Equivalences

Fritz Henglein*
Courant Institute of Mathematical Sciences
New York University
715 Broadway, 7th floor
New York, N.Y. 10012, USA
Internet: henglein@nyu.edu or henglein@rutgers.edu

October 30, 1988

1 Equivalence Results

In this section we define and show log-space equivalence of the following three problems:
1. Typability of ML+ programs

2. Typability of ML+ programs with only one recursive definition and no let-bindings or
nested recursive definitions

3. Semi-Unification
ML+ programs are expressions derivable from E in
E := z|(EFE)|Az.E|letz = EinE|fixz . F

where z ranges over a given set of variables. The typing rules for ML+ (see appendix) are
identical to the ML typing rules [DM82] but for a more general rule for fix-expressions.

Semi-unification is a problem akin to unification. The preordering < of subsumption on first-
order terms is defined by M < N if there exists a substitution o such that o(M) = N. A system
{Mi1 = My, ..., Mgy = Mga,N11 € Nia,...,Niy < Nz} of term equations and term subsump-
tion inequalities is semi-unifiable if there is a substitution o such that all the equalities and sub-
sumption statements o(M11) = 6(Mi2),...,0(My1) = 6(Mpz),o0(N11) < o(N12),...,0(Nn) <
o(N;2) hold.

Polymorphic unification, an extension of ordinary unification recently used by Kanellakis
and Mitchell to prove type checking in ML PSPACE-hard [KM89], defines a subclass of semi-
unification problems. For example, if M[z, ..., z] is a term with k occurrences of = and if Ma, M3
are other terms, then the two extended terms letz = MyinM;[z, ..., z] and Mz are unifiable if
and only if the system {M;[z1,...,2x] = M3z, 2 = My, z < z;,...,x < x}} is semi-unifiable.

Theorem 1 The following three problems are log-space equivalent.

1. Typability of arbitrary ML+ programs;

*This research has been supported by the ONR under contract number N00014-85-K-0413.

2. typability of ML+ programs of the form fixz.E where E is let- and fix-free;

3. semi-unifiability of arbitrary systems of term equations and subsumpiion inequalities.

Proof (Sketch)

We sketch a proof of the two reductions (1) = (3) and (3) = (2). The first of these reductions
can be found in [Hen88]. We shall briefly reiterate the outline of that reduction. In the first
step we label the nodes of the syntax tree of a given ML+ program with distinct type variables.
We then collect a set of equations between these type variables and type expressions of the form
71 — 72 from the typing rules (ABS) and (APPL). For every A-bound variable z, labelled with
type variable ¢, and every occurrence of z, labelled with ¢/, we add the equation ¢ = ¢'. Now,
for every let- and fix-bound variable z, labelled with the type variable ¢, and every occurrence
of that z, labelled with ¢/, we collect all the A-bound variables and their type labels ¢;,...,%; in
whose scope z occurs and add the subsumption inequality f(¢,%1,...,%t) < f(¢',%1,...,%x); here
f is any suitable function symbol. The resulting system of equations and inequalities has the
property that it is semi-unifiable if and only if the original ML+ program is typable.

For the second reduction, (3) = (2), let {M11 = M12,..., Mgy = My2,N11 < Nia,...,Np <
N2} be a system of equations and inequalities with variables z;,...,z;x. From [KM89] we
know that every term can be encoded by fix- and let-free A-expressions and that there is a
A-expression = that encodes equality between terms. Similarly, tuples [L;,..., Ls] and tuple
selection functions #([L1, ..., Ls]) = L; can be represented by standard constructions. Now, the
A-expression

fixfAzy ...z K[My, ..., ME]Py1 .- e 1(fy1---¥k) = N1, oo, Ayn -« Y k(Fyr -« - yk) = Ni)

is typable if and only if the original system of equations and inequalities is semi-unifiable.
This theorem shows that

1. type checking for ML+ programs with only a single fix and no let is already PSPACE-hard;

2. nesting of fix-expressions does not make type checking harder (this is in contrast to My-
croft’s statement in [Myc84]);

3. fix-expressions are at least as expensive as let-expressions as far as type checking is con-
cerned;

4. semi-unification captures the combinatorial essence of type checking ML+ programs.

ML+ Typing Rules

ML+ is an extended A-calculus. The type expressions are given by

ri=t|T—T

t := (type variables)

o:=171|Vto
Type expressions derived from 7 above are called monotypes and the larger set of type expressions
derived from o are polylypes. A type assignment is a mapping from A-calculus variables to type
expressions. For detailed definitions of A-expressions, type expressions, and type assignments we
refer to [DM82] and [Myc84] or any number of other papers on type theory.

The canonical type inference system for the ML+ [Myc84] given below. Let A range over
type assignments, z over A-calculus variables, ¢ over type variables, e and e’ over expressions, 7
and 7’ over monotypes, and o and o’ over polytypes.

(TAUT) A{z:0}Dz:0

(INST) ADe:Vio
ADe:o[T/t]

(GEN) ADe:o
(¢ not free in A)
ADe:Vio

(APPL) ADe:7 -7
ADe: 7
AD(ed]): T

(ABS) A{z:7}De:r
ADMAze: T >

(LET) ADe:o
A{z:0} D€ : ¢’
ADletz = ene’ : o’

(FIX-P) A{z:0}De:0
ADfixze:o

References

[DM82] L. Damas and R. Milner. Principal type schemes for functional programs. In Proc.
9th Annual ACM Symp. on Principles of Programming Languages, pages 207-212, Jan.
1982.

[Hen88] F. Henglein. Type inference and semi-unification. In Proc. ACM Conf. on LISP and
Functional Programming, ACM, ACM Press, July 1988.

[KM89] P. Kanellakis and J. Mitchell. Polymorphic unification and ML typing (extended ab-
stract). In Proc. 16th Annual ACM Symp. on Principles of Programming Languages,

ACM, January 1989.

[Myc84] A. Mycroft. Polymorphic type schemes and recursive definitions. In Proc. 6th Int.
Conf. on Programming, LNCS 167, 1984.

i
h
|
5
*
¥
(&
4

T

I

=

bt
a5

RO BRSO TR e

|

T

I

