
Equivalences 

Fritz Henglein* 
Courant Institute of Mathematical Sciences 

New York University 
715 Broadway, 7th floor 

New York, N .Y. 10012, USA 
Internet: henglein@nyu.edu or henglein@rutgers.edu 

October 30, 1988 

1 Equivalence Results 

In this section we define and show log-space equivalence of the following three problems: 

1. Typability of ML+ programs 

2 . Typability of ML+ programs with only one recursive definit ion and no let-bindings or 
nested recursive definitions 

3 . Semi-Unification 

ML+ programs are expressions derivable from E in 

E ::= xj(EE)j..Xx.Ejletx = EinEjfixx.E 

where x ranges over a given set of variables. The typing rules for ML+ (see appendix) are 
identical to the ML typing rules [DM82] but for a more general rule for fix-expressions. 

Semi-unification is a problem akin to unification. The preordering ::; of subsumption on first­
order terms is defined by M :=; N if there exists a substitution u such that u(M) = N. A system 
{..11111 = M12, .. . , Mu = Mk2,N11 :=; N12 , . .. , N11::; N12} of term equations and term subsump­
tion inequalities is semi-unifiable if there is a substitution u such that all the equalities and sub­
sumption statements u(M11) = u(M12) , ... , u(Mkl) = u(Mk2), u(Nu) :=; u(N12) , ... , u(N11) ::; 
u(N12) hold. 

Polymorphic unification, an extension of ordinary unification recently used by Kanellakis 
and Mitchell to prove type checking in ML PSPACE-hard [KM89], defines a subclass of semi­
unification problems. For example, if M1[x, .. . , x] is a term with k occurrences of x and if M2, M3 
are other terms, then the two extended terms letx = M2inMi[x, ... , x] and M3 are unifiable if 
and only if the system {Mi[x1, .. . , xk] = M3 , x = M 2, x :=; x 1 , . .. , x :=; xk} is semi-unifiable. 

Theorem 1 The following three problems are log-space equivalent. 

1. Typability of arbitrary ML+ programs; 

•This research has been supported by the ONR under contract number N00014-85-K-0413. 

1 



£. tyvability of ML+ programs of the form fixx .E where E is let- and fix-free; 

:J. s emi-unifiabi/ity of arbitrary systems of term equations and subsumption inequalities. 

Proof (Sketch) 
W e sk tch a proof of the two reductions (1) ⇒ (3) and (3) ⇒ (2). The fust of these reductions 

can be found in [Hen88). We shall briefly reiterate the outline of that reduction. In the first 
st p we label the nodes of the syntax tree of a given ML+ program with distinct type variables. 
Vl then collect a set of equations between these type variables and type expressions of the form 
r 1 -+ r 2 from the typing rules (ABS) and (APPL). For every >.-bound variable x, labelled with 
type variable t, and every occurrence of x, labelled with t', we add the equation t = t'. Now, 
for eve ry let- and fix-bound variable x, labelled with the type variable t, and every occurrence 
of that x, labelled with t', we collect all the >.-bound variables and their type labels t 1 , •. . , tk in 
whose scope x occurs and add the subsumption inequality f(t,t 1 , ••• , tk) :'S f(t', ti, ... , tk); here 
f is any suitable function symbol. The resulting system of equations and inequalities has the 
property that it is semi-unifiable if and only if the original ML+ program is typable. 

For the second reduction, (3) ⇒ (2), let {Mu= M12, ... , Mu = Mk2, Nu :'S N12, . . . , N11 :'S 
N,2 } be a system of equations and inequalities with variables x 1 , ... , Xk. From [KM89) we 
know that every term can be encoded by fix- and let-free >.-expressions and that there is a 
>.-expression = that encodes equality between terms. Similarly, tuples [L1 , ... , Lh] and tuple 
selection functions z([L1 , ... , Lh]) = Li can be represented by standard constructions. Now, the 
>.-expression 

is typable if and only if the original system of equations and inequalities is semi-unifiable. 
This theorem shows that 

1. type checking for ML+ programs with only a single fix and no let is already PSPACE-hard; 

2 . nesting of fix-expressions does not make type checking harder (this is in contrast to My­
croft 's statement in [Myc84]); 

3. fix-expressions are at least as expensive as let-expressions as far as type checking is con­
cerned; 

4 . semi-unification captures the combinatorial essence of type checking ML+ programs. 

ML+ Typing Rules 
ML+ is an extended >.-calculus. The type expressions are given by 
T := t IT-+ T 

t := (type variables) 
O' := TI Vt.o-

Type expressions derived from r above are called monotypes and the larger set of type expressions 
derived from o- are polytypes. A type assignment is a mapping from >.-calculus variables to type 
expressions . For detailed definitions of >.-expressions, type expressions, and type assignments we 
refer to [DM82) and [Myc84) or any number of other papers on type theory. 

The canonical type inference system for the ML+ [Myc84) given below. Let A range over 
type assignments , x over >.-calculus variables, t over type variables, e and e' over expressions, T 

and r' over monotypes, and o- and o-' over polytypes. 

2 



(TAUT) A{x:u}::>x:u 

(INST) A::> e: Vt.u 
A ::> e : O'(T ft] 

(GEN) A::>e : u 
(t not free in A) 

A ::> e : Vt.u 

(APPL) A::>e:T'-r 
A ::> e' : -r' 
A::> (ee1

): T 

(ABS) A{x : -r'}::>e:r 
A ::> Ax.e : ? - T 

(LET) A::>e:u 
A{x:u}::>e':u' 
A ::> letx = eine' : ? 

(FIX-P) A{x: u} ::> e: u 
A ::> fixx .e : u 

References 

[DM82] L. Damas and R. Milner. Principal type schemes for functional programs. In Proc. 
9th Annual ACM Symp. on Principles of Progromming Languages, pages 207-212, Jan. 
1982. 

[Hen88] F. Henglein. Type inference and semi-unification. In Proc. ACM Conf on LISP and 
Functional Progromming, ACM, ACM Press, July 1988. 

[KM89] P. Kanellakis and J. Mitchell. Polymorphic unification and ML typing (extended ab­
stract). In Proc. 16th Annual ACM Symp. on Principles of Progromming Languages, 
ACM, January 1989. 

[Myc84] A. Mycroft. Polymorphic type schemes and recursive definitions. In Proc. 6th Int. 
Conf on Programming, LNCS 167, 1984. 

3 


