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Abstract

SETL was conceived as a weakly-typed language. In an attempt to
provide a strong typing discipline for SETL without compromising the
style of declaration-free programming prevalent in SETL, we present
some results and ongoing work on a flexible type model for SETL and
on the associated (automatic) type inference problems.

1 Introduction

SETL’s weak typing discipline has been repeatedly perceived to be a weak-
ness, especially in large-scale prototyping applications [Sch87]. Yet the pro-
gramming style SETL is conducive to has proved to be valuable for con-
cise top-down program development. The characteristics of this style are,
most notably, declaration-freeness, uniform polymorphism, extensive opera-
tor overloading, and certain data-structuring techniques such as “nesting” to
simulate recursive data types and implicit, yet deliberate, use of union types.
A strong typing discipline for SETL will have to enforce typing constraints
while respecting these particular programming elements.

Furthermore, flexible records, procedures as first-class objects as well as
abstraction and modularization facilities are included in the design of SETL-
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2 [Smo88b] and are, consequently, addressed throughout in the typing issues
outlined below.

2 Parametric Polymorphism

Parametric polymorphism refers to the ability of program procedures to be
used with arguments whose types can be characterized by parametric type
expressions. For example, the function length, which returns the length of a
list, is applicable to arguments of type list α, where α is a type parameter
that indicates that any concrete list type is permitted.

The theory of parametric polymorphism is quite old and goes back to
Curry and Feys [CF58], Morris [Mor68], and Hindley [Hin69]. It entered the
programming language arena through the seminal paper by Milner [Mil78];
it has been formalized as a typed λ-calculus by Damas and Milner [DM82].

Mycroft [Myc84] noticed that Milner’s polymorphism was inadequate
for recursive definitions. The problem is that recursively defined functions
may only be used polymorphically in the “code section” of a program, not
the declaration section where they are defined. He proposed an extension
that he proved to preserve most of the properties of the pure Milner-style
polymorphism. The resulting type inference problem was not known to
be decidable or undecidable, though. Recently, Kfoury et al. [KTU88]
showed, nonconstructively, that this problem is decidable. We had developed
a constructive proof of the same result when [KTU88] was published. In the
meantime we have shown that it is polynomial-time decidable [Hen88b] by
providing a polynomial-time algorithm for the fundamental problem of semi-
unification [Hen88a].

The practical implications are that no elaborately nested declarations
and definitions are necessary to provide polymorphism everywhere in a pro-
gram, including the declaration/definition sections themselves.

3 Dynamic Overloading

SETL makes extensive use of operator overloading. For example, + denotes
integer addition, floating point addition, set union, tuple concatenation,
and string concatenation. There are many more examples of overloading.
Overloading has been regarded as beneficial for a clear and concise language
design if the overloaded operators denote similar, that is — roughly —
homomorphic, operations. Since many operators in SETL denote both tuple
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and set operations, sets can be changed to tuples (and the other way around)
often without changing the code.

The programming language ML [Har86], whose core is based on Milner’s
polymorphism, provides minimal overloading. The problem is that “liberal”,
Ada-style overloading in a declaration-free language such as ML leads to
an NP-hard type inference problem [ASU86, exercise 6.25]. Furthermore,
ML’s overloading calls for resolution in the syntactic context of operators,
while SETL demands a more dynamic discipline [Hen87a]. For example, a
generic sorting routine that uses the comparison operator <, which might
denote integer, floating point, and lexicographic string comparison, is not
possible in ML, whereas it is legal and an essential source of (restricted)
polymorphism in SETL.

We have shown how dynamic overloading in SETL can be captured
by a form of restricted polymorphism, which we have termed oligotypes
[Hen87b]. Polytypes are quantified type expressions that express the poly-
morphic nature of a type; e. g. ∀α.listα → integer is the polytype of the
length function referred to earlier. The crucial idea behind oligotypes is
that they are simply polytypes with restricted quantified variables; e. g.
∀α ∈ {integer, real, string}.α × α → boolean is the oligotype of the above-
mentioned comparison operator <.

The general theory of oligotypes and its specialization to SETL remain
to be investigated, but we have made a start by formulating a new axioma-
tization of parametric polymorphism and dynamic overloading [DH88] that
is based entirely on first-order types (no type quantification) and is thus es-
pecially conducive to specification in the logic programming language Typol
[CDD+85]. Thus we have an executable type inference specification that
can be used for purposes of experimentation.

4 Recursive Types and Union Types

Binary trees and other recursive data types are often simply modelled by
nested tuples in SETL. Detection of such recursive types [Wei86] has led
to improved performance of the data-flow oriented type finding algorithms
developed earlier in a lattice-theoretic framework [Ten74]. It is well-known
that recursive types can be inferred in a polymorphic framework by omit-
ting the socalled “occurs check” in unification steps of the type inference
algorithm (see, e. g., [Mil78, algorithm W].

Union types are most useful in connection with recursive types. For
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example, the type of binary trees with integer-labelled leaves is the union of
a pair of such binary tree types (the reoccurrence of binary tree type in the
definition makes this definition recursive) and the integer type. (Disjoint)
union types that have components distinguished solely by their types (pair
and integer in the example above), are called free, and are currently not
included in our proposed type system for SETL. Instead we provide tagged
union types in which the components carry tags (names) to disambiguate
from which component of the union they are. For example, [ node <-

[t1, t2] ] denotes a binary tree with two subtrees t1 and t2; the tag
node indicates that it is an internal node. [ leaf <- 5 ] stands for the
binary tree consisting solely of the leaf labelled with the integer value 5; the
tag leaf indicates that it is a leaf.

Mishra and Reddy [MR85] report on type inference with parametric
polymorphism, recursive types and free union types. They claim to have
an “effective” algorithm for inferring the type of any expression, although
they present no complexity-theoretic results. Since we believe that their
type inference problem is hard (probably NP-hard), we intend to tackle the
computational questions in their type inference problem in the near future.

5 Type Abstraction

SETL provides abstract types such as sets and maps, but has no abstraction
facilities that let the programmer encapsulate his code and prevent a user
from using his code in an unintended fashion.

Ernie Campbell, a student of Prof. Schonberg’s, is currently working on
developing type abstraction and modularization facilities suitable for SETL-
2. His work is based on [MP85], [CW85], [Mac86], and [GP85] as well as the
package facilities of Ada [Uni83].

6 Conclusion and Outlook

We have indicated some preliminary results and ongoing research at NYU on
strong typing in SETL. We think the resulting type system will be flexible
enough to support the sort of programming SETL users have grown accus-
tomed to while providing a compile-time safety net considered indispensible
in large-scale applications.

In connection with the language changes in SETL-2, notably procedures
as first-class objects, records, and abstraction facilities [Smo88b], we feel very
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optimistic about the future of SETL. With the development of a program-
ming environment [Kel87], the publication of reference material [SDDS86],
and easily portable reimplementations ([Smo88a] and [Kel87, working group
S1]), the major obstacles that have kept SETL from expanding into academic
and industrial markets may well be overcome soon.
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