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Abstract 

The programming language ML+ extends the ML language with 
a polymorphic fix-point construct. In this paper, we clarify the com
binatorial properties of performing type inference in this language. 
Specifically, we demonstrate an EXP TIME lower bound on recogniz
ing typable ML +expressions. We also show that this problem can be 
reduced to the simpler problem of recognizing typable expressions in a 
proper subset o{ ML+. Finally, we show that the type inference prob
lem is equivalent to ~he problems of semi-unification and polymorphic 
unification. 

1 Introduction 
One reason for the popularity of the ML programming language [Mil78] 
is its type inference system. This system frees the programmer from 
having to make explicit type declarations. Instead, all typing informa
tion can be inferred from the program's structure. A second reason is 
a polymorphic let construct that facilitates code-she.ring. For exam
ple, one can specify a function that sorts arrays of any type of element. 
Contrast this to most languages in which it is necessary to have two 
separate, nearly identical routines to sort integer and floating-point 
numbers. 

When limitations on the utility of the let construct became appa
rant, the ML+ language [Myc84] [KTU88b] was proposed as a proper 
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extension of ML. An example (from [Myc84)) will motivate this ex
tension. 

Consider the following simulta.neous definition of functions map 
and squarelist: 

map(/, 1) = i:t null(l) then nil else 

cons( f(hd 1), map(/, ti I) ) 

-,quarelist(l) = map( .Xx. x • x, 1) 

By the type inference rules of ML, the functions are determined to 
have monomorphic types 

map : (I NT -+ I NT) x I NTlist -+ I NTlist 
-,quarelist : I NTlist -+ I NTlist 

However, if the functions were defined sequentially, the expected poly
morphic type would be inferred for map, namely 

map: Yo:/3. (o:-+ /3) x o:list -+ f3list 

The failure to derive the expected polymorphic type for map would 
be even more serious if we simultaneously defined a third function 
that applied map to a BOO Llist. In this case, correct typing is not 
possible since the inference rules would require that the distinct types 
I NT and BOO L be equal. 

The contribution of ML+ was a polymorphic :fix construct that 
permitted mutually recursive definitions. Using this construct to de-
fine the two functions as • 

:fix ( map, squarelist ). (.X(/, l) .... , .XI .... ) 

yields the expected polymorphic typing for map. 
One question that is raised by polymorphism is its computational 

complexity. Experience with ML had led many to believe that poly
morphic type inference was not a difficult problem. In fa.ct, a "folk 
theorem" developed that claimed a. linear time algorithm for perform
ing type inference. It was not until the recent results of Kanellakis 
and Mitchell [KM89] that this notion was debunke_d. To the contrary, 
[KM89] demonstrated the PSPACE-hardness of recognizing typable 
ML expressions. Our goal in this paper is to answer the same ques
tion for the language ML+. 
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1.1 Related work and previous results 

The expressions of ML+ considered in this paper are given by 

E ::= z I (EE) I >.z.E I let z = E in EI fix z.E 

where z ranges over a given set of variables. The typing rules for ML+_ 
(see appendix) are identical to the ML typing rules (DM82] except for 
a more general rule for fix-expressions. 

Polymorphism is introduced by interpretting each occurrence of z 
in the let and fix constructs as being of different types. ML +properly 
extends the core ML language in its inclusion of the fixconstruct. 

The type of an expression that excludes let and fix may be in
ferred in linear time by simple unification. Until recently, it was be
lieved that this was also true for expressions including let. Kanellakis 
and Mitchell (KM89) reduced the problem of recognizing typable ML 
expressions to a "polymorphic unification" problem and demonstrated 
its PSPACE-hardness. However, they were only able to give an EX
PTIME upper bound. 

Mycroft and others [Myc84] [Mee83] [KTU88b] recognized the 
practical limits of having let as the sole means of polymorphism 
and extended ML with the polymorphic !ix, thereby creating ML+. 
Kfoury et. al. [KTU88a] formally established that this extension in
creases the language's expressiveness but bounds on the type inference 
problem :for this language were left open. 

Recently, several people have shown that the type inference prob
lem for ML +can be reduced to the problem (called "semi-unification" 
in [Hen88]) of solving systems of inequalities on type expressions 
[Mit88] (KTU88b] [Hen88J[GR88]. Again, the complexity of solv
ing these systems was left open ( although there are partial result~ 
in (Cho86] and [PM88).) 

2 Main results and significance 

In this paper, we address the problems of type-inference in ML+, semi
unification, and extended polymorphic unification. The contributions 
of this paper are in demonstrating 

• The equivalence of ML+ type inference, semi-unification, and 
extended polymorphic unification. 
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• The above problems may be reduced to a simpler problem, namely 
recognizing typable expressions in the proper subset of ML+ con
taining no let expressions and at most one fix. 

Mycroft [Myc84) conjectured that the nesting of fix constructs 
might have to be limited on pragmatic grounds "due to the ex
ponential cost of analyzing nested fix definitions". Our result 
shows that the essential combinatorial nature of the inference 
problem is already inherent in a single fix construct. (How
ever, from the point of program expressiveness, multiple !ix 
constructs might still be needed.) 

• A lower bound of EXPTIME on these problems. 

This clarifies the combinatorial nature of the problem and per
haps explains why algorithms for these problems have not been 
found. 

3 Problem definitions 
In this section we define each of the problems considered. We shall 
show their log-space equivalence in the following section. 

Typability o/ML + exprellion&is the problem of determining whether 
a type can be derived for an arbitrary ML+ expression using the lan
guage's type inference system (given in the appendix). 

Semi-unification is a problem akin to unification. The preordering 
~ of &Ub!umption on first-order terms is defined by M ~ N if there 
exists a substitution u such that o-(M) = N. A system 

{M11 = M12, ... , M1t1 = M1c2 

Nu ~ N12,~ .. , N11 ~ N12} 

of term equations and term subsumption inequalities is !emi-unifiable 
if there is a substitution u such that all of the following equalities and 
subsumption statements hold: 

u(M11) = u(M12), ... , u(.M1c1) = u(M1t2), 
u(Nu) ~ u(N12), ... , u(N11) ~ u(N12) 

Polymorphic unification, an extension of ordinary unification, which 
was recently introduced by Kanella.kis and Mitchell[KM89), defines a 
sub-class of semi-unification problems. For example, if Mi[z, ... , z) is 
a term with k occurrences of z·and if li/2, M3 are other terms, then the 
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extended terms M3 and (let z = M2 in Mi[z, ... , z]) are unifiable if 
and only if the system 

{ Mi(z1, ... , z1c] = M31 z = M2, 
z ~ z1,.,.,z ~ z1c} 

is semi-unifiable. 

4 Equivalence Results 
The main result of this section establishes the equivalence of severalof 
these problems and is proved in the following. 

Theorem 1 The following three problem.! are log-.!pace equivalent. 

1. Typability of arbitrary ML+ program.!; 

2. typability of ML+ program.! of the form fix z .E where E i.! let -
and fix-free; 

3. .!emi-unifiability of arbitrary .!Y.!tem.! of term equation.! and mb
.!Umption inequalitie.!. 

This theorem shows that 

1. type checking for ML+ programs with only a single fix and no 
let is already PSPACE-hard; 

2. nesting of fix expressions does not make type checking harder 
( this is in contrast to Mycroft's statement in [Myc84]); 

3. fix expressions are at least as expensive as let expressions as 
far as type checking is concerned; 

4. semi-unification captures the combinatorial essence of type check
ing ML+ programs. 

Proof (Sketch) 
We sketch a proof of the two reductions (1) => (3) and (3) => 

(2). The first of these reductions can be found in [Hen88]. We shall 
briefly reiterate the outline of that reduction. In the first step we 
label the nodes of the syntax tree of a given ML+ program with dis
tinct type variables. We then collect a set of equations between these 
type variables and type expressions of the form T1 -+ T2 from the 
typing rules (ABS) and (APPL). For every ,\-bound variable z, la
belled with type variable t, and every occurrence of z, labelled with 
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t', we add the equation t = t'. Now, foI eveiy let- and fix-bound 
variable z, labelled with the type variable t, and every occuuence of 
that z, labelled with t', we collect all the >.-bound variables and their 
type labels ti, ... , t,. in whose scope z occuis and add the subsump
tion inequality /( t, ti, ... , t,.) :5 /( t', ti, ... , t1c); heie / is any suitable 
function symbol. The Iesulting system of equations and inequalities 
has the piopeity that it is semi-unifiable if and only if the oiiginal 
ML+ program is typable. 

For the second reduction, (3) :::} (2), let 
{ Mu = M121 ••• 1 M1c1 = M1c2, 

Nu :5 N12, ... , N11 :5 N12} 
be a system of equations and inequalities with variables z1,•••,z1c, 
From [KM89] we know that every term can be encoded by Ux- and 
let-free >.-expressions and that there is a >.-expression "=" that en
codes equality between teims. Similady, tuples [Li, ... , Lh] and tuple 
selection functions 1([L1, .. ,,Lh]) = L; can be represented by stan
dard constructions. Now, the >.-expression 

fix /. >.z1 ... z1c. 
K[M1, ... , M1,J[>.y1 ... Y1c.i(/y1 ... Y1c) = N1, ... , AY1 ... Y1c-k(/111. · · Y1c) = N1c] 

is typable if and only if the original system of equations and inequal-
ities is semi-unifiable. 

5 Lower Bound 
The main result of this section is the following. 

Theorem 1 Recognizing typable ML+ expre.!.!ion.! i.5 hard for EXP
TIME. 

By the equivalence results of the previous section, this demon
strates an EXPTIME lower bound for the semi-unification and poly
moiphic unification problems as well. 

This result contrasts with the PSPACE lower bound and EXP
TIME upper bound derived by [KM89] for recognizing typable ML 
expressions. Using let constructs nested to a depth of n [KM89) can 
only specify trees of depth n. With a single, un-nested :fix we ate 
able to specify trees of depth 2n. Thus, the :fix construct seems to 
be much more powerful a means of introducing polymorphism than is 
the let construct. 

Proof: (sketch) 
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Given a PSPACE-bounded Alternating Turing Machine 1 M with 
input x, we use the techniques of (CKS81] to deterministically simulate 
its behavior. Our contribution is in showing that this simulation is 
possible by the extended polymorphic unification of a graph 2 G whose 
size is polynomial in the description of M and x and that represents 
the type of a fix expression. 

The simulation of (CKS81] organizes the configurations of Mon x 
as nodes of a "computation tree" and assigns each a value such that 
M accepts if and only if the root is assigned true 3. But, since M is 
PSPACE-bounded, the depth of this tree can be as great as 2", where 
n is the length of x. Therefore, the crux of our proof is in concisely 
representing trees of depth 2" as the type of a fix expression. 

The graph of Figure 1 compactly respresen ts a binary tree whose 
nodes are instances of the graph contained in the circle ( the "super
node"). This super-node will contain many sub-graphs related to the 
simulation, such as an encodings of configurations, Boolean functions, 
and a "next-configuration" function that maps a configuration into its 
successor configurations according to the next-state function of M. 
We first concentrate on specifying the sub-graph that keeps count of 
a node's depth with the computation tree. 

Throughout our simulation, a Boolean variable v will be repre
sented by four nodes vo, ... , v3. If vo = v1 (i.e., vo and v1 unify), 
then we interpret v as having value true or l; if instead v2 = v3 , we 
intepret v as having value false or 0. A single bit of the counter is 
shown in Figure 2. It takes a bit i and a "gate" value g as inputs, and 
produces o as output according to the rule o = (i + g) mod 2. That 
is, the graph counts up when the gate value is true. 

Now consider connecting n of these counters in series (with inputs 
·O •n-1 t t O n-1 d t O n-1) d" 1 , ... , 1 1 ou pu s o , ... , o , an ga es g , ... , g accor mg 
to the following equations: 

1 Recall, EXPTIME = Alternating PSPA CE. 
2 TYI~e expressions have a natural representation as graphs, which we use here for con

venience. It. is equally possible to directly give an equivalent system of constraints on type 
expressions. 

3The root of this tree is the initial configuration and the children of a node are its im
mediate successor configurations. Leaves are assigned Boolean values indicating whether 
they are accepting configurations. Nodes that are universal (resp., existential) configura
tions are assigned a value that is the conjuction (resp., disjunction) of the values assigned 
to its children. 
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go = e 
gj+l - e /1. ij 

Then letting I denote the integer represented by the Boolean string 
in-lin-

2 

• • • i0 and O the integer with representation on-lin-

2 

• • • o0 , 

we can prove that O = (I+ e) mod n. That is, setting e to 1 causes 
the n-bit counter to be incremented. 

Having shown that trees of depth 2n are constructible, we can 
adapt the techniques of (DKM84] (DKS88] that give encodings of 
Boolean functions as graphs. We can then embed a "next-configuration" 
function within the super-node to ensure that the resulting tree is in 
fact the computation tree of Mon input z. The technique of (KM89] 
that computes values for nodes in a bottom-up manner can also be 
adapted to assign values to the nodes of this "computation-tree". Fi
nally, the results of (KM89] can be extended so as to extract an ML+ 
expression from our graph. I 
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A ML+ Typing Rules 
ML+ is an extended A-calculus. The type expressions are given by 

T == t IT-. T 

t := (type variables) 
u :=TI Vt.u 

Type expressions derived from T above a.re called monotypea and the 
larger set o{ type expressions derived from " are polytype.!. A type 
assignment is a. mapping from A-calculus variables to type expressions. 
For detailed definitions o{ A-expressions, type expressions, and type 
assignments we refer to [DM82] and [Myc84] or any number of other 
papers on type theory. 

The ca.nonical type inference system {or the ML+ (Myc84] is given 
below. Let A range over type assignments, z over A-calculus vari
ables, t over type variables, e and e' over expressions, T and T

1 over 
monotypes, and " and u' over polytypes. 
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(TAUT) A{z: 11} :> z: 11 

(INST) A ::, e : Vt.tr 
A:> e: u(r/t] 

(GEN) A::>e:11 
{t not free in A) 

A ::, e : Vt.tr 

(APPL) A::>e:r 1 -+r 
A:> e': r' 
A::, (ee'): r 

(ABS) A { z : r'} ::> e : r 
A::> ,\z.e: r'-+ r 

(LET) A:>e:u 
A{z: 11} ::> e': u' 
A ::> let z = e in e' : u' 

(FIX-P) A{z: 11} ::> e: 11 
A :> fix :z:.e: 11 
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Figure 1: Compact respresentation of a binary tree of "super-nodes" 

The following relations hold among the nodes: 
c; = i; j = O, ... , 3 
a; = ic;+2)mod4 j = 0, • • •, 3 

Figure 2: A single bit of the n-bit counter 
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