
On the Complexity of ML+ Type Inference

Kenneth J. Perry t Fritz Henglein *

Courant Institute IBM T.J. Watson Research Center

Abstract

The programming language ML+ extends the ML language with
a polymorphic fix-point construct. In this paper, we clarify the com
binatorial properties of performing type inference in this language.
Specifically, we demonstrate an EXP TIME lower bound on recogniz
ing typable ML +expressions. We also show that this problem can be
reduced to the simpler problem of recognizing typable expressions in a
proper subset o{ ML+. Finally, we show that the type inference prob
lem is equivalent to ~he problems of semi-unification and polymorphic
unification.

1 Introduction
One reason for the popularity of the ML programming language [Mil78]
is its type inference system. This system frees the programmer from
having to make explicit type declarations. Instead, all typing informa
tion can be inferred from the program's structure. A second reason is
a polymorphic let construct that facilitates code-she.ring. For exam
ple, one can specify a function that sorts arrays of any type of element.
Contrast this to most languages in which it is necessary to have two
separate, nearly identical routines to sort integer and floating-point
numbers.

When limitations on the utility of the let construct became appa
rant, the ML+ language [Myc84] [KTU88b] was proposed as a proper

•courant Institute of Mathematical Sciences, New York University, 715 Broadway, 7th
Floor, New York, NY 10012. Internet: hcnglein@nyu.edu

fIBM Research, PO BOX 704, Yorktown Heights, NY 10598. Internet: kjp@ibm.com

1

extension of ML. An example (from [Myc84)) will motivate this ex
tension.

Consider the following simulta.neous definition of functions map
and squarelist:

map(/, 1) = i:t null(l) then nil else

cons(f(hd 1), map(/, ti I))

-,quarelist(l) = map(.Xx. x • x, 1)

By the type inference rules of ML, the functions are determined to
have monomorphic types

map : (I NT -+ I NT) x I NTlist -+ I NTlist
-,quarelist : I NTlist -+ I NTlist

However, if the functions were defined sequentially, the expected poly
morphic type would be inferred for map, namely

map: Yo:/3. (o:-+ /3) x o:list -+ f3list

The failure to derive the expected polymorphic type for map would
be even more serious if we simultaneously defined a third function
that applied map to a BOO Llist. In this case, correct typing is not
possible since the inference rules would require that the distinct types
I NT and BOO L be equal.

The contribution of ML+ was a polymorphic :fix construct that
permitted mutually recursive definitions. Using this construct to de-
fine the two functions as •

:fix (map, squarelist). (.X(/, l) , .XI)

yields the expected polymorphic typing for map.
One question that is raised by polymorphism is its computational

complexity. Experience with ML had led many to believe that poly
morphic type inference was not a difficult problem. In fa.ct, a "folk
theorem" developed that claimed a. linear time algorithm for perform
ing type inference. It was not until the recent results of Kanellakis
and Mitchell [KM89] that this notion was debunke_d. To the contrary,
[KM89] demonstrated the PSPACE-hardness of recognizing typable
ML expressions. Our goal in this paper is to answer the same ques
tion for the language ML+.

2

1.1 Related work and previous results

The expressions of ML+ considered in this paper are given by

E ::= z I (EE) I >.z.E I let z = E in EI fix z.E

where z ranges over a given set of variables. The typing rules for ML+_
(see appendix) are identical to the ML typing rules (DM82] except for
a more general rule for fix-expressions.

Polymorphism is introduced by interpretting each occurrence of z
in the let and fix constructs as being of different types. ML +properly
extends the core ML language in its inclusion of the fixconstruct.

The type of an expression that excludes let and fix may be in
ferred in linear time by simple unification. Until recently, it was be
lieved that this was also true for expressions including let. Kanellakis
and Mitchell (KM89) reduced the problem of recognizing typable ML
expressions to a "polymorphic unification" problem and demonstrated
its PSPACE-hardness. However, they were only able to give an EX
PTIME upper bound.

Mycroft and others [Myc84] [Mee83] [KTU88b] recognized the
practical limits of having let as the sole means of polymorphism
and extended ML with the polymorphic !ix, thereby creating ML+.
Kfoury et. al. [KTU88a] formally established that this extension in
creases the language's expressiveness but bounds on the type inference
problem :for this language were left open.

Recently, several people have shown that the type inference prob
lem for ML +can be reduced to the problem (called "semi-unification"
in [Hen88]) of solving systems of inequalities on type expressions
[Mit88] (KTU88b] [Hen88J[GR88]. Again, the complexity of solv
ing these systems was left open (although there are partial result~
in (Cho86] and [PM88).)

2 Main results and significance

In this paper, we address the problems of type-inference in ML+, semi
unification, and extended polymorphic unification. The contributions
of this paper are in demonstrating

• The equivalence of ML+ type inference, semi-unification, and
extended polymorphic unification.

3

• The above problems may be reduced to a simpler problem, namely
recognizing typable expressions in the proper subset of ML+ con
taining no let expressions and at most one fix.

Mycroft [Myc84) conjectured that the nesting of fix constructs
might have to be limited on pragmatic grounds "due to the ex
ponential cost of analyzing nested fix definitions". Our result
shows that the essential combinatorial nature of the inference
problem is already inherent in a single fix construct. (How
ever, from the point of program expressiveness, multiple !ix
constructs might still be needed.)

• A lower bound of EXPTIME on these problems.

This clarifies the combinatorial nature of the problem and per
haps explains why algorithms for these problems have not been
found.

3 Problem definitions
In this section we define each of the problems considered. We shall
show their log-space equivalence in the following section.

Typability o/ML + exprellion&is the problem of determining whether
a type can be derived for an arbitrary ML+ expression using the lan
guage's type inference system (given in the appendix).

Semi-unification is a problem akin to unification. The preordering
~ of &Ub!umption on first-order terms is defined by M ~ N if there
exists a substitution u such that o-(M) = N. A system

{M11 = M12, ... , M1t1 = M1c2

Nu ~ N12,~ .. , N11 ~ N12}

of term equations and term subsumption inequalities is !emi-unifiable
if there is a substitution u such that all of the following equalities and
subsumption statements hold:

u(M11) = u(M12), ... , u(.M1c1) = u(M1t2),
u(Nu) ~ u(N12), ... , u(N11) ~ u(N12)

Polymorphic unification, an extension of ordinary unification, which
was recently introduced by Kanella.kis and Mitchell[KM89), defines a
sub-class of semi-unification problems. For example, if Mi[z, ... , z) is
a term with k occurrences of z·and if li/2, M3 are other terms, then the

4

extended terms M3 and (let z = M2 in Mi[z, ... , z]) are unifiable if
and only if the system

{ Mi(z1, ... , z1c] = M31 z = M2,
z ~ z1,.,.,z ~ z1c}

is semi-unifiable.

4 Equivalence Results
The main result of this section establishes the equivalence of severalof
these problems and is proved in the following.

Theorem 1 The following three problem.! are log-.!pace equivalent.

1. Typability of arbitrary ML+ program.!;

2. typability of ML+ program.! of the form fix z .E where E i.! let -
and fix-free;

3. .!emi-unifiability of arbitrary .!Y.!tem.! of term equation.! and mb
.!Umption inequalitie.!.

This theorem shows that

1. type checking for ML+ programs with only a single fix and no
let is already PSPACE-hard;

2. nesting of fix expressions does not make type checking harder
(this is in contrast to Mycroft's statement in [Myc84]);

3. fix expressions are at least as expensive as let expressions as
far as type checking is concerned;

4. semi-unification captures the combinatorial essence of type check
ing ML+ programs.

Proof (Sketch)
We sketch a proof of the two reductions (1) => (3) and (3) =>

(2). The first of these reductions can be found in [Hen88]. We shall
briefly reiterate the outline of that reduction. In the first step we
label the nodes of the syntax tree of a given ML+ program with dis
tinct type variables. We then collect a set of equations between these
type variables and type expressions of the form T1 -+ T2 from the
typing rules (ABS) and (APPL). For every ,\-bound variable z, la
belled with type variable t, and every occurrence of z, labelled with

5

t', we add the equation t = t'. Now, foI eveiy let- and fix-bound
variable z, labelled with the type variable t, and every occuuence of
that z, labelled with t', we collect all the >.-bound variables and their
type labels ti, ... , t,. in whose scope z occuis and add the subsump
tion inequality /(t, ti, ... , t,.) :5 /(t', ti, ... , t1c); heie / is any suitable
function symbol. The Iesulting system of equations and inequalities
has the piopeity that it is semi-unifiable if and only if the oiiginal
ML+ program is typable.

For the second reduction, (3) :::} (2), let
{ Mu = M121 ••• 1 M1c1 = M1c2,

Nu :5 N12, ... , N11 :5 N12}
be a system of equations and inequalities with variables z1,•••,z1c,
From [KM89] we know that every term can be encoded by Ux- and
let-free >.-expressions and that there is a >.-expression "=" that en
codes equality between teims. Similady, tuples [Li, ... , Lh] and tuple
selection functions 1([L1, .. ,,Lh]) = L; can be represented by stan
dard constructions. Now, the >.-expression

fix /. >.z1 ... z1c.
K[M1, ... , M1,J[>.y1 ... Y1c.i(/y1 ... Y1c) = N1, ... , AY1 ... Y1c-k(/111. · · Y1c) = N1c]

is typable if and only if the original system of equations and inequal-
ities is semi-unifiable.

5 Lower Bound
The main result of this section is the following.

Theorem 1 Recognizing typable ML+ expre.!.!ion.! i.5 hard for EXP
TIME.

By the equivalence results of the previous section, this demon
strates an EXPTIME lower bound for the semi-unification and poly
moiphic unification problems as well.

This result contrasts with the PSPACE lower bound and EXP
TIME upper bound derived by [KM89] for recognizing typable ML
expressions. Using let constructs nested to a depth of n [KM89) can
only specify trees of depth n. With a single, un-nested :fix we ate
able to specify trees of depth 2n. Thus, the :fix construct seems to
be much more powerful a means of introducing polymorphism than is
the let construct.

Proof: (sketch)

6

Given a PSPACE-bounded Alternating Turing Machine 1 M with
input x, we use the techniques of (CKS81] to deterministically simulate
its behavior. Our contribution is in showing that this simulation is
possible by the extended polymorphic unification of a graph 2 G whose
size is polynomial in the description of M and x and that represents
the type of a fix expression.

The simulation of (CKS81] organizes the configurations of Mon x
as nodes of a "computation tree" and assigns each a value such that
M accepts if and only if the root is assigned true 3. But, since M is
PSPACE-bounded, the depth of this tree can be as great as 2", where
n is the length of x. Therefore, the crux of our proof is in concisely
representing trees of depth 2" as the type of a fix expression.

The graph of Figure 1 compactly respresen ts a binary tree whose
nodes are instances of the graph contained in the circle (the "super
node"). This super-node will contain many sub-graphs related to the
simulation, such as an encodings of configurations, Boolean functions,
and a "next-configuration" function that maps a configuration into its
successor configurations according to the next-state function of M.
We first concentrate on specifying the sub-graph that keeps count of
a node's depth with the computation tree.

Throughout our simulation, a Boolean variable v will be repre
sented by four nodes vo, ... , v3. If vo = v1 (i.e., vo and v1 unify),
then we interpret v as having value true or l; if instead v2 = v3 , we
intepret v as having value false or 0. A single bit of the counter is
shown in Figure 2. It takes a bit i and a "gate" value g as inputs, and
produces o as output according to the rule o = (i + g) mod 2. That
is, the graph counts up when the gate value is true.

Now consider connecting n of these counters in series (with inputs
·O •n-1 t t O n-1 d t O n-1) d" 1 , ... , 1 1 ou pu s o , ... , o , an ga es g , ... , g accor mg
to the following equations:

1 Recall, EXPTIME = Alternating PSPA CE.
2 TYI~e expressions have a natural representation as graphs, which we use here for con

venience. It. is equally possible to directly give an equivalent system of constraints on type
expressions.

3The root of this tree is the initial configuration and the children of a node are its im
mediate successor configurations. Leaves are assigned Boolean values indicating whether
they are accepting configurations. Nodes that are universal (resp., existential) configura
tions are assigned a value that is the conjuction (resp., disjunction) of the values assigned
to its children.

7

go = e
gj+l - e /1. ij

Then letting I denote the integer represented by the Boolean string
in-lin-

2

• • • i0 and O the integer with representation on-lin-

2

• • • o0 ,

we can prove that O = (I+ e) mod n. That is, setting e to 1 causes
the n-bit counter to be incremented.

Having shown that trees of depth 2n are constructible, we can
adapt the techniques of (DKM84] (DKS88] that give encodings of
Boolean functions as graphs. We can then embed a "next-configuration"
function within the super-node to ensure that the resulting tree is in
fact the computation tree of Mon input z. The technique of (KM89]
that computes values for nodes in a bottom-up manner can also be
adapted to assign values to the nodes of this "computation-tree". Fi
nally, the results of (KM89] can be extended so as to extract an ML+
expression from our graph. I

8

References
(Cho86] C.-T. Chou. Relaxation Proce_,e.,: Theory, Ca.,e Studie11

and Application.,. PhD thesis, University of California at
Los Angeles, 1986.

(CKS81] A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alter
nation. Journal of the ACM, 287(1):114-133, 1981.

[DKM84] C. Dwork, P. Kanellakis, and J. C. Mitchell. On the se
quential nature of unification. Journal of Logic Program
ming, 1:35-50, 1984.

(DKS88] C. Dwork, P. Kanellakis, and L. Stockmeyer. Parallel al
gorithms for term matching. SIAM Journal of Computing,
17(4):711-731, 1988.

(DM82] L. Damas and R. Milner. Principal type schemes for
functional programs. In Proc. 9th Annual A CM Symp.
on Principle., of Programming Language.,, pages 207-212,
Jan. 1982.

(GR88] P. Giannini and S. Ronchi Della Rocca. Characteriza
tion of typings in polymorphic type discipline. In Proc.
Third Annual SympoJium on Logic in Computer Science,
pages 61-71, IEEE, 1988.

[Hen88] F. Henglein. Type inference and semi-unification. In Proc.
A CM SympoJium on LISP and Functional Programming,
page ? , ACM, 1988.

[KM89] P.C. Kanellakis and J.C. Mitchell. Polymorphic unifica
tion and ML typing (extended abstract). In Proc. Six
teenth A CM SympoJium on Principle., of Programming
Language.,, ACM, January 1989.

[KTU88a] A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. ?? In Proc.
Third Annual SympoJium on Logic in Computer Science,
page??, ?, 1988.

[KTU88b] A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. A proper ex
tension of ml with effective type assignment. In Proc.
Fifteenth A CM SympoJium on Principle., of Programming
Language.,, pages 58-69, ACM, 1988.

9

[Mee83] L. Meerteens. Incremental polymorphic type checking in
B. In Proc. Tenth ACM Sympoaium on Principlea of Pro
gramming Languagea, pages 265-275, ACM, 1983.

[Mil78] R. Milner. A theory of polymorphism in programming.
JCSS, 17:348-375, 1978.

[Mit88] J.C. Mitchell. Polymorphic type inference and contain
ment. Information and Computation, 76(2/3):, 1988.

[Myc84] A. Mycroft. Polymorphic type schemes and recursive def
initions. In M. Paul and B. Robinet, editors, Proc. In
ternational Sympoaium on Programming, Lecture Notea in
Computer Science 167, pages 217-228, 1984.

[PM88] D.S. Parker and R.R. Muntz. A theory of directed logic
programs and streams. In Proc. Fifth Intemation Confer
ence on Logic Programming, pages 620-650, MIT Press,
1988.

10

A ML+ Typing Rules
ML+ is an extended A-calculus. The type expressions are given by

T == t IT-. T

t := (type variables)
u :=TI Vt.u

Type expressions derived from T above a.re called monotypea and the
larger set o{ type expressions derived from " are polytype.!. A type
assignment is a. mapping from A-calculus variables to type expressions.
For detailed definitions o{ A-expressions, type expressions, and type
assignments we refer to [DM82] and [Myc84] or any number of other
papers on type theory.

The ca.nonical type inference system {or the ML+ (Myc84] is given
below. Let A range over type assignments, z over A-calculus vari
ables, t over type variables, e and e' over expressions, T and T

1 over
monotypes, and " and u' over polytypes.

11

(TAUT) A{z: 11} :> z: 11

(INST) A ::, e : Vt.tr
A:> e: u(r/t]

(GEN) A::>e:11
{t not free in A)

A ::, e : Vt.tr

(APPL) A::>e:r 1 -+r
A:> e': r'
A::, (ee'): r

(ABS) A { z : r'} ::> e : r
A::> ,\z.e: r'-+ r

(LET) A:>e:u
A{z: 11} ::> e': u'
A ::> let z = e in e' : u'

(FIX-P) A{z: 11} ::> e: 11
A :> fix :z:.e: 11

12

'

I

B Figures

,,,,,-........ /-
"'\

I "\

(\ ,
\ I

\.. _....

Figure 1: Compact respresentation of a binary tree of "super-nodes"

The following relations hold among the nodes:
c; = i; j = O, ... , 3
a; = ic;+2)mod4 j = 0, • • •, 3

Figure 2: A single bit of the n-bit counter

•

