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Abstract

We present a type inference system that should function as the basis for
a strong typing discipline in SETL. It extends the polymorphism found in
languages like ML in several respects. In particular, it handles unioned and
implicit recursive types, and provides a form of restricted polymorphism
which is derived from SETL’s dynamic overloading.

1 Introduction

In this paper we present a type inference system for SETL. The reader is as-
sumed to be familiar with the notions of weak typing and strong typing, type
checking and type inference, type inference systems and typing algorithms. For
a background on these topics [CW85] and [Car85] are sufficient.

We have attempted to separate the type inference system from the particular
type model (i. e. what is considered the types in a language) as much as
possible. We only assume that the types have a lattice structure. How this
lattice is defined is part of the type model. In combination with the well-known
parametric polymorphism from ML [Mil78] this represents a novel integration
of a subtype discipline [Rey85] with parametric polymorphism.

The type model, described in a companion paper, encompasses union types,
implicit recursive types, and finitary polymorphism. The latter is a form of
restricted parametric polymorphism derived from the dynamic overloading dis-
cipline in current SETL (see [Hen87] for an exposition of SETL overloading).

The following section contains the core of the type inference system. Of
course it is not complete for the whole language, but it contains all the crucial
elements.

2 The Inference System

The reader is referred to [Lei83] and [Mit84b] for a more thorough discussion
of the following concepts.
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The type inference system is given as a collection of rules. Every rule
consists of an antecedent and a consequent. The rules are to be read “Given
the antecedent of a rule is true, then the consequent in the same rule is also
true.” The only statements that can occur in such rules are typings and type
containments. A typing is a statement of the following form:

A ` e : τ

e is an expression or any other well-formed syntactic unit in the programming
language, τ is a type, and finally, since the type of an expression is dependent
on the types of the unbound identifiers in it, A represents a set of assumptions
on the types of identifiers in e.

We present the rules in groups. Every rule is explained, an example for it
given, and some remarks for clarification may be added.

2.1 Application

A ` f : σ → τ
A ` e : σ′

σ′ ≤ σ
A ` f(e) : τ

(1)

Given f of function type σ → τ with domain type σ and codomain type
τ and an argument e with a subtype σ′ of σ, the type of f(e) is simply the
codomain type of f .

Because of the presence of a containment statement, this rule cannot be
supplanted by simply providing a primitive operator apply with the type
∆σ.∆τ.(σ → τ) × σ → τ 1 since this operator would require the argument
of a function f to have the exact same type as the domain type of f whereas
the above rule allows for a coercion, that is implicit “upwards” type conversion
2, of the argument into the domain type σ as long as its type σ′ is a subtype of
σ. This extension is crucial in a system with union types. Note that we cannot
add a universal coercion rule

A ` e : σ
σ ≤ σ′
A ` e : σ′

to overcome this shortcoming of apply since the left-hand sides of assign-
ments should never be coerced. This phenomenon is in marked contrast with
functional languages. Our type inference system facilitates specification of the
local context in which coercions are sound and thus permitted.

1This type expresses that apply has two arguments, one with a function type, the other
with the domain type of the first argument; its result type is the codomain type of the first
argument.

2Our notion of coercion is essentially the same as in [Mit84a]
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2.2 Conditional Expression and Conditional Statement

A ` b : boolean
A ` e1 : σ1
A ` e2 : σ2
A ` if b then e1 else e2 end if : σ1 ∨ σ2

(2)

Given a boolean expression b and two expressions e1 and e2 with types σ1
and σ2, respectively, the type of the conditional expression above is the join of
the types σ1 and σ2

3

We might be tempted to mandate that the types of both branches of a
conditional expression be equal for the conditional to be well-typed. Once
again, our rule leaves room for coercions, and is thus more flexible. Consider,
for example the following assignment to a variable x.

x := IF integerflagTHEN5ELSE5.0

This assigment makes perfect sense if x is defined as a union of integer and real.
We can think of both 5 and 5.0 being coerced into values of the union type, which
is the smallest type greater than both integer and real. This particular rule
not only applies to conditional expressions, but also to conditional statements,
if we have a type void, the type of a statment with no return value, in our type
model.

2.3 Case Expression and Case Statement

A, x : τ1 ` e1 : σ1
A, x : τ2 ` e2 : σ2
. . .
A, x : τn ` en : σn
A ` case x of τ1 : e1; τ2 : e2; . . . τn : en end case : σ1 ∨ σ2 ∨ . . . ∨ σn

(3)

if A contains x : τ1 ∨ τ2 ∨ . . . ∨ τn.
Assuming the n branches above have types σ1 through σn if x has type

τ1 through τn, respectively, in them, then a case distinction on exactly those
n types of x has the join of all branch types as its type if x has indeed type
τ1 ∨ τ2 ∨ . . . ∨ τn.

This rule is similar to the conformity clause in ALGOL 68. We can provide
a rule also for the case statement with an else clause.

A, x : τ1 ` e1 : σ1
A, x : τ2 ` e2 : σ2
. . .
A, x : τn ` en : σnA, x : ω ` en+1 : σn+1

A ` case x of τ1 : e1; τ2 : e2; . . . else τn+1 : en+1 end case : σ1 ∨ σ2 ∨ . . . ∨ σn+1

(4)
if A(x) ≥ τ1 ∨ τ2 ∨ . . . ∨ τn.

Here ω denotes the greatest type in the type lattice. We assume ω exists,
of course.

3Remember that we stipulated that the types have a lattice structure.
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