 
difference, the user ought to have the following three options: 

0: accept LO as correct 
1: accept LO as correct 
2: re-enter line, and repeat the check. 

Ex. 6 Write a procedure which can be used to display 'menus' on the 
screen of an interactive terminal. The parameter passed to this 
procedure should be a tuple [sl,s2, ••• ] of strings. As many of these 
strings as will fit on the screen should be displayed, each accompanied 
by a number. The user should then type one of these numbers to select 
the desired item, and the procedure should return the number of the item 
selected. Lf something illegal (e.g an out-of-range integer) is typed, 
the procedure should return OM. The display you use should be neatly 
formatted, in multiple columns if possible, to display as many items as 
possible .on the screen without giving the screen a cluttered appearance. 
If not all items will fit on the screen, the message 

PRESS RETURN KEY TO SEE ADDITIONAL CHOICES 

should be displayed at the bottom of the screen. (Of course, the 
feature described by this message should be implemented in a fool-proof 
manner.) 

Ex. 7 Write a program that will read SETL source text and count the 
number of comments in it. A record should be kept of the number of 
'short' comments (which occupy just one line and are followed by a line 
containing code text), and the number of 'long' comments (which occupy 
several successive lines on which only comments appear.) Two counts of 
long comments should be kept, namely the number of long comments 2-4 
lines in length, and the number of long comments five or more lines in 
length; You should also count the total number of lines in the program. 
Note that every comment starts with a dollar sign ($) character, but 
that such a character only starts a comment if it is not part of a 
quoted character string. For example, the first character of the first 
comment in 

x:='I often think of $''s,$''s,$''s'; $ Not really! 



ADDITIONAL I/0 AND ENVIRONMENTAL FUNCTIONS; BACKTRACKING Page 8-34 

is 'N'. Be sure to handle this rule properly. 

Ex. 8 When punched ~ards are used to transmit information to a computer 
system, it is sometimes convenient to pack information densely onto 
them, without blank spaces between successive information fields. In 
this case, the size of each information field in a line of characters 
must be known in advance. Write a procedure P whose two inputs are a 
string s of exactly 80 characters representing a punched card being 
read, and a tuple t representing the 'format' of this string, i.e. the 
size and nature of the successive information fields in it. Each 
component oft should have the form [n,k], where n is a positive integer 
designating the number of characters in a particular subfield of s, and 
k is one of 'I' (integer), 'S' (string). The procedure P should return 
a tuple of converted values, with each value of improper type 
represented by OM. 

Ex. 9 To develop a KWIC (or 'key word in context') index for a body T 
of text, one proceeds as follows: 

(a) A collection of keywords is given. 

(b) The text T consists of a collection of paragraphs, each headed 
by a 'paragraph designator' at most one-third of a line long. 

(c) The paragraphs constituting the text T are scanned for 
occurences of any of one the keywords. Whenever a keyword is found, a 
portion L of the line in which it occurs, two thirds of a line in total 
length, is kept, with the keyword as close to the middle of this line 
section as possible. (Words from preceding or following lines are 
included if necessary.) 

(d) A 
concatenated 
of strings. 

designator of the paragraph containing the line is 
to L, and the resulting string is added to a collections 

(e) When the whole of T has been scanned, the sets of all lines 
collected is alphabetised according to the keyword each L contains, and 
is printed in alphabetical order, with keyword capitalised. 

Write a program which generates KWIC indices of this kind. 

Ex. 10 Write a program P which can be used to scan a mass of English­
language text T, counting the frequency of all letter pairs encountered. 
Use P to scan a few paragraphs of text. Count the total number of pairs 
encountered and the total number of different pairs. Draw a graph 
relating number of different pairs encountered to the total number of 
characters scanned, and use this to estimate the number of different 
character pairs that you would encounter if you scanned the whole 
Encyclopedia Brittanies. 
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Ex. 11 A telegram is 
words separated by 
word 'zzzz'. Write a 
the actual telegram. 
count as two words. 

transmitted as a single string of characters, with 
blanks but the end of each line marked by a dummy 
program which will count the number of words in 

Words with more than eight letters in them are to 

Ex. 12 Write a program that will read three strings sl,s2,s3 and then 
determine whether s2 occurs as a substring of sl after all characters 
belonging to s3 have been eliminated from sl. 

Ex. 13 A spelling error program is one which reads an input text T and 
produces a list of all the words in T which appear to be misspelled. 
One way of making this check is to test each of the words in T to see if 
it belongs to a standard dictionary D of properly spelled words. Write 
such a spelling error program. Your program should read two files: one 
the file T to be checked, which is given as a sequence of text lines; 
the other a dictionary D, also assumed to be a sequence of lines, each 
line containing several dictionary words, separated by blanks. The file 
T can contain capitalised words. The output produced should be a 
formatted display of all presumably misspelled words. 

Ex. 14 Assuming that the spelling error program described in Exercise 
13 is to be run interactively from a terminal, improve it by adding the 
following features. The program should begin by querying the user for 
the names of the files T and D. Then it should read and analyse these 
files as in Exercise 13. The misspelled words in T must then be 
numbered and displayed on a terminal. After this the program should 
accept a sequence of commands of the form 

nlcorrectspellingl/n2correctspelling2/ 

where each nj is the number of a misspelled word and correctspellingj is 
its correct spelling. This sequence of commands is terminated by a 
command of the form 

STOP, 

after which the program should query the user for the name of an output 
file F into which a corrected version of the input Tis to be written. 
All occurences of misspelled words in T for which correct spellings have 
been supplied should be corrected, and the corrected text which results 
written out to F. 

Ex. 15 'Piglatin' transposes words by moving all initial strings of 
consonants to the end of the word and adding 'ay'. If a word begins 
with a vowel, one simply adds 'ay' to it. The word 'a' is changed to 
'an'. For example, the Piglatin translation of 'John bought a car from 
Irene' is 'Onjay oughtbay an arcay omfray Ireneay.' Write a program 
which will read an input text and translate it into Piglatin. Your 
program should handle capitalisation and punctuation correctly. 

Ex. 16 Write an interactive program which could be used by a teacher to 
maintain class grade records. The specifications for this program are 
as follows. It maintains a list of all the students enrolled in a 
class. Each student name is mapped into a directory record giving the 
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student's address, telephone number, and any desired additional textual 
information concerning the student. Each student name is also mapped 
into a tuple giving the student's grade on a sequence of homework 
exercises and examinations. Finally, each assignment or examination 
number is mapped onto a line of text describing the assignment or 
examination ■ 

The system should accept at least the following commands: 
E/student-name enroll student with given name 
D display numbered table of all students 
IE set up for entering new textual information concerning 

students 
IA set up for entering textual information concerning 

assignments 
G/n set up for entering new grade information for assignment n 
D/n display all information concerning student n 
n/line-of-text enter line of text to information record of 

student n, or enter comment about assignment n, 
or enter grade for student n 
display information concerning assignments DA 

DA/n display information concerning n-th assignment, 
including average grade, highest and lowest grade, 
number of students in each grade quintile, and 
names of students who have not yet completed 
assignment. 

What other commands would be useful? Design at least three such 
commmands, docment them, and include them in your implementation. 

Ex. 17 The 'game of life', invented by James H. Conway, models certain 
elementary biological phenomena. The simulation it embodies takes place 
on an n by m board. For definiteness, we will suppose that n=m=2O. At 
every step of the simulation, every square on the board is either 
occupied (by an 'organism'), or empty. Given such a configurat~on, the 
next 'generation' of organisms (i.e. the board configuration at te next 
step) is determined by the following rules: 

(a) If a square is empty but has three or more full neighbors, 
b~come full (since an organism will be 'born' in it.) 

it will 

(b) If a full square has four or more full neighbors, 
empty (since the organism in it will 'smother'.) 

it will become 

(c) If a full square has no neighbor or just one neighbor, 
become empty (since the organism in it will 'starve'.) 

it will 

Write a interactive program which reads an initial board configuration, 
and then simulates its evolution for a given number of steps. 

Ex. 18 Write an interactive program for use by bank tellers. This 
program is to maintan a map which sends each client of the bank into his 
current balance, and a~other similar map which sends each client into 
his name, address, and phone number. (Clients are identified by unique 
'account numbers' issued by the bank). Finally, each client is mapped 
into a maximum allowed 'line of credit' and to the sum currently drawn 
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against this line of credit. 

TO BE CONTINUED 

Ex. 19 Write an interactive program that plays the game HANGMAN. Your 
program should read the date and time, and use this to select a word at 
random from an internally stored collection of 100 words. The player 
should then be asked to guess the word, one letter at a time. Each 
guessed letter present in the word should elicit a display showing all 
letters guessed so far. If the number of incorrect guesses rises to 
half the number of letters in the word being guessed, the player loses, 
and the word should be revealed. Try to write an entertaining program. 
Your program should keep score of the number of games won and lost. 

Ex. 20(a) Many large software systems include interactive 'HELP' 
subsystems which, when entered, allow a tree of helpful information to 
be traversed. The aim is to make it eas~er for the system user to 
locate information which he may require in order to use a system 
successfully. Use an appropri~te variant of the 'menu' procedure in 
Exercise 5 to implement such a HELP system. When invoked, the HELP 
system should begin by reading a file describing part of a graph of 
nodes, each node representing a state which the system user can reach 
during his browsing. In each state, the system should display a short 
paragraph of helpful information and a menu of available subitems. The 
information which the HELP system needs should be divided into a set of 
files, each few hundred lines in length, which can be read seperately as 
requested by the user. Each such file will contain two maps, which we 
shall call nodes_map and files_map. Nodes_map has the following format: 

{[help_graph_node, [display_paragraph,subnode_menu]} 

The display_paragraph is a tuple consisting of a sequence of lines 
(strings) to be displayed when help_graph_node is reached. Subnode_menu 
is a tuple of help_graph nodes, to be displayed as a menu. By selecting 
an appropriate item of this menu, the user chooses the HELP system node 
to which he wishes to advance next. By typing'-', the user retreats to 
the last HELP system mode previously examined. 

The other map, files_map, which is available in a pre-established 
file which can be read by the HELP system, simply maps each subnode x 
referenced by a given file to the name of file which con~ains the 
display_paragraph and subnode_menu information for x. 

(b) In order to use the HELP program we have just described, you will 
find it convenient to design and implement a 'HELP setup' progr-am which 
can read a file of text containing all the paragraphs and defining all 
the menus which will appear in the data structures described in (a) 
above. This file should also define the manner in which all this 
information is to be divided into the smaller files which the HELP 
system will use. Design and implement this 'HELP setup' package. Your 
'HELP setup' program should verify that the information passed to it is 
internally consistent. 

Ex. 21 Write a record-keeping 
library. The sy~tem should 

system suitable for daily use in a 
read files of instructions, and generate 

- ---- ----~------------
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various outputs. Each transaction handled by the system starts with a 
command line whose first two characters are'**'• The transactions 
handled are as follow~: 

**E card_number 
name 
address 
telephone_number 

This transaction enrolls a new subscriber, assigning him the indicated 
·library card number. The card number must be unique, or the transaction 
will be rejected. The subscriber's date of enrollment is internal. 

**C card_number address 
new address 

This transaction changes the address recorded for a given subscriber. 
Similar transactions which change the name and telephone number provided 
for a given subscriber should also be provided. 

**L card_number 

This transaction lists, in appropriately sorted order, the information 
available for a given subscriber, including all books currently charged 
to the subscriber, with dates of withdrawal, and number of books 
borrowed in current calendar year. 

**A 

This transaction produces an alphabetised list of all subscribers, with 
addresses and telephone numbers. 

**B book_number card_number 

This transaction charges a book to a customer. 

**R book_number 

T~is transaction notes that a book has been returned. 

**Q book_number 
Title, Author 
Publisher, Publication date 

This transaction notes the aquisition of a new book, and assigns it a 
book number. The book number must be unique or the transaction will be 
rejected. The date of acquisition is noted, internally. 

Books can be borrowed for two weeks. Books not returned within a 
two week limit are considered to be overdue. When run, the library 
record system should produce a warning letter to all subscribers holding 
overdue books. However, no subscriber should get such a letter more 
often then once a week. In this dunning letter, books should be listed 
by title and author. Books for which a previo~s ~otice has bee~ sent 
should carry the additional legend 'SECOND NOTICE, THIRD NOTICE, or 
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'GROSSLY OVERDUE'. 

The transaction triggered by 
**D 

should produce an alphabetised list of all subscribers holding 
unreturned books for which more than two notices have been sent, with an 
indication of the number of 'THIRD NOTICE' and 'GROSSLY OVERDUE' books 
they are holding. 

Can you design, and implement, any other useful feature for such a 
system? 

Ex. 22 Write an interactive 'daily reminders' program. This program 
reads a file of one-line messages, each tagged with a given date, and 
displays them. Messages displayed are also numbered. The system is to 
handle the following commands. 

+n 

+ 

?n 

(display all reminders remaining from past days) 

(display all messages relating ton days from today) 

(display all future reminders) 1 

(delete reminder n). 

Define and implement commands for dealing with the situation in which 
unmodified execution of a command would display too many messages to fit 
all at once on your terminal. 

Ex. 23 Write an election forecasting program. The base data for the 
program should be a map sending each voting precinct into its total of 
Democratic and Republican votes in the last election, into its state, 
and into its type: urban, inner city, suburban, and rural. 

The program will be run every thirty minutes on election· night. As 
returns come in from various precincts, these will be compared with the 
returns from same precincts in the last comparable election. If the 
Democratic and Republican percentages reported for a given type of 
precinct in a given state are D and R, while the prior Democratic and 
Republican percentages for the same precinct were d and r respectively, 
then the Democratic (resp. Republican) gain can be estimated as the 
quotient D/d (resp. R/r.) Use these gain gactors to extrapolate the 
vote for all precinct~ of the same general character that have not yet 
reported. 

Ex. 24 It is sometimes hard to use an operating system's interactive 
facilities without a manual at your elbow, for two reasons: (a) the 
system provides many facilities and it is hard to remember them all (b) 
most operating system commands have numerous parameters and options, 
whose names and effects are hard to remember. 
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Write an operating system command assistance program which will 
make it easier to compose operating system commands. When invoked, this 
program should display a numbered menu of all available commands, with 
one-line comments concerning the purpose of each. When one of these 
commands is selected (by number) a numbered menu of obligatory and 
optional command parameters and options should be displayed, with a set 
of one-line comments on the form and effect of each parameter. The user 
should then be able to enter parameter values and select options, by 
number, either on a single line (separated by blanks), or on several 
successive lines. When he is finished, the command line that he has 
composd should be displayed. Use an appropriate variant of the 'menu' 
procedure described in Exercise 5 to build up this program. 

Ex. 25 Extend the program described in Ex. 24 so that its user can 
actually issue the command that he has composed. (Use the HOST feature 
described in Appendix XXX for this purpose.) The user should also be 
able to re-start entry of parameters and options so that he can modify 
any parameters and delete any options with which he is not satisfied. 

Ex. 26 Extend the program described in Exercises 24 and 25 so that it 
allows command language programs to be composed and saved for subsequent 
use. 

Ex. 27 Write an interactive 'perpetual calendar' program. This should 
handle the following commands: 

month/year (displays calendar for the requested month) 

day/month/year (displays calendar for the week containing the 
specified day.) 

Ex. 28 If person A makes a taxable payment to person B, he informs 
the Internal Revenue Service of this fact, giving the amount of· the 
payment and the social security number of person B. Person B 
is then expected to file a report stating his total income. Write 
a program which will read a file of lines, each having either 
the form 

PAYMENT (social security number of recipient) (amount) 
or ~ 

INCOMEREPORT (social security numbe;,r of person reporting) (amount) 

and will then detect all persons who seem to be concealing more than 
$200 in income. A list of persons, with the persons concealing the 
largest amounts of income coming first should be printed. 

Ex. 29 A company bills its customers on the fifteenth of each month. 
Bills fully paid within 14 calendar days of their receipt are granted a 
1% discount, bills fully paid within 30 days of their receipt are 
charged their face amount. Other bills pay a 2% per month interest 
charge. Write a program which will read two files of records, the first 
having the form 

BILL bill number customer number amount date 
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PAYMENT bill_number customer_number amount date 

The program should print a list of all bills for which full payment has 
not been received, with a statement of the amount still owing on the 
bill. The 'date' entry on each line of the file will be a string: for 
example, Jan. 9, 1980 would be represented as 1/9/80. 

Ex. 30 After studying the 'eight queens' program presented in Section 
8.2.1 write a modified, more efficient backtrack program for solving the 
eight queens problem which places queens one after another in 
appropriate rows of successive and exploits the fact that at most one 
queen can be placed in each row. Modify this program further so that it 
produces all possible solutions of the eight queens poblem, but 
suppresses configurations that can be obtained from a known solution by 
reflecting the chessboard through one of its axes of symmetry. 

Ex. 31 Write an 'n-bishops' program which will place as many bishops as 
possible on an 8 x 8 chessboard in such a way that no two bishops attack 
each other. (Hint: For a somewhat more efficient program than would 
otherwise result, work thru the diagonals of the board in succession, 
exploiting the fact that no two bishops can be placed· on the same 
diagonal.) 

Ex. 32 Modify the tiling program given in Section XXX so that it works 
with rectangular rather than square tiles, where each rectangular tile 
can be placed either horizontally or vertically, i.e. can be placed in 
one of two orientations differing from one another by 90 degrees. 

Ex. 33 Write a procedure which uses backtracking to calculate and 
return the power set POW(s) of a given sets. 

Ex. 34 Let G be a graph, given as a set of ordered pairs, each 
representing an edge of the graph. A topologically sorted order for G 
(c.f. Exercise XXX) is an ordering of its nodes such that each edge of 
G goes from a lower-numbered to a higher-numbered node. Write a program 
that reads in a graph G and then uses backtracking to generate all 
topologically sorted orders for it. 

Ex. 35 It is often straightforward to eliminate backtracking from 
simple backtrack programs by using recursion instead of backtracking. 
When this is done the information required for backtracking is saved in 
successive 'incarnations' of a recursive procedure, -OK- is replaced by 
a recursive call which creates a new 'incarnation' rather than a new 
backtrack 'environment' (cf. Section XXX), and -FAIL- is replaced by a 
recursive return. 

Apply thi,, idea to develop recursive routines which solve the 
eight-queens and tiling problems described in Section XXX. 

Ex. 36 Build up an inclusion library containing the following 
procedures: mergesort (Section XXX), polynomial package (Section YYY). 
Using this inclusion library, write a program which reads in a 
collection of pairs of polynomials represented as vectors, multiplies 
them, sorts the resulting product polynomials Pinto decreasing order of 
th~ values P{l), and then prints them out. Polynomials should be 
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printed in something 
polynomial read in as 

like their standard representation, e.g. the 
[1,2,0,3] should be printed as 3**x**3 + 2*x+l. 

Ex. 37 A machine tool company manufactures various kinds of tools, each 
of which consists of several kinds -0f parts manufactured by various of 
its departments. Information concerning parts requirements is stored as 
a map 

{ [tool_name,parts_map], •• •} 

where each tool name is the name of a particular tool that the company 
manufactures, and each parts_map is a mapping from the name of each part 
used in the manufacture of the tool to the quantity of this part 
required and the name of the department responsible for manufacturing 
the part. (Thus parts_map has the form 

{ [part_name, [number,department]], •• }) 

Write a program which will read a list of orders, each having the form 

order_name,tool_name,quantity_ordered 

and make up a list of parts orders arranged by department. 
order generated should be headed by the current date and 
name, and should then consist of succesive groups of lines, 
alphabetical order by part name. Each such group should 
line having the form 

part_name,total quantity needed 
and continue with a sequence of lines having the form 

order_number, quantity in order 
These latter lines should be arranged by order number. 

Each parts 
a department 
arranged in 
start with a 

The parts order to be sent to a given department can extend over 
many pages. Every page of this order must be headed by the current date 
and the appropriate department name, and also by an appropriately 
positioned caption reading 'Page j of n', where n is the total number of 
pages going to a given department and j runs from 1 to n. The parts 
order to be sent to a given department should always start at the top of 
a new page. 

Ex. 38 'Encoded arithmetic' puzzles are a common form of mathematical 
recreation. In puzzles of this kind, digits are represented by letters 
of the alphabet, and then an arithmetic relationship is written: for 
example SEND + MORE= MONEY. To solve the puzzle, one must determine 
the digit value of each character. Such problems can of course be 
solved by a backtracking search through all possible assignments of 
digits to letters, but the following remarks suggest a more efficient 
approach: 

(a) In each digit position, a carry is either present or absent. 
Depending on the assumptions which we make about carries, each digit 
position in an enciphered sum leads to one of several equations. E.g., 
if in the example SEND+ MORE= MONEY we assume that carries are present 
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in the second and third digit positions from the right, 
have N + R + 1 = E + 10 i.e. N+R=E+9. 
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then we must 

(b) These equations can be used to eliminate as many variables as 
possible. For example, since the preceding example involves 8 letters 
and generates 5 equations, we can solve for the digit values of all 5 
letters in terms of only three of them. 

(c) A solution can then be obtained by backtracking through all possible 
values for the uneliminated letters, and all possible carry patterns. 
(In the example considered, this will mean that 32,000 possibilities are 
examined.) 

Write a backtracking program along these lines. Your program 
should be able to solve any encoded addition problem. It should 
generate all possible solutions. Use your program to solve SEND+ MORE 
= MONEY, and DONALD + GERALD = ROBERT. What modifications to your 
program are necessary if it is to solve encoded arithmetic puzzles for 
addition modulo 8? 

Ex. 39 This exercise will describe a relatively elaborate page-oriented 
output facility, which you are asked to program. Your program should be 
written as a single MODULE. 

The output facility to be programmed will allow a page, ~hich is to 
be filled with elega~tly formatted ~string text, to be divided into 
nonoverlapping, named areas, which can then be written separately. To 
define such a page layout, a multi-parameter procedure LAYOUT, with 
parameters like those shown in 

LAYOUT(field_name_string,field_descriptor_l •• ,field_descriptor_n); 

is used. The field_name_str~ng parameter is a string, consisting of 
blank-separated names, each of which names one of the fields whose 
position and size is defined by a subsequent field_descriptor. The j-th 
name and the j-th field descriptor correspond to each other.) The nature 
of any field can be further qualified by appending a qualifier to its 
name. Attaching a qual~fier .R to a field name specifies that 
incomplete lines written to this field (see below) are to be 
right-justified; similarly, the qualifier 

.L specifies left-justification, and the qualifier 
centering. 

Each field_descriptor has the form 
[starting_1ine, starting_position, width, height] 

.c specifies 

Here, starting_line indicates the line number at which a given field is 
to start (lines are numbered sequentially down the page, beginning at 
line 1), and starting_position indicates the horizontal position 
(numbered from position 1 at the extreme left) at which the field is to 
start. The two final quantities -width- and -height- define the 
horizontal and vertical dimensions of the field. 
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The LAYOUT procedure returns TRUE if it detects no inconsistency 
(e.g. overlapping fields) in the requested layout; but FALSE 
otherwise. 

After defining the layout of fields on a 
procedure, one can write to any or all of these 

WRITE(field_name_string, sl, s2, •• , sk); 

page usng the LAYOUT 
fields, using a call 

Here, field_name_string consists of a blank-separated sequence of field 
names, to which the remaining strings sl, s2, •• sk will be written in 
sequence. Any field_name in this field_name_string can be qualified by 
appending one or more characters '*' to it; a single asterisk 
terminates the current line of the field (moving down one line in this 
field) and additional asterisks skip one line each. 

The quantity of information already written to a given field, or to 
the whole page, can be sensed by invoking the function 

AMOUNT(fieldname,s). 

Here the parameters indicates what is wanted, specifically s='LINES' 
calls for the number of the last-written line of the indicated field, 
s='CHAR' calls for the number of characters already written to this 
line,, and s='DESCRIPT' retrieves the descriptor of the field. The 
simplified invocation 

AMOUNT ( ) 

returns the number of the last line written to any field. 

Finally, the call 
OUTPUT ( ) 

prints the page that prior calls to LAYOUT and WRITE have built. 
Moreover, it is legal to invoke LAYOUT several times before OUTPUT is 
called. This allows material to be written to a single page using 
several successive layouts. 

As you program this package of procedures, you will become aware of 
various incompletenesses in the preceding specificatons. Resolve all 
these ambiguous points in tasteful w~ys, and then document your 
decisions carefully, so as to create a detailed user's manual for the 
'page layout facility' that you will create. 

Ex. 40 Design, and implement, various useful extensions to the page 
layout facility described in Exercise 39. For example, you may want to 
allow area names to be qualified with .J in a LAYOUT call, thereby 
indicating that material written to an area is to be printed in 
right-and-left justified form. 

Ex. 41 Use the page layout facility described in Exercises 39 and 40 to 
print out the title of a book, and to print the first page of chapter 
one of the book, wth appropriate chapter headings, and with the body of 
the first page in a two-column format. This first page should include 
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at least one imbedded table. 

$ 

---------------------------------------~ 





"HAPTER 9 

PROGRAMS, MODULES, LIBRARIES, AND DIRECTORIES 

Chapter IX. Programs, Modules, Libraries, and Directories: 
Extended Structuring Constructs for Large SETL Programs. 
Remarks on the SETL run-time system. 

We noted in Sections 7.1 and 7.9 that for clarity and to avoid error it 
is important to divide any program consisting of more than a few dozen lines 
Jnto logically independent paragraphs, each of which performs a well defined 
function in a manner free of close involvement with the details of other 
code paragraphs. We also noted that the procedure, function, CASE, and 
refinement constructs of SETL are the main tools which it makes available to 
aid this kind of 'paragraphing'. Togethet these tools serve as reasonably 
adequate extended structuring constructs, which make it easy to divide a 
long program into parts called modules and libraries. If such a division is 
made, two supporting code sections, one called the (main) program of the 
overall text being constructed, the other constituting an overall directory 
of the text are also required. In normal· usage, each module and library 
will consist of several dozen procedures and functions, and will contain 
declarations of all ('module-global') variables directly accessible to more 
than one procedure of the module or library; the directory, which consists 
of declarations only, will indicate which of the procedures in each module 
are available for use in other modules, and will declare a set of 
'program-global' variables available to all procedures in all modules. 

In this section, we will describe SETL's extended structuring concepts 
systematically, and will illustrate their use. 

Chapter Table Q! Contents 

9.1 Textual structurs of complex programs. 
9.2 Separate compilation and 'binding' of program subsections. 
9.3 More on interpreters: the SETL machine 

9.3.1 An interpreter for SETL 
9.3.2 Memory management and data-structures 

9.4 Appendix. A machine interpreter in SETL. 
9.5 Exercises (TO BE ADDED) 
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9.1 Textual Structure£!. Complex Programs 

A program text can either be a simple program like those .described in 
the preceding chapters of this book, or can be a complex program. A simple 
program consists of an optional sequence of declarations, a main program 
part, and a collection of procedures and functions: the role which all of 
these structures play has already been described in previous chapters. (See 
especially Chapter IV.) A complex program, which has a richer structure, 
consists of the following items in sequence: 

(1) a single directory, followed by 

(2) a single program unit, followed by 

(3) a collection of one or more modules and libraries. 

We begin our detailed account of this family of constructs by 
describing the structure and purpose of module and library units. Each 
module consists of the following items in sequence. 

(i) A header line. 

(ii) Optionally, a collection of one or more library items. 

(iii) Optionally, an access specification. If present, this 
will describe tbe relationship of the module M to the other 
modules present in the same complex program. 

-(iv) Optionally, a sequence of declarations. If present, 
these will define variables and constants globally 
acces&ible to all the procedures in the module M, will call 
for certain initializations, and will sepcify the manner 
in which particular variables are to be represented. 

(v) A sequence of one or more procedures (and functions). 

(vi) A trailer line, which closes the module. 

The following example shows all these features except (iii): 

MODULE logic_inalyzer - syntacti~_decomposition; 
LIBRARIES lexical_analysis, error_reports; 
LIBRARIES error_tracing, error_reporting; 

VAR 
Formula_grammar, Expression_grammar; 

Analysis_stack; 

$ header line 
$ library item 
$ additional 

library item 
$ declaration of 

$ 'module-global' 
$ variables 

VAR $ additional declaration 
Parse_status; $ of 'module_global' variable 

CONST $ constant declaration 
Expr = 1, Term= 2, Factor= 3; 
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INIT $ initialization declaration 
Analysis_stack := [], Parse_status=2*3; 

REPR 
Formula_grammar, Expression_grammar: 

SMAP(INTEGER) TUPLE(INTEGER); 
Analysis_stack: TUPLE(INTEGER); 

END REPR; 

PR.OC parser (x) ; 
••• $ body of procedure 

END PROC parser; 

PROC special_actions(y), 
••• $ body of procedure 

END PROC special_actions; 

$ representation declaration 
$ (see Chapter 10 for an 

$ explanation of 
$ representation declarations) 

$ first procedure of module 

$ second procedure of module 

••• $ additional procedures of 
••• $ module would follow here 
END MODULE logic_analyzer - syntactic decomposition; $ trailer line. 

This example illustrates the following general rules: 

(i) The header line of a module consists of the keyword MODULE, 
follow~d by a pair of identifiers separated by the sequence 
space-dash-space. The first of these identifiers is a directory-name; it 
names the directory which comes first in the (complex) program containing 
the modules and must be the same for all modules in a program. For example, 
the module shown above would have to follow a directory whose header line 
was 

DIRECTORY logic_analyzer; 

and the other modules in this same (complex) program would have 
header-lines like 

MODULE logic_analyzer - propositional_calculus; 
• • • 

MODULE logic_analyzer - predicate_calculus; 
. . . 

etc. 

(ii) Each member of 
follow in the module 
comma-separated sequence 
the libraries in the 
needs to use. 

the optional sequence of library items which then 
M consists of the keyword LIBRARIES, followed by a 
of library identifiers, each of which names one of 
complex program (see below) which the module M item 

(iii) The (optional) access specification which can then follow is 
described later in this section. See 'Directories', below. 

(iv) The optional declarations which follow after this have the same 
structure as the global declarations included in a simple program. VAR, 
constant, !NIT, and REPR declarations are all allowed, and can be given in 
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any order. VAR declarations appearing in this position within the module M 
specify variables having module-global namescope, i.e. variables accessible 
to all the procedures· in M (but to no other procedures). 

Libraries have essentially the same structure as modules, except that 
the header line of a library module begins with the keyword LIBRARY, which 
is followed by a simple identifier (the library name) rather than a 
hyphen-separated pair of identifiers, as a standard MODULE would be. 
Moreover, none of the procedures in a library can either access variables or 
invoke procedures declared outside the library. We can therefore say that, 
whereas modules constitute the chapters of a complex program outside of 
which they are not likely to be used, libraries contain self-standing 
collections of utility routines and are likely to be used in many different 
programs. 

The single program unit allowed in a complex program has much the 
structure as a module, except that before the collection of routines 
it contains there must occur one or more statements constituting its 
program. Execution will then begin with the first statement of this 
program. 

More specifically, a program unit consists of 

same 
which 

main 
main 

(i) A header line, consisting of the keyword PROGRAM, which must be 
followed by the appropriate directory name (see (i) above) and then by the 
name of the program unit itself, these two items being separated by the 
sequence blank-hyphen-blank, as in 

PROGRAM logic_analyzer - main; 

(ii) Optionally, a collection of one more library items. 

(iii) Optionally, an access specification (just as in a module). 

(iv) Optionally, a sequence of declarations (VAR, CONST, INIT, and REPR 
declarations, as in a module or a simple program). 

(v) The 'main program', i.e. 
statements. 

a sequence of one or more executable 

(vi) An (optional) collection of one or more procedures. 

(vii) A trailer line, terminating the program unit. 

Note again that if optional items (ii) and (iii) are omitted, we will have 
exactly a simple program of the stand-alone sort that could be used without 
a directory. 

Next we describe the structure of a directory; this will also explain 
the structure and purpose of the directory item (cf. (iii) above) that can 
be included in any module, library, or program unit. A directory consists 
of 
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(i) A header line; 

(ii) Optionally, a set 0£ declarations (VAR, CONST, INIJ, and REPR 
declarations, exactly as in a module or library);· 

(iii) A single PROGRAM descriptor; 

(iv) A' sequence of MODULE descriptors, one for each module which 
follows the directory; 

(v) A trailer line, which terminates the directory • 

. These objects are subject to the following general rules: 

(i) The header line of a directory consists of the keyword DIRECTORY, 
followed by an identifier which names the directory, as in 

DIRECTORY logic_analyzer; 

A~ already stated, this identifier must be repeated in in all the modules, 
and also in;the main PROGRAM unit which follows the directory 

(ii) The optional VAR and CONST declarations occurring in the directory 
define- the names of program-global variables and constants accessible tq 
(the main program and) all procedures (other than library procedures) in the_ 
complex program in which the directory appears. The optional INIT 
declarations appearing in the directory serve to initialize these 
program-global variables, and any REPR declarations appearing in the 
directory serve to defie representations for these variables. 

(iii,iv) The program descriptor and module descriptors which come nexi 
serve to define the manner in which the program unit and modules which 
follow the directory are allowed to access the global variables declared· in 
the directory, and also determine which procedures in which modules can be 
invoked by proc~dures in· other modules. The syntactic form ot these 
descriptors is 

(for a program descriptor) 
PROGRAM directory.!!..!!!!. - program name: access specification; 

(for a module descriptor) 
MODULE directory name> - program name>: access specification; 

That is, the first part of each such program or module descriptor is 
identical with the header line of the program or module it describes; but 
this first part must then be followed by an access specification. Such an 
access specification has the following components: 

(a) an (optional) item of each of four possible types: 
READS, WRITES, IMPORTS, and EXPORTS items 

(b) an (optional) REPR declaration. 
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A READS (resp. WRITES), item consists of the keyword READS (resp. 
WRITES), followed either by a list of names of program-global variables and 
constant s, or by the·keyword ALL. This is shown in 

READS ALL; 
WRITES Phase, Subphase; 

These items serve to define the program-global variables and constants which 
are read (resp. written) by one or more of the procedures in some MODULE 
(or in the main program of a PROGRAM unit) of a complex program. 

An IMPORTS item lists and describes all the procedures defined 
elsewhere which are used within a unit. It consists of the keyword IMPORTS, 
followed by a sequence of procedure descriptors, each of which is identical 
to the header line of the procedure being described (but omitting the 
keyword PROC or PROCEDURE). Procedure parameters which are read-only, 
write-only, or read-write must be declared in the procedure descriptor of an 
IMPORTS statement in precisely the sam~ way as they are declared in the 
header line of the corresponding procedure, i.e. must use RD, WR, 6r RW, 
precisely where these occur In the header line. This is shown in the 
following examples: 

DIRECTORY logic_analyzer; 

MODULE logic_analyzer - propositional_calculus; 

IMPORTS bl(x), 

. . . 
b2(RW x, RD y) 
b3(x, y, z(*)); 

$ a one-parameter function 

$ procedure with variable number 
$ of parameters 

MODULE logic_analyzer - predicate_calculus; 

. . . 
IMPORTS al(x,y,RW z), 

a2; 

END DIRECTORY; 

$ parameterless procedure 

$ directory trailer line 

MODULE logic_analyzer - propositional calculus; ... 
PROC al(x,y,RW z); 

END PROC al; 

PROC a2; 

END PROC a2; 

$ note correspodence with 
$ preceding declaration 

$ parameterless procedure 

END MODULE logic_analzer - propositional calculus; 

MODULE logic_analyzer - predicate_calculus; 

$ trailer line 

. . . 
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PROC bl(x); 

END PROC b 1; 

PROC b2(RW x, RD y); 

END PROC b2; 

PROC b3(x,y,z*); 

END PROC b3; 

$ a one-parameter function 

$ note correspondence 
$ with preceding declaration 

$ procedure with variable number 
$ of parameters 

END MODULE logic_analyzer - predicate_calculus; 

An EXPORTS item lists and describes all the procedures which a given 
module makes available for use within other program units or modules. Aside 
from the fact that the keyword IMPORTS is replaced by EXPORTS, it has 
exactly the same form as an IMPORTS item, and is subject to the same 
restrictions. 

Note that no procedure can be EXPORTED from more than one module. On 
the other hand, a procedure defined within a module Ml but neither exported 
nor imported by it will be local to the module and can very well have the 
same name as a different procedure defined in another module M2, even if M2 
exports (but Ml does not import) this procedure. 

An access specification occurring in a module, program, or library has 
the same form, and is subject to the same restrictions, as an access 
specification in a library. Such an access specification is used to 
document the global variable accesses made and the procedures exported and 
imported by the module program, or library in which it occurs, and is used 
£E....!..y_ for documentation, so that if it occurs at all it should be identical 
with the access specification supplied for the same module or program in the 
DIRECTORY which precedes it. Since libraries can neither access 
program-global variables nor IMPORT procedures from a module or program, an 
access specification in a library must consist of a single EXPORTS item 
only. As with modules, a procedure P defined in a library but not exported 
by it is local to the library and; can have the same name as a different 
procedure defined in some other library, program, or module. 

Note that the libraries imported by a module or program, or by another 
library, are not listed in the directory which precedes them. Instead, they 
are listed in a library item within the importing module, program, or 
library. A MODULE, PROGRAM or LIBRARY Ll which lists another library L2 
automatically imports all the procedures and functions which L2 exports. 

A concluding note concerning use of these facilities. In subdividing 
large programs into modules and libraries, one's main aim will be to 
subdivide the full collection of procedures which constitute it (possibly 
amounting to many hundreds of procedures altogether) into sensible chapters, 
each containing procedures which are relatively tightly coupled to each 
other but which are only loosely coupled to procedures placed in other 

-----------------
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modules or libraries. Close couplings will develop if procedures share 
variables globally, or when one procedure makes detailed assumptions about 
many of the data structures used by another. Procedures should be 
structured, and partitioned among modules and libraries, in ways calculated 
to avoid these couplings, and to minimize them effectively when they are 
unavoidable. It is particularly important to avoid accumulation of large 
numbers of shared global variables at either the MODULE or the DIRECTORY 
(i.e. program-global) level. 

Ideally, a MODULE should consist of no more than a few dozen 
procedures, and should be considered a candidate for further subdivision 
when this informal limit is exceeded. 

An extended example showing the use of SETL's larger program 
structuring facilities is found in Section XXX of Chapter XI. 
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9-2 Separate compilation and 'binding' of program sµbsections. 

When long SETL programs (i.e. programs more than a few thousand lines 
long) are being developed, the time required for compilation becomes 
significant. To have to spend much time recompiling long programs after 
just a few of their lines have been changed is annoying, and to obviate this 
annoyance the SETL system allows the modules and libraries of a large 
program to be compiled separately. Precompiled forms of such modules and 
libraries (called 'Ql' or 'intermediate code' files) can then be saved, and 
combined or 'bound' with other subsequently compiled program sections, to 
produce a final, executable, SETL program. Moreover, the SETL compiler can 
be used to combine several seperately produced intermediate code files into 
one single file of the same format, thereby saving part of the expense of 
repeated intermediate code file binding. 

The form of intermediate code saved for subsequent 'binding' is exactly 
the form of code produced as output by the second (semantic analysis) phase 
of the SETL compiler (as we have noted, this output is caled 'Ql' text.) To 
save this output for subsequent binding, you must either 

(a) Halt 
analysis phase 

or 

the compilation process immediately after the semantic 
(see Appendix 8.s.1.2 for an explanation of how to do this.) 

(b) Prevent the third compiler phase (code generation phase) from 
erasing the intermediate (Ql) file passed to it (as it would normally do at 
the end of code generation.) To prevent this erasure, the control-statement 
option SIF (save intermediate file; see Section 8.s.1.2 for additional 
explanation) must be set. 

When several seperately compiled modules and libraries, all available 
in the 'Ql' format, are being bound together, they are first read in order, 
and digested by the SETL compiler's second (s_emantic analysis) phase. After 
this, the semantic analysis phase reads any additional files representing 
source code newly parsed by the first compiler phase (the parse phase.) All 
these files are then combined, and a single composite Ql format file 
representing all this input analysis is output by the semantic phase. This 
output can itself be saved, and combined (at a later time) with still other 
QI-format files and with fresh parse output, to produce a still longer Ql 
file. Alternatively, a QI-format file representing a complete (complex or 
simple, see Section 9.1) SETL program can be passed to the compiler's code 
generation phase, to be turned into (interpretable or true machine) code and 
then executed. The following figure shows the main inputs to and outputs 
from the compiler's semantic analysis phase when it is used in the manner 
)ust outlined to 'bind' seperately compiled modules together. 
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Figure 9.1: Inputs and Outputs of the SETL Compiler when the BIND 
option is used. 

A file in Ql format always represents a (parsed and semantically 
analyzed) sequence of SETL source modules and libraries (possibly including 
a main program module, cf. Section 4.1 following 4.1.1), in some specific 
order, and could be produced simply by arranging this source code in 
appropriate order, and compiling it. The rule determining the logical order 
of modules in a Ql-format file produced by binding is explained below. 

The inputs to the compiler's semantic analysis phase are as follows: 

(i) Two files, called POL and XPOL, which are passed from the first (parse) 
phase of the compiler to the semantic analysis phase. Together, these two 
files represent a SETL source text in parsed form, ready for semantic 
analysis. 

(ii) An additional file, called BIND. This is a Ql-format file representing 
precompiled modules that are to be combined with the newly parsed material 
represented by the POL and XPOL files. 

(iii) If necessary, a third file, called IBIND. If supplied, the IBIND file 
is simply a list of file names (which should have whatever fil~ name format 
is required by the operating system under which you are running.) If an 
IBIND file is supplied, the files named in it (each of which must be a 
Ql-format file) are read one after another by the semantic analysis phase, 
and combined with the POL/XPOL material (i) and the BIND file (ii), to 
produce one composite Ql-format file as output. 

The Ql-format file 
can be regarded as the 
source text. This text 
the following subtexts, 

produced as output by the semantic 
parsed, semantically analyzed form 
is exactly what would be obtained 
in order: 

(a) First, the source text corresponding to the BIND file; 

analysis phase 
of a certain SETL 
by concatenating 

(b) Next, the various source texts corresponding to the successive Ql-format 
files mentioned in the IBIND file; 

(c) Finally, the source text represented by the POL and XPOL files. 

Suppose, for example, that we 
'logic_analyzer' whose structure 
consists of the following principal 

are working with the complex-program 
is shown in the preceding section. This 
subdivisions: 
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(1) DIRECTORY logic_analyzer; ... 
END DIRECTORY, 

PROGRAM logic_analyzer -logic_main; 
. . . 
END PROGRAM; 

MODULE logic_analyzer - propositional_calculus; 
••• 
END MODULE; 

MODULE logic_analyzer - predicate_calculus; ... 
END MODULE; 

We could proceed in the following way, via a seq~ence of seperate 
compilation steps, to produce a version of this program ready for execution: 

(i) First, the DIRECTORY can be compiled, and saved in Ql format, let us say 
in a file called DIRECT.Ql (here, and in the next few paragraphs, we use 
file-naming conventions; appropriate to the DEC VAX VM operating system.) 

(ii) Next, the PROGRAM and the propositional_calculus MODULE could be 
compiled (seperately) and the results of these two compilationB stored as 
two Ql-format files named MAIN.Ql and PROPOS.Ql. 

(iii) Finally, the predicate_calculus MODULE can be compiled, and combined 
with the precompiled material (1) and (iii). To do this, the final· 
compilation could have the source text of the predicate_calculus MODULE as 
its SETL source input, and in addition have the file DIRECT.Ql as its BIND 
parameter (see Section 8.5.1.2). The !BIND parameter should then be a file 
(possible called XTRAQl.LIS) of file names, which should contain just the 
following two lines: 

MAIN.Ql 
PROPOS.Ql 

As soon as the semantic analysis phase has finished processing its input, 
Ql-format output representing the parsed, semantically analyzed form of the 
source text (1) will result. 

In using the 'binding' mechanisms that have just been explained, the 
following facts should be noted: 

(a) Either of the BIND and the IBIND parameters can be omitted, in which 
case no attempt will be made to read, or to bin~ in, the corresponding Ql 
files. 

(b) If only binding of previously compiled Ql-format files is 
and XPOL files produced by parsing an empty SETL input file 
along with appropriate BIND and !BIND parameter files, to 
analysis phase of the compiler for binding. 

desired, POL 
can be passed, 
the semantic 
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9.3 More~ interpreters: the SETL machine. -----
The notion of interpreter appears repeatedly in these pages (see 

Sections 3.S,S.4.2,and S.4.3). Interpreters are an impdrtant, indeed 
fundamental class of program. This is because we can regard any interpreter 
as a program that 'understands' a kind of simple 'language', i.e. 
recognizes and executes a specific set of instructions. For example, the 
Turtle Interpreter of Chapter 3 recognizes the instructions: FORWARD n, -
LEFT, RIGHT, and so on, and executes an appropriate action for each such 
instruction. Imperative instruction formats of this kind can be used to 
manage many programming tasks. 

Structuring a program as an interpreter has a number of advantages 

a) An interpreter has a simple modular structure. Even th~ugh the 
instructions it handles should always reflect some unifying intent, each 
such instruction can be programmed independently of the others. 

b) As a consequence of a), an interpreter is easily 
generally easy to add new instructions and to 
corresponding to them without affecting existing 
interpreter. 

extensible: 
program the 

portions 

~t is 
actions 

of the 

c) Since any interpreter defines a kind of 'language', we can extend the 
family of programming languages at our disposal by writing interpreters. 
Once we have implemented a language by writing an interpreter for it, we can 
solve further programming tasks by writing programs in the new language. 
Often this is the most effective way of attacking a problem: invent a 
language L in which the problem is eaily solved, program a solution to the 
problem in L, and then write an interpreter for L. 

In what sense can we speak of interpreters as defining new programming 
languages? Any programming language has two separable aspects, namely its 
'syntax' and its 'semantics'. These important terms can be defined 
approximately as follows: 

1) Syntax: The syntax of the language is the externally visible 
grammatical structure in which valid statements of the language must be­
couched. (The syntax of any language can be described by means of a formal 
syntactic notation like the syntax graphs that we have used to describe 
SETL.) 

ii) Semantics: The more elusive notion of semantics includes all those 
aspects of the language that determine the operational meaning of its 
primitve constructs , i.e. the result of the actions that execution of each 
construct requires. 

Note in this connection that different languages may give different 
syntactic forms to statements that have very similar meanings. For example, 
the action of incrementing a counter variable by one is written as follows 
in five well-known programming languages: 

I = I + 1 
I= I+ l; 
I :=I+ l; 

( in FORTRAN) 
( in PL/I) 
( in PASCAL) 
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( in C) 
( in SETL) 

syntactic forms, all these 
i.e. the same semantics. On 

of the Turtle language (let's call it TURLAN) has no semantic equivalent in 
most programming languages. Its meaning can be explained in English, as we 
did when first describing TURLAN, or it can explained to an informed reader 
by showing him the SETL code which is executed when the FORWARD command is 
encountered by the TURLAN interpreter. Clearly, the important aspects of 
this command do not lie in its syntax: something like 

ADVANCE BY 10; 

would do just as well as a syntactic alternative for the FORWARD statement. 
Regardless of how we choose to write it, the imp-0rtant charact~ristic of 
this construct is that its execution models the motion of an objec~ in 
two-dimensional space, and that this motion may produce a visible track on a 
drawing. This is what constitutes the semantics of the statement, 
irrespective of whether it is given the name 'FORWARD' or the name 
'ADVANCE'~ 

An interpreter defines a language in the sense that it provides a semantic 
specification of the meaning of each command in the language. It is 
sometimes said that the semantics of a language Lis best defined by giving 
the rules of action some 'abstract machine' M which understands Land 
executes the actions specified by elementary 'commands' of L. From this 
point of ~iew, an interpreter I for Lis just an implementation of the 
abstract machine M, i.e. it is a program (written in some other language 
OL) that behaves the way M should. Of course many interpreters can be 
written for the same L, and these intepreters can differ in programming 
deta~ls, in the language in which they are written, etc. However, the 
visible behaviour of all these interpreters (which is to say their output 
for a given input sequence) is identic•l•. All these interpreters are 
logically equivalent implementations of the same abstract machine M. 

Given two general-purpose programming languages L and OL of comparable 
power, it is always possible to write an interpreter for either of them 
using the other ■ It is even possible to write an interpreter for L i~- L 
itself (for example, an interpreter for SETL in SETL). This is often often 
done to provide a self-consistent definition for a new language. 

In the following pages, we will proceed to sketch such an interpreter 
for SETL. In doing this, we have two goals in mind: 

a) This exercise will give us more insight into the general nature of 
interpreters and introduce the important notion of intermediate language and 
of 'interpretable code'. 

b) The interpreter to be sketched will illustrate parts of the structure of 
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the actual implementation of SETL. This will advance ~ur understanding of 
efficiency and data structure considerations that we have neglected thus 
far, and will prepare us for a subsequent discussion of the 
data-representation sublanguage of SETL ■ 

9.3.1 An interpreter for SETL. 

If we compare our simple Turtle language with SETL, it is clear that a full 
compiler for SETL must be a considerably harder program to design. The 
reason is not just that SETL is a much bigger language, but also that the 
grammatical structure of the two languages is very different. The grammar 
of TURLAN is very simple: every sentence is a command with one or zero 
arguments. The grammar of SETL is much richer, and a SETL statement is by 
no means a rudimentary 'command'. For example, if we examine a simple 
statement such as 

(1) squares:• { (1, 1 ** 2]:1 IN [ 1,3 •• 21] }; 

we notice that it specifies a whole series of actions:iteration, ·tuple 
forming, set forming, assignment, etc. The following expanded SETL fragment 
gives a more detailed account of these actions: 

(2) squares :• {}; 

(FOR 1 IN [1,3 •• 21]) 
pair:=- [i, i ** 2]; 
squares with:• pair; 

end FOR; 

The fragment (2) has the same net effect as (1):after its execution, the 
variable -squares- is a map whose range is the set of squares of the first 
11 odd numbers. However, the statements of (2) are much simpler than the 
single statement (1). Each step of (2) describes a relatively simple action 
(assign the empty set to a variable, add an element to a set. etc.) 
Nevertheless, the fragment (2) is not yet simple enough to be handled by a 
program as straightforward as our TURLAN interpreter. To simplify further, 
we need to expand version (2) into something like the following: 

(3) 

LOOP: 

out : 

squares :• {}; 
1 : • 1; 

IF i > 21 GO TO out; 

12 :• i ** 2; 
pair :• []; 
pair with:.,. i; 
pair with:• 12; 
squares with:• pair; 
1 :• i + 2; 
GO TO loop; 

The fully expanded code (3), with its labels, jumps, individual tuple 
insertions and so on, is much less readable than our original one-liner ■ 

But it constitutes a list of rudimentary actions, each one of which is 
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simple enough to be handled by an interpreter. To simplify one final step 
further, it is useful to write the commads appearing in (3) using a more 
stereotyped syntax than that of SETL. This leads us to introduce an 
'intermediate language' whose statements have the same semantic meaning as 
the SETL statements of (3), but whose syntactic structure is more uniform 
and hence easier to process. 

Specifically we will represent command in 
components : 

operation first operand second operand 

(3) as sequence of four 

result (optional) 

Such an sequence is ·customarily called a quadruple, for obvious 
reasons. Instructions written in this way are also known as 3-address code, 
because each instruction names (up to) three quantities: two operand(s), 
and a result. 

Written in this way the five lines that 
version (3) would take the £allowing form: 

( 4) expon i 2 12 
assign nulltup pair 
with pair i pair 
with pair 12 pair 

follow the label 

with squares pair squares 

'loo.p' in 

Note that code of this kind restricts us to use no more than two 
arguments in each quadruple, which forces us to break up complex expressions 
into sequences of simpler steps. For example, in reducing (2) to (3) we 
introduced a whole assignment instruction just to calculate 1**2• In (2), 
the expression 1**2 had no 'name':it just appeared as a component of a 
tuple. In version (3) we isolate the calculation of 1**2 into its own 
instruction, and give the resulting value a name in order to use it at a 
subsequent instruction. Such a name, which does not app~ar in the original 
program (1) but is generated when (1) is ·translated into a syntactically 
simplified form, is known as a 'temporary.variable'. One of the ongoing 
activities of a 'compiler', wbich translates syntactically complex programs 
like (1) into intermediate quadruple forms like (3), is to generate such 
names whenever they are needed to simplify complex expressions. 

It should come as no surprise that in the real SETL system SETL source 
programs like (1) are actually converted into an intermediate quadruple form 
like (4). This is done by the SETL compiler, whose output is precisely a 
sequence of quadruples. The details of this translation need not concern us 
here. What is relevant to our discussion is the fact that the run-time 
system of SETL, which is what actually executes all your programs once they 
have been compiled, is an interpreter for this intermediate language of 
quadruples. This SETL run-time interpreter has a repertoire of about 250 
operations. Most interpreters for complex languages work in this way: the 
language is first translated into a simpler form, consisting of a small set 
of command-like statements, and then this intermediate representation is 
processed by th~ interpreter. 



PROGRAMS, MODULES, LIBRARIES, AND DIRECTORIES Page 9-16 

The full intermediate code representation of our initial example (1) is 
as follows: 

assign nullset 
assign 1 
i fgt i 
expon i 
assign nulltup 
with pair 
with pair 
with squares 
plus i 
go 

2 1 
2 

i 
12 
pair 
2 

squares 
i 
10 
12 
pair 
pair 
pair 
squares 
i 
3 

Note that in this intermediate representation, the labels introduced in 
version (3) have been replaced with numbers ■ For example, the intermediate 
code instruction 

go 3 

instructs the interpreter to proceed to the 3rd instruction in the sequence ■ 
Similarly, the conditional instruction , which is instruction number 3 in 
the above sequence, namely 

i fgt i 21 10 

directs the interpreter to proceed to the 10th instruction in the sequence 
if the condition (i > 21) is met. If this condition is not met, then the 
interpreter simply continues on from instruction 3 to instruction 4. 

To summarise: the intermediate code version of a SETL program is a sequence 
of quadruples representing the original program ■ Some quadruples trigger 
computations while others affect the order of execution, i ■ e ■ affect the 
flow of control through the sequence of quadruples. 

The foregoing explanation puts us i-0 position to sketch the overall 
structure of the SETL interpreter ■ As usual, the main component of the 
interpreter is a CASE statement, each of whose tags corresponds to an 
instruction in the intermediate language. This CASE statement is executed 
within a loop, (the 'main interpretive loop'), and each step through the 
loop performs the following actions: 

(a) Fetch the next quadruple to be executed. 

(b) Unpack the quadruple into instruction, arguments, and name of 

result ■ 

(c) Execute the code corresponding to the current instruction ■ This 
generally involves fetching the values of the arguments, performing some 
calculation, and assigning the output of this calculation to the result 
parameter of the quadruple. In the code that follows, the relationship 
between a variable and its current value is represented by means of a map 
called VALUE, whose domain is the set of identifiers present in the program 
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being interpreted. 

(d) Finally, if the instruction is not a STOP, we $0 back to (a). 

Although h~ghly abbreviated, the following SETL code indicates the main 
features of this structure: 

PROGRAM interpreter; 

read(cpde); 

next :•_l; 

LOOP DO 

$ The tuple of instructions to be 
$ interpreted. 

$ Index for next quadruple to execute. 

$ Main interpreter loop. 

.[op~, argl, arg2, res] :• code(next); $ 'unpack' the quadruple 
n.ext .+:•l; $ advance (provisionally) to the next -in.struction 

CASE opr OF 

('assign'): 

.('plus'): 

• • • • .... 
('go'): 

. . . . ..... 
END CASE; 

END LOOP; 

END PROGRAM; 

value(res) :• value(argl); 

value(res) :• value(argl) + value(arg2); 

next :• res; 

$ code for other instructions • 
$ would come here 

$ This operation modifies the 
$ 'program counter' -next-

The variable -next- is usually called 'the program counter' or the 
'instruction counter'. 

After each instruction, the interpreter determines the next instruction to 
execute. After a computational instruction, addition or assignment, the 
next instruction is simply the next instruction in the sequence, as is 
reflected in the statement : 

next+:- l; 

Any instruction, such as a 'go' instruction; that affects the flow of 
control will reset the -next- indicator to some other value, as is shown in 
the case of the 'go' instruction above. 
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9.3.2 Memory management and data-structures. 

The previous section evades several important questions that we must 
now try to answer. Writing an interpreter for SETL in SETL may be a 
reasonable way of describing the nature of interpreters, but it can't 
possibly b~ the way SETL is implemented, because something would have to to 
execute the interpreter program itself ! In fact, the real SETL interpreter 
is not written in SETL, but in a simpler, lower-level language, which in 
turn is translated into (you have guessed it) some intermediate 
representation which ••• But there is no infinite regress here: the final 
instructions produced by this sequence of translations can be executed by 
the · computer 'hardware' itself, which is to say that the ability to execute 
these most elementary instructions is 'wired' into the physical structure of 
the machine on which your program runs. 

Now the instructions that can be 'wired in' to actual hardware, that is 
to say the instructions that a computing machine can e~ecute directly, are 
always of a much simpler nature than the instructions of our hypo~h~tical 
SETL machine. 

One of the things that simplifies programming in SETL is the fact that 
the language makes available such complex structured objects as maps, tuples 
and sets. This frees the SETL user of all concern with with the physical -
location of these objects in the machine, and with the ways in which they 
are retrieved, modified, created, deleted, etc •• But the actual computer 
hardware does not have the built-in capabilities to deal with these 
structures, i.e. the bare computer knows nothing about sets, maps, tuples, 
membership tests and the like. In creating the SETL interpreter it is 
therefore necessary to program the manipulation of these objects explicitly. 
To understand the efficiency consequences of this fact, we must now examine 
the way ~n which SETL objects like tuples, sets and maps, are actually 
represented in memory. In order to do this, we must first say something 
about the capabilities typically available in a bare machine, which is to 
say the repertoire of instructions supported.by the 'hardware' itself. 

Machine level operations. 

Physically, a computer consists of two linked subparts 

a) A memory, within which data can be stored. 

b) A processing unit which reads items from the memory, combines and 
modifies them in various ways, and stores the results back in memory. 

The memory consists of a number of storage units, called words. 
think of the memory as a tuple of some fixed size. Each word 
'address', which is simply a positive integer, which when used as an 
allows us to refer to that specific word. 

We can 
has an 

index 

In turn, each word in memory consists of a fixed number of information units 
called bits. A bit is a binary digit, i.e. it is representable by a O or a 
1, so that we can think of a machine word as a tuple of zeroes and ones. 
Word size and memory size vary from computer to computer. Typical values 
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are as follows: 

memory sizes range from 4000 words to several million words. 

memory words are typically 16, 32, 36, 48, 60, or 64 bits long. 
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In this section we will use -W- to refer to some typical word size. The 
fact that is central to the following discussion is that the operations that 
a given machine can execute directly (usually called its 'instruction set') 
are almost without exception instructions that involve one or two machine 
words of input, and yield one machine word of output. Anything more complex 
must be programmed as a sequence of instructions. Let us now briefly 
examine briefly the capabilities of a typical instruction set. To describe 
this, we will make use of the following notation:M designates the ~achine 
memory, which we regard as a tuple of words, and M(i) designates the 
contents of the 1th word of memory. The contents of a machine word can be 
regarded as a sequence of bits, as we described above. However, it is also 
poasible for the hardware to regard the contents of a machine word as the 
binary representation of an integer, or some encoding of a floating point 
quantity, or as one of more alphabetic characters. In other words the 
.machine has no concept of data object 'type'. Each instruction implicitly 
determines which interpretation the machine will give to the contents of the 
memory locations that it references. 

Bearing this in mind, we can classify machine instructions into the 
following classes: 

(1) Transfer instructions. 

These instructions transfer the contents of one location to 
another, i.e. perform operations like 

M(j) :• M(i) 

In some cases, it is possible for one machine instruction to cause the 
transfer of several memory words, or the transfer of a portion of a word, 
i.e. of a few bits, from one location to.another. 

(ii) Arithmetic instructions. 

All sizeable machines supply the four basic arithmetic operations on integer 
quantities: add,subtract, multiply, divide. When these operations are 
executed, the contents of words in memory are interpreted as binary 
representations of integers. Usually one bit of a word representing an 
integer is reserved to represent the sign of the integers. If the word has 
size W, there are therefore W-1 bits available to specify the size of an 
integer, which allows the representation of numbers whose magnitude is in 
the range O thru 2**( W - 1)-1 • 

(iii) Bit-manipulation instructions. 

The instruction set of most machines includes operations that regard the 
content of memory words as a sequence of boolean quantities, i.e. regard 
each one-bit as an encoding of TRUE and each zero as FALSE. Instructions in 
this class perform boolean operations (AND, OR, NOT) on these 
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representations. These instructions are 
the bits of a given machine word. 
include the following· : 

performed in a single step on all 
Typical instructions in this group 

1. Negation:replace each bit in a mach~ne word by its negation, 
1.e. replace each zero by a one, and viceversa. 

2. AND:form the bitwise AND of the contents of two machine words, 
and place it in a third. In other words, the 1th bit of the 

result is obtained by ANDind the 1th bits of the two operands. 

3. Bit OR: 
two 

Similarly, perform a bitwise OR operation on the contents of 

words, and place the result in a third. 

(iv) Indexing instructions. 

Given that the address of a machine word M(i) is simply •an integei, -
this ~ddress can itself be stored in some other machine word, say M(j), an4 
subsequently. used to retrieve the contents of M(i). In this case, a·s in the 
iase of arithmetic operations, the machine interprets the contents of M(j) -
as an integer, and performs an instruction like 

M(k) : • M(M(j)) 

That is, a typical indexing instruction takes the contents of tbe word whose 
address is contained in M(j), and transfers these contents to M(k) • 

(v) Test and branch instructions. 

Every instruction set provides various test operations whose o~tcome 
determines the instruction which the processing unit will execute next. 
Instructions of this type are the machine-level equivalent of IF statements 
in SETL. Among others, the following conditions can usally be teated for: 

a) Test for zero:this condition is TRUE if all the bits of a given 
machine word are zero. 

b) Test for equality:this condition is TRUE if the contents of two 
machine words are bitwise equal. 

c) ATithmetic comparisons:interpret the contents of two machine words 
as integer quantities, and compare these quantiti•s for I 

(equality, greater 
than, less than, unequality, are commonly conditions that can be tested). 

Modern instruction sets coniain hundred of individual instructions, and the 
list above is a small but representative sample of what is commonly -
available. Regardless of the specific details of a machine's instruction 
set, what is important is that all these insructions manipulate one or tw9 
words of output and produce a single word of input. Moreover, these 
insructioris can be executed at very high speed. Typical modern computers 
perform between 1 million and 20 million cycles per second. A transfer 
operation, an addition, or a bitwise AND take one machine cycle, a 
multiplication may take 3-5 machine cycles. 
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In chapter 10, we will discuss the implementation of SETL primitives, 
that is to say the way SETL structures and operations are represented at the 
machine level. Once we understand the ways in which tuples, sets and maps 
are represented and manipulated, we will be in a positiort to discuss 
questions of efficiency, and to describe ways in which the execution speed 
of SETL programs can be improved by choosing data representations 
appropriately. 

9.4 Appendix. A machine interpreter in SETL. 

In the previous section, we have outlined the organization of the SETL 
interpreter, and this led us to descend from the rich set of primitives of 
the SETL language, to consideration of the restricted capabilities of 
typical hardware. In this discusiion, we treated machine operations as 
primitive actions and did not attempt to analyze them or decompose them into 
simpler elements. It should nevertheless be clear from what we have said 
that each machine instruction, involving as it does a few machine words, 
manipulates and modifies a few dozen bits of information. Thus, a 
description of these actions in terms of bit-level operations will give ~s a 
yet closer view of what the hardware actually does. It is interesting to 
note that in many modern machines, the 'machine' instructions discussed 
above are not indivisible actions but are actually performed as a sequence 
of still simpler steps, and that these simpler steps are themselves 
instructions for an interpreter (once again!) • This interpreter (called·· 
the microcode interpreter for the machine) is the one which is actually 
realized 'in the wires' i.e. this interpreter is actually built as a series 
of gates and transistors on a chip. Thus the notion of interpreter 
permeates the subject of language and machine implementation from top to 
bottom, A working system consists a series of languages and interpreters, 
each language being interpreted by an interpreter written in the language 
below. For example when you execute a TURLAN program, the following is 
actually taking place : 

TURLAN program (LEFT, RIGHT, FORWARD, etc.) 
runs on 

TURLAN interpreter , written in SETL, 
runs on 

SETL interpreter , written in LITTLE.(A low-level language) 
which was translated into a machine program, 

runs on 
computer (VAX/780 for example) whose instruction set is 

executed by 
microcode interpreter(a physical device) 

How shall we describe the nature of the microcode itself? We do not have 
any simpler 'system' in terms of which to describe it, but in fact there is 
no conceptual problem in describing it in SETL ! This may appear at first 
sight a bizarre endeavour, but there is no contradiction: recall that given 
two sufficiently rich languages, it is always possible to write an 
interpreter for either, using the other. Use of SETL to describe the 
bit-level structure of machine operations gives us a detailed semantic 
specification of machine language, which has the advantage of being written 
in a language with which we are now thoroughly familiar. 
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To begin: we can describe each machine word in SETL as a tuple of 
zeros and ones This allows us to refer to individual bits. we will regard 
these bits as arithmetic quantities on which addition, etc. can be 
performed. Wl,W2,W3 will refer to the memory words involved in an 
operation. Code fragments representing the various machine operations are 
as follows: 

a) transfer operation. 

W2(1 •• w) := Wl(l •• w) 

b) Bit operations. 

bl negation: $ W2 := not Wl 

W2 := [ (bit+ 1) mod 2:bit in Wl]; 

b2. AND:$ W3 := Wl AND W2 

W3 :• [ Wl(i) MIN W2(i):i in [1 •• W] ]; 

b3. OR:$ W3 := Wl OR W2 

W3 := [ Wl(i) MAX W2(i):i in [1 •• W] ]; 

c) Arithmetic operations. 
--------TO BE CONTINUED---------

9.5 Exercises (TO BE ADDED) 

$ 



ftHAPTER 10 

THE DATA REPRESENTATION SUBLANGUAGE 

The 'level' of ·a programming language is determined by the pow~r of the 
semantic primitives which it provides. The operations provided.by the 
ordinary low-level languages, e.g. languages of the FORTRAN type, all lie 
close to those elementary operations with a few dozen bits of input and 
output which computer hardware implements directly. Languages of somewhat 
higher level, e.g. PL/I, PASCAL, or ADA, supplement these primitives with 
more advanced pointer-oriented memory management mechanisms and also support· 
recursion; nevertheless, even these languges stay close to operations which 
can be translated into efficient machine code in relatively obvious ways~ 
SETL aims more radically than any of these languages at simplification of 
the programmer's task, for which reason it supports use of abstract objects 
(sets and maps) whose best machine-level representation is not obvious. Of 
course, many possible representations for objects of this kind are known, 
but which representation is best will vary from program to program in subtle 
ways that depend on the specific operations which a program applies to the 
objects which it manipulates. If the most effective representation of a 
program's data objects is not chosen, efficiency will suffer, and it is this 
efficiency barrier that has prevented rapid and widespread adoption of very 
high level languages like SETL ■ 

lf efficiency is an important enough .consideration to justify the 
~ffort involved, a SETL program can be translated manually into a more 
~fficient version written in a lower-level language such as PL/1, PASCAL, or 
Ada •. A pr9grammer u~ing this approach will soon notice that many (but not 
all)~of the efficiency-enhancing changes made during translation of an 
original· SETL program are stereotyped in character and serve only to make 
use of advanta1epus data structures. The SETL facility to be explained in 
this chapter, namely its data representation sublanguage, aims to make it 
possible to attain efficiency without laborious translation becoming 
necessary, simply by declaring what data structures (chosen from a library 
of such structures) are to be used to represent each of the logical objects 
appearing in a program. Then elaboration of more efficient code sequences 
can,be left to the SETL compiler. Programming in this style, which begins 
with a program in which algorithmic actions are represented but data 
structures are ignored, but then subsequently goes on to choose 
efficiency-enhancing data structures, exemplifies the important general idea 
of programming h successive refinement of an original program text. 
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SETL's representation sublanguage adds a system of declarations to the 
core language described in the preceding sections (which for emphasis we 
will sometimes call 'pure' SETL). These declarations control the data 
structures that will be used to implement an algorithm that h~s already been 
written in pure SETL. Ideally no rewriting of the algorithm should be 
necessary. A pure SETL program to which data structure declarations have 
been added is called a supplemented program. In the absence of error a 
supplemented program SP must always yield the same result as the pure -
program PP that it incorporates. (However, if errors or inconsistencies ar~ 
present, then SP and PP are allowed to abort differently; and certain 
inconsistencies, detected in SP but not in PP, can cause SP to abort even if 
PP does not). 
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Automatic Choice of Data Representations 

10.1 Implementation of the SETL Primitives 

To implement SETL, all its data objects must somehow be represented by 
sequences of machine-level memory words, and all its primitive operations 
must be represented using sequences of the high-speed but very elementary 
machine-level operations described in Section 9.3.2. We shall now outline 
the way in which this is done. To do so, it will be convenient to repre$ent 
data layouts in machine memory diagrammatically. As noted in Section 9.3.2, 
the memory of a c~mputer can be thought of as an array M of words, each able 
to store a fixed number W of binary bits (zeroes and ones). Such patterns 
of bits can be interpreted as encodings of integers, and hence can be used, 
when desired, as the indices of other elements of M. 

We will 
rectangular 
cell holds a 
memory cell 
to M(j), and 
representing 

picture subareas of the memory array M as sequences of 
boxes or 'memory cells', each holding a word. If one memory_ 
value M(i) which, regarded as an integer j, is the index of the 
M(j), then we will sometimes regard M(i) as holding a 'pointer' 
draw an arrow from the box representing M(i) to the box 
M(j), as in the following figure : 
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Fig. 10.l Sections of memory, showing cells which store 
the indices of other cells 

Where convenient, we will label the picture of a memory cell with an 
indication of its contents. Note that inter-cell 'pointers' like those in 
Fig. l can be followed at very high speed by using the machine-level 
operation (b) described in Section 9.3.2. 

If the data representation language to be described later in 
chapter is not employed, a narrow range of highly standardised 
structures will be used to represent SETL data objects. The 
significant representations are those of sets, maps, and tuples. 
tuples are simplest, we shall describe their representation first. 

The standard representation for tuples. 

this 
data 
most 

Since 

As for all other SETL data objects, the representation of 
begins with a single memory word, RW, called the root word 
However, since the group of W zeroes and ones which a single 
can hold are by no means sufficient to represent the 

a SETL tuple 
of the tuple. 
machine word 

RW Pointer.._ __ 
(Root -----­
word) 

s2 

.. type­
-----· Indicator 

(tuple) 

length of 
tuple 

Successive 
components 
(body) of 
tuple 

rig 10.2 Machine-level representation of a tuple. 

(possibly very long) sequence of components of the tuple, this root word 
simply points to another location in memory, at which the actual 
representation of the tuple is located (see Fig. 2). This representation 
begins with a tuple 'header word' which tags the information which follows 
as a tuple. Next comes a word containing the length of the tuple, after 
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which there follows a succession of root words representing the successive 
components of the tuple. Note that this representation ■ates it easy and 
fast to retrieve the i-th component of a given tuple t• Aside fro• 
complications caused by error cases, which arise if 1 exceed■ the length of 
t (or is negative, or is not an integer, etc.) all ve have to do is take the 
integer value contained in the root word RW, add (1+2) to it as an otfset, 
and retrieve the word to which this sum points. Row expensive is a t~ple 
retrieval o-peration? The mechanism we have just outlined takes a fe.v (lea ■ 
than 10) machine instructions. However we also incur another cost vhen ve 
evaluate the primitive SETL operation A(i), namely since we must check the 
types of both A and 1. More specifically, the following tests must be 
performed before the 1th element of xis retrieved: 

1) Determine the type of A. A could be a tuple, a string, a map , ~r could 
have some other type (for which the operation A(i) might be invalid). 

11) Determine the type of 1. If A is a tuple, then i must be an integer, or 
the operation A(i) is invalid. 

iii) Compare the value of i with the length of A. If i >IA then A(i) is 
OM. 

These various tests also require a few dozen machine instructions, and 
therefore add a substantial overhead to the cost of the indexing operation •. 

10.2 The standard representation of llll 

The machine representation of tuples is straightforward an4 relatively 
problem-free: a tuple, being an ordered (described above) aequence of 
components, can be stored as an ordered sequence of words in aeaory. When 
we access a tuple to obtain or modify one of its components, ve simply use 
the index of the desired component to address the component. 

Sets are manipulated in a different manner. To see jhy this is 
advantageous, consider the basic membership operation auch as (x IN ■) 1 
which asks whether the current value of xis ~o be found among the elements 
of s. Determining this logically involves a search of the elements of s. 
Searching is also required to implement other basic set operations. For 
example, when we compute the expression (s WITH x) ve first search a to 
ascertain that the value of xis not already contained ins, and only if it 
is not do we perform the insertion operation. In contrast to operations on 
tuples, which always access components using their position, operations on 
sets need to locate elements whose value, rather than position, is known. 
For this reason, sets and maps are often called 'content addressable 
structures'. 

Before going on to describe how SETL sets are actually stored, it pays 
to consider one obvious, though in fact not ideally effective, 
representation for them: Why not store sets as tuples? The only objection 
to this choice is ·one of efficiency. Consider again a membership test : (x. 
IN s) • If the elements of s were stored sequentially in some arbitrary 
order in memory, we would have to compare each one of these elements with x 
to determine the truth value of the membership predicate. If the 
cardinality of S is N, then in the worst case it would take cas~ N 
comparisons to compute this predicate, making this an expensive operation if 
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N is large. Since the membership operation is basic to all other set 
primitives (insertion, deletion, union~ intersection, map retrieval and 
assignment) an efficient membership operation .is indispensable to an 
efficient implementation of sets, and therefore this obvious approach is 
unacceptably inefficient (for large if not for small sets). 

The key to a better representation for sets is the following 
observation: sets have no a priori order, so that their elements can be 
stored in any convenient fashion. This suggests that we choose an 
organization which makes it easy to retrieve an element, given its value. 
To begin to see how this might be done, suppose first that S is a set of 
alphabetic strings. Then a fairly obvious idea is to store these strings in 
alphabetic order, in a contiguous sequence of memory locations, and regard 
this sequence as the representation of the sets. This would speed up 
membership tests because we could then perform a binary search (see Section 
4.4.3) to determine where in the set a given string was. Further 
improvement in performance can be obtained if we keep track of the location 
at which strings with a given first character begin. (Very much like the 
thumbin~ marks in a dictionary). This would further restrict the range ·over 
which we had to search. The actual SETL representation of sets push~s this 
idea still further, using a data structure called a 'hash table' which 

. allows the VALUE of a given object x, to be mapped to a small range of L 
locations in which x might be found. In order to apply th~s technique t~ 
sets of elements of arbitrary kinds, we must be able to construct such. 
mappings for objects x of any type. The result of applying such a mapping 
to x must be a single location, or a very small range of locations, at which 
the element x will be found if it is present at all. In addition, the data 
structure we use must allow insertions and deletions to be made easily: 
note that this is not the case for the alphabetic ordering just suggested. 
The kind of mappings from values to locations that we will use is called a 
called hashing function, which is why the structure that is organized by 
means of a hashing function ia called a hash table. 

To explain how this data structure works, it is convenient to consider 
an example, and for specificity's sake we will explain the internal 
representation of a set of integers q. The trick involved in 'hashing' is 
to use q itself to determine the table address at which the set element q 
will be held. Any function H which converts q into a numerical index to a 
table of reasonable size can be used: all that is desired is that H sh~uld 
'scatter' the values H(q) in reasonably even fashion over the available 
table addresses, thus ensuring that we do not attempt to store too many 
items q in (or near) the same table address. The tables which the SETL 
implementation uses to represent sets always have a number of entries equal 
to a power of two, i.e. either 4, 8, 16, 32, etc. table entries are used, 
depending on the size of the set being stored. The size of the table is 
adjusted to th~ size of the set, so that if a sets grows by the addition of 
new elements, it will eventually be moved to a larger table, and if its 
shrinks substantially because elements are being removed from it, it will be 
moved to a smaller table. In this way the SETL implementation ensures that 
at least half the available entries in the table used to represent a set are 
occupied, and that table 'overloading' (explained in more detail below) 
never rises to more than two elements per table entry. ' 
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In accordance with the preceding remarks, we will suppose that a table 
of size four is being used to repre~ent the five element set (*) shown 
above. As stated ea~lier, the standard function H(q) used to. map elements 
to their table positions can be arbitrary, but we want it to 'scatter' 
fairly evenly. This is to say that, given integers il,12 ■■ that are to be 
placed in a set s, we want the values H(il), H(i2) ••• to be distributed 
evenly over the range table indices, i ■ e ■ 1 to 4. Any kind of arithmetic 
function that yields a number in this range is acceptable as a hashing­
function. Typically His some otherwise meaningless sequence of operations, 
chosen for its simplicity, and for the eveness with which values H(x) will 
scatter. For example, something like the following might be used: 

H(q)=((q+llr)** 2 DIV 99 MOD 4) + 1. 

{Here we are being suggestive rather than precise; 
functions' like His a matter that has been studied 
do not wish to say that· precisely this function 
implementation, but only to show something of 
works). 

optimal choice of 'hash 
very extensively, and we 
is used in the SETL 
how a hashing technique 

Note that by reducing the quantity (q+ll2)**2 DIV 99 modulo 4~ we 
ensure that H(q) always returns a value between 1 and 4, i ■ e ■ a number that 
can be used as an index to an entry in a table of size 4.· The exact values 
that H takes on for the five elements of our set are as follows: 

Element q 
Value H(q) 

3 
2 

17 
1 

201 
2 

48 
3 

722 
2 

These H-values imply that we will store 17 in the first entry of the iable 
representing {*), 48 in the table's third entry, and that we would want tc 
store 3, 201, and 722 in the table's second entry. However, since each 7 

table entry can hold no more than one set member, we are forced to place two 
of these three elements elsewhere. What is done is to place them it 
separate locations, but chain them into a list {called a 'clash' list) b: 
means of pointers. The starting location for the clash list containing an 
element q is simply the hash-table location indexed by H(q). · 

table block 2 

table block 3 

table block 4 

4 .-header: shows size of table 

17 

(empty) 

1 ::::~:::::: . __ ., 
------------

{ 48 

(empty) 

{ (empty) 

{empty) 

table block 1 

201 722 
-------- --------

(empty) 
-------- --------
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Fig. 10.3 Machine-level representation of the set {3,17,201,48,722}. 

The following examples will clarify the way in which we would use the 
hash-table representation shown in Fig. 3. If asked to make the test (201 
IN s), wheres is the set shown in Figure 3, we would calculate H(201), 
obtaining the result 2, which tells us to examine the second two-word block 
of the table appearing in Figure 3. Upon examining this block, we would 
note that a chained list L starts in it, and would then.walk down the list 
L, looking for the element 201. This will be found when we reach th~ second 
element of L. Similarly, if asked to make the test (33 IN s), we would 
calculate H(q)=l, and accordingly would examine the first block of the 
table. It would then be seen that the quantity 33 is not present in.this 
block, and also that the subsidiary 'cla•h' list that could start in this 
block is empty. This relatively efficient computation would therefore ·tell 
us that the value of (33 IN s) is FALSE. 

To summarize when we insert a new element into a set, we calculate 
its 'hash code' in order to determine where in the ha~h table for Sit 
should be stored. When we perform a membership test on S, we calculate the. 
hash code of the element to know where in the table we must look, and WE 
USE THE SAME HASH FUNCTION EACH TIME. 

Maps fare stored in much the same way as sets. (After all, maps are 
just sets of pairs). However, the hash code of a pair [x,y] is taken to be 
the hash code of x, that is, of the domain element of the pair. This makes 
it easy to find y given x, i.e. to calculate f(x) from x. Fig. 10.4 
depicts the internal representation of a SETL map; note in particular that 
the table entries in the representation of a map are somewhat larger than 
those used to store elements of sets which are not maps (compare Fig. 3). 
We enlarge the table entries in the representation of maps in order to store 
range elements in immediate proximity to the domain elements to which they 
correspond. 
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variable 

map f 

map g 

17 

5 

19 

----------1-2-
---------- ---

8 

2000 

10 

1984 

gives size of table 

8 

22 

10 

8 

4 

-1 

-2020 

table 

0 
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9 

0 

Fig. 10.4 Standard SETL representation of an (integer) domain element x, 
and of several maps. 

In working through the last few pages, the attentive reader may have 
realized that more details have been concealed than revealed. How do we 
calculate hash indices H(q) for quantities q that are not integers? What 
representation is used for maps that are not single-valued? How do we 
iterate over sets, how do we test sets for equality? What representation is 
employed for a set of pairs that is not being used as a map? The SETL 
implementation, i.e. the SETL run-time support library, must face all these 
questions and provide effective solutions for them. However, to explain the 
goals of the data representation language to which this chapter is devoted, 
we need not, and shall not, describe any of these finer details. All that 
is important to us can be summarised as follows: To make the basic test (x 
IN s), or to evaluate f(x) when f is a map, we must perform the following 
actions : 
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i) 
ii) 
iii) 
iv) 

Calculate the hash code of x. 
Find the starting location of the hash table for s (or f). 
Index this table with the calculated hash code. 
If xis not found at the position first examined, and 
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there is a clash list starting at this position, examine the 
elements of this list until either xis found or until the end 
of the list is encountered. 

It is clear that this sequence of operations is considerably more 
expensive than a simple tuple access. Typically, 50 to 100 machine 
instructions will be executed to complete a standard set membership test or 
map retrieval. This is not an unreasonable price to pay for the convenience 
of using sets and maps, but if possible we would like to be considerably 
more efficient. Gaining additional efficiency is the point of the data 
structure representation sublanguage of SETL to be presented later in this 
chapter. 

The preceding discussion emphasises two aspects of the execution of 
important SETL operations such as membership tests and map retrievals which 
can be regarded as ~costly' 

a) Each instruction must check the type of its variables. 

b) Hashing must be used to access content-addressable objects 
(sets and maps). These operations are considerably more expensive 
than simple memory references and tuple retrievals. 

The data-representation sublanguage (DRSL) of SETL, which we will now 
proceed to describe, allows us to reduce the costs associated with these 
execution-time activities. This sublanguage gives us a mechanism for adding 
declarations to a SETL program, declarations which aid the SETL compiler to 
simplify and in some cases even eliminate expensive computations. The basic 
ideas used to achieve this are as follows: 

a) In order to reduce expense a), that is to say the cost of the 
type-checking steps that must be performed before a primitive SETL operation 
is executed, the declarations of DRSL can. be used to specify the types that 
the variables will have at execution time. The types involved here can be 
'integer', 'boolean', 'array of strings', 'map from integers to strings', 
etc.) We shall call these declarations 'Type declarations' for obvious 
reasons. 

b) In order to reduce the expense associated with hashing operations, we try 
to avoid repeated rehashing where possible. The DRSL gives us a means to 
replace repeated rehashing by direct indexing in many cases. The basic idea 
here is to 'remember' the location of an object after it has been placed in 
a set or map. The run-time structure that retains this information is 
called a base set, and the declarations that refer to base sets are called 
basing declarations. The detailed syntax and semantics of these basing 
declarations will be described in Section 10.4. 

10.3 ~ Declarations 
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We can divide the declarations of the DSRL into two categories : ~ 
declarations and basing declarations. Both of these have the same format, 
but they are motivated by somewhat different considerations,. and basing 
declarations introduce some rather subtle concepts into the language, 
discussion of which we will postpone until the next section. In contrast, 
type declarations are quite straightforward: they describe the types which 
variables in a SETL program will have at run-time. 

However, before specializing our discussion in this way, let us first 
examine the general syntax and usage of DSRL declarations, also called 
representation declarations, or REPRs for short. REPRs are optional 
declarations that can be added to a SETL program in order to improve its 
efficiency. REPRs added to a SETL program must be grouped into sequences of 
declarations bracketed by the.keywords REPR and END. Such declarat~ons must -
appear before any executable statements, and after any declarations for 
constants and global variables appearing in the same program, m9dule or 
procedure. A main program can include a set of REPR declarations for the 
global. variables declared in a VAR statement, and each procedure can have 
REPR declarations for its local variables. We emphasize again that· REPR 
declarations are optional, and that not all variables in a program or 
procedure need to be declared. Sec.10.4 contains guidelines for the 
inclusion of REPRs in a program. 

A REPR clause has the form: 

<name list> : <mode> 

where <name list> designates a list of one or more variable names 
(identifiers) separated by commas, and <mode> is a type name or a basing 
descriptor that applies to each of the variables in the list. An example is_ 

REPR 

END; 

count, size, left : INTEGER; 
here, there, elsewhere : STRING 

Here the identifiers INTEGER and STRING are type names; the first REPR 
clause above declares that the variables -count-, -size- and -left- will 
have integer values wherever they appear in the portion of the program which 
these declarations govern. Similarly, the variables -here-, -there- and 
-elsewhere- must be string values wherever they are used. Note that such 
declarations refer to ALL occurrences of the variables that they name in the 
'context' or 'scope' that they govern. We have seen that, in pure SETL, 
variables can receive values of different types at various points in the 
program. In the presence of REPRs this. is no long~r the case: values 
assigned to a variable for which a REPR is given must ALWAYS have the type 
that has been declared for the variable. The discipline this imposes on the 
writer is salutary: one can easily find different names for objects of 
different types, and it easier to understand the purpose of a program if the 
same name is used •in the same way wherever it appears. 

The systematic list which follows presents most of the modes that can 
be used in type declarations. Two examples of these 'modes', namely INTEGER 
and STRING, have appeared already. In general, modes can be either simple 
or compound •. Simple modes describe primitive types, while compound modes 
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describe sets, tuples and maps. The simple modes allowed in the DRSL are 
the following: 

INTEGER 

INTEGER el •• e2 

REAL 

STRING 

ATOM 

mode of integers 

mode of integers constrained to be in the 
range el to e2. Here el and e2 must be 
elementary integer-valued expressions 
involving constants only. Examples and 
additional details are given below. 

mode of real numbers 

mode of SETL string quantities 

mode of SETL atoms (See Section 5.3). 

The compound modes allowed by the data representation language are as 
follows~ 

GENERAL This is the default SETL mode. 
Quantities declared to have this mode can be 
arbitrary SETL values. 

* The mode symbol'*' is simply an allowed 
abbreviation for 'GENERAL'. 

SET(mode') mode of sets all of whose elements are 
constrained to have mode mode'. Examples 
showing the use of this construct are given 
below. 

SET allowed abbreviation for SET(GENERAL). 

SMAP(mode')mode'' mode of single-valued _map with domain 
elements of mode' and range elements of 
mode''• 

SMAP(mode') 

SMAP 

This is simply an allowed abbreviation for 
SMAP(mode') GENERAL 

This is simply an allowed abbreviation for 
SMAP(GENERAL)GENERAL 

SMAP(model, •• ,modek)mode'' 

SMAP(model, •• ,modek) 

MMAP{mode'}mode'' 

Mode of single-valued k-parameter map (see 
Section 2.7.5) with domain elements having mode 
TUPLE(model, •• ,modek)(see below) and range 
elements of mode''• 

Abbreviation for SMAP(model, ••• ,modek)GENERAL 

mode of (possibly) multi-valued map with 
domain elements of mode' and range elements 
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MMAP{mode'} 

MMAP 

MMAP{model, •• 
modek}mode'' 

of mode''• 

Abbreviation for MMAP{mode'}GENERAL 

Abbreviation for MMAP{GENERAL}GENERAL 

mode of possibly multi-valued k-parameter 
map (See Section 2.7.5) with domain elements 
having mode TUPLE(model, ••• ,modek) (see below) 
and range elements of mode''• 

MMAP{model, ••• ,modek} 
Abbreviation for MMAP{model, ••• ,modek}GENERAL 

TUPLE(model, ••• ,modek) 

TUPLE(mode') 

TUPLE 

TUPLE(mode')(e) 

mode of tuple of known length k, whose j-th 
component is known to have mode modej. 

mode of tuple of unknown length, all of whose 
components are constrained to have mode mode'~ 

This is simply an allowed abbreviation for 
TUPLE(GENERAL). 

Mode of tuple of unknown length, but of 
estimated length e, all of whose components 
are constrained to have mode mode'. Here e 
must be an elementary integer-valued expression 
involving constants only. 
Examples and additional details are given below. 

PROC(model, ••• ,modek)mode 

PROC(model, •• ,modek) 

PROC 

OP(model,mode2) 

OP(model,mode2) 

mode of k-parameter programmed function 
(i.e. PROCEDURE) whose parameters have 
respective modes model, ••• ,modek, and which 
returns a mode'' value. 

This is an allowed abbreviation for 
PROC(model, ••• ,modek)GENERAL. It can also be 
used to describe non value-returning 
procedures whose parameters have respective 
modes model, ••• ,modek. (Typical uses for this 
and the immediately preceding PROC mode 
descriptor will be explained below). 

mode of a procedure unconstrained as to mode 
of arguments and of result value, if any. 

mode of infix operator whose two parameters 
have respective modes model and mode2, and 
which returns a mode'' value. 

Abbreviation for OP(model,mode2)GENERAL 
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OP(mode')mode'' 

OP(mode') 

mode of prefix operator, with one mode' 
argument, which returns a mode'' value. 

Abbreviation for OP(mode)mod~''• 
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There is one more type declaration, having a rather special character. 
Unlike the other type declarations, it has an efficiency implication, namely 
it states that a variable all of whose values are integers will only take on 
values that are within he range of integers that can be handled directly by 
the hardware of the machine on which you are running. Integers of tis kind 
can be manipulated particularly rapidly. This special type declaration is 

UNTYPED INTEGER An 'untyped' integer is an integer 
represented in the standard machine­
level integer format of the machine 
on which your SETL implementation runs. 
Operations involving untyped integers are 
particularly efficient. However, urttyped 
integers are constrained to lie in the 
range of values for which the elementary 
arithmetic operations of the computer that 
you are using represent integer arithmetic 
correctly. See Appendix A for details 
concerning the integer arithmetic operations 
of the various machines on which SETL is 
implemented. 

10.3.1 An example tl the~ tl ~ declarations 

Next we give a simple example of the use of REPRs, which we will apply to 
one of the prime-finding methods described in Sec.3.3.8.1. 

PROGRAM primes; 

REPR 

END; 

prime, next, limit, c 
primes, candidates 
multiples 

read(limit); 

INTEGER; 
: TUPLE(INTEGER); 

SET(INTEGER); 

candidates :• [3,5 •• limit]; 
primes :• [2); 
prime:• 2; 

(WHILE prime** 2 <• limit) 

prime FROMB candidates; 
primes WITH:• prime; 
multiples :•{prime** 2}; 

~-------- - --- -- - ----
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(FORALL c IN candidates) 

NEXT :• prime·* c; 
IF next> limit THEN quit; 

ELSE multiples WITH:• next; 
END IF; 

END FORALL; 
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candidates :• [c IN candidates I c NOTIN multiples ] ; 

END WHILE; 

primes+:• candidates; 

print(primes); 

END program; 

In this example, we have supplied type declarations for all variables in the 
piogram, including the loop variable c. We have not supplied size 
information for the tuples primes and candidates, because we do not know a 
priori the number of components that they will have. Note that the variable 
-limit-, which defines the range in which we want to find primes, gets it~ 
value from a -read- statement, and therefore its value is not known to the 
compiler, and cannot be used to declare any variable in the program. That 
is to say, if we had written the declarations 

candidates 
prime 

~UPLE(INTEGER)(limit); 
INTEGER 2 ■■ limit; 

the compiler would reject them on the grounds 
constant ■ 

that -limit- is not a 

Our next example concerns graphs. It is the well-known algorithm for 
determining the shortest distance from one vertex of a graph to all the 
other vertices. 

As before (See Section 5.3) we regard a graph as consisting of a set of 
nodes (or vertices) and a set of edges. Each edge is represented by an 
ordered pair [from,to] of nodes. It is convenient to regard the set of 
edges as a map: given a node n, its image under this map is the set of 
nodes that are linked ton by one edge of the graph ■ In the program that 
follows, this map is called -successors-. It is a multi-valued map. because 
several nodes may be reachable from the same n by an edge. Each edge has -
the same (postive) assigned length. The length of each edge is represented 
by a map from edges to integers. The minimum distance from the start vertex 
to all the other edges, which is the desired output of the program, is a 
map from nodes to integers. The nodes themselves do not have a particular 
type: we can use integers to describe them, or strings, or atoms, depending 
on the application. In the REPRs that follow, we introduce the mode -node­
and state that -node- can be any type (i.e. general). This allows us to­
represent program variables in terms of nodes, without having to be any more 
specific about what a node actually is ■ 
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The algorithm works as follows: we construct a set -reached- , whose 
elements are nodes whose shortest distance to -start- has been determined. 
Initially -reached- only contains -start- • Each step in the algorithm adds 
one node to the set -reached-. The node to be added next is chosen as the 
one whose estimated shortest distance to -start- is the smallest. We 
estimate the shortest distance from -start- to any node n as follows: 

a) If there is an edge from start ton, the estimated shortest distance is 
the length of that edge. 

b) When a node -new- is reached, there may be a path from-start-to-n that 
goes through the -new-. In that case, calculate the distance from 
start-to-n- along that path: it is the minimum distance to -new- plus the 
length of the edege from -new- to -n-. If this distance is smaller than the 
previous estimate of the distance to -n-, use this value as the new 
estimate. 

PROGRAM shortest_paths; 

REPR 

END; 

MODE node : general; 

successors: 
length 

MMAP(node)set(node); $ see comment above 
SMAP(node, node)INTEGER; $ maps each graph edges 

$ into their lengths 

estimate: min_distance: map(node)INTEGER; 
$ Maps each node into its estimated distance from -start-

min_estimate: INTEGER; 

reached : SET(node); 

$ shortest estimated distance from 
$-start-to any node not yet processed 
$ set of all nodes reached so far 
$ along a path from -start-

start, next, outer, n : node; 

read(length, successors, start); $ initially, only -start- has been 
$ reached 

all_nodes :• DOMAIN successors+ RANGE successors; 

reached :• {start}; 

$ Estimate the distance to the nodes that are adjacent to -start-. 

(FOR next IN successors{start}) 
estimate(next) :a length(start,next}; 

END FOR; 

min_distance :• {}; 

(WHILE reached/• all_nodes) 

$ Among the nodes that have not been reached yet, find the one 
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$ whose estimated distance to -start- is the smallest. 

min_estimate := MIN/[estimate(n) : n IN all nodes I n NOTIN reached]; 
ASSERT EXISTS next IN all_nodes I estimate(~ext) • min_estimate; 

$ The minimum estimate is the shortest distance to next, which is 
$ now considered reached. 
reached WITH:= next; 
min_distance(next) := min_estimate; 

$ Update the estimate for all the nodes adjacent to -next-. A 
$ path through -next- may yield a shorter distance than that 
$ estimated previously. 

(FOR outer in succersors{next} ) 

IF estimate(outer) = OM THEN 

END; 

estimate(outer) := min estimate+ length(next, outer); 
ELSE 

estimate(outer) MIN:= min estimate+ length(next, outer); 
END IF; 

END FOR; 

END WHILE; 

(FOR n IN all_nodes) 
print('The shortest distance from start to ', n, ' is ', 

min_distance(n)); 
END FOR;; 

END PROGRAM; 

10.4 Basing Declarations 

In section 10.1 we remarked that the execution of SETL programs is 
slowed by two kinds of inefficiencies 

a) Inefficiencies associated with type-checking: every SETL operation is 
preceded by a test to determine the type of its arguments. 

b) Inefficiencies associated with the use of sets and maps: every 
membership test, every set insertion, every map retrieval or modification 
requires the calculation of a hash code, followed by a retrieval from a hash 
table ■ In what follows we will refer to this sequence of actions as a 
hashed search. 

Inefficiencies of type a) can be corrected by suplementing a SETL 
program with type declarations, as described in Sec.10.3. We therefore 
turn our attention to the means available to corect inefficiencies of type 
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b) • 

We begin with the following obvious remark: many programs that 
sets and maps search repeatedly for objects that they need to access. 
example, consider the following typical fragment: 

(1) s :=- { •••• }; 
M :a {}; 
(FOR x In S) 
M(x) :• g{x); 

END; 

$ Some set former expression. 
$ An empty map. 

$ Compute map M, whose domain is S; 
$ g is some defined function. 

use 
As an 

Note that this code performs two hash searches for every element x of the 
set S: one when Sis built, and the second when Mis built (i.e. when an 
element x of S becomes an element of the domain of M). This situation is 
fairly typical, and it illustrates the kind of redundancy that we want to 
minimize. 

The following somewhat more subtle example shows another aspect bf the 
problem of redundant hashed searching. Consider a set intersection 
operation: 

S3 :=- Sl * S2; 

The way in which the SETL run-time system evaluates this is best 
described by the following code fragment: 

( 2) S3 := {}; 
(FOR x IN S 1 I x IN S 2) 

S3 WITH:= x; 
END; 

This means that an element which is in the intersection of Sl and S2 
will be searched for twice: first when it is tested for membership in S2, 
then again when it is inserted into S3. Moreover, a hashed search will also 
have been performed when Sl was built. Thus, as a single value is inserted 
into and retrieved from various composite objects, it becomes the object of 
repeated, redundant searches. 

It should be clear at this point that these repeated searches can be 
eliminated if we somehow 'save' the location of objects so that they can be 
accessed repeatedly without the need to search for them every time. It is 
also characteristic of the examples presented above that some of the objects 
which play a role in them appear in several hash tables and must be searched 
for in all of them. This last remark suggests that such objects should be 
kept in one location, and that every use of the object should make use of a 
pointer to this location, so ·that no redundant searching will be required. 

In other words, if we remember where we leave things, 
time looking for them every time we need them ! 

we won't waste 

To achieve this effect, the data representation sublanguage of SETL 
uses a special kind of set, called a base set, or base for short, in which 
such shared values can be stored. 
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10.4.1 Base Sets 

Base sets are special data structures which contain values that are 
likely to be referenced repeatedly and to be parts of several composite 
objects (sets, maps, and tuples). Base sets are sets, but sets of a very 
special nature, which cannot be used in the same way as other sets in SETL. 
Since they are sets we will speak of the 'elements' of a base, but since 
they are special we will not apply any of the standard set operations to 
bases: bases are only introduced to minimize the number of hash searches 
that must be carried out during program execution and improve the 
representation of other composite (set, map, and tuple) values. 

Bases are introduced into a SETL program by means of declarations. of the 
form: 

(1) BASE B; 

or 

(2) BASE B <mode>; 

Examples of the more specific declaration form (lB) are 

BASE all_strings:STRING; 

BASE all nodes,all records:ATQM; - - \ 
The form (1) declares that Bis a base whose elements have unspecified type~ 
Form (2) specifies that Bis a base whose elements are of type <mode>. We 
can also introduce several bases at once by writing 

(3) BASE <name list> <mode>; 

The <mode>s that can appear in (2) and (3) include those described in Sec. 
10.3. Additional modes, to be discussed below, arise from the existence of 
bases themselves. In particular if xis a variable whose value is expected 
to appear as part of several composite objects, then we can declare x as 
follows: 

(4) x: ELMT B; 

This declaration states that every value assumed by the variable x in the 
course of program execution will be represented by a pointer to an element 
of the base B. 

Bases declared in SETL programs are used only to define the modes of 
based objects ■ They are never explicitly manipulated by the program, and 
cannot appear in ~xpressions or executable statements. We emphasise again 
that they serve only to state the existence of significant relationships 
among actual program objects. These relationships are defined by means of 
based declarations, and thus, directly or indirectly, in terms of modes of 
the form (ELMT B) ■ 
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The effect of a declaration of the form (4) is the following: whenever the 
variable xis assigned a new value, this value is automatically inserted as 
a new element of the base B. The new value is placed in a special 
structure, called an element block of the base B, which contains several 
pieces of information that pertain to the current value of x. Subsequent 
references to this value can then use pointers to the element block thereby 
created. 

The information contained in a element block is the following 

a) The value of the element. 

b) A system-assigned numerical index, which is uniquely associated with 
this element. In effect, these indices 'number' the base elements. We will 
see later that the existence of this numbering allows us to use particularly 
efficient representations for certain other based objects. 

c) Several supplementary storage locations, can also be allocated in 
each base block. These can be used to hold information about other sets and 
maps in which the value represented by the element block appears. 

To explain the efficiency 
repesentations, we will first 
available for sets and maps. We 
because the efficiency gains 
describe. 

10.4.2 Based Maps 

gains attainable by the use of based 
explain the basing declarations that are 
discuss based maps before based sets, 

obtained for maps are particularly easy to 

If the domains of several of the maps appearing in a program are expected to 
overlap (i.e. if these maps are likely to be defined on some of the same 
values) then it may be appropriate to declare a common domain base for these 
maps. Similarly, if a set is expected to overlap with the domain of a map, 
it is often advantageous to specify a common base for the set and the map. 
This is done for maps as follows. Let B be a base.introduced by one of the 
declarations (1)-(3) listed above. Then the declarations: 

f SMAP(ELMT B) <model>; 
g SMAP(ELMT B) <mode2>; 
h SMAP(ELMT B) <mode3>; 

state that f,g and hare single-valued maps, whose domain elements are 
elements of the base B, and whose range elements have other secified modes. 

The element block structure described in the previous paragraph allows 
the maps f, g and h to be represented efficiently, in several ways: 

a) In the element block of B corresponding to a given value v, we can 
allocate storage to hold the values of f(v), g(v) and h(v). If this is 
done, the structure of each element block of B will be as follows: 
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domain elt x 

f(x) 

g(x) 

h(x) 

chain ptr. points to next 
element block 

Fig. 10.5 A simple 'element block' in the Based Representation 
of Three Maps. 
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Suppose that f is represented in this way, and that x has been declared to 
have ELMT B representation, so that it will be represented by a pointer to 
an element block. If, during program execution, we need to evaluate f(x) 
for a value x which is already an element of B, then we can simply retrieve 
the value of f(x) from the element block for x. This evaluation of f(x) 
amounts to just one machine-level pointer reference operation, and is thus 
considerably faster than a hashed search. Hence representation in the 
manner shown above is the most efficient one to use for maps which are 
manipulated exclusively by simple storage and retrieval operations. 

Because in this representation map values are stored in 
proximity to the domain value to which they correspond, 
representation is called LOCAL representation. To ensure that 
represented as a local map, it must be declared as follows: 

(5) f: LOCAL SMAP(ELMT B) <mode>; 

immediate 
this map 

a map is 

The following figure show additional details of data structure intr6duced by 
the BASE declaration (1) and by additioal declarations of the form (5). 



THE DATA REPRESENTATION SUBLANGUAGE Page 10-21 

4 
-----

f(4) 17 8 
-----

g(4) 1917 f(8) 22 
-----

g(8) 2000 
-----

5 
----- ----- -----

f(S) 19 10 -1 9 
----- -----

g(5) OM f (10) 8 f(-1) OM f(9) 21 
----- ----- -----

g (10) 1984 g (-1) -2020 g(9) OM 
----- ----- -----

0 
----- ----- -----

Fig. 10.6 'Base' table which stores the representation of 
two maps f and g. The variable xis represented here by 
a pointer tote ~ppropriate block in this 'base'. 

LOCAL map representations handle storage and retrieval operations 
efficiently, but are inefficient for some other purposes. For example, the 
fact that the range values of a local map are spread over the element blocks 
of the base maps makes it time-consuming to incorporate a local map as a 
part of some other composite object (say a tuple of maps). Building the 
range of F is also time-consuming if Fis _represented locally. Moreover, 
iterations of the form 

(FOR y • F(x)) ••• 

will also be inefficient if Fis defined for only a few of the elements of 
its declared base B • This is because such an iteration must examine each 
element of B to see whether Fis defined for it. Thus LOCAL basing is 
generally not the ideal way of dealing with maps which need to be made parts 
of larger composites, iterated over, etc. To handle such situations 
effectively, other based representations are available. 

b) We therefore pass to discussion of a second form of based representation, 
whose use is advantageous in some of the situations discussed above, in 
which LOCAL based representation leads to inefficiencies. This second form 
of based representation is called the REMOTE based representation. It 
exploits the fact that each element block in a base contains a numerical 
index that identifies the value that the block represents. The availability 
of this numerical index makes it possible to store the range values of a 
REMOTEly based map fin a tuple t. Suppose, to be specific, that ix is the 
index stored in the block that holds the value x. Then the value of f(x) is 
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held in the ix-th element of the tuple t. 
retrieved as follows: 
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In this case, f(x) is is 

i) Using the pointer in x, retrieve ix from the element ~lock for x. 

ii) Add ix to the starting address of the tuple t that holds the range 
off, retrieve the ix-th component of this tuple, and return its value. 

This sequence of operations is considerably faster than a hashed search, 
even though it is slower than access to a LOCAL map. (We call this type of 
map representation REMOTE because it stores range elements at some distance 
from the corresponding domain elements). To specify that a based map is to 
have remote representation, we simply declare it as follows : 

(6) g: REMOTE smap(ELMT B)· <mode>; 

c) SETL provides a third based representation of maps, called to SPARSE 
representation, which is motivated by other considerations of storage and 
iteration efficiency. the two representations described so far, LOCAL artd 
REMOTE, are both characterized by the fact that to hold_ the values -of f(x), 
~ storage location must be allocated for each element of the base, 
regardless of whether f(x) is defined or is OM. In the local case, this 
location is allocated directly in the element block of x; in the REMOTE 
case, this location is the array component location corresponding to t~e 
identifying index of x. In both cases, if f is sparsely defined over its 
base, then a substantial number of storage locations will be wasted. (By ,-f 
is sparsely defined' we mean that f(x) /= OM only for a small percentage of 
all the values x in the base off). For such sparse maps, the third, 
so-called SPARSE, based representation may qe advantaeous. To give a map f 
this representation, we declare it as 

( 7) f: SPARSE MAP(ELMT B) <mode> 

The SPARSE map representation uses a hash table, very much like that 
used to standard unbased maps. However, the SPARSE map representation does 
not hold the value of each of its domain elements, but rather represents 
each domain element x of F by a pointer to the element block in B that 
represents x. The distinction should be clarified by the following figure, 
which compares the organization of unbased •nd sparse maps : 
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Fig. 10.7 Internal representation of unbased and of Sparse maps. 
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Evaluation of f(x) for a sparse map is distinctly less efficient than 
for a remote map, but somewhat faster than for an unbased map. As already 
noted , an important reason for using sparse maps is storage efficiency. 
Map iteration is an operation that also benefits from the use of the sparse 
representations. For a local or remote map, the iteration 
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(FOR y"" F(x)) 

requires a full iteration over the base F, which then bypasses .the elements 
of the base for which Fis undefined. In other words, the iteration is 
performed as if it was written: 

(FOR X in B I (y := F(x)) /m OM) 

If F(x) • OM for most elements of Bit is plain that this iteration will 
examine a large number of useless elements. If Fis represented as a sparse 
map, its domain is directly available, and no useless elements need to be 
examined. 

The qualifiers LOCAL, REMOTE, and SPARSE can be omitted from a basing 
declaration. The 'default' if all are omitted is SPARSE, that is 

f: SMAP(ELMT B) <mode> 

and 

f: SPARSE SMAP(ELMT B) <mode> 
are equivalent. 
10.4.3 Based Representations for Sets 

Three types of based representations are available for sets; these 
representations parallel the ones for maps which we have just described. -­
Based sets can therefore be described as having LOCAL, REMOTE, or SPARSE 
representations. 

a) Suppose that the following basing declaration is given: 

Sl, S2, S3 : LOCAL set(ELMT B); 

Then Sl, S2 and S3 are stored internally as follows: in the 
of each element x of B, we reserve one bit to indicate the 
in Sl, another bit to indicate membership in S2, and so on. 
allocated in fixed locations within every element block of B. 

element block 
membership of x 
These bits are 

When this representation is used, then the test (x INS) and the set.­
operations (x WITHS) and (S LESS x) are handled in a particularly efficient 
way when xis an element of the base B : in this case, xis represented by 
a pointer to its element block, and all that is needed is examination or 
mo~ification of a single bit at a fixed position in that block, which can be 
accomplished in very few machine operations. The set representation just 
described is also storage-efficient, because it uses only 1 bit per element 
of a based set, in contrast to the several words per element which are 
required in an (unbased) hash table. 

For sets that are constructed and accessed by the above operation£ 
exclusively, the LOCAL representation just described is to be prefered over 
others. However, the drawbacks of this representation are similar to thosE 
mentioned above for local maps. It is well to discuss the point in morE 
detail. Certain crucial facts affecting the efficiency of based 
representations_ derive from particular semantic rules of SETL. As already 



THE DATA REPRESENTATION SUBLANGUAGE Page 10-25 

emphasised, the use of based representations is not allowed to change the 
meaning of a SETL program: basing declarations can only affect its 
efficiency. The elaborate machinery of pointers, indices and bit positions 
that we have been describing can in no way affects the semantics of the 

- original (undeclared) program to which such declarations may be added. This 
means in particular that the use of basings must cause no non-standard side 
effects. Recall that the semantic definition of SETL requires that the 
fragment : 

Sl :a {1}; 
S2 :• Sl; 
Sl WITH:• 2; 

gives S2 the value {1} , and that the insertion of 2 into Sl which .follows 
subsequently does not affect the value of S2. The original value is S2 is 
preserved because, logically speaking, it is given a 'personal' copy of the 
value {l}, rather than 'sharing' this value with Sl. (In fact this copy is 
created right before Sl is modified, but this is an implementation detail). 
Now if Sl is a LOCAL based set and S2 is not, then producing a copy of Sl is 
a potentially expensive process which requires full iteration over the base 
B to extract the elements of B which are in Sl. Furthermore, if Sl 'is 
itseif inserted into some composite object, as in 

SC WITH:= Sl; 

it must copied first, in order to prevent accidental sharing of values (and 
potential modification) between Sl and the (now anonymous) element of SC 
which holds the value of Sl. Because of this requirement, LOCAL sets can 
become sources of run-time inefficiencies whenever they must themselves be 
shared. Hence, LOCAL sets should only be used for sets that only appear in 
elementary insertion, deletion and membership tests, and that do not become 
themselves elements or components of larger composite objects. 

b) The declaration: 
Rl, R2, R3: REMOTE set(ELMT ~); 

gives Rl, R2, and R2 a representation which is particularly efficient for 
global set operations, i.e. union, intersection, set difference and set 
assignment • This representation, which is analogous to the REMOTE 
representation for maps, (and which is called the REMOTE set representation) 
makes use of the indentifying index present in each element block. More 

- specifically, each of the sets Rl, R2, R3 appearing in the preceding 
declaration is represented by what is conceptually an array of zeroes and 
ones, but which at the implementation level is actually a sequence of 
machine bits, occupying one or more words of memory. These bits are in 
one-to-one correspondence with the elements of the base B : the element 
block whose index is i corresponds to the i-th bit in this bit-vector. If 
the value in element block i is an element o~ the set Rl, then the 
corresponding bit in the bit-vector representation of Rl is on, but 
otherwise off. The 1th bit position in the representation of R2 and R3 is 
used in the same way to indicate membership of an element of B in each of 
these based sets. If Rl, R2 etc. are given REMOTE representation, then the 
elementary set operations (x IN Rl, Rl WITH x, Rl LESS x) can ·be performed 
in the following manner, assuming as before xis an element of the base B : 
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a) Retrieve the index i of x from the element block of x in B. 
b) Use this index to access the i-th bit in the bit-vector which 

represents Rl. 
c) Return the value of this bit (or modify this bit if a WITH or LESS 

operation is being performed). 

This process is somewhat more time-consuming than the same operation on -
local sets, but it is considerably faster than the same operation on an 
unbased set. 

The efficiency gains obtained for certain global set operations (union, 
intersection, etc.) are particularly substantial when the REMOTE set 
representation is used. Suppose, for example, that Rl, R2, R3 have the 
representation shown above and that we want to evaluate the union 

R3 : = R 1 + R2; 

Then the REMOTE representation of R3 can be calculated as follows: the i-th 
bit in the representation of R3 (corresponding to some element~ of the 
base) should be on if xis either in Rl or R2, i.e. if the i-th bit of Rl 
or the i-th bit of R2 is on. The machine-level boolean operatioi OR 
performs exactly this bit-by-bit operation on a full machine word of bits in 
a single step. Thus, on a 32-bit machine, the OR-ing of two bit-vectors of 
size 1000 will take less than 50 machine operations. By contrast, the union 
of two unbased sets of size 1000 will require 1000 membership tests and up 
to 1000 hash table insertions. Similarly the intersection operation on 
remote sets reduces to the machine-level AND operation, with the same gains -
in speed. Thus, for large sets on which union and intersection operations 
are frequently performed, REMOTE representations are extremely efficient; 
and the efficiency gains attained by this representation are larger, the 
larger the sets that enter into these operations. 

c) Finally, for representing sets that are relatively sparse (i.e. have a 
cardinality which is much smaller than that of their base set) and over 
which iterations are frequently performed, a .SPARSE set representation is 
provided. The declaration 

SPl, SP2, SP3 : SPARSE SET(ELMT B); 

specifies that SP1,SP2 and SP3 are to be represented 
tables, in which, rather than storing the values of the 
pointers to these values, i.e. pointers to the element 
that holds the actual element values. 

by means of hash 
set elements we keep 
blocks in the base B 

As in the map case, the qualifiers LOCAL, REMOTE, and SPARSE can be 
omitted, and SPARSE is the default: If no qualifier appears in a basing 
declaration for a set, it is equivalent to specifying a SPARSE 
representation for it. 

10.4.4 Basing Declarations for Multivalued Maps 

e saw in Sec. 
single valued map 
domain elements of 

10.4.2 that declaring a based representation for a 
relates the domain of the map to som·e base in which the 

the map are automatically inserted. A similar 
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representation is available for multivalued maps, i.e. multivalued maps 
(which is to say MMAPs) can be given LOCAL, REMOTE or SPARSE 
representations. Moreover, it is possible to declare a based representation 
for the range of a multi-valued map F. The value of F{x} is by definition a 
set, and therefore the based representation for a multivalued map will 
generally specify an additional basing which determines the representation 
of the range sets of F. For example, we can declare 

successors : LOCAL MMAP(ELMT B) REMOTE SET(ELMT B); 

~ this declaration specifies that for each x IN B the image set successors{x} 
is stored in the element block of x, and that this image set is always to be 
rpresented as a bit-vector. Similarly, the declaration 

successors : LOCAL MMAP(ELMT B) SPARSE SET(ELMT B); 

specifies that the image set of successors{x} is to be stored as a sparse 
set, i.e. as a hash table containing pointers to elements of B. Note that 
the attribute LOCAL cannot be used for image sets of multivalued maps. This 
follows from our remarks in Sec.10.4.3 on the impossibility of making local 
objects into subparts of composite structures. 

10.5 Base Sets Consisting of Atoms Only 

The based data structure shown in Figs. 
fundamental operations: 

5 serves to support two 

(a) The ability to locate an item x in a base by searching a short list of 
items, from a staring list position which can be calculated easily if the 
value of xis known; 

(b) The ability to iterate over all the elements in the base. 

Operation (a) is only required when an object xis converted to £LMT B 
representation and we need to determine if x ·has already been inserted into 
the base B. Hence, if the only elements ever inserted into Bare atoms, and 
if all of these ire created by easily l6cated calls to the NEWAT operator, 
then the seaching operation (a) is not required, since each call to NEWAT 
produces a unique object. Hence the blocks constituting such a base can be 
stored as a simple list. The elemets of this list only need to be linked 
together if iteration over some set having SET(ELMT B), SMAP(ELMT B), or 
MMAP(ELMT B) is necessary. If this is not the case,_ then no links are 
necessary; the element blocks of Bare then independent. 

To allow declaration 
representation sublanguage 
as in 

(1) B: PLEX BASE; 

of these important special cases, the data 
~llows the keyword PLEX to be prefixed to bas~, 

If Bis a PLEX BASE, then only atoms en be given ELMT B repre~entation. 

10.6 Constant Bases 

-----------~-------------------------------
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A c~nstant set, introduced by a constant declaration (see Section 6.2), 
as in 

CONST colors•{red,blue,green}; 

can be used as a base if it is declared as such by writing 

BASE colors; 

Elements of such a base B, i.e. values x having the representation ELMT B, 
can be represented in fixed small number n of bits. Specifically, n must be 
at least as large as the logarithm -0f the number #B of elements in B. 
Internally, a constant base B is represented by a contiguous series of 
blocks, and an element x having the representation ELMT B is r·epres.ented by 
a short integer index that locates the block corresponding to x. Remote 
subsets s of B can then be represented by bit-vectors, often no more than 
one machine memory word in length. In this case, the membership test x IN s 
will be particularly fast if x ands have the representations ELHT B and 
SET(ELMT B) respectively, since then the representation of xis simply the 
index of the bit in the vector representing s which determines the· 'boolean 
result of the test x IN s. A similar remark applies to maps f having the 
representation SMAP(ELMT B) or MMAP(ELMT B). Moreover, since the internal 
representation of any value of mode ELMT B can be quite short, it is 
possible to pack several ELMT B values into a single machine word. To 
achieve this , one uses the representation qualifier PACKED, in the manner 
explained below. 

10.7 The Representation Qualifier PACKED 

The keyword PACKED can be prefixed to SMAP or TUPLE modes. That is, we 
can write 

(4) f:PACKED LOCAL SMAP(ELMT B)mode'; 
g:PACKED REMOTE SMAP(ELMT B)mode'; 
h:PACKED TUPLE(mode'); 

etc. However, for these constructs to be legal, the mode indicator -m6de'­
shown in (4) must designate some packable mode, i.e., some mode of values 
which can be represented in less than a full machine memory word. (Note 
that the machine words of typical present-day computers generally contain 
between 32 and 64 bits of information. Thus, for example, if a quantity· can 
be represented in just four bits, i.e., if it can take on at most sixteen 
different values, then between eight and sixteen quantities of this kind can 
generally be represented by parts of a single machine word). 

Modes of the two following kinds are packable in this sense: 

(i) The mode ELMT·B, where Bis a constant base (see Section 10.6). 

(ii) The mode INTEGER nl •• n2 (see Section X), provided that the interval 
[nl •• n2] over which integers of this mode range is sufficiently small. 
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If the mode' appearing in a declaration (4) is packable, then the SETL 
compiler will know how many bits are required to represent values having 
this mode. It will then be able to store several packable local map values 
like f(x) (cf. (4)) in a single machine word of the base block of B 
representing an ELMT B value x. Moreover, in the vector (cf. Fig. ) used 
to store range values of a PACKED REMOTE map (like the g of (4)), it will be 
possible to store several map values per machine word. Similarly, several 
tuple components of a PACKED TUPLE (like the h of (4)) can be stored per 
machine word. 

This use of packed storage saves memory space, thereby reducing the 
space needed to run your SETL program. On the other hand, the number of 
machine cycles needed to run the program will rise slightly, owing to the 
necessity to convert quantities between their packed and unpacke~ forms. 
However, since the cost of such conversion is small (provided that effective 
representations are choseµ for all the variables appearing in a program; 
see Section 10.8), the storage economy obtainable by packing data where 
possible can far outweigh the modest execution-time costs which packing 
incurs.· 
10.8 Guidelines for the Effective Use of the Data Representation SubYanguage 

By adding appropriate data representation declarations to your program, 
it will often be possible to increase its efficiency substantially •. 
Moreover, a SETL program for which a well thought-out set of representations 
has been specified will often constitute a detailed blueprint from which an 
efficient program in some lower-level language such as PASCAL, PL/I, or Ada 
can be generated, manually but in a mechanical spirit• In this section we 
will explain the principles governing effective choice of data 
representation declarations, note some of the restrictions governing the use 
of the representation sublanguage, and also point out some of the efficiency 
pitfalls of which you should beware. 

As already noted, the main aim of the data representation sublanguage 
is to speed up functional evaluations f(x) and f{x}, also membership tests x 
IN s, by ensuring that for as many such evaluations as possible x has ELMT B 
representation and f has SMAP(ELMT B) representation (or MMAP(ELMT B)) 
representation (ors has SET(B) representation), where x and f (or x and f) 
are based on the same base B. On the other hand, to attain a net gain using 
this approach, we must be sure that the cost of converting elements x, maps 
f, and sets s to their based representations does not outweigh the advantage 
gained by use of such representations. We must also be sure that our choice 
of representations does not cause excessive object copying to take place. 
(The circumstances under which object representations are copied during 
program execution will be described in more detail below) •. 

Objects are converted between different internal representations in the 
following circumstances: 

(i) When a SETL value is read from an external file by a READ statement and 
assigned as the value of an identifier x for which some based representation 
has been declared, the new value of x will be converted, from. the standard 
representation in which it is first read, to the representation declared for 
x. A reverse convers¼):n takes place whenever a. PRINT statement is used to 
move a value x having some specially declared represe11tation to an external 
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file. There is little you can do about conversions of this kind, whose cost 
is in any case bounded by the amount of input and output which your program 
performs. 

(ii) Whenever a value x having one representation is passed by an assignment 
y:•x to another variable y for which a representation has been declar•d, x 
is converted to the form declared for Y• A similar conversion takes place 
whenever x is made part of a composite object y (i.e. a set, tuple, or 
map), by an assignment y:=y WITH x, y(z):=x, y(x):=z, etc. In these cases, 
xis converted to the form expected for the part of y which it becomes. For 
example, in the case of y:=y WITH x, if y has been declared to have the 
representation SET(mode'), then x will be converted to the representation 
mode'. In the case of y(z):=x (resp. y(x):=z), if y has been declared to 
have the representation MMAP(mode)mode' or SMAP(mode)mode~ (resp. 
MMAP(mode')mode or SMAP(mode')mode), then x will be converted to the mode' 
form. (A fuller list of conversion rules of this kind is given at the end 
of this Section). 

(iii) Values extracted from composite objects y will initially have 
representations deduced from the representation declared for Y• For 
example, ifs is declared to have the mode SET(ELMT B), then the iterator 
FORALL x IN s ••• will produce elements of s, each such element initially 
having ELMT B format, and assign them successively to x, converting them to 
the form declared for x if necessary. Similarly, if f is declared to hav.e 
SMAP(ELMT Bl)ELMT B2 representation, then evaluation of f(x) will require 
that x be converted to ELMT B format, and f(x) will yield a value of mode 
ELMT B2. If x had some other format immediately prior to the valuation of _ 
f(x), or if we use an assignment z:=f(x) involving a variable z that has 
been declared to have some representation other than ELMT B, then 
appropriate conversions will be forced. 

(iv) The conversions performed when we execute assignments (i) · are also 
pe~formed in connection with expressions, such as existential and universal 
quantifiers, having assignment-like side effects, and also ih connection 
with iterators. For example, if s is declared to have SET(ELMT B) 
representation, but xis declared to have some representation other than 
ELMT B, then evaluation of an existential quantifier like 

••• EXISTS x IN s I C(x) ••• 
fi ( 

will repeatedly extract elements from s (in ELMT B format) and convert them 
to the representation declared for x. 

(v) Whenever procedures and functions ara invoked, their actual arguments 
are converted to the representations declared for the corresponding formal 
parameters. Moreover, if a function returns a value having one 
representation but this value is assigned to a variable for which some other 
representation has been declared, a conversion will take place. 

To minimise these conversions, you need to choose representations for 
the various data items appearing in your program which make conversion 
unnecessary. To accomplish this you will need to survey the undeclared form 
of your program carefully, noting the manner in which each variable is used. 
The appearance of an assignment x:=y will suggest that x · and y should be 
given the same. representation; tests x IN swill suggest thats should have 
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the representation SET(mode), where x has the representation -mode-; map 
evaluation y:=f(x) will suggest that f should have the representations 
SMAP(mode)mode' where x has -mode- and y has -mode'- representation; etc. 
Chains of deductions of this sort, together with a bit of reflection about 
the abstract nature of the various objects which your program is 
manipulating, will generally lead without undue difficulty to a 'harmonious' 
set of representations avoiding unnecessary conversions. Note that both 
conversions •ithin single PROCEDUREs, and conversions of arguments forced 
when one PROCEDURE invokes another, are to be avoided. If there remain some 
conversions which cannot be avoided, care should be taken that these 
conversions take place at infrequently executed points in your code. 

10.9 Exercises 

Ex. 1 Develop an effective set of representation declarations for the 
buckets-and-well program shown in Section 4.3.1. 

Ex. 2 Develop an effective set of representation declarations for the 
Eulerian path procedure shown in Section 11.1. 

EX. 3 Develop an effective set of representation declarations for th~ 
topological sorting procedure shown in Section 7.2. 

10.10 Additional Remarks on the Effect of REPR Declarations 

If a sets is declared to have local representation, then each block of 
the base B shown in Fig. 10.6 is enlarged by an extra machine word, and a 
specific bit in all these words is reserved to indicate whether or not the 
element x represented by the block belongs to s. If (s IN s) is TRUE, then 
in the block representing x this reserved 's-bit' will have the value l; if 
FALSE, then this bit will have the value O. It is then; clear that the 
test x IN scan be made very rapidly if x ands have the repesentations (4) 
and (5) respectively. Moreover, the operations s WITH := x ands LESS :• x 
will be quite fast, since both of these set-theoretic operations can be 
executed by using a machine level operation to change just one bit in the 
block located by x. 

Note that sets s declared to have the representation (5) are 
represented internally in 'distributed' rather than 'concentrated' fashion. 
That is, sis represented by a scattered set of 'flag bits', one bit per 
block of the base B, rather than by a hash table of the more concentrated 
form shown in Fig. 3. The figurs following just below shows a base B and 
the representation of two sets sl, s2 declared to have LOCAL SET 
representation: 

(7) sl, s2: LOCAL SET(ELMT B) 

The figure assumes that sl={J,17,201} and that s2•{201,48,722}, and 
that the rightmost bit in the second word of each entry in the base table is 
being used to indicate membership in sl, while the bit next to it is used to 
indicate membership in s2. 



THE DATA REPRESENTATION SUBLANGUAGE 

17 

01 

(empty) 

01 

48 

10 

(empty) 

(empty) 

(empty) 

(empty) 

722 

10 

(empty) 

Fig. 10.8 Internal representation of two sets sl, s2, both 
declared to have LOCAL SET(ELMT B) representation. 

Note that~ although use of LOCAL SET(ELMT B) 
representation for a sets will speed up the test (x IN s) if 
x has ELMT B representation, it may slow down iterations of the 
form 

(6) F0R-x IN s ••• 
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substantially. This is because the representation of s shown in Fig. 3 
makes it possible to iterate rapidly over the elements of sand no other; 
in contrast, ifs has the representation shown in Fig. 3, we must handle 
iteration over s by iterating over all the blocks of B, but then skipping 
past those which do not represent elements of s. If only a small percentage 
of the blocks of B represent elements belonging to s (whih can easily 
happen, for example, we may declare s,s2:SET(ELMT B), and s2 may have many 
more elemets than s) then the iteration (6) can be slowed considerably. 

In some cases, it is better to represent a sets by flag bit~ that are 
grouped together than by distributed bits. To do this, a declaration of the 
form 

(8) s: REMOTE SEt(ELMT B) 

is used. In the presence of the declaration (8), each entry E of the table 
representing the base B will contain an integer index i~ issued by the SETL 
run-time system ~hen the element x represented by Eis first inserted into 



THE DATA REPRESENTATION SUBLANGUAGE Page 10-33 

B. The set sis then represented by a sequence of bits, grouped together 
into one or more machine words. If the element x of B has been issued index 
i by the SETL run-time system, then the i-th among these bits .will be 1 if 
(x .IN s) is TRUE, 0 of (x IN s) is FALSE. Fig. 7 shows this form of set 
representation. 

17 

1 

48 

(empty) 

(empty) 

(empty) 

1 

0 

(header) 

••• 11100 

Fig. 10.9 Internal representation of the sets sl • {11,3,201} 
and s2 = {201,48,72}, with declared representations 
sl: LOCAL SET(ELMT B) and s2: REMOTE SET(ELMT B). 

Note that the left half of the third word of each block of Bis asumed 
to contain the index which the SETL run-time system assigns to the block. 

Even though the test x IN sis slowed down slightly if we gives REMOTE 
SET rather than LOCAL SET representation, the REMOTE SET representation 
illustrated in Fig. 7 will sometimes have substantial advantage over the 
corresponding LOCAL set representation. First of all, if sl and s2 both 
have REMOTE SET(ELMT B) representation, then Boolean combinations of sl and 
s2, e.g. sl + s2, sl * s2, and sl - s2 can be formed very rapidly using the 
machine level Boolean operations described in Section 9.3.2; these oper 
machineations handle a word-full of Boolean bits per operation cycle. An 
even more crucial advantage is that indefinitely many (exact or approximate) 
copies of a sets having REMOTE SET representation can be formed simply by 
allocating additional copies of a vector of bits like that shown in (the 
lower right-hand corner of) Fig. 7. Such easy copying is not possible for 
sets having LOCAL SET representation, since the flag-bit positions within 
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base blocks used to indicate membership in such sets must be allocated in 
advance. It follows in particular that the components of a set of tuples, 
or the members of a· set of sets, can be given REMOTE SET but not LOCAL SET 
representation. Note that to speed up a membership test like x IN t(i) or 
to ensure that an iteraion like 

(FOR s IN set_of_sets) IF x IN s THEN ••• 

runs at high speed, we may be need to give the components of -t- or the 
members of -set_of_sets-, based form. as stated we must then use the REMOTE 
SET representation. 

The REMOTE form of representation is available for maps f as well as 
sets s. To give a map f this representation, one writes 

(9a) f: REMOTE MMAP(ELMT B) 
(if the map f might be multi-valued), or 
(9b) f: REMOTE SMAP(ELMT B) 

(if f is known to be single-valued). The range values of a map represented 
in this way are gathered together into a continguous array of memory cells, 
the i-th memory cell holding the value (or, in the MMAP case, set of values) 
associated with the domain element whose index is i. This map 
representation is shown in Fig. 8, which should be compared with Fig. S. 
The map represented in Fig. 8 is f={[17,71], [3,331, [201,102]}, and is 
assumed to have REMOTE SMAP(ELMT B) representation. 
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Fig. 10.10 Internal representation of the map f={[l7,71],[3,33],[201,102]} 
in REMOTE SMAP(ELMT B) form. 

The left half of the third word of each block of B is assumed to 
contain the index which the SETL system assigns to the block. Note that 48 
and 722 are assumed to be base elements but not elements of DOMAIN f. 

The advantages as disadvantages of REMOTE and distinct from LOCAL map 
representation are similar to those of the corresponding set 
representations. In particular, multiple copies of a map f having REMOTE 
MMAP or REMOTE SMAP representation can be formed sd..mply by allocating a 
vector of range values like twat shown in Fig. 8. This is not possible for 
sets having LOCAL map representation. 

In order to make use of the based representations in Figs. 5-8, the 
SETL run-time system code must ensure that every element x belonging to a 
set s with SET(ELMT B) or to the domain of a map f with MMAP(ELMT B) or 
SMAP(ELMT B) representation is assigned an entry in the base table B. This 
is accomplished by keeping B under systen rather than programmer control. 
Then, whenever an operation like s WITH := x, s +:= sl, f(x) := y, f{x} := 
-1, etc. adds one or more elements to s or to DOMAIN f, it is automatically 
added to B. For this reason, SETL does not allow bases B to be used in the 
same way as ordinary variables. In particular, base names can appear in 
declarations like (1-9), but not in ordinary SETL statements 
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Since both the LOCAL SET(ELMT 
rep~esentation will slow iterations 
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the data representation sublanguage 
representation for sets, namely 

(10) SPARSE SET(ELMT B) 

B) and 
of the 
represent 
provides 
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the REMOTE SET(ELMT B) 
form (FOR x INS) ••• very 
elements of .the set s.', 
a third kind of declarable 

If a sets is declared to have this representation, it will be represented 
by a hash table having much the same form as the standard representation 
shown in Fig 3; however, the entries in this table will contain pointers to 
blocks of the base B rather than standard-form SETL values. This is 
illustrated by the following figure, which shows how the set s•{17,3,201} 
would be represented if it were declared to have representation (10}. 

17 

48 

empt 

empt 

empt 

722 

eade 

Fig. 10.11 Internal form of the set s={17,3,201}, assuming that 
the representations: LOCAL SET(ELMT B) is being used. 

Iteration over sets having LOCAL SET(ELMT B) representation will 
always be efficient, since no elements not belonging to s are examined 
during such an iteration. Moreover, this iteration will produce items x 
having ELMT B representation. This makes the SPARSE representation 
particularly effective for iterating over a set of elements that are to be 
used as map indices. For example, an iteration of the form 

(11) (FOR1 x IN s) y := f(x); ••• 

will be particu~arly efficient if the following representtidns are declared 
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for x,s, and f: 

(12) x: ELMT b; 
s: SPARSE SET(ELMT B); 
f: LOCAL SMAP(ELMT B); 
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he reader should confirm his understanding of the preceding pages by 
reviewing the data structures that will be used for x,s, and fin the 
presence of these declarations and by working out the sequence of 
machine-level operations that will be needed to handle the code fragment 
(11) in the presence of the declarations (12). 

Map representations akin to the SPARSE SET representation (10) are also 
available. These are declared by writing 

(13a) 
or 
(13b) 

f: SPARSE MMAP(ELMT B) 

f: SPARSE SMAP(ELMT B). 

Maps declared in this way are given internal representations much like those 
shown in Fig. 4, but the domain elements of such maps are represented by 
pointers to blocks in the base B rather than by SETL values in their 
standard form. As in the case of SPARSE SETs, iterations over maps having· 
this representations are handled efficiently. Moreover, if f has either of 
the representations (13a) or (13b), then an iteration like 

(14) (FOR y = f(x)) ••• 

will produce items x having ELMT B representation. 

This completes our introductory account of the main facilities of 
SETL's data representation sublanguage and of the principal advantages and 
disadvantages of the major set and map representations describable in this 
sublanguage. Various other features of the data representatLon sublanguage 
will be presented in Sections X and Y. The re"presentation language can be 
used to improve the efficiency of SETL codes, but to achieve this you must 
devise a consistent pattern of declarations, assigning an appropriate 
representation to each of the data items used in the code. What one wants 
are declarations which give ELMT B representation to variables x appearing 
in contexts like (x IN s), s WITH :=x, s LESS := x, f(x), f{x}, f(x) :• y, 
or f{x} := y, whiles and fare given SET(ELMT B) and SMAP(ELMT B) or 
MMAP(ELMT B) representation. However, the various pitfalls pointed out in 
the foregoing paragraphs, for example the possibility of showing down an 
iteration (FOR x IN s) ••• if sis given LOCAL SET(ELMT B) or REMOTE SET(ELMT 
B), must be borne in mind. It is also important to note that the efficiency 
gains obtainable by skillful use of SETL'S data representation sublanguage 
will be lost if inconsistent or incomplete declarations cause values to be 
converted between different representations in frequently executed code 
sections. For example, if sl and s2 are declared to have different 
representations, e.g. 

(15) sl: LOCAL SET(ELMT B); 
s2: REMOTE SET (ELMT B); 
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then any .assignment 

s1 := s2; 

or for that matter any operation 

s 1 : = s 2 WI TH x; 

or 

s := sl + s2; 

will cause a copy of s2 to be converted into the form declared 
Similarly, if x and fare declared to have the forms 

(16) x: ELMT B 1; 
f: LOCAL SMAP(ELMT B2); 
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for sl, 

when the bases Bl and B2 are different, then either the operation y := f(x) 
or f(x) := y will cause a copy of x to be converted into ELMT B for~. This 
conversion can easily get out of hand, and then can cause a program 
containing representation declarations to be less rather than more efficient 
than its 6~iginal declaration-free version. 

:~ 

The SETL measurement facility described in Section Y can be used to 
determine the actual effect of a given set of representation declarations, 
and in particular to pinpoint statements at which unexpected object copying 
or conversion between representations is taking place. 

Additional hints concerning effective use of SETL's data representation 
sublanguage are found in Section 10.8 above. 

To conclude this section, we note that a SETL program, supplemented by 
a carefully forked out set of representation declarations, ca~ be regarded 
as a detailed -blueprint for a lower-level implementation of the same 
p~ogram. Used in this way, SETL serves well as a tool allowing program a 
skilled designer or design team can convey all the details of his (or their) 
program design to a larger, perhaps less experienced reprogramming team. 
This reprogramming team can use some other more efficient language to 
produce a high-efficiency code from a design written in SETL. The fact that 
the original SETL code actually executes means that the consistency and 
completeness of the initial design can be verified by testing rather than by 
visual inspection or 'design walkthrough' only. 

$ 
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THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES 

In this, our last chapter, we illustrate the use of SETL by giving a 
variety of programs which exhibit its features and can serve as useful 
models of style. Some of the smaller programs present significant 
algorithms; the larger examples show how more substantial programming 
problems and applications can be addressed. 

Chapter Table tl Contents: 

11. 1 
11.2 
11.3 
11.4 
11.5 
11.6 
11. 7 
11.8 
11.9 
11. 10 
11. 11 

11. 1 

Eulerian paths in a graph 
Topological sorting 
The 'stable assignment' problem 
A text preparation program 
A commercial record-keeping system 
A Turing-machine simulator 
'Huffman coding' of text files 
A 'game playing' program 
A Macroprocessor implementation 
Discrete event simulation (TO BE SUPPLIED) 
Exercises 

Eulerian paths in a graph 

A graph is simply a collection of nodes, pairs of which are connected 
by edges. (See Section 5.3). Graphs come in two varieti~s, directed 
graphs, each of whose edges has a specified starting node and target node, 
and undirected graphs, whose edges can be traversed in either direction. 
The most natural SETL representation of a directed graph G is simply a set 
of ordered pairs [x,y], each such pair representing in edge with starting 
node x and target node y. It is convenient to represent an undirected graph 
G in the same way, but in this case the reversed edge [y,x] belongs to G 
whenever [x,y] belongs to G. 

Given an undirected graph G, the Eulerian path problem, named after the 
famous mathematician Leonhard Euler(1707-1783, 'who calculated as other men 
breathe') is to traverse all the edges of G exactly once by a single 
unbroken path p which starts at some node x of the graph, and ends at some 
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other nod.e y (which might be the same as x). We can think of such a path, 
called an Eulerian path, as 'using up' edges as it traverses them. Euler 
used the following arguments to determine which graphs contain- paths p of 
this kind. If a node z along pis different from the starting and ending 
nodes x and y of p, then immediately after p has reached z along one edge p 
will leave it along some other edge, and thus p will always 'use up' an even 
number of the edges which touch any node z of p not equal to x or y. The 
same remaik applies to the starting node x if x = y, but if x and y are 
different then p must 'use up' an odd number of the edges touching x and an 
odd number of the edges touching y. It follows that an Eulerian path p 
which traverses all the edges of G just once can only exist if G is 
connected and either has no nodes x touched by an odd number of edges, or 
has exactly two such nodes x,y; and in this latter case every Eulerian path 
p must start at one of x,y and end at the other. 

Suppose, conversely, that G has either no nodes or exactly two nodes 
which are touched by an odd number of edges. Then we can construct an 
Euleri~n path pas follows. If every node of G is touched by an even number 
of edges of G, let x be any node of G, otherwise let x be one of the two 
nodes x, y of G touched by an odd number of edges. Start the path p. at x, 
and extend p as long as possible by stepping from its endpoint along ·any 
edge of G that has not been traversed before. Since we consider an edge to 
be 'used up' as soon as it is traversed, the construction of puses up more 
and more edges of G, and therefore must eventually stop •. Hence p must be 
finite. Suppose that pends at a node y. Clearly all the edges touching y 
must have been traversed by p, since otherwise p could be extended by some 
edge. Thus, if the starting node x of pis touched by an odd number of 
edges, p must end at some other node y which is also touched by an odd 
number of edges; whereas if xis touched by an even number of edges, then p 
must return.to x and end there. In either case, removing all edges 
traversed by p from G will leave behind a graph G' each of whose nodes is 
touched by an even number of edges._ If p does not already traverse all the 
edges of G, then some node z along p will be touched by some untraversed 
edge. In this case, one can construct a path q by starting fro~ z with this 
edge and extending q along untraversed edges.as long as possible. Since the 
remarks concerning p apply to q as well, and since q can be regarded as a 
path in the graph G', and since all of the nodes preceding Gare touched by 
an even number of edges, the path q must both begin and end at z, i.e. q 
must be a 'circuit'. Hence we ca~ 'insert' q into p, thereby constructing a 
path which first follows p to z, then follows q until q finally returns to 
z, and then follows the remainder of p to its end. Call this extended path 
by the same name P• Repeating the construction and insertion of circuits 
like q ~s often as possible, we must eventually built up a path p which 
traverses all the edges of the original graph G. 

The two following procedures realise the Eulerian path construction 
described in the preceding paragraphs. Procedure build_path starts a new 
path and extends it as far as possible, deleting (from G) the edges 
traversed by this path; procedure Euler_path installs the path sections 
returned by build~path into the overall Eulerian path that it constructs and 
returns. 

PROC Euler~path(G); $ constructs Eulerian path for graph G 

IF #(odds := {x IN (nodes :=·DOMAIN G) I ODD(#G{x}) }) > 2 THEN 
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RETURN OM; $ since more than two nodes are touched by 
END IF; $ an odd number of edges 

$ Note that -nodes- is the set of all nodes of G, 
$while-odds- is the set of all nodes of G that are touched by 
$ an odd number of edges 

x := (ARB odds) ? ARB nodes; $ pick a node of -odds- if possible; 
~ otherwise pick any node of G 

path := [x] + build_path(x,G); 

( WR ILE EX I ST S z • path ( i ) I G { z } / • { } ) 
path(i •• i-1) := build_path(z,G); $ insert new section 

$ into path 
END WHILE; 

RETURN path; 

END PROC Euler_path; 

PROC build_path(x,RW G); 

p := [ ]; 

$ builds maximal path section starting 
$ at x, and deletes all edges traversed 

(WHILE (y := ARB G{x}) /=OM) $ while there exists an edge leaving 
$ the last point reached 

p WITH := y; 
G -:• { [x,y], [y,x] }; 

$ extend path to traverse the 
$ edge delete the edge just 

traversed 

11.2 

X : .,. y; 

END WHILE; 

RETURN p; 

END PROC build_path; 

'Topological' sorting 

$ step toy 

Certain problems, of which scheduling problems are typical, require one 
to arrange the nodes n of a graph Gin a list such that every edge of G goes 
from a node nl to a node n2 coming later in the list. This is called the 
problem of topological sorting. Suppose, for example, that a student must 
choose the order in which he will take the courses required to qualify as a 
computer science major, some of which have other courses as prerequisites. 
Suppose also that we represent the 'prerequisite' relationship as a set G of 
pairs, agreeing that whenever course nl is a prerequisite of course n2, we 
will put the pair [nl,n2] into G. Then, mathematically speaking, G is a 
graph; in heuristic terms, G{nl} is the set of all courses for which nl is 
a pre-requisite. (Note the connection of the 'topological sorting' problem 
with the transitive computation of prerequsites described in Section 
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To sort a collection of courses topologically is simply to arrange then 
in any order in which they could actually be taken, given that all the 
prerequisites of each course n must be taken before n is taken. To do this 
is not hard. We simply find some course n which has no (unfulfilled) 
prerequistes, put n first in the l~st L, drop all edges [n,nl] from G (sinct 
n is no longer an unfulfilled prerequisite) and then continue recursively as 
long as courses without unfulfilled prerequisites remain. Written as l 

recursive SETL routine, this is simply 

(1) PROC top_sort(G,nodes); $ topological sorting procedure, 
$ recursive form 

RETURN IF EXISTS n IN nodes - (RANGE G) THEN 
[n] + top_sort(G LESSF n, nodes LESS n) ELSE f END; 

END PROC top_sort; 

Invocation of top_sort(G) will return a tuple t consisting of some 01 

all of the nodes of G. If it is possible to sort nodes of G topologically, 
then every node of G will appear int. This will be the case if and only i~ 
G admits no cycle of nodes such that 

(2) nl is prerequisite to n2 is prerequisite to n3 is 
prerequisite to ••• is prerequisite tonk is prerequisite to nl. 

To see this, note that it is clear that when such a cycle of mutually 
prerequisite nodes exists, no node in the cycle can ever be put into th, 
tuple t returned by (1). Conversely, if a node nO belongs to no such cycle 
then eventually the code (1) will have processed all the predecessors (i.e. 
prerequisites) of nO, and after this (1) must eventually put nO int6 the 
tuple t it returns. This shows that the set of all nodes belonging to an: 
cycle like (2) is simply 

nodes - {x IN top_sort(G,nodes)}, 

so that (1) can also be used to test a graph G for the presence of cycles. 

Like many other 'tail' recursions, i.e. recursive procedures whic1 
only call themselves immediately before returning, (1) can be rewritten as 
an iteration (See Section XXX). Written in this way, (1) becomes 

(3) PROC top_sort(G) $ first iterative form of topological sort 

nodes := (DOMAIN G) + (RANGE G); $ Here we·calculate the set of 
$ nodes; this makes it unnecessary to pass the set of nodes 
$ as an additional parameter. 

t : = ] ; $ initialize the tuple to be returned 

(WHILE EXISTS n IN nodes - (RANGE G)) 

t WITH := n; 
G LESSF := n; 
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nodes LESS := n; 

END WHILE; 

RETURN t; 

END PROC top_sort; 
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It is possible to improve the efficiency of (3) very substantially by 
keeping the current value of the set (nodes - RANGE G) available at all 
times. To do this, we proceed as follows: 

(a) For each node n, we maintain a count of the number of the pred~cessors 
of n which have not yet been put into t. 

(b) When n is put into t, we reduce this count by 1 for all nodes nl in 
G{n}. 

(c) If count(x) falls to zero, then x becomes a member of {nodes - RANGE G). 

These observations, which could be derived step-by-step from the more 
general 'formal differencing' principles discussed in Section XXX, underlie 
t o th e f o 11 ow.in g rev i s e d form o f ( 3 ) : 

(4) PROC top_sort(G); $ second iterative form of 
$ of the toplogical sorting procedure 

nodes := (DOMAIN G) + (RANGE G); 

count :• { }; 

ready :• nodes; 

(FOR [x,y] IN G) 

$ initialize the -count- function 
$ described above 

$ The following loop will remove elements 
$ that have any predecessors from -ready-

count(y) :• (count(y)?O) + l; 
ready LESS :• y; $ since y has a predecessor 

END FOR; 

t :• [ ]; 

(WHILE ready/•{ }) 

n FROM ready; 
t WITH:• n; 

(FOR nl IN G{ n}) 

$ At this point -ready- is the set of 
$ all nodes without predecessors 

$ t is the tuple being built up 

IF (count(nl) -:= 1) • 0 THEN ready WITH := nl; END; 
END FOR; 
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END WHILE; 

RETURN t; 

END PROC top_sort; 

It is not hard to see that the preceding code examines each edge of the 
graph G just twice. Thus the time needed to execute this code is linearly 
proportional to #G. 

11.3 The 'stable assignment' problem 

Suppose that the members of a population of n students are appiying to 
a collection of m colleges. We suppose also that each student finds a 

·~ertain collection of colleges acceptable, and that he/she ranks these 
colleges in order of decreasing preference. Finally we suppose that each 
college c can admit only a given quota Q(c) of the students who apply to it, 
and that it is abla to rank all the students in order of decreasing 
ireference. We do not suppose that any of these preferences are necessarily 
related to any other; that is, different students can rank colleges in 
radically different orders, and different colleges may find quite different 
types of students preferable. 

The problem we consider is that of assigning students 
such a way as to satisfy the following three conditions: 

to colleges in 

(a) No college accepts more than Q(c) students; 

{b) A college c never admits a student sl if it has filled its quota Q(c) 
and there exists an unassigned student s2 to whom college c is acceptable 
and whom college c prefers to student sl. 

(c) There is no situation in which student sl is assigned to collegi 
student s2 is assigned to college c2, but both the students involved 
colleges involved prefer to switch; that is, sl prefers c2 to 
prefers cl to c2, cl prefers s2 to sl, c2 prefers sl to s2. 

cl and 
and the 
cl, s2 

This problem was studied by David Gale and Lloyd Shapley (American 
Mathematical Monthly, 1962, PP• 9-15), who gave a simple algorithm for_ 
finding an assignment satsifying conditions (a), (b), and (c). The 
algorithm is just this: Each student applies to his first-choice college. 
Then each college c puts the topmost- ranked Q(c) students who have applied 
to it on an active list, and notifies the others that they have been 
rejected. All rejected students now apply to their second-choice colleges. 
Then all colleges re-rank their applicants, keep the first Q(c) of these 
applicants, and again notify the others that they have been rejected. This 
cycle of re-application and re-ranking continues until no rejected students 
have any more colleges on their list of acceptable colleges. 

It is clear that the assignment produced by this 
condition (a). Condition (b) is also satisfied, since 
acceptable, he/she will eventually apply to college c, 
student sl whom c finds less acceptable, but will 

procedure satisfies 
if s2 finds college c 
and can then bump any 
nevec subsequently be-
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bumped except by a student whom c finds more acceptable. Finally, condition 
(c) is satisfied, since if sl prefers c2 to cl he/she must have applied to 
c2 before cl, but been bumped from c2's active list by a stude'nt that c2 
prefers to sl. But when this happened c2's active list could not have 
contained any student that c2 does not prefer to sl. Therefore, since the 
students on college c2's active list never grow any less attractive from 
c2's point of view, c2 will never regard any student on its final active 
list as less desirable than s2. 

Programmed in SETL, the Gale-Shapley algorithm is as follows. 

PROC assign(stud_pref,coll_pref,quota); $ Gale_Shapley stable 
$ assigment algorithm 

$ we assume that -stud_pref- maps each student into the 
$ vector of colleges he/she finds acceptable, ranked in 
$ decreasing order of preference, and that coll_pref(c)(sl,s2) 
$·is TRUE if college c finds student sl preferable to 
$ student s2, FALSE otherwise. The map -quota- is assumed 
$ to send each college into the number of students it will accept. 

active:= {[c,[ ]]: c IN DOMAIN quota}; 

$setup an empty 'active list' for each college 

applicants := DOMAIN stud_pref; $ initialize the pool of applicants 
(FOR j in [1 •• #quota]) $ we may need as many 'rounds' 

$ of applications as there are colleges 

(FOR s IN applicants) active(stud_prefs(j)) WITH:= s; END; 

(FOR c IN DOMAIN active I #active(c) > quota(c)) 

(FOR k IN [quota(c) + 1 •• #active]) 
$ drop all 'over quota' applications 

applicants WITH := active(c)(k); $ return student to 
$ applicants pool 

END FOR k; 

active(c) :• pref_sort(active(c),coll_pref(c));$ re-rank all 
$ who have applied 

active{c) := active{c)(l •• #active(c) MIN Quota{c)); 

END FOR c; 

IF (applicants := 
RETURN active; 

END IF; 

END FOR j; 

$cutback active list 

{s IN applicants I #stud_pref(c) > j}) = 
$ pattern of assignments is complete 

{ } THEN 

------ --- ------------------ ---------------
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END PROC assign; 

This procedure invokes an auxiliary procedure -pref_sort(t,p.ref)-, which 
sorts a tuple tin decreasing order of the pattern of preferences defined by 
the Boolean-valued map -pref-. We leave it to the reader to develop this 
procedure. See Exercise 11.11.19 for an additional hint. 

11.4 A Text Preparation Program 

Text preparation programs aid in the preparation of printed material by 
arranging text in attractively indented, justified, centered, and titled 
paragraphs and pages. You may well have used some utility program of this 
type: they are commonly; available under such names as SCRIPT,' RUNOFF, 
ROFF, etc. In this section, we will describe the internal structure of a 
somewhat simplified version of such a program. 

Our program, which we will call PREPARE, accepts source text containing 
imbedded command lines as input, _and reformats the text in the manner 
specified by the command lines. Command lines are distinguished from text 
lines by the fact that the former start with a period as their first 
character, and by the fact that this initial character is followed by a few 
other characters signifying one of the allowed PREPARE commands, as listed 
below. In its ordinary mode of operation, PREPARE collects words from th~ 
text it is formatting, and fills up successive lines until no additional 
words will fit on the line being filled. Then the line is right justified 
and printed. However, commands can also be used to center a line, and lines -
can be terminated without being filled (we call this action a 'break'). 
Text can also be arranged in several special 'table' formats, as described 
below. 

The PREPARE program treats any unbroken sequence of non-blank 
characters as a word. An 'autoparagraphing' feature, which causes every 
text line starting with a blank to start a new paragraph, is also available. 
Margins and spacing are controllable by commands. A '.LIT' command, which 
causes following text to be printed exactly as it stands, is available to 
over-ride the normal reformatting action of PREPARE. Facilities for 
automatic numbering of sections and subsections are also available. If the 
activity of PREPARE discloses inconsistencies or errors in the commands 
presented to it, a file of diagnostic warnings is printed. 

The formatting commands supported by PREPARE are listed below. 
However, it will be easier to read these commands if you keep in mind ihe 
fact that they sense and manipulate the following variables, which are 
crucial to PREPARE's activity: 

variable name 

Page_horizontal 
Page_vertical 
Spacing 

Left_margin 
Right_margin 
Old_margins 

meaning 

horizontal width of paper 
number of lines on page 
current spacing of lines; 1 = single spacing 

current indentation for left margin 
current right indentation for right margin 
saved prior values of margins 
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Current_line 
Fill 
Justify 

Line_count 

line of output text currently being built up 
controls collection of words into current_line 
switch controlling right-justification of output 
lines 
counts number of Lines output so far on 
current page 

Page_number_stack 
Nuinber_pages 

stack of page and subpage numbers 
switch for page numbering 

Header number_stack 
Title 

stack of section and subsection numbers 
current page title 

Subtitle 
Chapter_number 

!Current page subtitle 
I current chapter number 

The following commands $uppported by the PREPARE system are as follows: 

.BR (break) 

causes a bteak, i.e. the current line 
no justifi~ation, and the next word of 
be placed .t the beginning of the next 

will be output with· 
the source text will 
line. 

! 

.s n (skip) 

.B n 

.FG n 

.In 

causes a B'EAK after which n is multiplied by the number of 
spaces between lines. The result is the number of lines 
skipped. ~utput is advanced to the top of the next page if 
there is *o room on the current page. The parameter n can 
also have, negative value. Thus, a final footnote can be 
set by ai command such as .SKIP -5. 

(blank lires) 

causes thelcurrent line to be o~tput with no justification, 
skips n 1tne spaces, and then starts output of the current 
source text. n can be negative to move the line n lines 
from the tnd of the page. BLANK is like SKIP, except that 
the space ~o be left is independent of line spacing. 

I 

(figure) I 

y 

leaves n l~nes blank to make room for a figure or diagram. 
If fewer tthan n lines remain on the current page, text 
continues o fill this page. Then the page is advanced and 
n blank 11 es are left at the top of the next page. 

(indent) 

causes a BREAK and sets the next line to begin n spaces to 
the right of the left margin. The parameter n can be 
negative to allow beginning a line to the left of the 
left margin. However, a line cannot begin to the left of 
column O. 
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.P n, v, t (paragraph) 

causes a BREAK and formats the output paragraphs. The para­
meter n is optional and, if present, sets the number of 
spaces the paragraph is to be indented. The default value 
for n is 5 (n can also have a negative value). v is 
th~ vertical spacing between paragraphs. v can range from 
0 to 5. (1 denotes single spacing, 2 double spacing, 
etc.) t causes an automatic TEST PAGE (see the TEST PAGE 
command). 

.c n;text (center) 

causes a BREAK and centers the following text in the source 
file. The centering is over column n/2 independent of the 
setting of the left and right margins. If n is not given, 
it is assumed to be the page width. 

.NT text (start indented note) 

starts an indented note. This command BLANKS 2, reduces 
both margins by 15, centers the text (if no text is given, 
it centers the word "NOTE"), and then BLANKS 1. At this 
point there follows the text of the note • 

• EN (end indented note) 

terminates a NOTE command, BLANKs 2, and reverts the 
margins and spacing modes to their settings before the last 
NOTE command • 

• PG (new page) 

causes a BREAK and an advance - to a new page. If the 
current page is empty, this command does not advance the 
page. Just like an automatic page advance, this command 
adds the title (if given) and page numbers on every page • 

• TP n (text page) 

causes a BREAK followed by a conditional page advance. It 
skips to the next page if fewer than n lines are left on 
the page. Tbis feature serves to ensure that the following 
n lines are all output on ~he s~me page. This command has 
the form t as an optional argument to the PARAGRAPH 
command • 

• NM n (restart page numbering) 

starts page numbering. P~ges are normally numbered so there 
is no reason to issue this command unless page numbering 
is disengaged. If resumption of page numbering is desired at 
a certain page, specify n. 
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.NNM (suspend pagenumbering) 

disengages page numbering. However, pages continue to be 
counted, so that the normal page number can appear if page 
numbering is re-entered with the NUMBER command. 

.CH text (start chapter) 

starts a new chapter using the text as the title of the 
chapter. This command acts as if the following command 
string were entered: 

.BREAK;.PAGE;.BLANK 12;.CENTER CHAPTER n 

hen is incremented by 1 automatically. After the CHAPTER 
n is typed on the page, 

.BLANK 2;.CENTER;text;.BLANK 3 

occurs. This command then resets the case, margins, 
spacing, and justify/fill modes. It also clears any 
subtitles and sets the chapter name as the title • 

• NC n (set chapter number) 

supplies a number (n) to be used in a subsequent CHAPTER 
command. NUMBER CHAPTER would be used when a chapter of a 
document occupies a source file of its own. In such a 
case, NUMBER CHAPTER would be the first command of the 
source file • 

• T text (define title) 
takes the remaining text as the title and outputs it on 
every page at line o. The default is no title. If a title 
is desired, this command must be entered in the source 
file. 

.FT text (define first title) 

Same as TITLE, but used to specify the ~itle to be printed 
on the first page of the document. This command must 
precede all text in the source file. Use of the FIRST 
TITLE command is the only way to print a title line on the 
first page of the document. 

.ST text (define subtitle) 

takes the remaining text as the subtitle and outputs it on 
every page. A subtitle appears directly under the page 
title. The subtitle is not indented, but indentation can 
be achieved by typing leading spaces • 

• SP (start subpage numbering) 

executes a PAGE with page numbering suspended. The page 
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.ESP 

number is unchanged, but letters are appended to the page 
number. This permits insertion of additional pages within 
an existing document without changing the ex~sting page 
numering. 

(end subpage numbering) 

disengages the SUBPAGE command by executing a PAGE co~mand 
with page numbering resumed • 

• HD (switch page titling on) 

causes the page header (title, subtitle, and page number) 
to be printed • 

• NHD (switch page titling off) 

causes the page header (title, subtitle, and page number) 
to be omitted. The header lines are completely omitte4, so 
that text begins at the top of the page with no top margin • 

• J (switch on line justification) 

Causes a break and sets subsequent output lines to be 
justified (initial setting). The command increases the 
spaces between words until the last word exactly meets the 
right margin • 

• NJ (switch off line justification) 

Causes a break and prevents justification of subsequent 
output lines, allowing a ragged right margin • 

• F (switch on line filling) 

Causes a break and specifies that subsequent output lines 
be filled. Sets the justification mode to 
that specified by the last appearance of JUSTIFY or 
NOJUSTIFY. FILL adds successive words from the source text 
until addition of one more word would exceed the right 
margin, but stops before putting this last word in • 

• NF (switch off line filling) 

disengages the FILL and JUSTIFY modes. This command is 
used to permit typing of t~bles or other manually formatted 
text • 

• LIT (print following text literally) 

disengages FILL/JUSTIFY to permit printing of text exactly 
as entered in source file • 

• ELI (end literal text) 



THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-13 

used after LITERAL command to re-engage FILL/JUSTIFY • 

• LM n (set left margin) 

sets the left margin ton. Then must be less than the 
right margin but not less than O. The default setting is 
o • 

• RM n (set right margin) 

sets the right margin n. Then must be greater than the 
left margin. The default setting is 60 • 

• PS n.m (set page size) 

sets the size of the page n lines by m columns. 
The default setting is 58 by 60. 

· • SP n (set interline spacing) 

sets the number of spaces between lines. Then can range 
from l to 5. The default setting isl. SPACING l is like 
single spacing on a typewriter and SPACING 2 is like double 
spacing. SPACING 2 puts one blank line between lines of 
text • 

• AP (switch autoparagraphing on) 

causes any blank line or any line starting with a space or 
tab to be considered as the start of a new paragraph. This 
command allows normally typed text to be justified without 
special commands. It does not cause a paragraph if blank 
lines are followed by a command • 

• NAP (switch autoparagraphing off) 

disengages the AUTOPARAGRAPH mode. 

We now proceed to give SETL code for our text preparation system. 

Program prepare; 

Var 

Page_horizontal, 
Page_vertical, 
Spacing, 
Paragraph_spacing, 

Left_margin, 
Right_margin, 
Old_margins, 

Auto_paragraph, 

$ text preparation program 

$ global variables 

$ horizontal width of paper 
$ vertical length of paper 
$ current spacing of lines 
$ current spacing between paragraphs 

$ current indentation for left margin 
$ current right indentation for right margin 
$ old margin settings 

$ switch which controls 'autoparagraphing' 
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Current_line, 

Justify, 

Fi 11, 

$ line of output currently being built up 

$ controls right-justification of 

Line_count, 

Page_number_stack, 
Header_number_stack, 
Number_pages, 

Title, 
Subtitle, 

Print_header, 
Chapter_number; 

$ output lines 
$ controls automatic filling of output 
$ lines 

$ counts number of lines written so far 
$ to current page 

$ stack of page and subpage numbers 
$ stack of section and subsection numbers 
$ switch for page numbering 

$ current page title 
$ current page subtitle 

$ switch controlling printing of header 
$ current chapter number 

CONST Legal_ops = $ Legal commands of PREPARE system 
{BR,S,B,FG,I,P,C,NT,EN,PG,TP,NM,NNM,CH,NC,T,FT,ST, 

SP,ESP,HD,NHD,J,NJ,F,NF,LIT,ELI,LM,RM,PS,SP,AP,NAP}; 

CONST Cause_new_line= $ commands which advance immediately to a new line 
{BR,S,B,I,P,C,NT,EN,PG,TP,CH,J,NJ,F,NF,LIT,ELI,LM,RM}; 

$******MAIN PROGRAM OF THE TEXT PREPARATION SYSTEM******** 

initialize; $ initialize all global variables, determine input and 
$ output files 

$ After initialization, we simply enter a loop which adds new words to the 
$ current_line as long as input text is available. All other respect to 
$ commands, as well as options such as printing of unfilled 
$ lines, printing of text 
$ in its literal form, etc. is handled inside the procedure 
$ that supplies words to this loop. 

(WHILE (word:= next_word( ))/=OM) 

spaces := Spaces_remaining-1; 

IF (Spaces_remaining -:= (#word+ 1)) < 2 THEN$ line will be printed 

$ We resort to hyphenation only if there are 
$ less than two words on the current line. In this case, the current 
$ word is hyphenated to fill the current line, and we print as 
$ many lines as necessary to digest the 'word' we now 
$ have, which may be very long. 

IF #Current_Line < 2 THEN$ fill line with piece of word 
Current Line WITH:= (len(word,spaces) + '-'); 

END IF; 
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output{justified(Current_line)); 

$ Now we handle possible 'extremely long' words 

(WHILE #word> (Right_margin - Left_margin - 3)) 

IF (part:= Len(word,Right_margin - Left_margin))/•OM THEN 

output(part(l •• #part - 1) + '-'); 
word := part(#part) + word; $ restore first character 

ELSE$ otherwise output the whole remainder of the word 

output(word); 
word:=''; 

END IF; 

END WHILE #word; 

$ now we restart the current_line with what remains 
$ of the unpleasantly long word 

Current_line:= IF word•,, THEN [ ] ELSE [word] END; 
Spaces_remaining :• Right_margin - Left_margin 

- IF word=,, THEN O ELSE #word+ 1 END; 

END IF; $ i.e., END IF (spaces - remaining etc •••• 

$ otherwise we just pack one more word into the Current_line. 

Current line WITH:• word; 
Spaces_remaining -:• (#word+ l); 

END WHILE; 

$ We reach this point only when the whole input text has been 
$ processed. The final line is output, and error messages are 
$ dumped. 

break; 

finalize; 

$******END OF MAIN PROGRAM***** 

PROC handle_command(command_tuple); $ command interpreter 

$ This command interpreter handles all PREPARE 
$commands.Like most interpreters, most of its body consists of 
$ a single large CASE statement. Commands will have been pre-validated 
$ when this procedure is called 

[op,pl,p2] :• command_tuple; $ unpack the command and its parameters 
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IF op IN Cause_new_line THEN 
output(unjustified(current_line)); 

END IF; 
$ output line without justification 

CASE op OF 

$ First we handle all commands which simply reset 
$ one or more internal global variables of the PREPARE system. 

(BR): $ break command 

RETURN; $ nothing more to do for this command 

(I): $ indent command 

IF Old_margins = OM THEN 
Old_margins := [Left_margin,Right_margin]; $ save old margins 

ELSE 
[Left_margin,Right_margin] := Old_margins; $ restore old margins 

END IF; 

Left_margin:= (Left_margin + pl) MAX l MIN (Right_margin - 10); 

(NM): $ resume page numbering 

Number_pages := TRUE; 

(NNM): $ suspend page numbering 

Number_pages := FALSE; 

(NC): $ Supply chapter number 

Chapter_number := p2; 

(T): $ title 

Title := p2; $setup title 

(ST): $ Subtitle 

subtitle := p2; $setup subtitle 

(SP): $ start subpage 

$ This command starts a new (stacked) level of subpage numbering, 
$ allowing subpages to follow pages, etc. without disturbing the 
$ overall prior page numbering 

page; $ output current page 
page_number_stack WITH:= l; $ start sequence of subnumbers 

(ESP): $ end subpage 
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page; $ output current page 

IF #Page_number_stack > 1 THEN$ drop one page level 
junk FROME Page_number_stack; 

END IF; 

(HD): $ print page headers 

Print_header := TRUE; 

(NHD): $ don't print headers 

Print_header :• FALSE; 

(J): $ start justification 

Justify := TRUE; 

(NJ): $ end justification 

Justify := FALSE; 

(F): $ start filling lines 

Fill :=- TRUE; 

(NF): $ stop filling lines 

Fill :• FALSE; 

(LIT): $ suspend fill and justify 
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Fill_j_save :• [Fill,Justify]; $ save settings of fill and justify 
$ flags 

Fill:• Justify:• FALSE; 

(ELI): $ resume fill and justify 

[Fill,Justify] :• Fill_j_save; $ restore previously saved settings 

(LM): $ set left margin 

Left_margin :• p2 MAX 1 MIN (Right_margin - 10); 

(RM): $ set right margin 

Right_margin :• p2 MIN Page_horizontal MAX (Left_margin + 10); 

(SP): $ set spacing 

Spacing:• p2 MAX 1 MIN 5; 

(AP): $ start autoparagraphing 

Auto_paragraph :• TRUE; 
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(NAP): $ End autoparagraphing 

Auto_paragraph :• FALSE; 

$ Next we handle the few remaining commands which involve 
$ some sort of special action 

(S): $ skip n lines, with spacing 

blankout((p2 MAX 0) * Spacing); 

(B): $ skip n lines, without spacing 

blankout(p2 MAX O); 

(FG): $ leave lines blank for figure, on this page or next 
TO BE SUPPLIED 

(P): $ set paragraph spacing 
TO BE SUPPLIED 

(C): $ Center text 
TO BE SUPPLIED 

(PG): $ Start new page if current page is not empty 

IF Line_count > 1 THEN page; END; 
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(TP): $ start new page if less than p2 lines remain on current page 

IF Line_count + p2 >= Page_vertical THEN page; END; 
TO BE COMPLETED 

END PROC handle_command; 

PROC page; $ page advance procedure 

$ This procedure puts out a line containing a page advance character, 
$ then the page number the title 
$ and the subtitle if these are switched on. After this, the current 
$ line number 18 re-~n~tia1~zed appropriatedly (automatically, by 
$ the action of -output-); 

puta(Output_file,Page_advance); 

Line count :• l• - , 

IF Number_pages THEN$ build up first line with page number 

pageno_line :• 'PAGE '+/[STR pno + '.': pno. 
pageno_line :• page li (1 no_ ne •• pageno line-I); 
pageno_line :• PAD( ?????? CMPLETE THIS) 

Page_number_stack(i)]; 
$ drop last character 
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output(pageno_line); output(''); 

END IF; 

IF Print_header THEN 
output(Title); output(Subtitle); $ output title and subtitle 
output $ print blank line 

END IF; 

END PROC page; 

PROC output(line); $ output utility 

$ This is the main output procedure of the PREPARE program 
$ It sends a line, prefixed by blank, to the output medium, 
$ and then counts up the number of lines sent to the page. If 
$ the page is full a new page is started. The line is padded out, 
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$ to give the correct left margin, and over-long output is trimmed. 

(FOR j IN [l •• spacing]) 
puta(Output_file,line); 
line :=' '; $ print blank line 

Temp_left_margin := Left_margin; $ reset margin in case 
$ of autoparagraphin~ 

IF (Line_count +:= 1) >• Page_vertical THEN page; END; 
END FOR; 

END PROC output; 

PROC break; $ auxiliary end-of-line procedure 

IF Current_line • [ ] THEN RETURN; END; $ No output if line empty 

output(unjustified(Current_line)); $ output without justification 

Current_line :• [ ]; 

END PROC break; 

PROC unjustified(line); 

$ empty current line 

$ converts tuple to string 

RETURN' '+ [wd +' ': wd IN line]; 

END proc dont_justify; 

PROC initialize; $ parameter and file name 
$ initialistion routine 

$ This procedure init~alizes all global variables and determines 
$ the names of the input and output files. 

Page_horizontal :• 60; $ default characters per line is 60 
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Page_vertical := 58; $ default lines per page is 58 

Spacing:= 1; $ single spacing is default 
Paragraph_spacing : = 1; $ Single ex_tra spaces between paragraphs 
Left_margin := 5; Right_margin := Page_horizontal - 5; $ default margins 

Old_margins := OM; $ initially, old margins are undefined 
Auto_paragraph := Fill := Justify := TRUE; 

Current_line := ''; 
Page_number_stack := 
Line - count := l; 

$ all these options are initially switched on 

$ initially, current line is empty 
[11; $ initially, on first page 

$ start page at first line 

Number_pages := TRUE; $ page numbering switched on is default 
Header number stack := [ ] ; $ initially, no sections or subsections 
Title:= Subtitle := ''; $ initially no title or subtitle 

Print_header := FALSE; 
Chapter_number := O; 

$ headers not printed unless switched on 
$ will advance with each chapter 

Input_file := getspp('PI = PREP.IN/PREP.IN'); $ find input file 
Output_file := getspp('PO = PREP.OUT/PREP.OUT'); $ find output file 

END PROC initialize; 

PROC get_next_line; $ line reader 

$ This procedure reads in the next line of the input file, detects 
$ commands, and handles the 'nofill', 'lit', and autoparagraphing 
$ features. 

get_data: geta(Input_file,line); $ get a line 

$ First we handle The 'nofill' feature. If -Fill- is false, 
$ we output and clear -Current_line-, either justified or not 

IF NOT Fill THEN 
output(IF Justify THEN justified(Current_line) 

ELSE unjustified(Current_line) END); 
Current line : = [ ] ; $ clear current line 

END IF; 

IF EOF THEN RETURN OM; END; $ End of input 

IF match(line_copy,'.') /= OM AND 
(cmd := break(line_copy,' ') ? line_copy) IN legal_ops THEN 

?????? FILL IN 

ELSEIF(command_tuple := command_check(cmd,line_copy))/=OM THEN 
handle_command(command_tuple); 

END IF; 

IF end= 'LIT' AND command_check(cmd,line_copy) /= OM THEN 
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$ We enter literal mode, and output lines 
$ until an .ELI terminator is encountered 

break; $ terminate prior line 

LOOP DO 

geta(Input_file,line); 

IF EOF THEN RETURN OM; END; 

IF match(line, '.ELI' )/=OM THEN QUIT; END; 

output(line); 

GOTO get_data; $ try again for a data line 

END IF;. 

IF Auto_paragraph AND line{l) =' 'THEN paragraph; END; 
$ handle Auto-paragraph feature 

spaces := spaces_remaining-1; 

RETURN line; 

END PROC get_next_line; 

PROC next_word; $ supplies next word of text 

{UNTIL Input_line • OM) 

IF span(Input_line, ' ') /• OM THEN CONT; END; 
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IF (wd :• break(Input_line,' ')) /• OM THEN RETURN wd; END; 

IF {line :• Input_line) /• ' 'THEN 
Input_line •' '; 
RETURN line; 

END IF; 

Input_line :• get_next_line( ); $ read in next line 

END UNTIL; 

END PROC next_word; 

PROC command_check(cmd,line_copy); $ breaks command out of line 

$ This procedure also checks commands having parameters for 
$ parameter validity, and converts parameters to internal form 
$ where necessary. 
$ In the following map, the symbol I designates an integer, Jan 
$ optional integer followed by a semicolon, s a string. 
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CONST parm_descript =$map defining parameters expected with 
$ command 

{ [ S , I] , [ B , I] , [ FG, I] , [ I , I] , [ P, I I] , [ C , JS ] , [NT, S] , 
[TP,I], [NM,I], [CH,S], [NC,I], [HL,IS], [ST,S], [LM,I], 

[RM, I] , [PS , I I] , [SP, I] } ; 

cmd_tup := [cmd]; $ initialize command tuple 

IF (parm_stg := parm_descript(cmd)/• OM THEN 

(FOR· p IN parm_stg) 
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IF (parm := parm_check(p,line_copy)= OM THEN RETURN OM; END; 
cmd_tup WITH:= parm; 

END FOR; 

END IF; 

SPAN(line_copy,' '); $ span off possible blanks at end of line. 

IF line_copy /= ' 'THEN 
error('EXCESS PARAMETERS ON COMMAND_LINE',line_copy); 
RETURN OM; 

END IF; 

RETURN cmd_tup; 

END PROC command_check; 

PROC parm_check(pdes,RW line); $ parameter breakout and check 

$ This procedure breaks a single parameter of a designated kind 
$ out of its -line- parameter, and converts this parameter to 
$ internal form. If a required parameter is not found, then 
$ OM is returned. If an optional parameter is not found, then a 
$ default is supplied. 

SPAN(line, ' '); $ span off initial blanks 

CASE pdes OF$ see the description of check codes in -command_check­

(I): $ required integer 

RETURN integer(line); 

(J): $ optional integer, followed by semicolon 

IF (int := integer(line)) = OM THEN RETURN OM; END; 

SP AN ( 1 in e , ' ' ) ; 

RETURN IF NOT MATCH(line,';') THEN OM ELSE int END; 

(S): $ string. just span off trailing blanks 
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RSPAN(line,' '); 

RETURN line; 

END CASE; 

END PROC_ parm_check; 

.PROC integer(RW line); $ span off signed integer and converts 

IF (parm :• SPAN(line,'-O123456789')) • OM 
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OR line • ,_, OR EXISTS c • line(i) I c • ,_, AND i > 1 THEN 
RETURN OM; 

END; 

RETURN IF MATCH(line,'-')/= OM THEN -VAL line ELSE VAL line END; 

END .PROC integer; 

PROC paragraph; $ paragraphing procedure 

$ This procedure performs a break and then outputs a number of 
$ empty lines equal to the current inter_paragraph line spacing. 

break; 

blank_output(Paragraph_spacing); 

END PROC paragraph; 

PROC blank_output(nlines); $ outputs blank lines or advances page 

$ This procedure outputs -nlines- empty lines if they will 
$ fit on the current page. If not, then the rest of the page 
$ is left blank and the page is advanced •. 

(TO BE CONTINUED) 

11.5 An Inventory-Control System 

In this section we will use SETL to represent a fairly typical 
commercial application program, namely an inventory control program which 
could be used to manage inventory and handle a stream of incoming orders for 
a small-to-medium sized firm. The system will also be responsible for 
keeping track of customers, shipments, and bills outstanding, for 
preparation of invoices and dunning letters, and for generation of repo~ts 
requested by management. To organize commercial applications of this sort 
is by no means trivial, and our first task is to fix upon a family of 
concepts which will ease our design task. We begin with two basic notions, 
namely data base and transaction. Initially, we will think of a data base 
simply as a comprehensive collection of maps and other data items used to 
record the current condition of all objects and records significant to the 
firm. (Later in this section, however, we will come to a somewhat different 
and deeper understanding of this concept). 
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A transaction is a patterned change in the data base which reflects 
some event or request of which the system must keep track. Transactions can 
be triggered either exogenously or endogenously. An exogenously triggered 
transaction begins when input data which describes some external event and 
gives all relevant parameters of the event is read from a file or from a 
terminal. In reaction to each such input item, the system must modify the 
data-base in appropriate fashion, and may also need to generate certain­
output documents for printing or display. 

An endogenously triggered transaction begins either when some specified 
time limit expires (as in the case of a dunning; letter sent if a bill has 
remained unpaid for a week), or can be generated internally as a byproduct 
of some other transaction processed by the system. 

The specific example we will consider involves a collection of 
customers, who order various items supplied by the firm. A certain 
inventory of each item supplied is held in stock, and as items are shipped -
these . inventories are drawn down. An automatic reorder level is kept on 
file for each item, and when the inventory of the item falls to this level 
an order for an additional quantity of the item is immediately issued to .the 
firm which supplies the item. 

Customers send in orders, cancellations (of items ordered earlier but 
not shipped), payments, and notifications of lost shipments. Each customer-­
is extended a certain dollar amount of credit, and as long as the value of 
items shipped to the customer but not paid for does not exceed this stated 
amount, additional items are shipped as soon as an order is received. -
However, if a customer exceeds his credit limit, additional orders will not 
be shipped. Instead, a letter informing the customer of his delinquency 
will be generated. Massive over-ordering of this kind will be reported when 
requested by the firm's financial management. 

When a valid order is received and processed, a shipment order is 
generated for all the items which the original order lists. This shipment 
order goes to the firm's warehouse, which attempts to crate and ship the 
items requested. Once this has been is done, the warehouse sends a shipment 
confirmation notice for the items which it has been possible to ship, the 
material shipped becomes billable to the customer, and an invoice is issued. 
If payment is made within 60 days, no additional charge is due. Otherwise a 
surcharge of 1% per month on unpaid balances is levied. A monthly b~ll 
representing unpaid charges is sent. Orders transmitted to the warehouse 
but not promptly confirmed generate follow-up messages and, eventually, 
apologies to the customer. 

Customers can report non-delivery of invoiced items, can return items 
shipped and be credited for the value of these items, and can cancel orders 
for items that have not been shipped. 

When items ordered from suppliers are received by the warehouse, the 
warehouse issues a delivery notification slip noting the arrival of these 
items; this may allow various suspended orders to move forward. The 
warehouse can also issue spoilage reports for given items. Finally, after 
taking physical inventory, the warehouse can indicate the quantity of each 
item that is actually on hand. 



THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-25 

Every transaction entered into the system is issued a transaction 
number which the key entry operator who enters the transaction can copy onto 
the sheet of paper with which the transaction originates. Transactions 
submitted to but rejected by the system are logged in a rejected 
transactions log, which can be printed or examined later to determine the 
reason for the rejection, e.g. mis-keyed data, illegal parameters, etc. 

Clear and error-free implementation of this whole list of transactions 
may at first glance appear to be a forbidding task. To reduce the 
difficulty of an initial attack on the design problem we face in creating 
the required system, we will make use of a powerful programming tool, namely 
the parallel-process extensions to SETL described in Section XXX. Why is 
this appropriate? We can answer this question as follows. Our inventory 
control application, like other commercial application of the same general 
sort, can be regarded as an 'event tracker'. That is, it aims to follow an 
evolving sequence of real-world events (each transaction processed by the 
system notifies it of one such event), and to maintain a model of the 
real-world situation generated by those events. As significant events come 
to its attention, the system is also expected to respond appropriately (e.g. 
by issuing bills and dunning letters, noting payments, etc.) Our inventory 
control system, like all other such systems, must also aim to detect and 
report various kinds of anomalous situations, which either reflect 
'exceptional' real-world occurrences, for example non-delivery of an item 
ordered from a supplier, or which reflect the fact that the inventory 
control program's logic, no matter how carefully worked out, cannot be a 
complete representaion of all possible real-world event sequences. 

If we begin by trying to work out a centralized, single-thread program 
capable of dealing with all the events and situations which can occur in an 
application of this sort, confusion can easily result. The fact that some 
of the consequences of a transaction only take place hours or days after 
processing of the transactions begins is troublesome. Equally troublesome 
is the fact that certain transactions, e.g. transmission of a shipping 
order to the warehouse, saddle us with the responsibility of checking 
periodically for a follow-up transaction _that we must expect, namely 
confirmation of shipment or notification of a out-of-stock condition. 

The programming structure necessary to manage all this is more easily 
comprehended if we decentralize our approach to it. This means that we will 
want to think, not in terms of one central record keeper which must keep 
track of everything, but in terms of multiple processes acting in parallel, 
each of which is responsible for overseeing a single, narrow activity, 
essentially a single transaction and its delayed consequences, from start to 
finish. Using this idea, we use it vigorously: for example, we introduce a 
seperate process for each customer, and also for each supplier, each order, 
and each item supplied. We therefore program as if the firm whose 
operations we are modeling assigned responsibility for all communication 
with a particular customer or supplier to a single (mechanized) account 
representative, who has this responsibility and no other. In the same 
sense, we program as if the firm hired a new junior clerk to process every 
single order received, giving him responsibility only for this one order, 
and discharging him as soon as the order is either shipped or abandoned as 
unfillable. 
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Although it is true that these processes will have to interact, enough 
of what neieds to be done is interaction-free for the introduction of these 
many parallel processes to simplify our approach considerably.· Were this 
not the case, large businesses could never have developed, since in reality 
they do and must make use of numerous employees with simple narrow 
responsibilities and authority, who can in fact transact large volumes of 
the kind of_ business necessary without being overwhelmed by any growing 
requirement to interact. 

In the first programming approach shown below, we give each process a 
responsibility narrow enough for the nature of its activities to remain 
clear. Where interactions complex enough to become troublesome threaten to 
appear, we avoid them by having processes request appropriate services from 
other, logically somewhat more central, processes. Generation of· overall 
summaries of system condition is accomplished by having centrally placed 
processes communicate requests for information to the less centrally placed 
processes which they are responsible for managing. 

From this decentralized point of view, a commercial data base. simply 
records the condition of the numerous parallel processes which exist (mos~ly 
in a state of 'suspended animation') within the world of processes 
collectively constituting the application, plus a few sets and maps which 
hold necessary global information, and which also serve to correlate 
proces~es with the particular activities for which they are responsible. I~ -
the system that we wish to program, the following transactions will be 
supported (capital letters in brackets show transaction codes). 

Open account 
(OA) 

List accounts 
(LA) 

Modify address 
(MA) 

Modify credit 
(MCL) 

Close account 
(CA) 

Record payment 
(P) 

Record return 
(R) 

limit 

Record cancellation 
(C) 

Note loss of 
shipment 

start a new customer account. A unique 
customer identifier, an address string, 
and credit_limit must be supplied. 

print sorted list of all accounts, with customer 
address, credit_limit, credit_remaining, and 
last_payment_date 

revise customer address/telephone number string 

revise customer credit limit 

delete account 

note receipt of payment from customer 

note customer return of portion of previous 
shipment 

note customer cancellation of unshipped portion of 
order 

note that shipment has disappeared in transit, 
and make necessary adjustments 
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(NL) 

Order from 
customer 
(O) 

Note receipt of 
stock 
(RS) 

Note item 
spoilage 
(NSP) 

Note current 
inventory 
(NI) 

Begin stocking 
item 
(BI) 

End stocking 
item 
(EI) 

Change item 
information 
(CSI) 

Enter transaction 
authorization 
(E au) 

End transaction 
authorization 
(KAU) 

Print rejected 
transact ion file 
(PRJ) 

Print customer 
summary 
(PCS) 

Print volume 
summary 
(PVS) 

Print supplier 
(PS) 

note arrival of a new order, check on existence 
of corresponding customer and on credit 
availability 

note arrival of specified item, in quantity k, 
from its supplier. This transaction will 
generate a receipt to be transmitted to the 
supplier, update warehouse inventories, etc. 

adjust recorded inventory of given item to 
reflect spoilage reported by warehouse. 

note inventory as recorded by warehouse 

enter a new item into the catalog of items 
managed by the system. A unique item identifier, 
supplier, price, reorder_level, reorder_amount, 
and initial item stock must be specified. 

delete item from catalog of items supplied 

change item supplier, price, reorder-level, and 
reorder amount 

the name of a transaction and an employee number 
are supplied. This employee becomes capable of 
authorizing transactions of a specified kind. 

the name of a transaction and an employee number 
are supplied. The employee's right to authorize 
transactions of a given kind is cancelled. 

output function: print the file of all 
transactions rejected as illegal since the last 
time that this output operation was performed. 

print status of specified customer, including 
pending orders, and dates and totals of last 
few shipments. 

print total value of shipments, alphabetized by 
customer, for specified period of days prior to 
present. 

print status of specified supplier. 
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Print comprehensive print alphabetized catalog of all suppliers. 
summary of suppliers 
(PAS) 

(MORE SUPPLIER-RELATED TRANSACTIONS ARE NEEDED) 

Having now described the commercial application that we mean to 
program, we go on to describe the processes which we will use to realize it. 
These are as follows: 

(a) For each valid customer, a customer process is created. This keeps 
track of such basic customer-related information as address, telephone 
number, etc., tracks the customer's current credit balance, cred~t-limit, 
etc. and manages all lower-level processes acting on behalf of the 
customer. 

(b) For each valid order, an order process is created. This keeps track of 
the shipment of the order (part of which may be delayed), and notifies the 
relevant customer process of the date and amount of shipmments. Ord~r 
cancellations are handled by these order processes. Order processes hel~ up 
unduly long will send out letters of apology. 

(c) For each item supplied, an item process. This keeps track 
inventory of the item, reorder level, dates and amounts of reorder, 
date of arrival of new supplies. Item spoilage is also noted 
process. 

of the 
expected 
by this 

(d) A master process reads an input file of transactions and routes each 
transaction to the appropriate lower level process. Transactions that 
cannot be handled are posted to a rejected transactions file. 

(e) For each employee, an employee process. This sends each employee a 
periodic report concerning all significant transactions which the employee 
has been reported as authorizing. 

(f) For each supplier, a supplier process, which makes up orders for 
transmittal to the supplier and prints these orders daily. The code for the 
inventory-control system described in the preceeding pages begins here. 

PROC master; $ the master process 

LOOP DO 

AWAIT (transaction/= OM); $ we assume for simplicity that the 
$ transaction is given as a tuple 

IF (p := proc_handling(transaction)) = OM THEN CONTINUE; END; 
$ bypass transactions failing initial check 

CASE tc := transaction(!) OF$ tc is the transaction code 

(OA) : $ open a new account 

result := new_account(transaction); $ 'result' may report an 
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$ error checked for below. 

(LA): $ list all accounts 

report_vector := -{--{[rpt := report(p),id] ,rpt(l)J: 
p • customer_process(id)]; 

print_report(sort(report_vector)); 

(MA): $ modify address 

p.address := transaction(4); $ set address value of customer 
$ process 

(MCL): $ modify credit limit 

p.cred_lim := transaction(4); $ set credit limit value of customer 
$ process 

(CA): $ close account 

$ This rather delicate instruction is transmitted to a 
$ appropriate user process, which proceeds to commit 
$ suicide in an orderly fashidn. 

p.work WITH:• DIE; $ instruction to close up shop 
proc_of(transaction(XACCOUNT)) :• OM; 

$ eliminate account number 

(P,R,C,NL,O): $ payment, return, cancellation, loss of shipment, 
$ order: handled by customer processes 

p.work WITH:• transaction; 

(RS): $ note receipt of stock: handled by supplier process 

IF (p :• supplier(transaction(2))) • OM THEN$ item not 
$ stocked 

print_return_order(transaction); 

ELSE 
p.work WITH:• transaction; 

END IF; 

$ signal warehouse to 
$ return shipment 

(El): $ delete it~m from catalog of items supplied 

item_of(transaction(XITEM) :• OM; $ remove from catalog 
p.work WITH :• DIE; $ send termination command 

(CS!): $ change supplier for item 

(TO BE SUPPLIED) 

(NSP,NI): $ take note of spoilage reported by warehouse, 
$ note actual inventory 

$ These are passed along to the item processor 
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(BI): 

p.work WITH := transaction; 

$ begin stocking item 

$ This begins by checking the validity of the indicated 
$ supplier. If invalid, the transaction is rejected; 
$ Otherwise an item proscess is created; the supplier, 
$ price, reorder_level,reorder_amount, and initial item 
$ stock are passed to this process 

(TO BE SUPPLIED) 

(EAU): $ enter transaction authorization 
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authorizations WITH := [transaction(Xauth + 1 •• Xauth + 2), 
transaction(Xauth)]; 

(KAU): $ end transaction authorization 

authorizations LESSF := transaction(Xauth + 1 •• Xauth + 2); 

(PRJ): $ print rejected transaction file 

print_rejected(bad_transacts); 
bad_transacts := [ ]; $ restart file 

(PC): $ print status of specified customer: handled by; 
$ customer process 

p.work WITH:= PC; 

(PVS): $ print total value of shipments, alphabetized by 
$ customer for specified period of days prior to present 

(TO BE SUPPLIED) 

END CASE; 

END LOOP; 

END PROC master; 

PROC customer; $ the customer process 

LOOP DO 

AWAIT work/= [ ] ; $ wait for work to turn up 
transaction FROMB work; 

CASE tc := transaction(l) OF 

(P): $ note receipt of payment 

balance+:= transaction(4); $ increment the recorded balance 
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(R): $ note customer return of part of previous shipment 
$ all items returned must be credited and added to inventory 

(FOR [item,no] IN transacton(4 •• )) 

IF(ip := item_proc(item))/=OM THEN 
balance+:= ip.cost * no; $ increment recorded balance 
ip.work WITH := [R,no]; $ post to ip for inventory revision 
ELSE$ return of item no longer stocked 

post_bad([transaction,item,'NOT STOCKED'); 

END IF; 

END FOR; 

(NL): $ note customer claim of non-delivery 

$ here we check total amount of non-delivery claimed this 
$ year, comparing it to dollar volume shipped. If this 
$ exceeds 1%, extra authorization is required to accept 
$ the transaction 

[total,not stocked] := total_of(transaction); 

IF (new_nondel := non - delivered_value + total) * 100 
> volume_shipped 

AND NOT strong_authorization(transaction(2)) THEN$ reject 
post_bad( [transaction, 0], 'EXCESSIVE NON-DELIVERY'); 

ELSE 
non_delivered_value := new[nondel; 
balance+:= total; $ credit customer for return 
post_bad([transaction,not_stocked],'NOT STOCKED'); 

END IF; 
(0): $ process an order 

$ 
$ 
$ 
$ 

We verify that the orders pending plus the balance 
outstanding do not exceed the customer's credit limit. 
If this condition is met, we create an order processor to 
handle the order; if violated, the order is simply handed 

$ on for retry. 
[total,not_stocked] := total_of(transaction); 
IF (orders_pending + balance+total) <= credit_limit THEN 

order_pending +:= total; 
orders_going WITH :a NEW order(transaction, total, 

not-stocked,SELF); 
ELSE 

retryer.work WITH := transaction; 
END IF; 

(S): $ process shipment 

$ Shipment notification consists of the order_number items 
$ shipped quantitites, and prices. This transaction is 

---- --- ----------------------
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$ executed once each day. 

print_invoice(address,shipment_list); 

(TO BE CONTINUED) 

PROC order(transaction,estimated_total,not_stocked,cust_proc); 

$ The order process 

$ This process oversees a single order until it has 
$ either been fully shipped, or cancelled, 
$ or until it has been posted as bad because of 
$ lack of response from the warehouse 

(TO BE CONTINUED) 

PROC total_of(transaction); $ auxiliary process to check a 
$ list of items ordered for validity 

total := O; $ total cost of items ordered 
not_stocked := [ ] $ items not stocked 

(FOR [item,no] IN transaction(first_data)) 

IF(ip := item_proc(item)) /= OM THEN 
total:= ip.cost * no; $ increment total 

ELSE 
not stocked WITH := item; 

END IF; 

END FOR; 

RETURN [total,not_stocked]; 

END PROC total_of; 
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Since we have used multi-process primitives to represent the inventor 
control application shown in the preceding pages, our approach to thi 
application makes use of programming-language facilities that are· not 
ordnarily available. To remove the sting from this objection, we will nou 
reprogram the application in a manner which avoids the use of paralle 
process facilities and can be used in an ordinary 'batch' environment. In 
this alternative representation, a data-base in the ordinary sense, that is, 
a family DB of sets and maps, is used to represent what would otherwise b 
the collection of states of all processes active in the system at any givE_ 
moment. When possible, we call a procedure to accomplish an action 
immediately rather than some subsidiary process to perform the actior 
Where this is not possible, we post the necessary request to a workpile c: 
pending requests, which is digested when no more pressing work remains • 
Requests to inititate an activity at a later time are simply written out to 
a final master file which the system creates at the end of each batch ru1. 
This file consists of two parts, a first being the collection of accumulat~J 
requests to initate activities during later runs, and the second being a 
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full copy of the data-base DB. Use of this file gives our second version of 
the inventory control system the processing pattern the manner typical for 
commercial batch processing, namely run of the system applies a file, of 
transactions thereby a master file thereby producing an updated master file. 

11.6 A Turing-Machine Simulator 

Turing machines, named after the famous English mathematician and 
computer scientist Alan Turing, are the most elementry kind of computer; so 
elementary that they are not used in any practical way, but merely serve as 
idealized models of computation at its simplest. Used in this way, they 
play an important role in theoretical investigations of the ultimate. limits 
of computability. A significant fact about these very simple computing 
mechanisms is that they can be programmed to imitate the action of any other 
computer, for example, a Turing machine can be programmed to take the text 
of any SETL program and print out its result. 

Turing machines consist of two basic parts: a tape and an read-write 
head. The tape is simply a linear array of squares, infinite in both 
directions. In a tape square, the automation can print any character chosen 
from a finite collection called the tape alphabet of the Turing machine. 
All but a finite number of squares on the tape are always blank. At the. 
start of each cycle of operation of the Turing machine, its read-write head 
is positioned at one of the tape squares, and is in one of a finite 
collection of possible internal states s. The read-write head then reads 
the character c held in the square at which it is positioned and performs 
three actions, all determined by the character c which has just been read 
and the internal states of the read-write head: 

(i) some new character c' is written into the tape square at which the 
read-write head is positioned, replacing the character c that was there; 

(ii) the read-write head passes into a new internal states'; 

(iii) The read-write head moves either one step right, one step left, 
or remain where it is. 

Plainly, these actions of the Turing machine can be defined by a map 
action(c,s), whose two parameters are a tape character c and an internal 
states, and whose value is a tuple [c',s',n'J, consisting of the tape 
character c' that will over-write c, the new internal states' of the 
read-write head, and an indicator n of the direction of head motion, which 
must be either +l (move right), -1 (move left), or O (don't move). 

The following procedures read in the description of a Turing machine, 
check this description for validity, read in the initial contents of the 
Turing machines's tape, and then proceed to imitate its actions. The tape 
is represented by a tuple -tape- whose j-th component is the character 
written in the j-th square. Blank squares contain the blank character. The 
Turing machine stops when it reaches an internal state s such that 
action(c,s) is undefined. We assume that the Turing machine description 
read in initially is a set of quintuples [c,s,c',s',n'], each representing 
an action- map entry [[c,s],c',s',n]. This description is checked to verify 
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that the action map it describes is really single-valued. The auxiliary 
procedure -print_tape- prints the contents of the Turing machine tape after 
each cycle of operation. 

PROGRAM Turing_simulate; $ Turing machine simulator 

IF (atps := read_check( )) = OM THEN RETURN; END; 
$ illegal specification 

[action, tape, position, state] := atps; 
$ unpack action table, initial tape, initial position, and 
$ initial state 

(WHILE (act := action(tape(position),state)) /= OM) $ until stop 

[tape(position),state,n] := act; $ write new character to tape, 
$ and change internal state 

IF (position+:= n) < 1 THEN 
tape := (' '] + tape; 
position := l; 

ELSEIF position > #tape THEN 
tape WITH:= ' '; 

END IF 

print_tape(tape,position); 

END WHILE; 

$ moved left to brand-new square 
$ add blank square at left 
$ and adjust position pointer 
$ moved right to brand-new square; 
$ add blank at right 

print('Simulation ended. Character and state are:', 
tape(position),state); 

END PROC Turing_simulate; 

PROC read_check; $ reads and checks action table, tape, 
$ initial position, and initial state 

MACRO check(condition,message,quantity); $ utility macro for 
$ input-condition checks 

IF NOT condition THEN 
print(message,quantity); $ print diagnostic message and offending· 

$ quantity 
RETURN OM; $ as indication of error 

END IF; 
ENDM; 

read(actuples,tape,position,state); 
action := { [ [c,s] ,c2,s2,n]: [c,s,c2,s2,n] IN actuples}; 

(FOR im = action{cs} I #im > 1) $ action is not single valued 

print; 
print('action is indeterminate in condition',cs); 
print('actions could be:'); 
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(FOR [c2,s2,n] IN im) 
print(c2,s2,n); 

END FOR; 

print; 
END FOR; 

RETURN OM; $ as indication of error in action table 

check((bad_cs :• {cs: (c2,s2,n] • action(cs) 
I n NOTIN {-1,1,0}}) • { }, 
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'Illegal tape-motion indicators occur for conditions:',bad_cs); 

check(is_integer(position),'Illegal initial position:',position); 
check(is_tuple(tape),'Illegal inital tape:',tape); 
check(FORALL t•tape(i) I IS_STRING(t) AND #t•l, 

'Illegal initial tape', tape); 

$ now add extra blanks to the initial tape if necessary 

IF position> #tape THEN $ extend tape with additional blank squares 
tape+:• (#tape - position)* [' ']; 

ELSEIF position< 1 THEN$ add extra blank squares to left 
tape:• (1 - position)*[' ']; · 
position:• l; $ adjust index of position on extended tape 

END IF; 

RETURN [action,tape,position,state]; 

END PROC read-check; 

PROC print_tape(tape,position); $ Turing machine tape print utility. 

$ This procedure is used to display the state of the Turing machine 
$ tape at the end of each cycle of simulation 

CONST sq•l8, hsq•9; $ one fourth and one eigth screen size 
CONST screen_aize • 72; $ number of characters on terminal 

topline :• screen_aize * ''; topline (4*hsq+l ••• 4*hsq+4):•'****'; 
hotline :• screen_size * '-'; 
tape_string :• hsq *' '+/tape+ hsq *' '; 

$ Convert tape to string and pad with blanks. 
tape_string :• tape_string(position - hsq •• position+ hsq-1); 
picture :• +/('1 '+ t +' ' : t IN tape_string]; 
picture(!) :•' '; $ Remove first vetical bar. 
print; print(topline); print(picture); print(botline); 

END PROC print_tape; 

END PROG Turing_simulate; 

11.7 'Huffman Coding' .21. Text Files 
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The standard 'ASCII' alphabet of computer characters contains 256 
characters, each of which is represented at the internal machine level (see 
Section 9.3.2) by a sequence of 8 binary 'bits' (i.e., zeroes and ones). If 
large volumes of English-language text need to be stored, this internal 
coding, which uses just as much computer memory space to represent a rare 
character like 'Z' as to represent a common character like 'e', is by no 
means optimal. It is better to represent frequently occuring characters by 
shorter sequences of bits, even though this forces one to lengthen the 
internal encoding of less frequent characters, since overall this will 
diminish the total storage reqired to store typical texts. An effective 
method for using 'variable length' encodLngs of this kind was described by 
x. Huffman and has become known as Huffman coding. Huffman's technique is 
to arrange all the characters to be encoded as the terminal nodes of a 
binary tree, in the manner shown in Fig. 1. This tree should be set up so 
that commonly occuring characters appear near its 'root' node and rare 
characters appear at a greater distance from its root. 

Fig. 1 

root node 

Binary 'Huffman tree' with characters attached to its 
terminal nodes. 

There will always exi~t a unique path from the roQt node of such a tree to 
each terminal node or 'twig' of the tree, snd any such path can always· bt 
described by a unique sequence of zeroes and ones, where 'o~ means 'take th~ 
left branch' and '1' mean take the right branch down the tre-e. As the code 
for a character c we can therefore use the binary sequence describing th, 
path from the root node of the tree to the terminal node at which c i: 
attached. For example, the tree shown in Fig. 1 would assign the code 
' 0 0 0 ' to ' E ' , the code ' 0 0 1 0 ' t o ' T ' , th e co de ' 0 1 0 l ' t o I. t . et c • To enc o d P 

a sequence of characters, we simply concatenate the sequences of zeroes an, 
ones representing its individual characters. To _decode a sequences o~ 
zeroes and ones, we start from the root of the Huffman tree· which defines 
our encoding, and use the leftmost bits of s to guide us down a path in th, 
tree. As soon as we reach a twig of the tree we add the character attache• 
to this twig to the sequence of decoded characters we are building up. The 
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sequence of bits that led us to this character is then detached from s, and 
we return to the root of the Huffman tree and continue the decoding process 
using what remains of s. 

The three routines which follow embody this encoding and decoding 
technique. The -Huff- procedure takes a character string and encodes it 
using Huffman's method. -Puff-, which is the inverse of -Huff-, takes the 
encoded form of a strings and recovers the original form of s. The third 
procedure, called -setup- , takes maps -lef-t and -right- representing a 
Huffman tree and uses them to initialize various global data objects 
required by the -Huff- and -Puff- routines. 

MODULE Huffman - Huff_Puff; $ Huffman encode, decode, and setup 
VAR 

H_code, $ maps each character into its Huffman code 
H _root, $ root node of Huffman tree 
H_left, $ maps each node of the Huffman tree to its le ft 

$ descendant 
H_righ t, $ maps each node of the Huffman tree to its right 

$ descendent 
H_char; $ maps terminal nodes of the Huffman tree to the 

$ characters they represent 

PROC setup(root,left,right, char); $ auxiliary initialization routine 
0 

$ We begin by using the procedure arguments to initialize 
$ all but the first of the global variables listed above. 

H left := left; H_right := right; 
H root := root; H_char := char; 

$ Next we calculate H_code(c) for each character c 

parent :c { [y,x]: [x,y] IN (H_left + H_right)}; 
$ This maps each tree node to its parent 

H code : • { } ; $ begin calculating Huffman codes from tree structure 

(FOR ca H_char(node)) 

$ chain up to the root, noting how we got there 

bits :•' '; $ initially, path is null 

(WHILE node/• H root) 
bits := IF H-left(par :a parent(node)) • node THEN 

- '0' ELSE '1' END+ bits; 
node := par; 

END WHILE; 
$ step up to parent 

H_code(c) := bits; $ record Huffman code for current character 

END FOR; 

END PROC setup; 

-----------~-- -----
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PROC Huff(stg); $ calculates Huffman code for string -stg-

RETURN''+ /[H_code(c): c = stg(i)]; 
$ concatenate codes of individual characters 

END PROC Huff; 

PROC Puff(Huff_stg); $ decodes a Huffman-coded string 

stg := ''; $ initialize decoded string 
node := H_root; $ start at Huffman-tree root 

(FOR b = Huff_stg(j)) $ examine binary bits of Huff_stg in orde.r 

node : = IF b = 'O' THEN H_left(node) ELSE H_right(node) END; 

IF(c := H_char(node))/= OM THEN$ have reached twig 

stg +:= c; 
node := H_root; 

END IF; 

END FOR; 

RETURN stg; 

END PROC Puff; 

END MODULE; 

$ append to decoded portion 
$ restart at Huffman-tree root 

The encoding and decoding procedures shown above sidestep the question 
of how to find the tree that will give us a maximum degree of text 
compression. Of course, the rule for finding this tree, given the frequency 
with which each character occurs in the text we are to encode, is Huffman's 
essential discovery. His rule is as follows: we begin by finding the two 
characters cl, c2 of lowest frequency. These are then logically 
'conglomerated' into a single joint character c, of which cl and c2 become 
the left and right descendants respectively. We remove cl and c2 from the 
collection of characters which remain to be processed, and replace them· by 
c. Continuing this until only one character remains, we will have built the 
Huffman tree. 

Represented in SETL, this procedure is as follows: 

PROC Huff_tree(freq); $ Huffman tree-build routine 

$-freq-is assumed to map all the characters of our alphabet 
$ into their expected frequencies of occurrence. 

$ This procedure returns a quadruple [root,left,right,char] 
$ consisting of the Huffman tree root, its left and right 
$ descendancy maps, and a map -char- which sends each terminal 
$ node of the tree into the character attached to this node. 
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$ Since the code which follows will represent tree nodes by 
$ character strings, the -char- map is just the identity map on 
$ single-character strings, and is conveniently set up right here. 

char:= {[c,c] c IN DOMAIN freq}; 

left:= right.- { }; 

(WHILE #freq> 1) 

$ initialize the descendancy mappings 

[cl, freq_cl] := get_min(freq); [c2,freq_c2] :• get_min(freq); 
freq (c :=(cl+ c2)) := freq cl+ freq c2; 

$ form a logically 'conc~tenated' ~haracter 
left(c) := cl; right(c) := c2; $ make cl and c2 

$ descendats of c 

END WHILE; 

RETURN [ARB DOMAIN freq, $ which is necessarily the tree root 
left, right, char]; 

END PROC Huff_tree; 

PROC get_min(RW freq); 
$ This auxiliary procedure finds the character c of minimum 
$ frequency, returns c and its frequency, and deletes c from 
$ the domain of -freq-. Note that it uses a 'dangerous' program 
$ construction, legal in SETL, but certainly not recommended 
$ for use in any context which is at all complex, namely it is 
$ a function which modifies the argument with which it is called. 

min_freq := MIN/[f: f""' freq(c)]; 

ASSERT EXISTS f • freq(c) f ... min_freq; 

freq(c) :z OM; $ modify the input argument (which is 'RW'). 
$ DANGEROUS! 

RETURN [c,f]; 

END PROC get_min; 

Various improvements and extensions of the procedures described in this 
section appear in Exercises 13-18. 

11.8 A 'Game Playing' Program 

In this section, we will explore the basic structure of programs which 
play board games, like chess or checkers which involve two players, whom we 
shall call 'A' and 'B'. The momentary state s = [p,x] of any such game can 
be defined by giving the position p of the various pieces or counters used 
in the game, and by stating which of the players, x = 'A' or x = 'B', is to 
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move next. Given any such states, the rules of the game will determine the 
moves which are legal, and hence will determine the set of all possible new 
states sl, ••• ,sk, exactly one of which must be chosen by the 'active' 
player, i.e. the player whose turn it is to move. We shall suppose in what 
follows that the map has turn(s) determines this player (i.e. has_turn(s) 
is just x, if as aboves has the form [p,~]). We also suppose that the map 
next states(s) gives us the set {sl, •• sk} of states to which the active 
player can move. 

Any such game will end as soon as certain states, called t~rminal 
states, are reached. (In chess, for example, these are the states in which 
one of the players has been 'checkmated'). For purposes of analysis it is 
convenient to suppose that when a terminal states is reached, D dollars are 
transfered from player B to player A. We can either suppose that the sum D 
is fixed, or that it depends on s. It is actually more convenient to make 
the latter asumption, and we shall do so, supposing accordingly that we are 
given a function A_wins(s) defined on all terminal states s, and that when a 
terminal states is reached the sum= A_wins(s) is transfered from B to A. 
; Plainly A is the winner if D > O, Bis the winner if D < O, and the game 
counts as a tie if D = O. It is convenient to suppose that A_wins(s·) = OM 
if the state sis not a terminal state; then the condition A_wins(s)/=OM 
can be used to test for terminal states. 

The three functions, has_turn(s) (whose value must _be either 'A' or 
'B'), next_states(s), and A_wins(s) serve to encapsulate the basic rules of 
any two-player game we wish to study. 

Next, to begin to understand the strategic considerations which 
determine the laws of effective play, it is useful to extend the function 
A_wins(s), which is only defined for terminal states, so that it becomes a 
function A_can_win(s), defined for all states. We do this in the following 
recursive way: 

(1) A_can_win(s) = A_wins(s)? 
IF has turn(s) = 'A' THEN MAX/[A_can_win(sy):sy IN next_states(s)] 

ELSE MIN/[A_can_win(sy):sy IN next_states(s)] END; 

The meaning of this formula can be explained as follows: 

(a) If the states is terminal, the game is over and the amount that A can 
win is exactly the smount that A has in fact won. 

(b) Otherwise, if it is A's turn to move , he wiil chose the move that is 
most favorable to him, shifting the game into that state sy in 
next_states(s) for which A_can_win(sy) is as large as possible. Conversely, 
if it is B's turn to move, he will defend himself as well as possible 
against A's attempts to win a maximum amount. B does this by shifting the 
game into the state sy for which A's attainable winnings are as small as-~ 
possible. Since A wins what B loses, and vice-versa, this is at the same 
time the state in which B's winnings are as large as possible. 

It is not hard to see that if the function A_can_win defined by (1) is 
known, and if both players expect their opponents to play with perfect 
accuracy, player A should always use his turn to move to a state sy such 
that A_can_win_(sy) is as large as possible, and player B should always use 
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his turn to move to a state sy such that A_can_win(sy) is as small as 
possible ■ To show this, suppose that the sequence of states traversed in 
the history of a game, from the moment at which it reaches state· s, up to 
the moment at which the game terminates, is s • sl,s2, ••• ,sn. Using (1) it 
is easy to see that if A uses this strategy, A_can_win(sj) will never 
decrease, so that by using our recommended strategy A guarantees that when 
the game terminates he will win at least the amount A_can_win(s). 
Conversely, if Buses the strategy we recommend, then formula (1) shows that 
A_can_win(sj) will never increase. Hence, if player A ever makes a move 
which decreases the value of A_can_win from v to some value u which is less 
than v, then after this B can prevent him from recovering, i ■ e ■ from ever 
winning more than U. If follows that, if A gi~es his opponent credit for 
playing optimally, A must never 'give ground' in regard to the function 
A_can_win(s), i ■ e ■ that when it is his turn to move he should always move 
to a new state sy such that such that A_can_win(sy) is as large as possible ■ 
(Of course, if he does this, then A_can_win(sy) ~ A_can_win(s); see (1)). 

Reasoning by symmetry, we also see that B should always move to a new 
state sy such that A_can_win(sy) is as small as possible. 

These considerations indicate that any game-playing program will need 
to calculate the function (1). However, if the game being analysed is at 
all complex, it will not be feasible just to use the recursive definition 
(1) as it stands, since the tree of possible moves and .countermoves which 
(1) would examine will tend to grow very rapidly. For examvle, if at · every 
level A has just 4 possible moves and B has 4 possible countermoves, then 
256 different positions can evolve from an initial states after A· and B 
make two moves each, 64,000 different postions after A and B have made 4 
moves each, and hence the recursion (1) would have roughly 16,000,000 
positions to examine if we used it to look ahead through all possible 
combinations of six moves of A and six countermoves of B ■ 

This makes it plain that it is important to accelerate calculation of 
the function A_can_win(s) as much as we can. Several techniques for doing 
this have been developed, but we shall only describe one particularly 
important method of this kind, the so-called 'alpha-beta pruning' method. 
To derive this improvement, suppose that f is a function mapping numbers to 
numbers, and that f is monotone, i.e. has the property that x <• y implies 
f(x) <~ f(y). Then since x MAX y is the larger of x and y, it follows that 
f(x MAX y) • f(x) MAX f(y). Hence 

(2) f1MAX/[e(x)tx IN s]) • HAX/[f(e(x)):x IN s] 

for every sets and expression e. It is also clear that (2) continues to 
hold if we replace MAX by MIN. This remark, and (1), make it obvious that 
the f~llowing recursive function calculates the function B(s,lo,hi) • 
A_can_win(s) MIN hi MAX lo: 

(3) PROC B(s,lo,hi); 

IF(v := A_wins(s)) /= OM THEN RETURN v MIN .hi MAX lo; END; 

IF has_turn • 'A' THEN 

max_t il.l_now : = lo; 
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(FOR sy IN next_states(s)) 
max_till_now MAX:• B(s,lo,hi); 

END FOR; 

RETURN max_till_now MIN hi; 

ELSE 

min_till_now := hi; 

(FOR sy IN next_states(s)) 
min_till_now MIN := B(s,lo,hi); 

END FOR; 

RETURN min_till_now MAX lo; 

END IF; 

END PROC B; 
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Since the quantity returned at the end of the first loop in (3) is 
max_till_now MIN hi, we can terminate the loop as soon as max till now rises 
to -hi~; and a similar remark clearly applies to the second loop in (3). -
This crucial observation allows us to rewrite (3) as 

(4) PROC B(s,lo,hi); 

IF(v :• A_wins(s)) /• OM THEN RETURN v MIN hi MAX lo; END; 

IF has_turn • 'A' THEN 

max_till_now := lo; 

(FOR sy IN next_states(s)) 
IF(max_till_now MAX:• B(sy,lo,hi)) >= hi THEN RETURN hi; END; 

END FOR; 

RETURN max_till_now; 

ELSE 

min_till_now := hi; 

(FOR sy IN next_states(s)) 
IF(min_till_now MIN := B(sy,lo,hi)) <= lo THEN RETURN lo; END; 

END FOR; 

RETURN min till - now; 

END IF; 

END PROC B; 
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In the first loop of (4) the quantity max_till_now is never larger than 
hi or less than lo; hence we have 

B(s,lo,hi) MAX max till now a A can_win(s) MIN hi MAX lo MAX max till now 
• A_can_win(s} MIN hi MAX max_till_now 
= B(s,max_till_now,hi}. 

Similarly, in the second loop of 
min_t.ill_now a B(s,lo,min_till_now). 
appearing in (4) occur in contexts in 
MIN hi MAX lo). Hence (v MIN lo MAX 
line of (4). These remarks show that 
satisfies B2(s,lo,hi} MIN lo MAX hi• 

(5) PROC B2(s,lo,hi); 

(4) we always have B(s,lo,hi} MIN 
Moreover, all the recursive calls to B 
which B can as well by replaced by (B 
hi) can be replaced by v in the second 
the following recursive procedure B2 
B(s,lo,hi): 

IF (v := A_wins(s}) /= OM THEN RETURN v; END; 

lF has_turn • 'A' THEN 

till_now := lo; 

(FOR sy IN next_states(s)) 

IF (till_now MAX :• B3(sy,till_now,hi)} > hi THEN RETURN hi; END; 

END FOR; 

ELSE 

till_now := hi; 

(FOR sy IN next_states(s)) 
IF(till_now MIN :• B2(sy,lo,till_now)) <• lo THEN RETURN lo; END; 

END FOR; 

END IF; 

-ETURN till_now; 

END PROC B2; 

The fact that the loops in (5) are terminated 'early', i.e terminated as 
soon as till_now rises to hi or sinks to lo, sometimes improves the 
efficiency of (3) very substantialy; this is what we want. Of course, we 
can exploit the symmetry of B2 to write it more compactly: 

(6) PROC B3(s,lo,hi}; $ A polished 'alpha_beta' algorithm 

IF (v :• A_wins(s)) /• OM THEN RETURN v; END; 

IF has_turn"" 'B' THEN [hi,lo] := [-lo,-hi]; END; 

till now:= lo; 
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(FOR sy IN next_states(s)) 
IF (till_now MAX := B3(sy,till_now,hi)) >= hi THEN RETURN hi; END; 

END FOR; 

RETURN IF has turn= 'B' THEN -till now ELSE till now END; 

END. PROC B3(s,lo,hi); 

IF LARGE designates any 
B3(s,-LARGE,LARGE) will be equal 
represent such an 'infinitely large' 
replace (6) by a recursive procedure 

sufficiently large 
to A_can_win(s). 
quantity by OM, and 
yielding the value 

quantity, then; 
It is convenient to 
also convenient to 

IF has_turn = 'A' THEN B2(s,lo,hi) ELSE -B(s,-lo,-hi) END 

Doing this gives us our next form of the alpha-beta procedure, namely 

(7) MACRO reverse(x); IF x = OM THEN OM ELSE -x END ENDM; 

PROC A_can(s,lo,hi); $ second form of alpha_beta algorithm 

till_now := lo; 

(FOR sy IN next states(s)) $ note that next states(s) = { } 
$ifs is a terminal state 

till_now := IF till_now = OM THEN a_can(sy,reverse(hi),reverse(lo)) 
ELSE till_now MAX A_can(sy,reverse(hi),reverse(lo)) END; 

IF hi/=OM AND till now>= hi THEN RETURN till_now; END; 
END FOR; 

RETURN IF(v := A_wins(s)) = OM THEN -till now 
ELSEIF has_turn(s) = 'A' THEN v ELSE -v END; 

END PROC A_can; $ A_can_win(s) = A_can(s,OM,OM) 

A close analysis sof algorithm (7) will show that it can be expected to 
derive the value of the A_can_win function for a tree of moves 2d levels 
deep in roughly the time that algorithm (3) would require to analyse a tree 
d levels deep. (Unfortunately, the necessary analysis is too complicated to 
be included in the present text). However, in spite of this very~ 
substantial improvement, complex games will still lead to trees of moves 
which are so deep and branch so rapidly that full exploration using 
algorithm (7) is quite impossible. One technique used to cope with this. 
fundamental difficulty is to limit the number of recursive levels explored 
using (7). When this limit is reached, we use some ad-hoc estimate, called 
an evaluation heuristic, to approximate the value of A can win(s). In 
effect, this approach pretends to replaces the full game tiat ;e would like­
to analyse by a truncated game that is played for some limited number L of 
moves and then terminated with a payoff determined by the evaluation 
heuristic. To play the full game, we then reanalyse this truncated game-­
each time it. is a given player's turn to move and choose the best move in 
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the truncated game as his recommended move in the real game. Assuming that 
A_estimate(s) is the; estimated value of states to player A, it is easy to 
modify (7) to incorporate such a limit on the number of levels of move and 
counter move that will be examined. Doing so, we get: 

(8) MACRO reverse(x); IF x = OM THEN OM ELSE -x END ENDM; 

PROC Est_A_can_win(s,lo,hi,lim); $ alpha-beta algorithm with 
$ limited search 

IF (lim -:= 1) = 0 THEN 
RETURN IF has turn(s) = 'A' THEN A estimate(s) 

ELSE -A_estimate(s) END; 
END IF; 

till now:= lo; 

(FOR sy IN next_states(s)) 

till_now := IF till now= OM THEN 
Est_A_can_win(sy,reverse(hi),reverse(lo),lim) 
ELSE till_now MAX Est_A_can_win(sy,reverse(hi),reverse(lo), 

lim) END; 
IF hi/=OM AND till now>= hi THEN RETURN till_now;. END; 
END FOR; 

RETURN IF (v := A_wins(s)) = OM THEN -till now 
ELSEIF has turn(s) = 'A' THEN v ELSE -v END; 

END PROC Est_A_can_win; 

(Application of the above to a simple game, e.g. 
here). 

11.9 Implementation of a Macroprocessor 

KALAR, should be inserted 

In this section we will show how to implement the SETL macro feature 
described in Section 6.4. The context within which this macroprocessor is 
to be implemented is assumed to be as follows: 

(i) The macroprocessor reads a succession of tokens, obtained by decomposing 
some input file into successive tokens. 

(ii) When the special token MACRO is encountered, a macro definition is 
opened. This token must be followed by a macro-name, which can in turn be 
followed by a list of formal parameters and generated formal parameters, in 
the manner explained in Section 6.4.4, 6.4.S. The macro-body following such 
a 'macro opener' is collected, and saved in a map -def_of-, which associates 
each macro name with its list of parameters, its list of generated 
parameters, and its macro body. 

(iii) When a macro invocation starting with a token belonging to the domain 
of the map -def_of- is encountered, its actual arguments are collected, and 
the invocation is replaced by a substituted version of the macro body. This 
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substituted text is logically inserted immediately in front of the remainder 
of the input file, and reprocessed by the macro-expansion mechanism, thereby 
ensuring that macro invocations and definitions embedded within macro bodies 
will be treated in the manner described in Section 6.4.6. 

(iv) The macroprocesor makes various syntactic checks. For example, it 
checks that the parameters appearing in a macro definition are all distinct, 
and that each macro invocation has as many arguments as the corresponding 
macro-definition has parameters. If an error is detected, a diagnostic 
message is printed, and any macro-action in progress is simply bypassed. 

(v) The macroprocessor is structured as a MODULE, which exports just one 
procedure, namely a parameterless procedure called -next_tok-, which can be 
called repeatedly to obtain the sequence of tokens representing the input 
file after macro- expansion. When the input file is exhausted, -next_tok­
will return OM. The macroprocessor MODULE imports just one procedure, 
namely a parameterless procedure called -input_tok-. Successive calls to 
input_tok generate the sequence of input tokens which constitute the 
macroprocessor's initial input. 

MODULE language_processor - macroprocessor; 

EXPORTS next_tok; 
IMPORTS input_tok; 

VAR 
def_of, 
expanded_toks; 

macro-expansion 
INIT 

gmac_ctr := 0 
def of : -= 0 
expanded_toks := 

$ maps macro-names into their definitions 
$ vector of tokens obtained by prior 

$ generated macro argument counter 
$ initially no definitions 

(]; $ initially no prior tokens 

CONST Illformed_list = 'ILLFORMED MACRO PARAMETER LIST';; 
$ error message 

PROC next_tok; $ called to obtain successive tokens in the 

LOOP DO 

$ sequence of tokens generated by macro expansion 

$ we return to this point whenever 
$ macro-errors are detected 

IF (tok :• another tok( )) a OM THEN RETURN OM; END; 
$ ~nd of input file encountered 

IF (tok /= 'MACRO') AND (mdef := def_of(tok)) = OM THEN 
RETURN tok; $ token is ordinary; 

END IF; 

IF tok = 'MACRO' THEN $ start new macro definition 

IF (parm_list := get_parm_list( )) = OM 
OR (mac_body := get_macro_body( )) = OM THEN 



THE LANGUAGE IN ACTION: A GALLERY OF PROGRAMMING EXAMPLES Page 11-47 

END; 

ELSE 

GOTO try_again; 

END IF; 

$ since macro is bad 

[mac_name,mac_pars,mac_gpars] :• parm_list; 
$ get macro name and parameters 

def_of(mac_name) := (IF mac_body • [ ] THEN OM $ macro drop 
ELSE [mac_pars,#mac_gpars,template(mac_body,mac_pars,mac_gpars)] 

$ macro invocation 

[mac_pars,n_gpars,mac_template] := mdef; 
$lookup macro-definition 

IF (arg_list := get_arg_list(#mac_pars)) • OM THEN 
CONTINUE $ abort expansion 

$ since number of arguments and number of parameters differ 
END IF; 

(FOR n IN [l •• n_gpars]) mac_pars WITH:= [generated_parm( )]; END; 
$ generate additional parameters as required 

$ next replace the macro at the start of the expanded_token·s 
$ vector by its expansion 

expanded_tok := 
+/[IF is_string (mac_tok) THEN [mac_tok] ELSE mac_pars(mac_tok) END: 

mac tok = mac_template(j)] + exp~nded_tokens; 

END IF tok; 

END LOOP; $ now that macro has been expanded, try again to 
$ supply the requested token 

END PROC next_tok; 

PROC another_tok; $ 'token feeder' for macro-processor 

$ This returns the token standing at the head of 
$ -expanded_toks- unless expanded_toks is empty, 
$ in which case it calls the 'primary' 
$ token source -input_tok- to get the token to be returned. 

RETURN IF (tok FROMB another_tok)/= OM THEN tok 
ELSE input_tok( ) END; 

END PROC another_tok; 

PROC get_parm_list; $ gets sequence of parameters for macro 

$ The sequence of parameters collected by this procedure must 
$ be a comma_separated list opened by a left parenthesis and 
$ closed by a right parenthesis. If this syntax is violated, 
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$ or if two parameters are identical, 
$ an error message is printed, and OM is returned. 

have_parms :• FALSE; $ flag: No generated parameters yet 

mac_parms :~ mac_gparms :• ]; $ initializes parameters and 
$ generalized parameters 

IF (tok := another_tok( )) =';'THEN RETURN parms; END; 
$ no parameters 

MACRO check(condition,msg); 
IF NOT (condition) THEN RETURN err_msg(msg); END; 

ENDM; 

check(tok = '(', Illformed_list); 

(UNTIL tok = ')') $ until terminating parenthesis 

check((tok := another_tok( )) /= OM, illformed_list); 
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mac_parms WITH:= tok; 
check((tok := another_tok( )) = 

, , 
OR tok = ')', illformed_list); 

END UNTIL; 

RETURN [name,mac_parms,mac_gparms]; 

END PROC get_parm_list; 

PROC err_msg(message); $ error message routine 

print(message); $ print error message 

RETURN OM; $ signal error 

END PROC get_parm_list; 

PROC get_macro_body; $ collects sequence of tokens to ENDM 

body:= [ ]; 

(WHILE (tok := another_tok( )) /= 'ENDM'); 
check(tok /= OM, 'MACRO BODY NOT PROPERLY ENDED'); 
body WITH := tok; 

END WHILE; 

RETURN body; 

END PROC get_macro_body; 

PROC template(mac_body,mac_pars,mac_gpars); 

$ This procedure builds the 'macro template' stored as the 
$ definition of a macro. The template consists of the 
$ string constituting the macro body, but with every 
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$ parameter and generated parameter replaced by an integer. 

counter := O; $ start count at zero 
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replacement := {[t,(counter +:= 1)): t IN mac_pars + mac_gpars}; 
$ This maps every macro parameter into its replacement 

RETURN [replacement(t)?t: t IN template]; 

END PROC template; 

PROC generated_parm; $ auxiliary procedure-produces generated 
$ macro parameters. 

$ The macro parameters generated by this procedure have 
$ the form 'ZZZn', where n is the string representation; 
$ of an integer. 

RETURN 'ZZZ' + STR(gmac_ctr +:= 1); 

END PROC generated_parm; 

END MODULE; 

1 1 • 1 1 Exercises 

Ex. 1 A 'nondeterministic' Turing machine is a Turing machine TM whose 
action mapping is not constrained to be single-valued. In addition, one 
particular internal state of each such machine must be designated as its 
'failed' state. Such machines can be regarded as describing indefinitely 
large families of computations which proceed in parallel. More 
specifically, we start with a given tape, tape position, and internal 
machine state, as in the case of an ordinary Turing machine. Then, whenever 
the internal -state- and the -character- under the machine's read head are 
such that action(character, state) is multivalued (consisting, say, of n 
values), we create as many logical copies of the machine as needed, and 
assign one of them to take each of these n actions and continue the 
computation. This can generate a rapidly expanding set of computations, all 
proceeding in parallel. If a particular logical copy TMj of TM reaches the 
special 'failed' internal state, the particular path of computation which it 
is following ceases, and TMj is simply deleted. As soon as any computation 
TMk reaches an ordinary 'stop' condition all other computations are deleted, 
and the result calculated by this 'successful' logical copy TMk of TM 
becomes the final result of the nondeterministic computation. On the other 
hand, if all computations TMk reach the 'failed' internal state, the 
nondeterministic Turing machine computation is considered to have failed. 

Modify the Turing machine simulation program shown in Section 11.6 so 
that it can simulat~ both ordinary and nondeterministic Turing machines. 

Ex. 2 A 'multi-tape' Turing machine is one which has several separate 
tapes, a read-write head on each, and whose action on each cycle determined 
by its internal state and by the characters found under all of its 
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read-write heads. Modify the Turing machine simulation program shown in~ 
Section 11.6 so that it can simmulate multitape Turing machines with any 
specified number of heads. 

Ex. 3 Carr you think of 
computational process whose 
program? Review Exercises 

any well-defined 
activity could 

computing automaton or 
not be simulated by a SETL 

1 and 2 before you answer. 

Ex. 4 The macroprocessor shown in Section 11.9 is programmed to imitate the 
present SETL macroprocessor, which regards every comma in a macro argument 
list as a separator. For example, if -my_mac- is a macro name, then the 
invocation 

my_mac(f(x,y),z) 

is considered to have three components, namely 

y) z 

This is not the best convention: it would be better to regard co~mas 
contained within parentheses or brackets as being invisible to the 
macroprocessor, so that the macro-call shown above would be regarded ~s 
having just two arguments f(x,y) and z. Modify the m~croprocessor so that 
it behaves in this way. 

Ex. 
in 

5 (Continuation of Ex. 4). 
Exercise 4 is made, use 

Especially if the modification suggested 
of a macroprocessor becomes subject to two 

dangers: 

(a) If the parenthesis terminating an argument list is missing, much of the 
body of text following a macro invocation may be swallowed up in what 
appears to be a very long final argument. 

(b) If the keyword 'ENDM' ending a macro is ·missing or mispelled, the 
following a macro definition may appear to be swallowed up by 
macro-definition. 

text 
the 

Modify the macro-processor of Exercise 4 so as to limit each macro 
argument to 50 tokens and each macro-definition to 200 tokens. 

Exercises related to the 'check processing' system of Section 5.4.3 

Ex. 6 Modify the check processing system so that it tracks 

(a) the total dollar volume of transactions handled each day. 

(b) The total dollar credit/debit that the bank using the system has built -­
up against each of its correspondent banks. 
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These quatities should be printed out as additional information by the 
DAY transaction. 

Ex. 7 Modify the check processing system, adding a new transactiort DEL 
which prints out a list of all accounts for which more than a month has gone 
by without at least 10% of a customer's outstanding overdraft_debit having 
been paid. 

Ex. 8 Modify the check processing system, 
transactions: 

adding the following two 

(a) A transaction AB ('abuse') which sh9ws all accounts for which an excess 
overdraft has accumulated or against which more than 10 'insufficient funds' 
charges have been made during the current month. 

(b) A transaction I ('idle') which shows all accounts against which no 
checks have been drawn during the past six months. 

Ex. 9 Modify the check processing system, adding transactions 
which allow new customer accounts to be opened and closed. 
accounts should be handled carefully: such accounts should be 
having been closed, but should not actually be deleted while 
outstanding transactions, still to be returned by other banks, 
affect the account which is being closed. 

0 and CL 
Closing of 
marked as 

there exist 
that might 

When an account is finally closed, the balance remaining in it should 
be used to pay off any outstanding overdraft debit, and a check for the 
amount remaining in the account after this final iayment should be prepared 
for mailing. How will you handle an account closing when the balance 
remaining is insufficient to pay off the overdraft-debit? 

Ex. 10 Modify the check processing system so that it can add a short 
advertisement to the monthly statements being prepared for mailing to 
customers. The text of this advertisment should be supplied by a 
transaction of the form. 

ADVERT n 

where n is an integer, and where this line will be followed by n more lines 
giving the text of the advertisment. This transaction must be run just 
before the DAY transaction which triggers preparation of monthly statements. 

Ex. 11 If you have a checking account, save the next monthly statement you 
get from your bank, and scrutinize it carefully. How may of the features of 
this statement suggest that your bank is using a program similar to the 
check processing program shown in Section 5.4.3? What features reveal the 
use of processing steps that our simplified check processing system does not 
perform? If you can find any such feature, choose one of them and mofify 
the check processing system to include it. 

Ex. 12 Modify the check processing system so as to make it a model for the 
activity of several banks. Each of these banks will run the modified check 
processing system once per day, generating files of messages which are then 
sent to the other banks in the system and added to the transaction files 
that these banks will process during their next day's run. Execute your 
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modified program with appropriate inputs so as to simulate several day's 
activity for the whole 'financial system'. 

Ex. 13 The degree of compression attained by the Huffman coding procedure 
shown in Section 11.7 can be increased by using the fact that the 
probability of encountering a character depends on the character that has 
just been encountered. That is, we can calculate not one, but a whole 
family of Huffman trees, one for each high-probability character c in our 
alphabet; this tree should position other characters d according to 
probability that d follows c. 

Develop a modified 
probabilities, and also 
Huffman trees required. 

Huffman package which uses these more refined 
a modified -Huff_tree- code which calculates all the 

Ex. 14 If the 'Huff' and 'Puff' procedures shown in Section 11.7 are really 
to be used for compressing large texts, we will want them to produce densely 
packed character strings rather than SETL-level sequences of zeroes and 
ones. ·To achieve this without having to abandon SETL in favor of a language 
in which sequences of bits can be manipulated directly, we can break the 
sequence of zeroes and ones that 'Huff' would most naturally produce into 
eight-bit sections, each of which is then represented by a single SETL 
character. Conversely, when decoding, we can first convert each character 
in the string being decoded into a string of zeroes and ones. 

Modify the Huffman routines shown in Section 11.7 so that they work in 
this way. Your modified -setup- procedur~ should construct the extra data 
structures needed to convert characters into 8-bit sequences of zeroes and 
ones, and vice-versa. 

Ex. 15 (Continuation of Exercise 14) The decoding procedure shown in 
Section 11.7 and further described in Exercise 14 can be accelerated keeping 
a map -Decode- which sends the start (say the first eight bits) of the 
sequence s being decoded either into a pair [c,n], where c is the first 
character obtained by decodings and n is the number of bits of s that 
represent this character, or into the -node- of the Huffman tree that is 
reached reach after walking down the tree in the manner determined by the 
first 8 bits of s, if these 8 bits do not lead us to a terminal node. 
Rewrite these routines by incorporating the suggested improvements. 

Ex. 16 The Huffman -setup- procedure shown in Section 11.7 can be made more 
efficient by saving the sequence of zeroes and ones describing the path from 
each Huffman tree -node- traversed. This information can be stored at the 
node. This makes it unnecessary for the -setup- procedure to traverse any 
edge of the Huffman tree more than once. Rewrite -setup-, incorporating 
this improvement. 

Ex. 17 The Hu ff_tree procedure shown in Section 11. 7 can be made more 
efficient by using the tree-like structures described in Section 11.7 to 
accelerate the auxiliary -get_min- procedure. Rewrite -Huff_tree- and 
-get_min-, incorporating this improvement. 

Ex. 18 (Continuation of Exercise 13). Storing a Huffman tree requires 
memory space proportional to the size of the alphabet whose characters are 
attached to the terminal nodes of the tree. If the improved technique-
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described in Exercise 13 is used, such a tree will have to be stored for 
each character in the alphabet, and the amount of space required for this 
can grow unpleasantly large (especially if the data compression-procedure is 
to be reprogrammed for a small machine). In this case, the following 
expedient can be used to reduce the amount of storage required: 

(a) For each character c, establish a limit L(c) which will bound the number 
of nodes tised in the modified Huffman tree btiilt from the frequency count 
developed for letters following c. This limit should be larger for commonly 
occuring characters c, smaller for infrequent characters. 

(b) For each c, find the L(c) characters which most frequently follows c, 
and 'lump' all the other characters into a new character c'. The sum of the 
frequencies of all these 'lumped' characters then becomes the frequency of , 
C • 

(c) Build a Huffman tree for the alphabet of L(c) + l characters left after 
step (b). Then let the code of each character not 'lumped' into c' be 
determined as in Exercise 13, but let the code of each character x 'lumped' 
into c' be the concatenation of the normal Huffman code of c' with the 
standard internal SETL code of c. 

Modify the Huffman encode/decode procedures developed in Exercises 13, 
14, and 15 to incorporate this space-saving refinement. 

Ex. 19 Develop the auxiliary procedure pref_sort(t,pref) invoked by the 
-assign- procedure of Section 11.3. This should sort a tuple t into the 
order defined by a Boolean-valued function pref(sl,s2) which returns the 
value TRUE if sl should come before s2 , FALSE otherwise. Your sorting 
routine should be modeled after either 'mergesort' or 'quicksort'. 

Ex. 20 In playing a game, one may wish not only to win as much as possible, 
but also to win in the smallest possible number of moves. A recursion much 
like formula (1) of Section 11.8 can be used to determine the minimum_ number 
of steps which the winning player will need to bring the game to a 
successful conclusion. Find this recursion, and use it to develop a variant 
of the 'alpha-beta' game-playing procedure which tells the winning player 
how to win as rapidly as possible, and tells the losing player how to 
postpone his inevitable defeat as long as possible. 

Ex. 21 The 'alpha-beta' game playing program (see Est_A_can_win, Section 
11.8) operates most efficiently if moves likely to return a large 
Est A can win value are explored first. To guess in advance which moves 
the;e-are-likely to be, once can save the values calculated by Est_A_can_win 
during each cycle of play, and use these values as estimates of move quality 
the next time it is the same player's turn to move. Write a variant of the 
Est_A_can_win procedure which incorporates this improvement. 

$ 
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MEMBER directive 
membership operator (for sets) 

- implementation of 

Memory (of computer) 

- cells 
- words 

Menus 
mergesort 
MIN operator 

MLEN option 
MMAP declaration 
MOD operator 

MODULE 

multi-process primitives 

multiple valued or multivalued map 
-relation to single-valued maps 

multi-parameter map assignments 
multiple-assignment operator 
multivalued map assignment 

Name scopes 
nesting of assignment operators 
Nondeterministic programming 

nonmembership operator (for sets) 
NOTANY function 
NOTIN operator 

NPOW operator_ 
null statement 
null string 

null set 
'number' Qperator (#) 

3-24, 3.25 
3.25 

2.52 

10.7ff 

5.10££ 
3.40 
5.6 

2.20, 
8. 18 
2.32 
10.5 

9.16, 

10.2 
10.2 

5.2 

10.2 

8.31 
4.32ff 
2.20, 5.2 

8.23 
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10.11, 10.12, 10.26ff 
2.20 

9. 2 ff 

11.32 

2.11, 2.53, 2.59 
2.ss 

2.60 
2.69££ 
2.56 

4.14ff 
2.11 
8.16 

2.32 
5.6 
2.2s, 2.32, 2.44 



INDEX 

numerical iterators 
-general form of 
-lower and uper bounds in 
-iteration step in 
-empty cases of 
-ascending and descending 

OK primitive 
OM (SETL undefined quantity) 
OP declaration 

OPEN statement 
operating system 
Operator precedences 

operators 
- user de fined 

OPT option 

Options of SETL compiler 
- checkout and maintainance 

options 

OR operator 
output listing 
output 

Output formatting 
PACKED declaration qualifier 
Page-oriented output 

'paragraphing' of code 
parameter qualifiers 
parameterless procedure 

parameters (of functions and 
procedures) 

parsing 
path-finding 

pathfinding procedure 
-supplemented form of 

PEL option 

Permutations 
- generation of 

personalized letters 
PFCC option 

PFLL option 
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2.51, 3.17 
3.17 
3.17 
3.17 
3.18 
3.17 

8.Sff 
2.s1 
10.12, 10.13 

8.2 
1.10 
2.11, 2.77 

4.50 

8.25 

1. 11, 8.2lff 

8.29 

2.29 
1.1s, 1.23 
1. 1 

8.4lff 
10. 2 8 
8.4lff 

4.5Sff 
.4.38ff, 4.40 
4.12 

4.3ff, 4.5 

1. 13 
4.22 

10.14ff 
10.14ff 

8.23 

4.43 
8.14 

4-47 
8.23 

8.24 



INDEX 

PFLP option 
PFPL option 

PLEX declation qualifier 
PLEX bases 

pointers 
- in memory 

POL ('polish' file parameter) 
POL file (output of SETL compiler) 
polynomial manipulation 

POW operator 

precedence 
-of operators 
- of user-defined operators 

Predicates 
-integer 

prefix operators 
- user-defined 

prime numbers 
- calculations of 

8.24 
8.24 

10.27ff 
10.27ff 

10.3 

a.25 
9.9 
4.12ff 

2.34 

2.17, 2.77 
2.17 
4.52 

2.20 
2.20 

4.50 

2.37ff, 2.42 
3.22ff 

PRINT statement 1.8, 2.15, 3.42, 8.2 
-rules for 3.42, 3.43 
-quotation marks in 3.42 
-printing of sets 3.42 
-representations of real numbers 3.42 
-representation of OM, Boolean values etc. 3.42 
-lines of output formed by 3.43 

PRINTA statement 
problem solving 

PROC declaration 

procedure invocation 
- 'detour and return' in 
- implementation of 
- rules governing use of 
- arguments 
- parameterless 

procedure description 

procedures 
- header, trailer lines of 
- parameters 
- arguments 

RETURN statements in 

8.3 
1.16 

10.12 

4. 4 ff 
4.4 
4.4 
2.19, 7.22ff 
4.6 
4.12 

9.5 

4.lff 
4.3 
4.3 
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INDEX 

- recursive 
- modification 
- simple 
- with variable 

4.26 
of parameters in 4.36 

4.38 
number of 

- arguments 
infix 

- rules of style in use of 
use of 

- parameterless 

Processing unit (of computer) 

PROGRAM statement 
programming 

Programming languages 
- applications oriented 
- simple 
- compound 

man 
unit 

Programming style, rules of 
programming by refinement 
programming, 'decentralized' 

Programs 
- formal verification of 
- proving programs correct 
- influ~nces on development of 
- 'internally' and 'externally' 

determined 
- formal differentiation of 
- execution 
- preparation 
- documentation 
- termination 
- testing 

punctuation of input 
punctuation of SBTL programs 
PUT statement 

PUTB statement 
Pythagoras Theorem 

_ Ql ('parsed source' file parameter) 
Ql-files 

Q2 ('intermediate text' file 
parameter) 

Quadruples 
Quality assurance groups 

4.48 
4.50 
4.54ff 
4.54ff 
4.12 

9.16 

9.2ff, 9.10 
1.1, 1.9 

7.46 
9.2 
9.2 
9.2 
9.2 

2.19, 7.2ff 
10.1 
11.25 

7.35ff 
7-35ff 
7.44 

1. 11 
1.23 
7.3 
1.14 
7.13 

3.44 
1. 19 
8.3 

3.45, 8.3 
2.43 

8.25,8.27 
9.8ff 

a.21, s.28 

9-14££ 
1.16 

------~--
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INDEX 

quantifiers 
-bound variables in 
-assigning positions in 

quicksort 

QUIT statment 
-optional loop tokens in 
-use of 

quotation marks 

RANDOM operator 
-for integers 
-for sets 
-for tuples 

RANGE operator 
RANY function 
RBREAK function 

RD and RW parameter qualifiers 

READ statement 
-rules for 
-quotation marks in 
-punctuation of input 
-arrangement of inputs on lines 
-input of bracketed composites 
-input of unquoted identifiers 
-input of OM, Boolean values, etc. 

READ position pointer 
READA statement 

READS declaration 

real numbers 
-printed representations of 
-exponent form of 

REAL declaration 

Recursive functions 
- syntax and namescoping 

of 
- mutually recursive 

families of 
- implementation of 

Recursive routines 
- efficiency analysis of 

Refinements 
-syntax of 

2.38ff 
2.40 
2.74 

4.31 

3.20 
3.20 
3.21 

1.25, 3.42 

2.21, 2.34, 5.3 
2. 2 1 
2.34 
2.46 

2.52 
5.6 
5.6 

4.38ff,4.40 

3.42, 8.3 
3.42 
3.42 
3.44 
3.44 
3.44 
3.45 
3.45 

3.45 
8.3 

9.5 

5. 1 
3.42 
2.4 

1 0. 11 

4.26ff, 4.45ff 

4.27 

4-27 
4.29ff 

4.53ff, 6.1 
6. 1 
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INDEX 

-textual character of 
-restrictions concerning 

Regression testing 
REL option 
REMOTE declaration qualifier 

repetition operator (*) 
-for strings 
-for tuples 

repetition 
REPR clause 

representation declarations 
- use of 

reserved words 

RETURN statement 
- semantic rules for 
- in simple-procedures 

RLEN function 
RMATCH function 
RNOTANY function 

RPAD function 
RSPAN function 
Rules of logic 

rules of style 
- for procedures 

run-time system 
run-time errors 
RW and RD parameter qualifiers 

SB option 
scientific notation for real constants 

Scope rules 
-concerning constants 

SEL option 
semantic analysis 
Semantics 

semicolon usage 

Separate compilation of SETL 
programs 

Set formers 

7. l 7 
8.28 
10.22ff, 10.25ff 

2.25, 2.44 
2.25 
2.44 

1.4 
10.lOff 

10.lOff 
10.13ff 

1.25 

4.6ff, 4.39 
4.8ff, 4.4lff 
4.39 

S.6 
S.6 
5.6 

5.6 
5.6 
2.29, 2.31 

2.19, 7.2ff 
4.54ff 

1. 11 
1.14, 2.81 
4.38ff, 4.40 

8.28 
2.4 

4.14ff 
6.4 

8.26 
1.13, 1.28 
9. 11 

1.20 

9.8 

2.36ff 
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:;; i. T S i 11 2 • 3 7 

~·el.i.ded fotHD n.t 

-syntax 0f 
.. h n n d •· ,1 r J :i b l e c.• 

-conditional clauses 

- internal representation of 
-· constants 
- operations 
- identifiers 
- brackets 

need not bl~ :,orn0<=re:c.eous 
- do not contain duolicates 
- elements not ordered 
- of successive integers 
- formed by enumeration 

SET declaration 
SETL implementation 
SETL character set 

SETL run-time system 

SETL command parameters 
- standard options 

Shapley, Lloyd 
shortest paths 
SIF option 

SIGN operator 
simple repetition 
simple procedures 

,;imple types 
single valued map 
single-valued image operator 

Size operator 
size (of composite objects) 
SMAP declaration 

SNAP option 
sorting 

- recursive 
- topological 

source code 
SPAN function 
SPARSE declaration qualifier 

2.50 

3. 11 
3. 12 
:L l 1 
3. 14 

10.3ff, 10.7 
2.s 
2.32 
2. 79 
1.19, 1.7 
2.5 
2.5 
2.5 
2.7 
2.34 

10.11 
9. 13 
1. 19 

1 • 2 8 

8.19ff 
8.2lff 

l 1.6 
10.14 
8,26 

5. '.! 
i.4 
4.J8 

10.10 
,._ C _,., 
.!,,, • .J .:J 

Z.53 

2.26, 2.34, 2.45 
2. l 8 
10.11, 10.22ff 

8.28 
1.6, 4.3, 4.8ff 
4.28,4.3lff 
1 i , 3 

1.1 
5. 5 
10.22ff, 10.26ff 



INDEX 

Special characters 
Spelling errors 
SQRT operator 

stable assignment problem 

States (of path-finding problem) 
- state-search 

STOP statement 

STRACE option 
string slice assignment operator 

5.7 
8.33 
5.3 

11. 6 ff 

4.20, 4.24 
4.21 
3.37 

8.28 
2.21, 2.28 

String scanning primitives 5.5 
- see SPAN, ANY, BREAK, LEN, 

MATCH, NOTANY, RSPAN, RANY, 
RBREAK, RLEN, RMATCH, RNOTANY 

string slice 
string concatenation 

string operators 
-marginal cases of 

string repetition 
string constants 
string assignment operator 

string iterators 
-first form 

STRING declaration 
subroutines 

SUBSET operator 
SUCCEED statement 

supplemented SETL program 

Syntax 
-errors 
-diagrams 

System bugs 
TAN operator 

TANH operator 
TB option 
temporary variables 

TERM option 

Terminal 
-reading data from 

2.25 
2.25 

2.25, s.s 
2.21 

2.2s 
2.4 
2.21, 2.28 

2.51, 3.16 
3.16 

10. 11 
4.lff, 4.38 

2.32 
8.16 

10.2 

9. 11 
1. 12 
2.3 
7.8 
5.3 

5.3 
8.29 
4.5 

8.24 

3.47 
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INDEX 

terminal dump option 

Test and branch instructions (at 
machine level) 

Testing (of programs) 
- quality assurance 
- design of programs for 

testability 
- during development 
- top-down 
- regression testing 
- extreme cases as a problem in 

TEXT files 
Text editing 

text preparation 
-formatting system, 

commands of 

Tiling problem 
TIME function 
TITLE directive 

Tokens 
-in diagnostic messages 

Top-down testing 

topological sorting 
'Towers of Hanoi' problem 

transactions 
-in commercial system 
-exogenous and endgeneous 

Transitive closure 

tree 
-twig of 

tuple formers 
-compound iterators in 
-elided forms of 

tuple assignment 

Tuple operators 
-tuple concatenation operator 
-slice operator 
-assignment operators 
-slice assignment 
-component extraction operator 

tuple iterators 

2.81 

9.19 

1.13 
7.lSff 

1.14 
7.14 
7.15 
7.17 
7.15 

8.1 
s.20 

ll.8ff 

ll.8ff 

8.10, 
8.20 
8.4 

5.7 
1.24 
7.15 

11.3ff 
4.35 

5.23, 
11.23 

- 11.24 

6.14 

11.35 
11.35 

2.49ff 
2.49 
2.so 

3.24 

2.44 
2.44 
2.46, 
2.47 
2.48 
2.46 

2.so, 
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8.39 

11.26, 11.so 

2.47 

3.16 



INDEX 

-first form 
-second form 

tuples 
-need not be homogeneous 
-components of 
-of sequences of integers 
-internal representation of 

tuple brackets 

TUPLE declaration 

Turing machine simulator 

Turing machine 
-tape and read/write 

head of 
-actions of 
-nondeterministic 
-multi-tape 

Turing, Alan 

'Turtle' language 
-interpreter for 

twig 

type checking 
- inefficiences associated 

with 

TYPE operator 

type declarations 
- use of 

type-testing operators 

types 
- of SETL objects 
- simple 
- compounded 

Unary·operators 
'undefined' quantity 

Underscore character () 
union operator (for sets) 

universal quantifier 
-assignment operators in 

UNTIL loop 
-syntax of 

2.s 
2.s 
2.8 
2.46 
10.3 
1.19 

10.12 

ll.33ff 

11.33ff 

11.33 
11.33 
11.49 
11.49 

11.33 

3.36ff 
3.36ff 

11.35 

10.9 

10.16 

2.63 

10.l0ff 
10.13 

2.63 

2.63 
10.10 
10.10 

2.11 
2.a1 

2.18 
2.32 

2.39 
2.74 
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INDEX 

-semantics of 

UNTYPED INTEGER declaration 
upper case characters 
user identification 

user-defined operators 
UV option 

VAR declaration 
- syntactic rules for 
- global and local 

Variables 
- meaning of in expressions 
- syntax of 
- global and local 
- communication of variable~ 

between procedures 
- use of global and local 

variables 

Verification of programs 
- by Floyd assertion 
- clauses (rules for forming) 

WHILE loop 
-syntax of 
-evaluation of 

WITH operator 
wolf, cabbage, and goat puzzle 

Words (of memory) 
- size 

workpile algorithm 
WR parameter qualifier 

WRITES declaration 
XPOL files (output of SETL iompiler) 

$ 

3.29 

10.13 
1. 19 
1 • 11 

4.SOff 
8.26 

4.16ff 
4. 1 7 
4.17 

2.1s 
2.15 
2.18 
4.14ff 

4.17 

4.17ff 

7.35ff 
7-37ff 
7-37ff 

3.27 
3.27 
3.27 

2.32, 2.44 
4.24 

9.16, 10.2 
.9.16 

3.29 
4.39ff, 4.40 
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APPENDIX A 

SETL RESERVED WORDS 

The following words have a predefined meaning within a SETL 
program, and should only be used for their defined purpose. 

ABS 
ACOS 
ALL 
AND 
ANY 
ARB 
ASIN 
ASSERT 
ATAN 
ATAN2 
ATOM 
BACK 
BASE 
BOOLEAN 
BREAK 
CALLS 
CASE 
CEIL 
CHAR 
CLOSE 
CONST 
CONTINUE 
cos 
DATE 
DEBUG 
DIRECTORY 
DIV 
DO 
DOING 
DOMAIN 
DROP 
EJECT 
ELMT 
ELSE 
ELSEIF 
END 
ENDM 

FIX 
FLOAT 
FLOOR 
FOR 
FORALL 
FROM 
FROMB 
FROME 
GENERAL 
GET 
GETB 
GETEM 
GETF 
GETIPP 
GETK 
GETSPP 
GOTO 
HOST 
IF 
IMPL 
IMPORTS 
IN 
INCS 
INIT 
INTEGER 
IS_ATOM 
IS_BOOLEAN 
IS_INTEGER 
IS MAP 
IS REAL 
IS-SET 
IS_STRING 
IS_TUPLE 
LEN 
LESS 
LESSF 
LEV 

MIN 
MMAP 
MOD 
MODE 
MODULE 
NARGS 
NEWAT 
NOT 
NOTANY 
NOTEXISTS 
NOTIN 
NOTRACE 
NPOW 
ODD 
OF 
OK 
OM 
OP 
OPEN 
OPERATOR 
OR 
PACKED 
PASS 
PLEX 
POW 
PRINT 
PRINTA 
PROC 
PROCEDURE 
PROG 
PROGRAM 
PUT 
PUTB 
PUTF 
PUTK 
QUIT 
RANDOM 

REPR 
RETURN 
REWIND 
RMATCH 
RNOTANY 
RPAD 
RSPAN 
RW 
SET 
SETEM 
SIGN 
SIN 
SMAP 
SPAN 
SPARSE 
SPEC 
SQRT 
ST 
STATEMENTS 
STEP 
STOP 
STR 
STRING 
SUBSET 
SUCCEED 
TAN 
TANH 
TERM 
THEN 
TIME 
TITLE 
TRACE 
TRUE 
TUPLE 
TYPE 
UNSPEC 
UNTIL 
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EOF LIB RANGE UNTYPED 
ERROR LIBRARIES RANY VAL 
EVEN LIBRARY RBREAK VAR 
EXISTS LOCAL RD WHERE 
EXIT LOOP READ WHILE 
EXPORTS LPAD READA WITH 
EXPR MACRO READS WR 
FAIL MATCH REAL WRITES 
FALSE MAX REMOTE YIELD 

$ 
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Thr,:)1.J~ho 1_;t this te-:-~t, sen-it<::::-: rJicJ!Jr ... ~1r1!., ._in~ 1.J!.,E:d tr, dE:'!.,cr:i.b<-~ the~ 
q ,•aiun,at i cal st ruct•Jre of SETL cons t t'tJ<.'1.!.,. For coriven :i.(::'nc<~ s ._il J. 
sYnt-ai:{ diagi'ams ar·r·ea1·ini1 in the t2:~t are c:ol l PC"f.(~d in th:i !.• aP-Per,d:i.}<• 

F ;;;ch di c.;S ram de-sc: r· j be-:; the s l r1.rcl1.1n-~ of ._t l ard•J.:-<HP cc.1n!., t r1.1ct. F.ach 
'.c...:~t.h t,hT'o•.1~:-i a si·,,1en rJ:ia~tram -Lr2-ce-!:, on<=- valid ins-t. .. 1r1l'f:~ o-r th~ c:ort·e!:>f·or,d:ir,~ 
r.on;-;tr!JCt. Th~ followir,~l c:or,·..-·enlior,s 2-rP U!.•Pd in drc•Wirt£ u t,~u-,ta~-: 
dia~r-:;m : 

-.;;) s~r,tac':.i•.:- ,:1:.--=:.s.~~ c, w,-jtle-n ir, lowf'J· ca!;<-~ and ~'nt·los~,rJ ir, rpc.•ta~,sul<Jr 
bo:-:es. 

b) Termir,al =-~r,1col~ of the 1 .. ir,su~sE, (delirt,:i·tc~r-~_; ,Jnd lu•":.~wt11'ds) a1·e 
c.i:=-itali:::ed, c;nd e1·•cla<=.r,d in 1·ounded bcn:c~!.;. 

c-) w;""len the ;:,re·:;.,::,nce: of a eDr,~:tt·•Jc.-t in <.l !.l:ivc-~n d:i .. i.!..~1--1rn! :i!; m.,t:i.c.1r,al (s.:.;•=1 
the r:lecla1·ations ir,:: :---rc,~c;r-6m) thE-r, ;_~ >·•a-t.it th,.d:-.. b'n:-·as•,es -\..he c,i.,t.;;_unal 
constr•Jct ar-·Pear·:;; ir, ti·•E:> sr-i.tPh .above that c.-or,str1.1c.•t .• For· P:-:mrtJ,lc~, a 
;:-roced•Jre bod':! incl1.11:k~ ti,€"! fol lowins : 

. ------------·· 
•----· 

-------------:decl!------------
• I 
I---- I 

d) ReFetitian i!:--. indicatf';•d b•a-i ,J b,~ck.w .. 1r·d!., F-ath th.:;;t P,~!.,!;P!, 1..1 1·1,:k~r "t-ht:"' 
rr~peat,?d constr·uct.. For c,_•:-:.:;;mi=,le, a list of con!itant!, :is ._i !.,,~<ituerice of 
o,,e c,r mor~ con·;;.t.~-nts, seParc:tEc-d b·c~ COlhlhi.l!.,. Th£! r.:c.n·1··f."'!.•POr1dir,i=1 ~ .. un-l"-u:-, 
,:;,r3ph for the construt·-t. 'constant ljst' i~ Uw followin!J: 

. - --·-- ---·--. 
--------------- :-------- l c:or,~;tant l -------:--------

•- I ·----------· I I 

i----------------0---- ---·- -- --·- - ; 

e) The end of can1PC•:..ile st..;tem?.ntt, (1001:.t,r IF- c:nd Cf.:SE-s-l:.atf.c'm<~r,l..t-.) i!, 
:i.r,d:ic.·cted b':> the token Fi-H)r oPtion,;;] l~.4 -foUowPd b!I uriP or K101·<~ of the 
~-oken::; that. start te st,d .. en•~r.-t ..• Tile £=-l.l:i.Pt,:;_c, ( ••• ) :is 1_1~.ed in th~ s~1n-t.u:< 
d·i.rj3rams tn indicate ttu.• Pl'Ps~r,ec of !.".lt'h o:c·tionc;] toke:•n•.;• 



A.1 Lexical structure. Page B-2 

Tlie.- fol lot..ing gra:=>-hs ,:ie<.~c,·:i hP the ~,t.,·uctu,·e c,f Uw vaJ.:i.c: -;.o~:-~n~, of 
t.h~ l.~ns•.1a:=1e. 

lt.·tL~T 

letter· 

d:i !:1j t 

r,1Jmber 

real_tok di s:i t 

sisn 

dot_tok 

A.2 Prosram $tructure. 

A SETL p·r09r·an1 is zn :in~-L.c:,r1ce of' the· con!;tr11et -pro~h-,.w,-r tosether· 
"-'lth an·::l r·ei'erenced librz;TH.:.•s, whic:h ,.~n~ instar,cf)S of -lih-un:i_-i:,-. 

rl sir:1Ple Prosram -
~ -_,, 

...... modules 1--



si111Ple Pro=1ram 

libs 

bod"" 

mod•.Jles 

director'!:I_IJnit 

DIRECTORY r,dn,e 

dir_item 

name 

LIBRt"lRifS 

libs 

PROGRAM 

MODULE 

READS 

WRITER 
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libs routine C•ROGRAM ••• 

n3mPlist 

f-•ra~L.•Jni t 



in,Ports-list 

exPorts_list 

PrOC'-SPeC' 

l i b_1Jni t. 

I. tBF:ARY 
-A~Dec la:· at 1 ve 

decls 

re?r_decl 
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IMPORTS 

EXPORTS 

name ) 

nc;me 

REF'R 



Page B-5 

constant 

TRlJF. 

F(lLSF. 

cons.t._list. --• constar,t ~--

re?r declaration 
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mode 

?:TOM.-----------------------
P.OOL.Et-,N 

TUPLE 

Sf.T 

lltC:Pt~Pe 111<.)dP 

ir,odP 

mod(;' ..,_ _______ -r 

name 
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baset.~Pe 
LOCAL 

RF.MOTF. 

MAF' 

MMAF' 

ro•.Jt.irie 

OPdef 

ar~list 

formal 

OF-def 



Pap,e B-8 

ref i nemer,t r,ame 

A.4 Statement forms. 

stmt _q nao,e ~,.,,.~_bods}--

st111ts t I stm1, I I 

CONT HW F. t t' k E:11 s ••• t-------------+ 
f >:IT 

FAIL 

f-•?:SS .J----------------------~ 
QIJJT 

· RFTURh' 

STOF' 

YIELD 

;.i ss i snn,Pr ,t . 

. . 
c c;1se_ s t.-:d.Pn1crit ---------------~ 

call 



case_statement 

c_of_statement 

e:-:i=-rlist 

CASE 

elsec --' ( ELSE )-4 st,,ts ..... 1 l..___ 
if'_statement 

E>lsei-f 

looP-_statement 

i t.eratior, 

.i t.1,1•at.:i.on 

in i 
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Cf.lSF. • •• 

CASF.: ••• 

ELSE 
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init -{ IUIT ),---1. strrrt.s~ 

doing DOING 

while;, 

steP 

until 

termir, ---1 stmts t----

iterator 

simPle_iterator 

lhs 

lhs 

lhs 

G 
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selector 

assignment_statement 

lhs H bin<>P ~ e:wr 

A.S ExPressions. 

The fol lowins S'::lntc;:-: !tl'ilPhs do nc,t df:>~-c:ri he f1.1) 1~ Uw rPlativl~ PN,'t.•edence 
of oF·e rat.ors. A comF-1 £.-t<a· lc1b 1 e of' <:>Pt' r,d.o-r P rPc·eder,ce~,: is t.c, bf.• l"'o,_ind in 
SP.c-.3.:-:>:K. The constr•Jc:t. -b:inc,F·- inc:l1Jr.ie.-s the rJre:'d~-fine:~d binar'=I c,p~•rat.or!:. 
.ind the •J~er-defined o?eratc,r~. S:~1fl:i.larlHr -•Jnc,F·- reft·'l·!.• bolh tu .-•r~··­
defi r,ed and user-defin~tJ- c.1••~rator:-. 

term 

EXISTS 

suc·h 

F•)RALL ---• 

term 
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:i n t _ tllk .,_ ____________________ __, 

for1r1f'T· 

1::: :-c: P r 1 i s 1, 

-f1·,rn1Pr 

f r·on,_ P :<Pr ~---------------------, 

case _c- :-'.Pr .,_ _____________________ _, 

FROME 

lhs FROM 

FROM 



sYsvals 
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F.OF 

fMRGS 

LF.:V 

fornter 

such 

CASE 

case_E:x_e:-;i:-r 

CASE 

i f __ exPr 




	Title
	Table of Contents
	Preface
	1. Programming Concepts
	2. Data and Expressions
	3. Control Structures
	4. Functions and Procedures
	5. Data Objects and Expressions, Concluded
	6. Additional Control-Like Features of the SETL Language
	7. Program Development, Testing, and Debugging
	8. Additional I/O and Environmental Functions; Backtracking
	9. Programs, Modules, Libraries, and Directories
	10. The Data Representation Sublanguage
	11. The Language in Action: A Gallery of Programming Examples
	Index
	Appendices
	A: SETL Reserved Words
	B: Syntax Diagrams




